1 External validation of prognostic models to predict stillbirth using the International 2 Prediction of Pregnancy Complications (IPPIC) Network database: An individual 3 participant data meta- analysis 4 John Allotey**1,2, Rebecca Whittle*3, Kym IE Snell3, Melanie Smuk4, Rosemary Townsend5, 5 Peter von Dadelszen⁶, Alexander EP Heazell⁷, Laura Magee⁶, Gordon C.S. Smith⁸, Jane 6 Sandall^{6,9}, Basky Thilaganathan⁵, Javier Zamora^{1,10,11}, Richard D. Riley³, Asma Khalil⁵, Shakila 7 Thangaratinam^{1,12} for the IPPIC Collaborative Network⁺ 8 9 ¹WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems 10 11 Research, University of Birmingham, Birmingham, UK 12 ²Institute of Applied Health Research, University of Birmingham, Birmingham, UK ³Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK 13 14 ⁴Medical Statistics Department, London School of Hygiene and Tropical Medicine, London, UK ⁵ Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust and Molecular 15 and Clinical Sciences Research Institute, St George's University of London, London, UK 16 17 ⁶Department of Women and Children's Health, School of Life Course Sciences, King's College 18 London, London, UK 19 ⁷Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, 20 Medicine and Health, University of Manchester, UK ⁸ Department of Obstetrics and Gynaecology, NIHR Biomedical Research Centre, Cambridge 21 22 University, UK 23 ⁹Health Service and Population Research Department, Centre for Implementation Science, 24 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK ¹⁰Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain 25 - ¹¹CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain - 27 ¹²Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK 28 - 29 * Joint first authors - 30 #Corresponding author #### **ABSTRACT** **Objective** Stillbirth is a potentially preventable complication of pregnancy. Identifying women at risk can guide decisions on closer surveillance or timing of birth to prevent fetal death. Prognostic models have been developed to predict the risk of stillbirth, but none have yet been externally validated. We externally validated published prediction models for stillbirth using individual participant data (IPD) meta-analysis to assess their predictive performance. ### Methods We searched Medline, EMBASE, DH-DATA and AMED databases from inception to December 2020 to identify stillbirth prediction models. We included studies that developed or updated prediction models for stillbirth for use at any time during pregnancy. IPD from cohorts within the International Prediction of Pregnancy Complication (IPPIC) Network were used to externally validate the identified prediction models whose individual variables were available in the IPD. We assessed the risk of bias of the models and IPD using PROBAST, and reported discriminative performance using the C-statistic, and calibration performance using calibration plots, calibration slope and calibration-in-the-large. We estimated performance measures separately in each study, and then summarised across studies using random-effects meta-analysis. Clinical utility was assessed using net benefit. # Results We identified 17 studies reporting the development of 40 prognostic models for stillbirth. None of the models were previously externally validated, and only a fifth (20%, 8/40) reported the full model equation. We were able to validate three of these models using the IPD from 19 cohort | 56 | studies (491,201 pregnant women) within the IPPIC Network database. Based on evaluating | |----|----------------------------------------------------------------------------------------------------| | 57 | their development studies, all three models had an overall high risk of bias according to | | 58 | PROBAST. In our IPD meta-analysis, the models had summary C-statistics ranging from 0.53 | | 59 | to 0.65; summary calibration slopes of 0.40 to 0.88, and generally with observed risks | | 60 | predictions that were too extreme compared to observed risks; and little to no clinical utility as | | 61 | assessed by net benefit. However, there remained uncertainty in performance for some models | | 62 | due to small available sample sizes | | 63 | | | 64 | Conclusion | | 65 | The three validated models generally showed poor and uncertain predictive performance in new | | 66 | data, with limited evidence to support their clinical application. Findings suggest | | 67 | methodological shortcomings in their development including overfitting of models. Further | | 68 | research is needed to further validate these and other models, identify stronger prognostic | | 69 | factors, and to develop more robust prediction models. | | 70 | | | 71 | Study registration | | 72 | PROSPERO ID: CRD42018074788 | | 73 | | | 74 | Keywords: stillbirth, intra-uterine death, prediction model, individual participant data, external | | 75 | validation | | 76 | | | 77 | Word count: 376 | #### INTRODUCTION Stillbirth continues to be a major burden globally, accounting for almost two thirds of perinatal mortality.^{1,2} In the UK, stillbirth rates were largely unchanged from 2000 – 2015, and at 4.2 stillbirths/1,000 births in 2017 had one of the highest rates in Europe.³⁻⁵ Prediction and individualisation of risk remain key priorities for stillbirth research,^{6,7} because accurate identification of women at risk of stillbirth can guide decisions on closer surveillance, or timing of birth to prevent fetal death. A recent review that identified existing prediction models for stillbirth reported that none had been externally validated.⁸ As a result, no prediction models are routinely used in clinical practice and none have been recommended by any national or international guidelines. An independent, external validation and comparison of existing multivariable stillbirth prediction models is important to help identify which prediction model (if any) performs best and is potentially applicable in clinical practice. However, the relative rarity of this devasting outcome limits rigorous investigation of existing stillbirth prediction models in single cohort studies. An individual participant data (IPD) meta-analysis that combines the raw data from multiple studies, has great potential for use in externally validating existing models, by increasing the sample size beyond what is feasible in a single study, thereby increasing the number of events observed.⁹⁻¹² It also allows us to evaluate the generalisability and transportability of the predictive performance of the models across a range of clinical settings being considered for their application. We therefore set out to identify, critically appraise and externally validate existing multivariable prognostic models for stillbirth prediction using IPD meta-analysis within the independent International Prediction of Pregnancy Complication (IPPIC) Network database, and to assess the clinical utility of the models using decision curve analysis. ### **METHODS** This study was based on a prospective protocol registered on PROSPERO (registration number CRD42018074788), and reported in line with TRIPOD recommendations for reporting risk prediction model validation studies.¹³ Literature search and selection of prediction models for external validation using the IPPIC network database We systematically searched Medline, EMBASE, DH-DATA and AMED databases from inception to December 2020 to identify all studies that developed or updated prognostic models for stillbirth for use at any time during pregnancy. We also hand searched reference lists of relevant articles and systematic reviews to identify potentially eligible studies. Our search included terms for stillbirth, intrauterine fetal death and perinatal mortality, and study selection was done independently by two researchers. The complete search strategy is provided in appendix 1. We included studies that reported the development or update of a multivariable model with at least three variables to predict the risk of stillbirth in pregnant women and reported the model Stillbirth model eligibility criteria, data extraction and risk of bias assessment equation in the publication. No attempts were made to contact authors of studies that did not publish their model equation. Given the wide international variation in definitions of stillbirth, we accepted the authors' definition of stillbirth (both antepartum and intrapartum), and included models developed for use at any time in pregnancy. We excluded models that: predicted stillbirth as part of a composite adverse outcome; contained predictors that were not measured in any of the cohorts within the IPPIC IPD; or if there were too few outcomes (<10 stillbirths) reported across the IPPIC IPD cohorts with the same predictors as the model, to allow for its external validation. We extracted data on the definition of stillbirth, number of participants and events, population type, predictors in the final model, and the reported model performance. Based on information in the original articles, we assessed the risk of bias of included models using the Prediction study Risk of Bias Assessment tool (PROBAST), 14 across the four domains of participant selection, predictors, outcome and analysis, and this was done independently by two researchers. Disagreement were resolved through discussions with a third researcher. We classified the risk of bias to be low, high or unclear for each domain, as well as an overall risk of bias. Each domain included signalling questions rated as "yes", "probably yes", "probably no", "no" or "no information". Domains with any signalling question rated as "probably no" or "no" were considered to have potential for bias and classed as high risk. The overall risk of bias was considered to be low if it scored low in all domains, high if any one domain had a high risk of bias, and unclear for any other classifications. International Prediction of Pregnancy Complications (IPPIC) Network We identified cohorts for the IPPIC Network by systematically reviewing evidence for risk of pregnancy complications including pre-eclampsia, stillbirth and fetal growth restriction (FGR), and inviting research groups that had undertaken the primary studies to join the IPPIC Network and share their primary IPD. We also searched major databases and repositories and contacted researchers within the IPPIC Network to identify relevant studies or datasets that may have been missed, including unpublished research and birth cohorts. We formatted, cleaned and harmonised datasets received and assessed the quality of each cohort using the participants, predictors and outcome domains of the PROBAST tool. 14 Study population could vary from low to high risk of development of complications. The network includes nearly 150 collaborators from 26 countries, contributing IPD of over 4 million pregnancies, and contains data on maternal characteristics, obstetric history, clinical assessment and tests, as well as various maternal and offspring outcomes. The database is a living repository and is regularly being enriched with additional studies. We consider the predictor variables contained within the IPPIC Network to represent measures which are easy to obtain in a clinical setting, reflecting their availability in routine practice. Methods on how cohorts within the IPPIC Network database were identified and harmonised have previously been published. 15-17 ### Statistical analysis for external validation using IPPIC network database Data harmonisation and set-up Predictors or outcomes of existing prediction models that were partially missing for <95% of individuals in any cohort were multiply imputed under the missing at random assumption using multiple imputation by chained equations. We used linear regression to impute for approximately normally distributed continuous variables, logistic regression for binary variables, and multinomial logistic regression for categorical variables. We carried out multiple imputation for each individual cohort separately and generated fifty imputed datasets for each. We also included other predictors that were available within the cohort as auxiliary variables in the imputation models. Imputation checks were completed by looking at histograms, summary statistics and tables of values across imputations, as well as checking trace plots for convergence issues. External validation of models Each model was validated by applying the model equation to each participant in the cohort to calculate the linear predictor for that participant (LP_i , value of the linear combination of predictors in the model equation for individual i), as well as the predicted probability of stillbirth (inverse logit transformation of LP_i). For each prediction model, the distribution of LP_i values were summarised for each cohort, and performance statistics were calculated in each imputed dataset and then averaged across imputations using Rubin's rules to obtain one estimate and standard error (SE) for each performance statistic in each cohort.²⁰ The discriminatory performance of models were assessed using the C-statistic (summarised as the area under receiver operating characteristic curve, where 1 indicates perfect discrimination and 0.5 indicates no discrimination beyond chance), and calibration statistics of the calibration slope (slope of the regression line fitted between predicted and observed risk probabilities on the logit scale, with 1 being the ideal value), and calibration-in-the-large (the extent that model predictions are systematically too low or too high across the cohort, ideal value of 0).²¹ ²² Model calibration was also visually assessed using calibration plots representing the average predicted probability for risk groups categorised using deciles of predicted probability against the observed proportion in each group, in cohorts with at least 100 events. A lowess smoother curve was applied to show calibration across the entire range of predicted probabilities at the individual-level (i.e. without categorisation). For the calibration plots, average predicted probabilities were obtained for individuals by pooling their linear predictor values across imputed datasets using Rubin's rules, and then transforming to the probability scale. Performance measures of prediction models that were validated in more than two independent cohorts were summarised using a random effects meta-analysis to calculate a summary estimate for the model's discrimination and calibration performance. Model performance was summarised for each statistic as the average and 95% confidence interval (CI) calculated using the Hartung-Knapp-Sidik-Jonkman approach. Between-study heterogeneity (τ^2) and the proportion of variability due to between-study heterogeneity (I^2)²⁵ were summarised. We also reported the approximate 95% prediction intervals, for potential predictive performance in a new study, as calculated using the approach of Higgins et al.²⁶ Decision curve analysis We performed decision curve analysis (DCA) to assess the clinical value of the models on cohorts with at least 100 events. This analysis allowed us to determine the net benefit of the models across a range of clinically plausible threshold probabilities (which included any values up to 0.1, given the generally very low risk of stillbirth), compared to either simply classifying all women as having the outcome or no women as having the outcome.²⁷ The strategy with the highest net benefit at a particular threshold has the highest clinical value.²⁸ The net benefit is represented as a function of the decision threshold in decision curve plots. All statistical analyses were performed using Stata software version 15. #### **RESULTS** From 5055 citations we identified 17 articles describing the development of 40 stillbirth prediction models published between 2007 and 2020 (Appendix 2). Three studies reporting three prediction models - Smith 2007,²⁹ Yerlikaya 2016,³⁰ and Trudell 2017³¹ met our inclusion criteria for external validation in the IPPIC IPD datasets (Figure 1). ### **Characteristics of included models** All three models were developed using binary logistic regression in unselected populations of pregnant women, ²⁹⁻³¹ and the definition of stillbirth varied between the studies. Two models included only maternal clinical characteristics as predictors, ^{30,31} while one model additionally included ultrasound markers. ²⁹ Only one study had at least 10 events per predictor for model development, ³⁰ the others did not justify whether their sample size was sufficient. Using the PROBAST tool, the overall risk of bias for all three models was high, with all models assessed as being at high risk of bias in the analysis domain. The characteristics of included studies and models are described in Table 1. ### **Characteristics of the IPPIC validation cohorts** Of the 78 cohorts in the IPPIC data repository, 19 cohorts (24%) contained relevant data that could be used to externally validate at least one of the three prediction models identified. Only women with singleton pregnancies in the cohorts were used for external validation. The prevalence of stillbirth ≥24 weeks gestation in the cohorts ranged from 0.1% - 1.6%. A quarter of the studies used for external validation included only low risk (26%, 5/19) women, while a fifth (21%, 4/19) included only high-risk women in the cohorts. Seventy-five percent (14/19) of the cohorts used for external validation had an overall low risk of bias as assessed by PROBAST, 21% (4/19) were assessed as high risk and one cohort as unclear (appendix 3). Summary maternal characteristics and outcomes of women in the validation cohort are provided in table 2, and a summary of missing data for each predictor and outcome is provided in appendix 4. # External validation and meta-analysis of predictive performance The Smith 2007 model²⁹ was validated in 3 cohorts, Yerlikaya 2016 model³⁰ in 4 cohorts and the Trudell 2017 model³¹ in 17 cohorts. Two of the cohorts used to validate the Smith 2007 model and all four of the cohorts used to validate the Yerlikaya 2016 model were also used to validate the Trudell 2017 model. A direct comparison of performance of the prediction models was not possible due to differences in outcomes of each model. The distribution of the linear predictor and predicted probability for each model and validation cohort are shown in appendix 5. ### Model predictive performance The C-statistics of models in the different validation cohorts ranged from 0.56-0.82 in the Smith 2007 model, 0.54-0.73 in the Yerlikaya 2016 model and 0.34-0.69 in the Trudell 2017 model (Table 3). The Trudell 2017 model had the lowest overall discrimination across the validation cohorts. Summary C-statistics of the models were 0.65 (95% CI 0.53 to 0.75) for the Smith 2007 model, 0.61 (95% CI 0.43 to 0.77) for the Yerlikaya 2016 model, and 0.53 (95% CI 0.51 to 0.55) for the Trudell 2017 model (Table 4). Confidence intervals for the Smith 2007 and Yerlikaya 2016 models were wide, due to the fewer number of cohorts available for their validation. Calibration statistics for each model in the different validation cohorts are shown in Table 3. Summary calibration slopes were < 1 for all models, indicative of overfitting during model development; in particular, the 95% confidence intervals for the calibration slope were all below 1 for the Yerlikaya 2016 and Trudell 2017 models, indicating extreme predictions compared to what was observed (Table 4). Each of the three models were validated in one cohort with at least 100 events. The average calibration plots showed miscalibration of the predicted risk of stillbirth in all three models (Figure 2). However, predicted probabilities were all less than 0.02, therefore absolute risk differences remain small. The 95% CI was wide for the calibration slope of the Smith 2007 model, due to less data on stillbirth outcome in the validation cohorts available for this model, and so further research is needed for this model. # Net benefit of model use The DCA for all three models in cohorts with at least 100 events, showed little or no improvement in the net benefit at any probability threshold compared to a treat all or treat none strategy (Figure 3). ### **DISCUSSION** ### **Summary of findings** Only a fifth of published stillbirth prognostic models reported the model equation required for independent external validation. Three models developed in high-income countries could be externally validated using cohorts from the IPPIC data repository. The models were mostly developed using maternal clinical characteristics, but one model additionally included ultrasound markers. PROBAST of the original model development articles suggested risk of bias concerns, and our IPD meta-analysis of model performance showed low discriminatory ability and poor calibration, with calibration slopes mostly <1, indicative of overfitting during model development. The models had no clinical utility as assessed by DCA. Although each of the three models could be validated in at least one cohort with >100 events, confidence intervals of predictive performance were wide for the Smith 2007 model, suggesting further validation is needed for this model. # **Strengths and limitations** To our knowledge, this is the first systematic review and external validation study of stillbirth prediction models. 8,32 Our study with its large sample size, allowed for the evaluation of the predictive performance of each model across multiple cohorts, as well as the overall performance through an IPD meta-analysis. We used multiple imputation of predictors and outcomes for each cohort separately, to avoid loss of useful information, and ensure we did not mask any heterogeneity across cohorts. 20,33 Although the definition of stillbirth in the validation cohorts were standardised, stillbirth was defined differently in each model, which prevented a head-to-head comparison of model performance. Our study has some limitations. We were only able to validate three of the 40 identified models, mainly due to the failure of studies to adhere to reporting standards of publishing the model equation. 34,35 Only two models were published before release of TRIPOD. Some cohorts used in the external validation had few observed cases of stillbirths, and only two had more than 100 events. Predicted probabilities in the cohorts only went up to 3%, which makes it difficult for the models to discriminate between women who had and did not have the outcome. This further highlights the primary limitation of stillbirth research, which is the comparative rarity of the outcome. ## **Comparison to existing studies** External validation of prediction models are needed to confirm generalisability and transportability of a model in populations with different characteristics.³⁶ However, independent data with sufficiently large sample sizes of stillbirth and relevant predictors for external validation of models are not readily available. This is a factor on why none of the published models have been recommended for use in clinical practice.³⁵ Our meta-analysis obtained lower summary estimates for discrimination to that reported in the development datasets, although this might be due to chance as some confidence intervals were wide (e.g. Smith 2007), further research is recommended.^{29,31} Some published stillbirth models report discrimination of > 0.8,^{37,38} but these studies either did not report the model equation needed for independent external validation,³⁸ or did not provide enough information on predictors.³⁷ In most cases, the performance of a prediction model is often overestimated when only estimated in the dataset used to develop the model, especially when there are few outcomes relative to the number of predictors considered.^{39,40} Our study highlighted several methodological shortcomings in the development of stillbirth prediction models, which is further reflected in the risk of bias assessment of the models. # Relevance to clinical care The UK Government and NHS launched a care initiative in a bid to halve stillbirth rates by 2025, which includes risk assessment as part of a wider care-bundle. The bundle does not include tools to help determine if a woman is at increased risk of stillbirth, instead individual factors have been identified to categorise women as low, moderate or high risk of FGR, the most frequent cause of stillbirth in the UK. An accurate tool to predict which woman is at increased risk of stillbirth would allow for personalised risk stratification in pregnancy, and enable clinicians to make decisions on closer surveillance, or timing of birth to prevent fetal death. It would also empower mothers to make informed decisions on their risk of stillbirth. This would be a more targeted approach than the currently used system of a generalised population level risk factor to identify women at risk of stillbirth. However, none of the models validated in this study had sufficient performance or clinical utility to be recommended for use in practice. 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 343 344 345 346 ### **Recommendations for further research** Stillbirth prediction models that can be used in routine care would be especially valuable in lowand-middle-income countries, where stillbirth burden is disproportionately high. Models we were unable to externally validate will need to be independently validated before they can be recommended for use. Apart from improvement in the model development process to reduce overfitting by using larger sample sizes and adjusting for optimism of the predictor effects (e.g. by post-estimation shrinkage or penalising the model coefficients), additional work is needed to identify novel prognostic factors for use in model development, to improve the discriminatory performance of prediction models.⁴² A closer examination of existing stillbirth risk factors could potentially enable us to abandon inaccurate risk predictors and focus clinical care and research on the highest value predictors. Systematic reviews using aggregate data meta-analysis, currently represent the best available evidence on predictors of stillbirth, and have proposed several risk factors to categorise women as high-risk. 43 However, these studies are limited by heterogeneity in the data reported within the primary studies, such as in the definition of stillbirth.⁴³ Existing primary studies are often small with imprecise estimates, and inconsistencies in confounding factors adjusted for in their analysis, which sometimes leads to contradictory factor-outcome associations. Large cohorts are needed to collect richer data on risk factors to enable development and validation of prediction models. Whilst this study has explored validation of different stillbirth prediction models, stillbirth is the final endpoint of several heterogeneous antecedent pathways, with varying biological mechanisms involved (for example, those involving FGR, and those secondary to diabetes, typically with a large for gestational age infant). It is possible that more than one model will be needed, either for prediction at different gestational ages, or for stillbirths with similar phenotypes. ### **CONCLUSION** This is a comprehensive assessment and independent external validation of published stillbirth prognostic models across multiple cohorts. Findings suggest methodological shortcomings including overfitting of models during development. None of the three previously published stillbirth models that were validated in this study showed sufficient performance or clinical utility to be recommended for use in practice. Although there were differences in predictor and outcome definitions used for the different models, all three models considered similar candidate predictors for model development, which may suggest additional and better predictors (prognostic factors) of stillbirth still need to be identified. | 385 | Abbreviations | | | |-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--| | 386 | IPD | Individual participant data | | | 387 | IPPIC | International Prediction of Pregnancy Complications | | | 388 | PROBAST | Prediction study Risk of Bias Assessment | | | 389 | SE | Standard error | | | 390 | CI | Confidence interval | | | 391 | LP | Linear predictor | | | 392 | | | | | 393 | Declarations | | | | 394 | Ethics approval and consent to participate | | | | 395 | Not applicab | le. The study involved secondary analysis of existing anonymised data. | | | 396 | | | | | 397 | Consent for publication | | | | 398 | Not applicab | le | | | 399 | | | | | 400 | Availability of data and materials | | | | 401 | The data that support the findings of this study are available from the IPPIC data sharing | | | | 402 | committee, but restrictions apply to the availability of these data, which were used under license | | | | 403 | for the current study, and so are not publicly available. Data are however available from the | | | | 404 | authors upon | reasonable request and with permission of contributing collaborators. | | | 405 | | | | | 406 | Competing i | nterests | | | 407 | None to decla | are | | | 408 | | | | | 409 | | | | | 410 | Funding | |------------|----------------------------------------------------------------------------------------------------| | 411 | The IPPIC data repository was set up by funding from the National Institute for Health Research | | 412 | Health Technology Assessment Programme (Ref no: 14/158/02). This project was funded by | | 413 | Sands charity. Kym Snell is funded by the National Institute for Health Research School for | | 414 | Primary Care Research (NIHR SPCR Launching Fellowship). | | 415 | The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University | | 416 | of Bristol provide core support for ALSPAC. This publication is the work of the authors and JA, | | 417 | ST, RR, and RW will serve as guarantors for the contents of this paper. | | 418
419 | Authors' contributions | | 420 | ST, AK developed the protocol. RW wrote the statistical analysis plan and performed the | | 421 | analysis, JA produced the first draft of the article and revised the article. RR and KS oversaw | | 422 | the statistical analyses and analysis plan. MS and JA formatted, harmonised and cleaned IPPIC | | 423 | datasets, in preparation for analysis. JA, MS mapped the variables in the datasets, and cleaned | | 424 | and quality checked the data. JA, ST, MS and RT undertook the literature searches, study | | 425 | selection, acquired Individual Participant Data, contributed to the development of all versions of | | 426 | the manuscript and led the project. All authors provided input at all stages of the project and | | 427 | helped revise the article. | | 428 | | | 429 | Acknowledgements | | 430 | The following are members of the IPPIC Collaborative Network ⁺ | | 431
432 | Arri Coomarasamy - University of Birmingham; Alex Kwong - University of Bristol; Ary I. | | 433 | Savitri - University Medical Center Utrecht; Kjell Åsmund Salvesen - Norwegian University of | | 434 | Science and Technology; Sohinee Bhattacharya - University of Aberdeen; Cuno S.P.M. | | 435 | Uiterwaal - University Medical Center Utrecht; Annetine C. Staff - University of Oslo; Louise | | 436 | Bjoerkholt Andersen - University of Southern Denmark; Elisa Llurba Olive - Hospital | | 437 | Universitari Vall d'Hebron; Christopher Redman - University of Oxford; Line Sletner - | | 438 | University of Oslo; George Daskalakis - University of Athens; Maureen Macleod - University | | 439 | of Dundee; Baskaran Thilaganathan - St George's University of London; Mali Abdollahain - | | 440 | RMIT University; Javier Arenas Ramírez - University Hospital de Cabueñes; Jacques Massé - | - 441 Laval University; Asma Khalil St George's University of London; Francois Audibert - - 442 Université de Montréal; Per Minor Magnus Norwegian Institute of Public Health; Anne Karen - Jenum University of Oslo; Ahmet Baschat Johns Hopkins University School of Medicine; - 444 Akihide Ohkuchi University School of Medicine, Shimotsuke-shi; Fionnuala M. McAuliffe - - 445 University College Dublin; Jane West University of Bristol; Lisa M. Askie University of - 446 Sydney; Fionnuala Mone University College Dublin; Diane Farrar Bradford Teaching - 447 Hospitals; Peter A. Zimmerman Päijät-Häme Central Hospital; Luc J.M. Smits - - 448 Maastricht University Medical Centre; Catherine Riddell Better Outcomes Registry & - Network (BORN); John C. Kingdom University of Toronto; Joris van de Post Academisch - 450 Medisch Centrum; Sebastián E. Illanes University of the Andes; Claudia Holzman Michigan - 451 State University; Sander M.J. van Kuijk Maastricht University Medical Centre; Lionel - 452 Carbillon Assistance Publique-Hôpitaux de Paris Université; Pia M. Villa University of - 453 Helsinki and Helsinki University Hospital; Anne Eskild University of Oslo; Lucy Chappell - - King's College London; Federico Prefumo University of Brescia; Luxmi Velauthar Queen - 455 Mary University of London; Paul Seed King's College London; Miriam van Oostwaard - - 456 IJsselland Hospital; Stefan Verlohren Charité University Medicine; Lucilla Poston King's - 457 College London; Enrico Ferrazzi University of Milan; Christina A. Vinter University of - 458 Southern Denmark; Chie Nagata National Center for Child Health and Development, Tokyo, - Japan; Mark Brown University of New South Wales; Karlijn C. Vollebregt Academisch - 460 Medisch Centrum; Satoru Takeda Juntendo University, Tokyo, Japan; Josje Langenveld - - 461 Atrium Medisch Centrum Parkstad; Mariana Widmer World Health Organization; Shigeru - Saito University of Toyama, Toyama, Japan; Camilla Haavaldsen Akershus University - Hospital; Guillermo Carroli Centro Rosarino De Estudios Perinatales; Jørn Olsen Aarhus - 464 University; Hans Wolf Academisch Medisch Centrum; Nelly Zavaleta Instituto Nacional De - Salud; Inge Eisensee Aarhus University; Patrizia Vergani University of Milano-Bicocca; - 466 Pisake Lumbiganon Khon Kaen University; Maria Makrides South Australian Health and - 467 Medical Research Institute; Fabio Facchinetti Università degli Studi di Modena e Reggio - Emilia; Evan Sequeira ga Khan University; Robert Gibson University of Adelaide; Sergio - 469 Ferrazzani Università Cattolica del Sacro Cuore; Tiziana Frusca Università degli Studi di - 470 Parma; Jane E. Norman University of Bristol; Ernesto A. Figueiró-Filho Mount Sinai - 471 Hospital; Olav Lapaire Universitätsspital Basel; Hannele Laivuori University of Helsinki and - 472 Helsinki University Hospital; Jacob A. Lykke Rigshospitalet; Agustin Conde-Agudelo - - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Alberto - 474 Galindo Universidad Complutense de Madrid; Alfred Mbah University of South Florida; Ana - 475 Pilar Betran World Health Organisation; Ignacio Herraiz Universidad Complutense de - 476 Madrid; Lill Trogstad Norwegian Institute of Public Health; Gordon G.S. Smith Cambridge - 477 University; Eric A.P. Steegers University Hospital Nijmegen; Read Salim HaEmek Medical - 478 Center; Tianhua Huang North York General Hospital; Annemarijne Adank Erasmus Medical - 479 Centre; Jun Zhang National Institute of Child Health and Human Development; Wendy S. - 480 Meschino North York General Hospital; Joyce L Browne University Medical Centre Utrecht; - 481 Rebecca E. Allen Queen Mary University of London; Fabricio Da Silva Costa University of - 482 São Paulo; Kerstin Klipstein-Grobusch Browne University Medical Centre Utrecht; Caroline - 483 A. Crowther University of Adelaide; Jan Stener Jørgensen Syddansk Universitet; Jean- - Claude Forest Centre hospitalier universitaire de Québec; Alice R. Rumbold University of - Adelaide; Ben W. Mol Monash University; Yves Giguère Laval University; Louise C. Kenny - University of Liverpool; Wessel Ganzevoort Academisch Medisch Centrum; Anthony O. - Odibo University of South Florida; Jenny Myers University of Manchester; SeonAe Yeo - - 488 University of North Carolina at Chapel Hill; François Goffinet Assistance publique Hôpitaux - de Paris; Lesley McCowan University of Auckland; Eva Pajkrt Academisch Medisch - 490 Centrum; Helena J. Teede Monash University and Monash Health; Bassam G. Haddad - - 491 Portland State University; Gustaaf Dekker University of Adelaide; Emily C. Kleinrouweler - - 492 Academisch Medisch Centrum; Édouard LeCarpentier Centre Hospitalier Intercommunal - 493 Creteil; Claire T. Roberts University of Adelaide; Henk Groen University Medical Center - 494 Groningen; Ragnhild Bergene Skråstad St Olavs Hospital; Seppo Heinonen University of - 495 Helsinki and Helsinki University Hospital; Kajantie Eero University of Helsinki and Helsinki - 496 University Hospital; Dewi Anggraini University of Lambung Mangkurat; Athena Souka - - 497 University of Athens Medical School; Jose Guilherme Cecatti University of Campinas; Ilza - 498 Monterio University of Campinas; Athanasios Pillalis University of Athens; Renato Souza - - 499 University of Campinas; Lee Ann Hawkins University of Calgary; Rinat Gabbay- Benziv - - 500 Hillel Yaffe Medical Center; Francesca Crovetto University of Barcelona; Francesc Figuera - - 501 University of Barcelona, Laura Jorgensen Queen Mary University of London, Julie Dodds - - Queen Mary University of London, Mehali Patel Sands, stillbirth and neonatal death charity, - 503 London, Amir Aviram University of Toronto, Toronto, Ontario, Canada, Aris Papageorghiou - - 504 St George's University of London, London, UK, Khalid Khan University of Granada, - 505 Granada, Spain - We would like to acknowledge all researchers who contributed data to this IPD meta-analysis, - including the original teams involved in the collection of the data, and participants who took part in the research studies. We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. #### 514 **References** - 515 1. Flenady V, Wojcieszek AM, Middleton P, Ellwood D, Erwich JJ, Coory M, Khong TY, Silver - 516 RM, Smith GCS, Boyle FM, Lawn JE, Blencowe H, Leisher SH, Gross MM, Horey D, Farrales L, - 517 Bloomfield F, McCowan L, Brown SJ, Joseph KS, Zeitlin J, Reinebrant HE, Ravaldi C, Vannacci A, - 518 Cassidy J, Cassidy P, Farguhar C, Wallace E, Siassakos D, Heazell AEP, Storey C, Sadler L, - Petersen S, Frøen JF, Goldenberg RL. Stillbirths: recall to action in high-income countries. *The* - 520 Lancet 2016; 387(10019): 691-702. - 521 2. Flenady V, Koopmans L, Middleton P, Frøen JF, Smith GC, Gibbons K, Coory M, Gordon - A, Ellwood D, McIntyre HD, Fretts R, Ezzati M. Major risk factors for stillbirth in high-income - 523 countries: a systematic review and meta-analysis. *The Lancet* 2011; 377(9774): 1331-40. - 524 3. Draper ES, Gallimore ID, Kurinczuk JJ, Smith PW, Boby T, Smith LK, Manktelow BN, on - 525 behalf of the MBRRACE-UK Collaboration. MBRRACE-UK Perinatal Mortality Surveillance - Report, UK Perinatal Deaths for Births from January to December 2016. Leicester: The Infant - 527 Mortality and Morbidity Studies, Department of Health Sciences, University of Leicester. 2018. - 528 . - 529 4. Euro-Peristat Project. European Perinatal Health Report. Core indicators of the health - and care of pregnant women and babies in Europe in 2015. November 2018. Available - 531 <u>www.europeristat.com</u>. - 532 5. ONS (2018) Vital statistics in the UK: births, deaths and marriages 2018 update, Office - of National Statistics, London, England - 534 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigrati... - Heazell AE, Whitworth MK, Whitcombe J, Glover SW, Bevan C, Brewin J, Calderwood C, - 536 Canter A, Jessop F, Johnson G, Martin I, Metcalf L. Research priorities for stillbirth: process - overview and results from UK Stillbirth Priority Setting Partnership. *Ultrasound in obstetrics &* - 538 gynecology: the official journal of the International Society of Ultrasound in Obstetrics and - 539 *Gynecology* 2015; 46(6): 641-7. - 540 7. Sexton J, Coory M, Kumar S, Smith G, Gordon A, Chambers G, Pereira G, Raynes- - Greenow C, Hilder L, Middleton P, Bowman A, Lieske S, Warrilow K, Ellwood D, Flenady V. - 542 Protocol for the development and validation of a risk prediction model for stillbirths from 35 - 543 weeks gestation in Australia, 10 March 2020, PREPRINT (Version 1) available at Research - 544 Square [+https://doi.org/10.21203/rs.3.rs-16494/v1+]. 2020. - 545 8. Townsend R, Manji A, Allotey J, Heazell A, Jorgensen L, Magee LA, Mol BW, Snell K, - Riley RD, Sandall J, Smith G, Patel M, Thilaganathan B, von Dadelszen P, Thangaratinam S, Khalil - A. Can risk prediction models help us individualise stillbirth prevention? A systematic review - and critical appraisal of published risk models. *BJOG* : an international journal of obstetrics and - 549 gynaecology 2020. - 9. Riley RD, Ensor J, Snell KI, Debray TP, Altman DG, Moons KG, Collins GS. External - validation of clinical prediction models using big datasets from e-health records or IPD meta- - analysis: opportunities and challenges. *Bmj* 2016; 353: i3140. - 553 10. Debray TP, Riley RD, Rovers MM, Reitsma JB, Moons KG, Cochrane IPDM-aMg. - Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: - 555 quidance on their use. *PLoS medicine* 2015; 12(10): e1001886. - 556 11. Debray TPA, Moons KGM, Ahmed I, Koffijberg H, Riley RD. A framework for developing, - implementing, and evaluating clinical prediction models in an individual participant data meta- - analysis. Statistics in Medicine 2013; 32(18): 3158-80. - 559 12. Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new - framework to enhance the interpretation of external validation studies of clinical prediction - models. *Journal of clinical epidemiology* 2015; 68(3): 279-89. - 562 13. Collins GS, Reitsma JB, Altman DG, Moons KG, for the members of the Tg. Transparent - Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): - 564 The TRIPOD Statement. European urology 2014. - 565 14. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, - 566 Kleijnen J, Mallett S, Groupdagger P. PROBAST: A Tool to Assess the Risk of Bias and - Applicability of Prediction Model Studies. *Annals of internal medicine* 2019; 170(1): 51-8. - 568 15. Allotey J, Snell KIE, Chan C, Hooper R, Dodds J, Rogozinska E, Khan KS, Poston L, Kenny - L, Myers J, Thilaganathan B, Chappell L, Mol BW, Von Dadelszen P, Ahmed A, Green M, Poon L, - 570 Khalil A, Moons KGM, Riley RD, Thangaratinam S, Network IC. External validation, update and - development of prediction models for pre-eclampsia using an Individual Participant Data (IPD) - 572 meta-analysis: the International Prediction of Pregnancy Complication Network (IPPIC pre- - eclampsia) protocol. *Diagn Progn Res* 2017; 1: 16. - 574 16. Snell KIE, Allotey J, Smuk M, et al, for the IPPIC Collaborative Network. External - validation of prognostic models predicting pre-eclampsia: Individual participant data meta- - analysis. BMC Medicine 2020 (in press) - 577 17. Allotey J, Snell KIE, Smuk M, et al, for the IPPIC Collaborative Network. Accuracy of - 578 clinical characteristics, biochemical and ultrasound markers in predicting pre-eclampsia: - 579 External validation and development of prediction models using an Individual Participant Data - 580 (IPD) meta-analysis Health Technol Assess 2020 (in press). - 581 18. Resche-Rigon M, White IR. Multiple imputation by chained equations for systematically - and sporadically missing multilevel data. *Stat Methods Med Res* 2016. - 583 19. Jolani S, Debray TP, Koffijberg H, van Buuren S, Moons KG. Imputation of systematically - 584 missing predictors in an individual participant data meta-analysis: a generalized approach using - 585 MICE. Statistics in medicine 2015; 34(11): 1841-63. - Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 1987. - Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: - validating a prognostic model. *BMJ* 2009; 338: b605. - 589 22. Hosmer DW, Lemeshow, S. Assessing the Fit of the Model. Applied Logistic Regression. - 590 2nd ed. New York: Wiley; 2000: 143-202. - 591 23. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials - with binary outcome. *Statistics in medicine* 2001; 20(24): 3875-89. - 593 24. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, Viechtbauer - 594 W, Simmonds M. A comparison of heterogeneity variance estimators in simulated random- - effects meta-analyses. Res Synth Methods 2019; 10(1): 83-98. - 596 25. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta- - 597 analyses. BMJ 2003; 327(7414): 557-60. - 598 26. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta- - 599 analysis. J R Stat Soc Ser A Stat Soc 2009; 172(1): 137-59. - 600 27. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction - 601 models. *Med Decis Making* 2006; 26(6): 565-74. - 602 28. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of - prediction models, molecular markers, and diagnostic tests. *BMJ* 2016; 352: i6. - Smith GC, Yu CK, Papageorghiou AT, Cacho AM, Nicolaides KH, Fetal Medicine - Foundation Second Trimester Screening G. Maternal uterine artery Doppler flow velocimetry - and the risk of stillbirth. *Obstet Gynecol* 2007; 109(1): 144-51. - 30. Yerlikaya G, Akolekar R, McPherson K, Syngelaki A, Nicolaides KH. Prediction of stillbirth - from maternal demographic and pregnancy characteristics. *Ultrasound in obstetrics &* - 609 gynecology: the official journal of the International Society of Ultrasound in Obstetrics and - 610 *Gynecology* 2016; 48(5): 607-12. - Trudell AS, Tuuli MG, Colditz GA, Macones GA, Odibo AO, A stillbirth calculator: - Development and internal validation of a clinical prediction model to quantify stillbirth risk. - 613 *PloS one* 2017; 12(3): e0173461. - 614 32. Kleinrouweler CE, Cheong-See Mrcog FM, Collins GS, Kwee A, Thangaratinam S, Khan - KS, Mol BW, Pajkrt E, Moons KG, Schuit E. Prognostic models in obstetrics: available, but far - from applicable. American journal of obstetrics and gynecology 2015. - White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues - and guidance for practice. *Statistics in medicine* 2011; 30(4): 377-99. - 619 34. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, - Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction model for - 621 Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. *Annals of internal* - 622 *medicine* 2015; 162(1): W1-73. - 623 35. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable - 624 prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. *Annals* - 625 of internal medicine 2015; 162(1): 55-63. - 626 36. Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M. - Risk prediction models: II. External validation, model updating, and impact assessment. Heart - 628 2012; 98(9): 691-8. - 629 37. Kayode GA, Grobbee DE, Amoakoh-Coleman M, Adeleke IT, Ansah E, de Groot JA, - 630 Klipstein-Grobusch K. Predicting stillbirth in a low resource setting. BMC pregnancy and - 631 *childbirth* 2016; 16: 274. - 632 38. Aupont JE, Akolekar R, Illian A, Neonakis S, Nicolaides KH. Prediction of stillbirth from - 633 placental growth factor at 19-24 weeks. *Ultrasound in obstetrics & gynecology: the official* - 634 journal of the International Society of Ultrasound in Obstetrics and Gynecology 2016; 48(5): - 635 631-5. - 636 39. Riley RD, Ensor J, Snell KIE, Harrell FE, Jr., Martin GP, Reitsma JB, Moons KGM, Collins G, - van Smeden M. Calculating the sample size required for developing a clinical prediction model. - 638 BMJ 2020; 368: m441. - 639 40. Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE, Jr., Moons KG, Collins GS. Minimum - sample size for developing a multivariable prediction model: PART II binary and time-to-event - outcomes. *Statistics in medicine* 2019; 38(7): 1276-96. - 642 41. Saving Babies' Lives Version Two: A care bundle for reducing perinatal mortality - 643 https://www.england.nhs.uk/wp-content/uploads/2019/03/Saving-Babies-Lives-Care-Bundle- - Version-Two-Updated-Final-Version.pdf Accessed 15th October 2020. - 645 42. Riley RD, van der Windt D, Croft P, Moons KGM. Prognosis Research in Healthcare: - 646 Concepts, Methods and Impact. Oxford, UK: Oxford University Press; 2019. - 647 43. Townsend R, Sileo FG, Allotey J, Dodds J, Heazell A, Jorgensen L, Kim VB, Magee L, Mol - B, Sandall J, Smith G, Thilaganathan B, von Dadelszen P, Thangaratinam S, Khalil A. Prediction - of stillbirth: an umbrella review of evaluation of prognostic variables. BJOG: an international - 650 journal of obstetrics and gynaecology 2020.