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ABSTRACT32

Objective33

Stillbirth is a potentially preventable complication of pregnancy. Identifying women at risk can34

guide decisions on closer surveillance or timing of birth to prevent fetal death. Prognostic35

models have been developed to predict the risk of stillbirth, but none have yet been externally36

validated. We externally validated published prediction models for stillbirth using individual37

participant data (IPD) meta-analysis to assess their predictive performance.38

39

Methods40

We searched Medline, EMBASE, DH-DATA and AMED databases from inception to41

December 2020 to identify stillbirth prediction models. We included studies that developed or42

updated prediction models for stillbirth for use at any time during pregnancy. IPD from cohorts43

within the International Prediction of Pregnancy Complication (IPPIC) Network were used to44

externally validate the identified prediction models whose individual variables were available in45

the IPD. We assessed the risk of bias of the models and IPD using PROBAST, and reported46

discriminative performance using the C-statistic, and calibration performance using calibration47

plots, calibration slope and calibration-in-the-large. We estimated performance measures48

separately in each study, and then summarised across studies using random-effects meta-49

analysis. Clinical utility was assessed using net benefit.50

51

Results52

We identified 17 studies reporting the development of 40 prognostic models for stillbirth. None53

of the models were previously externally validated, and only a fifth (20%, 8/40) reported the full54

model equation. We were able to validate three of these models using the IPD from 19 cohort55
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studies (491,201 pregnant women) within the IPPIC Network database. Based on evaluating56

their development studies, all three models had an overall high risk of bias according to57

PROBAST. In our IPD meta-analysis, the models had summary C-statistics ranging from 0.5358

to 0.65; summary calibration slopes of 0.40 to 0.88, and generally with observed risks59

predictions that were too extreme compared to observed risks; and little to no clinical utility as60

assessed by net benefit. However, there remained uncertainty in performance for some models61

due to small available sample sizes62

63

Conclusion64

The three validated models generally showed poor and uncertain predictive performance in new65

data, with limited evidence to support their clinical application. Findings suggest66

methodological shortcomings in their development including overfitting of models. Further67

research is needed to further validate these and other models, identify stronger prognostic68

factors, and to develop more robust prediction models.69

70

Study registration71

PROSPERO ID: CRD4201807478872

73
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INTRODUCTION78

Stillbirth continues to be a major burden globally, accounting for almost two thirds of perinatal79

mortality.1,2 In the UK, stillbirth rates were largely unchanged from 2000 – 2015, and at 4.280

stillbirths/1,000 births in 2017 had one of the highest rates in Europe.3-5 Prediction and81

individualisation of risk remain key priorities for stillbirth research,6,7 because accurate82

identification of women at risk of stillbirth can guide decisions on closer surveillance, or timing83

of birth to prevent fetal death. A recent review that identified existing prediction models for84

stillbirth reported that none had been externally validated.8 As a result, no prediction models are85

routinely used in clinical practice and none have been recommended by any national or86

international guidelines.87

88

An independent, external validation and comparison of existing multivariable stillbirth89

prediction models is important to help identify which prediction model (if any) performs best90

and is potentially applicable in clinical practice. However, the relative rarity of this devasting91

outcome limits rigorous investigation of existing stillbirth prediction models in single cohort92

studies. An individual participant data (IPD) meta-analysis that combines the raw data from93

multiple studies, has great potential for use in externally validating existing models, by94

increasing the sample size beyond what is feasible in a single study, thereby increasing the95

number of events observed.9-12 It also allows us to evaluate the generalisability and96

transportability of the predictive performance of the models across a range of clinical settings97

being considered for their application.98

99
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We therefore set out to identify, critically appraise and externally validate existing multivariable100

prognostic models for stillbirth prediction using IPD meta-analysis within the independent101

International Prediction of Pregnancy Complication (IPPIC) Network database, and to assess the102

clinical utility of the models using decision curve analysis.103

104

METHODS105

This study was based on a prospective protocol registered on PROSPERO (registration number106

CRD42018074788), and reported in line with TRIPOD recommendations for reporting risk107

prediction model validation studies.13108

109

Literature search and selection of prediction models for external validation using the IPPIC110

network database111

We systematically searched Medline, EMBASE, DH-DATA and AMED databases from112

inception to December 2020 to identify all studies that developed or updated prognostic models113

for stillbirth for use at any time during pregnancy. We also hand searched reference lists of114

relevant articles and systematic reviews to identify potentially eligible studies. Our search115

included terms for stillbirth, intrauterine fetal death and perinatal mortality, and study selection116

was done independently by two researchers. The complete search strategy is provided in117

appendix 1.118

119

Stillbirth model eligibility criteria, data extraction and risk of bias assessment120

We included studies that reported the development or update of a multivariable model with at121

least three variables to predict the risk of stillbirth in pregnant women and reported the model122

equation in the publication. No attempts were made to contact authors of studies that did not123

publish their model equation. Given the wide international variation in definitions of stillbirth,124
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we accepted the authors’ definition of stillbirth (both antepartum and intrapartum), and included125

models developed for use at any time in pregnancy. We excluded models that: predicted126

stillbirth as part of a composite adverse outcome; contained predictors that were not measured in127

any of the cohorts within the IPPIC IPD; or if there were too few outcomes (<10 stillbirths)128

reported across the IPPIC IPD cohorts with the same predictors as the model, to allow for its129

external validation.130

131

We extracted data on the definition of stillbirth, number of participants and events, population132

type, predictors in the final model, and the reported model performance. Based on information133

in the original articles, we assessed the risk of bias of included models using the Prediction134

study Risk of Bias Assessment tool (PROBAST),14 across the four domains of participant135

selection, predictors, outcome and analysis, and this was done independently by two researchers.136

Disagreement were resolved through discussions with a third researcher. We classified the risk137

of bias to be low, high or unclear for each domain, as well as an overall risk of bias. Each138

domain included signalling questions rated as “yes”, “probably yes”, “probably no”, “no” or “no139

information”. Domains with any signalling question rated as “probably no” or “no” were140

considered to have potential for bias and classed as high risk. The overall risk of bias was141

considered to be low if it scored low in all domains, high if any one domain had a high risk of142

bias, and unclear for any other classifications.143

144

International Prediction of Pregnancy Complications (IPPIC) Network145

We identified cohorts for the IPPIC Network by systematically reviewing evidence for risk of146

pregnancy complications including pre-eclampsia, stillbirth and fetal growth restriction (FGR),147

and inviting research groups that had undertaken the primary studies to join the IPPIC Network148



8

and share their primary IPD. We also searched major databases and repositories and contacted149

researchers within the IPPIC Network to identify relevant studies or datasets that may have been150

missed, including unpublished research and birth cohorts. We formatted, cleaned and151

harmonised datasets received and assessed the quality of each cohort using the participants,152

predictors and outcome domains of the PROBAST tool.14 Study population could vary from low153

to high risk of development of complications. The network includes nearly 150 collaborators154

from 26 countries, contributing IPD of over 4 million pregnancies, and contains data on155

maternal characteristics, obstetric history, clinical assessment and tests, as well as various156

maternal and offspring outcomes. The database is a living repository and is regularly being157

enriched with additional studies. We consider the predictor variables contained within the IPPIC158

Network to represent measures which are easy to obtain in a clinical setting, reflecting their159

availability in routine practice. Methods on how cohorts within the IPPIC Network database160

were identified and harmonised have previously been published.15-17161

162

Statistical analysis for external validation using IPPIC network database163

Data harmonisation and set-up164

Predictors or outcomes of existing prediction models that were partially missing for <95% of165

individuals in any cohort were multiply imputed under the missing at random assumption using166

multiple imputation by chained equations.18,19 We used linear regression to impute for167

approximately normally distributed continuous variables, logistic regression for binary168

variables, and multinomial logistic regression for categorical variables. We carried out multiple169

imputation for each individual cohort separately and generated fifty imputed datasets for each.170

We also included other predictors that were available within the cohort as auxiliary variables in171

the imputation models. Imputation checks were completed by looking at histograms, summary172
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statistics and tables of values across imputations, as well as checking trace plots for convergence173

issues.174

175

External validation of models176

Each model was validated by applying the model equation to each participant in the cohort to177

calculate the linear predictor for that participant (𝐿𝑃𝑖, value of the linear combination of178

predictors in the model equation for individual 𝑖), as well as the predicted probability of179

stillbirth (inverse logit transformation of 𝐿𝑃𝑖). For each prediction model, the distribution of 𝐿𝑃𝑖180

values were summarised for each cohort, and performance statistics were calculated in each181

imputed dataset and then averaged across imputations using Rubin’s rules to obtain one estimate182

and standard error (SE) for each performance statistic in each cohort.20183

184

The discriminatory performance of models were assessed using the C-statistic (summarised as185

the area under receiver operating characteristic curve, where 1 indicates perfect discrimination186

and 0.5 indicates no discrimination beyond chance), and calibration statistics of the calibration187

slope (slope of the regression line fitted between predicted and observed risk probabilities on the188

logit scale, with 1 being the ideal value), and calibration-in-the-large (the extent that model189

predictions are systematically too low or too high across the cohort, ideal value of 0).21 22 Model190

calibration was also visually assessed using calibration plots representing the average predicted191

probability for risk groups categorised using deciles of predicted probability against the192

observed proportion in each group, in cohorts with at least 100 events. A lowess smoother curve193

was applied to show calibration across the entire range of predicted probabilities at the194

individual-level (i.e. without categorisation). For the calibration plots, average predicted195
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probabilities were obtained for individuals by pooling their linear predictor values across196

imputed datasets using Rubin’s rules, and then transforming to the probability scale.197

198

Performance measures of prediction models that were validated in more than two independent199

cohorts were summarised using a random effects meta-analysis to calculate a summary estimate200

for the model’s discrimination and calibration performance. Model performance was201

summarised for each statistic as the average and 95% confidence interval (CI) calculated using202

the Hartung-Knapp-Sidik-Jonkman approach.23,24 Between-study heterogeneity (𝜏2) and the203

proportion of variability due to between-study heterogeneity (𝐼2)25 were summarised. We also204

reported the approximate 95% prediction intervals, for potential predictive performance in a205

new study, as calculated using the approach of Higgins et al.26206

207

Decision curve analysis208

We performed decision curve analysis (DCA) to assess the clinical value of the models on209

cohorts with at least 100 events. This analysis allowed us to determine the net benefit of the210

models across a range of clinically plausible threshold probabilities (which included any values211

up to 0.1, given the generally very low risk of stillbirth), compared to either simply classifying212

all women as having the outcome or no women as having the outcome.27 The strategy with the213

highest net benefit at a particular threshold has the highest clinical value.28 The net benefit is214

represented as a function of the decision threshold in decision curve plots.215

All statistical analyses were performed using Stata software version 15.216

217

218

219
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RESULTS220

From 5055 citations we identified 17 articles describing the development of 40 stillbirth221

prediction models published between 2007 and 2020 (Appendix 2). Three studies reporting222

three prediction models - Smith 2007,29 Yerlikaya 2016,30 and Trudell 201731 met our inclusion223

criteria for external validation in the IPPIC IPD datasets (Figure 1).224

225

Characteristics of included models226

All three models were developed using binary logistic regression in unselected populations of227

pregnant women,29-31 and the definition of stillbirth varied between the studies. Two models228

included only maternal clinical characteristics as predictors,30,31 while one model additionally229

included ultrasound markers.29 Only one study had at least 10 events per predictor for model230

development,30 the others did not justify whether their sample size was sufficient. Using the231

PROBAST tool, the overall risk of bias for all three models was high, with all models assessed232

as being at high risk of bias in the analysis domain. The characteristics of included studies and233

models are described in Table 1.234

235

Characteristics of the IPPIC validation cohorts236

Of the 78 cohorts in the IPPIC data repository, 19 cohorts (24%) contained relevant data that237

could be used to externally validate at least one of the three prediction models identified. Only238

women with singleton pregnancies in the cohorts were used for external validation. The239

prevalence of stillbirth ≥24 weeks gestation in the cohorts ranged from 0.1% - 1.6%. A quarter240

of the studies used for external validation included only low risk (26%, 5/19) women, while a241

fifth (21%, 4/19) included only high-risk women in the cohorts. Seventy-five percent (14/19) of242

the cohorts used for external validation had an overall low risk of bias as assessed by243

PROBAST, 21% (4/19) were assessed as high risk and one cohort as unclear (appendix 3).244
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Summary maternal characteristics and outcomes of women in the validation cohort are provided245

in table 2, and a summary of missing data for each predictor and outcome is provided in246

appendix 4.247

248

External validation and meta-analysis of predictive performance249

The Smith 2007 model29 was validated in 3 cohorts, Yerlikaya 2016 model30  in 4 cohorts and250

the Trudell 2017 model31 in 17 cohorts. Two of the cohorts used to validate the Smith 2007251

model and all four of the cohorts used to validate the Yerlikaya 2016 model were also used to252

validate the Trudell 2017 model. A direct comparison of performance of the prediction models253

was not possible due to differences in outcomes of each model. The distribution of the linear254

predictor and predicted probability for each model and validation cohort are shown in appendix255

5.256

257

Model predictive performance258

The C-statistics of models in the different validation cohorts ranged from 0.56-0.82 in the Smith259

2007 model, 0.54-0.73 in the Yerlikaya 2016 model and 0.34-0.69 in the Trudell 2017 model260

(Table 3). The Trudell 2017 model had the lowest overall discrimination across the validation261

cohorts. Summary C-statistics of the models were 0.65 (95% CI 0.53 to 0.75) for the Smith262

2007 model, 0.61 (95% CI 0.43 to 0.77) for the Yerlikaya 2016 model, and 0.53 (95% CI 0.51263

to 0.55) for the Trudell 2017 model (Table 4). Confidence intervals for the Smith 2007 and264

Yerlikaya 2016 models were wide, due to the fewer number of cohorts available for their265

validation.266

267

Calibration statistics for each model in the different validation cohorts are shown in Table 3.268

Summary calibration slopes were < 1 for all models, indicative of overfitting during model269
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development; in particular, the 95% confidence intervals for the calibration slope were all below270

1 for the Yerlikaya 2016 and Trudell 2017 models, indicating extreme predictions compared to271

what was observed (Table 4).272

Each of the three models were validated in one cohort with at least 100 events. The average273

calibration plots showed miscalibration of the predicted risk of stillbirth in all three models274

(Figure 2). However, predicted probabilities were all less than 0.02, therefore absolute risk275

differences remain small. The 95% CI was wide for the calibration slope of the Smith 2007276

model, due to less data on stillbirth outcome in the validation cohorts available for this model,277

and so further research is needed for this model.278

279

Net benefit of model use280

The DCA for all three models in cohorts with at least 100 events, showed little or no281

improvement in the net benefit at any probability threshold compared to a treat all or treat none282

strategy (Figure 3).283

284

DISCUSSION285

Summary of findings286

Only a fifth of published stillbirth prognostic models reported the model equation required for287

independent external validation. Three models developed in high-income countries could be288

externally validated using cohorts from the IPPIC data repository. The models were mostly289

developed using maternal clinical characteristics, but one model additionally included290

ultrasound markers. PROBAST of the original model development articles suggested risk of291

bias concerns, and our IPD meta-analysis of model performance showed low discriminatory292

ability and poor calibration, with calibration slopes mostly <1, indicative of overfitting during293

model development. The models had no clinical utility as assessed by DCA. Although each of294
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the three models could be validated in at least one cohort with >100 events, confidence intervals295

of predictive performance were wide for the Smith 2007 model, suggesting further validation is296

needed for this model.297

298

Strengths and limitations299

To our knowledge, this is the first systematic review and external validation study of stillbirth300

prediction models.8,32 Our study with its large sample size, allowed for the evaluation of the301

predictive performance of each model across multiple cohorts, as well as the overall302

performance through an IPD meta-analysis. We used multiple imputation of predictors and303

outcomes for each cohort separately, to avoid loss of useful information, and ensure we did not304

mask any heterogeneity across cohorts.20,33 Although the definition of stillbirth in the validation305

cohorts were standardised, stillbirth was defined differently in each model, which prevented a306

head-to-head comparison of model performance.307

308

Our study has some limitations. We were only able to validate three of the 40 identified models ,309

mainly due to the failure of studies to adhere to reporting standards of publishing the model310

equation.34,35 Only two models were published before release of TRIPOD. Some cohorts used in311

the external validation had few observed cases of stillbirths, and only two had more than 100312

events. Predicted probabilities in the cohorts only went up to 3%, which makes it difficult for313

the models to discriminate between women who had and did not have the outcome. This further314

highlights the primary limitation of stillbirth research, which is the comparative rarity of the315

outcome.316

317
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Comparison to existing studies318

External validation of prediction models are needed to confirm generalisability and319

transportability of a model in populations with different characteristics.36 However, independent320

data with sufficiently large sample sizes of stillbirth and relevant predictors for external321

validation of models are not readily available. This is a factor on why none of the published322

models have been recommended for use in clinical practice.35 Our meta-analysis obtained lower323

summary estimates for discrimination to that reported in the development datasets, although this324

might be due to chance as some confidence intervals were wide (e.g. Smith 2007), further325

research is recommended.29-31 Some published stillbirth models report discrimination of >326

0.8,37,38 but these studies either did not report the model equation needed for independent327

external validation,38 or did not provide enough information on predictors .37 In most cases, the328

performance of a prediction model is often overestimated when only estimated in the dataset329

used to develop the model, especially when there are few outcomes relative to the number of330

predictors considered.39,40 Our study highlighted several methodological shortcomings in the331

development of stillbirth prediction models, which is further reflected in the risk of bias332

assessment of the models.333

334

Relevance to clinical care335

The UK Government and NHS launched a care initiative in a bid to halve stillbirth rates by336

2025, which includes risk assessment as part of a wider care-bundle.41 The bundle does not337

include tools to help determine if a woman is at increased risk of stillbirth, instead individual338

factors have been identified to categorise women as low, moderate or high risk of FGR, the most339

frequent cause of stillbirth in the UK. An accurate tool to predict which woman is at increased340

risk of stillbirth would allow for personalised risk stratification in pregnancy, and enable341

clinicians to make decisions on closer surveillance, or timing of birth to prevent fetal death. It342
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would also empower mothers to make informed decisions on their risk of stillbirth. This would343

be a more targeted approach than the currently used system of a generalised population level344

risk factor to identify women at risk of stillbirth. However, none of the models validated in this345

study had sufficient performance or clinical utility to be recommended for use in practice.346

347

Recommendations for further research348

Stillbirth prediction models that can be used in routine care would be especially valuable in low-349

and-middle-income countries, where stillbirth burden is disproportionately high. Models we350

were unable to externally validate will need to be independently validated before they can be351

recommended for use. Apart from improvement in the model development process to reduce352

overfitting by using larger sample sizes and adjusting for optimism of the predictor effects (e.g.353

by post-estimation shrinkage or penalising the model coefficients), additional work is needed to354

identify novel prognostic factors for use in model development, to improve the discriminatory355

performance of prediction models.42 A closer examination of existing stillbirth risk factors could356

potentially enable us to abandon inaccurate risk predictors and focus clinical care and research357

on the highest value predictors.358

Systematic reviews using aggregate data meta-analysis, currently represent the best available359

evidence on predictors of stillbirth, and have proposed several risk factors to categorise women360

as high-risk.43 However, these studies are limited by heterogeneity in the data reported within361

the primary studies, such as in the definition of stillbirth.43 Existing primary studies are often362

small with imprecise estimates, and inconsistencies in confounding factors adjusted for in their363

analysis, which sometimes leads to contradictory factor-outcome associations. Large cohorts are364

needed to collect richer data on risk factors to enable development and validation of prediction365

models.366

367
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Whilst this study has explored validation of different stillbirth prediction models, stillbirth is the368

final endpoint of several heterogeneous antecedent pathways, with varying biological369

mechanisms involved (for example, those involving FGR, and those secondary to diabetes,370

typically with a large for gestational age infant). It is possible that more than one model will be371

needed, either for prediction at different gestational ages, or for stillbirths with similar372

phenotypes.373

374

375

CONCLUSION376

This is a comprehensive assessment and independent external validation of published stillbirth377

prognostic models across multiple cohorts. Findings suggest methodological shortcomings378

including overfitting of models during development. None of the three previously published379

stillbirth models that were validated in this study showed sufficient performance or clinical380

utility to be recommended for use in practice. Although there were differences in predictor and381

outcome definitions used for the different models, all three models considered similar candidate382

predictors for model development, which may suggest additional and better predictors383

(prognostic factors) of stillbirth still need to be identified.384
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IPD Individual participant data386

IPPIC International Prediction of Pregnancy Complications387

PROBAST Prediction study Risk of Bias Assessment388
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CI Confidence interval390
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