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Data‑driven model discovery 
of ideal four‑wave mixing 
in nonlinear fibre optics
Andrei V. Ermolaev1, Anastasiia Sheveleva2, Goëry Genty3, Christophe Finot2 & 
John M. Dudley1*

We show using numerical simulations that data driven discovery using sparse regression can be 
used to extract the governing differential equation model of ideal four-wave mixing in a nonlinear 
Schrödinger equation optical fibre system. Specifically, we consider the evolution of a strong single 
frequency pump interacting with two frequency detuned sidebands where the dynamics are governed 
by a reduced Hamiltonian system describing pump-sideband coupling. Based only on generated 
dynamical data from this system, sparse regression successfully recovers the underlying physical 
model, fully capturing the dynamical landscape on both sides of the system separatrix. We also discuss 
how analysing an ensemble over different initial conditions allows us to reliably identify the governing 
model in the presence of noise. These results extend the use of data driven discovery to ideal four-
wave mixing in nonlinear Schrödinger equation systems.

The tools and methods of machine learning (ML) are driving a revolution in the understanding of complex 
dynamics1–3, with rapidly growing interest in the fields of laser physics and ultrafast photonics4–10. From a 
fundamental perspective, an area of particular promise is the use of data-driven discovery to study nonlinear 
systems where determining an underlying governing physical model often proves elusive. The application of such 
inverse-problem like methods is motivated by the fact that although approaches using neural networks can yield 
accurate input-output descriptions of complex systems11–16, they do not provide any analytic framework with 
which to interpret the underlying physics. To this end, however, a number of reverse-engineering algorithms have 
recently been developed to identify the underlying mathematical structure of a system based only on analysis of 
data generated by the system. These results have naturally attracted much interdisciplinary attention, and have 
already been applied to many different physical problems17–21.

One particular approach to data-driven discovery aims to determine the smallest number of terms from a 
large library of potential candidate functions that can accurately represent a given data set via a system of coupled 
differential equations22–25. The methodology here is based on the empirical observation (from many areas of 
science) that the behaviour of even highly-complex systems is often governed by the interaction between a small 
number of distinct physical processes. This observation then allows the use of sparse regression to determine a 
model that is “parsimonious” i.e. containing the smallest number of terms capable of reproducing the observed 
behaviour without the presence of unnecessary overfitting26,27. The technique has become widely referred to as 
sparse identification of nonlinear dynamics (SINDy), and has been successfully applied in fields including chaotic 
systems, mechanics, hydrodynamics, and plasma physics22,28. In the field of nonlinear optics, its application has 
been more limited, although some studies have been reported identifying driving terms in soliton dynamics29, 
and mitigating impairments in telecommunication networks30. It is clear, however, that there is tremendous 
potential for much broader use of such techniques in optics.

In this paper, we report the first application of SINDy to study ideal optical four-wave mixing (FWM) in a 
nonlinear Schrödinger equation (NLSE) system31–34. In particular, using the approach introduced in Ref. 22 and 
the numerical toolbox in Ref. 24, we apply SINDy to analyse the interaction between a single frequency pump 
and two frequency detuned sidebands where the dynamics can be described by a reduced system of coupled dif-
ferential equations. Using simulations to generate data from the system, we successfully recover the underlying 
physical model, both in the ideal noise-free case as well as in the presence of noise. For input data with noise, 
we discuss how spurious terms arising from overfitting can be identified such that the underlying model with 
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the smallest number of terms can be determined. Although the ultimate aim of SINDy-like techniques is to dis-
cover physical models from experimental data, our results represent an important step in showing experimental 
feasibility. Indeed, since the FWM process underpins all Kerr-mediated CW wave-mixing phenomena, FWM is 
a highly representative test case for the use of SINDy in nonlinear optics. Moreover, although we consider the 
particular case of optical fibre dynamics, the NLSE is central to a wide range of other systems including cold 
atoms, plasma physics and hydrodynamics35–38, and we would expect these results to be readily transferrable to 
the study of FWM in these other systems.

Summary of background theory
Four-wave mixing is a central process in nonlinear fibre optics, but its observation in isolation has been prob-
lematic because the wave mixing processes cascade with distance to generate multiple higher-order frequency 
components or sidebands39–43. The development of new experimental techniques, however, has recently allowed 
fibre FWM to be excited under close to ideal conditions31,44,45, providing new possibilities to study ideal wave 
mixing dynamics in the laboratory.

We consider here the particular case of degenerate FWM where two waves at a pump frequency undergo dynam-
ical energy exchange with two equispaced sidebands. This is the system most often encountered experimentally42. 
We write the dimensionless evolving field as A(ξ , τ) = A0(ξ)+ A1(ξ) exp(i�τ)+ A−1(ξ) exp(−i�τ) , where A0 
is the field at the pump frequency and A±1 are frequency detuned sidebands at ±� . Note that with |A±1| ≪ |A0| , 
the phase-matching condition for maximum FWM gain is � = ω0 =

√
2 which is the frequency condition we 

use here. However, similar results are obtained across the full range of gain 0 < � < 2.
The dynamics of the field components are described by three coupled differential equations which can be 

reduced using a Hamiltonian formalism46 to a simpler system of two equations describing relative sideband 
intensity η and phase φ : 

Here η = |A0(ξ)|2/(|A0(ξ)|2 + |A−1(ξ)|2 + |A1(ξ)|2) , and φ = arg
[

A1(ξ)
]

+ arg
[

A−1(ξ)
]

− 2 arg
[

A0(ξ)
]

 . 
In what follows, we assume equal initial sideband amplitudes A1(0) = A−1(0) for convenience. (See the Meth-
ods sections for details of the coupled mode equations for the field components A, as well as the dimensional 
transformations in terms of the usual dispersion and nonlinearity parameters of nonlinear fibre optics.) This 
system can be readily solved numerically, and Fig. 1 shows false color plots of the spatio-temporal evolution of 
the intensity |A(ξ , τ)|2 for initial conditions with identical relative amplitude but different initial relative phase: 

(1a)
dη

dξ
=2η2 sinφ − 2η sin φ

(1b)
dφ

dξ
=− (�2 + 1)− 2 cosφ + 3η + 4η cosφ.

Figure 1.   Spatio-temporal intensity evolution of ideal FWM for initial relative amplitude η0 = 0.95 and 
different values of initial relative phase: (a) φ0 = 0 , (b) φ0 = π . The transverse phase shift in the spatio-temporal 
evolution is apparent in (b). Subfigures (c) and (d) show respectively the corresponding evolution of η(ξ) and 
φ(ξ) , and (e) shows the corresponding phase-space portraits. The red curves in all subfigures are associated with 
initial condition φ0 = 0 and the blue curves with initial condition φ0 = π . The green curve in (e) represents the 
separatrix. The labelled vertical axis in (e) displays the range of η over 0–1, whilst angles φ are shown around the 
circle.
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(a) η0 = 0.95, φ0 = 0 , and (b) η0 = 0.95, φ0 = π . Both cases exhibit periodic spatio-temporal dynamics, but it 
is clear that the ( π ) out-of-phase initial condition in Fig. 1b introduces a phase-shift in the recurrence pattern. 
Figure 1c and d show respectively the associated differences in the evolution of η(ξ) and φ(ξ) , and Fig. 1e plots 
the dynamical orbits (phase-space portraits46) using η(ξ)− φ(ξ) polar coordinates. The red curves are associated 
with φ0 = 0 and the blue curves with φ0 = π . We note here that the FWM phase-space structure is well-known 
to be divided into two broad physical classes of dynamics on either side of a “separatrix,” shown as the green line 
in the figure. The separatrix boundary distinguishes qualitatively different regimes of spatio-temporal evolution 
depending on the presence (left hand side) or the absence (right hand side) of the transverse shift in spatio-
temporal recurrence44,45. The use of the polar representation in Fig. 1e clearly illustrates how different orbits on 
each side of the separatrix are associated with different initial conditions. The separatrix itself is a limiting case 
associated with initial conditions (η0,φ0) → (1,π/2) , and leads physically to dynamics that are localized rather 
than periodic along the propagation dimension44,47. In fact, in the more general case when we are not limited 
to only four interacting waves, the separatrix trajectory describes the evolution of the Akhmediev breather47,48.

The aim of SINDy is to determine the underlying dynamical system in Eq. (1) based only on generated 
data, and with minimal assumptions about the underlying physical model. Note here that the technique can 
of course be directly applied to the coupled mode equations for the field components (see Methods), but it is 
more convenient to analyse the relative amplitude and phase data, as these can be more readily measured31. Fig-
ure 2 illustrates SINDy applied to FWM. We study the evolution with distance ξ of two variables: η and φ , and 
our aim is to invert a series of test data in these variables that has been numerically generated from the FWM 
system in Eq. (1). The input X consists of vectors η(ξm) and φ(ξm) sampled at discrete ξm , and generated for 
multiple initial conditions (trajectories) as illustrated in Fig. 2b. After estimating the corresponding derivative 
matrices (Fig. 2c), a thresholded least squares algorithm attempts to identify the contributing terms that drive 
the evolution of the sampled η(ξm) and φ(ξm) . The terms are selected from a library (Fig. 2d) of 32 different 
functions: polynomials up to 3rd order, trigonometric functions of both variables, as well as their combinations: 
�(η,φ) = [1, η,φ, η2, ηφ, ..., sin η, sin φ, cos η, ..., η sin η, η sin φ,φ cos η, ..., η2 sin η,φ2 sin φ, ...] . The choice to 
include both polynomial and trigonometric functions is based on how we might expect this system to evolve 
displaying characteristic Fermi-Pasta-Ulam periodic recurrence dynamics41,42,48. However, there is no a priori 
weighting attached to any of the library functions. The red squares in Fig. 2d highlight the “target” terms associ-
ated with the ideal FWM system.

Figure 2.   Illustration of SINDy applied to the analysis of FWM dynamics. (a) the ideal FWM system under 
study (in Hamiltonian form). (b) Multiple state vectors for different initial conditions. (c) Corresponding 
derivative matrices. (d) A selection of the 32 potential candidate library functions, with the red squares 
indicating those associated with the ideal FWM system. (e) Typical output showing the coefficients determined 
for each candidate function where output variables x0 and x1 correspond to η and φ respectively. Nonzero 
coefficients for η and φ are shown in red and blue respectively. Note that these particular results are obtained for 
noise-free data as discussed in the text.
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Results
Input data with no noise

We first consider noise-free data input. In particular, Eq. (1) is used to simulate 20 amplitude and phase tra-
jectories η and φ for different initial conditions ( η0,φ0 ) driving dynamics on both sides of the separatrix. Initial 
( η0,φ0 ) are selected from uniform random distributions over the ranges [0,1] and [0,2π ] respectively. We generate 
data with 12000 points in ξ out to a maximum span of ξ = 12 , which typically contains ∼1-4 dynamical cycles 
(depending on the initial condition.)

Applying the SINDy algorithm to this noise-free data returned the exact form of the initial differential equa-
tion system Eq. (1), identifying both the dominant physical terms and the correct coefficients to an accuracy 
of ∼10−6 . This can be seen in Fig. 2e where we reproduce the raw algorithm output showing the coefficients 
returned for a selection of potential candidate functions. Coefficients of zero are returned when SINDy finds 
that the terms do not contribute to the dynamics. In fact, with the noise-free data, additional tests showed that 
we continue to obtain such precision in the inferred coefficients even using only 5 random trajectories.

For completeness, Fig. 3a and b show the dynamics of η(ξ) and φ(ξ) for two particular initial conditions on 
either side of the separatrix, both from the returned model (circles) and the ideal model (solid line). The results 
are visually indistinguishable. Figure 3c shows the corresponding phase space dynamics. The black squares here 
show the random initial conditions ( η0,φ0 ) used to generate the input data. In the absence of noise, the excel-
lent agreement between returned and ideal model is perhaps not surprising given the known ability of SINDy 
to analyse chaotic systems such as the Lorenz equations22. However, this application to FWM clearly reveals 
how well the technique works where the system terms are periodic functions and not just simple polynomials.

Input data with noise
A more stringent test is model discovery from noisy data, as this points to experimental application. A prob-

lem, however, is that sparse regression is known to be potentially sensitive to noise, and it is therefore necessary to 
adapt techniques such as SINDy49–51. To this end, one approach has been to apply the SINDy algorithm separately 
to random subsets (“bootstraps”) of a given sequence of input data, thus yielding a number of distinct returned 
“models,” each associated with its own terms and coefficients50. The statistical analysis of these different coeffi-
cients then yields an estimation of mean values and uncertainties of the different contributing terms of the system.

In our analysis of noisy FWM data, we use a similar approach. However, instead of analysing bootstrapped 
samples from a single data series50, we consider an ensemble of input data based on scanning over different initial 
conditions; this would apply more typically to experiments in optics where it is straightforward to measure large 
data sets31. Specifically, we consider a total of 2000 simulated trajectories for random initial conditions ( η0,φ0) , 
and after computation of each trajectory, we apply random multiplicative Gaussian noise, with relative noise 
coefficient α (interpreted as a percentage) applied to the root mean-squared deviation of the data50. We then 
group the trajectories into 100 sets of 20 which are analysed by SINDy separately, returning 100 separate models, 
each with their own terms and coefficients.

Figure 4 shows results for the case of noisy FWM data with α = 2.5% . Firstly, to illustrate the level of noise 
on the input data, Fig. 4a plots η and φ evolution for one set of initial conditions. To interpret the multiple results 
obtained using this approach, we first inspect a histogram of the number of non-zero terms associated with the 
100 returned models as shown in Fig. 4b. For this case, 95 of the models possess only 6 terms, although some 
(overfitted) are returned possessing up to 12 terms (blue bars). For the 6-term models, we find that the terms 
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Figure 3.   Dynamics reconstructed from the model returned by SINDy when analysing noise-free data. (a) 
Evolution of η(ξ) and φ(ξ) for initial conditions η0 = 0.95 , φ0 = 0 from the returned model (circles) and 
the ideal model (solid line). (b) Evolution of η(ξ) and φ(ξ) for initial conditions η0 = 0.95 , φ0 = π from the 
returned model (circles) and the ideal model (solid line). (c) The corresponding dynamics plotted in η − φ 
polar coordinates. The black squares show the random initial conditions in the phase space that were used in 
this analysis. The labelled vertical axis in (c) displays the range of η over 0-1, whilst angles φ are shown around 
the circle. Both the ξ-evolution and phase-space plots use red and blue line colors for dynamics on the right-
hand side and left-hand side of the separatrix respectively (the separatrix is shown as the black dashed line). The 
threshold here was � = 0.5.
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are all identical, although the associated coefficients do vary. Aside from the fact that the 6-term model is the 
most frequently returned, this is also the natural choice from a physical perspective, where we seek the smallest 
number of contributions to the equations. The next step in the analysis is to compute the mean and standard 
deviation of the coefficients returned from these 95 models, and these results are shown in the table in Fig. 4c. 
We compare the results with the values expected from the ideal system in Eq. (1), and all coefficients are returned 
within 1 standard deviation. All standard deviations are at the 10−3 level.

Figure 5 shows additional tests of the accuracy of the “mean model” computed over the ensemble. Firstly, for 
initial conditions on either side of the separatrix: (a) η0 = 0.63,φ0 = π/3 , and (b) η0 = 0.58,φ0 = π/3 , Fig. 5a 
and b show amplitude and phase evolution from the mean model (blue dashed curves) compared with the ideal 
model from Eq. (1) (red curves). The results are visually indistinguishable. Note that these particular initial con-
ditions are selected because the orbits lie close to the separatrix and are thus the most challenging to correctly 
reconstruct. We can also test how the mean model predicts dynamics when the coefficients are varied over their 
statistical uncertainty limits. Randomly sampling the model coefficients within a range of three standard devia-
tions generates the ensemble of potential dynamics shown as the gray curves in the figure. The corresponding 
results plotted in phase space are shown in Fig.  5c.

Figures 6 and 7 show similar results to those in Figs. 4 and 5, but for increased noise of α = 5% , and again 
analysing 100 sets of 20 trajectories for random initial conditions. The higher level of noise on the input data 
is clear from Fig. 6a, and the histogram in Fig. 6b shows how this leads to a qualitatively different output. The 
histogram reveals a broader range of returned models (up to 16 terms), but at the same time, it also shows a clear 
peak associated with only 6 terms. Significantly, when analysing these results in more detail, the 35 returned 
6-term models in this case all give the same terms as in the ideal model, and these results are shown in the table 
in Fig. 6c. When we compute the mean coefficients, the standard deviations are still in the range ∼10−3 although, 
as might be expected, they are larger than in the case of lower noise (compare with Fig. 4c). For the same initial 
conditions as Figs. 5, 7 shows the system dynamics from the mean model, and again the dynamics computed 
using the mean coefficients (blue dashed curves) are visually indistinguishable from the ideal dynamics (red 
curves). We also study the dynamics from the model when the coefficients vary over their uncertainty limits 
and here, the multiple trajectories (grey curves) show a greater variation than for the lower noise case in Fig. 5.

At an even higher noise level of α = 7.5 %, a similar histogram to that in Fig. 6 was obtained, with the 6-term 
model still being that most frequently returned. However, the values of the associated coefficients varied more 
significantly, with differences compared to the expected ideal values at the ∼10−2 level. Although satisfactory 
from the perspective of model discovery, this is an order of magnitude higher that with the lower noise levels 
above. It is also interesting to note that when we examine the overfitted models with more than 6 terms in this 
case, the computed coefficients are typically associated with large standard deviations (in some cases exceed-
ing 100% of the mean values) and the trajectories computed over the coefficient uncertainties diverge from the 
expected trajectories after the initial stage of propagation (typically after one recurrence cycle.) At an even higher 

Figure 4.   Input data and results returned by SINDy when analysing data with 2.5% noise. (a) Typical noisy 
data input to SINDy showing η(ξ) and φ(ξ) evolution for initial conditions η0 = 0.87 , φ0 = 1.2 (b) Histogram 
showing the number of returned terms from applying SINDy to 100 data sets. (c) Computed mean and standard 
deviation of the coefficients of the 6-term models, compared with values expected from the ideal system in 
Eq. (1). The threshold here was � = 0.5.
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level of noise of α = 10 %, the histogram distribution became essentially uniform, and it was no longer possible 
to reliably say that any particular model was most frequently returned.
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Figure 5.   For input data with 2.5% noise, the figure shows the dynamics computed from the average model 
when the coefficients vary over their statistical range within three standard deviations. Results are shown for 
two initial conditions on either side of the separatrix: (a) η0 = 0.63,φ0 = π/3 , and (b) η0 = 0.58,φ0 = π/3 . 
The red curves shows the ideal dynamics expected from Eq. (3) which are visually indistinguishable from the 
blue dashed curves which plot the dynamics using the mean coefficients. The gray curves show the ensemble of 
potential dynamics by randomly sampling the model coefficients within their three standard deviation errors. 
(c) The corresponding results plotted in phase space, with the labelled vertical axis displaying the range of η over 
0–1, whilst angles φ are shown around the circle. The black dashed line shown in this plot is the separatrix.

Figure 6.   Input data and results returned by SINDy when analysing data with 5% noise. (a) Typical noisy data 
input to SINDy showing η(ξ) and φ(ξ) evolution for initial conditions η0 = 0.84 , φ0 = 1.16 (b) Histogram 
showing the number of returned terms from applying SINDy to 100 data sequences. (c) Computed mean and 
standard deviation of the coefficients of the 6-term models, compared with values expected from the ideal 
system in Eq. (3). The threshold here was � = 0.5.
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Discussion and conclusions
The main result of this study is that we have shown that data driven discovery using sparse regression (SINDy) 
can indeed successfully determine the governing model for nonlinear four-wave mixing. The fact that this is 
possible in the absence of noise is expected based on previous studies22, but our results also show successful 
results at noise levels of 5% which are likely to be obtainable in experiments31. Of course, the physics of FWM 
is well-known, but our aim is to demonstrate the feasibility of this technique, with the ultimate objective being 
to use it to analyse data from a nonlinear fibre system where the underlying model is not known in advance. 
In addition, in demonstrating the success of SINDy with FWM, we anticipate that it will be readily adapted to 
work with similar systems of coupled equations in optics describing e.g. multiple pump parametric amplification, 
CW Raman scattering etc42. Overall, this work represents a further step in showing the feasibility of data-driven 
discovery in nonlinear optics.

A further significant result in this paper is the development of a useful approach to interpret the results of 
SINDy in the presence of noise by analysing an ensemble of input data computed over different initial condi-
tions spanning the dynamical phase space. This involves inspection of a histogram distribution of the number 
of terms associated with multiple returned models, followed by computation of mean and uncertainty in the 
associated term coefficients. This allows us to readily assess the predictive accuracy of the model by computa-
tion of the dynamics within the term uncertainty limits. We also note here that sampling over multiple initial 
conditions is advantageous in exploring the dynamical space more completely when compared to performing 
repeated sampling of only one set of initial conditions. Moreover, our results suggest that when a nonlinear 
system contains a separatrix boundary between qualitatively different dynamics, sampling initial conditions on 
both sides of the separatix is necessary for SINDy to robustly return the underlying model. Indeed, when we 
used input data evaluated only over a small subset of initial conditions (a small localised region of the phase 
space) SINDy returned models with fewer than 6 terms, which is clearly not the desired physical description 
of FWM. There are also improvements that one can consider to our approach such as combining an ensemble 
over initial conditions with internal data bootstrapping within each data set. In addition, our analysis here has 
not implemented any specific preprocessing step to improve the calculation of numerical derivatives, and this 
is also a natural area of future work25.

It is of course important to note that not all nonlinear processes in optics can be described by coupled equa-
tions suitable for analysis using SINDy. In particular, the most general modelling of nonlinear propagation in 
optical fibre (including soliton effects and processes such as self- and cross-phase modulation) is the generalised 
nonlinear Schrödinger equation, a partial differential equation that includes multiple derivative terms describing 
higher order dispersion, instantaneous and delayed nonlinear response, and dissipation42. However, although the 
basic technique of SINDy is not appropriate in this case, several extended methods of sparse identification have 
been developed and indeed enable model discovery resulting from partial differential equation dynamics23,29,52.

As a more general conclusion, it is clear that sparse regression using SINDy promises to be a very powerful 
technique amongst the toolbox of methods available to researchers in nonlinear optics. In this context, we stress 
that SINDy does not aim to provide a “black box” system description (such as might be provided by a neural 
network), but rather it should always be used in parallel with consideration of the underlying physics. Indeed, 
it would be expected that any model(s) returned by SINDy for an unknown system would be accompanied by 
parallel analysis to guide the search for an appropriate and physically-justified theoretical description. Of course, 
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Figure 7.   For input data with 5% noise, the figure shows the dynamics computed from the average model 
when the coefficients vary over their statistical range within three standard deviations. Results are shown for 
two initial conditions on either side of the separatrix: (a) η0 = 0.63,φ0 = π/3 , and (b) η0 = 0.58,φ0 = π/3 . 
The red curves shows the ideal dynamics expected from Eq. (3) which are visually indistinguishable from the 
blue dashed curves which plot the dynamics using the mean coefficients. The gray curves show the ensemble of 
potential dynamics by randomly sampling the model coefficients within their three standard deviation errors. 
We set � = 0.5 in these simulations. (c) The corresponding results plotted in phase space. The labelled vertical 
axis displays the range of η over 0–1, whilst angles φ are shown around the circle. The black dashed line shown in 
this plot is the separatrix.
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with the overall objective being the analysis of a partially-understood system, a key element is the need to develop 
strategies to distinguish between different models that may be returned. We anticipate that the results presented 
here may point to further research in this direction.

Methods
Theory of ideal FWM.  Four-wave mixing in optical fibre has been studied extensively, from the first days of 
nonlinear optics to recent applications developing broadband frequency combs42. The fundamental propagation 
model is the nonlinear Schrödinger equation which is written in normalised form:

Here, dimensionless propagation distance and time are defined as: ξ = z/LNL , τ = t/
√
|β2|LNL  , where 

LNL = (γP0)
−1 . Here P0 is power and β2 and γ are the usual dimensional fiber dispersion and nonlinearity 

parameters respectively42. The dimensionless field envelope A(ξ , τ) is normalized with respect to P1/20 .
The theoretical model for ideal FWM46,47 writes the evolving field  in the optical fibre in the form: 

A(ξ , τ) = A0(ξ)+ A1(ξ) exp(i�τ)+ A−1(ξ) exp(−i�τ) , where A0 is the field at the pump frequency and A±1 
are the frequency detuned sidebands at ±� . The fields A0 and A±1 are complex-valued. This case corresponds to 
degenerate FWM with two waves at the pump frequency. The dynamics of the field components are then given 
by the coupled mode equations:

Note that with |A±1| ≪ |A0| , the phase-matching condition for maximum FWM gain is 
� = ω0

√
|β2|/γP0 =

√
2 , a result that is also readily derived from a modulation instability analysis. Note 

that all the results in this paper correspond to this condition, but similar results are obtained across the full 
range of gain 0 < � < 2. The Hamiltonian representation given in Eq. (1) is derived from these coupled 
amplitude equations by defining real variables describing the relative sideband intensity η and phase φ , where 
η = |A0(ξ)|2/(|A0(ξ)|2 + |A−1(ξ)|2 + |A1(ξ)|2) , and φ = arg

[

A1(ξ)
]

+ arg
[

A−1(ξ)
]

− 2 arg
[

A0(ξ)
]

 . We 
assume equal initial sideband amplitudes A1(0) = A−1(0) throughout the paper.

The FWM relative amplitude and phase data for input to the SINDy algorithm is generated from the numeri-
cal integration of the coupled equations in Eq. (1) using standard numerical methods53,54. The input X to SINDy 
consists of vectors η(ξm) and φ(ξm) sampled at discrete ξm , and generated for multiple initial conditions to fully 
sample the phase space on both sides of the separatrix (see the black squares in Fig. 3c). The integration relative 
and absolute tolerance were both ∼10−8 . To generate the input datasets with added noise, we first integrated 
Eq. (1) as above, and then added Gaussian noise to the noise-free data.

Description of SINDy.  The SINDy technique22 considers a dynamical system of the form:

Here the state vector is x =
[

x1(ζ ); x2(ζ ); ...; xn(ζ )
]

 , where the n variables x1(ζ )...xn(ζ ) correspond to 
measurable physical quantities of interest (e.g. amplitude, phase, intensity, displacement) which evolve 
as a function of a variable ζ (e.g. distance, time). The function f

[

x(ζ )
]

 describes the associated dynami-
cal constraints. A data set describing the spatial or temporal evolution is represented in a matrix form 
X =

[

x1(ζ1, ..., ζm); x2(ζ1, ..., ζm); ...; xn(ζ1, ..., ζm)
]

 sampling the n physical variables x at m discrete values of ζ . 
The choice of the dimensionality of the state vector, the number of sampling points, and the sample spacing in 
the data set is linked to the physical problem under study. It is also possible that an extended data set consists of 
multiple trajectories of X corresponding to the system evolution with different initial conditions.

Based on the data set X , the algorithm numerically estimates the derivatives to yield Ẋ , from which we are 
able to determine the underlying model from the equation:

Here �(X) on the right-hand side (RHS) represents a library of potential candidate dynamical functions that 
act on the columns of X , while M =

[

µ1,µ2, ...,µn

]

 represents a row vector of associated coefficients. In general, 
the library may consist of any number of polynomial, periodic or other mathematical functions of X (and their 
combinations), but it is usually possible to limit the size of the library based on the expected physical proper-
ties of the system. The non-zero row vector coefficients M are estimated by inverting Eq. (5) via a sequential 
thresholded least-squares algorithm22,52, where the threshold parameter � specifies the minimum magnitude 
for possible returned coefficients: coefficients with magnitude lower than the threshold are zeroed during the 
algortithm iterations. The choice of threshold for any given problem depends on the form of the system being 

(2)i
∂A

∂ξ
+

1

2

∂2A

∂τ 2
+ |A|2A = 0.

(3)

−i
dA0

dξ
=

(

|A0|2 + 2
[

|A−1|2 + |A1|2
]

)

A0 + 2A−1A1A
∗
0

−i
dA−1

dξ
=

(

−
1

2
�2 + |A−1|2 + 2

[

|A0|2 + |A1|2
]

)

A−1 + A
∗
1A

2
0

−i
dA1

dξ
=

(

−
1

2
�2 + |A1|2 + 2

[

|A−1|2 + |A0|2
]

)

A1 + A
∗
−1A

2
0

(4)
d

dζ
x(ζ ) = f

[

x(ζ )
]

.

(5)Ẋ = �(X)M.
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studied, and can be optimized empirically to favour convergence52. It is of course highly preferable to work with 
normalised data and equations such that all coefficients have comparable magnitudes. In what follows below, we 
typically found that the range �∼ 0.5− 0.8 yielded good results. The output returned by SINDy is an estimated 
representation of the dynamical model Eq. (4) which can be written as:

This system contains the identified structure and coefficients of the different terms of the differential equa-
tions for each element of the state vector x.

Figure 3 illustrates how SINDy is applied to the phase-space dynamical model of FWM. We are specifi-
cally interested in the evolution with distance ξ of two variables: amplitude ( η = x0 ) and phase ( φ = x1 ), 
and our aim is to invert a series of test data that has been numerically generated from the ideal system in 
Eq. (1). The algorithm input x consists of a sequence of vectors of η(ξm) and φ(ξm) sampled at discrete ξm , 
and generated for multiple initial conditions (trajectories) as illustrated in Fig. 2b. After estimation of 
the derivative matrix for each trajectory (Fig. 2c), this data set is processed by the algorithm as described 
above. The library of potential candidate functions on the right-hand side of the unknown model Eq. (5) 
is illustrated schematically in Fig. 2(d) and includes a total of 32 different functions: polynomial func-
tions (up to 3rd order), trigonometric (periodic) functions of both variables, as well as their combinations: 
�(η,φ) = [1, η,φ, η2, ηφ, ..., sin η, sin φ, cos η, ..., η sin η, η sin φ,φ cos η, ..., η2 sin η,φ2 sin φ, ...] . Based on data, 
SINDy will attempt to estimate the contributing dynamical terms that underlie the evolution of the sampled 
η(ξm) and φ(ξm) . Figure 2d highlights the “target” terms associated with the ideal FWM system by red squares. 
Figure 2e illustrates the algorithm results for noise-free data which are output in terms of a matrix with both 
zero and non-zero coefficients.

Our implementation of SINDy used the publically-available open-source code24,55. For the main result of 
this paper (the Hamiltonian system) computation times on a standard Windows PC with 3.00 GHz 6 MB cache 
double-core CPU were as follows: 0.9 s for 20 trajectories of noise-free input data; 110.2 s for 100 sets of 20 trajec-
tories for 2.5% noise (including the time spent for the statistical analysis of the returned models); 110.3 s for 100 
sets of 20 trajectories for 5% noise (including the time spent for the statistical analysis of the returned models).

SINDY applied to FWM amplitude equations.  Although the results above consider the Hamiltonian 
system in Eq. (1) with 6 dynamical terms, we can also apply SINDy directly to the complex amplitude system of 
3 differential equations in Eq. (3). To this end, we first write the complex amplitudes in terms of real and imagi-
nary parts: A0(ξ) = a0 + ib0 and A1(ξ) = A−1(ξ) = a1 + ib1 , and as above we assume initially equal sideband 
amplitudes such that the spatial evolution of A1(ξ) and A−1(ξ) is identical. This yields 4 coupled amplitude 
equations, but involving a total of 22 different dynamical terms:. 

 To apply SINDy to this system, we create a library function  of potential candidate terms 
�(a0, b0, a1, b1) = [1, a0, b0, a1, b1, ..., a20, a0b0, a0a1, ..., b31a1, b41] containing polynomials of the four variables 
extended up to the quartic order yielding a total of 70 possible RHS terms. Although this is a significantly more 
complex case than the Hamiltonian system with only 6 terms, we followed a similar approach to that described 
above, first applying SINDY to noise-free data. Here, it successfully identified all the correct dynamical terms 
(to an accuracy of ∼10−5, with no overfitting). On the other hand, as might be expected, the larger number 
of potential terms in the system means that noise has a much greater effect. Indeed, obtaining uncertainties of 
∼10−3 around the expected correct values of the coefficients of the 22 terms was only possible with an order 
of magnitude less noise of 0.25% compared to the results obtained with the Hamiltonian system. This result 
stresses the importance of combining SINDy with physical insight in order to construct the most useful model 
for a given problem.

Data availability
The data underlying the results presented in this paper are available from the authors upon reasonable request.
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[
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