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Abstract
In this article, we study Lie symmetries to fundamental solutions to the Leutwiler-Weinstein
equation

Lu := �u + k

xn

∂u

∂xn
+ �

(xn)2
u = 0

in the upper half-space Rn+. Starting from the infinitesimal generators of the equation Lu =
0, we deduce symmetries of the equation Lu = δ(x − x0), and using its invariant solutions,
we construct a fundamental solution. As an application, we study a Green functions of the
operator in the hyperbolic unit ball.
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1 Introduction

In 1953, Alexander Weinstein published his paper on axially symmetric potentials [25]. He
started to study the problem

�u + k

xn

∂u

∂xn
= 0

in the upper half-space R
n+ = {(x1, ..., xn) ∈ R

n : xn > 0}; which is now known as the
Weinstein equation. The parameter k can be real or complex. The problem has mathematical
significance. Indeed, it is a generalization of the Laplace equation, and it is maybe a one of
the most simple partial differential equations with non-constant coefficients.
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In 1987, Heinz Leutwiler published the first paper in which he started to study the
extension of the Weinstein equation with two parameters (see [21] and also [2])

Lu := �u + k

xn

∂u

∂xn
+ �

(xn)2
u = 0. (1)

This equation is called the Leutwiler-Weinstein equation. The parameters k and � are
considered as real numbers.

Finding a fundamental solution to the equation is an interesting and complicated task.
It has already been studied in some special cases by Sirkka-Liisa Eriksson and the sec-
ond author, for example in [11–15]. In these papers, the approach is based on differential
equations and hyperbolic geometry.

The constructive approach to find a fundamental solution based on local Lie symme-
tries has been introduced by the first author in [5, 6]. The method itself is applicable, if a
partial differential equation has enough symmetry. The method can be applied in different
interesting cases; see for example [4, 7, 20].

In this paper, we give a general description of the method and the detailed construction
of a fundamental solution to the Leutwiler-Weinstein equation. We hope that this gives the
reader a good picture of the method itself and motivates the application of the algorithm in
different cases.

2 Symmetries of Fundamental Solutions to Linear Partial Differential
Equations

In [5] and [6], the first author introduced a constructive method to find fundamental
solutions to linear partial equations of the form

Pu :=
∑

|α|≤m

aα(x)Dαu = 0, (2)

defined in an open set � ⊂ R
n. We assume that aα ∈ C∞(�). In Eq. 2, we use the standard

multi-index notation α = (α1, ..., αn), |α| = α1 + ... + αn and

Dα =
( ∂

∂x1

)α1 · · ·
( ∂

∂xn

)αn

.

Let us now describe the method of how to find fundamental solutions. We assume that the
reader knows basics of the local symmetry theory of partial differential equations, what is
represented, for example, in [19, 22, 24]. Let g be a symmetry Lie algebra generated by the
infinitesimal operators admitted by Eq. 2.

Proposition 1 [10] The symmetry Lie algebra g may be represented as the direct sum

g = gf ⊕ g∞

where gf is a finite dimensional Lie subalgebra generated by the infinitesimal generators
of the form

X =
n∑

j=1

ξj (x)
∂

∂xj
+ η(x)u

∂

∂u
(3)



Lie Symmetries of Fundamental Solutions to the Leutwiler-Weinstein...

and g∞ is an infinite dimensional Lie algebra generated by

X∞ = β(x)
∂

∂u
,

where β is an arbitrary smooth solution of Eq. 2.

The explicit description of the symmetry Lie algebra of fundamental solutions is based
on the existence of the canonical function θ(x) described in the next proposition.

Proposition 2 [5] Let X ∈ g be an infinitesimal generator. Then X ∈ gf if and only if there
exists a function θ ∈ C∞(�) satisfying the equation

X
m

(Lu) = θ(x)Lu

for all u ∈ C∞(�), where X
m
is the prolonged infinitesimal generator of X.

Using the preceding function, we may give the following description for a symmetry Lie
algebra of fundamental solutions.

Theorem 3 [5] The symmetry Lie algebra h of

Pu = δ(x − x0)

is a subalgebra of g, which may be represented as a direct sum

h = hf ⊕ g∞.

The finite dimensional subalgebra hf is a subalgebra of gf where the coefficients of
infinitesimal generators (3) satisfy the system

ξj (x0) = 0, j = 1, ..., n, (4)

θ(x0) +
n∑

j=1

∂ξj (x0)

∂xj
= 0. (5)

We observe, that if the Lie algebra hf is wide enough, we may try to construct a fun-
damental solution of operator P using invariants of the Lie algebra hf . These observations
allow us to formulate the following algorithm.

Remark 4 (An algorithm for finding fundamental solutions, [5, 6]) To do:

(a) Find the symmetry subalgebra gf of Eq. 2 and of the corresponding function θ(x)

given in Proposition 2.
(b) Find the symmetry subalgebra hf .
(c) Construct invariant fundamental solutions with the use of invariants of hf .
(d) Obtain new fundamental solutions from known ones with the use of symmetries of

the equation Pu = δ(x − x0).

The preceding algorithm works in principle in every case, when the Lie subalgebra hf

is wide enough, i.e., it allows us to construct invariant solutions. Examples of the use of the
algorithm may be found in [3, 5, 20]. Step (d) is demonstrated for example in [8]. In this
article, we will represented a comprehensive illustration of steps (a), (b), and (c) in the case
of the Leutwiler-Weinstein equation.
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3 Symmetries of the Equation Lu = 0

In this section, we compute the infinitesimal generators of the Lie symmetry subalgebra gf

for Eq. 1. The second prolongation of the infinitesimal generator (3) is of the form

X
2

= X + ζn(x, u)
∂

∂uxn
+

n∑

j=1

ζjj (x, u)
∂

∂uxj xj

, (6)

where the coeffients are given as

ζj = Dj(uη) −
n∑

i=1

uxi Dj (ξ
i), (7)

ζjj = Dj(ζj ) −
n∑

i=1

uxj xi Dj (ξ
i), (8)

where the total derivative is of the form

Dj = ∂

∂xj
+ uxj

∂

∂u
+

n∑

i=1

uxj xi

∂

∂uxi

, (9)

see all details in [19, 22, 24]. Infinitesimal generators of gf may be obtained by solving the
equation X

2
(Lu)|Lu=0 = 0. The equivalent system is described in the following lemma.

Lemma 5 The equation
X
2
(Lu)|Lu=0 = 0

is equivalent with the system
n∑

j=1

ηxj xj (x) − ξn(x)
2�

(xn)3
+ ηxn(x)

k

xn
+ 2ξn

xn(x)
�

(xn)2
= 0, (10)

− k

xn
ξ i
xn(x) + 2ηxi (x) −

n∑

j=1

ξ i
xj xj (x) = 0, i = 1, ..., n − 1, (11)

−ξn(x)
k

(xn)2
+ 2ηxn(x) −

n∑

j=1

ξn
xj xj (x) + ξn

xn(x)
k

xn
= 0, (12)

ξ i
xj (x) + ξ

j

xi (x) = 0, i < j, i, j = 1, ..., n, (13)

ξn
xn(x) − ξ

j

xj (x) = 0, j = 1, ..., n − 1. (14)

Proof The prolongation (6) acting on Eq. 1 gives

X
2
(Lu) = −ξn(x)

(
k

(xn)2 uxn + 2�

(xn)3 u
)

+ η(x) �

(xn)2 u

+ζn(x, u) k
xn +

n∑
j=1

ζjj (x, u). (15)

Using the total derivative (9), we obtain that the coefficients (7) and (8) take the form

ζj = ηxj (x)u + η(x)uxj −
n∑

i=1

ξ i
xj (x)uxi
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and

ζjj = ηxj xj (x)u + 2ηxj (x)uxj −
n∑

i=1

ξ i
xj xj (x)uxi + η(x)uxj xj − 2

n∑

i=1

ξ i
xj (x)uxj xi .

Using these formulas, the prolongation (15) takes the form

X
2
(Lu) = η(x)Lu − ξn(x)

( k

(xn)2
uxn + 2�

(xn)3
u
)

+ηxn(x)
k

xn
u − k

xn

n∑

i=1

ξ i
xn(x)uxi +

n∑

j=1

ηxj xj (x)u

+2
n∑

j=1

ηxj (x)uxj −
n∑

i,j=1

ξ i
xj xj (x)uxi − 2

n∑

i,j=1

ξ i
xj (x)uxj xi . (16)

We make the restriction on Lu = 0 by substituting

uxnxn = −
n−1∑

j=1

uxj xj − k

xn
uxn − �

(xn)2
u,

and we obtain

X
2
(Lu)|Lu=0 =

( n∑

j=1

ηxj xj (x) − ξn(x)
2�

(xn)3
+ ηxn(x)

k

xn
+ 2ξn

xn(x)
�

(xn)2

)
u

+
n−1∑

i=1

(
− k

xn
ξ i
xn(x) + 2ηxi (x) −

n∑

j=1

ξ i
xj xj (x)

)
uxi

+
(

− ξn(x)
k

(xn)2
+ 2ηxn(x) −

n∑

j=1

ξn
xj xj (x) + ξn

xn(x)
k

xn

)
uxn

−2
∑

i<j

(
ξ i
xj (x) + ξ

j

xi (x)
)
uxj xi + 2

n−1∑

j=1

(
ξn
xn(x) − ξ

j

xj (x)
)
uxj xj .

Assuming u and its partial derivatives are linearly independent, we obtain the result.

The solution of the system expressed in the preceding lemmas is the following.

Proposition 6 The coefficients of the infinitesimal generators (3) are

ξn(x) = 2xn
( n−1∑

j=1

ajx
j + b

)
,

ξ i(x) = −ai

n∑

r=1

(xr )2 + 2xi
( n−1∑

j=1

ajx
j + b

)
+

n−1∑

s=1

ei
sx

s + f i,

η(x) = −(k + n − 2)

n−1∑

j=1

ajx
j + c,

where ei
j = −e

j
i for k(2 − k) + 4� �= 0 and n ≥ 3. Moreover aj , b, c, ei

j , f
i are real

parameters.
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Proof We give a detailed proof in the Appendix A.

Since

X =
n∑

j=1

ξj (x)
∂

∂xj
+ uη(x)

∂

∂u

we may write it in the form

X =
n−1∑

j=1

ajXj +
n−1∑

i,j=1

ei
j Yij +

n−1∑

j=1

fjZj + bU + cV .

Hence, we obtain the compete list of infinitesimal generators.

Theorem 7 If k(2 − k) + 4� �= 0, then the infinitesimal generators of the Lie subalgebra
gf of Eq. 1 are

Xi = 2xixn ∂

∂xn
−

n∑

r=1

(xr )2 ∂

∂xi
+ 2xi

n−1∑

j=1

xj ∂

∂xj
− (k + n − 2)xiu

∂

∂u
,

Yij = xi ∂

∂xj
− xj ∂

∂xi
,

Zj = ∂

∂xj
,

U =
n∑

i=1

xi ∂

∂xi
,

V = u
∂

∂u
,

for i, j = 1, ..., n − 1.

Remark 8 In the Appendix A we give a detailed proof to find the preceding infinitesimal
generators. There is also a another way to find them. If We make the substitution u(x) =
(xn)− k

2 v(x), it transform Eq. 1 to the Helmholz equation with a singular potential

�u + 1

4
(k(2 − k) + 4�)

u

(xn)2
= 0.

Hence, if k(2−k)+4� = 0 is just the Laplace equation and in other cases symmetry algebra
is should be a subalgebra of that of Laplace equation (see, e.g., [19, 22, 24] or in above
put k = 0). Because the lack of the explicit dependence of xn, most of the infinitesimal
generators of the invariance algebra of the Laplace equation and and the preceding equation
will remain the same. The only difference is the infinitesimal generator Xi . With these,
we can proceed as follows. We start from the corresponding infinitesimal generator of the
Laplace equation, and define

X̂i = 2xixn ∂

∂xn
−

n∑

r=1

(xr )2 ∂

∂xi
+ 2xi

n−1∑

j=1

xj ∂

∂xj
+ αxiu

∂

∂u
,

for α ∈ R as a parameter. Its second prolongation gives

X̂i
2

(Lu) = 2(n + k − α − 2)u − (n + k + 2)xiLu



Lie Symmetries of Fundamental Solutions to the Leutwiler-Weinstein...

and we obtain X̂i
2

(Lu)|Lu=0 = 0 if and only if α = n + k − 2.

4 Function θ (x) for the Leutwiler-Weinstein Equation

To compute infinitesimal generators of the Lie subalgebra hf , we need to compute the
function θ(x) described in Proposition 2. We need to substitute the coefficients given in
Proposition 6 into the formula (16). We first observe, that Eq. 11 gives

n−1∑

i=1

n∑

j=1

ξ i
xj xj (x)uxi = − k

xn

n−1∑

i=1

ξ i
xn(x)uxi + 2

n−1∑

i=1

ηxi (x)uxi .

Then using Eq. 12, we obtain

n∑

j=1

ξn
xj xj (x)uxn = −ξn(x)

k

(xn)2
uxn + 2ηxn(x)uxn + ξn

xn(x)
k

xn
uxn

and these together gives

n∑

i,j=1

ξ i
xj xj (x)uxi = − k

xn

n∑

i=1

ξ i
xn(x)uxi + 2

n∑

i=1

ηxi (x)uxi

−ξn(x)
k

(xn)2
uxn + 2ξn

xn(x)
k

xn
uxn .

On the other hand, using (A.6), (A.7) and the information, that e
j
i = −ei

j , we compute

n∑

i,j=1

ξ i
xj (x)uxj xi =

( n−1∑

j=1

ajx
j + b

)
�u.

Substituting these into (16), we obtain

X
2
(Lu) = η(x)Lu − 2ξn

xn(x)
k

xn
uxn − 2ξn(x)

�

(xn)3
u

−4
( n−1∑

j=1

ajx
j + b

)
�u.

where we use the information ηxn = ηxixi = 0 for i = 1, ..., n − 1. Substituting ξn(x), we
obtain

X
2
(Lu) = η(x)Lu − 4

( n−1∑

j=1

ajx
j + b

)
Lu.

This gives us the following result.

Proposition 9 The function θ(x) for the Weinstein-Leutwiler equation is

θ(x) = −4b + c − (k + n + 2)

n−1∑

j=1

ajx
j .
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5 Symmetry of the Equation Lu = δ(x − x0)

Using the function θ(x), we can find the infinitesimal generators of the symmetry Lie alge-
bra hf . We observe, that since Eq. 1 is translation invariant with respect to the variables
x̃ = (x1, ..., xn−1), it is enough to consider the symmetry for the equation

Lu = δ(̃x)δ(xn − xn
0 ). (17)

In Theorem 3, we deduce, that the Lie algebra hf is generated by the infinitesimal generators
(3) and they should satisfy the system

ξj (x0) = 0, j = 1, ..., n,

θ(x0) +
n∑

j=1

∂ξj (x0)

∂xj
= 0,

at the point x0 = (̃0, xn
0 ). In our case, the first equation gives

ξ i(x0) = −ai(x
n
0 )2 + f i = 0 ⇒ f i = ai(x

n
0 )2, i = 1, ..., n − 1,

ξn(x0) = 2xn
0 b = 0 ⇒ b = 0.

Since ξ
j

xj (x) = ξn
xn(x) = 2

∑n−1
j=1 ajx

j , the second equation gives

θ(x0) +
n−1∑

j=1

∂ξj (x0)

∂xj
+ ∂ξn(x0)

∂xn
= θ(x0) = c = 0.

Proposition 10 If k(2 − k) + 4� �= 0, then the coefficients of the Lie subalgebra hf of
Eq. 17 are

ξ i(x) = −ai

n∑

r=1

(xr )2 + 2xi
n−1∑

j=1

ajx
j +

n−1∑

s=1

ei
sx

s + ai(x
n
0 )2, i = 1, ..., n − 1,

ξn(x) = 2xn
n−1∑

j=1

ajx
j ,

η(x) = −(k + n − 2)

n−1∑

j=1

ajx
j ,

where ei
j = −e

j
i .

The general form of an infinitesimal generator of hf is

X =
n−1∑

j=1

ajXj +
n−1∑

i,j=1

ei
j Yij ,

where infinitesimal generators Xj and Yij are given in Theorem 7. We obtain the following
theorem.
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Theorem 11 If k(2 − k) + 4� �= 0, then the infinitesimal generators of the Lie subalgebra
hf of Eq. 17 are

Xi = 2xixn ∂

∂xn
+

(
(xn

0 )2 −
n∑

r=1

(xr )2
) ∂

∂xi
+ 2xi

n−1∑

j=1

xj ∂

∂xj
− (k + n − 2)xiu

∂

∂u
,

Yij = xi ∂

∂xj
− xj ∂

∂xi
,

where i, j = 1, ..., n − 1.

6 Fundamental Invariants of the Equation Lu = 0

The notion “fundamental invariant” means an invariant solution of the equation Lu = 0
where the solution is invariant with respect to the Lie subalgebra hf , depending on a point
x0. These invariants are natural candidates to build fundamental solutions. We start from the
equation

XiI = 0,

and we obtain the corresponding Lagrange-Charpit equations

dxn

2xixn
= dxi

(xn
0 )2 − ∑n

r=0(x
r )2 + 2(xi)2

= dxj

2xi
∑n−1

j=1 xj
= du

−(k + n − 2)xiu
.

The first and last terms gives us

dxn

2xn
= du

−(k + n − 2)u
.

Since this does not depend on xi , for i = 1, ..., n − 1, and we obtain

I = (xn)
k+n−2

2 u,

which is a fundamental invariant, since Yij I = 0. Now, if

Yij J = 0,

we observe, that J = J (a, xn) where a = ∑n−1
j=1(x

j )2. Then

XiJ = 2xixn ∂

∂xn
J +

(
(xn

0 )2 −
n∑

r=1

(xr )2
) ∂

∂xi
J + 2xi

n−1∑

j=1

xj ∂

∂xj
J

= 2xixnJxn + (
(xn

0 )2 − (xn)2)2xiJa − 2xi
n−1∑

r=1

(xr )2Ja + 4xi
n−1∑

j=1

(xj )2Ja

= 2xixnJxn + (
(xn

0 )2 − (xn)2)2xiJa + 2xi
n−1∑

j=1

(xj )2Ja = 0

if and only if

xnJxn + ((xn
0 )2 − (xn)2 + a)Ja = 0.
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Using the classical method of characteristics for the first-order partial differential equations,
we obtain the solution

J = (xn
0 )2 + (xn)2 + a

xn
.

Proposition 12 The fundamental invariants of Eq. 1 are

I = (xn)
k+n−2

2 u,

J =
∑n

j=1(x
j )2 + (xn

0 )2

xn
.

7 Finding Invariant Solutions

Using fundamental invariants, we may construct an invariant solution for the equation Lu =
0 depending on point x0. To obtain an invariant (fundamental) solution for Lu = δ(x − x0),
we use the form for the weak invariants of Berest, expressed in [9]. We make the Anzats

I = w(z)

where we denote

z = J/2 = |x|2 + (xn
0 )2

2xn
= |̃x|2 + (xn)2 + (xn

0 )2

2xn
. (18)

Then

u = (xn)−
k+n−2

2 w(z). (19)

Let us next prove the following proposition.

Proposition 13 Function (19) is a solution for (1) if and only if

(z2 − (xn
0 )2)w′′(z) + nzw′(z) + 1

4

(
n2 − k2 + 2(k − n + 2�)

)
w(z) = 0.

Proof Using ∂z
∂xj = xj

xn and ∂z
∂xn = 1 − z

xn , we compute

∂w

∂xj
= xj

xn
w′(z),

∂2w

∂(xj )2
= (xj )2w′′(z) + xnw′(z)

(xn)2
,

for j = 1, ..., n − 1 and

∂w

∂xn
= (xn − z)w′(z)

xn
,

∂2w

∂(xn)2
= (xn − z)2w′′(z) + (2z − xn)w′(z)

(xn)2
.

Then we compute

uxj = (xn)−
k+n−2

2
xj

xn
w′(z),

uxn = (xn)−
k+n−2

2
(xn − z)w′(z) − 1

2 (n + k − 2)w(z)

xn
,
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and

uxj xj = (xn)−
k+n−2

2
(xj )2w′′(z) + xnw′(z)

(xn)2
,

uxnxn = (xn)−
k+n−2

2
(xn − z)2w′′(z) + (

(n + k)z − (n + k − 1)xn
)
w′(z) + 1

4 (n + k)(n + k − 2)w(z)

(xn)2
.

Using the preceding observations, we have

(xn)
k+n+2

2 �u = (xn)
k+n+2

2

n∑

j=1

uxj xj

=
n−1∑

j=1

(
(xj )2w′′(z) + xnw′(z)

) + (xn − z)2w′′(z)

+(
(n + k)z − (n + k − 1)xn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z)

=
n−1∑

j=1

(xj )2w′′(z) + (n − 1)xnw′(z) + (xn − z)2w′′(z)

+(
(n + k)z − (n + k − 1)xn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z).

Substituting
∑n−1

j=1(x
j )2 = 2xnz − (xn)2 − (xn

0 )2, we obtain

(xn)
k+n+2

2 �u = (
2xnz − (xn)2 − (xn

0 )2 + (xn − z)2)w′′(z) + (n − 1)xnw′(z)

+(
(n + k)z − (n + k − 1)xn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z)

= (
2xnz − (xn)2 − (xn

0 )2 + (xn − z)
)
w′′(z)

+(
(n + k)z − (n + k − 1)xn + (n − 1)xn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z)

= (z2 − (xn
0 )2)w′′(z)

+(
(n + k)z − kxn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z).

Then

(xn)
k+n+2

2 Lu = (z2 − (xn
0 )2)w′′(z)

+(
(n + k)z − kxn

)
w′(z) + 1

4
(n + k)(n + k − 2)w(z)

+k(xn − z)w′(z) − k

2
(n + k − 2)w(z) + �w(z)

= (z2 − (xn
0 )2)w′′(z) + nzw′(z) + 1

4

(
n2 − k2 + 2(k − n + 2�)

)
w(z).
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We see, that the unknown function w(z) may be found by the associated Legendre
functions P

μ
ν and Q

μ
ν , which solves the associated Legendre equation

(y2 − 1)v′′(y) + 2yv′(y) −
(
ν(ν + 1) + μ2

y2 − 1

)
v(y) = 0, (20)

where ν and μ are real or complex numbers.

Proposition 14 Invariant solutions of Eq. 1 with respect to the Lie algebra hf are of the
form

u(x) = C1(x
n)−

k
2 −μ(z2 − (xn

0 )2)−μ/2P −μ
ν (z/xn

0 )

+C2(x
n)−

k
2 −μ(z2 − (xn

0 )2)−μ/2Q−μ
ν (z/xn

0 ),

where z =
∑n

j=1(x
j )2+(xn

0 )2

2xn with |z| �= xn
0 , and the parameters μ = n−2

2 and ν =
1
2 (

√
n(n − 2) − 4γ + 1 − 1) with γ = 1

4

(
n2 − k2 + 2(k − n + 2�)

)
.

Proof Let us prove the equation given in the preceding proposition. First, we define new
variables z = yzn

0 and the function g(y) := w(yxn
0 ). Then

g′(y) = xn
0 w′(z) ⇔ w′(z) = g′(y)

xn
0

,

g′′(y) = (xn
0 )2w′′(z) ⇔ w′′(z) = g′′(y)

(xn
0 )2

.

After the substitution, the equation in Proposition 13 takes the form

(y2 − 1)g′′(y) + nyg′(y) + γg(y) = 0,

where γ = 1
4

(
n2 − k2 + 2(k − n + 2�)

)
. We make a substitution g(y) = (y2 − 1)αv(y),

and the equation in the above takes the form

(y2 − 1)v′′(y) + (4α + n)yv′(y) +
(

2α + γ + (4α(α − 1) + 2nα)y2

y2 − 1

)
v(y) = 0,

assuming that |y| �= 1. We compare this equation with Eq. 20 and obtain

4α + n = 2 ⇔ α = 2 − n

4
.

Putting δ = 2α + γ and ε = 4α(α − 1) + 2nα, we have

(y2 − 1)v′′(y) + 2yv′(y) +
(
δ + ε + ε

y2 − 1

)
v(y) = 0, (21)

where the coefficient of v(y) is simplified using

δ + εy2

y2 − 1
= δ + εy2 − ε + ε

y2 − 1
= δ + ε + ε

y2 − 1
.

Comparing now Eq. 21 with the Legendre equation (20), we obtain

ν(ν + 1) = −δ − ε = −1

4
(n(2 − n) + 4γ ) ⇒ ν = 1

2
(±√

n(n − 2) − 4γ + 1 − 1),

μ2 = −ε = (n − 2)2

4
⇒ μ = ±n − 2

2
.
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We see, that the general solution of the system is a linear combination of Legendre functions
with the preceding coefficients ν and μ, i.e.,

w(z) = C1
(
z2 − (xn

0 )2) 2−n
4 P

± n−2
2

± 1
2
√

n(n−2)−4γ+1− 1
2
(z/xn

0 )

+C2
(
z2 − (xn

0 )2) 2−n
4 Q

± n−2
2

± 1
2
√

n(n−2)−4γ+1− 1
2
(z/xn

0 ).

We first observe, that using formulas 8.2.1-2 of [1], we may represent the functions P
μ

−κ− 1
2

and Q
μ

−κ− 1
2

using functions P
μ

κ− 1
2

and Q
μ

κ− 1
2
. This means that we may choose, without a

loss of generality, that

ν = 1

2

(√
n(n − 2) − 4γ + 1 − 1

)
.

Similarly, using formulas 8.2.5-6 of [1], we may represent P
μ
ν and Q

μ
ν using functions P

−μ
ν

and Q
−μ
ν . Hence, the general solution is always of the form

w(z) = C1(z
2 − (xn

0 )2)−μ/2P −μ
ν (z/xn

0 ) + C2(z
2 − (xn

0 )2)−μ/2Q−μ
ν (z/xn

0 ),

where μ = n−2
2 . Taking into account (19), we obtain the result.

The associated Legendre functions in the above may be represented using the hypergeo-
metric functions (see [1, 16])

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k! , |x| < 1,

where (q)0 = 1 and (q)k = q(q +1) · · · (q +k −1) for k ≥ 1. Then, we obtain (see [1, 16])

P −μ
ν (z/xn

0 ) = 1
�(1+μ)

(
xn

0 −z

xn
0 +z

)μ/2
2F1

(
− ν, ν + 1; 1 + μ; 1−z/xn

0
2

)
, (22)

converging in |1 − z/xn
0 | < 2 and

Q−μ
ν (z/xn

0 ) =
√

πe−iπμ

2ν+1

�(ν − μ + 1)

�(ν + 3/2)

(
(z/xn

0 )2 − 1
)−μ/2

(z/xn
0 )ν−μ+1

×

×2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; (xn

0 /z)2
)
, (23)

converging in |xn
0 /z| < 1.

In general, parameters ν and μ are arbitrary complex numbers. The behaviour of func-
tions depends on their numerical values and relations. Gelfand and Shilov’s method of
analytic continuation allows us to study this dependence systematically, see e.g. [16] and
their references.

We first denote the linearly independent functions in the general solution by

P(x, xn
0 ) = (xn)−

k
2 −μ

(
z2 − (xn

0 )2)−μ/2
P −μ

ν (z/xn
0 )

and

Q(x, xn
0 ) = (xn)−

k
2 −μ

(
z2 − (xn

0 )2)−μ/2
Q

μ
−ν(z/x

n
0 ), (24)

where ν = 1
2 (

√
n(n − 2) − 4γ + 1−1) with γ = 1

4

(
n2 −k2 +2(k−n+2�)

)
and μ = n−2

2 .
Then we may prove, that the first of these functions does not have singularity at the point
x0 = (0, xn

0 ).
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Proposition 15 The preceding function satisfies the equation

LP(x, xn
0 ) = 0

in the neighbourhood |x − (0, xn
0 )|2 < 4xn

0 xn.

Proof The function P
−μ
ν is defined, if |xn

0 − z| < 2xn
0 . Using Eq. 18, we obtain |x −

(0, xn
0 )|2 < 4xn

0 xn. It is well known that P(x, xn
0 ) is bounded when z → xn

0 .

8 Computing the Fundamental Solution

In the preceding section, we infer, that the fundamental solution may be founded by using
the function Q(x; xn

0 ). Since it is an invariant solution of Eq. 17, we infer LQ(x; xn
0 ) =

cδ(x − x0). In this section, we compute the constant c and obtain a fundamental solution.
First, we prove the following technical lemma.

Lemma 16 If we define

L̃v = �v + k(2 − k) + 4�

4

v

(xn)2
,

we obtain

L((xn)−
k
2 v) = (xn)−

k
2 L̃v.

Proof We first compute derivatives

∂

∂xn
((xn)−

k
2 v) = −k

2
(xn)−

k
2 −1v + (xn)−

k
2

∂v

∂xn
,

∂2

∂(xn)2
((xn)−

k
2 v) = k(k + 2)

4
(xn)−

k
2 −2v − k(xn)−

k
2 −1 ∂v

∂xn
+ (xn)−

k
2

∂2v

∂(xn)2
.

Then we have

L((xn)−
k
2 v) = (xn)−

k
2

n−1∑

j=1

∂2v

∂(xj )2
+ k(k + 2)

4
(xn)−

k
2 −2v − k(xn)−

k
2 −1 ∂v

∂xn
+ (xn)−

k
2

∂2v

∂(xn)2

−k2

2
(xn)−

k
2 −2v + k(xn)−

k
2 −1 ∂v

∂xn
+ �(xn)−

k
2 −2v

= (xn)−
k
2 �v + k(k + 2)

4
(xn)−

k
2 −2v − k2

2
(xn)−

k
2 −2v + �(xn)−

k
2 −2v

= (xn)−
k
2

(
�v + k(2 − k) + 4�

4(xn)2
v
)

.

Since the Dirac delta satisfies f (x)δ(x − x0) = f (x0)δ(x − x0) for all smooth functions
f , we obtain the following corollary.

Corollary 17 If L̃v = δ(x − x0), then L
(
(
xn

0
xn )

k
2 v

) = δ(x − x0).
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There preceding lemma shows, that it is enough to find the fundamental solution of L̃.
We will denote in this section λ = z/xn

0 . The preceding corollary motivates us to study the
function

F(x; xn
0 ) = (xn)−μ

(
z2 − (xn

0 )2)−μ/2
Q−μ

ν (λ)

= 1

(xnxn
0 )μ

Q
−μ
ν (λ)

(λ2 − 1)μ/2
.

The preceding function multiplied with a constant give us the fundamental solution for L̃.

Proposition 18 We may write

F(x; xn
0 ) = f (λ)

(λ2 − 1)μ

where

f (λ) =
√

π

2ν+μ

�(ν + μ + 1)

�(μ)�(ν + 3/2)

(xn
0

xn

)μ 1

λν−μ+1 2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; 1

λ2

)

and

f (1) = 1.

Proof We know that a hypergeometric functions 2F1(a, b; c; t) converges through the unit
circle |t | = 1 if Re(c − a − b) > 0, see [16]. We know that

Q−μ
ν (λ)=

√
πe−iπμ

2ν+1

�(ν − μ + 1)

�(ν + 3/2)

(λ2 − 1)−μ/2

λν−μ+1 2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν+ 3

2
; 1

λ2

)

converges when λ > 1. A straight-forward computation shows, that in the preceding hyper-
geometric function c − a − b = μ > 0, that is, we may compute its value at λ = 1. Recall
Formula 9.131.2 of [16]

2F1

(
a, b; c; 1

)
= �(c)�(c − a − b)

�(c − a)�(c − b)
.

We put a = ν−μ+2
2 , b = ν−μ+1

2 and c = ν+ 3
2 , and compute c−a = ν+μ+1

2 , c−b = ν+μ+2
2

and c − a − b = μ. The denominator can be simplified as follows. Recall the duplication
formula 6.1.18 in [1]

�(d)�

(
d + 1

2

)
= 21−2d

√
π�(2d).

In our case d = ν+μ+1
2 , that is, 1 − 2d = −ν − μ, and we compute

�(c − a)�(c − b) =
√

π

2ν+μ
�(ν + μ + 1).

Using the preceding observations, we compute

2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; 1

)
= 2ν+μ

√
π

�(ν + 3
2 )�(μ)

�(ν + μ + 1)
.
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We obtain

F(x; xn
0 ) = 1

(xnxn
0 )μ

Q
−μ
ν (λ)

(λ2 − 1)μ/2

=
√

πe−iπμ

2ν+1

�(ν − μ + 1)

�(ν + 3/2)

1

(xnxn
0 )μλν−μ+1

1

(λ2 − 1)μ
×

×2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; 1

λ2

)

= f0(λ)

(λ2 − 1)μ

where

f0(λ)=
√

πe−iπμ

2ν+1

�(ν − μ + 1)

�(ν + 3/2)

1

(xnxn
0 )μλν−μ+1 2F1

(ν − μ + 2

2
,
ν−μ + 1

2
; ν+ 3

2
; 1

λ2

)
.

Then we compute

f0(1) =
√

πe−iπμ

2ν+1

�(ν − μ + 1)

�(ν + 3/2)

1

(xn
0 )2μ

2ν+μ

√
π

�(ν + 3
2 )�(μ)

�(ν + μ + 1)

= eiπμ2μ−1 �(ν − μ + 1)

�(ν + μ + 1)

�(μ)

(xn
0 )2μ

.

We can define the function f (λ) = f0(λ)
f0(1)

and we find

f (λ) =
√

π

2ν+μ

�(ν + μ + 1)

�(μ)�(ν + 3/2)

(xn
0

xn

)μ 1

λν−μ+1 2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; 1

λ2

)
,

completing the proof.

The preceding function F(x; xn
0 ) is a candidate for the fundamental solution. Next we

extend L̃ to distributions by
〈L̃F, ϕ〉 = 〈F, L̃ϕ〉,

where ϕ ∈ D(Rn+) is a test function.

Proposition 19 (Green’s formula) Assume � ⊂ R
n is a bounded set with a smooth enough

boundary. If u and v are twice differentiable real-valued functions on an open set including
�, we have ∫

�

(uL̃v − vL̃u)dx =
∫

∂�

(
u

∂v

∂n
− v

∂u

∂n

)
dS,

where dS is the Euclidean surface measure, n the outward unit normal on the boundary ∂�

and
∂u

∂n
= ∇u · n.

Proof The proposition follows from the classical Green’s formula
∫

�

(u�v − v�u)dx =
∫

∂�

(
u

∂v

∂n
− v

∂u

∂n

)
dS

by adding and subtracting the term k(2−k)+4�
4

uv

(xn)2 in the integrand of the volume integral.
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Let us define the r-ball with the centre (̃0, xn
0 ) by

Br(x
n
0 ) = {x ∈ R

n : |̃x|2 + (xn − xn
0 )2 < r2}.

We will always assume, that r > 0 is defined such, that Br(x
n
0 ) ⊂ R

n+. Let us compute the
following crucial formula.

Lemma 20 On ∂Br(x
n
0 ), we have

∂λ

∂n
= r

xn + xn
0

2(xn)2xn
0

.

Especially

lim
r→0

∂λ

∂n
= 0

and

lim
r→0

1

r

∂λ

∂n
= 1

(xn
0 )2

.

Proof We compute

∂λ

∂xj
= xj

xnxn
0

for j = 1, ..., n − 1 and

∂λ

∂xn
= 2xn

2xnxn
0

− |̃x|2 + (xn)2 + (xn
0 )2

2(xn)2xn
0

= (xn)2 − |̃x|2 − (xn
0 )2

2(xn)2xn
0

.

Thus

∇λ = (̃x, 1
2xn ((xn)2 − |̃x|2 − (xn

0 )2))

xnxn
0

.

The unit normal on ∂Br(x
n
0 ) is

n = (̃x, xn − xn
0 )

r
.
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Using |̃x|2 = r2 − (xn − xn
0 )2, we compute

∇λ · n = (̃x, 1
2xn ((xn)2 − |̃x|2 − (xn

0 )2)

xnxn
0

· (̃x, xn − xn
0 )

r

= (̃x, 1
2xn (2(xn)2 − r2 − 2xnxn

0 )

xnxn
0

· (̃x, xn − xn
0 )

r

= (̃x, xn − xn
0 − r2

2xn )

xnxn
0

· (̃x, xn − xn
0 )

r

= |̃x|2 + (xn − xn
0 )2

xnxn
0 r

−
r2

2xn (xn − xn
0 )

xnxn
0 r

= r

xnxn
0

− r
xn − xn

0

2(xn)2xn
0

= r
2xn

2(xn)2xn
0

− r
xn − xn

0

2(xn)2xn
0

= r
xn + xn

0

2(xn)2xn
0
,

completing the proof.

Next, we recall the classical localization theorem.

Theorem 21 [17] If u : � → R is a continuous function and Br(x
n
0 ) ⊂ � for some r > 0,

then

lim
r→0

1

ωn−1rn−1

∫

∂Br (x
n
0 )

u(x)dS(x) = u(̃0, xn
0 ),

where ωn−1 is the surface area of the unit sphere Sn−1 ⊂ R
n.

Using the localization theorem, we can compute the following limits.

Lemma 22 If F is the function defined above and ϕ ∈ D(Rn+) a test function, then

lim
r→0

∫

∂Br (x
n
0 )

ϕ(x)
∂F

∂n
(x)dS(x) = −2μωn−1(x

n
0 )2μϕ(̃0, xn

n)

and

lim
r→0

∫

∂Br (x
n
0 )

F (x)
∂ϕ

∂n
(x)dS(x) = 0.

Proof Using the representation given in Proposition 18, we compute

∂F

∂n
= ∇F · n = ∇f (λ)·n

(λ2−1)μ
+ f (λ)∇

(
1

(λ2−1)μ

)
· n.
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Since ∇g(λ) = dg
dλ

∇λ, we have

∂F

∂n
= f ′(λ)∇λ · n

(λ2 − 1)μ
+ f (λ)

d

dλ

( 1

(λ2 − 1)μ

)
∇λ · n

= f ′(λ)

(λ2 − 1)μ

∂λ

∂n
− f (λ)

2μλ

(λ2 − 1)μ+1

∂λ

∂n
.

Since λ = r2

2xnxn
0

+ 1, we have

λ2 − 1 = (
r2

2xnxn
0

+ 1)2 − 1

= r4

4(xn)2(xn
0 )2

+ r2

xnxn
0

= r2
( r2

4(xn)2(xn
0 )2

+ 1

xnxn
0

)

= r2 r2 + 4xnxn
0

4(xn)2(xn
0 )2

.

We can write λ2 − 1 = r2ε(λ), where

ε(λ) = r2 + 4xnxn
0

4(xn)2(xn
0 )2

→ 1

(xn
0 )2

for λ → 1, or equivalently r → 0 and especially then xn → xn
0 . Since μ = n−2

2 we have

(λ2 − 1)μ = rn−2ε(λ)μ,

(λ2 − 1)μ+1 = rnε(λ)μ+1.

Hence, using the localization Theorem 21 and Lemma 20, we obtain

lim
r→0

∫

∂Br (x
n
0 )

ϕ
f ′(λ)

(λ2 − 1)μ

∂λ

∂n
dS = lim

r→0

1

rn−1

∫

∂Br (x
n
0 )

rϕ
f ′(λ)

ε(λ)μ

∂λ

∂n
dS = 0.

Similarly, we compute

−2μ lim
r→0

∫

∂Br

ϕ
λf (λ)

(λ2 − 1)μ+1

∂λ

∂n
dS

= −2μ lim
r→0

∫

∂Br

ϕ
λf (λ)

rnε(λ)μ+1

∂λ

∂n
dS

= −2μωn−1 lim
r→0

1

ωn−1rn−1

∫

∂Br

ϕ
λf (λ)

ε(λ)μ+1

1

r

∂λ

∂n
dS

= −2μωn−1(x
n
0 )2μϕ(̃0, xn

n).

We see that the first integral formula is true. To prove the second integral, we compute

lim
r→0

∫

∂Br (x
n
0 )

F
∂ϕ

∂n
dS = lim

r→0

∫

∂Br (x
n
0 )

f (λ)

(λ2 − 1)μ

∂ϕ

∂n
dS

= lim
r→0

1

rn−2

∫

∂Br

f (λ)

ε(λ)μ

∂ϕ

∂n
dS

= lim
r→0

1

rn−1

∫

∂Br

r
f (λ)

ε(λ)μ

∂ϕ

∂n
dS = 0,
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since ∂ϕ
∂n

∈ D(Rn+).

Let us now define

G(x; xn
0 ) = − F(x; xn

0 )

2μωn−1(x
n
0 )2μ

.

Hence we obtain the following corollary.

Corollary 23 If G is the function defined above and ϕ ∈ D(Rn+) a test function, then

lim
r→0

∫

∂Br (x
n
0 )

ϕ(x)
∂G

∂n
(x)dS(x) = ϕ(̃0, xn

n)

and

lim
r→0

∫

∂Br (x
n
0 )

G(x)
∂ϕ

∂n
(x)dS(x) = 0.

Now we are ready to prove the following proposition.

Proposition 24 For the preceding G, we have

L̃G = δ(̃x)δ(xn − xn
0 ).

Proof Assume ϕ ∈ D(Rn+) and supp(ϕ) ⊂ � ⊂ R
n+, where � is a set with a smooth enough

boundary. Assume (̃0, xn
0 ) ∈ supp(ϕ) and take Br(x

n
0 ) ⊂ � and �r(x

n
0 ) := �\Br(x

n
0 ).

Since ∂�r(x
n
0 ) = ∂� ∪ (−∂Br(x

n
0 )), we compute by Green’s formula

∫

�r(x
n
0 )

(GL̃ϕ − ϕL̃G)dx =
∫

∂�r (x
n
0 )

(
G

∂ϕ

∂n
− ϕ

∂G

∂n

)
dS

=
∫

∂Br (x
n
0 )

(
ϕ

∂G

∂n
− G

∂ϕ

∂n

)
dS.

In the last part, we use the information, that ϕ and ∂ϕ
∂n

vanish in the boundary ∂�. Since
L̃G = 0 in �r(x

n
0 ), we have

∫

�r(x
n
0 )

GL̃ϕdx =
∫

∂Br (x
n
0 )

(
ϕ

∂G

∂n
− G

∂ϕ

∂n

)
dS.

We observe, that since G is continuous outside of λ = 1 and L̃ϕ is smooth with compact
support, then GL̃ϕ is locally integrable, and we can compute the limit r → 0. Using the
preceding corollary, we have

〈L̃G, ϕ〉 = 〈G, L̃ϕ〉
=

∫

R
n+

G(x; xn
0 )L̃ϕ(x)dx

=
∫

�

G(x; xn
0 )L̃ϕ(x)dx

= ϕ(̃0, xn
n).

We may give the following crucial result.
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Theorem 25 The function

H(x; xn
0 ) = h(λ)

(λ2 − 1)μ
,

where

h(λ) = −(
xn

0

xn
)

k
2

√
π

2ν+μ+1ωn−1

�(ν + μ + 1)

�(μ + 1)�(ν + 3/2)

1

(xnxn
0 )μλν−μ+1

×

×2F1

(ν − μ + 2

2
,
ν − μ + 1

2
; ν + 3

2
; 1

λ2

)
.

is a fundamental solution of the Weinstein-Leutwiler equation

�u + k

xn

∂u

∂xn
+ �

(xn)2
u = 0

at the point x0 = (̃0, xn
0 ) ∈ R

n+. In the formula, ωn−1 is the surface area of the unit sphere

Sn−1 ⊂ R
n, λ = |̃x|2+(xn)2+(xn

0 )2

2xnxn
0

, ν = 1
2 (

√
n(n − 2) − 4γ + 1 − 1) with γ = 1

4

(
n2 − k2 +

2(k − n + 2�)
)
and μ = n−2

2 .

Proof By virtue of Corollary 17 and the preceding proposition, we obtain that

H(x; xn
0 ) = (

xn
0

xn
)

k
2 G(x; xn

0 ),

which satisfies the equation LH(x; xn
0 ) = δ(̃x)δ(xn −xn

0 ). Using Proposition 18, we obtain

H(x; xn
0 ) = (

xn
0

xn
)

k
2 G(x; xn

0 )

= −(
xn

0

xn
)

k
2

F(x; xn
0 )

2μωn−1(x
n
0 )2μ

= −(
xn

0

xn
)

k
2

1

2μωn−1(x
n
0 )2μ

f (λ)

(λ2 − 1)μ
.

We define

h(λ) = −(
xn

0

xn
)

k
2

f (λ)

2μωn−1(x
n
0 )2μ

.

The function f (λ) is given in Proposition 18, and we have

h(λ) = −(
xn

0

xn
)

k
2

1

2μωn−1(x
n
0 )2μ

√
π

2ν+μ

�(ν + μ + 1)

�(μ)�(ν + 3/2)

(xn
0

xn

)μ 1

λν−μ+1 2F1

(
· · · ; 1

λ2

)

= −(
xn

0

xn
)

k
2

1

μωn−1

√
π

2ν+μ+1

�(ν + μ + 1)

�(μ)�(ν + 3/2)

1

(xnxn
0 )μλν−μ+1 2F1

(
· · · ; 1

λ2

)
.

Using the formula 6.1.15 of [1], we have μ�(μ) = �(μ + 1), that is,

h(λ) = −(
xn

0

xn
)

k
2

√
π

2ν+μ+1ωn−1

�(ν + μ + 1)

�(μ + 1)�(ν + 3/2)

1

(xnxn
0 )μλν−μ+1 2F1

(
· · · ; 1

λ2

)
.

We complete the paper by making the following remarks.
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Remark 26 Since the Weinstein-Leutwiler equation is translation invariant with respect to
transformations x̃ �→ x̃ + x̃0, we obtain a fundamental solution H(x; x0) at any point
x0 ∈ R

n+ just making the substitution.

Remark 27 The preceding fundamental solution H(x; xn
0 ) is not unique, since we can

always add an arbitrary solution. We can say that all invariant fundamental solutions with
respect to the Lie algebra hf are of the form H(x; xn

0 ) + cP(x; x0) (cf. Proposition 14),
where c ∈ R.

By representing the formula given in Theorem 25 using the Legendre function Q
−μ
ν , we

obtain the main result of the study.

Theorem 28 All invariant fundamental solutions of the Leutwiler-Weinstein equation in the
neighbourhood of the point x0 ∈ R

n+ are of the form

H(x; x0) = (xn)−
k
2 −μ(xn

0 )
k
2 −μ

(
λ2 − 1

)−μ/2(
cP −μ

ν (λ) − κ(μ, ν)Q−μ
ν (λ)

)

for c ∈ R. In the formula κ(μ, ν) := eiπμ

2μωn−1

�(ν+μ+1)
�(μ+1)�(ν−μ+1)

, ωn−1 is the surface area of

the unit sphere Sn−1 ⊂ R
n, λ = |̃x−x̃0|2+(xn)2+(xn

0 )2

2xnxn
0

, ν = 1
2 (

√
n(n − 2) − 4γ + 1 − 1) with

γ = 1
4

(
n2 − k2 + 2(k − n + 2�)

)
and μ = n−2

2 .

9 Application: Mean Value Principle for the Hyperbolic Unit Ball at
(˜0, xn0)

The classical Dirichlet problem in Euclidean space is usually formulated as follows:

Given a function f that has values everywhere on the boundary of a region in R
n, is

there a unique continuous function u twice continuously differentiable in the interior
and continuous on the boundary, such that u is harmonic in the interior and u = f

on the boundary?

A solution to the problem depends on the geometry of the domain. For example, in unit
ball B(0, 1), a solution is given by the so-called Poisson integral formula

P [f ](x) =
∫

Sn−1
f (y)P (x, y)dS(y),

where P(x, y) is the so-called Poisson kernel and Sn−1 = ∂B(0, 1) is the unit sphere.

In this section, we consider a Dirichlet problem of the Leutwiler-Weinstein operator L.
Recently, there has been a growing interest in such problems, see for example, [18, 23].
The Dirichlet problem is then {

Lu = f, in �,

u = g, in ∂�.

As in the Euclidean case k = � = 0, to obtain an explicit representation formula, we need
to restrict a geometrically suitable case. In this section, we consider the case where � is the
so-called hyperbolic unit ball in the upper half-space, defined in the next section. Using the
fundamental solution, we can find a Poisson-type kernel and general representation formula
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for the preceding Dirichlet problem at the origin of the ball. Unfortunately, a general formula
is still an open question.

9.1 Poincaré Upper Half-Space

We assume, that in the upper half-space,

R
n+ = {x = (x1, ..., xn) ∈ R

n : xn > 0}
is endowed with the non-Euclidean metric

ds2 = (dx1)2 + · · · + (dxn)2

(xn)2
.

The Riemannian manifold (Rn+, ds2) is called the hyperbolic Poincaré half-space. The
straight lines in the preceding hyperbolic space are represented by circular arcs crossing per-
pendicular to the xn = 0 plane. The distance between two points x, x0 ∈ R

n+ with respect
to the preceding metric is computed by

dh(x, x0) = arcosh(λ(x, x0)),

where the auxiliary function λ is

λ(x, x0) = |̃x − x̃0|2 + (xn)2 + (xn
0 )2

2xnxn
0

.

These observations allow us to define balls in the upper half-space. We consider the r-ball,
with the centre (̃0, xn

0 ), and we denote

Bh(x
n
0 , r) = {x ∈ R

n+ : 0 ≤ d(x, xn
0 ) < r}

= {x ∈ R
n+ : 1 ≤ λ(x, xn

0 ) < R}
where R = cosh(r). For the unit ball Bh(x

n
0 ) := Bh(x

n
0 , 1), we denote R1 = cosh(1) ≈

1.543...
Geometrically, the preceding r-ball is just the Euclidean ball

Be(ze, re) = {x ∈ R
n : |x − ze| < re},

with the centre ze = (̃0, xn
0 cosh(r)) and the radius re = xn

0 sinh(r). See all details of the
preceding discussion and more, e.g., in [11–15].

9.2 Green Function of Unit Ball

A Green function on a domain � ⊂ R
n+ is a function G(x; x0) satisfying

{
LG(x; x0) = δ(x − x0), x ∈ �,

G(x; x0) = 0, x ∈ ∂�

for all x, x0 ∈ �. In general, such a function is not easy to find, since it depends on the shape
of the �. Usually, to compute a Green’s function, the set � should have enough symmetry.
One of the cases with enough symmetry is a hyperbolic unit ball, which we consider next.

Assume � = B(xn
0 ). Our starting point is the fundamental solution of the Leutwiler-

Weinstein equation; see Theorem 28. Since LH(x; x0) = δ(x − x0), the preceding function
is a candidate for a Green function, if the boundary values can be controlled properly.
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Remark 29 All invariant fundamental solutions are the sum of a fundamental solution (Q−μ
ν

part) and a null-solution (P −μ
ν part) of the operator L.

Moreover, we have the following useful transformation formula.

Proposition 30 (Symmetry property) A fundamental solution satisfies

(xn)kH(x; x0) = (xn
0 )kH(x0; x).

Using the preceding information, we can compute the Green function at the origin (̃0, xn
0 )

as follows.

Theorem 31 (Green function at the origin of the hyperbolic unit ball) The function

G(x; xn
0 ) = (xn)−

k
2 −μ(xn

0 )
k
2 −μκ(μ, ν)

(
λ2 − 1

)−μ/2(Q
−μ
ν (R1)

P
−μ
ν (R1)

P −μ
ν (λ) − Q−μ

ν (λ)
)

satisfies {
LG(x; xn

0 ) = δ(x − (̃0, xn
0 )), x ∈ Bh(x

n
0 ),

G(x; xn
0 ) = 0, x ∈ ∂Bh(x

n
0 ).

Proof At the hyperbolic unit sphere x ∈ ∂Bh(x
n
0 ), we have H(x; xn

0 ) = 0 if and only if

cP −μ
ν (R1) − κ(μ, ν)Q−μ

ν (R1) = 0 ⇔ c = κ(μ, ν)
Q

−μ
ν (R1)

P
−μ
ν (R1)

.

The P
−μ
ν part of the fundamental solution exists, if |λ−1| < 2 or equivalently −1 < λ < 3.

Especially, R1 < 3, that is, the construction exists on the unit ball.

Unfortunately, the preceding formula is not valid at every point of the unit ball, only at
the origin. The usual technique used in the Euclidean case seems to be hard to apply directly.
We leave this question open and just give the following conjecture.

Conjecture 32 (Green function of the hyperbolic unit ball) There exists a Green func-
tion G(x; x0) with the symmetry property (xn)kG(x; y) = (yn)kG(y; x) (maybe up to a
constant) satisfying

{
LG(x; x0) = δ(x − x0), x ∈ Bh(x

n
0 ),

G(x; x0) = 0, x ∈ ∂Bh(x
n
0 ).

Using the classical methods of partial differential equations, one can prove that the pre-
ceding Green function exists. The symmetry property must also be true, since all Green
functions are fundamental solutions.

9.3 Representation Formula for Solutions to the Dirichlet Problem

In this section, we derive an integral representation of solutions to the Dirichlet problem
assuming that the Green function, given in Conjecture 32 exists. This motivates us to find
an explicit expression for the Green function in future studies. Our problem is to study

{
Lu = f, in Bh(x

n
0 ),

u = g, in ∂Bh(x
n
0 ).
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The necessary condition for integral representations is the existence of the Green’s type
integral formula.

Proposition 33 (Green’s integral formula for the Leutwiler-Weinstein operator) Let u, v be
a two times differentiable function defined in a neighbourhood of � ⊂ R

n+, we have
∫

�

(
uLv − vLu

)
(xn)kdx =

∫

∂�

(
u

∂v

∂n
− v

∂u

∂n

)
(xn)kdS,

where dx is the Euclidean volume measure and dS the Euclidean surface measure on a
smooth enough ∂�.

Proof Recall the classical Green’s integral formula
∫

�

u�vdx +
∫

�

∇u · ∇vdx =
∫

∂�

u
∂v

∂n
dS.

Replacing u by (xn)ku, we have
∫

�

(xn)ku�vdx +
∫

�

(xn)ku
k

xn

∂v

∂xn
dx +

∫

�

(xn)k∇u · ∇vdx =
∫

∂�

(xn)ku
∂v

∂n
dS.

Changing the role of u and v, we have
∫

�

(xn)kv�udx +
∫

�

(xn)kv
α

xn

∂u

∂xn
dx +

∫

�

(xn)k∇v · ∇udx =
∫

∂�

(xn)kv
∂u

∂n
dS.

Subtracting the preceding integrals from the upper on, we obtain
∫

�

(xn)k
(
u
(
�v + k

xn

∂v

∂xn

) − (
�u + k

xn

∂u

∂xn

)
v
)
dx =

∫

∂�

(xn)k
(
u

∂v

∂n
− v

∂u

∂n

)
dS.

We add and subtract the term (xn)k �

(xn)2 uv in the volume integral and we have

∫

�

(xn)k
(
u
(
�v + k

xn

∂v

∂xn
+ �

(xn)2
v
) − (

�u + k

xn

∂u

∂xn
+ �

(xn)2
u)v

)
dx =

∫

∂�

(xn)k
(
u

∂v

∂n
− v

∂u

∂n

)
dS

completing the proof.

Using Green’s formula, we can prove an integral representation formula for the Dirichlet
problem. We will write Lx , if we want to emphasize the variable.

Theorem 34 A solution to the Dirichlet problem
{

Lyu = f, in Bh(x
n
0 ),

u = g, in ∂Bh(x
n
0 ).

can be given by

u(y) =
∫

Bh(xn
0 )

G(y; x)f (x)dx +
∫

∂Bh(xn
0 )

g(x)
∂G(x; y)

∂n

(xn

yn

)k
dS(x).

Proof By Green’s formula
∫

Bh(xn
0 )

uLv(xn)kdx =
∫

Bh(xn
0 )

vLu(xn)kdx +
∫

∂Bh(xn
0 )

(
u

∂v

∂n
− v

∂u

∂n

)
(xn)kdS.
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Taking v = G(x; y), i.e., LG(x; y) = δ(x − y), we have
∫

Bh(xn
0 )

uLG(x; y)(xn)kdx =
∫

Bh(xn
0 )

uδ(x − y)(xn)kdx = u(y)(yn)k .

We have

u(y) =
∫

Bh(xn
0 )

G(x; y)Lu(x)
(xn

yn

)k
dx +

∫

∂Bh(xn
0 )

u
∂G(x; y)

∂n

(xn

yn

)k
dS(x)

−
∫

∂Bh(xn
0 )

G(x; y)
∂u

∂n

(xn

yn

)k
dS(x).

Since G(x; y) = 0 in x ∈ ∂B(xn
0 ), we have

u(y) =
∫

Bh(xn
0 )

G(x; y)Lu(x)
(xn

yn

)k
dx +

∫

∂Bh(xn
0 )

u(x)
∂G(x; y)

∂n

(xn

yn

)k
dS(x).

If Lu = f in the interior and u = g on a boundary, we have

u(y) =
∫

Bh(xn
0 )

G(x; y)f (x)
(xn

yn

)k
dx +

∫

∂Bh(xn
0 )

g(x)
∂G(x; y)

∂n

(xn

yn

)k
dS(x).

Using (xn)kG(x; y) = (yn)kG(y; x), we have

u(y) =
∫

Bh(xn
0 )

G(y, x)f (x)dx +
∫

∂Bh(xn
0 )

g(x)
∂G(x; y)

∂n

(xn

yn

)k
dS(x).

If f ≡ 0, then we obtain the following Poisson-type representation formula.

Corollary 35 A solution to the Dirichlet problem
{

Lyu = 0, in Bh(x
n
0 ),

u = g, in ∂Bh(x
n
0 ).

can be given by

u(y) =
∫

∂Bh(xn
0 )

g(x)
∂G(x; y)

∂n

(xn

yn

)k
dS(x),

where

y �→ ∂G(x; y)

∂n

(xn

yn

)k

belongs to the kernel of Ly .

Proof Formula (xn)kG(x; y) = (yn)kG(y; x) implies

G(x; y) = (yn

xn

)k
G(y; x),

and we have (the normal deriative act on x)

∂G(x; y)

∂n

(xn

yn

)k = ∂

∂n

((yn

xn

)k
G(y; x)

)(xn

yn

)k

= ∂

∂n

(G(y; x)

(xn)k

)
(xn)k
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and we observe that

y �→ ∂G(x; y)

∂n

(xn

yn

)k

belongs to the kernel of Ly and hence the preceding formula gives a solution u(y).

Thus, we can call the preceding formula a Poisson formula and P(x; y) := ∂G(x;y)
∂n

(
xn

yn

)k

a Poisson kernel.

10 Conclusions

In this paper, we study the symmetries of fundamental solutions of the Leutwiler-Weinstein
equation. The method is described by the first author in [5]. As a result, we compute detailed
the fundamental solution and study, how to use it to find Green’s function for the problem. In
the future, we will complete this task and construct give a detailed construction for it. Also
some other interesting linear partial differential equations with non-constant coefficients
should be studied. We hope, that our text motivates researchers to apply the method in their
studies.

Appendix A: Proof of Proposition 6

Using Eqs. 13 and 14, we have (for each i �= j)

ξ i
xj (x) = −ξ

j

xi (x) ⇒ ξ i
xj xj (x) = −ξ

j

xj xi (x) = −ξ i
xixi (x)

and we may write Eqs. 11 and 12 of the form

− k
xn ξ i

xn(x) + 2ηxi (x) + (n − 2)ξ i
xixi (x) = 0, i = 1, ..., n − 1, (A.1)

−ξn(x) k

(xn)2 + 2ηxn(x) + (n − 2)ξn
xnxn(x) + ξn

xn(x) k
xn = 0. (A.2)

From these, applying Eq. 13, we obtain the formulas

2
n−1∑

i=1

ηxixi (x) = −(n − 2)

n−1∑

i=1

ξ i
xixixi (x) + k(n − 1)

xn
ξn
xnxn(x),

2k

xn
ηxn(x) = −k(n − 2)

xn
ξn
xnxn(x) + k2

(xn)3
ξn(x) − k2

(xn)2
ξn
xn(x),

2ηxnxn(x) = −(n − 2)ξn
xnxnxn(x) − k

xn
ξn
xnxn(x) + 2k

(xn)2
ξn
xn(x) − 2k

(xn)3
ξn(x).

Substituting the preceding formulas into Eq. 10 (multiplied by 2), we obtain the equation

−(n − 2)

n∑

i=1

ξ i
xixixi (x) + 2k − k2 + 4�

(xn)2
ξn
xn(x) − 2k − k2 + 4�

(xn)3
ξn(x) = 0.

We assume that n ≥ 3 and k(2 − k) + 4� �= 0. Using Eqs. 13 and 14, we have

ξ i
xixixi (x) = ξn

xixixn (x) = −ξ i
xixnxn(x) = −ξn

xnxnxn(x), (A.3)

and

(n − 2)2ξn
xnxnxn(x) + 2k − k2 + 4�

(xn)2
ξn
xn(x) − 2k − k2 + 4�

(xn)3
ξn(x) = 0.
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It is a third-order linear ordinary differential equation with respect to xn, and it has three
linearly independent solutions. We look for solutions of the form ξn(x) = h(̃x)(xn)α , where
x̃ = (x1, ..., xn−1). Making the substitution, we obtain the equation (putting β = 2k − k2 +
4�)

(n − 2)2α(α − 1)(α − 2) + βα − β = 0

⇔ α = 1 or (n − 2)2α2 − 2(n − 2)2α + β = 0.

Assume that the root α �= 1. Then

ξn(x) = (xn)αh(̃x)

and by Eq. 14
ξn
xn(x) = ξ

j

xj (x) = α(xn)α−1h(̃x)

and by Eq. 13

ξn
xj xj + ξ

j

xj xn = (xn)αhxj xj (̃x) + α(α − 1)(xn)α−2h(̃x) = 0,

that is, h = 0, and we see that these solutions do not give us a nontrivial symmetry.

Let us now look for symmetries for α = 1, i.e.,

ξn(x) = h(̃x)xn.

Then we have by (13) and (14) that

ξ
j

xj (x) = ξn
xn(x) = h(̃x), j = 1, ..., n − 1

and

ξn
xnxn(x) = ξ

j

xj xn(x) = −ξn
xj xj (x) = 0. (A.4)

Since ξn
xj xj (x) = 0 for all j = 1, ..., n, it has to be of the form

ξn(x) = xn
( n−1∑

j=1

ajx
j + b

)

and hence

h(̃x) =
n−1∑

j=1

ajx
j + b.

From (A.2), we infer

ηxn(x) = 0,

that is, η = η(̃x). Using (A.1), (A.3) and (A.4), we compute

ηxixi (x) = 0,

for i = 1, ..., n − 1. We infer that

η(x) =
n−1∑

j=1

gjx
j + c.

Let us now compute the coefficients ξ i . By Eq. 14, we obtain

ξ i
xi (x) = ξn

xn(x) = h(̃x) = aix
i +

n−1∑

j=1
j �=i

aj x
j + b,
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for i = 1, ..., n − 1 and we have

ξ i(x) = ai

2
(xi)2 + xi

n−1∑

j=1
j �=i

aj x
j + bxi + ci(x),

where ci(x) = ci(x1, ..., xi−1, xi+1, ..., xn). If i �= p and

ξp(x) = ap

2
(xp)2 + xp

n−1∑

j=1
j �=p

ajx
j + bxp + cp(x),

we have by Eq. 13 that

0 = ξ i
xp (x) + ξ

p

xi (x) = xiap + ci
xp (x) + xpai + c

p

xi (x),

then we obtain that

ci
xpxp = −ai and ci

xpxpxp = 0

for any p = 1, ..., n. We have that

ci(x) =
n∑

r,q=1
r,q �=i

di
rqxrxq +

n∑

s=1
s �=i

ei
sx

s + f i .

Since

ci
xp (x) = 2di

ppxp +
n∑

q=1
q �=i,p

di
pqxq +

n∑

r=1
r �=i,p

di
rpxr + ei

p,

ci
xpxp (x) = 2di

pp = −ai,

we have that

ci(x) = −ai

2

n∑

r=1
r �=i

(xr )2 +
n∑

r,q=1
r,q �=i

r �=q

di
rqxrxq +

n∑

s=1
s �=i

ei
sx

s + f i .
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Then we compute

ξ i(x) = ai

2
(xi)2 + xi

n−1∑

j=1
j �=i

aj x
j + bxi

−ai

2

n∑

r=1
r �=i

(xr )2 +
n∑

r,q=1
r,q �=i

r �=q

di
rqxrxq +

n∑

s=1
s �=i

ei
sx

s + f i

= ai

2
(xi)2 + xi

n−1∑

j=1
j �=i

aj x
j + bxi + ai

2
(xi)2

−ai

2
(xi)2 − ai

2

n∑

r=1
r �=i

(xr )2 +
n∑

r,q=1
r,q �=i

r �=q

di
rqxrxq +

n∑

s=1
s �=i

ei
sx

s + f i

= −ai

2

n∑

r=1

(xr )2 + xi
( n−1∑

j=1

ajx
j + b

)

+
n∑

r,q=1
r,q �=i

r �=q

di
rqxrxq +

n∑

s=1
s �=i

ei
sx

s + f i .

Using Eq. 13, we obtain

ξ i
xrxq = −ξ

q

xixr = ξ r
xixq , (A.5)

where we assume i �= r �= q �= i. Since ξ i
xrxq = di

rq + di
qr , Eq. A.5 gives

di
rq + di

qr + dr
iq + dr

qi = 0,

di
rq + di

qr − d
q
ir − d

q
ri = 0.

Changing the role of r and q in the last equation, we obtain that

di
rq + di

qr = 0.

Then the term

n∑

r,q=1
r,q �=i

r �=q

di
rqxrxq =

∑

r<q

r,q �=i

di
rqxrxq +

∑

r>q

r,q �=i

di
rqxrxq

=
∑

r<q

r,q �=i

(di
rq + di

qr )x
rxq = 0
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and

ξ i(x) = −ai

2

n∑

r=1

(xr )2 + xi
( n−1∑

j=1

ajx
j + b

)
+

n∑

s=1
s �=i

ei
sx

s + f i .

Then, by Eq. 13, we have

0 = ξ i
xj + ξ

j

xi = −aix
j + ajx

i + ei
j − ajx

i + aix
j + e

j
i = ei

j + e
j
i ,

that is, ei
j = −e

j
i for i �= j and e

j
j = 0. We obtain

ξ i(x) = −ai

2

n∑

r=1

(xr )2 + xi
( n−1∑

j=1

ajx
j + b

)
+

n−1∑

s=1

ei
sx

s + f i,

where ei
j = −e

j
i . Assume again, that j �= i. Then we compute

ξ i
xn(x) = −aix

n,

ξ i
xnxn(x) = −ai,

ηxi (x) = gi,

ξ i
xj (x) = −aix

j + xiaj + ei
j , (A.6)

ξ i
xj xj (x) = −ai,

ξ i
xi (x) = h(̃x), (A.7)

ξ i
xixi (x) = ai,

and Eq. 11 gives

kai + 2gi + (n − 2)ai = 0 ⇔ gi = −(k + n − 2)
aj

2
and

η(x) = −k + n − 2

2

n−1∑

j=1

ajx
j + c.

Scaling the coefficients ai by 2, we have the solution

ξn(x) = 2xn
( n−1∑

j=1

ajx
j + b

)
,

ξ i(x) = −ai

n∑

r=1

(xr )2 + 2xi
( n−1∑

j=1

ajx
j + b

)
+

n−1∑

s=1

ei
sx

s + f i,

η(x) = −(k + n − 2)

n−1∑

j=1

ajx
j + c,

where ei
j = −e

j
i .
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Geronimus and M. Ju. Ceĭtlin, New York-London, pp. xlv+1086 (1965)
17. Gurtin, M.E.: An Introduction to Continuum Mechanics, p. 265. Academic Press, New York (1981)
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