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ABSTRACT
Samu Rautiainen: Design and Implementation of a Multimodal System for Human-Robot In-
teractions in Bin-Picking Operations
Master of Science Thesis
Tampere University
Master’s Degree Programme in Automation Technology
August 2022

Manufacturing domains are evolving into Industry 4.0, which requires design choices that
leads to flexible, modular, and human-centred solutions. In robotics this phenomenon is seen as
utilizing the human flexibility in solutions, in other words solving robotic problems by using the
Human-Robot Collaboration. Successful collaboration is achieved with intuitive Human-Robot In-
teraction methods.

The most efficient way to communicate with a robot is to use same communication methods
that is seen in human-human communication, such as gaze, speech, touch, and body gestures.
Information exchange of two humans communicating consists of mostly body language and most
of the activities that the human does in their life are done by using their hands. Therefore, hands
present as an excellent source for the input when interacting with a robot.

Bin-Picking is seen everywhere, from warehouses to manufacturing processes, and is mostly
done by human. Automating such process with robot has endless applications and would lead in
higher productivity. Bin-Picking as a robotic problem does not have universal solution, and most
of the solutions relies on the fact that a 3D model of the parts that needs to be picked is known.
With unknown parts, the systems usually set limitations to the shape of the objects.

The main goal of this Thesis is to design and implement a system and a process, that creates
a new use for collaborative robot cell, and teaches the system to be able to do Bin-Picking oper-
ations automatically with unknown parts. Furthermore, the proposed solution will fit to the so
called “Smart Factory”, which is considered as fundamental concept of Industry 4.0.

The solution consists of four major components, Orchestrator Application, Robot Controlling
Application, 3D-module that finds grasp poses for unknown parts and M2O2P that reads hand
gestures from smart glove sensor input. The solution is evaluated in component basis, and in a
process working together. Furthermore, the taught system is tested in process created for the
evaluation, where the robot picks parts from a bin and hands them to the human operator.

Keywords: Human-Robot Interaction, Human-Robot Collaboration, Collaborative Robot, Bin-
Picking, Smart Factory, Industry 4.0
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TIIVISTELMÄ
Samu Rautiainen: Multimodaalisen järjestelmän suunnittelu ja toteutus ihmisen ja robotin vä-
liseen kanssakäymiseen automatisoidun poiminnan operaatioissa
Diplomityö
Tampereen yliopisto
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Elokuu 2022

Teollisuus on kehittymässä kohti Industry 4.0 -konseptia, ja täten vaatii suunnitteluvalintoja,
joiden ansiosta voidaan tuottaa joustavia, modulaarisia ja ihmiskeskeisiä ratkaisuja. Robotiikassa
tämä muutos nähdään ihmisen joustavuuden hyödyntämisenä toteutuksissa, eli robotiikan ongel-
mien ratkaisemista hyödyntäen ihmisten ja robottien välistä yhteistyötä. Onnistunut yhteistyö voi-
daan saavuttaa käyttämällä intuitiivisia ihmisten ja robottien väliseen kanssakäymiseen käytettyjä
menetelmiä.

Tehokkain tapa kommunikoida robotin kanssa on käyttää samoja kommunikaatiomenetelmiä,
mitä käytetään ihmisten välisessä kanssakäymisessä, kuten katsetta, puhetta, kosketusta tai ke-
hon elekieltä. Ihmisten välisessä kommunikaatiossa tiedonvaihto tapahtuu pääosin kehon elekie-
lellä, ja ihmiset käyttävät käsiään suurimpaan osaan aktiviteeteista heidän elämässään. Täten
kädet toimivat loistavasti lähteenä robotin kanssa kommunikoimiselle.

Laatikoista poimimista nähdään kaikkialla, aina varastoista teollisuusprosesseihin, ja se teh-
dään pääosin ihmisten toimesta. Tällaisten prosessien automatisointiin on olemassa loputtomasti
käyttökohteita, ja automatisointi johtaa korkeampaan tuottavuuteen. Automaattiseen poimintaan
robottien avulla ei ole olemassa universaalia ratkaisua, ja monet ratkaisut pohjautuvat ennakko-
tietoon poimittavien osien 3D malleista. Tuntemattomilla osilla automaattisen poiminnan järjestel-
mät yleensä asettavat rajoitteita poimittavien osien muodolle.

Tämän diplomityön tavoitteena on suunnitella ja toteuttaa järjestelmä ja prosessi, joka tuottaa
uuden käyttötarkoituksen yhteistyörobottisolulle, ja opettaa järjestelmälle, kuinka tehdä automaat-
tisen poiminnan operaatioita tuntemattomilla osilla. Lisäksi ehdotettu toteutus sopii älykkääseen
tehtaaseen, joka on yksi olennaisista Industry 4.0 -konsepteista.

Ratkaisu koostuu neljästä suuremmasta komponentista, orkestrointi sovelluksesta, robotin oh-
jaussovelluksesta, 3D-moduulista, joka löytää poiminta-asennon tuntemattomille osille, sekä
M2O2P komponentista, jolla luetaan älykkäällä hanskalla tehtäviä käsimerkkejä. Ratkaisu arvioi-
daan komponentti kerrallaan, ja prosessissa, jossa komponentit toimivat yhdessä. Lisäksi ope-
tettu järjestelmä testataan arviointia varten tehdyllä prosessilla, jossa robotti nostaa osia laati-
kosta ja ojentaa ne ihmisoperaattorille.

Avainsanat: Ihmisen ja robotin välinen kanssakäyminen, ihmisen ja robotin yhteistyö,
yhteistyörobotti, automaattinen poiminta, älykäs tehdas, Industry 4.0

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.
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1. INTRODUCTION

Human-Robot Interactions (HRI) is highly researched field of robotics, and in recent dec-

ade there have been growing interest on natural human interaction methods. In a collab-

orative setup natural input methods makes the communication accessible even for un-

trained operator. However, for successful collaboration of human and robot, other mat-

ters such as the level of the collaboration and safety needs to be considered. Often, the

key factor for solving a complex robotic problem is to have human interact with the robot

in a way, that the complex tasks of the process are solved by human.

This chapter is divided in five subchapters. The motivation for the research is presented

in Sec. 1.1, the main problem that the Thesis tries to solve and research questions in

Sec. 1.2, objectives of the Thesis in Sec. 1.3, limitations for the implementation in Sec.

1.4 and background of the Thesis in Sec. 1.5.

1.1 Motivation

The demand for mass customization of products have created requirements for manu-

facturing to evolve from automated and mass production manufacturing lines to modular

and flexible solutions, to Industry 4.0 [1]. In a robotic scheme, this evolvement means

the necessity of exploiting collaborative robots instead of traditional industrial robots [2].

The International Federation of Robotics reported that the amount of installed collabora-

tive robots annually is clearly increasing; approximately 11 000 collaborative robots were

installed in year 2017, whereas in 2020 the number was 22 000 [3].

Successful collaboration requires communication between the actors, and from human

perspective it is beneficial to be able to communicate with the robot with natural input

methods. When the communication is established in similar manner as human-human

communication, it will be intuitive and approachable for the human. To develop human-

robot interface for natural human inputs is not an easy task and has many open questions

about the reliability and overall feasibility of such system [4].

Bin-Picking operations are seen extensively in industrial domains, and are mostly done

by humans [5]. Universal Robots reported that in the United States, 38% of workers in

manufacturing moves parts from bins to machines [6]. By automating such actions with

the help of robots, the systems will provide higher efficiency and saves the human worker



2

from laborious tasks. The Bin-Picking robotic problem is well researched, yet no univer-

sal solution exists for the problem [7]. Many of the solutions assumes that the 3D model

of the parts that are picked from the bin is known (e.g., [8], [9]). When the parts are

unknown, additional data processing methods are required to be developed for finding

the essential information for successful Bin-Picking.

1.2 Problem Statement and Research Questions

Robot cells should be able to be reused modularly and flexibly to answer the needs of

mass customization and the Industry 4.0. This thesis tries to find solution to such problem

through the design and utilization of Human-Robot Collaboration (HRC) enabled with

HRI.

The questions about how the system can be created and how it performs shape the

research questions as follows:

- How to implement gestural HRC based system for industrial applications?

- How to create a component that processes 3D data for Bin-Picking operations?

- How gestural HRI method compares to more traditional method using GUI?

The first question includes multiple aspects and will be covered through the whole The-

sis. To answer to the second question, the required information about the Bin-Picking

and 3D data processing are presented in Literature Review, and the Proposal and Im-

plementation and Testing -chapters provides the answer about how such component

was created. The last question will be answered through the tests of the Thesis.

1.3 Objectives

This thesis aims to finds a solution to the problem of reusability of a collaborative robot

cell for Bin-Picking operations and simultaneously answer to the research questions. To

create such solution, required design aspects are researched and presented through

literature, and considered when designing and implementing the solution. In this context,

reusability is approached by teaching new information for the system with the help of

human, which can then be invoked later in the same or another process. In this thesis

the state of the system after the teaching is referred to as “taught system”. Implementa-

tion-wise the objectives can be listed as follows:

- Design a system architecture that complements the concept of Smart Factory
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- Design a process that can be used to solve the reusing of the collaborative robot

cell

- Implement an orchestrator that can assign the tasks to other components in the

solution

- Design and implement a component for HRI

- Implement a component that handles communication with a collaborative robot

- Implement modular procedures for the robot controller

- Implement a component that can communicate with 3D camera and process the

3D data

When the implementation is ready, the last objective is to evaluate the solution and con-

clude the Thesis.

1.4 Limitations

Limitations for this Thesis were identified partly at the start of the Thesis implementation

and partly during it. Limitations are as follows:

- Implementation tries to find a solution to Bin-Picking with the help of the human

operator, which is possible only if the used robot supports collaborative tasks

- Smart glove reading application works only with CaptoGlove and changes are

needed if there is a need to use another input device

- The used collaborative robot has restrictions on carry weight, which limits the

parts that the solution can effectively pick up

- 3D-module will handle only objects that are formed mainly form 90-degree an-

gles, that are picked always from top and are semi-structured, which limits the

possible parts and their poses that the system can handle

1.5 Background

The Multimodal Offline and Online Programming (M2O2P) solution -component, which

main function is to read and process the smart glove data, was implemented in the Smart

Human Oriented Platform for Connected Factories (SHOP4CF) EU-project. SHOP4CF

is a Horizon 2020 project, that aims for human-centric manufacturing and to create Smart

Factory components that operate in highly connected factor model [10].
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The solution created as outcome of this Thesis utilizes architecture and data models of

the SHOP4CF. The solution is then compatible with other SHOP4CF components by

design and utilizes pre-existing interfaces what was created for M2O2P component. Fur-

thermore, the design and implementation of M2O2P is presented in this Thesis.
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2. LITERATURE REVIEW

In this chapter the major topics of the Thesis will be presented through literature. Firstly,

the review will focus on concept of Smart Factory in Sec. 2.1 The Sec. 2.2 will focus on

HRI and HRC in general, safety aspects (Sec. 2.2.1) of them and the robot control and

programming paradigms that are important in HRI/HRC. The Sec. 2.3 will present natural

human input methods, with the focus on the hand gestures. Lastly the Bin-Picking oper-

ations are presented in Sec. 2.4, where the review goes through the problem and possi-

ble methods for solving it.

2.1 Smart Factory

One of the fundamental concepts brought up by Industry 4.0 are so called “Smart Fac-

tories” [1]. Smart Factory connects the entities, such as sensors, actuators, and comput-

ers in the factory to same network and with data computing tools achieves a status of

smart environment [11]. The definition describes modular and connected shopfloor, that

solves a dynamically changing conditions of production by being adaptive and flexible

[12]. Smart Factory utilizes the human flexibility and is referred as human-centred [13].

From technical standpoint, Smart Factories are connected factories, that consist of con-

text-aware systems and entities and aim to assist the task execution of humans and

machines within the factory [14]. Context information of Smart Factory component rep-

resents the physical object or application information such as condition or position, that

are gathered with sensors or provided by the component itself. When applications and

systems can update and consume context information, they are described as context-

aware [14]. By having an architecture consisting of context-aware components, all the

applications will have common medium and can modularly connect to each other over

the limits of traditional automation hierarchy [15]. The systems that unite the physical

real-life actors and communication and computing of digital world are called Cyber-Phys-

ical System (CPS) [14]. CPS enabled with Internet of Things (IoT) provides interface for

the context information to the computing applications by connecting the entities with in-

ternet [16].

To answer to the requirements of Smart Factory, robotic applications demand the human

to provide the flexibility for the solution. The need for HRI and HRC is therefore apparent.
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2.2 Human-Robot Interactions and Collaboration

HRI as a field of research covers the study of interactions and communication between

one or more humans and one or more robots. These interactions are present in all of

robotics since in all robotic applications robots are working for and used by humans. HRI

can be described as interdisciplinary, and can be seen as combination of natural sci-

ences, engineering, cognitive sciences and psychology, and human factors [17].

HRI is required for having a functional Human-Robot Collaboration (HRC) system. The

manufacturing is heading in direction of collaborative robotics due the flexibility and per-

formance increment such systems offer [18]. HRI and more recently the HRC have grow-

ing interest as a field of studies. One well speaking metric of this is the research articles

written about them. Using IEEE Explorer with “Human-Robot Interaction” and “Human-

Robot Collaboration” as keywords, following graph was created (Figure 1). The graph

has two y-axes to combine the graphs.

Number of research papers covering HRI and HRC

Robots are frequently thought as passive machines, that does repetitive work with high

precision, yet are limited by the programming of the robot controller and will not succeed

if new unknown task is presented [19]. If there is an ability for human to give guidance

for the robot, the behaviour of the robot becomes more flexible. Human advantages,
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such as flexibility and ability to handle complex tasks, coupled with robot’s reliability and

robustness, presents an efficient team [20].

Depending on location of human and robot, the interaction can be remote or proximate

[17]. Remote interactions can happen when human and the robot are separated by lo-

cation, for example when robot is located in hazardous environment where human can-

not enter (e.g. [21]) or additionally separated with time (e.g. [22]). Proximate interaction

describes a system where the human and the robot are in same space, for example in

the case of service robots (e.g. [23]) or collaborative robots (e.g. [24]).

When designing an HRI system, there are five attributes that the designer can affect.

These attributes are presented in the Table 1 with explanations.

Attributes that are designer to choose when designing HRI system [17]

These attributes cover only the field of HRI. When the robot and human are collaborating,

there are further design metrics available. One of the most important choices for the

collaborative work is to determine the level of collaboration. This choice has major influ-

ence on the required safety measures and workflow of the system. In this Thesis, the

proposed HRC levels by Aaltonen et. al. [26] are adapted. There are four levels, where

the first one is no coexistence. This collaboration level refers a system where human,

and robot will not share workspace, goal, nor the workpiece. Rest of the collaboration

levels, coexistence, cooperation, and collaboration shares their environment. These

three levels and how they share the environment are illustrated in Figure 2.

Attribute Explanation

Level of Autonomy
(LOA)

From computer/machine offering no assistance and human doing
all the work to computer doing everything and ignoring human [25]

Nature of infor-
mation exchange

The communication format and medium between the human and
robot, such as visual (e.g., displays), body gestures, speech, alert

sounds and physical interaction

Structure of the
team The number of humans and robots teamed

Adaptation, learn-
ing and training

How to train the human for HRI, how to adapt to new environment
and how the people, and robot are learning from the interactions

Shape of the task How the task will and should be done when new technology is in-
troduced
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Collaboration levels and how the environment is shared [26]

The figure explains how the level of the collaboration increases, due the fact that more

paradigms within the collaborative system is shared amongst human and the robot. Fig-

ure 3 further explains what these levels mean in practice. The level of collaboration raises

from left to right.

Levels of Human-Robot Collaboration [26]

The first collaboration level includes the traditional robot work cells. This means that the

human cannot enter the workspace. However, the collaborative scenario can be

achieved with for example rotary table (low level in [27]), for providing materials to the

robot cell.

The coexistence describes a situation, where robot and the human are sharing a work-

space but do not have shared goal nor workpiece. This sort of collaboration can be for

example human fetching a workpiece from robot work area, or human and robot using

same bucket of liquid (medium level in [27]) that is in the shared workspace.
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Cooperation between human and the robot explains higher level of collaboration. Exam-

ple cases could be walk-through of the robot by human hand or with teach pendant,

human entering the welding workspace to turn the product and leaving and in the mean-

time the robot is stopped, or human setting up more parts for the robot to work on [28].

The highest level, collaboration, shares a workpiece and in most advanced settings,

works human-like or reads proactively human intentions, such as in [29]. Collaborative

setup could be tasks where robot or human holds a part, and the other party member

works on the part [30].

2.2.1 Safety
In science fiction novel Runaround [31] Isaac Asimov presented three laws of robotics.

The first one, “A robot may not injure a human being or, through inaction, allow a human

being to come to harm”, is an intuitive and axiomatic rule that can be applied to non-

fiction robotic applications.

HRC applications need special acknowledgement on safety measures due the fact that

human and robot are sharing workspaces. The need has been taken into account in the

form of standards, such as ISO 10218-2 [32], that considers safety requirements for in-

dustrial robots, and ISO/TS 15066 [33], that is a technical specification for collaborative

robots.

Since the HRC system includes HRI, the safety measures can be explained through the

safety in HRI. As was proposed in [34], it can be divided in two categories, physical

safety, and psychological safety. Physical safety includes prevention of and reaction to

unwanted contacts between human and robot. Psychological safety covers stressors in-

flicted by the robot with its behaviour to human. The physical safety can be further divided

to three categories: control, motion planning, and prediction. Figure 4 presents a tree

diagram consisting of these elements, and examples of methods that achieves these set

elements.



10

Elements to ensure safe HRI [34]

The safe HRI through control will include collision avoidance and collision detection. Most

of the real-time collision avoidance methods are based on Artificial Potential Fields [35].

The algorithm defines attractive force for robot motion, and repulsive forces for objects

in the robot’s environment. By summing the forces, the algorithm provides dynamical

collision avoidance method. The same method has been further elaborated with depth

data [36]. In ISO/TS 15066 [33] (technical specification of standard) there are four oper-

ational modes shown for HRC. The first one, Safety-Rated Monitored STOP (SRMS),

describes a system that stops the robot when human is present in the robot workspace.

In addition to this, it is possible to combine the SRMS with Hand Guiding (HG, earlier in

the Thesis referenced as walk-through programming), which is triggered if human enters

the workspace of the robot and turned off when the human leaves [33]. The system

named SafeMove [37] which includes safety zones that can control robot speed, were

developed by technology company ABB. The system uses external sensors for tracking

the occupancy of human or other objects in the safety zones. In [38] the authors pro-

posed a dynamically changing safety space, that is projected top down to the table. In

other words, the safety zone was implemented in x-y-plane.

The collision detection methods aim for detecting the happened collision between the

robot and the environment as fast as possible. The collision can be detected by looking

for fast transients in robot electrical drives [39], comparing the commanded robot torques

to the nominal robot model with disturbance observer [40] or to measured torques if such

sensors exist, or using sensitive skins on the robot [41]. When collision is detected, the

robot cannot stop and press against the environment. Usually there are post-collision

methods that determines the robot actions after the collision, such as backing away from

the collision point with same trajectory that the robot reached the collision point in ABB

Collision Detection system [42]. The safety of the human operator when collision hap-

pens can be achieved with Power and force limiting (PFL) [33], which permits touch
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among the human and the robot, but the with the use of force and torque limiting achieves

the safe collaboration. However, this is primarily limited to collaborative robots.

The safety in HRI can also be achieved using a motion planning as a premise to make

safe environment. Dynamic solution to this approach would be standard operational

mode; speed and separation monitoring (SSM, ISO/TS 15066) [33], which will adjust the

robot speed regarding the distance between the human and the robot. Another example

of such approach would be limiting the jerk and acceleration of the robot when human is

present [43].

Collision prediction systems by predicting human activity, such as in [44], can offer a

powerful tool to prevent the collisions. Human activity can be tracked through sensors,

for example using RGB or RGB-D data. The prediction can be done also predicting hu-

man motion, such as in [45] the authors have used time series classification for this pur-

pose.

Different features and actions of robot can cause distress to the human operator. By

adapting the robot behaviour for specific user, the system can avoid negative psycho-

logical emotions on the human operator. Good example of this is an adaptation of speed

of the robot using electroencephalography sensors to read the emotions of the human

when collaborating with the robot [46].

2.2.2 Control and Robot Programming
Robot control is a wide and deep topic and therefore the sub-topics of the robot control

needs to be narrowed down for this Thesis to purposefully explain the necessary para-

digms that can be put under the topics of HRI/HRC. Following paragraphs will explain

these topics by providing broad overview on the topic and additionally explains collabo-

rative robot programming paradigms that can be utilized in the implementation.

From design perspective, defining the needed intervention of the human operator in ro-

bot control, introduced in [47], helps in defining the tasks and their actors. In other end

of the spectrum, where no intervention is required from the human, the robot control will

be fully autonomy. Level of Intervention and level of Autonomy sums up to 100%. The

area between 0% and 100% intervention presents a shared control space; some of the

control is done by human and some by the robot [47]. On the other hand, the level of

autonomy can be thought as autonomous capabilities of the robot; meaning how well it

senses the surroundings and acts and plans after it [48]. In the case of Human-Robot

Collaboration, such capabilities enhance the limits of the complexity in collaborative

work.
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The collaboration can include teaching of the robot. In a case where the robot needs to

be programmed online, there are various collaborative paradigms that can be used, such

as lead-through programming, walk-through programming, and programming by demon-

stration (PbD) [49]. The lead-through programming is done using the Teach Pendant of

the robot controller. The Teach Pendant is used to jog the robot to the poses or record

motions that are then used in the robot code. The walk-through programming is some-

times referred as lead-through programming. In this Thesis, the distinction done in [49]

is adapted to get unified explanations. Walk-through programming means that the hu-

man will drag the robot by hand, leading the robot to the next pose or also saving the

trajectory to get to this pose [50]. Walk-through of the robot requires alternative control

strategies. The force of the human dragging the robot needs to be compensated by mov-

ing the robot in the direction the force is applied, and the robot needs to be in a state of

“floating”. Such compliance robot control can be achieved with impedance, admittance,

or stiffness control [51]. Lastly, the PbD explains a setup where the human can program

the robot by demonstrating where and how the robot should move. This can be achieved

for example with sensors located on the human body, for example using arm, wrist, and

head band in [52] and teaching the robot how to pick up objects by providing demonstra-

tion with the tracked human hands.

2.3 Natural human interaction methods

Natural communication between the human and the robot implies that the used commu-

nication methods should be intuitive for human to use, ultimately like what is present in

human-human communication. Such interaction methods are speech, touch, gaze, and

body gestures.

When humans communicate with each other, the exchanged message is mostly con-

sisted of body language (55%). The tone of the human voice provides takes 38% and

the spoken words only 7% [53]. When deciding what natural interaction method to

choose for the interactions with this knowledge, the body gestures would be a fine place

to start. Furthermore, humans interact with their surrounding world mostly with their

hands [54], and therefore presents as apparent choice as the basis of the interaction.

Speech can be used to give instructions for robot through vocabulary [55]. The speech

as a modality requires a speech recognition system. The problem was solved earlier with

Hidden Markov Models [56], but recent state-of-the-art systems are implemented with

Deep Neural Networks [57]. Speech can be used for example execute predefined robot

tasks, by providing required keywords as was done in [58].



13

The robot can feel a touch when the robot body is equipped with tactile sensors [59] or

proximity sensors [60]. Similarly, tactile sensors are needed on gripper surfaces which

touches it’s environment for the robot to feel the touch [61]. Such sensors can be used

as safety measure or can be utilized in systems where the robot needs to gently grip a

part and adjust the grip force accordingly.

The eye-gaze usually reveals what the human is focused on given time. This information

can be read with vision sensor and used for example in HRI to instruct the robot on what

part to pick next [62].

The hand and arm gestures can be interpreted with two types of devices, vision-based

devices, and wearable sensors. Furthermore, the wearable sensors can be divided in

three categories by the sensors they use, encoders, bending sensors and Inertial Meas-

urement Units (IMU). In [63] authors proposed a benchmark for motion capture, which is

presented in Table 2.

Motion capture method benchmark [63]

The benchmark works well as indicator of feasibility of the sensors for the applications

that requires motion capture. It also gives some insight how the different types of sensors

would work with static gestures.

The human arm can be used to communicate with a robot using wrist or armbands [64].

The motion and/or static gestures of human hand can be captured using a smart glove

using one of the before mentioned sensor types. Bending sensors in smart glove pro-

vides only one value and degrees of freedom (DoF) per finger [65] or additionally

two/three if the bending sensors are placed on the joints [66]. Optical encoders have

multiple values per finger [67], one for each joint, and therefore provides three DoF per

finger. IMU sensors can be used to retrieve the actual pose of each joint of the finger

[68], and therefore presents accurate state of the fingers. However, IMU sensors require

Method Vision Encoder Bending
sensor IMU

Accuracy High Very high Low High

Repeatability High Very high Low Medium

Wearability High Poor High High

Portability Poor Medium High High

Cost High Medium Low Low
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more computational power for acquiring the motion and gestures, since more DoF is

present. With smart gloves, the drawbacks come from wearability [69] and in many cases

difficult calibration [70].

Vision-based approach covers different types of external sensors, such as 2D cameras,

stereo vision, and depth cameras, and can be used to recognize human motion and

gestures. On top of the feed of the camera, the system needs to be coupled with Ma-

chine-Learning (ML) or Artificial Intellifence (AI) for it to be able to spot and recognize

gestures [71]. The ML/AI solutions relies strongly on the fact, that there is computational

power available [72], which might cause problems in some solutions. Vision-based ges-

ture recognition offers precise recognitions of the gestures by not relying on accuracy or

repeatability of wearable sensors. The external sensors offer more input method possi-

bilities in the means of adding the arm or head as input to the pool of possible gestures

without adding sensors on the human body. However, the system has some drawbacks

in the sense of portability and cost [63], sensibility to occlusion and complex background

[73] and the fact that the gestures need to be done facing the sensor.

2.4 Bin-Picking

Bin-Picking is seen everywhere, from warehouses to manufacturing processes, yet is a

task mostly done by humans [5]. In these countless applications automating the Bin-

Picking processes would increase the productivity and has countless applications. For

human the Bin-Picking is easy task, but for the robot there are advanced algorithms

needed to solve the problem [8]. This robotic problem is called Bin-Picking problem.

Bin-Picking problem has been researched for decades, but still general solution has not

been found for the problem. The problem can be divided to two sub-problems, pose

estimation and collision avoidance [7]. For the pose estimation three poses needs to be

solved:

- the object pose – object pose in world frame,

- the gripper pose – gripper pose in world frame,

- and the grasp pose – object pose in gripper frame.

Since the poses create a transformation chain, when two of the poses are known, the

third one can be computed.

Collision avoidance refers to the need of the poses of the gripper to be analysed and

ensure that they will not collide with the environment. The environment here refers to
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primarily to other parts in the in the bin and the bin itself. The Figure 5 illustrates how the

red gripper fingers needs to find a place around the blue piece to be able to grasp it.

Cross section of finding grasp position without colliding to other
parts

When creating a Bin-Picking solution, it is important to know if there is any structure for

the parts in the bin. The parts can be in structured, semi-structured or random poses

[74]. Structured parts would always be in a same pose. Semi-structured are almost struc-

tured, for example the parts can have constraints on the angle, or they don’t have occlu-

sion. Random Bin-Picking is the hardest Bin-Picking problem since all the parts are ran-

domly located in the bin without any structure.

Gripper fingers have major influence on what kind of parts the Bin-Picking system can

pick. State-of-the-art mechanisms are either two finger grippers, suction gripper or com-

bination of these two [75]. Examples of such grippers are presented in Figure 6.

On robot two finger gripper [76], Robotiq vacuum gripper [77] and
ABB smart gripper [78] with vacuum and two fingers combined

There are multiple different approaches to locate objects in a bin. Random Sample

Matching Algorithm (RANSAM) can be applied to pick single types of objects [8] or arbi-

trary objects [9] from a bin. As the algorithm states to be matching algorithm, this means

that the 3D models of such parts are known. This is a premise in many algorithms re-

garding the Bin-Picking since in many cases the pose where the part is taken after the



16

Bin-Picking by the robot needs to be always the same. The grasp pose can be deter-

mined with Key Grasp Frames introduced in [9] using the 3D model of the gripper and

object pose to determine the grasp position.

After the location of the part is solved, the grasp pose needs to be found and evaluated.

The state-of-the-art method for collision avoidance of the grasp pose usually uses point

cloud based solution, such as RAPID-algorithm based on OBBTree [79].

For the Bin-Picking application to be able to handle unknown objects, many of the solu-

tions makes simplifying assumptions. For example in [80] authors assumes that the ob-

jects are planar, and in [81] the objects are laid on flat surface and are always picked up

from above the part. In [82] the authors presents algorithm without the assumptions and

presents of high quality results for autonomous Bin-Picking with unknown data.

2.4.1 Point Cloud processing
When creating the algorithm that finds the required grasp pose for picking the part, that

has a point cloud as input, there is a need for clustering/segmentation of the parts. The

segments can be compared to the 3D model of the object, or further processed for finding

the grasp pose. For example, in a case where the robot gripper uses a vacuum grip, the

Random Sampling Algorithm Consensus (RANSAC) [83] algorithm can be used to seg-

ment planes from the point cloud and with these planes calculate a grasp-pose, such as

in [84].

A fast algorithm, yet not the most state-of-the-art, for segmenting point clouds is

DBSCAN algorithm [85]. This algorithm is based on density-based notion of clusters and

finds clusters of arbitrary shape. In [86] authors propose an efficient method for point

cloud with connected components. The more the parts are on top of each other and are

occluded, the more complex segmentation algorithm is needed.

Today, when ML and AI applications are regularly used in new implementations, such

algorithms can provide a powerful and fast methods for segmentation and pose estima-

tion. Good example of this is the PPR-Net [87] which utilizes Point-Net++ [88] to segment

and estimate the poses of the objects.
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3. DESIGN

Bin-picking problem can be characterized as hard robotic problem, and one large reason

is the lack of universal solution – the solutions are not flexible enough to be universal.

Majority of Bin-Picking solutions relies on the fact that 3D models of the parts to be picked

exist. However, with certain restrictions it is possible pick parts without knowing the 3D

model before-hand. When solving the problem using an HRC, it is beneficial to exploit

the natural human interactions as communication method. Modularity and flexibility of

the system should be considered by creating components that have APIs for unified mid-

dleware.

First in Sec. 3.1 the hardware components of the solution are identified, and the deploy-

ment type of the software components is introduced. The Sec. 3.2 provides information

about how the design paradigms of HRI/HRC are applied to the solution, and Sec. 3.3

shows the high-level software architecture and the communication methods used be-

tween the later proposed components.

3.1 Components

There are three hardware components used in this Thesis: CaptoGlove smart glove,

ABB IRB14000 YuMi dual-arm collaborative robot and Zivid 3D camera. These compo-

nents and chosen software related design choices are introduced in following para-

graphs. The physical setup is assembled in FAST-lab. FAST is an acronym of Future

Automation Systems and Technologies, and does research in automation, CPS, AI, ro-

botics, and industrial informatics [89].

CaptoGlove falls in a cheaper spectrum of commercially available smart gloves [90]. It

has two types of sensors, bending sensors and pressure sensors, and are located as

illustrated in Figure 7. The glove has two textile layers, where in between the bending

sensors and pressure sensors are located in. The sensors are not attached to the glove,

which helps in a situation where the sensor needs to be changed if malfunctioned, or if

the textile of the glove needs to be washed. On the other hand, since the sensors are

not rigidly attached to the glove, the sensors might move when putting the glove on or

taking it off, which might affect the reading of the sensor values.
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Locations of the sensors, on left palm side down picture the bend-
ing sensors and pressure sensors in right palm side up picture are presented

in blue color and the transmitter is presented in orange color

Due the fact that the Thesis tries to find a solution to Bin-Picking problem through Hu-

man-Robot Collaboration, the robot should support collaborative procedures. For this

task, the collaborative robot IRB14000 ABB YuMi (Figure 8) was chosen. YuMi robot has

two hands, where there is 0.5kg load capacity in each [91]. YuMi has also Smart Gripper

attached to each end-effector, which both weighs 262g, setting the maximum load ca-

pacity to 238g [92]. In this Thesis the suction grippers are not used, since the robot cell

did not have air pressure installed. YuMi is created for the collaborative tasks, and there-

fore has safety aspects built-in, such as soft paddings in the arms (in dark grey colour in

the picture) and torque and force sensors in the joints.

ABB Yumi Robot [91]

The last hardware component, i.e., 3D camera, was chosen to be Zivid One+ S. Zivid

One+ is a 3D camera that is designed for Industrial robot cells [93]. The camera will

output a 1920 x 1200 (2.3 megapixels) RGB-colored point cloud with 25 μm point preci-
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sion. Such density and precision provide optimal setup for accurate point cloud pro-

cessing and finding the required poses for Bin-Picking. The camera is presented in Fig-

ure 9. The Zivid camera uses eye-safe white structured light to capture the 3D data.

Zivid One+ 3D camera [94]

These hardware components are displayed in Figure 10. To provide a modularly availa-

ble 3D camera for robot cells, there was a movable stand assembled from same con-

struction pillars used in other robot cells. The Zivid One+ S has working range of 300mm-

1000mm [93], which was considered when assembling the stand for it. This stand is

located on the left side, the robot in the middle, and the laptop used to run the software

components on the right side. The table in front of the YuMi acts as the collaborative

workspace and the movable table on the left is reserved for the bin as an extension of

the robot workspace.

The cell collaborative robotic cell layout

For deployment of the software components, OS-level virtualization using Docker [95]

containerization was used. Containerized applications are system agnostic and offers a
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solution that is easy to deploy and configure. Configuration of the Docker images is done

using Docker volumes [96]. In this Thesis, the volumes are used to mount configuration

files inside the Docker image, for example giving runtime variables for the software com-

ponents. Another useful function of volumes is that the file is shared between the Docker

container and the host, which means that changes done inside the Docker container will

hold if the system is shut down and put on again.

3.2 Solution Design

In robotic applications that follows the model of Industry 4.0, flexibility and modularity are

the key attributes that are required from such system. The Use-Case was created and

solved with these aspects in mind.

As introduced in literature review, there are five attributes that can be chosen for HRI

system. For the solution of this Thesis the attributes of HRI were selected as presented

in following table (Table 3).

HRI attributes selected for the solution

Attribute Explanation

Level of Autonomy
(LOA)

For the whole solution the human intervention – robot autonomy ratio
is 50-50. The solution utilizes the flexibility of the human operator
who will teach the robot needed information for three robot poses.
The taught system will automatically pick up the parts and hand them
to the operator.

Nature of information
exchange

The human will interact with the robot with gestures and using the UI
of M2O2P component. The robot will not communicate with human
any other way than executing tasks.

Structure of the team The team is composed of human operator and two-handed ABB
YuMi robot.

Adaptation, learning
and training

M2O2P application will teach the human to use gestures. Robot will
learn from walk-through the required poses.

Shape of the task
The process will have endless possibilities for example for different
modalities. Modular components can be used in other Use-Cases
that uses the FIWARE as middleware
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The human and the robot will share a workspace, workpiece, and the goal, leading the

HRC level to be collaboration. The shared environment implies that the safety measures

for ensuring safe collaboration needs to be considered. The YuMi collaborative robot will

ensure the safety through the safety paddings installed to the arms and with safety

through control, using ABB Collision Detection [42]. Furthermore, the speed of the robot

movement will be adjusted so that the psychological safety will be ensured.

The following process flowchart presented in Figure 11, which describes a process

where human operator teaches the robot to do Bin-Picking operations and hand the

picked parts for the human operator. The flowchart has three lanes for different actors,

the robot, the human operator, and 3D-module. The orchestrator will assign the tasks for

the actors and proceeds in the process execution once the task is completed. Such task-

based approach for the process flow is highly modular, but also expects the modularity

from individual components in the form of available functions.
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Process flow of the teaching process
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In short, the process will calibrate the camera location, find grasp pose and with the help

of human teach the required poses for the robot. After the process, the system is capable

to do Bin-Picking operations by picking an object from the bin and handing it out to the

human operator.

3.3 Architecture and Communication

To comply with the idea of Smart Factory, the components created for the solution are

all context-aware and connected to same middleware, FIWARE. FIWARE offers a plat-

form for IoT devices that can update and consume context information [97]. The FIWARE

setup consists of two actors, Mongo Database (MongoDB) and Orion Context Broker

(OCB). OCB is used to manage context information including creation, updates, sub-

scriptions, and registrations [98] through HTTP requests (GET, PUT, POST, DELETE).

The MongoDB [99] is used to save this context information, that is created by OCB. The

FIWARE connection of developed components can be seen from Figure 12, where all

the components have an interface with FIWARE through HTTP-requests.

General architecture of the system and components within it, and
their connections to FIWARE.

For the components to communicate with each other seemingly, common language be-

tween the actors is required. For this task the data models from SHOP4CF [100] project

were adopted in the use of this Thesis. The communication through FIWARE is estab-

lished by using three types of entities, Task Entity, Resource entity and Subscription

entity. The first two data models are execution data models, which means that they

change statuses dynamically and provides information about what is occurring in the

shop floor. The entities exchanged through FIWARE are in JSON format.  Since the

solution will use NGSI-LD [101] format, every entity holds a @context field for context

information. In this solution, every entity will hold the smart data models context, and the
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special context information made for SHOP4CF project, which can be seen from exam-

ple entities presented later in this chapter.

Task entity has information about the task, who executes it, what happens in the task

and where it happens [102]. The Task entities are the main communication method be-

tween components in the solution. The status of the Task entity has three states, pending

when it is created, inProgress when the involved component has accepted it, and com-

pleted when the component has completed it. Example of the Task entity is presented in

Figure 13.

Example of the Task entity

The most important attributes of the Task entity are the involves attribute that holds the

information on which actors are involved in the task, workParameter that holds infor-

mation about the task such as the identifier of the command or the human-readable task



25

description, status that is used for task status updates as explained earlier, and output-

Parameters that will hold the output information from the involved component.

The Resource entity holds status of a resource, which can be person, asset, material, or

device. In the solution, for every component there is Device entity [103] created. In this

solution person availability was not considered. The person related tasks are completed

using the CaptoGlove, and there is no materials or assets used, so they are not intro-

duced. The example of the Device entity is illustrated in Figure 14.

Example of the Device entity

The device entity holds a controlledProperty that describes properties that are updated

by the component, and the corresponding properties are found from the Device entity

itself. The deviceState describes the status of the component, which are either ok or

shutdown and provides the availability status of the component.

The subscription entities are created by the components and the subscription notifica-

tions are triggered by the changes done in the subscribed entity types. Example of sub-

scription entity is provided in Figure 15.
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Example of the Subscription entity

The subscription entity will subscribe to all Task entities with all identifiers and creates

notification to the provided endpoint if the object attribute of involves matches the device

identifier of the subscriber. The notification will hold the identifier, status, and work pa-

rameters and they will be presented as key-value pairs.
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4. PROPOSAL

To answer to the requirements designed for the system, this chapter presents the pro-

posed method used in the solution. Sec. 4.1. presents the architectural and communica-

tional information created for the whole system. Sec. 4.2. will focus on the proposed

component for handling the human-robot interface, Multimodal Offline and Online Pro-

gramming (M2O2P) solution. Sec. 4.3. presents Orchestrator Application (OA) that han-

dles process management, Sec. 4.4. focuses on the robot control and Robot Controlling

Application (RCA), and at last the Sec. 4.5. presents the 3D-module component and

provides information about how the 3D data provided by the Zivid camera is processed.

4.1 Architecture and Communication

Architecture of the system was designed in Smart Factory setup with the help of FI-

WARE. FIWARE exposes the exchanged context information to other FIWARE compat-

ible components and therefore makes the solution scalable. The architecture and the

communication methods between the actors are illustrated in Figure 16.

Architecture diagram of the solution

The software components are containerized in Docker (except 3D-module), and com-

munication with the hardware is established with TCP/IP communication or with USB

3.0.



28

Following sequence diagram (Figure 17) was created to illustrate the communication

between the actors within the solution in a scenario where each software component

gets a task from the orchestrator one after the other.

Communication between the components

Orchestrator creates Task entity that has bending status. All actors have subscribed to

Task entities that involves their identifiers, and therefore gets a notification from the FI-

WARE. When M2O2P has received the task, it will process the notification and after

ensuring that needed information is provided in the Task entity, it updates the state of

the Task entity to inProgress. Then M2O2P updates the User Interface to show the in-

formation to the human operator. Human operator does the desired gesture and holds it,

and after held for 1.5 seconds in total M2O2P updates the status of the Task entity to

completed. Similar actions can be seen when the orchestrator assigns task for RCA and

3D-module.
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4.2 M2O2P

Multimodal Offline and Online Programming (M2O2P) solution was developed in the

SHOP4CF project and was used as human-robot interface in this Thesis. Since the de-

veloped component was created for HRI, it was beneficial to use the Robot Operating

System (ROS) [104] as middleware between the modules of the component and can be

used for direct communication. ROS provides publish-subscribe communication be-

tween ROS nodes, using ROS topics [105]. M2O2P uses ROS2 Foxy Fitzroy [106] for

the communication within the modules and provides the output information of the appli-

cation additionally in ROS1 topics. Docker containers that are deployed together natively

shares the ROS topics with each other, and therefore presents as an excellent middle-

ware option.

In the process, M2O2P is the only component that is extensively interacted by the human

operator, and therefore an UML Use-Case diagram helps in understanding how the com-

ponent works. In the design phase of the component the following Use-Case diagram

was created to illustrate the interaction (Figure 18).

Use-Case diagram of human operator interacting with M2O2P
component

The human operator has five options for interaction namely, do a hand gesture using the

glove, push the complete button, toggle filtering mode, toggle testing mode and calibrate

the application. These modes are explained later in the Thesis. The process manager

can create a process, that has a task that involves M2O2P. When there is a task, the

task can be completed using the complete task -button or doing the right gesture. How-

ever, both are reliant of the filtering mode to be on and testing mode to be off, meaning

that task cannot be completed if one of these are not true.
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The used smart glove, CaptoGlove has two types of sensors, bending sensor and pres-

sure sensors. In early design and development, the pressure sensors were set to be

used with the bending sensors. This however came out to be difficult since the pressure

sensors weren’t working reliably when the fingers were bent. The pressure sensors

would have given unique gesture possibilities, by on top of the specific states for bending

sensors, some fingers would have been pushing each other. There were 21 different

gestures chosen to be used in the application, and their corresponding states are shown

in Table 4. There are three states for each finger, straightened, something in between

and bent. The state 2 is bent and 0 is straight.

Gestures and their corresponding bending states

In a development phase, the application was designed to consist of five modules. The

modules and their uses in the implementation are explained in a Table 5.

Gesture
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Horns 2 0 2 2 0

Pinky straight 2 2 2 2 0
Point with index 2 0 2 2 2

Thumb and index straight 0 0 2 2 2

Thumb and pinky straight 0 2 2 2 0
Middle straight 2 2 0 2 2

Middle and pinky straight 2 2 0 2 0

Index and middle straight 2 0 0 2 2
Ring and pinky straight 2 2 2 0 0

Index, ring and pinky straight 2 0 2 0 0

Middle, ring and pinky straight 2 2 0 0 0
Index, middle and pinky straight 2 0 0 2 0

Index, middle and ring straight 2 0 0 0 2

Middle and ring straight 2 2 0 0 2
Index and ring straight 2 0 2 0 2

Ring straight 2 2 2 0 2

Thumb, index and pinky straight 0 0 2 2 0
Thumb, index, middle and pinky straight 0 0 0 0 2

Thumb, middle and pinky straight 0 2 0 2 0

Thumb, index and middle straight 0 0 0 2 2
Thumbs up 0 2 2 2 2
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Introduction of the modules used in M2O2P component

The components are further explained in their corresponding sections in Implementation

and Testing -chapter. The software architecture of M2O2P including all the components

is presented in Figure 19.

Software Architecture of M2O2P

The Application Controller (AC) receives the sensor data over TCP/IP connection from

CaptoGlove SDK and communicates with other modules using ROS2 topics. The ROS2-

FIWARE bridge handles the communication between the component with ROS2 and

FIWARE with HTTP-requests.

The communication between the components was already presented in Sec. 4.1, but

since M2O2P consists of multiple modules, sequence diagram was created to explain

Module,
abbreviation The purpose in the solution

CaptoGlove SDK
(SDK)

Read the raw sensor data from the smart glove and send it to Applica-
tion Controller

Application Controller
(AC)

Process sensor data to gestures and ultimately to commands, com-
municate with Web UI and ROS2-FIWARE bridge

Web User Interface Graphical User Interface provided for the user to enable communica-
tion with the application

ROS2-FIWARE
bridge (bridge)

Configurable bridge between ROS2 and FIWARE using NGSI-LD in-
formation model

Integration Service Provides bridge between ROS2 and ROS1
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the communication inside the component. The sequence diagram is presented in Figure

20.

Sequence diagram of M2O2P receiving and completing a task

When there is task created for M2O2P, the bridge gets the notification, processes the

notification, and sends the relevant task information to AC. AC will process it and invoke

the bridge to update the task to inProgress state. Then the information is shown in UI

and seen by the human operator wearing the CaptoGlove. The human operator does the

task, if there is one on top of doing the gesture and starts to hold the gesture. This is

recognized by AC which then notifies through UI that the user should hold the gesture.

Furthermore, when the gesture is held long enough to count it as completed task, it will

be again notified to the user through the UI. Status of the Task entity and command

identifier of the Device entity will be updated with the help of the bridge. The CaptoGlove

will send the sensor data to AC for the whole time, and the gestures are read when it is

required.
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4.3 Orchestrator Application

Orchestrator Application (OA) is created to handle task assignment and process flow of

the solution. Since the Thesis doesn’t focus on process management, the component is

mainly hard coded, but still aims to be configurable for further usage in other solutions.

The OA uses Task entities to provide the task information for the consuming component

by publishing them to FIWARE. The process is provided for the Orchestrator Application

as a list of JSON (JavaScript Object Notation) entities that provides the necessary task

information. The approach aims to provide the task list as unified format, and if the OA

would be further developed to provide GUI-based process modelling, the interface could

use similar format for exchanging the data between the modules. These entities are fur-

ther explained in the Implementation and Testing -chapter.

OA will handle three types of tasks, static tasks, tasks that expects output from the com-

ponent and tasks that requires an input to be given for the component. These function-

alities are used when assigning tasks, depending on the Task description in the JSON.

There is a need for OA to save variables that other components outputs, which can be

invoked later in the same or in other processes. This is handled by saving the variables

in Python dictionary as they are output from other components, and additionally saved

in text file. This text file is provided for the OA as Docker volume, which means that the

changes will be saved even if the Docker container is stopped and started again.

4.4 Robot Control

The modularity of the robot control is achieved using static functions in the ABB Robot

Controller, that can be invoked through the FIWARE having the Robot Controlling Appli-

cation (RCA) in between as interface. These static functions are created identical for

both of the YuMi robot hands. Robot Controlling Application (RCA) has very similar ar-

chitecture to M2O2P and ROS2-FIWARE bridge combined. All the tasks are sent to ABB

Robot Controller via TCP/IP connection, with own connection for each robot hand.

The solution teaches the robot new poses, which needs to be saved. As this is handled

in OA, there is an additional text file created for this purpose where RCA saves the points.

The saved points are named as the OA has guided them to be saved. This way OA and

RCA both knows the names of the saved points, which therefore can be used later in the

process.
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4.5 3D-Module

To answer the needs of Industry 4.0, the robot cells need to be reconfigurable ideally

and preferably with automatic methods. When the use of the robot cell will be Bin-Pick-

ing, it is beneficial to have the vision hardware available in multiple different robot cells.

To find grasp poses using unknown objects, usually there are some limitations set for

the objects that the system can pick, even though this is not the case in state-of-the-art

systems. The function created for 3D-module for finding the grasp pose included few

limitations on the parts and their placement for the system not to exceed over the main

topic of the Thesis, being HRI/HRC. These limitations are follows:

- Parts that are picked must be formed mainly from 90-degree angles

- Parts are picked from above

- Parts are semi-structured, in other words not occluded, but otherwise in random

poses

3D-module tackles the modularity requirement by providing camera location calibration

function, 3D data acquisition function and function that is used to find the grasp pose.

These three functions are presented and explained in the implementation section. The

modules use the Open3D [107] Python library for 3D data processing. 3D-module com-

municates with the Zivid camera through USB 3.0 connection with the provided Zivid

Python library.
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5. IMPLEMENTATION AND TESTING

The Use-Case of the Thesis was implemented in the FAST-laboratory in Tampere Uni-

versity. The component for human-robot interface, M2O2P, is presented in Sec. 5.1

There were three other software components created that are presented in this chapter:

Orchestration Application (OA) in Sec. 5.2, Robot Controlling Application (RCA) in Sec.

5.3.2 and 3D-module in Sec. 5.4 The implementation of the robot controller is explained

in Sec. 5.3.1. The last subchapter Sec. 5.5 presents the testing procedures created for

the solution.

5.1 M2O2P

This chapter will present all the modules that was developed for M2O2P component.

Sec. 5.1.1 provides information of the application that was used to read the sensor data,

Sec. 5.1.2 presents the Application Controller created for the component, Sec. 5.1.3

shows the UI of the component, Sec. 5.1.4 the bridge created for communication be-

tween the ROS2 and FIWARE, and at last in Sec. 5.1.5 the Integration Service module

is presented.

5.1.1 CaptoGlove SDK
CaptoGlove Software Development Kit (SDK) was a C++ project, that was compiled to

Windows executable. The basic sensor reading version of the SDK was provided by the

CaptoGlove company [108], which was modified to send the sensor data via TCP/IP to

the Application Controller. The main function of the SDK is to connect to the smart glove

with Bluetooth, read the data from each sensor, and send it as a string to AC. Every other

value of the string will hold information of pressure sensor and every other will hold in-

formation of bending sensor. Since the devices in both hands are the same, yet the order

of the fingers from left to right is different, the sensor values are in reverse order in the

left hand. To illustrate the situation, the Figure 21 presents sensor values the case that

for all the fingers would be straightened (value 3000), and no pressure is applied to any

of the pressure sensors (value 0).
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The format of the message sent from SDK to AC

The initial plan was to have the SDK also containerized, but since Bluetooth devices

were not supported from Windows machine to Linux Docker container, the final decision

was to have the SDK as executable on host machine.

5.1.2 Application Controller
Application Controller (AC) acts as a brain of M2O2P. AC processes the raw sensor data

that comes from CaptoGlove SDK and interprets the sensor values as gestures and fi-

nally as commands. Using the ROS2-FIWARE bridge, AC gets the Task information from

the Orion Context Broker. Furthermore, AC handles additional options and modes in-

voked from Web UI such as calibration of the glove, testing mode and ability to affect if

the gestures are filtered by the task. These modes are further explained in the Sec. 5.1.3.

The sensor values for each finger comes to AC as raw sensor values between 0 and

~4000. These values are read as states, that are controlled by the thresholds given for

the Application Controller as Docker volume and can be modified using the Web UI. The

thresholds are set for each finger individually, since there are a lot of differences in the

sensor values between the fingers. In Figure 22 the sensor values are illustrated for 20

seconds. Within this 20 seconds, two gestures were made, between 6.4s and 9s marks

the Horns was held, and similarly between 14s and 16.5s marks the Point with index was

held. In between all the fingers were held straight.
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Sensor readings of each finger and two gestures done within 20
seconds time window

There are some disturbances in the sensor values especially with the index finger. These

disturbances did not affect the gestures and are short enough to not cause accidental

gesture readings.

There are a lot of steps in reading the sensor data and interpreting them as states, ges-

tures and ultimately commands. Therefore, following Figure 23 presents the flowchart of

the algorithm.
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Flowchart of AC sensor data processing

The message is received from SDK, and then processed to states and so on to gestures.

If the gesture is recognized, AC waits for 0.5s before prompting about the right or wrong

gesture. If the right gesture is then held for additional one second, the task is considered
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as completed. The gesture needs to be therefore held for 1.5 seconds for the application

to read it as successfully done command.

The sensor reading is done in a Python thread to enable background activity and com-

munication with other modules. Application Controller subscribes to seven and publishes

to eight ROS2 topics. This information exchange is further explained and illustrated by

following communication graph (Figure 24). The graph is created in a style of “rqt_graph”,

which is package ROS provided to visualize the ROS computation graph [109]. The

graph describes how the ROS2 nodes, here ellipses, communicate with each other by

publishing and subscribing to ROS2 topics, here rectangles.

ROS2 nodes and topics communicating in M2O2P

AC communicates with Webapp by publishing application controller output, task infor-

mation, thresholds, and test information if testing mode is set to ON. Furthermore, AC

subscribes to topics when the user communicates through UI with the AC, here in the

cases of calibration, testing the different gestures, the status change through UI and

filtering and testing mode changes.

When AC is started, the /component_status is used to update the status to ok. If there is

new task for M2O2P, the task will be published to /taskname topic. The task status will

be updated through /task_completion topic, and the command identifier is updated upon

task completion using /command_id topic. If the task is completed by some other com-

ponent, /status_completion_time is used to notify AC about such action. In all the before

said messages the message type is string, and in the cases where the message contains

various information, the message is sent as JSON format serialized from Python diction-

ary.
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Additionally, AC sends the sensor values and sensor states to ROS2 topics, that are

forwarded to ROS1 topics via Integration Service. This way M2O2P can be utilized as

interface for forwarding the sensor information to some other application that needs it.

5.1.3 Web User Interface
Web User Interface was developed for M2O2P to be supportive Graphical User Interface

(GUI) and offers communication between the component and the user. The interface

was divided to four sections. The first section offers monitoring tools, such as output of

AC, task information and manual task complete option through the GUI. The monitor

section of the UI is illustrated in Figure 25.

Monitoring section of the GUI

The output of AC acts as outlet and provides information about what is going on the

background when the component is in running state, such as notifications to hold gesture

or that the user is making a wrong gesture. The task information will hold the description

of the task, and under it the gesture GIF shows what gesture to use for completing the

task. In a situation where the glove cannot be used to complete the task, it can be com-

pleted with specified complete button.

The next section of the UI provides the ability to calibrate the glove. There were two

thresholds set for the glove, upper and lower threshold – bent and straightened thresh-

old. These thresholds, per finger, are configurable through the UI by using the buttons

shown in the Figure 26. The calibration section can be used on runtime, and the thresh-

olds are changed immediately.
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 Calibration section of the UI

Testing section of the UI consists of table and GIF of the example gesture that user

picked. The main function of the section is to provide an ability to user to train the ges-

tures, test out the glove functionality and combined with the calibration section, the glove

can be easily calibrated. The testing section includes a table, where there are two rows,

one for values that the user is doing, and the desired values that the user tries to repli-

cate. The first column holds the raw sensor values, the second holds the states and the

last holds the gesture. The dropdown menu can be used to pick a gesture, which the

user then tries to replicate. Testing section used with the calibration section provides

powerful tool to calibrate the glove and seeing the effects on the calibration on runtime.

After the testing section, additional options section offers the user to the ability to toggle

the filtering by the incoming task off or on. These two sections are illustrated in Figure

27.
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Testing and additional options section

5.1.4 ROS2-FIWARE bridge
The communication between ROS2 and FIWARE has been taken into consideration in

other projects, and bridges between these exists, such as Integration Service [110] and

FIROS2 [111] that are both created by eProsimaC. However, both of these options only

supports NGSIv2 information model [112]. Since in this Thesis the NGSI-LD information

model was used, there was a need for new bridge. The communication between the

FIWARE and the module was established with requests -Python library.

ROS2-FIWARE bridge publishes and subscribes to ROS2 topics to communicate with

AC and creates a socket server, which is set as an endpoint for FIWARE subscriptions.

At the start up, the bridge will create the necessary subscriptions.

From AC to FIWARE, there are three topics that are handled: /component_status,

/task_completion and /command_id. /component_status topic is used by AC to provide

updates on M2O2P status, which is updated to the Device entity as explained earlier

either ok or shutdown. /task_completion topic is used by AC to provide new statuses for

the Task entity, which would be either paused, inProgress or completed, and /com-

mand_id topic is used update the commandId attribute of the Device entity.

From FIWARE to AC, there are two topics used, /taskname and /status_comple-

tion_time. The /taskname topic will be used to provide needed task information to AC

when the task is received through the subscription notification. The /status_comple-

tion_time topic will be used to provide information for AC if the ongoing task is completed

by another component and is made as precaution for such event. Such event won’t hap-

pen in the solution of this Thesis.
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5.1.5 Integration Service
When researching about eProsimaC Integration Service [110], the capabilities of the it

was realized as a ROS2-ROS1 bridge. Since the M2O2P offers a direct communication

method with ROS2, with the Integration Service the same information was able to be

communicated to ROS1 topics. Integration Service is “middleware of middlewares”,

which enables communication between two different communication methods. The ar-

chitecture of Integration Service is presented in Figure 28.

Integration Service architecture [110]

Integration Service is used to forward the command identifier at task completion, and the

sensor values and their states, to ROS1 topics. Integration Service requires a mapping

file, for it to know what topics to listen in ROS2 side and to what middleware forward the

information. This information is provided as Docker volume to the Integration Service.

The Integration Service is not used in the final solution, since the more modular solution

was achieved using the FIWARE as middleware. However, it acts as an option for the

created solution, and is part of the component, and therefore was mentioned in this The-

sis.

5.2 Orchestrator Application

The FIWARE API of ROS2-FIWARE bridge was reused in the implementation of OA,

and the logic behind the task assignment and proceeding in the process was created on

top of it. OA has three main functions what comes to process management, assign tasks

when the earlier one is completed, handle possible input data for each task, and handle

and save possible output data for each task. The process is given to OA in JSON file as

Docker volume and holds the necessary information for OA to know how to proceed in

the process. Example task included in JSON file is presented in Figure 29. The JSON
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entity guides OA to create Task entity, that will tell 3D-module to calibrate using the

chessboard center achieved from the robot controller from earlier task and the side that

was provided by the human operator in the teaching process.

Process in JSON format given to Orchestrator Application in teach-
ing process

Here the task holds a task number of 6. At the end of the JSON entity, there is nextTask

attribute, which is mapped to the task numbers, and depending on if the task was com-

pleted with PROCEED or REDO continuation, and the next task number will be chosen

from the list respectively. The processId is used to name the process in a case where

the process is saved for example in database with other processes. The “involves” at-

tribute holds the device identifier, meaning the identifier used in “involves” attribute in the

Task entity. The workParameter attribute will be directly put as the value for the com-

mand_type attribute of workParameter attribute in the Task entity except when the key

dict. If such case the OA will use the keys provided in the list to find the required attributes

from Python dictionary. These attributes are saved from previous tasks. The names of

the attributes will be used as keys, and the retrieved values as the values for the attribute,

and they will be similarly put as the value of the command_type attribute. The taskName

holds some human readable description of the task. The value of taskCode will be the

value of the Task entity isDefinedBy. If the entity holds commandId attribute which is

something other than 0, the number will be added to command_type attribute with a key

of commandId.

When there is a need to output some information, the name of the key is provided in the

output attribute. In Figure 30, RCA is guided to output the chessboardcenter in the output
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attribute of outputParameters in Task entity. OA will save the returned value to the dic-

tionary with the key chessboardcenter.

Process in JSON format given to the taught system to validate 3D-
module

5.3 Robot Control

The implemented robot code can be divided in two sections, to the RAPID code created

for the ABB robot controller (Sec. 5.3.1.), and the containerized Robot Controlling Appli-

cation (Sec. 5.3.2.) that handles communication with FIWARE and sends the commands

through TCP/IP connection for the robot controller.

5.3.1 ABB Robot Controller
The ABB robot controller of YuMi was programmed beforehand offline, by implementing

flexible yet static functions that can be triggered using the Robot Controlling Application.

ABB Robot controllers are programmed mainly in RAPID programming language [113].

The RAPID code is used to create socket server for each hand of the YuMi, and client

on RCA connected to the IP address of the robot controller. The robot controller and the

laptop where the Docker containers are running are put in same network with Ethernet

cable.

There were total of nine functions created in the robot controller:

1. Enable walk-through mode

2. Disable walk-through mode
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3. Save current position of the specified robot hand and send it to Robot Controlling

Application

4. Close the gripper

5. Open the gripper

6. Go “Home” position

7. Go to RCA defined position using Joint move

8. Go to RCA defined position using Linear move

9. Send chessboard center

The main loop of the program listens to TCP/IP socket connection and responds when

and how is needed. Every time there is a new task received, the loop will answer first a

string message “procedure started”, then, if necessary, provides the output information

in next message, and “procedure finished” once the robot has done the procedure. These

functions are called with their corresponding function number. In the 3. procedure the

Robot Controller will respond the necessary data of the end effector pose and in 9. pro-

cedure provides the chessboard center saved earlier in the robot controller, that is used

for the calibration and finding the grasp pose in 3D-module. In 7. and 8. RCA will provide

the target for the robot.

There were two supportive functions created to send and receive robot targets: one

which changes a robot target information to string format, and one that reads the string

and saves the information as robot target. These functions enable the saving of the robot

targets to RCA instead of the memory of robot controller.

The Yumi robot is equipped with ABB Smart Grippers [92]. For the smart grippers there

are special commands to be used to control them in the RAPID code, such as g_gripIn

and g_gripOut for closing and opening the fingers of the gripper. These commands are

utilized in the functions that closes and opens the robot grippers.

5.3.2 Robot Controlling Application
RCA handles three types of tasks, static tasks, static tasks that requires output from the

robot controller and tasks that includes moving from current position to provided position.

Static tasks are sent to the controller providing only the procedure number, and in case

where output is required, RCA will expect additional message that holds this specific

output value. The output can be current pose of the end-effector, which is saved to a

dictionary inside RCA with a pose name provided by OA, or other value that is passed

to the OA, such as the center of the chessboard tag. In a case where the robot needs to
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move to a pose, the OA provides pose name for RCA, which then finds the corresponding

pose from the dictionary saved before and provides the pose for the robot controller.

Tasks that require robot movement also includes an offset information, which is useful

when moving the robot for example over some position.

5.4 3D-module

3D-module was created having the same FIWARE interface as the other software com-

ponent and is deployed as Python script running on the host PC. In the development

phase the module was tested in Docker container, and it was discovered that the func-

tions take at least double the time when the module is containerized. Following subchap-

ters will present the functions created for the application: acquisition of the point cloud is

presented in Sec. 5.4.1, camera location calibration function in Sec. 5.4.2 and function

that finds the grasp pose for the use of the YuMi is presented in Sec. 5.4.3.

5.4.1 Acquire PCD
Other functions of 3D-module requires the acquired PCD from the Zivid camera, hence

this function was created. When testing the acquisition of PCD, following acquisition set-

tings were chosen to be used in the implementation since they gave best results:

- Exposure time: 6500ms

- Aperture: 7.15

- Gain: 1.3

- Brightness: 1.8

Furthermore, the outlier, noise, and reflection removal and gaussian smoothing was en-

abled from the settings. On top of acquiring a PCD, the function will transform the point

cloud to 2D image for the calibration function. An example of the 2D image captured and

with the camera is presented in Figure 31.
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Example of 2D image captured by the Zivid 3D camera

5.4.2 Calibration
The idea behind the whole process is to redefine the use of the robot cell, meaning for

instance that the camera location might change. The calibration in the means of finding

the location of the camera and ultimately the points seen by the camera in the robot

frame is primary objective to make the system work. To find the camera location in the

scene, there needs to be some point in the scene that is visible to the camera and is

known point for the robot controller. Furthermore, the used point should also provide

information about the orientation, so the PCD can be transformed from camera frame to

robot base frame. There was 4x4 chessboard tag used for this purpose. There are chess-

board tags in the left and right corner of the workspace, illustrated in Figure 32. The idea

would be that these tags are in every robot cell where the Bin-Picking operations are

needed.

Workspace from top view with chessboards in the corners

OpenCV Python package [114] provides a function that finds chessboard corners which

is here used to find the pixels corresponding the chessboard corners from the 2D image.

The function will convert the image to black and white and generate quads to find the

squares from the image [115].
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The goal of the calibration function is to calculate the transformation matrix 𝑇𝑐𝑎𝑟 , the

camera frame with respect to robot base frame. At the start of the function the chess-

board corners are extracted. The calibration function knows from human input, which

side the camera is from the robot’s perspective. Furthermore, the location of the chess-

board tag on the table is given as output from earlier task, and as input for the calibration

task. The PCD is saved in one dimension, yet in order, and the corners found from the

2D image holds the information in two dimensions. To find the corresponding point in

point cloud, the index of the chessboard corner needs to be calculated as follows (Figure

33).

Calculating the index of the corner point in point cloud

As the figure illustrates, if in a 5x5 image the corner pixel would be the red one, the

corresponding index in the point cloud would be 14. For each corner, the corresponding

3D point is calculated, and then 3D vectors are calculated from the middle point to the

corner points, referred here as 𝑣1-𝑣4. Only the horizontal and vertical corner points are

included, as illustrated in Figure 34.

The middle point (on green color), side points (on red color) and
the 3D vectors between the middle point and the side points (in purple color)

If the chessboard is looked at from directly top of it and from the robot’s side of the table,

the vector to the left matches the robot frame y-vector 𝑦𝑟 and the vector that goes up

matches the robot x-vector 𝑥𝑟. This is illustrated in Figure 35.
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Finding the base tag frame using the camera frame

When camera is located on the right side of the robot (on the left side in the image), the

vector from 𝑣1-𝑣4 that has smallest angle to camera frame x-vector 𝑥𝑐𝑎 will interpreted

as the x-vector of the chessboard frame 𝑥𝑐𝑏. Similarly, the vector that has smallest angle

to the camera frame z-vector 𝑧𝑐𝑎 will be interpreted as 𝑦𝑐𝑏. When the camera is on the

other side, same vectors from the camera frame are respectively −𝑥𝑐𝑎 and −𝑧𝑐𝑎. Using

these two vectors, the normal vector can be calculated with cross product. Since the

camera is pointing down, the normal that has larger angle compared to the 𝑧𝑐𝑎 will be

chosen as 𝑧𝑐𝑏. After this, it is certain that the 𝑥𝑐𝑏 and 𝑧𝑐𝑏 has 90-degree angle between

them, yet it is possible that the 𝑥𝑐𝑏 and 𝑦𝑐𝑏 do not have exactly 90-degree angle between

them. Therefore, the 𝑦𝑐𝑏 is calculated similarly as 𝑧𝑐𝑏, by calculating the normal vector

for 𝑥𝑐𝑏 and 𝑧𝑐𝑏, and using the normal that has the smaller angle compared to the earlier

calculated 𝑦𝑐𝑏. Now there is a “frame” that matches the robot base frame orientation.

Then, the SciPy spatial transform “align vectors” method is used to find the rotation ma-

trix between the camera frame and the chessboard frame. The function utilizes Kabsch

algorithm named after the creator, that finds the best rotation between two sets of vectors

[116]. The function finds rotation between frames 𝐴 and 𝐵. To do this, the function will

minimize following loss function to solve the rotation matrix 𝑇,

𝐿(𝐶) = 1
2
∑ 𝑤𝑖‖𝑎𝑖 − 𝑇𝑏𝑖‖2𝑛
𝑖=1 (1)

where 𝑤 is the weight that can be given for each vector and 𝑎 and 𝑏 are the vectors in

the two sets. The weights are not used in this implementation, meaning that the weight

of each vector is equal. The algorithm outputs the rotation matrix between the camera
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and the chessboard frame, e.g., 𝑇𝑐𝑏𝑐𝑎 without translation. Since the transformation of

chessboard frame with respect to camera frame is known, the camera frame with respect

to chessboard frame is the inverse of the same transformation and calculating this the

𝑇𝑐𝑎𝑐𝑏 can be formed. To transform a PCD from camera frame to robot base frame, the 𝑇𝑐𝑎𝑐𝑏

needs to be applied to the PCD, and after that the final translation 𝑇𝑐𝑏𝑟 , the chessboard

with respect to robot base frame is applied. The frames and the transformed PCD are

illustrated in Figure 36. Applying the transformation at this stage helps in validating of

the calibration.

The camera frame, chessboard frame, robot base frame and the
point cloud transformed to the robot base frame

The calibration function assumes that the camera is relatively straight on the left or on

the right side of the robot pointing to the robot’s direction. The maximum angle from the

tag (θ in Figure 35), where the camera can be located, forms a 90-degree cone on x-y-

plane. However, since the angle is not definite, there might be failures in the calibration

with too high angle. This is evaluated in the tests created for the application.

5.4.3 Find grasp pose
This function processes the PCD and tries to find a grasp pose for the YuMi robot. The

function will output the grasp pose in a form of array of arrays, [[x,y,z],[q1,q2,q3,q4]],

where the first array holds the cartesian coordinates x, y and z, and the latter one the

values of the quaternions. Quaternions were used here since they are used to present

the orientation information in ABB Robot controllers.

At the start of the function, the PCD is loaded and downsampled using voxel down sam-

ple -method. The voxel downsampling means that there is voxel grid created that can be
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thought as 3D boxes in 3D space. Inside each voxel the points will be presented through

the centroid of the points and will be downsampled to the density where the points will

approximately have the voxel size in between them [117]. The function uses 0.5mm as

voxel size which will considerably ease the computational times that the function takes

yet leaves enough information to calculate the grasp pose accurately.

For later collision avoidance evaluation, the nearest neighbours for each point are found

by creating the K-nearest neighbours tree for the point cloud using FLANN library [118]

(Fast Library for Approximate Nearest Neighbours) that is included in the Python bind-

ings of the Open3D library.

To further cope with the excessive data in the PCD, it is segmented using Open3D built-

in RANSAC function to separate the ground plane (here the table surface) from the PCD.

The output after these steps is presented in Figure 37.

Downsampled point cloud without the ground plane

The point cloud will be then transformed to the robot base frame similarly as at the end

of the calibration function.

The PCD is filtered, by calculating the mean of all the points in the PCD and deleting all

the points that are further than 150mm away from the mean. After this, the DBSCAN

algorithm [85] provided in the Open3D library is used to cluster the PCD. The algorithm

is fast, robust, and gave best results when deciding what algorithm to use to cluster the

parts. The function will then delete the noise points, labelled as -1 by the algorithm. If the

DBSCAN will provide under five clusters, it means that the PCD was not clear. In this

case, the new PCD is acquired, and the calibration is done again. This logic was created

in the process that OA uses. If there are more than five clusters, there are multiple loops

that will process the point cloud in the way, which leaves only the parts to the PCD:
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- The clusters that have under 500 points are deleted

- The clusters that have points over 40mm away from the mean of that cluster are

deleted

Sometimes the cluster will have small number of points, which indicates that the cluster

is not a part. Sometimes the bin might stay amongst the clusters, or additionally some

other part, such as table corner. These clusters are deleted with the second filtering loop.

After the excessive clusters are excluded from the set of clusters, the clusters are put to

an ordered list, which has the largest cluster at first, and the smallest at last. The rest of

the procedures are done only to the largest cluster, and if the procedure fails to find the

grasp pose using the largest cluster, the loop will continue to the next largest cluster.

Example of the found clusters are presented in Figure 38.

Found clusters painted with their corresponding colour

First, the normals are calculated for the points in the cluster. This information is used

later to find 90-degree edges from the PCD. The KDtree for the cluster is then found

similarly as was found for the whole point cloud. Using the nearest neighbours, the sta-

tistical outlier removal algorithm provided in Open3D library is used to remove outliers

from the cluster. The chosen values for the function were 20 nearest neighbours, and

the standard deviation ratio of 2.0. The nearest neighbour amount specifies how many

points are considered when calculating the average distance to a specific point, and

standard deviation ratio will set a threshold level for the standard deviation of average

distances in the point cloud. More aggressive filter for removing outliers is achieved by

lowering the threshold [119]. The algorithm then executes loop to find the topmost point,

and with that, all the points that has maximum -5mm height from the topmost points are

extracted and further processed.

The topmost points are saved in temporary variable, and the z component is deleted

from all the points. Now the points present as 2D plane. From this 2D plane the boundary

points are extracted. Boundaries are extracted by finding alpha shapes [120] with the
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help of Delaunay triangulation [121] that is provided in SciPy spatial library, which uses

the Qhull -library to compute the tessellation [122]. Example of the boundary found is

presented in Figure 39.

Line composed of the boundary points for a part

For each boundary point, the KDtree is used to extract the neighbours in 3mm radius

and the angle between each normal and 𝑧𝑟 is computed. The amount of normals, that

have angle between 80- and 100-degree is counted. If the counted value for the current

boundary point is over five after all points are evaluated, the boundary point is considered

as corner point and the index of the current boundary point is saved.

Next for each boundary points, the mean of the points in 6mm radius is calculated. Vector

is formed from the mean to the boundary point, which is then set as the normal of that

boundary point, but with z component of the vector as zero. After this, from top view, the

normal could look like as illustrated in Figure 40.
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The gray points are the boundary points, blue points are non-
boundary points, the green dashed line acts as neighbour radius, green point
as the calculated mean, green arrow as the vector that drawn from the mean
to the boundary point and red arrows illustrates the normal aligned with the

vector

The purpose of this procedure is to provide normal that points away from the other points

of the PCD, and to use them when finding if aligned pairs, which is explained later. Fur-

thermore, this procedure will make the hidden side of the part “known” by assuming it

will hold a 90-degree angle.

Since the function assumes that there are 90-degree angles, in case where the corners

are not found would imply that one face of the part on top of top side is facing directly to

the camera. In such case the mean of the topmost points will be the pick position, and

the x-vector of the grasp pose 𝑥𝑔𝑝 is aligned to same direction as the 𝑥𝑐𝑎. In the case

where the corners are found, for each corner point, loop the boundary points, and calcu-

late angles between negative of the normal of the current corner point, the vector that is

created from the current corner point and the boundary point in question, and the normal

of the boundary point in question. This procedure is illustrated in Figure 41. The vectors

can have maximum 15 degrees angle between them, and the points can be maximum

of 42mm away from each other (the maximum distance between the gripper of the ABB

robot).



56

The gray box is the part, the green point is the boundary point, the
purple arrow is the negative of the normal for that point, purple dashed arrow
is the same vector but taken next to the yellow candidates for the evaluation
of the angle, similarly the yellow dashed lines are taken for the evaluation.
The lower candidate would present as aligned pair, but the top candidate

doesn’t, due the angles that they have

When the algorithm finds a pair, it calculates a cost for this pair. The cost of the pair

consists of two components, the distance between the points, and mean of the distances

between both points and the center of the topmost points. These components are

summed together to form the cost for the current pair under inspection. If the topmost

points consist of points A, B and C, the points A and B would the pair in question, and

the dist would be the distance between the points, the simplified cost function would be

as follows:

𝑐𝑜𝑠𝑡 = dist(A,B) +mean(dist(mean(A, B, C), A), dist(mean(A, B, C), B)) (2)

If the cost is lower than the cost calculated on earlier iteration or it is the first cost to be

calculated, the pair will go under inspection of collision avoidance. The cost will favour

pairs that have points close to each other and close to the center of the topmost points,

which will intuitively lead to better grasp pose.

Using the earlier calculated nearest neighbours’ tree for the whole PCD, the function will

make sure that the gripper fingers will not collide with the environment during the grasp-

ing. The function will calculate two vectors that are 28mm long and are pointing from the

center of the chosen two points to each of the points. This will be the center of the gripper

finger since the distance from the gripper frame to the inner side of the gripper is 21mm

and the gripper finger radius is approximately 7mm. From these points, and points under

them, the function will check if there are points inside 7mm radius. The check will be

done 7 times, each time 3.5mm lower than in last iteration and the furthest sphere will

be located 24.5mm below the top sphere. This collision avoidance procedure is further

explained using the image of the gripper and the red spheres in Figure 42.
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Collision avoidance method

If the collision avoidance check is successful, and the best pair is found, the x-vector of

grasp pose 𝑥𝑔𝑝 is determined by calculating the angle between the vector from the mean

to each point in selected pair, and the 𝑥𝑟. The vector with smallest angle will be chosen

as the 𝑥𝑔𝑝. This aims to find repeatable results by always setting 𝑥𝑔𝑝 to relatively same

direction. Example of grasp position found using the algorithm is provided in Figure 43.

Example grasp pose found for the robot

If pairs are not found, the algorithm will continue to the next cluster. If all clusters have

been looped and yet no grasp pose has been found, the function will provide info for the

orchestrator that either the bin is empty, or there is a need for new PCD. In the teaching

procedure, the orchestrator will take the new PCD, since there must be parts still, and

not finding any part means that the PCD was not good enough for finding the grasp pose.

5.5 Testing Procedures for the System

The implemented solution will be evaluated using testing procedures. Testing proce-

dures will partly answer the research questions, and the results of the tests will be pre-

sented in Results -chapter. The tests created for this Thesis focuses on functionalities of

the system and will be conducted by the author of this Thesis. Tests can be categorized

in three different categories, isolated tests for M2O2P (Sec 5.5.1), isolated tests for 3D-

module (Sec 5.5.2) and test scenarios created for the complete Use-Case (Sec 5.5.3).

OA, RCA, and robot controller are tested in Use-Case tests.
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The Bin-Picking operations will be evaluated using only one type of parts, which are used

in assembly of the robot cells in FAST-laboratory. Image of one of these parts is pre-

sented in Figure 44. The testing of the system will focus on scenarios where the parts

are semi-structured – in random poses, but not on top of each other.

Parts used in evaluation of the Bin-Picking operations

5.5.1 Isolated tests for M2O2P
The reliability of M2O2P is tested two ways, by finding out if accidental gestures are

made during object manipulation and figuring out how well the application can recognize

the gestures. Accidental gestures are evaluated using grasp taxonomy of Cutkosky [123]

and evaluating the accidental gestures when handling the objects in the Use-Case. The

grasp taxonomy provides comprehensive testing setup for accidental gestures caused

by different styles of grasping. To simplify and visualize the grasp taxonomy, the taxon-

omy was recategorized under their corresponding object, and is presented in Figure 45.
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 Cutkosky’s grasp taxonomy adopted with testing objects

Each of the grasps are held for 20 seconds, and in the meantime the grasp itself is re-

adjusted to find if the application registers the current grasp as gesture. On top of the

specific shapes, the accidental gestures are tested in the teaching procedure in similar

way. The object manipulation tasks that the operator needs to complete are handling the

robot arm and moving the camera stand. The robot arm is manipulated with different

grasping points, and camera stand is moved back and forth to see if the system registers

any gestures.

To counterbalance the test of unwanted accidental gestures, the second isolated M2O2P

test is used to find out the accuracy of the gesture recognition, i.e., the wanted behaviour.

M2O2P is first calibrated, and all 21 gestures are replicated one by one using the Testing

section provided in User Interface of M2O2P. This is repeated 10 times, and in between

iterations the glove is taken off and put back on. The purpose of this test is to report the

accuracy of the application and evaluate the need of calibration with one user when the

glove is taken off in between.

5.5.2 Isolated tests for 3D-module
The calibration function created for the 3D-module, which was presented earlier in Sec.

5.4.2., is evaluated by the means of maximum angle where the camera can be located

with respect to the calibration tag. The camera will be moved in greater angle, and the

result of the calibration will be evaluated using the Point Cloud including the calibrated

frame.
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3D-module will be further tested by clocking the times each of the function takes and

analysing them. Lastly, the collision avoidance function created for 3D-module is tested

by providing scenario where the grasp point should not be found, and then where it can

be found.

5.5.3 Tests done for complete Use-Case
The teaching procedure is repeated six times, three times using the glove as interaction

method for proceeding in the process, and three times using a mouse and the GUI of the

application. These tests will be captured on a video for later analysis. Additionally, the

time of each task is clocked. The purpose of this testing procedure is to find out how

glove-based input compares to more traditional input method using GUI, and to evaluate

the overall flow of the teaching procedure.

The testing process created will evaluate the teaching procedure. The robot will pick the

parts from the bin and hand them to the human. Tasks of the procedure are clocked and

captured on the video for further analysis. Flowchart of the evaluation process is pre-

sented in Figure 46.
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Process created for evaluation

The robot is moved with two types of commands. The first type, which can be seen in

the flowchart as L, moves the robot in straight line trajectory with the shortest path be-
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tween the start and the end point. The second type is to move the robot with joint com-

mand J, which will move the robot the shortest path from start to end from point of view

of the joint angles of the robot. Linear movement will have velocity of 50mm/s, and joint

based movement 100mm/s. The process will go on until the grasp pose is not found

anymore, which means that the bin is empty. The evaluation process will be executed

10 times to evaluate the grasp poses, and overall performance of the taught system.



63

6. RESULTS

This chapter will present the results of the tests and other notes reported during the

evaluation. The chapter is divided to three subchapters, tests done for M2O2P in Sec.

6.1, tests done for 3D-module in Sec. 6.2 and tests done for whole Use-Case in Sec. 6.3

Furthermore, the results of Use-Case tests are divided to teaching process in Sec. 6.3.1

and to evaluation process in Sec. 6.3.2.

6.1 Isolated tests for M2O2P

M2O2P was tested in two ways, first by investigating if manipulation of objects causes

accidental gestures, and second by investigating the accuracy of the gesture recognition.

The results of these tests are provided in following paragraphs.

When testing the different styles of human grasps, four accidental gestures were recog-

nized. The results are provided in Figure 47.

Results of tests done using the Cutkosky’s grasp taxonomy when
wearing the smart glove

Gymstick caused accidental gesture of Thumb and pinky straight. The grasp itself seems

similar as Thumbs up, yet the pinky finger was also considered as straight. When read-

justing the grip, the pinky finger was relatively straight at one point, which caused it to be

recognized as straight. When holding the ball with fingers as tripod, the Thumb, index,

and middle straight -gesture was recognized. This can be seen from the image since
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those fingers are straight compared to others. When holding the pen, holding with thumb

and one finger caused Thumbs up gesture, and holding with thumb and two fingers (in-

dex and middle) caused the Middle straight gesture. Both are surprising when watching

the examples of the grasps, yet both were recognized when readjusting the grasps in a

way that the bending state of the fingers was close enough it to be recognized as before

mentioned gestures. To cope with the accidental gestures, the gestures that are used in

tasks that requires such grasps should be chosen to be “harder” gestures.

The grasps needed in the tasks to complete the teaching process were tested to apply

the grasp taxonomy for the Use-Case of the Thesis. There are two tasks where objects

need to be manipulated when having an ongoing task: moving the stand for the 3D cam-

era and teaching the robot hand new points. The camera stand was moved back and

forth with the glove on, and both robot arms were manipulated with walk-through mode

on. Both actions were done for each 30 seconds to spot the accidental gestures. The

Figure 48 includes images of different grasps and manipulation of the stand and the robot

arm.

Examples of the manipulation procedures

During the tests, the Pinky straight gesture was recognized two times in a way that it

provided a prompt to the user to hold the gesture, yet it did not send the command for-

ward. The gesture was held for 0.5s for it to be prompted, but not 1.5s which would

trigger the sending of the command; hence no accidental gestures were faced in the test.

As the unwanted scenario of accidental gestures was just presented, the second test

done for M2O2P evaluated the wanted behaviour, i.e., the accuracy of the gesture recog-

nition. All the 21 gestures that M2O2P offers were repeated 10 times, taking the glove
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off in between the iterations, leading total of 210 interactions, and following table was

filled (Table 6).

Accuracy of the M2O2P component

In this test scenario, the gesture was done and once it was thought to be correct, the UI

was checked if the gesture was recognized. All the gestures were successfully recog-

nized, yet in two instances there were problems where one of the fingers needed slight

readjustments. If these problems are thought as failed recognitions, the accuracy of the

recognized gestures was 99.05 %. However, in a real situation where the UI is visible for

the human operator, the operator can see from the UI that the gesture was not recog-

nized and can readjust the fingers, so it is recognized correctly. In both gestures where

problems were faced, the ring finger was one of the straight fingers, and it was also the

one that needed readjustments. Such problematic interactions can be faced due to poor

calibration, which can be corrected with the runtime calibration section of the UI.

6.2 Isolated tests for 3D-module

The first test done for 3D-module was to evaluate the largest angle the camera can be

in x-y-plane with respect to chessboard tag. For this test there was a specific code added

for in the calibration function that will calculate the angle between the 𝑥𝑐𝑎 and 𝑥𝑐𝑏 and

PCD was visualized at the end of the calibration function to find if the calibration was

indeed successful. The maximum angle measured between the vectors was 45.34 de-

grees, which would be 90.68 degrees if applied two times. The higher than 90-degree

angle was measured since the camera was not fully straightened. The maximum angle

was therefore as expected earlier in the Thesis in Sec. 5.4.2. To be sure that the calibra-

tion works, the buffer should be left on the angle, so the lower than 45-degree angle can

be seen with naked eye.

The times of each 3D-module function were clocked five times, when moving the camera

and scrambling the bin of parts in between. The clocked times and mean time for each

function are presented in the following table (Table 7).

Problematic gestures Amount Iteration number(s)

Middle and ring straight 1 4
Index and ring straight 1 7

Amount of succesful interactions: 208 Amount of problematic interactions: 2

Accuracy of gesture recognition: 99.05%
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Completion times and their mean for each 3D-module function

The time that it takes to acquire a PCD is quite long, which can be problematic in process

where the system needs to act fast. Most of the time is consumed in saving the Zivid

point cloud object to a file point cloud file (.ply) and converting it to 2D. This would need

to be considered in runtime by capturing the new point cloud when the robot is not in

between of the camera and bin and doing rest of the procedures in the background.

However, this function was not added to 3D-module and can be considered as future

development topic.

Calibration function was quite fast, and since it must be done only once at the start of

the process if the camera has moved, the time is acceptable. Due the fast calibration, it

makes sense to do it at the start of every process to be sure that the camera has not

moved in between.

Finding the grasp pose took similar amount of time as acquiring the PCD, and since the

whole function can be done in the background, there was two new functions added to

3D-module, one which finds the grasp pose in the background, and one which returns

the found grasp pose. This will drastically lower the time that the cycle takes. These

functions are tested when evaluating the taught system in the evaluation process.

The collision avoidance system was tested, and it was found that it works as intended.

Following Figure 49 has an image on the left, where the grasp pose is not found, and on

the right point cloud and grasp pose that was found. On the left side, in addition to the

top side of the part, only one side is facing the 3D camera, and the parts prevents finding

collision-free grasp poses for each other. On the right side, the parts are in a way, where

two sides of the part are visible for the camera, and therefore the system can find the

grasp pose.

Iteration Acquire
PCD (s)

Calibra-
tion (s)

Find
grasp pose

(s)
1 4,93 0,69 5,14

2 4,51 0,71 4,97

3 5,41 0,69 4,91

4 5,07 0,68 4,24

5 5,49 0,80 4,46

mean 5,08 0,71 4,74
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No collision free points found with the example of robot finger col-
liding on the left side, and found grasp pose on the right side

Few problems were faced during the tests for 3D-module. If the bin is between the struc-

tured light source of the 3D camera and the chessboard tag, even if the camera would

see the tag, the bin can cast a shadow over the chessboard tag and the calibration won’t

work. This situation is illustrated in Figure 50. The camera needs to see all the 4x4 tiles,

and in this situation the shadow will blend with the squares closest to the bin shadow,

and therefore the function that finds the chessboard corners does not work. However, if

the image ends by cutting a part away from side of the chessboard tag, the calibration

still works. This can be thought as limitation for the bin and chessboard tag placement

with respect to the camera.

Bin casting a shadow on the chessboard tag

When finding grasp pose, there were some problems faced with the distortion of point

clouds that are caused by reflection. Such problematic pose of the part is illustrated in

Figure 51. The part is aligned with camera and creates reflection of light to the bottom of

the bin. On top of this, the whole dark side of the part is distorted, and the points are

scattered along the path from the part to camera lens, and therefore the 90-degree an-

gles are not found for this part. To fix this problem, there would need to be further refine-

ment of the camera settings, or alternatively pick parts that are not metallic, which is the

major reason that causes such problem due the reflectiveness.
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Part that caused noisy point cloud due the reflection of metallic
side

6.3 Tests done for complete Use-Case

All Use-Case tests were conducted in FAST-laboratory, and with only one participant,

the Thesis author. The tests done for the whole Use-Case were done in two ways. The

teaching procedure was evaluated, and the glove-based input was compared to GUI

input interacted with a mouse in the first test set in Sec. 6.3.1. The second test set fo-

cused on assessing the taught system with the evaluation process in Sec. 6.3.2.

6.3.1 Tests done in the teaching process
The evaluation of task completion times focuses on human and robot tasks since 3D-

module was already tested in isolation and will be tested in later evaluation process. The

time of each individual tasks were clocked once, and for new iterations only the human

tasks were clocked. The human tasks are the only ones that have notable time variation

between the test iterations.

As explained in the Sec. 5.5.3. the teaching procedure was iterated six times, three times

using the glove as input method and three times using a mouse as input method. Table

8 was created as result of the tests, and the captured video was further analysed. To

better compare each of the input methods, the human tasks were timed and separated

in two columns. The first column presents the time that the whole task took, minus giving

of the input. The second column presents time, where the human operator stops doing

the task, as the task itself is completed, and starts to use or reach the input device. This

separation was done using the video footage captured from the test case. The third col-

umn holds percentage that the interaction took from the whole task. The tasks that are

assigned to be done by the human, the percentage that the task itself consumes should

be much higher than what the interaction method consumes. In short tasks, for example

when answering a question with the input device, the interaction will consume high per-

cent of the time used for the whole task. For each human tasks, the percentage of using

the input device from the whole human task was calculated.



69

Resulting times when testing glove and GUI as input method

Task name

Glove as input method Mouse as input method

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

task input % task input % task input % task input % task input % task input %

Move 3D ca-
mera 15.40 2.58 14.3 20.22 2.42 10.7 13.30 2.09 13.6 11.40 7.03 38.1 18.66 4.62 19.8 13.30 3.45 20.6

Which side ca-
mera is? 3.31 2.32 41.2 2.85 1.98 41.0 2.94 2.32 44.1 4.01 3.98 49.8 4.01 3.98 49.8 3.22 2.97 48.0

Output the
chessboard pos. 0.38 0.38 0.38 0.38 0.38 0.38

Capture PCD +
2D image 5.32 5.32 5.32 5.32 5.32 5.32

Calibrate 0.69 0.69 0.69 0.69 0.69 0.69

Find grasp pose 4.42 4.42 4.42 4.42 4.42 4.42

Bin visible? 6.01 2.15 26.3 5.52 2.13 27.8 7.21 2.24 23.7 5.11 3.21 38.6 7.25 3.99 35.5 5.95 4.15 41.1

Enable walk-
through mode 0.52 0.51 0.55 0.52 0.56 0.53

Teach over tray
position 11.33 2.00 15.0 9.42 2.48 20.8 8.98 2.33 20.6 10.23 4.92 32.5 9.77 4.21 30.1 7.02 2.49 26.2

Save over tray
position 0.45 0.44 0.41 0.43 0.43 0.46

Disable walk-
through 0.52 0.51 0.49 0.48 0.51 0.47

Move over grasp
pose 2.53 2.53 2.53 2.53 2.53 2.53

Move to grasp
pose 1.06 1.06 1.06 1.06 1.06 1.06

Close gripper 1.34 1.34 1.34 1.34 1.34 1.34

Move over grasp
pose 1.24 1.24 1.24 1.24 1.24 1.24

Enable walk-
through mode 0.52 0.51 0.55 0.52 0.56 0.53

Teach rest posi-
tion 11.05 2.11 16.0 8.82 2.02 18.6 9.26 2.47 21.1 8.76 5.24 37.4 11.08 4.44 28.6 6.10 4.42 42.0

Save rest posi-
tion 0.43 0.47 0.47 0.49 0.46 0.47

Teach handout
position 5.09 2.30 31.1 6.17 3.92 38.9 4.56 2.19 32.4 4.72 4.32 47.8 3.82 5.13 57.3 5.38 2.89 34.9

Save handout
position 0.41 0.45 0.44 0.42 0.41 0.43

Grab the part 2.30 4.41 65.7 1.91 2.91 60.4 3.70 2.41 39.4 2.52 4.74 65.3 1.83 3.81 67.6 3.29 3.95 54.6

Open gripper 1.23 1.17 1.22 1.41 1.08 1.24

Disable walk-
through 0.52 0.51 0.49 0.48 0.51 0.47

Go home 4.43 4.43 4.43 4.43 4.43 4.43

sum 80.50 17.87 80.89 17.86 75.98 16.05 72.91 33.44 82.35 30.18 70.27 24.32

sum of sum 98.37 98.75 92.03 106.35 121.00 102.98

Average of
sums 96.38 110.11

Average 2.55 30.0 2.55 31.2 2.29 27.8 4.78 44.2 4.31 41.3 3.47 38.2
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The total times of whole teaching sequence, and the average of this total time is pre-

sented in red colour. Using the mouse as input method took considerably more time than

when using the glove as input method. The total times consumed to teaching are low in

general, averaging to 1min 36s with the glove and 1min 50s with the mouse.

Furthermore, the table holds average time for interaction and average percentage that

the interaction consumed from the whole human task in green colour. The average time

of the interaction was 2.47s with the smart glove and 4.19s with the mouse. On average,

the mouse interaction took 69.6% more time than with the glove. For M2O2P to register

a gesture and complete a task, the algorithm takes 1.5s. When utilizing natural input

methods, here using a glove worn by the user, the interactions can be done relatively

fast. The average time from letting go from the robot and registering the gesture for the

first time was only 0.97s. Average percentage that using the glove as input device took

from the whole human task was 29.7% where the same percentage was 41.2% when

using the mouse. This was seen from the video clearly, since the human operator needed

to reach the mouse when holding the robot and took more time than just doing the ges-

ture with the smart glove.

To further investigate the differences between the interaction methods, only the times

that the human tasks consumed in the whole process were gathered, and following his-

togram was created (Figure 52). The gray-coloured bars correspond to interaction times

and purple-coloured bars to rest of the task. The combined time of human tasks is pre-

sented over the bar.
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Histogram of interaction times compared to whole human tasks in
the process

Multiple consecutive human tasks, which don’t require human to take the hand off the

mouse, would be much faster to complete using the mouse and GUI. However, the tasks

usually require physical manipulation by the human, and that’s why the glove presents

as better interaction device.

The testing scenario is illustrated in Figure 53, where the top row holds the images of

teaching all three poses using glove as input, and the bottom row holds teaching the

same positions with mouse as input. The glove can be used without moving in the work-

space, yet the mouse needs to be reached at the same time taking the focus off from the

teaching process, and in worst case the pose that is taught for the robot will change when

reaching the mouse. This might be problematic in a situation where the mouse location

is further away.
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Illustration of teaching procedure using the glove and the mouse
and GUI as input method

The GUI of M2O2P component can be reached in local network using the IP address of

the host PC, which in some cases can be located somewhere else, for example in the

electrical cabinet of the robot cell. The freedom that is provided using the glove as the

interaction method is crucial in such tasks, where the interaction event needs to be done

on the spot and moving to interact with the GUI would have negative impact on the flow

of the process.

6.3.2 Tests done in the evaluation process
To evaluate the teaching process, the evaluation process presented earlier in Sec 5.3.3

was executed, captured on video and times of each task were clocked. The clocked

times for four parts (emptying a bin that has four parts) are presented in Table 9. Since

the robot movements were kept relatively slow in the evaluation process to spot possible

problems, there were two columns added that has 100% faster robot movement. The

robot speed was set to 100mm/s in joint movements and 50mm/s in Linear movements

in testing case, which would be 200mm/s and 100mm/s after doubling the velocity. The

changed values are presented in red colour. The background function for the acquisition

of the PCD was not implemented, so the last set of values has the times where the

acquisition of the PCD was cut down to 110ms, which is the time that the acquiring of

the PCD and processing it takes provided by Zivid [93]. The changed values are pre-

sented in green colour.
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Times consumed in tasks, with added scenarios

The cycle time from the human using the gesture to release the part, and for the robot to

pick new part and bring it to handout position would take approximately 30s. This would

mean that the one part that is brought to human should be enough for the human to be

busy for 30s. If the robot is used as third hand, such cycle time would be too long for

bringing one part to use of the human. In the last scenario, where the robot moves 100%

faster and the times that the Zivid takes to capture PCD is cut down to 110ms, the cor-

responding value is cut down to approximately 13s, which as cycle time is notably better.

The system uses the approximately 5.35s, minus the 110ms resulting to 5.24s, to pro-

cess and save the PCD, and additional 4.74s to find the grasp pose. If these are added

together, the resulting time would be 9.98s. The time between the PCD has just been

acquired, and the system would need the information about the grasp pose is 10.07s. In

such case, the grasp pose would be found just in time. However, this creates limitation

for the cycle time and in some scenarios can be too long. To cope with the problem,

there would need to be an alternative method for changing the PCD from Zivid format to

Open3D format, that does not take so much time.

To evaluate the grasp poses, 10 bins which had four parts in each were emptied. Fur-

thermore, at the start of each iteration the camera location was recalibrated. The suc-

cessful and failed grasp poses for each part and iteration are presented in Table 10.

Task name

Measurements from one run
with three parts (s)

100% faster robot
movements (s)

100% faster robot move-
ments and with acquire time
that is given in the Zivid man-

ual (s)

part 1 part 2 part 3 part 4 part 1 part 2 part 3 part 4 part 1 part 2 part 3 part 4
Move to rest position 4.52 2.26 2.26

Acquire PCD 5.12 5.12 0.11

Move over the tray 5.35 5.22 5.25 5.21 2.68 2.61 2.63 2.61 2.68 2.61 2.63 2.61

Move over grasp pose 3.40 3.45 3.92 5.22 1.70 1.73 1.96 2.61 1.70 1.73 1.96 2.61

Move to grasp pose 1.12 1.08 1.11 1.16 0.56 0.54 0.56 0.58 0.56 0.54 0.56 0.58

Close gripper 2.07 1.33 1.58 1.59 2.07 1.33 1.58 1.59 2.07 1.33 1.58 1.59

Move over grasp pose 1.12 1.04 1.10 1.12 0.56 0.52 0.55 0.56 0.56 0.52 0.55 0.56

Move to rest position 6.11 4.57 5.92 6.05 3.06 2.29 2.96 3.03 3.06 2.29 2.96 3.03

Acquire PCD 5.45 5.28 5.31 5.35 5.45 5.28 5.31 5.35 0.11 0.11 0.11 0.11

Move hand out pose 3.36 3.07 2.91 2.41 1.68 1.54 1.46 1.21 1.68 1.54 1.46 1.21

Grab the part 3.28 3.53 3.69 3.23 3.28 3.53 3.69 3.23 3.28 3.53 3.69 3.23

Open the gripper 1.24 1.16 1.25 1.33 1.24 1.16 1.25 1.33 1.24 1.16 1.25 1.33

Move to rest position 2.38 2.24 2.33 2.41 1.19 1.12 1.17 1.21 1.19 1.12 1.17 1.21

Sum 44.52 31.97 34.37 35.08 29.65 20.52 21.94 22.09 19.30 15.35 16.74 16.85
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Accuracy of successful grasping

The accuracy of the grasping was 87.5 %, which is not too poor, yet should be higher,

especially when the parts are brought to human. However, the grasping accuracy was

affected by the limitations of the robot in three grasp poses. On iteration two, the joint

angle of second joint of the robot was exceeded, which was caused by saving not good

enough “over the tray” pose. On iteration four and seven the motion supervision of the

robot was triggered and stopped the robot movement. This scenario is presented in Fig-

ure 54, where the slope of the part makes the robot push the table when gripper fingers

are approaching each other.

Slope of the part causing motion supervision error from the robot
controller

From the five failed grasping, three of them was caused by the robot or environmental

factors. Yet, with all of them the grasp pose itself was good. By considering these three

as successful grasp poses, the accuracy of the grasp poses would be 95%, which is

notably better. However, the Bin-Picking systems are evaluated as whole, meaning that

Iteration part 1 part 2 part 3 part 4

1 o o o o

2 o x o o

3 o o o o
4 o o o x

5 o o o o

6 x o o o
7 o o o x

8 o o o o

9 o o o x
10 o o o o

Successful grasps: 35, failed grasps: 5

Accuracy of grasping: 87,5 %

o = successful, x = failed
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the successful grasping should be calculated instead of the successful grasp poses. The

process itself doesn’t have enough information for the user to save “good enough” poses,

hence the task information given for the human should include the information about how

the pose needs to be saved for the system to effectively use it.

In two iterations one of the robot fingers collided with the part. The Figure 55 illustrates

how the fingers collided on the ninth iteration. First three grasp poses are fine, and the

robot manages to bring the parts for the human, yet with the last part the right robot

gripper finger collides with the part.

Example of the grasp positions with a failed grasping in last image

The grasp poses were additionally evaluated through the PCD presentation, which

showed that the grasp poses in the successful grasping scenarios were correct. This

would mean, that the calibration function worked, yet the find the grasp pose -function

didn’t in all cases. The point cloud was unclear in scenarios where the grasp pose was

unsuccessful, and it seemed to be caused by the reflection of the part. The points near

the collided finger were more infrequent and that’s why the location of the grasp pose

was enough on the left to make the right finger collide with the part. Therefore, the find

grasp pose -function would require further development to overcome this issue.
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7. CONCLUSIONS

The Thesis found working solution for the reusing the collaborative robot cell for Bin-

Picking operations with the help of human operator. The solution consisted of modular

context-aware Smart Factory components, which were able to seamlessly communicate

with each other using FIWARE as middleware. The processes created to teach and eval-

uate the collaborative robot cell were successful and shaped the components to provide

modular functions. However, the proposed solution is not an industrial grade and was

created for research environment.

To conclude the work done in this Thesis, the developed solution and the results of the

work are presented through the research questions provided in Sec. 1.2. The questions

are answered in following paragraphs individually.

Implementing gestural HRC based system for industrial applications required research

about HRI and HRC in general, and about previous work in the field of gesture recogni-

tion. The solution ensured safety of the operator through force and torque sensors and

soft paddings installed to the YuMi robot, and with safe operating speeds of the robot.

Furthermore, to exploit the flexibility of the human operator, the walk-through robot pro-

gramming method was utilized to teach new poses for the robot, which were saved using

hand gestures invoked by the operator.

For the gestures to be recognized M2O2P hand gesture recognition component was

deployed, which provided high gesture recognition accuracy: 99.05% measured in the

tests. Such accuracy is comparable what was reported in similar systems; In [124] the

vision-based gesture recognition system uses ML algorithms and Kinect v2 to provide

98.9% accuracy, whereas in [125] the authors reported accuracy of 98.9% for sensor

glove-based hand gesture recognition for Arabic sign language. M2O2P component was

further evaluated by measuring the feasibility of the component in the means of acci-

dental gestures. Testing with the Cutkosky’s grasp taxonomy revealed four accidental

gestures, which can be avoided when planning what gestures to use in tasks where

object manipulation is necessary. Accidental gestures were not faced when doing the

Use-Case tests.

For complete communication between the human operator and robot, there were Robot

Controlling Application developed to provide the gestural actions triggered by human

operator for the robot controller, and Orchestrator Application to assign tasks for all soft-

ware components. Such components provided little to no variations within the process,
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and therefore no errors or failures in functionality for such was reported in software

runtime.

Creating a component that processes 3D data for Bin-Picking operations included re-

search about the required information for successful Bin-Picking, such as poses of the

object and the gripper, and necessary Point Cloud processing methods for finding such

information. For this purpose, 3D-module was deployed with three functionalities: com-

municating with the 3D camera and acquiring a PCD, finding the grasp pose and cali-

brating the location of the camera using the acquired PCD. The latter one was added for

the 3D-module to provide modularly attachable component for HRC system, which uti-

lized chessboard tag located in known location for the robot controller and was used for

finding the location of the camera with respect to the robot base frame. Furthermore, the

calibration function was successful and worked on every iteration. However, problems

regarding the shadow that the bin creates were faced and with the provided solution only

way to fix it was to position the camera in a way, that the shadow is not cast on the

calibration chessboard tag.

The algorithm created for 3D-module for finding the grasp pose assumed the parts con-

sists mostly of 90-degree angles, are always picked from above and are semi-structured.

The successful grasp poses were able to be found with a 95.0% accuracy and successful

grasping of the system was reported as 87.5%. The developed system doesn’t compete

with the accuracies of other state-of-the-art systems, such as in [82] the reported accu-

racy was 91.6 ± 4.1% with arbitrary objects without limitations for the shape of the object

in random Bin-Picking setup.

Gestural HRI method was compared to more traditional method using GUI by creating a

test, where the human operator taught the robot in three teaching iterations using the

glove interface, and in three iterations using the mouse as interface. The time consumed

completing the task and interacting with the system was analysed using video footage

captured during the test. The test resulted with clear indication that for such teaching

process the glove interface provided faster and more effortless interface to save the robot

poses. On average, interaction using the glove consumed 29.7% from the whole human

task, whereas the mouse took 41.2%.

7.1 Future work

M2O2P offers the support for one sensor glove, CaptoGlove. Due the software architec-

ture of the component, with small changes in functions that process the sensor data to
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states, the application supports any input device that can be utilized for gesture recogni-

tion. To further develop M2O2P, there could be more devices added that the application

supports. In a case where the input device uses IMU sensors or vision sensors, the fur-

ther development might require moving away from the static thresholds and utilize AI or

ML for the solution.

The orchestrator assumes that the tasks are done in sequence, meaning there is no logic

for handling parallel tasks. To make the OA a fully-fledged software, the ability to do the

process modelling using GUI and the functions that supports multiple parallel tasks

should be added. Furthermore, since Process Management (PM) as a topic is quite ex-

tensive, there should be further research done in this regard as a concept. It is acknowl-

edged that in the Thesis the PM is not researched, since the area of research for Thesis

would have been too large. Now the tasks that are given to RCA are executed one after

other, and there is a small downtime between the tasks. In a real industrial environment

OA and RCA should support trajectories with given ABB RAPID zone input. For example,

the rest pose and the over the tray -pose could be given as a series of points and the

trajectory would be smooth from point to another.

The solution finds the grasp pose for unknown parts by processing the point cloud auto-

matically, which could be done considerably faster with ML/AI based approach. As men-

tioned earlier, 3D-module should support acquiring the PCD in the background, due the

time it consumed in the process. The major limitations for the 3D-module were the

shapes of the parts, consisting of mainly 90-degree angles, and missing support for ran-

dom Bin-Picking. The support for different shapes and modifying the algorithm to support

random Bin-Picking would be important for further development. The collision detection

system assumes that the gripper fingers are fully opened when going in the grasp pose.

If there is a part in between the grasp pose, and the function finds collision free position

for the gripper, the system would accidentally pick two parts, which is not desired behav-

iour. The collision detection system should be further developed, by trying different dis-

tances between the gripper fingers and choosing it in a way that the gripper fingers are

just outside of the pair of the points and the grasp pose is collision-free. Such change

would mean that the gripper fingers should be controlled with the distance between the

fingers instead of just opening and closing them.
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