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Effect of thresholding on avalanches and their clustering for interfaces with long-range elasticity
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Avalanches are often defined as signals higher than some detection level in bursty systems. The choice of
the detection threshold affects the number of avalanches, but it can also affect their temporal correlations. We
simulated the depinning of a long-range elastic interface and applied different thresholds including a zero one on
the data to see how the sizes and durations of events change and how this affects temporal avalanche clustering.
Higher thresholds result in steeper size and duration distributions and cause the avalanches to cluster temporally.
Using methods from seismology, the frequency of the events in the clusters was found to decrease as a power-law
of time, and the size of an event in a cluster was found to help predict how many events it is followed by. The
results bring closer theoretical studies of this class of models to real experiments, but also highlight how different
phenomena can be obtained from the same set of data.
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I. INTRODUCTION

A slide in a sandpile [1], Barkhausen noise in mag-
nets [2], and solar flares [3] are examples of avalanches
in physics. Avalanches are intermittent events with scale-
free sizes and durations, defined as the events that are
large enough to stand out from some background activity or
noise. The choice of which events are large enough is done
by setting a detection threshold, below which all data are
ignored.

Filtering out small signals affects also the larger events, as
has been shown for random walks [4–6] and elastic interfaces
[7]. In experiments however a threshold might be unavoidable,
as even if all background activity could be removed from the
data by other means, the detection devices might not be able
to record the smallest relevant signals. Therefore, it is both
interesting and useful to study how a threshold affects the
results in different systems.

Elastic interfaces model for example magnetic domain
walls [8,9] and fluid invasion in porous media [10,11]. We use
a similar system to what was used in [7], in which the elastic
interactions are long-ranged with a quadratic decay. For exam-
ple planar cracks in fracture mechanics [12], contact lines in
wetting [13], and low-angle grain boundaries in dislocations
[14] exhibit this type of elasticity.

Planar cracks, as the name suggests, are tears that move
in a plane in a material. In experiments they can be created
by pulling apart an object with a pre-existing crack. The
front of the crack behaves like an elastic interface that moves
intermittently whenever the pulling force is enough to over-
come a weak spot in the object. As one part of the crack
front moves forward, it tends to pull neighboring parts with
it, creating avalanches in the movement. [15,16] The crack
front of course deviates from perfectly planar movement,
but the phenomenon was also demonstrated by attaching two

sandblasted Plexiglas plates on top of each other and tearing
them apart [17,18].

Tools from seismology are often borrowed to study corre-
lations in avalanches [19–21]. The fracture mechanics model
[22–24], as well as other phenomena like wood compression
[25], follow similar scaling laws as what are found for earth-
quakes.

In seismology, earthquakes divide into so-called main-
shocks and aftershocks. A mainshock is an event that triggers
smaller earthquakes in the nearby region, and the aftershocks
are the triggered events. The productivity law states that the
number of triggered aftershocks grows exponentially with the
magnitude of the mainshock, or equivalently as a power law
of the mainshock’s energy. The Omori-Utsu law states that the
frequency of the aftershocks decreases as a power law of the
time elapsed after the mainshock. There are also small events
known as foreshocks that precede mainshocks. [26,27]

Barés et al. used a similar division into mainshocks and
aftershocks for activity in the interface model and the related
planar crack experiment, treating event sizes analogously to
the energies of earthquakes [22–24]. The avalanches followed
the productivity law, the Omori-Utsu law, and a law called
Båth’s law. Båth’s law states that the magnitude of a main-
shock is on average 1.2 times the magnitude of its largest
aftershock, regardless of the mainshock’s magnitude.

The most obvious side effect of a threshold is that it makes
avalanches smaller by removing a part of the movement.
The smallest avalanches vanish completely, which reduces the
number of events. A perhaps more interesting effect is that
different peaks of the same event can get labeled as separate
events, as every time the velocity drops below the detection
threshold and comes back up, the avalanche is assumed to
have stopped and a new one to have initiated. Thus, a thresh-
old both removes events and creates new ones.
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A threshold creates power law distributed waiting times
between avalanches in the interface model [7]. We expect a
threshold to also affect the analogues of the productivity and
Omori-Utsu laws, as the choice of a threshold affects how
many events and thus aftershocks arise from an underlying
signal.

In Sec. III A we look at how a threshold affects the size
and duration distributions of avalanches, as well as repeat the
earlier results found for the waiting times in [7]. Section III B
discusses the frequency of avalanches and aftershocks. In
Sec. III C the productivity law is looked at with two differ-
ent definitions for the aftershocks. First, the aftershocks are
defined similarly as in [22–24], and then the aftershocks are
required to be within a specific window of time after the
mainshock.

II. THE NUMERICAL MODEL

We simulated the movement of a long range elastic inter-
face around the depinning point, which is the point where
the system is driven just enough to cause movement, with a
cellular automaton model. The interface consists of L = 217

points moving in a direction perpendicular to the initial direc-
tion of the interface. Each point experiences the same external
driving force and individual pinning and elastic forces. The
pinning force for each point is a Gaussian random variable
with variance 0.3, and it changes every time the point moves.

The elastic force depends on how far each point has ad-
vanced, and it uses the quadratically decaying form

fi = k
∑

j �=i

h j − hi

( j − i)2
, (1)

where k = 0.3 is a spring constant and hl denotes how many
steps has the point at site l moved. The sum is over all points of
the interface. Periodic boundary conditions modify the elastic
term to

fi = π2k

L2

∑

j �=i

h j − hi

sin2
(π

L
( j − i)

) (2)

using sin−2 x = ∑∞
n=−∞(nπ + x)−2.

Each time step starts by calculating the elastic force for
all the points. Each point for which the sum of the elastic,
pinning, and driving forces is positive moves one step.

The interface starts with a straight configuration, so it
experiences a large initial movement until the elastic forces
grow large enough to balance out the pinning forces. This
initial roughening is not included in the data. When the system
stops after the initial reconfiguration, the external driving is
increased until at least one point becomes unstable and the
first recorded avalanche initiates.

The implementation for the external force is somewhat
simpler than the common comoving approach, in which the
interface follows an average velocity set by the experiment or
simulation with a set spring tension [28,29]. Now the driv-
ing force changes with a constant rate at each time step, so
that during timesteps when at least one point in the interface
moves, the driving decreases by 10−7, and at quiescent steps
the driving increases by 10−7. This way the driving force
balances as close to a theoretical critical value as possible, and

FIG. 1. A snapshot of simulated avalanches with a visualized
detection threshold. The dark blue line shows the velocity V of the
interface as a function of the simulation time t , and the orange region
depicts the threshold. When a threshold is used, only movement
above it is considered, so whenever the velocity signal goes inside
the orange region, the velocity is set to zero.

as a result roughly half of the timesteps contain movement.
The naturally occurring waiting times between events allow
us to study avalanches with no threshold at all.

The simulations run for 218 timesteps. The data are aver-
aged over 100 runs. The size of an avalanche is how much the
sum of all hl changed, i.e., how much the interface moved in
total. A threshold subtracts a constant number of movement
from each timestep as long as the result is not negative. Du-
rations and waiting times are the number of time steps spent
above or below the threshold in simulation time.

III. RESULTS

Each dataset contains 1174.53 avalanches on average. The
average signal is 52.9 and during avalanches the average
signal is 104.5. An excerpt of the signal and a visualized
detection threshold is shown in Fig. 1. The jagged line shows
the velocity of the interface, i.e. how many points move in
total at each timestep, and the rectangular area in the bottom of
the graph represents the detection threshold. When a threshold
is used, only the movement above the rectangular area is
considered.

Figure 2 shows the spatial and temporal distribution of
the activity in one simulation. All simultaneous movement
belongs to the same avalanche, even if there is a large spatial
separation, as even distant points have direct elastic interac-
tions. The avalanches consist of clusters of movement that
are dense in the middle and turn into sparse clouds farther
away. Adding a threshold to the global movement signal might
have a similar effect as removing some movement of the
remote points. The remote points cause avalanches to start
and end more smoothly, and possibly unify the dense cores
of avalanches that are not simultaneous.

A. Increased number of small events

Figure 3 shows the number of events at each threshold.
At small thresholds the number is growing, until it starts
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FIG. 2. A space-time map of the avalanches during one simula-
tion. The horizontal axis is simulation time and the vertical axis is
position along the interface. The black dots denote which parts of the
interface moved at that time. Note that there are periodic boundary
conditions, so the points in the upper and lower boundaries in the
graph are next to each other.

decreasing exponentially after its peak when the threshold
equals 18. The number stays above its original value until the
threshold is increased to 126.

The change in the number of events has an effect on the
size and duration distributions, shown in Figs. 4 and 5, re-
spectively. As the size of every event decreases and small
events are both destroyed and created, the net effect is an
increase in small and short events and a decrease in the
larger and longer ones. Thus the magnitudes of the size
and duration distributions’ power-law exponents increase
with the threshold. At thresholds close to the average ve-
locity of 105 during avalanches, the exponents of the size
and duration distributions change by roughly 10 percentages
compared to the zero-threshold graphs. Consequently, exper-
iments should yield slightly larger exponents than what are
found in theoretical studies that do not necessarily require a
threshold.

FIG. 3. The number of events NS per the simulation’s duration
Ttot as a function of the threshold V0. The number is the highest at
threshold 18. The continuous line is a fit by a function ∝ V A

0 e−BV0 ,
where A ≈ 0.11 and B ≈ 0.0059 are constants.

FIG. 4. The size distribution of the avalanches fitted as ∝ (1 +
S/Smin )−τS e−S/Smax , where S is size, τS , is the power-law exponent,
and Smin and Smax are the cutoffs at small and large avalanches. The
different graphs represent different thresholds. The graphs have been
shifted vertically to avoid overlapping. The legend and the inset show
the thresholds and the fitted exponents.

Similarly as in [7], the waiting time distribution shown in
Fig. 6 changes from an exponential one into a power-law with
an exponential bump at the end. As shown in [30] and [31],
avalanches start and end, on average, with slower movement.
Thus a threshold typically cuts out the beginning and the
end of the events, increasing the waiting times between the
original avalanches. Because of this, the exponential waiting
time region starts at later times as the threshold increases. The
new events created by splitting the original avalanches on the
other hand must have waiting times shorter than the avalanche
durations, so they fill the short time-scales in the waiting time
distribution.

Interestingly, the power-law region starts forming already
at threshold V0 = 1, which is the smallest non-zero velocity

FIG. 5. The duration distribution fitted using a similar function
∝ (1 + T/Tmin )−τT e−T/T max as for the size distribution. Again, the
different graphs represent different thresholds and the legend and the
inset show the thresholds and the fitted exponents. The graphs have
been moved vertically to avoid overlapping.
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FIG. 6. The waiting time distribution. The continuous lines are
power-law fits with functions ∝ (�t )−τ�t and the dashed lines are
exponent function fits. The lowermost graph shows that without
a threshold the waiting times follow an exponential distribution,
and moving upwards the graphs start exhibiting a power-law region
which grows with the threshold. Note that the power-law region starts
forming already in the second graph with threshold V0 = 1, although
the fitted exponent is very inaccurate due to the limited number of
datapoints. The power-law distribution describes the waiting times
between the subevents created with the threshold. The original events
get further away from each other as the threshold increases, and
consequently the exponentially distributed region moves to longer
times. As before, the graphs have been moved vertically for visual
clarity. The legend and the inset show the thresholds and the fitted
exponents for the power-law region.

that the interface can have. Therefore, any choice of a thresh-
old in an experiment should create an increase in the waiting
time distribution for at least the smallest values.

As the threshold increases, the amount of datapoints in the
power-law regions in the waiting time distributions grows, and
the exponents in the duration and waiting time distributions
both approach 1.6. This means that the interface velocity
makes symmetric visits above and below a large threshold
before the underlying event ends. In other words, at large
velocities the velocity starts to resemble a symmetric random
walk, as discussed in [7].

B. Temporal clustering of events

The division of avalanches into series of smaller ones
changes the temporal clustering of events. Barés et al. stud-
ied the clustering of avalanches in elastic interfaces with the
concept of mainshocks and aftershocks used in seismology
[22–24]. Any event could take the role of a mainshock, and
after that all the subsequent events were labeled as after-
shocks, until an event at least as large as the mainshock was
encountered. Seismologists often require the aftershocks to be
within some distance of the mainshock [32,33], but that is not
feasible in the interface problem, when only the velocity of
the whole interface is looked at, and not local movement.

The productivity law in seismology means that the number
of aftershocks that follow a mainshock is proportional to a
power of the mainshock’s energy. The Omori-Utsu law states

that frequency of the aftershocks decreases as a power of the
time elapsed after the triggering event [26,27]. Barés et al.
found that similar laws also applied to the mainshocks and
aftershocks in interface dynamics. The number of aftershocks
was proportional to a power of the mainshocks’ size, and the
aftershock frequency decreased as a power of time.

Figure 7(a) shows the aftershock frequency in our system,
with the definition that all shocks after a mainshock are af-
tershocks, until a shock at least as large as the mainshock
is encountered. Interestingly, we find a decreasing aftershock
frequency only when using a threshold. As the waiting times
in the underlying pure signal showed no correlations, the
frequency of the events without a threshold only increases
with time, possibly as more exponentially distributed waiting
times have ended and new avalanches initiated.

Just as for the waiting times, already the minimal positive
threshold V0 = 1 causes a dramatic increase in the aftershock
frequency for small times. With higher thresholds, the in-
creased activity extends to longer times, and a power-law
region starts forming.

Contrary to the findings of Barés et al., we see a
plateau and even a slight increase in the aftershock fre-
quencies for longer times. As the increased activity results
from a threshold dividing underlying avalanches, the rate
of events initially decreases as more of the avalanches in
the pure signal have ended. Then as the waiting times
in the underlying signal end and new avalanches begin,
the aftershock frequency for a thresholded signal plateaus
and possibly grows if there are enough new avalanches to
divide.

Since the increased frequency of events seems to arise from
the altered waiting time distribution, we should get similar
results even without dividing the avalanches into mainshocks
and aftershocks. Figure 7(b) shows the average rate of events
after each event, without requiring the following events to be
smaller than the initial one.

The event frequency looks very similar to Fig. 7(a) with
limited sized aftershocks. However, the increased amount of
data delay the cutoffs in the graphs, making the power-law
fits more reasonable and also altering the exponents. Now the
fitted exponents decrease monotonously with the threshold,
approaching 0.4 for the largest thresholds.

Similarly to the durations of the avalanches in the under-
lying pure signal, the durations of the avalanche clusters in
the thresholded data probably also follow a decreasing distri-
bution. As the number of active avalanche clusters decreases,
the average frequency of avalanches decreases, causing the
decreasing rate of events in Figs. 7(a) and 7(b).

C. Number of aftershocks

The relationship between the size of a mainshock and the
number of aftershocks turns out to be slightly complicated in
our system. Doing a similar analysis as in the previous studies
[22–24] with the definition that all the events after a main-
shock before another at least as large event are aftershocks,
we find that the number of aftershocks grows as a power of
the mainshock’s size, as is shown in Fig. 8(a).

This apparent productivity law does not describe how many
shocks a mainshock triggers, but rather for how long does
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(a) (b)

FIG. 7. The frequency of aftershocks and clustered avalanches as a function of time. (a) shows the rate of aftershocks after a mainshock,
and (b) shows the rate of avalanches after any avalanche. The continuous lines are fits using a function ∝ t−pe−t/tP , where t is time and p and
tP are constants. As previously, the different graphs show different thresholds, and they have been shifted vertically for clarity. The legend and
the inset show the thresholds and the fitted exponents. However the fits for small thresholds are very inaccurate due to the small number of
fitted data points.

(a) (b)

(c) (d)

FIG. 8. The number of aftershocks per mainshock as a function of the mainshock’s size and the threshold used. In (a) all events after a
mainshock are counted as aftershocks, until there is an event at least the size of the mainshock. The continuous lines are fits using the function
3. (b), (c), and (d) require the aftershock sequences to last for at least 100, 1000, and 10 000 timesteps, respectively, and no further shocks are
recorded. A power-law region becomes more apparent for larger time windows and thresholds. For large time windows and small thresholds
there are no data for the small mainshocks, as none of their aftershock sequences are long enough for the time window. The continuous lines
are fits with a function ∝ (Sα − 1)/(Sα + Sα

P ), where S is the mainshock’s size and SP and α are constants. Again, the graphs showing data
for different threshold have been moved vertically to avoid overlapping, and the legends show the thresholds that were used and the fitted
exponents.
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the defined aftershock sequence last. As larger avalanches are
more scarce, there are of course more shocks between two
large mainshocks than two small ones on average. Similarly,
there should be more events between longer avalanches and
more events between rare events in general.

It is worth mentioning that the aftershocks in Fig. 8(a) are
not aftershocks in the same sense as in seismology, as their
frequency does not necessarily follow the Omori-Utsu law
for the duration of the whole sequence. Looking at Fig. 7(a),
we see that the Omori-like aftershock sequences in our sys-
tem last roughly for 10–10 000 timesteps depending on the
threshold.

As was shown in [22–24], with this definition of af-
tershocks the productivity law does not change even after
randomly permuting the events. The authors found that the
behavior indeed follows from the ratio between the number of
events smaller than a mainshock and the number of events at
least as large as the mainshock.

In Fig. 8(a) the number of aftershocks for an avalanche of
size S is fitted using the integral of a size distribution of the
form (1 + S/Smin)−τS to get the number of events smaller than
S divided by the number of events with size S or larger. The
resulting aftershock number

NAS = (1 + (S − 1)/Smin)1−τS − (1 + S0/Smin)1−τS

(1 + S1/Smin)1−τS − (1 + S/Smin)1−τS
, (3)

where S0 = 1 is the lower boundary and S1 the upper bound-
ary of the integral. The values of τS in Fig. 8(a) are indeed
very close to the values in the size distribution in Fig. 4 despite
neglecting the exponential cutoff of the size distribution.

A different and probably more interesting way to look
at the number of aftershocks is to use a time window. In
Figs. 8(b), 8(c) and 8(d) the aftershocks are still smaller than
the initiating mainshock, but the sequences have to last for at
least some specific duration, and aftershocks are counted only
for that time. If the window is for example 5000 timesteps,
sequences where there is an event larger than the mainshock
after 4000 steps are ignored, and only the first 5000 steps of a
sequence that lasts for 6000 steps are looked at.

When the aftershocks are counted only for a set time, the
behavior divides into three categories. For short time win-
dows, the aftershock number consists mostly of the increased
activity in the shock frequency distribution shown in Fig. 8(b).
Consequently, in Fig. 7(a), where the aftershocks are counted
for 100 time steps, the aftershock number increases more for
graphs with a higher threshold. The graphs are fitted with
a monotonously increasing function ∝ (Sα − 1)/(Sα + Sα

P ),
where SP is the value of the shock size S at which the after-
shock number starts to plateau. Without a threshold, the data
do not follow a similar function, but instead the aftershock
number decreases after some value of the mainshock’s size.

For slightly larger time windows such as in Fig. 8(c), where
the window is 1000 time steps, the aftershock number includes
more of the average activity in the simulations, and hence the
behavior becomes more similar for all thresholds. All graphs
can be fitted with the function ∝ (Sα − 1)/(Sα + Sα

P ), with the
exponent α around one.

In Fig. 8(d) the time window is 10 000 steps. With a small
threshold there are no small mainshocks with long enough

aftershock sequences, so the graphs start at large mainshocks.
With large thresholds the aftershock number increases for
almost the whole range of shock sizes, and the exponents are
again close to one.

Combining the findings in Figs. 8(b), 8(c) and 8(d), we
can deduce that a large avalanche in interface depinning is
most likely followed by a large number of smaller avalanches
on a variety of time scales. Increasing the detection threshold
extends the effect to a wider range of avalanche sizes.

It is important to note that the results do not say that a
small avalanche is followed by a small number of events.
Large avalanches can still be preceded by small ones, so that
the events that follow the large avalanches also follow the
preceding small avalanches. But if we ignore small events that
build up to larger ones, then the larger an avalanche is, the
more events it is followed by, as long as a detection threshold
is used.

IV. DISCUSSION

We simulated the depinning of a long range elastic in-
terface using a cellular automaton model. Avalanches in the
movement were defined using various thresholds to study their
effect. As the driving force balanced around the depinning
point, the interface moved intermittently and avalanches could
also be defined without a threshold.

A threshold divides avalanches into separate events when-
ever the velocity of the interface visits below the threshold
[7]. Consequently, we found that higher thresholds increased
small and short avalanches and decreased large and long ones.
Thresholds close to the average velocity changed the expo-
nents of the size and duration distributions by about 10 percent
compared to the pure signal with no threshold.

The seismic-like clustering of avalanches discussed in pre-
vious interface studies [22–24] was investigated to see if a
detection threshold would affect it. We found that the power-
law distributed frequency of aftershocks depends on the use of
a threshold. With no threshold, the shock frequency initially
increases with time, as more waiting times between events
end. With a threshold however, the aftershock frequency starts
at a higher value and decreases as a power of time until
meeting some background event rate. A higher threshold de-
creases the background activity and makes the power-law
region longer.

The results applied also if the aftershocks could be larger
than the mainshock they followed, so in general we found
that a threshold causes avalanches in interface depinning to
cluster in time with a power-law frequency. This clustering is
probably a natural result of the power-law distributed waiting
times caused by a threshold shown previously in [7].

We studied also the dependence of the number of after-
shocks on the size of a mainshock. The aftershocks were
looked at for different time scales. The number of aftershocks
was proportional to a power of a mainshock’s size as long as
the timescale was long enough or a threshold was used. For
small timescales and no threshold, the aftershock number did
not grow monotonously with the mainshock’s size, but rather
decreased and plateaued after some value. A larger threshold
and a larger time window led to longer and more apparent
power-laws, with exponents close to one.
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The fairly simple detection threshold as well as the method
for classifying avalanches could be modified to study local
events or a local threshold. First, lonely events that do not
have enough activity around them inside some space-time
window could be filtered out. We have already done initial

tests using this type of a local threshold, and the results seem
to mimic what was found here with the global threshold. The
next step is to also classify the avalanches using a space-
time window to separate simultaneous but spatially distant
events.
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