
Learn to rehydrate Twitter data using 
Python: case #hellobrother 
Abstract 
 
In research, it is common practice to share Twitter datasets using only tweet identifiers; this is 
done by way of dehydration and the subsequent rehydration of the dataset for further qualitative 
analysis. This tutorial demonstrates the process of rehydration that simply refers to using the 
Twitter API to recollect or retrieve the tweets that the tweet identifiers refer to using Python 
programming language, Jupyter Notebooks and a third-party tool named Twarc. Rehydration is 
the standard way to share Twitter data in accordance with Twitter Terms of Service (ToS) that 
only allows the sharing of tweet identifiers, not the full tweet data. In addition, this tutorial 
explores the degradation and disappearance of data that occurs when tweets are removed by 
users or through moderation, and which becomes evident once the data is rehydrated and not 
all of the dataset can be retrieved. Rehydration is especially useful for mixed-method 
approaches that include qualitative ethnographic analysis of computational data because 
rehydration allows the sharing of datasets between researchers, but also enables the 
(re)construction of the field for ethnographic analysis. The tweetset under investigation in this 
tutorial includes tweets tagged with the commemorative hashtag #hellobrother, collected in the 
context of the Christchurch mosque attacks in 2019. Although the #hellobrother tweetset is 
mainly commemorative in nature, some content might be perceived as more sensitive. This 
tutorial includes the #hellobrother tweetset in the form of tweet IDs, a How-to Guide for 
rehydrating the data, as well as an analytical notebook for exploring the rehydrated tweetset. 
 

Student Guide 
Introduction 
Twitter often serves as the go-to platform for information and communication during sudden and 
unexpected events, capturing the first impressions. Thus, as a “first draft of the present” (Bruns & 
Weller, 2016), Twitter frequently serves as the data source for analyses in different academic 
disciplines, including in the study of hybrid media events (Sumiala et al., 2018), the domain of this 
tutorial. This tutorial guides you through the process of sharing a Twitter dataset for research 
purposes and setting up a shared dataset for analysis. Unlike many of the other datasets in SAGE 
Datasets that are openly downloadable for further analysis, Twitter Terms of Service (ToS) sets 
major restrictions to how tweet datasets, or tweetsets, can be shared; instead of sharing the full 
set of data, Twitter ToS only allows sharing the list of tweet identifiers (tweet IDs). Specifically, 
the ToS allow sharing 50 000 hydrated tweets (that is, including all the details) privately between 
researchers and a total of 1 500 000 tweet IDs “to a single entity within a 30 day period“ (Twitter 
Developer Platform, 2022). To be able to analyse the data, the analyst must then recollect or 
rehydrate the tweetset using the list of tweet IDs. In this tutorial, you will learn to conduct this 



process and also to explore the implications of this practice. Moreover, we will demonstrate one 
of the key issues relating to Twitter data that becomes evident during the rehydration process, 
that is, the degradation and disappearance of Twitter data: tweets that have been deleted from 
Twitter before the rehydration process is carried out are no longer available for research as these 
cannot be recollected (Bruns, 2019; Freelon, 2018, Tromble, 2021). 
 
The tweetset under investigation in this tutorial, #hellobrother, was collected in the context of the 
Christchurch mosque attacks in New Zealand where 51 Muslims were killed during Friday prayer 
by a single perpetrator on 15th March, 2019. The commemorative hashtag #hellobrother has its 
roots in the final words of the first victim, seen greeting the killer on the live footage taken by the 
perpetrator. It thus represents a unique dataset specific to this incident and comprises tweets of 
solidarity, remembrance, and condemnation of the attack. In addition to public commemoration, 
the #hellobrother tweetset includes shows of solidarity and expressions of commiseration, but 
also of shock. While the majority of the tweets serve to remember and respect the life of this 
particular individual, some content might, however, be perceived as sensitive by some as the 
tweets link to and reference the attack itself. No images or photos embedded in the tweets will 
come up following this tutorial and in the process of rehydration; however, these are still 
recoverable on Twitter and will be visible if rehydrated tweets are viewed on Twitter. At the same 
time, however, the potentially sensitive nature of the dataset raises important research ethical 
questions pertaining to the collection and use of online data in research, also bringing up 
questions relating to the permanence, degradation, and disappearance of data (for example, 
through content moderation which will affect the dataset and the amount of tweets that can in fact 
be rehydrated). It is thus important to note that, depending on the institution, an ethical approval 
to use (and, effectively, re-collect) this dataset might be required. The qualitative, ethnographic 
analysis of the dataset is described in detail elsewhere (Harju & Huhtamäki, 2021). Our approach 
to analysing #hellobrother combines qualitative ethnographic research with computational 
methods. We draw on digital methods (Rogers, 2019) and data science as a kind of ethnography 
(Lindgren, 2020). However, although the examples we present here draw on this multimethod 
approach, the focus of this tutorial is on the technical process required to rehydrate a tweetset for 
further qualitative analysis. 
 
The process of rehydrating the dataset allows more than sharing of the dataset: it also allows the 
reconstruction of the ethnographic field by other researchers, or more precisely, reconstructing 
what we call an ethnographic data field (Harju & Huhtamäki, 2021). The ethnographic data field 
is, in essence, the set of tweets in the dataset that are still recoverable (that is, have not been 
deleted) via the Twitter API through the process of rehydration and as such, one iteration of the 
field.  

Introducing Twitter API 
Twitter provides an Application Programming Interface (API) for collecting data where the API 
enables programmatic access to the web platforms. Twitter API allows not only collecting tweets 
but also other means of automation (the development of bots, for example). Here, we focus our 
attention on collecting Twitter data. To be able to use the Twitter API, you first need to create a 
developer account at developer.twitter.com and create a new Developer App that enables you to 



start using the API. Please note that it might take days or even weeks to get the developer 
account. Therefore, we urge you to follow the instructions in the How-to Guide for Python to submit 
your application as early as possible. 
 
There are two main approaches to collect tweets: a search-based or a streaming-based approach. 
In the search-based approach, a collector software sends a series of requests to the API to 
receive results, whereas a streaming-based collector registers a set of search terms with the 
Twitter API and then receives tweets in real time as they are sent by the users. We used the 
streaming approach to collect the #hellobrother tweets. 
 
Searching the Twitter API with the basic access that is available for all the developers is limited 
to recent tweets, going back roughly two weeks or some tens of thousands of tweets. Importantly, 
however, Twitter provides a separate access for academic researchers that enables searching 
the full timeline of historical tweets. Similar to rehydration, the major limitation here is that tweets 
that have since been removed from Twitter are no longer available for researchers. 
 
To circumvent the aforementioned issues, we used the streaming-based approach for the 
Christchurch mosque attacks. We developed and set up a dedicated Twitter data collector that 
uses the Twitter Streaming API to collect tweets in real time, up to 180 000 per hour as limited by 
the Twitter API. Importantly, you should be aware that even the streaming approach yields only a 
sample of tweets (see Campan et al. 2018) and not “all of the data” linked to the search terms. In 
our case, out of the full dataset of almost 12 million tweets collected with a variety of search terms 
relating to the Christchurch attacks, we extracted 43 659 tweets with the hashtag #hellobrother. 
This dataset is included in this tutorial as a list of tweet identifiers (IDs) for these tweets. 
 
The API provides representations of tweets in a JSON format. JSON is shorthand for Javascript 
Object Notation, and is a commonly used data format in Web development and data analysis.  
As #hellobrother might by some be perceived as asensitive topic, let’s instead use a tweet from 
Jacinda Ardern, the Prime Minister of New Zealand, as an illustrative example (see Listing 1 
below). 
 
{ 
 'created_at': 'Fri Mar 15 03:33:02 +0000 2019', 
 'id': 1106397870628847617, 
 'id_str': '1106397870628847617', 
 'text': 'What has happened in Christchurch is an extraordinary act of 
unprecedented violence. It has no place in New Zealand… 
https://t.co/XOHF9hHe8H', 
 'truncated': True, 
 … 
 'user': { 
   'id': 22959763, 
   'id_str': '22959763', 
   'name': 'Jacinda Ardern', 



   'screen_name': 'jacindaardern', 
   'location': 'Auckland, New Zealand', 
   'description': "Prime Minister of NZ. Leader @nzlabour. Won't tweet what I ate 
for breakfast-make no promises beyond that. Authorised by Timothy Grigg 160 
Willis St, Wellington", 
 … 
 
Listing 1. JSON representation of a tweet 
 
You can access the tweet here: https://twitter.com/jacindaardern/status/1106397870628847617. 
As the example shows, JSON allows the hierarchical representation of data. That is, data can 
include key-value-pairs (e.g., created_at with value Fri Mar 15 03:33:02 +0000 2019) and 
embedded structures such as the user field with a set of key-value pairs as its value. As you 
will learn in this tutorial, Python allows easy ways to access and process data in JSON. 

How to share and rehydrate Twitter data? 
Once the tweetset is collected, it can be analysed in different ways, for example, by carrying out 
a computationally augmented ethnography (Harju & Huhtamäki, 2021) that draws on interpretive 
data science (Lindgren 2020) or by a fully quantitative statistical analysis. However, if researchers 
wish to share the tweetset to others as open data, they must do so in accordance with the Twitter 
ToS. Sharing data for reuse is common practice in open science and in research in general; 
however, Twitter ToS insists on sharing tweet IDs only. Thus, we first have to dehydrate the 
dataset in order to share it. See Listing 2. for an example of a dehydrated dataset. 
 
1106477228337127424 
1106484041438674944 
1106484262302289920 
1106484776914092033 
1106486835788894210 
1106487521725145090 
1106488954784763904 
1106489002738081792 
1106493724148801538 
1106494087518187521 
 
Listing 2. Excerpt of the dehydrated #hellobrother dataset 
 
To (re)construct and analyse the dataset, one has to use the Twitter API to fetch each of the 
tweets in the list of tweet IDs again, that is, to rehydrate it. Although implementing a simple 
rehydration process is straightforward, we recommend using existing implementations to ensure 
a smooth process and reduce the likelihood of errors. In the How-to tutorial, we will guide you 
through the rehydration process using Twarc, a popular command-line tool for collecting and 
rehydrating Twitter data. 



 
Whether those conducting academic research should strictly follow the guidelines and ToS set up 
by the platform is an ongoing discussion (see e.g., Bruns, 2019; Freelon, 2018). Recently, a group 
of academic researchers were forced by Facebook to delete an existing Instagram dataset due 
to alleged privacy concerns (for more information about the dispute, see Kayser-Bril, 2021) while 
the platform is also known to have closed researchers’ accounts over disagreement (Hatmaker, 
2021). At the same time, discussion on the prevalent issue of accessing social media data through 
partly or fully black box mechanisms moves forward (Tromble, 2021). Following Bruns (2019), 
we, too, “demand that social media platforms provide transparent data access to critical, 
independent, public-interest research.” 

Reconstructing the ethnographic data field through rehydration 
In this tutorial, our aim is not only to demonstrate the rehydration of a tweetset, but also the 
rehydration of an ethnographic data field to better illustrate the purpose and use(s) of sharing 
tweetsets among researchers. Ethnography is a qualitative research approach with roots in 
anthropology where one of the key concepts is the ‘field’, forming the object of study. When 
researching fluid, digital contexts (see Markham & Lindgren, 2014; Markham & Gammelby, 2018), 
however, the field often proves challenging as it is constantly shifting and difficult to grasp (see 
Markham, 2017). Rehydration is a useful tool for (re)constructing the ethnographic field, or the 
ethnographic data field, for further qualitative analysis.  
 
In line with our multi-method approach, we follow Harju & Huhtamäki’s (2021) conceptualisation 
of the ethnographic data field to better capture the way the ethnographic field is the result of 
rehydration: as we rehydrate the dataset, we in fact (re)construct the ethnographic field by 
recollecting those tweets still available. This reconstruction happens each time we rehydrate the 
tweetset by retrieving the tweets from the Twitter API and thus the field is potentially different 
every time we reconstruct it. 
 
Due to data loss and data degradation, the resulting ethnographic data field typically does not 
correspond to the full dataset (and therefore does not fully correspond to the ethnographic field 
at the time of data collection and ethnographic observation in the field). Rather, it reflects the 
current ‘live’ situation on Twitter and the tweets in the dataset that are still available on Twitter. 
To demonstrate this major issue with the rehydration process, we will next compare the original 
and the rehydrated datasets to see how data is lost during the rehydration cycle. While the full 
reconstruction of the ethnographic data field for #hellobrother is beyond the scope of this tutorial, 
we will focus our attention on the hashtags that received the most and least attention in the original 
tweetset. 
 
For the benefit of this tutorial, we ran the rehydration process for the original tweetset of 43 659 
tweets. At the time of writing, we were able to recollect only 25 603 tweets from the original tweetset; 
that is, almost 40% of the tweets have already been removed since they were collected. In terms of 
qualitative ethnographic research, this means that the reconstructed field rather represents the 
state of the field during the time of rehydration rather than the time of the event However, sharing 
and rehydrating tweetsets is nevertheless very useful: not only does it allow sharing the dataset 



as open data, but also sharing the field in its reconstructed form, as an ethnographic data field, 
among the research team for further qualitative research, potentially opening up new avenues of 
interrogation. 
 
For details on why a particular tweet was removed, we could use the Twitter compliance API that 
allows a tweet data redistributor to check whether they have to remove or refine some of the data 
to reflect the changes on the Twitter. However, following strictly the Twitter ToS, we should limit 
the use of this additional information to revise the dataset accordingly (i.e., not using the 
compliance information to augment the original tweetset for researching, for example, the reasons 
why a particular tweet was deleted or account suspended) (see Meeks, 2016). However, as an 
academic researcher, you should weigh your options carefully, including consideration of the 
importance of researching the topic you plan to study and the possible repercussions that going 
against Twitter ToS might entail. 

Considerations and Cautions 
● Twitter streaming and recent search APIs provide only a sample of the data, and the 

details of the sampling process are not transparent 
● The Academic Research access enables full-archive search, yet it does not provide data 

that has been removed from the platform 
● Rehydration only re-collects tweets that are available when running the process and thus 

the resulting tweetset is likely to be different each time rehydration is carried out 
● Rehydration process always provides the status of the field at the time of the rehydration 

process, not the time of the event 
● Research ethics, Terms of Service, and legislation should all be considered separately 
● When strictly following Twitter ToS, we are not able to identify what is missing from a 

rehydrated dataset 

How-to Guide for Python 
For instructions on how to set up Python, Anaconda, and Jupyter, please refer to the How-to 
Guide for Python. 

Review 
This dataset tutorial gave a quick introduction to the basics of the Twitter API, demonstrated the 
processes of dehydration and rehydration that allows researchers to share and recollect tweetsets 
and the process for exploring the tweetset. Through comparing the rehydrated and the originally 
collected and shared tweetsets, the inevitable degradation of Twitter data was illustrated.  
 
You should know: 

● What is Twitter API? 
● What are the different ways to collect Twitter data? 
● What is rehydration?  
● Why is rehydration needed in sharing Twitter data? 



● What are the benefits of rehydration for qualitative ethnographic research and analysis? 
● How to explore a rehydrated tweetset? 
● What are the different representations of Twitter data? 
● What are the main weaknesses and limitations of rehydration? 
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How-to Guide for Python 
 
Introduction 
The Twitter Terms of Service (ToS) allows only one way to share tweet datasets, or 
tweetsets. That is, instead of sharing the actual data, one can only share the list of tweet 
identifiers (IDs). Therefore, when sharing a dataset, one has to dehydrate it. This simply 
refers to the process of removing all data beyond the tweet IDs. When reusing the shared 
dataset, the first task is the rehydration of the said dataset. Rehydration refers to the process 
of recollecting the tweets using the Twitter Application Programming Interface (API).  
 
In this tutorial, you will first install the necessary tools needed in the dehydration and 
rehydration processes, then rehydrate an example dataset, and start the exploration of the 
rehydrated dataset. This tutorial does not cover all the details of installing the key tools, 
including Python, Jupyter Notebooks, and Twarc; instead, we will introduce the basics and 
point you to relevant tutorials that allow you to set up your working environment. 
 
1 Before rehydration: Dehydrating and sharing a tweetset 
Sharing a tweetset requires dehydrating it first. After dehydration, the #hellobrother tweetset 
consists of 43 659 lines of tweet identifier values. 
 
Let’s review the first lines of our code for this tutorial. For our analysis project, we use the  
Pandas DataFrames to manage the tweetset. Pandas is one of the key Python packages in 
data science. Essentially, it implements the spreadsheet functionality for Python, and thus 
allows managing and operating the data in a tabular format. To dehydrate a tweetset, we 
simply remove all fields that fall beyond the tweet ID and save the resulting list as a text file. 
 
Please note that unlike all the other code examples in this tutorial, you are not able to run the 
following lines because you do not have access to the full hydrated tweetset: 
 
import pandas as pd 
df = pd.read_pickle('data/hellobrother-full-dataset_idfix_str.pkl.gz') 
 
So far, we have imported the Pandas library and read the tweetset in a DataFrame format. 
The term pickling refers to a way of saving Python data structures and other objects between 
development sessions. For development use, we prefer pickling over representing data in 
Comma separated Values (CSV) format because it maintains the specific data structure. 
 
The info() function gives details about the DataFrame contents: 
 
df.info() 
 
<class 'pandas.core.frame.DataFrame'> 
Index: 43659 entries, 1106477228337127424 to 1173570452389863424 
Data columns (total 19 columns): 
 #   Column                                Non-Null Count  Dtype          
---  ------                                --------------  -----          
 0   id_str                                43659 non-null  object         



 1   created_at                            43659 non-null  datetime64[ns] 
 2   user_screen_name                      43659 non-null  object         
 3   user                                  43659 non-null  object         
 4   text                                  43659 non-null  object         
 5   user_mentions                         43659 non-null  object         
 6   user_mentions_screen_name             43659 non-null  object         
 7   hashtags                              43659 non-null  object         
 8   full_text                             18105 non-null  object         
 9   full_text_user_mentions               18105 non-null  object         
 10  full_text_user_mentions_screen_name   18105 non-null  object         
 11  full_text_hashtags                    18105 non-null  object         
 12  retweet_count                         43659 non-null  int64          
 13  collection_method                     43659 non-null  object         
 14  harmonized_text                       43659 non-null  object         
 15  harmonized_user_mentions              43659 non-null  object         
 16  harmonized_user_mentions_screen_name  43659 non-null  object         
 17  harmonized_hashtags                   43659 non-null  object         
 18  hellobrother                          43659 non-null  bool           
dtypes: bool(1), datetime64[ns](1), int64(1), object(16) 
memory usage: 6.4+ MB 
 
 We now have 43 659 tweets, each with 19 columns of metadata, most of which are 
composed of several additional fields. 
 
As we can see in the following, dehydration is a fairly simple task. 
 
df[['id_str']].to_csv('hellobrother_idlist.txt', index=False, 
header=False) 
 
Here, we first select the id_str column of the DataFrame and use the to_csv() function to 
write the DataFrame to a file. Moreover, we remove the index and header from the resulting 
file, resulting in a simple list of tweet IDs (see below). 
 
An excerpt from hellobrother_idlist.txt:  
 
1106477228337127424 
1106484041438674944 
1106484262302289920 
1106484776914092033 
1106486835788894210 
1106487521725145090 
1106488954784763904 
1106489002738081792 
1106493724148801538 
1106494087518187521 
 
In case you have collected the tweetset with Twarc, dehydration can be implemented with a 
single command.  



 
twarc dehydrate hellobrother.jsonl > hellobrother_idlist.txt 
 
More details on installing and operating Twarc will be covered later on in this tutorial. 
 
Before the next step of rehydrating the tweetset, we will first set up the technical 
environment. This includes getting access to the Twitter API and installing Python, Twarc, 
and Jupyter Notebooks.    
 
2 Twitter developer access 
The first step in getting access to the Twitter API is to create a Twitter account and apply for 
a developer account at developer.twitter.com. Depending on your status, you can either 
apply for standard access or, should you qualify, for the Academic Research product track.  
Please note that it might take days or even weeks to get the developer account. 
Therefore, we urge you to follow the instructions in the How-to Guide for Python to 
submit your application as early as possible.  
 
Once your application is accepted, you can create a new App that comes with the API 
access credentials. In the Developer portal Overview, select Create App, give it a name, and 
move to Keys & Tokens. The next note is important: copy the API Key, API Secret, and Bearer 
Token to a local text file for now because, for security reasons, they will only appear once when 
created and you will need them later. 
 
Next, let’s set up the Python environment so that we are able to use our newly created 
credentials. 
 
3 Implementation in Python 
 
3.1 Installing Python 
 
Python is an open source programming language freely available to developers. Over the 
last few years, Python has gained major popularity in the machine learning and data science 
communities. There are several ways to make use of Python in data science. We use 
Jupyter Notebooks here. A form of literate programming (Keys et al., 2018), these analytical 
notebooks combine textual documentation with Python code and its outputs, including data 
listing and visualisations.  
 
There are several alternative approaches for setting up a Python environment. Google 
Colaboratory provides a cloud-based option that does not require installing software on your 
local computer. However, if you are able to install software on your computer, we 
recommend using Anaconda, a data science-specific Python platform that includes not only 
Jupyter Notebooks but a curated set of Python packages needed in this tutorial. The getting-
started process varies between different operating environments so we recommend 
following the Getting started with Anaconda tutorial. 
 
Once you have Anaconda installed, open Anaconda Navigator and fire up a new notebook. 
 



Alternatively, for a more advanced option you can install a Python virtual environment and 
use the requirements.txt file provided in the Github repository of this tutorial to install all the 
prerequisites needed to run the code for this tutorial. 
 
We admit, configuring and managing a Python environment may seem unnecessarily 
complicated. However, the good thing is that once set up, you can keep using the 
environment for your upcoming analysis projects. 
 
3.2 Rehydrating the first tweet 
 
Now that we have Python installed, we are ready to try out the Twitter API. Here, you can 
either run the notebook provided in this tutorial or copy the necessary code to your own 
notebook. 
 
To get to know the details of the API, we use Twython to access the Twitter API here instead 
of Twarc. Whereas Twarc is a full-blown command line application that allows running entire 
data collection processes, Twython is a Python package that a developer can use to access 
the API more easily. First, let’s install Twython. Enter and run the following command in the 
Jupyter notebook: 
 
pip install twython 
 
Now we can import Twython so that we can start using the library: 

 

from twython import Twython 
 
Next, we need to get Twitter API access. For this, you will use the two credentials, API Key and 
API Secret, from the Twitter App that you already received earlier on. The two remaining 
credentials, Access Token and Access Secret, can be accessed from the App page under Keys 
and Tokens. You can always regenerate all four keys if you misplace them. 
 
Next, create the following four variables and assign the credentials as their values. That is, copy 
the lines to your notebook and replace each of the four copy_from_Twitter placeholders with 
your own API key/secret value: 
 
api_key = 'copy_from_Twitter'  
api_secret = 'copy_from_Twitter' 
access_token = 'copy_from_Twitter' 
access_secret = 'copy_from_Twitter' 
 
Note that the actual values are a lot longer. Now that we have the values set, we can create a 
Twython instance: 

 

twitter = Twython(api_key, api_secret, access_token, access_secret) 
 
Now, we should be ready to rehydrate our first tweet. We will use one of the tweets by New 
Zealand Prime Minister Jacinda Ardern as an example here: 

 



tweet = twitter.show_status(id='1106397870628847617', include_entities=True) 
 
The id parameter takes the tweet ID and the include_entities value True asks the Twitter 
API to include further information about the entities in each tweet, including hashtags and 
users mentioned.  
 
To view the results of our API query, you can simply write the variable name tweet to the 
notebook cell and run it: 
 
tweet 
 
This is an excerpt from the expected output: 
 
{ 
  'created_at': 'Fri Mar 15 03:33:02 +0000 2019', 
  'id': 1106397870628847617, 
  'id_str': '1106397870628847617', 
  'text': 'What has happened in Christchurch is an extraordinary act of    
unprecedented violence. It has no place in New Zealand… 
https://t.co/XOHF9hHe8H', 
... 
} 
 
Use the keys() function for a full list of details for the tweet: 
 
tweet.keys() 
 
Output:  
 
dict_keys(['created_at', 'id', 'id_str', 'text', 'truncated', 'entities', 
'source', 'in_reply_to_status_id', 'in_reply_to_status_id_str', 
'in_reply_to_user_id', 'in_reply_to_user_id_str', 'in_reply_to_screen_name', 
'user', 'geo', 'coordinates', 'place', 'contributors', 'is_quote_status', 
'retweet_count', 'favorite_count', 'favorited', 'retweeted', 'lang']) 
 
As we can see, there is plenty of metadata for any single tweet. Now that we are more familiar 
with the basics of Twitter API, we are ready to rehydrate our full dataset. 
 
3.3 Rehydrating the full dataset 
 
In principle, rehydrating the full tweetset simply means that you implement a simple loop that 
runs the process we implemented in the previous phase for each tweet separately. However, 
there are nuances one has to consider, including the rate limits that the Twitter API sets 
(https://developer.twitter.com/en/docs/twitter-api/rate-limits) and the management of large 
datasets of data represented in JSON. 
 
To minimise the risk of errors in the rehydration process, we will use Twarc, a commonly 
used Python-based tool for archiving and rehydrating Twitter data. Compared to a low-level 



Python developer framework, Twarc is a command line application designed specifically to 
collect, rehydrate, and manage large datasets. To install and learn how to use Twarc, we 
highly recommend the Collect Twitter Data with Twarc! tutorial. Do note that the Twarc 
tutorial covers the basics of command-line use in MacOS and Windows as well as gives tips 
on how to set up Twitter and Python. 
 
If you chose to install a dedicated Python virtual environment, you can either install Twarc on 
the same Python environment that you use for the notebook installation or create a separate 
one. We prefer to use a project-specific virtual environment and therefore we would install 
Jupyter, Twarc, and the other Python packages all in the same virtual environment. The 
important thing is that in order to process the data in the next phase, you may need to copy 
the rehydrated data to the folder where your notebook operates. 
 
The easiest way to install Twarc is to use the Python package manager pip on the command 
line: 
 
pip install twarc 
 
Next, we have to provide Twarc with the same Twitter API credentials we used to read the 
first tweet. To do that, run Twarc configuration on the command line: 
 
twarc configure 
 
If you have previously used Twarc, you may be asked if you would like to use your existing 
keys. Please answer either y(es) or n(o). If you create several profiles, please specify the 
one you are using when running the script. More on this later. 
 
Insert your API key as a consumer key and your API secret as a consumer secret when 
prompted, then select “generate access keys by visiting Twitter.” Copy the provided URL to 
your browser and select the Authorize app option. Alternatively, you can insert all the four 
key values through the prompt. 
 



 
 
Finally, copy the PIN number provided back to the command line to finalise the 
authentication process. 
 
Now, we should be ready to rehydrate the tweetset. Make sure that the text file including the 
list of  IDs is placed in the folder where you run the script. Run Twarc on the command line: 
 
twarc hydrate hellobrother_idlist.txt > hellobrother_rehydrated.jsonl 
 
You can skip using the --profile parameter if you just installed Twarc for the first time. 
 
twarc --profile ProfileName hydrate hellobrother_idlist.txt > 
hellobrother_rehydrated.jsonl 
 
Rehydrating tweets and exploring the contents of the output may insist on moving between 
the command line and the Jupyter notebook. To simplify the process, you can run Twarc 
inside the Jupyter notebook environment simply by adding an exclamation mark (!) at the 
beginning of the line and run it as a notebook cell: 
 
!twarc hydrate hellobrother_idlist.txt > hellobrother_rehydrated.jsonl 
 
Note that the rehydration process will take a while. Once the script is completed, we can 
move to exploring the results of the process, that is, the full rehydrated tweetset. 
 
4 Exploring the results 
 
We are now ready to explore the rehydrated dataset represented in JSON and take the first 
steps toward reconstructing the ethnographic data field (see Student Guide; see also Harju 
& Huhtamäki, 2021) for qualitative research. 
 



We will process the data in JSON and use Pandas to manage it.  
 
import pandas as pd 
import json 
 
In case importing Pandas fails, you can install it: 
 
pip install pandas 
 
The first processing step is to read the data and create a Pandas DataFrame. Twarc uses 
JSON Lines format to represent the tweets. That is, each tweet object is represented as one 
line of JSON. This eases managing large data files as they can be processed one record at 
a time with Unix-style command line tools. 
 
Run the following lines: 
 
with open('hellobrother_rehydrated.jsonl') as f: 
    tweets_jsonl = f.read() 
     
df_hydrated = pd.DataFrame([json.loads(jline) for jline in 
tweets_jsonl.splitlines()]) 
 
We first read each line of the tweetset, open them as JSON objects, and finally create a 
Pandas DataFrame of these objects. 
 
Again, the info() function gives us an overview of the data frame. 
 
df_hydrated.info() 
 
Output: 
 
<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 25603 entries, 0 to 25602 
Data columns (total 31 columns): 
 #   Column                     Non-Null Count  Dtype   
---  ------                     --------------  -----   
 0   created_at                 25603 non-null  object  
 1   id                         25603 non-null  int64   
 2   id_str                     25603 non-null  object  
 3   full_text                  25603 non-null  object  
 4   truncated                  25603 non-null  bool    
 5   display_text_range         25603 non-null  object  
 6   entities                   25603 non-null  object  
 7   source                     25603 non-null  object  
 8   in_reply_to_status_id      1713 non-null   float64 
 9   in_reply_to_status_id_str  1713 non-null   object  
 10  in_reply_to_user_id        1796 non-null   float64 



 11  in_reply_to_user_id_str    1796 non-null   object  
 12  in_reply_to_screen_name    1796 non-null   object  
 13  user                       25603 non-null  object  
 14  geo                        82 non-null     object  
 15  coordinates                82 non-null     object  
 16  place                      1323 non-null   object  
 17  contributors               0 non-null      object  
 18  is_quote_status            25603 non-null  bool    
 19  quoted_status_id           2463 non-null   float64 
 20  quoted_status_id_str       2463 non-null   object  
 21  quoted_status_permalink    2463 non-null   object  
 22  retweet_count              25603 non-null  int64   
 23  favorite_count             25603 non-null  int64   
 24  favorited                  25603 non-null  bool    
 25  retweeted                  25603 non-null  bool    
 26  possibly_sensitive         15538 non-null  object  
 27  lang                       25603 non-null  object  
 28  quoted_status              2055 non-null   object  
 29  extended_entities          10361 non-null  object  
 30  withheld_in_countries      8 non-null      object  
dtypes: bool(4), float64(3), int64(3), object(21) 
memory usage: 5.4+ MB 
 
As mentioned, the ethnographic data field degrades over time. Let’s calculate the proportion 
of tweets removed since they were first collected: 
 
len(df_hydrated.index)/43659*100 
 
We now see that we have lost more than 40% of the tweets. 
 
58.643120547882454 
 
Now that we have successfully rehydrated the dataset, we have two main options to choose 
from. We can either continue processing the data in Python or export the data in CSV or as 
a spreadsheet for importing it to your favorite analysis tool, including ATLAS.ti, SPSS, 
Tableau, or Excel. Most of the analysis processes combine these two approaches as data 
preprocessing is often more expressive in Python. Let’s export the data first: 
 
df_hydrated.to_csv('hellobrother_rehydrated.csv', encoding='utf-8') 
 
In addition to specifying an encoding that can represent characters beyond the regular a-z, 
the to_csv() function takes several different parameters. Setting the field delimiter from 
comma (',') to tabulator ('\t'), for example, may be of use when importing the data to a 
tool that insists on a specific data format. 
 
In case the research team is using Microsoft Excel to review the data, creating a 
spreadsheet in XLSX format may be useful: 



 
df_hydrated.to_excel('hellobrother_rehydrated.xslx') 
 
For XLSX support, you need to install openpyxl: 
 
pip install openpyxl 
 
A practical benefit for the Excel-specific data representation is the ability to simply double-
click a file to open whereas opening CSV data in Excel insists on importing it. 
 
One way to explore the tweetset is to look at the distribution of hashtags. However, it is 
important to note that constructing a data field for ethnographic research goes way beyond 
these types of simplistic representations and includes interpretative analysis that considers 
the context and the event in a more holistic manner. 
 
df_hydrated.entities.head() 
 
To see the full contents of the cell, you can ask Pandas not to truncate: 
 
pd.set_option('display.max_colwidth', None) 
 
To create a simple list of hashtags for each tweet, we can create a simple function that 
extracts the hashtags as text: 
 
def extract_hashtags(entities): 
    hashtags = list() 
     
    for hashtag in entities['hashtags']: 
        hashtags.append(hashtag['text']) 
 
    return hashtags  
 
Do note that you have to run the lines of code to enable the use of the function. We can now 
use the apply() function of Pandas DataFrame to run the function for each row. 
 
df_hydrated['hashtags'] = df_hydrated.entities.apply(extract_hashtags) 
df_hydrated.hashtags 
 
Next, we will create another function to concatenate the list of hashtags for each tweet into a 
list of hashtags for the full tweetset. Moreover, we will transform the hashtags to lowercase 
text. This is needed because, unlike Twitter, Python treats hashtags in a case-sensitive 
manner. 
 
def to_1D(series): 
    return pd.Series([x.lower() for _list in series for x in _list]) 
 



The to_1D() function is part of a tutorial on dealing with list values in Pandas DataFrames. 
You can figure out the details of this process by exploring the outputs of each of the phases. 
 
df_hashtags = pd.DataFrame(to_1D(df_hydrated.hashtags).value_counts(), 
columns=['count']) 
df_hashtags['hashtag'] = df_hashtags.index 
  
Now we have a DataFrame of hashtags and their frequency in the tweetset. Pandas 
introduces straightforward means to plot a histogram of hashtags. 
 
df_hashtags.head(10).plot.barh(y='count', x='hashtag') 
 

 
Plotting the histogram of Twitter accounts sending tweets and receiving mentions might be 
the next logical step in reconstructing the field.  
 
5 Your turn 

1. First, apply for a Twitter Developer account to get access to Twitter API  
2. Install the necessary development tools, including Python, Jupyter Notebooks or 

JupyterLab, and Twarc 
3. Explore the Twitter API by searching and/or rehydrating tweets 
4. Rehydrate the provided dataset 
5. Compare the rehydrated dataset to the statistics of our original and rehydrated 

datasets  
6. Explore Twitter datasets available for rehydration, see for example what is available 

at Zenodo and Harvard Dataverse. 
 

 


