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Many-body entanglement and topology from uncertainties and measurement-induced modes
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We present universal characteristics of quantum entanglement and topology through virtual entanglement
modes that fluctuate into existence in subsystem measurements. For generic interacting systems and extensive
conserved quantities, these modes give rise to a statistical uncertainty which corresponds to entanglement
entropies. Consequently, the measurement-induced modes provide directly observable route to entanglement
and its scaling laws. Moreover, in topological systems, the measurement-induced edge modes give rise to
quantized and nonanalytic uncertainties, providing easily accessible signatures of topology. Our work provides a
much-needed direct method to probe the performance of emerging quantum simulators to realize entangled and
topological states.
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I. INTRODUCTION

Entanglement is a signature property of quantum systems
and has been a source of active debate since the early days
of quantum theory [1,2]. Remarkably, in the past decade, en-
tanglement has become a central unifying concept throughout
physics, from condensed matter and quantum information to
quantum gravity and black holes [3–11]. In condensed mat-
ter, entanglement has been recognized as central classifying
property of distinct quantum phases of matter and many-body
dynamics and phase transitions [12–18]. Entanglement mea-
sures, such as entanglement entropy and the entanglement
spectrum, have been very successful in analyzing different
aspects of topological order and exotic phenomena such as
many-body localization [19–31]. In general, the entanglement
entropy of low-lying states of a gapped Hamiltonian follows
the area law scaling while systems with Fermi surfaces obey
a logarithmic volume law scaling [32–37]. The entanglement
scaling laws form the basis of powerful practical methods to
simulate strongly correlated many-body systems [38,39].

While entanglement has been recognized as a key to un-
derstanding formal aspects of many-body systems, its role
in experiments has remained modest. Proposals to measure
entanglement entropy and entanglement spectrum typically
involve delicate system-specific requirements and setups
[40–43]. For example, transport measurements are generally
unsuitable for the emerging noisy intermediate-scale quantum
(NISQ) computers and quantum simulator systems [44–49].
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Also, NISQ devices present a new compelling reasons to ex-
perimentally probe entanglement. The necessary prerequisite
to perform successful quantum simulation is the ability to
prepare and preserve many-body entangled states. Thus, for
quantitative assessment of the performance of quantum sim-
ulators, it is imperative to design methods that allow feasible
direct probing of many-body entanglement.

In this work, we establish a protocol to extract many-body
entanglement and topology by measurement-induced entan-
glement edge and bulk modes as illustrated in Fig. 1. This
protocol is based on measurements of a collective quantity
A, such as total spin or particle number, of the subsystem
�. We show that for generic interacting systems, the statis-
tical variance δ2A of measurements of a conserved extensive
quantity is a faithful measure of bipartite entanglement. The
reason for this is that the uncertainty δ2A solely originates
from the virtual entanglement modes which fluctuate into
existence due to the subsystem measurements. We present
a counting argument, supported by numerical calculations,
which indicates that δ2A in general scales identically with
entanglement entropies, thus providing a direct route to entan-
glement scaling laws. We illustrate that for strongly-correlated
topological models, the measured uncertainty δ2A exhibit
quantized values as well as nonanalytic behavior which allow
for direct extraction of many-body topology already from
small subsystem measurements. Our work offers a directly ob-
servable route to measure entanglement and topology through
measurement-induced entanglement modes.

II. GENERAL CONNECTION OF UNCERTAINTY,
ENTANGLEMENT, AND TOPOLOGY

Here we consider generic many-body systems in a
pure state |�〉 and introduce general relations between
entanglement, topology and uncertainties in subsystem
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FIG. 1. (a) Fictitious partitioning of a many-body system into
subsystems � and � is characterized by an entanglement spectrum
with virtual entanglement edge (or bulk) modes. (b) Subjecting sub-
system � to an actual measurement of observable A, the virtual
entanglement modes become physical fluctuations. These contribute
to the uncertainty δ2A, which, for conserved A, provides a directly
observable measure of entanglement.

measurements. The starting point is the many-body entan-
glement spectrum {λi}, {|λi〉} which determines the reduced
density matrix of the subsystem � as ρ� = Tr � |�〉〈�| =∑

i λi|λi〉〈λi| and subsystem operator A which represents a
collective observable on �. Here A could be arbitrary, but
the physically most interesting results follow for observables
that correspond to a sum of local operators, such as the
total spin for spin systems and the number of particles for
fermionic systems. Subjecting subsystem � to measurement
of A, the expectation value and the variance/uncertainty are
given by 〈A〉 = ∑

i λi〈A〉i and δ2A = 〈A2〉 − 〈A〉2, where
〈A〉i = 〈λi|A|λi〉. In contrast to the expectation value, which
is simply a sum of expectation values of local operators, the
uncertainty contains information on nonlocal correlations and
entanglement. As shown in the Appendix A, the uncertainty
for a general operator satisfies inequality

δ2 A � 1

2

∑
i, j

λiλ j (〈A〉i − 〈A〉 j )
2, (1)

where the equality is satisfied by conserved quantities defined
by [A, ρ�] = 0. From now on, we focus on conserved quanti-
ties. Since A and ρ� can be simultaneously diagonalized, the
entanglement modes |λi〉 can be labeled by eigenvalues Ai.
The uncertainty of conserved observables is minimal, arising
purely due to fluctuations between the entanglement modes λi

in different measurements, and vanish for unentangled states
satisfying λ1 = 1 and λi = 0 for i > 1. Denoting the set of
distinct eigenvalues as {Ai}, we can express Eq. (1) as sum-
mation over sectors of entanglement spectrum corresponding
to different Ai as

δ2 A =
∑

Ai>A j

λAiλA j (Ai − A j )
2, (2)

where λAi = ∑
〈A〉i=Ai

λi is the probability to observe out-
come Ai. The set {λAi} can be regarded as a coarse-grained
entanglement spectrum filtered by the outcomes of A. The
relation Eq. (2) allows us to make a connection between the
measured uncertainty and the bipartite entanglement. As we
will see in the following, such a connection can be based on

generic counting arguments along with the general properties
of the entanglement spectrum.

A. Identical scaling of uncertainties and entanglement entropies

Here, we provide a physical counting argument that the
uncertainty Eq. (2) for observables such as total spin Sz,� =∑

i∈� Sz
i or particle number N� = ∑

i∈� n̂i, which consists
of sums of local observables, and for which the number of
distinct outcomes scale as the subsystem degrees of freedom,
exhibits the same scaling as von Neumann and Rényi en-
tanglement entropies. Moreover, the utility of entanglement
entropies as entanglement measures typically stems from
their scaling as Na, which denotes the number of degrees of
freedom in the subsystem that efficiently participate in the en-
tanglement. For example, when a lattice spin system exhibits
an area-law (volume-law) entanglement, Na corresponds to
a number of spins on the surface layer of finite thickness
(spins in the whole volume). When Na spins in a subsystem
are effectively entangled with its environment, the entropies
scale as S2 ∼ SvN ∼ Na. This follows from the fact that the
2Na different microstates (distinct states in the entanglement
spectrum) each have a nonzero probability of the order of
λi ∼ (1/2)Na , thus

S2 = − ln
∑

i

λ2
i ∼ −

∑
i

λi ln λi = SvN ∼ Na. (3)

Next, we consider conserved extensive quantities, such as
the total subsystem spin A = ∑

i∈� Sz
i or particle number

A = ∑
i∈� n̂i, and outline the fundamental reason why their

uncertainty given by Eq. (2) obeys the same scaling laws as
the entanglement entropies. We first note that for extensive
observables, the number of distinct outcomes ni (for example,
the total spin or the number of fermions in the subsystem)
scales as the subsystem volume or its total number of sites
N�. For a conserved quantity, fluctuations arise solely from
the variation of spin configurations between different states in
the entanglement spectrum. Depending on whether the state
of the system displays an area-law or volume-law entangle-
ment, the effective number of fluctuating spins Na correspond
to either spins in the surface layer or in the whole system.
Importantly, when we consider extensive observables that are
sum of local observables, the macrostate probabilities λAi are
strongly peaked regardless of the details of the microstate
distribution λi ∼ 1/2Na . For instance, in spin 1/2 or spin-
less fermion systems, the number of configurations for total
spin Sz = ni − Na/2 or particle number ni is given by the
binomial coefficient

(Na

ni

)
. Consequently, the distribution of

A is approximated by the binomial distribution λni ∼ (Na

ni

)
1

2Na

whose average and variance are proportional to Na. Thus,
uncertainties for a conserved extensive sum variable A scale
as Na, in agreement with entanglement entropies. Similar
reasoning applies also for observables that can take more than
two (but finite) number of values per lattice site by considering
multinomial coefficients and distributions.

The above explanation outlines that the observable A will
display the same scaling for uncertainties as entropies, as
long as it is conserved, extensive and a sum of indepen-
dent variables. As noted above, the usefulness of entropies
as entanglement measures mostly derives from the fact that
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they scale as the effective number of entangled degrees of
freedom between the subsystems. Therefore, remarkably, for
an extensive conserved sum of local operators, δ2 A can be
conceptually regarded as an entanglement measure on equal
footing with entropies. As a crucial advantage over entropies, a
bipartite entanglement and the entanglement scaling laws can
be directly measured through uncertainties, as demonstrated
below for various paradigmatic spin and fermion models. This
property enables experimental observation of entanglement in
wide range of emerging quantum simulator systems.

B. Signature of topology in uncertainties

Topological order of a many-body state implies a spe-
cial structure of the entanglement spectrum, which also
becomes directly observable through uncertainties. The en-
tanglement spectrum is conveniently discussed in terms of
the entanglement Hamiltonian HE = − ln ρ�, which shares
the topological properties of the studied system. A gapped
topological state generally obeys the entanglement area law,
with a dominant part of the entanglement arising from low-
lying states of HE which represent topological edge modes. As
illustrated in Fig. 1(b), subsystem measurement induces edge-
mode fluctuations that determine δ2 A of a conserved quantity.
This effect is particularly striking for one-dimensional (1D)
systems, where the entanglement spectrum exhibits topolog-
ical ground state degeneracy between states that differ only
by their edge mode configurations. As shown in Appendix A,
the contribution of the topological edge modes to uncertainties
can be estimated using the exact bound

δ2 A � λ2
� δ2

� A, (4)

where λ� = ∑
i∈� λi is the probability to find the system

in a low-lying subspace � of the entanglement Hamiltonian
HE and δ2

� A is calculated using the density matrix ρ� =∑
i∈� (λi/λ� ) |λi〉〈λi| restricted into �. The formula is valid

for general systems and does not require that the low-lying
manifold exhibit exact degeneracies. However, in 1D systems
away from critical points, the (nearly) degenerate ground state
manifold dominates, so that with exponential accuracy we get
λ� → 1 and δ2 A = δ2

� A which is constant in the topological
phase. As illustrated by examples below, in 1D systems this
gives rise to quantized uncertainty plateaus determined by
the fluctuating edge modes. Furthermore, in generic topolog-
ical systems, topological phase transitions can be observed
through striking nonanalytic features of δ2 A near critical
points due to the abrupt appearance of the edge modes in the
entanglement spectrum.

III. STRONGLY CORRELATED SYSTEMS

Here we illustrate the general connection between un-
certainties entanglement, topology and measurement-induced
states with paradigmatic models of correlated systems. These
examples explicitly demonstrate the intimate relationship be-
tween uncertainties and entanglement entropy.

FIG. 2. Uncertainties and entropies in the AKLT chain as a
function of the local spin anisotropy for the total system length
L = 15 (periodic boundary conditions) and subsystem N = 7 [50].
(a) Comparison between δ2Sz and entanglement entropies, with the
latter scaled to S̃ = S/(4 ln 2). (b) Uncertainties of subsystem spin
components δ2Sz and δ2Sx . The conserved component exhibits a
quantized plateau δ2Sz = 0.5 due to the measurement-induced spin- 1

2
edge modes.

A. Spin 1 chain

The first model is the Affleck-Kennedy-Lieb-Tasaki
(AKLT) spin-1 chain H = Ĥ0 + Ĥ1, with

Ĥ0 =
L∑

ν, j=1

Jν Ŝν
j Ŝ

ν
j+1 + α

L∑
j=1

(Ŝ j · Ŝ j+1)2 (5)

and Ĥ1 = D
∑L

j=1(Ŝz
j )

2, where D > 0 is a local spin

anisotropy. For isotropic Jx = Jy = Jz couplings and α = 1
3

the ground state is an exactly solvable valence bond state.
The AKLT chain Eq. (5) supports the celebrated topologi-
cal Haldane phase down to the isotropic Heisenberg point
α = 0. The topological phase is present at small D but is
destroyed for large D in favour of the local singlet state. For
isotropic exchange couplings, the z component of the total
spin is conserved. This implies that for any subsystem �, the
total spin Sz,� = ∑

i∈� Sz
i is conserved [Sz,�, ρ�] = 0. Thus,

the bipartite entanglement can be obtained by measuring the
uncertainty δ2Sz for a subsystem. In Fig. 2(a) we compare
δ2Sz to von Neumann entropy SvN = −∑

i λi ln λi and the
second Rényi entropy S2 = − ln

∑
i λ

2
i . Apart from normal-

ization, δ2Sz and the entropies provide essentially the same
information. Deep in the topological phase, they are constant
as required by the entanglement area law. When approaching
the critical point, where the system becomes gapless, all three
quantities exhibit a cusp that signifies a crossover from the
area law to a critical Luttinger-type behavior. At the critical
point, the uncertainty and the cusp exhibit discontinuity, after
which the entanglement is strongly suppressed due to enter-
ing the local singlet-dominated phase. Figure 2(b) illustrates
the comparison between different subsystem spin components
δ2Sz, which is conserved, and δ2Sx which is not conserved.
Here we see that it absolutely crucial to consider a conserved
quantity as a measure of entanglement. Only δ2Sz is sensitive
to entanglement and exhibits the quantized plateau deep in
the topological phase. The quantized value δ2Sz = 0.5 can
be directly understood in terms of measurement-induced end
states. The topological end modes in the Haldane phase cor-
respond to spin 1/2 excitations at each end of the subsystem.
These two states combine to a triplet state S = 1 with Sz =
−1, 0, 1 (each with probability λi = 1/4) and singlet state
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S = 0, Sz = 0 (with probability 1/4). Thus, the quantized un-
certainty δ2Sz = 0.5 has a straightforward interpretation that,
when imposing a measurement, each edge spin configuration
fluctuates into existence with probability 1/4.

The above example provides a particular clear illustra-
tion of the generic mechanism how the observed uncertainty
in subsystem quantities is directly caused by measurement-
induced entanglement modes. The entanglement spectrum
and the associated edge modes arise due to a virtual parti-
tioning of the system. Before a measurement, the boundaries
between the two subsystems have no physical significance
since the system is homogeneous. Thus, the edge modes in
the entanglement spectrum are purely fictitious and have no
independent physical standing. Now, performing a subsystem
measurement, say an approximately projective measurement
of a conserved quantity, provides the subsystem boundaries a
clear physical importance which did not exist before a mea-
surement. After a measurement, the subsystem is observed
in one of the eigenstates of the reduced density matrix with
the corresponding probability. When the system is deep in a
topological phase, as seen in the above example, the subsys-
tem states after a measurement differ due to their edge spin
configurations. Therefore, the virtual edge modes of the en-
tanglement spectrum acquire a concrete physical existence in
the subsystem measurements. For conserved quantities, these
measurement-induced modes are the source of the observed
uncertainty, which also provides a faithful measure of bipartite
entanglement.

B. Gapped spin 1/2 chain

For the second example, we consider a spin- 1
2 XYZ chain

in magnetic field Ĥ = Ĥ0 + Ĥ2, where Ĥ0 is the same as in
Eq. (5) with α = 0 and the spin 1 operators replaced by spin
1/2 operators, and Ĥ2 = h

∑
j Ŝz

j . With the Jordan-Wigner
mapping, the spin model is transformed to the interacting
Kitaev chain of spinless fermions

Ĥ = −1

2

L−1∑
j=1

(t ĉ†
j ĉ j+1 + 
 ĉ†

j ĉ
†
j+1 + H.c.)

+V
L−1∑
j=1

(
n̂ j − 1

2

)(
n̂ j+1 − 1

2

)
− μ

L∑
j=1

ĉ†
j ĉ j, (6)

where parameters of the two Hamiltonians are related as t =
−(Jx + Jy)/2, 
 = (Jy − Jx )/2, μ = −h, and V = Jz. The
spin system has a discrete spin rotation symmetry which
translated to conservation of electron parity in the fermion
model. The Kitaev chain is the paradigmatic model of topo-
logical superconductivity. In the topological small |μ| regime,
a system with open boundaries harbours two Majorana end
modes which can accommodate a single nonlocal fermion
excitation and give rise to a doubly degenerate ground state.
While the particle number conservation is violated by the
superconducting pairing terms, the parity of particles is con-
served. Defining the parity operator P so that it takes value
1 (−1) when the subsystem particle number is even (odd),
the entanglement and topology can be readily extracted from
the uncertainty δ2P. In the spin language, the parity is de-
fined through the parity of the number of up spins in the

FIG. 3. Uncertainty of the subsystem parity (a) and the entropies
(b) for the interacting Kitaev chain as a function of the chemical
potential for 
/t = 0.9, V/
 = 0.5, with V > 0, the system length
L = 20 and subsystem N = 10.

subsystem. The quantized value δ2P = 1, again, simply re-
flects the measurement-induced edge modes: The nonlocal
fermion excitation has 0.5 probability to be populated after
each measurement. Figure 3(a) illustrates how the quantized
plateau in the parity uncertainty reveals the topological phase
diagram already for small systems. This clearly reflects the be-
havior of entanglement entropies seen in Fig. 3(b), for which
the plateau also becomes clearly resolved.

C. Critical spin 1/2 chain

The gapped spin chains studied above demonstrated the
match between entanglement and fluctuations in the area-law
regime where they do not depend on the subsystem length.
Here we demonstrate that the identical scaling behavior of
entropy and spin fluctuations 
S2

z also hold in the critical
regime of the spin-1/2 XXZ chain (Jx = Jy). In the absence
of magnetic field and when |Jz/Jx| � 1, the XXZ spin chain
enters a gapless phase where the entanglement entropy scales
logarithmically with the system length [6,51]. As illustrated
in Fig. 4, the variance of spin fluctuations 
S2

z and the von
Neumann entanglement entropy reveal almost identical scal-
ing behavior with length. The case Jz = 0 in panel (a) maps to
free fermions, while panels (b) and (c) correspond to strongly
interacting fermions. The overall size scaling of entropy and
uncertainties is in excellent agreement. We see that increas-
ing Jz gives rise to finite-size oscillations around the mean
depending on the parity of the subsystem size. However, these
finite-size effects are seen to vanish for larger sizes and we get
a perfect match between the uncertainties and scaled von Neu-
mann entropy S̃vN . Our results have been obtained using exact
diagonalization, so the known log-scaling cannot be extracted
meaningfully from the available system sizes. Nevertheless,
the match between the uncertainties and the entanglement
entropy provides strong evidence for the identical scaling of
entropies and uncertainties in critical chains. To summarize
this section, the results obtained in interacting area law and
critical chains are in excellent agreement with our general
counting argument presented in Sec. II A.

IV. FREE FERMION SYSTEMS

Here we illustrate the general theory in free Fermi sys-
tems. In systems with particle number conservation, the
information about the subsystem is encoded in the correla-
tion matrix C with elements Cαα′

i j = 〈ĉ†
iα ĉ jα′ 〉 where ĉ†

iα, ĉiα
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FIG. 4. Identical size scaling of the spin fluctuations and the von
Neumann entropy in a critical XXZ spin chain, shown as a function
of system length L for subsystems of length Ls = L/2. Different
panels correspond to different values of Jz. By increasing Jz the
fluctuations are overall slightly suppressed but the length dependence
remains intact. The von Neumann entropy has been scaled with
numerical factors (a) 3.22, (b) 3.54, and (c) 3.86 in different panels.

are creation and annihilation operators of a particle at site
i with orbital (internal degrees such as spin) index α, re-
spectively [52]. Considering a general single-particle operator
A = ∑

i, j,α,α′ Aα,α′
i j ĉ†

iα ĉ jα′ of the subsystem, we can show that
the uncertainty reads (see Appendix B for the derivation),

δ2A = Tr[AT CAT (1 − C)], (7)

which reduces to the known result δ2N� = Tr(C − C2) for the
particle number fluctuations [53].

First, we demonstrate the correspondence of δ2N� and
entanglement entropies for a 1D topological insulator with
Hamiltonian Ĥ1D = (m − cos k)σz + sin kσx as shown in
Fig. 5. Particularly, in the topological phase (|m| < 1), δ2N�

and the scaled entropy S̃vN = SvN/(4 ln 2) coalesce and form
a plateau at a quantized value 1/2. Also, in the trivial phase
(|m| > 1) we see a nonuniversal (yet length-independent)
behavior for both δ2N� and S̃vN which diminish when
|m| � 1. At the transition point |m| = 1 though, we see a
length-dependent cusp, indicating a well-known gapless Lut-
tinger liquid behavior log Ls-dependence at the critical point
[6]. Next, we examine similarity of scaling laws for other

FIG. 5. Topology-enforced uncertainties in 1D system. When the
system is in the topological phase (|m| < 1), the particle fluctuations
exhibit a quantized plateau stemming from measurement-induced
end modes. Open circles indicate the entanglement entropy for Ls =
20 and 40 for comparison. Inset shows the eigenvalues of the corre-
lation matrix.

prototypical models, namely the 2D Chern insulator
HQWZ = (m − cos kx − cos ky)σz + sin kxσx + sin kyσy and a
2D single-band metal with dispersion εk = −2t (cos kx +
cos ky). Figure 6(a) shows that both δ2N and S̃vN re-
veal area-law scaling behavior in the 2D Chern model,
which persists even at the Dirac-type gap closing points
m = 0,±2. However, for the metal with a finite Fermi
surface, Fig. 6(b) shows a logarithmic volume-law scal-
ing for both quantities in agreement with the gen-
eral form SvN ∼ Ld−1

s ln Ls for a d-dimensional metal
[36,37,54–56]

Finally, we generalize the results for charge fluctuations
and show that fluctuations of arbitrary conserved quantities
provide a direct access to topology and entanglement scaling
laws in a more general sense. Considering conserved quanti-
ties A, for which [A, ρ�] = 0, we find that their uncertainties
are bounded by the number fluctuation as A2

minδ
2N� � δ2A �

A2
maxδ

2N�, where Amax,min denote the largest and smallest
magnitude eigenvalue of the single-particle matrix AT . For
typical observables of interest, Amax,min does not depend on

0 10 20
Ls

0

4

8

12

δ2 N
Ω
,
S̃ v

N

m =0

m =1

m =2

m =3

Ls

10 20 305

(a) (b)Chern insulator Metal

δ2NΩ/Ls

S̃vN/Ls

∝ Ls lnLs

FIG. 6. Identical scaling laws for the particle fluctuations and the
von Neumann entanglement entropy. (a) Area law scaling for 2D
Chern insulators, with solid and dashed lines representing particle
fluctuations and the entropy, respectively. (b) Log-volume law for
2D metal. The von Neumann entropy has been scaled with with a
factor 1.165.
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the system size, which means that A obeys the same size
scaling as δ2N�, which implies δ2A ∝ SvN for a conserved
A. In contrast, for nonconserved observables such as spin Sz

in 2D Chern model or the total subsystem energy, in general
obey a volume-law scaling Ld . Detailed derivation of these
features can be seen in Appendix B.

V. DISCUSSION AND OUTLOOK

We established that a statistical uncertainty in conserved
extensive observables, arising from measurement-induced en-
tanglement modes, allows a direct experimental access to
many-body entanglement and topology. In particular, the un-
certainties provide a promising direct probe of entanglement
properties in emerging NISQ devices and quantum simulators.
Since the necessary prerequisite to carry out successful quan-
tum simulations include the ability to prepare and preserve
desired entangled many-body states, it is crucial to benchmark
the entanglement performance of the devices. Our proposed
protocol provides a direct method to carry out this task
through simple measurements. As our results clearly indicate
that, already in the modest-sized programmable devices with
� 20 functional qubits that are now becoming accessible for
wide audiences [57], one could directly and accurately probe
entanglement area laws and topology through uncertainties.

To conclude, we highlight the conceptual and practical
differences between our work and the previous works on
the connection between entanglement entropy and fluctua-
tions. Rooted in the free fermion transport problems and
full-counting statistics [56,58], these works establish that the
Rényi entanglement entropy for free fermions can be exactly
expressed in terms of the electronic cumulants [51,55,56]
and discuss to what extent a similar result could apply to
interacting systems by considering two-point correlations in
systems with conserved quantities. As concluded in Ref. [56],
no general connection between the entropy and correlations
was obtained beyond the free fermion systems. Instead of cor-
relation functions or specific Hamiltonians, our starting point
is based on the general structure of the entanglement spectrum
and its labeling in terms of conserved quantum numbers. This
approach leads us to the counting argument which reveals the
connection between the directly measurable uncertainties and
entanglement entropy, manifesting in their identical scaling
behavior.

Also, the physical and experimental implications of
our work are very different than previous related works
[51,55,56]. We propose a scheme to experimentally access
entanglement and topology by measuring a nonlocal observ-
able such as total spin or particle number of the subsystem.
In this scheme, in contrast to measuring separately a set
of two-point functions, a single measurement addresses the
subsystem as whole and introduces physical boundaries. Our
protocol, as highlighted with the spin systems, gives rise to
physical measurement-induced boundary and entanglement
modes which can even lead to quantization of the observed
uncertainties. We believe that, due to the impressive progress
in various quantum simulator systems, measuring conserved
subsystem observables is quite feasible even in current se-
tups. The conserved quantities are, for instance, the number
of particles inside the subsystem for fermionic models or

projections of the total spin in spin systems. In particular,
we note the existing experiments where the particle statis-
tics inside a subsystem has been already measured for small
subsystems [41].

In upcoming work, we will generalize the present work to
quantifying multipartite entanglement, far-from-equilibrium
entanglement dynamics and aspects of the entanglement spec-
trum from directly measurable uncertainties.
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APPENDIX A: GENERAL VARIANCE RELATIONS

As discussed in the main text, the statistical variation (un-
certainty) in the outcomes of subsystem measurements have
general properties summarized in Eqs. (1)–(3) in the main
text. We begin proving inequality (1), by writing

δ2A = 〈A2〉 − 〈A〉2 =
∑

i

λi〈A2〉i −
(∑

i

λi〈A〉i

)2

=
∑
i, j

λiλ j〈A2〉i −
∑
i, j

λiλ j〈A〉i〈A〉 j, (A1)

where
∑

j λ j = 1 has been used to obtain the last expression.
By symmetrizing the first term, we obtain the inequality

δ2 A = 1

2

∑
i, j

λiλ j (〈A2〉i + 〈A2〉 j − 2〈Ai〉〈A〉 j )

� 1

2

∑
i, j

λiλ j (〈A〉i − 〈A〉 j )
2, (A2)

which follows from the relation 〈A2〉i � 〈A〉2
i for arbitrary

state |λi〉. Note that for a conserved quantity A, which is si-
multaneously diagonalized in the |λi〉 basis, we have 〈A2〉i =
〈A〉2

i . Thus, in the case of conserved A, the general relation
Eq. (A2) actually becomes equality.

Next we derive an rigorous uncertainty bound by con-
sidering only states in an arbitrary subspace, for example,
the low-lying subspace of the entanglement Hamiltonian.
Since each term of the summation on both sides of relation
Eq. (A2) is individually nonnegative, the full expression is
never smaller than the corresponding one with i, j restricted
to an arbitrary subspace � of the full entanglement spectrum.
Hence, we can write

δ2 A �
∑

i, j∈�

λiλ j (〈A2〉i − 〈A〉i〈A〉 j )

= λ2
�

[∑
i∈�

λi

λ�

〈A2〉i −
(∑

i∈�

λi

λ�

〈A〉i

)2]
, (A3)

where we have defined the accumulative probability λ� =∑
i∈� λi for the subsystem being in subspace �. This proves

Eq. (3) in the main text since the expression inside the brackets
in the right-hand side above is nothing but the uncertainty
δ2
� A obtained in the truncated subspace.
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APPENDIX B: UNCERTAINTY FORMULAS
FOR FREE FERMI SYSTEMS

Pioneered by Peschel [52,59], the entanglement spec-
trum for free fermions in a Gaussian state can be com-
pletely obtained from the correlation matrix elements Cαα′

i j =
〈ĉ†

iα ĉ jα′ 〉. Subsequently and by applying wick’s theorem,
expectation value of any observable can be described
in terms of the correlation matrix C. So for a gen-
eral single-particle operator A = ∑

i, j,α,α′ Aα,α′
i j ĉ†

iα ĉ jα′ we
have

δ2A =
∑
i jkl

∑
αα′ββ ′

Aαα′
i j Aββ ′

kl (〈ĉ†
iα ĉ jα′ ĉ†

kβ
ĉlβ ′ 〉

− 〈ĉ†
iα ĉ jα′ 〉〈ĉ†

kβ
ĉlβ ′ 〉)

=
∑
i jkl

∑
αα′ββ ′

Aαα′
i j Aββ ′

kl 〈ĉ†
iα ĉlβ ′ 〉〈ĉ jα′ ĉ†

kβ
〉

=
∑
i jkl

∑
αα′ββ ′

Aαα′
i j Aββ ′

kl Cαβ ′
il

(
δ jkδα′β − Cβα′

k j

)
= Tr[AT CAT (1 − C)], (B1)

which can be recast as δ2A = ∑
ξξ ′ ξ (1 − ξ ′) |〈ξ |AT |ξ ′〉|2 us-

ing the eigenstates |ξ 〉 of the C matrix. For conserved observ-
ables, we get a simpler result δ2A = ∑

ξ ξ (1 − ξ ) |〈ξ |AT |ξ 〉|2
and particularly δ2N� = ∑

ξ ξ (1 − ξ ) for the total fermionic
number of the subsystem. The positivity of each terms
in these expressions immediately force the general bounds
A2

minδ
2N� � δ2A � A2

maxδ
2N�, where Amax,min denote the

largest and smallest magnitude eigenvalue of AT . This result
in combination with the exact bound δ2N� � SvN/(4 ln 2)
dictated by the entanglement entropy [58] suggests the similar
scaling behavior of any conserved observable and entan-
glement entropies. Particularly, as illustrated explicitly for
prototypical models in the main text, we see area law and

logarithmic volume law for conserved quantities in gapped
and metallic phases, respectively.

Next, we show that nonconserved observables are, in gen-
eral, limited by a volume-law scaling as the upper bound,
namely,

δ2A � Tr[C(AT )2] � A2
max
〈N�〉�. (B2)

The first inequality can be deduced from Eq. (B1) by throw-
ing the negative term [(AT C)

2
] away. For the second part

of the relation, we first note Tr[C(AT )
2
] = ∑

j〈Aj |C|Aj〉 A2
j

using the eigenstates |Aj〉 of AT . Since each term in both se-
quences A2

j and p j ≡ 〈Aj |C|Aj〉 are nonnegative, re-ordering
the two sequences such that both become ascending (we can
assume |Aj | � |Aj+1| and re-order p j’s such that p̃ j � p̃ j+1)
the sum of their pairwise multiplications becomes larger,
thus Tr[C(AT )

2
] � ∑

j p̃ j A2
j . Now, we notice that

∑J
j=1 p̃ j =

Tr C = 〈N�〉, and consequently

J−
〈N�〉�∑
j=1

p̃ j �
J∑

j=J−
〈N�〉�
(1 − p̃ j ), (B3)

with J denoting the size of the subsystem Hilbert space
(equivalently maximum number of fermions allowed). But
exploiting the sortedness the two sequences A2

j and p̃ j once
again, we further obtain

J−
〈N�〉�∑
j=1

p̃ j A2
j �

J∑
j=J−
〈N�〉�

(1 − p̃ j ) A2
j , (B4)

and then
J∑

j=1

p̃ j A2
j �

J∑
j=J−
〈N�〉�

A2
j � A2

max 
〈N�〉�, (B5)

which completes the proof of the volume-law inequality (B2).
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[28] M. Serbyn, Z. Papić, and D. A. Abanin, Universal Slow Growth
of Entanglement in Interacting Strongly Disordered Systems,
Phys. Rev. Lett. 110, 260601 (2013).

[29] B. Bauer and C. Nayak, Area laws in a many-body localized
state and its implications for topological order, J. Stat. Mech.:
Theory Exp. (2013) P09005.

[30] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[31] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[32] M. B. Hastings, An area law for one-dimensional quantum
systems, J. Stat. Mech.: Theory Exp. (2007) P08024.

[33] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[34] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Entropy, En-
tanglement, and Area: Analytical Results for Harmonic Lattice
Systems, Phys. Rev. Lett. 94, 060503 (2005).

[35] A. Hamma, R. Ionicioiu, and P. Zanardi, Bipartite entanglement
and entropic boundary law in lattice spin systems, Phys. Rev. A
71, 022315 (2005).

[36] M. M. Wolf, Violation of the Entropic Area Law for Fermions,
Phys. Rev. Lett. 96, 010404 (2006).

[37] B. Swingle, Entanglement Entropy and the Fermi Surface, Phys.
Rev. Lett. 105, 050502 (2010).

[38] U. Schollwöck, The density-matrix renormalization group, Rev.
Mod. Phys. 77, 259 (2005).

[39] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[40] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli,
and M. Greiner, Measuring entanglement entropy in a quantum
many-body system, Nature (London) 528, 77 (2015).

[41] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[42] H. Pichler, G. Zhu, A. Seif, P. Zoller, and M. Hafezi, Measure-
ment Protocol for the Entanglement Spectrum of Cold Atoms,
Phys. Rev. X 6, 041033 (2016).

[43] M. Dalmonte, B. Vermersch, and P. Zoller, Quantum simulation
and spectroscopy of entanglement Hamiltonians, Nat. Phys. 14,
827 (2018).

[44] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[45] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[46] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[47] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition with
a 53-qubit quantum simulator, Nature (London) 551, 601
(2017).

[48] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[49] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[50] In an antiferromagnetic chain, the finite-size results exhibit
notable dependence on the parity of L which is odd in this
example. The parity dependence, which vanishes in the thermo-
dynamic limit, can be minimized by applying twisted boundary
conditions for the total system.

[51] H. F. Song, S. Rachel, and K. Le Hur, General relation between
entanglement and fluctuations in one dimension, Phys. Rev. B
82, 012405 (2010).

[52] I. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A: Math. Gen. 36, L205
(2003).

[53] K. Pöyhönen and T. Ojanen, Entanglement echo and dynam-
ical entanglement transitions, Phys. Rev. Res. 3, L042027
(2021).

[54] D. Gioev and I. Klich, Entanglement Entropy of Fermions in
Any Dimension and the Widom Conjecture, Phys. Rev. Lett.
96, 100503 (2006).

[55] S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Detecting
Quantum Critical Points Using Bipartite Fluctuations, Phys.
Rev. Lett. 108, 116401 (2012).

023200-8

https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/416608a
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevLett.104.180502
https://doi.org/10.1038/nphys2465
https://doi.org/10.1103/PhysRevLett.98.060401
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.106.040401
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.94.060503
https://doi.org/10.1103/PhysRevA.71.022315
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.105.050502
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1038/nature15750
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1103/PhysRevX.6.041033
https://doi.org/10.1038/s41567-018-0151-7
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24654
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/PhysRevB.82.012405
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1103/PhysRevResearch.3.L042027
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.108.116401


MANY-BODY ENTANGLEMENT AND TOPOLOGY FROM … PHYSICAL REVIEW RESEARCH 4, 023200 (2022)

[56] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and
K. Le Hur, Bipartite fluctuations as a probe of many-body
entanglement, Phys. Rev. B 85, 035409 (2012).

[57] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler,
A. Geller, M. Troyer, and K. Svore, Quantum programming
languages, Nat. Rev. Phys. 2, 709 (2020).

[58] I. Klich, Lower entropy bounds and particle number fluc-
tuations in a fermi sea, J. Phys. A: Math. Gen. 39, L85
(2006).

[59] I. Peschel and V. Eisler, Reduced density matrices and entan-
glement entropy in free lattice models, J. Phys. A: Math. Theor.
42, 504003 (2009).

023200-9

https://doi.org/10.1103/PhysRevB.85.035409
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1088/0305-4470/39/4/L02
https://doi.org/10.1088/1751-8113/42/50/504003

