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Abstract—The dream of having ubiquitous and high-capacity
connectivity is coming true by emerging low Earth orbit (LEO)
Internet constellations through several commercial plans, e.g.,
Starlink, Telesat, and Oneweb. The analytical understanding of
these networks is crucial for accurate network assessment and,
consequently, acceleration in their design and development. In
this paper, we derive the coverage probability and the data rate
of a massive LEO network under arbitrarily distributed fading
and shadowing. The conventional user association techniques,
based on the shortest distance between the ground terminal
and the satellite, result in a suboptimal performance of the
network since the signal from the nearest server may be subject
to severe shadowing due the blockage by nearby obstacles
surrounding the ground terminal. Thus, we take into account
the effect of shadowing on the serving satellite selection by
assigning the ground terminal to the satellite which provides
the highest signal-to-noise ratio at the terminal’s place, resulting
in a more generalized association technique, namely the best
server policy (BSP). To maintain tractability of our derivations
and consider the latitude-dependent distribution of satellites, we
model the satellites as a nonhomogeneous Poisson point process.
The numerical results reveal that implementing the BSP for
serving satellite selection leads to significantly better performance
compared to the conventional nearest server policy (NSP).

I. INTRODUCTION

Low Earth orbit (LEO) Internet constellations are gaining
increasing popularity all around the world due to providing
seamless connectivity, especially for isolated regions where
deployment of terrestrial networks is not economically feasible
or for countries with restricted access to Internet. To keep pace
with the commercial progress of LEO networks and accelerate
their development, analytical modeling and understanding of
these networks — without time consuming and network-
specific orbital simulations — are of great importance.

Although several aspects of massive LEO constellations
have been investigated recently in the literature [1]–[10],
little attention was paid to the effect of shadowing on the
selection of the serving satellite, which noticeably affects
the network performance. The server association used in the
literature is based on the shortest distance, i.e., the so-called
the nearest server policy (NSP), which is the most simplistic
association technique and is rarely used in practice since it
is unable to include the effect of the large-scale attenuation,
i.e., shadowing, on the variation of the received signal. In
this work, we will implement the more realistic association
technique, the best server policy (BSP), which includes the
shadowing effect on the serving satellite selection by assigning

the ground terminal to a satellite that provides the highest
signal-to-noise ratio (SNR) at the terminal’s place.

The best server policy is frequently used to evaluate the
performance of terrestrial networks [11]–[13], and proved to
provide more reliable network performance. Moreover, the
best server policy is more in line with practical association
techniques since, in reality, the SNR at the receiver is a major
criterion to determine the server [13].

The literature on LEO network analysis has been mostly
limited to simulation-based deterministic analyses [14]–[16]
until recently that the application of stochastic geometry and
statistical models for tractable analysis of massive wireless
networks [17]–[22] was extended to LEO networks’ analysis.
Utilization of stochastic geometry enables characterization of
the serving distance which is a key parameter in performance
evaluation of theses networks. However, the serving distance
for analytical modeling of LEO networks is mostly assumed
be to the shortest distance between the user and the satellites.

In [1], we derived the coverage probability and the data rate
of a massive LEO network in presence of co-channel interfer-
ence by modeling the network as a binomial point process
(BPP). Since the satellites’ locations in actual constellations
barely follow a uniform distribution, we adjusted the inherent
performance mismatch numerically in [1]. The mismatch was
also compensated in [2] and [3] through analytically finding
the effective number of satellites for every user’s latitude and
modeling the network as a nonhomogeneous Poisson point
process (PPP) with a latitude-dependent intensity, respectively.
Unlike [1], [2], shadowing was included in the propagation
model in [3], but it had no effect on the association rule and
the user connects to its nearest satellite. A more generalized
system model was studied by inclusion of interference in [4].

The contact angle, i.e., the minimum angular distance
between the satellites and the user, is characterized in [5] to
evaluate the performance of a LEO network without consid-
ering the effect of shadowing attenuation. The results were
then used in [6] to find the altitude that maximizes coverage
probability. The uplink performance of a LEO network in
presence of terrestrial interferers was characterized in [7]. In
[10], the distribution of conditional coverage probability was
derived, given the nodes’ positions, for a satellite–terrestrial
relay network in order to evaluate the percentage of ground
users that may reach a target SINR threshold.

In [8], essential distance distributions were formulated for
LEO networks assuming satellites are distributed on multiple



concentric spheres, each of which has a known specific radius.
The results were then used to analyze the coverage probability
in [9] when satellite gateways relay the data between the
satellites and the terrestrial users. Despite assuming shadowed
Rician channels in [9], [10], they had no effect on the contact
distances.

According to the literature review, the best server policy
has not yet been characterized for analytical evaluation of LEO
networks, in spite of the fact that it is the most frequently used
association technique in practice. Moreover, the shadowing
effect, which enables the characterization of the best server
policy, was not considered in most of the literature.

In this paper, we formulate new analytical expressions to
evaluate the coverage probability and rate of a LEO network,
assuming that the server is selected based on the best server
policy. Including shadowing in the propagation model, we
assume that the ground terminal associates with the satellite
that provides the highest received SNR for the terminal. We
corroborate our derivations through Monte Carlo simulations,
and compare them with the conventional nearest server policy,
which was presented in [3]. As our numerical results illustrate,
the best server policy results in significantly better perfor-
mance in both coverage probability and data rate compared
with the nearest server policy.

The remainder of this paper is organized as follows. Sec-
tion II introduces the studied system model and the mathemat-
ical preliminaries to model a LEO network as a nonhomoge-
neous PPP. Distance distributions required to characterize the
coverage probability and the data rate of a LEO network are
presented in Section III. The numerical results are provided in
Section IV. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

In this section, firstly, we describe the actual LEO con-
stellation that will be studied in this paper. Secondly, we
present the (re)modeled nonhomogeneous PPP which not only
captures all the characteristics of the actual physical network,
but also enables us to tractably analyze and derive the network
performance metrics. One should note that the study holds
for both downlink and uplink directions equivalently although
some of the following system aspects are specified from the
downlink perspective for simplicity.

The actual network studied in this paper is a massive LEO
Internet constellation, as shown in Fig. 1, consisting of N
satellites which are distributed uniformly on circular orbits at
a given altitude, rmin. The orbital planes are all inclined to an
angle, denoted by ι. The ground terminals (GTs), i.e., users
and/or gateways, are located on Earth’s surface at an arbitrary
latitude denoted by φu. Earth is assumed to be a perfect sphere
with radius r⊕ ≈ 6371 km.

A satellite is visible to a ground terminal, i.e., it can receive
from or transmit to it, if it is elevated above the user’s horizon
to a minimum angle of θmin. The distances from the satellites
to the ground terminal, their corresponding channel gains, and
the shadowing coefficients are denoted by Rn, Gn, and Xn,
where n = 0, 1, . . . , N − 1. Throughout the paper, we reserve

Fig. 1. A LEO constellation in an example case of N = 1000 satellites
flying on ι = 53◦ inclined orbits at rmin = 1800 km. Only 6 example
orbital planes are shown for clarity.

index zero for the serving link, i.e., R0, G0, and X0 represent
the distance to the server, its corresponding fading gain and
its shadowing coefficient, respectively. A satellite and GT may
be able to communicate only if Rn ≤ rmax, where rmax is the
distance between the satellite and GT when the satellite is at
the minimum elevation angle, i.e., θmin. Obviously, rmax is a
function of θmin and is given as [3]

rmax

r⊕
=

√
rmin

r⊕

(
rmin

r⊕
+ 2

)
+ sin2(θmin)− sin(θmin). (1)

The signal-to-noise ratio at the receiver, based on the above
system model, can be expressed as

SNR =

 psG0X0R
−α
0

σ2
, R0 ≤ rmax,

0, otherwise,
(2)

where ps is the constant transmission power. The parameter
α = 2 is a path loss exponent and the power of the additive
noise is denoted by σ2.

In this paper, we implement the best server policy to select
the serving satellite. Accordingly, the serving satellite will be
the one which provides the strongest SNR for the receiver.
Since fading coefficients, Gn, vary quickly over the time, we
assume that they have no effect on the association technique.
Therefore, when implementing the best server policy, the
serving link must satisfy the following equation:

X−
1
α

0 R0 = min
n

(
X−

1
α

n Rn|Rn < rmax

)
. (3)

We then remodel the actual network, described earlier, as
a nonhomogeneous PPP which allows us to take into account
the varying density of satellites along different latitudes while
maintaining the tractability of our derivations [3]. Ergo, we
assume that the satellites are distributed according to a non-
homogeneous PPP, on a spherical shell with radius r⊕+rmin.



By the definition of a nonhomogeneous PPP, the number
of points in some bounded region A of the orbital shell is a
Poisson-distributed random variable denoted by N . Thereby,
the probability to have n satellites in A is given by

Pn (A) , P (N = n) (4)

=
1

n!

(∫∫
A
δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

)n
× exp

(
−
∫∫
A
δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

)
,

where δ(φs, λs) is the intensity function of nonhomogeneous
PPP at latitude φs and longitude λs. Based on the given
system model, A is any spherical cap in the area where visible
satellites to the user exist.

The intensity of nonhomogeneous PPP, when satellites are
distributed uniformly on inclined low Earth orbits, is a function
the satellites’ latitudinal element, φs, which is characterized in
[3] as

δ(φs, λs) = δ(φs) (5)

=
N√

2π2(rmin + r⊕)2
√

cos(2φs)− cos(2ι)
.

As implied above, the intensity is inherently independent of
the satellites’ longitudinal element, λs.

III. PERFORMANCE ANALYSIS

In this section, we find mathematical expressions for the
coverage probability and the data rate of the described LEO
constellation under the best server policy. Modeling the satel-
lites locality as a nonhomogeneous PPP, we are able to find the
distance distributions, in terms of their cumulative distribution
function (CDF) and probability density function (PDFs), which
will contribute to arriving at our main derivations in this paper,
i.e., coverage probability and data rate.

A. Distance Distributions

In the following lemma, we derive the distribution of the
distance from the user to any visible satellite, Rvis

n , in terms
of its CDF.

Lemma 1. The CDF of the distance from any visible satellite
in the constellation Rvis

n to the ground terminal is given by

FRvis
n

(rn) , P (Rn < rn|Rn < rmax) (6)

=

∫∫
A(rn)

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs∫∫
A(rmax)

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

for rmin ≤ rn ≤ rmax. A(rn) and A(rmax) are the cap area
where all satellites therein have a distance less than or equal
to rn and rmax to the GT, respectively.

Proof. The CDF of the distance from any visible satellite to
the GT is equal to the CDF of surface integral of δ(φs, λs)
over the spherical cap A(rn). Conditioning on the visibility,
the CDF is trivially calculated as in (6).

Corollary 1. The CDF of Rvis
n , when the satellites are dis-

tributed according to a nonhomogeneous PPP with a latitude-
dependent intensity, δ(φs), is

FRvis
n

(rn) (7)

=

∫min(φu+θ(rn),ι)

max(φu−θ(rn),−ι) δ(φs) cos(φs) cos−1
(

cos(θ)
cos(φs−φu)

)
dφs∫min(φu+θ(rmax),ι)

max(φu−θ(rmax),−ι) δ(φs) cos(φs) cos−1
(

cos(θ)
cos(φs−φu)

)
dφs

,

where θ(r) = cos−1
(

1− r2−r2min

2(rmin+r⊕)r⊕

)
is the polar angle

difference between a satellite and the ground terminal.

Proof. Corollary is obtained by calculating the longitude range
inside the spherical cap and with the aid of the basic geometry
(for more details see [3, Lemma 2]), and substitution in
Lemma 1.

Considering the effect of shadowing on BSP association,
let us define R̃0 , minn X

− 1
α

n Rvis
n as the nearest effective

distance from the visible satellites to the user. The following
lemma gives the PDF distribution of R̃0.

Lemma 2. The PDF of the nearest effective distance R̃0 is
given by

fR̃0
(r̃0) =

∞∑
n=0

nPn (A(rmax))

×
∫ ∞
0

αz−α−1n fXn
(
z−αn

)
FRvis

n

(
r̃0
zn

)
dzn

×
(
1−

∫ ∞
0

αz−α−1n fXn
(
z−αn

)
FRvis

n

(
r̃0
zn

)
dzn

)n−1
, (8)

where the PDF of the random variable Zn , X−
1
α

n is
evaluated at point zn.

Proof. See Appendix A.

If satellites were distributed according to a homogeneous
PPP with constant density δ = N

4π(rmin+r⊕)2 , the distribution
of the nearest effective distance would be simplified as in the
following lemma. This requires compensating for the density
mismatch by replacing N by the effective number of satellites.

Lemma 3. The PDF of the nearest effective distance R̃0 when
the satellites are distributed uniformly with constant intensity,
δ = N

4π(rmin+r⊕)2 , is

fR̃0
(r̃0) =

∞∑
n=0

1

(n− 1)!

(
δπ
(
r2max − r2min

)
1− rmin

r⊕+rmin

)n

× exp

(
−
δπ
(
r2max − r2min

)
1− rmin

r⊕+rmin

)

×

1−
∫ ∞
0

αz−α−1n fXn
(
z−αn

)
(
r̃0
zn

)2
− r2min

r2max − r2min

 dzn


n−1

×
∫ ∞
0

αz−α−3n fXn
(
z−αn

)(2r̃0 − r2min

r2max

)
dzn . (9)



TABLE I
SIMULATION PARAMETERS

Parameters Values
Path loss exponent, α 2
Rician factor, K 10
Transmit power, ps 50 dBm
Noise power, σ2 -120 dBm
Frequency 13.5 GHz
Mean and standard deviation of lognormal 0 dB, 9 dB
distribution: µs, σs

Proof. Since the intensity function δ is constant,
Pn (A (rmax)) is obtained simply by multiplying δ by
the surface of the spherical cap, A (rmax), where the
visible satellites can reside. Using Lemma 1, we have

FRvis
n

(
r̃0
zn

)
=

A( r̃0zn )
A(rmax)

=
( r̃0zn )

2−r2min

r2max−r2min
, since the density is

constant over the spherical shell.

B. Coverage Probability

In this subsection, we utilize the distance distributions ob-
tained in the previous section to derive the coverage probability
of a LEO constellation for an arbitrarily located ground termi-
nal under the best server policy. The coverage probability is the
probability of having a greater SNR than a minimum threshold,
T > 0, at the receiver. In other words, whenever the received
SNR is above the threshold level, the receiver is considered to
be within the coverage and the data is transmitted successfully.

Proposition 1. The probability of network coverage for an
arbitrarily located GT, under generally distributed fading and
shadowing as well as BSP association is

Pc (T ) , P (SNR > T )

=

∫ ∞
0

(
1− FG0

(
T r̃α0 σ

2

ps

))
fR̃0

(r̃0)dr̃0, (10)

where FG0
(·) is the CDF of the channel gain G0 and fR̃0

(r̃0)
is given in Lemmas 2 and 3.

Proof. To obtain (10), we start with the definition of coverage
probability:

Pc (T ) = ER̃0

[
P
(

SNR > T |R̃0

)]
=

∫ ∞
0

P
(

SNR > T |R̃0 = r̃0

)
fR̃0

(r̃0) dr0

=

∫ ∞
0

P
(
G0 >

T r̃α0 σ
2

ps

)
fR̃0

(r̃0) dr0, (11)

The proof is completed by substituting the complementary
CDF of G0.

Note that the effect of the shadowing distribution in the
coverage probability is embedded in the PDF of the nearest
effective distance, fR̃0

(r̃0), given in Lemmas 2 and 3.

C. Average Data Rate

Let us then turn to the average achievable data rate (in bits
per channel use), which states the ergodic capacity derived

from the Shannon–Hartley theorem over a fading communi-
cation link normalized to unit bandwidth.

Proposition 2. The average rate (in bits/s/Hz) of an arbitrarily
located GT, under BSP association, and generally distributed
fading and shadowing is

C̄ , E [log2 (1 + SNR)] =∫ ∞
0

∫ ∞
0

log2

(
1 +

psg0r̃
−α
0

σ2

)
fG0

(g0)fR̃0
(r̃0) dg0 dr̃0,

(12)

where fG0
(g0) represents the PDF of channel gain G0 and

fR̃0
(r̃0) is given in Lemmas 2 and 3.

Proof. Taking the expectation over the serving distance and
the channel gain, we have

C̄ = EG0,R0
[log2 (1 + SNR)]

=

∫ ∞
0

EG0

[
log2

(
1 +

psG0r̃
−α
0

σ2

)]
fR̃0

(r̃0) dr̃0. (13)

The inner integral comes from the expectation w.r.t. G0.

IV. NUMERICAL RESULTS

In this section, we evaluate and compare the effect of the
two association policies, i.e., the best server policy (BSP)
which is analyzed above in this paper and the nearest server
policy (NSP) in [3], on the performance of a LEO network.
We also corroborate our analytical derivations through Monte
Carlo simulations on the actual constellations.

Since most of the signal path is through the free space,
we set the path loss exponent to α = 2. The small-scale
fading around the GT is assumed to be Rician with parameter
K = 10. The CDF and the PDF of G0, required to evaluate
Propositions 1 and 2, are

FG0
(g0) = 1−Q1

(√
2K,
√
g0

)
(14)

and
fG0

(g0) =
1

2
e−

g0+2K
2 I0

(√
2Kg0

)
, (15)

respectively, where Q1(·, ·) denotes the Marcum Q-function
and I0(·) is the modified Bessel function of the first kind.
Shadowing is assumed to have a lognormal distribution which
is represented as X0 = 10X0/10 such that X0 has a normal
distribution with mean µs = 0 and standard deviation σs =
9 dB. Thus, the PDF of lognormal shadowing is

fX0
(x0) (16)

=
10

ln(10)
√

2πσsx0
exp

(
−1

2

(
10 log10(x0)− µs

σs

)2
)
.

The ground terminal is located on 25◦ latitude. The trans-
mit power and the noise power are set to 50 dBm and
-120 dBm, respectively. The operating frequency is assumed
to be 13.5 GHz. For the reference simulated constellation,
satellites are placed uniformly on circular orbits centered at
Earth’s center with radius r⊕ + rmin. Table I summarizes the
simulation parameters used to generate the numerical results.
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Fig. 2. Verification of Proposition 1 with simulations when K = 10, φu =
25◦, ι = 53◦, rmin = 500 km, and θmin = 10◦. The lines and the markers
represent the analytical results and simulations, respectively.

Figure 2 depicts the coverage probability versus SNR
threshold for BSP, NSP, and non-shadowing environment for
N = 500 and 1000 satellites. A fair match between the theory
(plotted by lines) and the simulations (plotted by markers) is
observed in the figure. As can be seen in the figure, the BSP
results in a significantly better coverage probability compared
to NSP, since the overall SNR at the receiver is improved by
inclusion of shadowing in association policy. It is obvious that
when shadowing is assumed to be zero, the two association
techniques become the same.

The same as for the coverage probability, the BSP provides
more reliable data rate compared to the NSP as shown in
Fig. 3. We verify the expression given in Proposition 2
(depicted with lines) with simulations (depicted with markers).
The data rate slightly decreases with increasing the inclination
angle since the satellites’ density decreases accordingly. Larger
constellation size results in higher data rates due to more
chance of being connected to the best possible server.

The effect of constellation size on coverage probability
for BSP and NSP association techniques and two inclination
angles of ι = 53◦ and ι = 90◦ are illustrated in Fig. 4. The
SNR threshold is set to 10 dB. As expected, BSP shows a
superior performance compared to NSP and the performance
difference rises with increasing the constellation size. Smaller
inclination angles result in higher coverage probability due to
providing a higher density for a given number of satellites,
especially when the constellation size is not too large. As the
number of satellites exceeds a certain limit, the coverage prob-
ability saturates to a certain value, implying that increasing the
constellation size does not always improve the performance
(i.e., no better serving channel can be associated).

The data rate for different total number of satellites and
inclination angles is depicted in Fig. 5. The curves follow
the same behaviour as those in Fig. 4, which illustrates the
better performance of BSP. As can be seen, when σs = 9 dB,
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Fig. 3. Data rate versus inclination angle when K = 10, φu = 25◦, rmin =
500 km, and θmin = 10◦. The lines and the markers represent the analytical
results and simulations, respectively.
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Fig. 4. Coverage probability versus constellation size when T = 10 dB,
K = 10, φu = 25◦, ι = 53◦, rmin = 500 km, and θmin = 10◦.

the effect of shadowing on NSP association is insignificant.
Thus, we skipped plotting the results for non-shadowing case
in Fig. 5 since they overlap the results of NSP.

V. CONCLUSIONS

In this paper, the best server policy to assign a ground
terminal to the best LEO satellite, which provides the highest
SNR at the receiver, is studied and compared with conven-
tional association techniques that only consider the distance
between transceivers. Utilizing a nonhomogeneous Poisson
point process to model the satellites’ locality, enabled us to
tractably analyze a LEO network for its two main performance
metrics, i.e., the coverage probability and the data rate, while
precisely capturing the characteristics of the actual physical
network. As a result, the distribution of the serving distance
based on BSP is derived mathematically which is a crucial
parameter in network performance assessment. From the nu-
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Fig. 5. Data rate versus constellation size when K = 10, φu = 25◦, rmin =
500 km, and θmin = 10◦.

merical results, other than verification of our derivations, we
presented the coverage probability and the data rate in terms
of different network parameters, e.g., inclination angle and
the constellation size. The best serving policy resulted in a
significantly better performance compared to the conventional
nearest server policy for different network parameter settings.

APPENDIX

A. Proof of Lemma 2

The CDF of R̃0 is defined as

FR̃0
(r̃0) = P

(
R̃0 < r̃0

)
= EN

[
P
(
R̃0 < r̃0

)
|N = n

]
=

∞∑
n=0

Pn (A (rmax))P
(

min
n

{
X−

1
α

n Rvis
n

}
< r̃0

)
=

∞∑
n=0

Pn (A (rmax))

×
(

1− P
(
X1
− 1
αRvis

1 > r̃0, · · ·,Xn−
1
αRvis

n > r̃0

))
(a)
=

∞∑
n=0

Pn (A (rmax))
(
1−

(
1− FR̃n (r̃0)

)n)
, (17)

where R̃n = Xn−
1
αRvis

n and (a) follows from {R̃n} being
i.i.d. random variables. Since each R̃n is the product of
independent random variables Rvis

n and Zn , X−
1
α

n , the
product distribution is given by

FR̃n (r̃0) =

∫ ∞
0

fZn (zn)FRvis
n

(
r̃0
zn

)
dzn . (18)

Substituting fZn (zn) = αz−α−1n fXn (z−αn ) and taking the
derivative with respect to r̃0, the CDF of R̃0 is obtained as
given in Lemma 2.
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