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The recent advancements in toxicogenomics have led to the availability of large omics data sets, repre-
senting the starting point for studying the exposure mechanism of action and identifying candidate
biomarkers for toxicity prediction. The current lack of standard methods in data generation and analysis
hampers the full exploitation of toxicogenomics-based evidence in regulatory risk assessment. Moreover,
the pipelines for the preprocessing and downstream analyses of toxicogenomic data sets can be quite
challenging to implement. During the years, we have developed a number of software packages to
address specific questions related to multiple steps of toxicogenomics data analysis and modelling. In this
review we present the Nextcast software collection and discuss how its individual tools can be combined
into efficient pipelines to answer specific biological questions. Nextcast components are of great support
to the scientific community for analysing and interpreting large data sets for the toxicity evaluation of
compounds in an unbiased, straightforward, and reliable manner. The Nextcast software suite is available
at: ( https://github.com/fhaive/nextcast).

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traditional risk assessment strategies provide little understand-
ing of the underlying molecular mechanisms leading to toxic out-
comes [1]. It relies on molecular profiling technologies such as
genomics, proteomics, and metabolomics to draw comprehensive
conclusions on the possible toxicity of a chemical or substance
[2–4]. Toxicogenomics has the potential to widen our understand-
ing of the cascade of events and biological responses to exposure
beyond the traditional toxicity endpoints. Toxicogenomics has
multiple advantages when applied together with other toxicity
testing. It enables predictions of possible long-term effects of expo-
sures, reducing the cost and time of animal testing [5–9]. More-
over, information derived from toxicogenomics data about key
events and their relationships can be used to define adverse out-
come pathways (AOP). Finally, toxicogenomics data modelling
can be used to derive molecular points of departure (POD) for
dose–response assessment [10–12].

The generation of large amounts of experimental data is
increasingly accessible both in academic and industrial research
environments. However, standardisation of experimental design,
data analysis, and modelling are urgently needed to ensure maxi-
mal integration of evidence derived from such data into regulatory
safety evaluation. The successful analysis of large omics data sets
for the evaluation of adverse effects of chemicals requires simple
and straightforward strategies, clear pipelines, and reliable meth-
ods. To date, many tools to analyse large data generated with
omics- and high-throughput technologies exist [3], but a unified
solution addressing all the necessary steps, from the initial data
preprocessing to more complex biological questions, is still lacking.
Moreover, the change in scientific practices, advocating Open
Science principles, requires infrastructures and common strategies
supporting the use of FAIR (Findability, Accessibility, Interoperabil-
ity, and Reusability) principles [13]. The task is not trivial, as the
data and tools for data processing are often scattered and inconsis-
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tent. To overcome these limitations, we developed during the years
multiple software to address specific questions and collected them
into an organised software suite that we called Nextcast. Nextcast
provides standardised state-of-the-art methods and algorithms to
analyse, model, and interpret toxicogenomic and cheminformatic
data (Fig. 1).

Nextcast provides robust pipelines for toxicogenomic data pre-
processing and normalisation through the eUTOPIA module [14],
which also contains utilities for the identification of statistically
significant molecular entities of interest such as genes, transcripts,
or CpG sites whose molecular state is differentially represented
between sample groups of interest. After obtaining the prepro-
cessed data and a selection of molecular features of interest,
depending on the research question, Nextcast offers several tools
for downstream analysis, such as FunMappOne, a graphical func-
tional annotation software that allows the simultaneous analysis
and comparison of the mechanism of action (MOA) characterising
multiple experiments through an easy and interactive grid visual-
isation [15]. The module INfORM, on the other hand, allows the
user to infer gene co-expression networks from differential expres-
sion data and uses molecular network inference to highlight bio-
logically meaningful response modules, making them available to
the user through several analytical options and high-quality visual
outputs [16]. The BMDx and TinderMIX modules allow the user to
define molecular points of departure and relevant/optimal doses
[10,12]. see Table 1.

Another challenging aspect in toxicogenomics data analysis is
the integration of multiple types of omics data. This is considered
in the Nextcast software suite through the MVDA methodology for
the multi-view clustering or read-across analysis [17]. The MOSIM
module is a multi-omics data simulator methodology that is useful
in generating synthetic data to test existing or newly developed
integrative tools [18]. One of the main needs in computational
and predictive toxicology is the identification of models compris-
ing a few predictive features (molecular or intrinsic) of exposure
toxicity or susceptibility. The Nextcast suite offers advanced fea-
Fig. 1. Nextcast is a software suite whose core functionalities allow robust modelling an
well as read-across analyses (orange). Nextcast components (outer layer in gray) imple
annotation (FunMappOne), dose–response (BMDx, TinderMIX), and co-expression netw
also available (dark green) including data set simulator (MOSIM), multi-view (MV) cluste
methods for quantitative structure–activity relationship (QSAR) such as MaNGA and hy
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ture selection methodologies for toxicogenomics data, FPRF [19],
and Garbo [20]. Moreover, the MaNGA algorithm for feature selec-
tion and quantitative structure–activity relationship (QSAR) mod-
elling on chemometric data is provided [21]. Finally, the hyQSAR
module is also available as a Nextcast component, allowing inte-
grated hybrid modelling comprising both toxicogenomic and
chemoinformatic data [22]. Many of the tools have already been
used and reviewed in scientific research (Table 2). Recently, we
included the INfORM and TinderMIX modules in an integrative
methodology to computationally prioritise drugs that inhibit
SARS-CoV-2 infection [23]. Moreover, a systematic review of alter-
native methods to the Nextcast components has been recently pro-
vided in a three-part review mini-series for transcriptomics data in
toxicogenomics [2–4]. Here, we introduce all the components of
the Nextcast software suite and we provide comparative analysis
against other existing tools. Additionally, we describe how to com-
bine the individual modules to create robust and pipelines for tox-
icogenomics data analysis. Lastly, we discuss the interoperability
of the output of the Nextcast tools with other existing software.

2. Nextcast components

2.1. eUTOPIA: solUTion for Omics data PreprocessIng and Analysis

Preprocessing and statistical analysis are the first steps in any
application of omics data. While a wide range of resources is avail-
able to perform these tasks, their implementation generally
requires advanced knowledge of the statistical methods as well
as programming skills. eUTOPIA combines state-of-the-art meth-
ods (TableS1) with a user-friendly graphical interface that guides
the user through a standardized preprocessing strategy for each
specific supported platform [14]. eUTOPIA is able to analyse raw
data from multiple platforms, namely Agilent and Affymetrix gene
expression microarrays and Illumina DNA methylation microar-
rays. eUTOPIA allows the raw data to be quality checked, both at
the level of individual samples and by comparing all the samples
d analysis of bioinformatics (dark blue) and cheminformatics (dark yellow) data as
ment methods for omics data analytic such as preprocessing (eUTOPIA), functional
ork generation and analysis (INfORM, VOLTA). Advanced modelling algorithms are
ring (MVDA), and feature selection strategies (FPRF, GARBO). Nextcast also includes
QSAR.



Table 1
Nextcast components currently utilised and reviewed in the literature.

Tool Used in Cited in Category

eUTOPIA [14] Bioinformatics
https://github.com/Greco-Lab/eUTOPIA [24,25,5,26–30] [31,2,3] Analytics
R, Shiny Preprocessing
INfORM [16] Bioinformatics
https://github.com/Greco-Lab/INfORM [32,33,28,26,34] [31,2–4,35] Analytics
R, Shiny Network Analysis
VOLTA [36] Bioinformatics
https://github.com/fhaive/VOLTA - - Analytics
Python Network Analysis
BMDx [10] Bioinformatics
https://github.com/Greco-Lab/BMDx Analytics
R, Shiny - [4] Dose-Responsive
TinderMIX [12] Bioinformatics
https://github.com/grecolab/TinderMIX Analytics
R [5,23] [4] Dose-Responsive
FunMappOne [15] Bioinformatics
https://github.com/Greco-Lab/FunMappOne [37,32,10,12,28] [38,7,5,39] [40,41,27,42] Analytics
R, Shiny [3,43] Functional Annotation
MOSIM [18] Bioinformatics
https://doi.org/10.1186/s12859-015-0577-1 - [44,4] modelling Simulator
R
MVDA [17] [47–49,44] [50–53] Bioinformatics
https://github.com/Greco-Lab/MVDA_package modelling
R [45,46] [4,54–56] Multi-view clustering
FPRF [19] Bioinformatics
https://doi.org/10.1371/journal.pone.0107801.s004 [57,58] modelling
R [59,60,50,61] [62,31,4] Feature Selection
GARBO [20] Bioinformatics
https://github.com/Greco-Lab/GARBO modelling
Python [63] [4] Feature Selection
INSIdE NANO [6]
http://inano.biobyte.de/ [64,65] [4,31,33] Read-Across
MaNGA [21]
https://github.com/Greco-Lab/MaNGA
Python – [4,31,66] QSAR
hyQSAR [22] – [4,31] QSAR

Table 2
Examples of interoperability of the Nextcast data formats with external tools.

Nextcast
Component

Output External tool Description

eUTOPIA gene expression
matrix

MORPHEUS https://software.broadinstitute.org/morpheus

eUTOPIA gene expression
matrix

t-SNE [82], UMAP [83] Dimensionality reduction techniques available in R
or Python

eUTOPIA differentially
expressed genes

WebGestalt [84], Enrichr [85], PathwAX [86], Ingenuity Pathway
Analysis (QIAGEN Inc.,https://digitalinsights.qiagen.com/IPA)

Pathway enrichment analysis

eUTOPIA differentially
expressed genes

STRING [87] https://string-db.org/

FunMappOne enriched GO
terms

REVIGO Tool for summarization and to study of GO terms
interactions (available athttp://revigo.irb.hr/)

INfORM Co-expression
networks

Cytoscape [88] and Gephy [89] G Tools for network visualisation

INfORM Prioritised genes WebGestalt [84], Enrichr [85], PathwAX [86], Ingenuity Pathway
Analysis (QIAGEN Inc.,https://digitalinsights.qiagen.com/IPA)

Pathway enrichment analysis

INfORM Prioritised genes STRING [87] https://string-db.org/

A. Serra, Laura Aliisa Saarimäki, A. Pavel et al. Computational and Structural Biotechnology Journal 20 (2022) 1413–1426
to identify outliers. Moreover, it offers a solution to each step of
omics data preprocessing, alongside informative visualisations. A
fundamental step in transcriptomics data analysis is to attenuate
batch effects while retaining the variation associated with biolog-
ical variables. Batch effects can be caused by known variables
(e.g., dye, RNA quality, experiment date, etc.) or by hidden sources
of variation not explained by the known variables. eUTOPIA offers
support for the estimation of batch effects and the mitigation of
both known and unknown batch effect variables. eUTOPIA further
allows the user to statistically evaluate the differences between
experimental groups by differential expression or methylation
1415
analysis. When performing differential analysis it is important to
include in the model all the relevant covariates and any batch vari-
ables previously identified and removed. A summary of the meth-
ods implemented in each step of the analysis for the different
platform can be found in TableS1. Finally, eUTOPIA produces a nor-
malised, batch corrected and annotated expression/methylation
data matrix at the desired stage of preprocessing, as well as files
with the results of the differential analysis. Furthermore, to ensure
reproducibility and transparency, the user can download an analy-
sis report showcasing the steps applied to the data in a visual for-
mat. A comparative analysis of the eUTOPIA functionalities against

https://github.com/Greco-Lab/eUTOPIA
https://github.com/Greco-Lab/INfORM
https://github.com/fhaive/VOLTA
https://github.com/Greco-Lab/BMDx
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https://github.com/Greco-Lab/MVDA_package
https://doi.org/10.1371/journal.pone.0107801.s004
https://github.com/Greco-Lab/GARBO
http://inano.biobyte.de/
https://github.com/Greco-Lab/MaNGA
https://software.broadinstitute.org/morpheus
https://digitalinsights.qiagen.com/IPA
https://string-db.org/
http://revigo.irb.hr/
https://digitalinsights.qiagen.com/IPA
https://string-db.org/


A. Serra, Laura Aliisa Saarimäki, A. Pavel et al. Computational and Structural Biotechnology Journal 20 (2022) 1413–1426
other free analysis tools shows that batch correction and surrogate
variable estimation strategies are unavailable in many other tools
(TableS2). Moreover, even though eUTOPIA is not the tool with
the most functionalities, its features are presented in an easy-to-
use workflow that makes the preprocessing task intuitive and less
technically challenging for the users.

2.2. FunMappOne: hierarchical organisation and comparison of
multiple functional enrichment analysis

FunMappOne is a web-based graphical tool to perform func-
tional annotation of one or multiple toxicogenomic experiments
[15]. FunMappOne takes as input a spreadsheet file containing lists
of human, mouse or rat genes identifiers. In addition to gene iden-
tifiers, gene metrics such as fold-changes or p-values can be pro-
vided. FunMappOne allows to query the gProfiler database [67]
and compute the enrichment of functional categories from Reac-
tome [68], Kyoto Encyclopedia of Genes and Genomes (KEGG)
[69], or Gene Ontology (GO) collections [70]. The over-
represented terms or pathways are arranged in a way that easily
allows graphical inspection of enriched functional categories over
multiple experiments. FunMappOne allows the user to summarise
enriched terms by using a three-level hierarchical structure, repre-
sented in the form of a directed acyclic graph, that reflects the
intrinsic organisation of Reactome, KEGG, and GO annotations. If
provided in input, gene metrics can be mapped over enriched
terms. The user can upload this information for each experimental
condition separately, as well as a set of statistical thresholds and
metrics to be associated with the enriched terms. The visual output
is an interactive map, which the user can explore in at least three
different ways: i) by selecting a subset of experimental conditions;
ii) by selecting the level of the hierarchy to visualise or iii) by spec-
ifying which categories/terms of interest to be displayed. The sam-
ples in the map can be clustered based on the number of shared
pathways or on how similar the modifications of the shared path-
ways are. FunMappOne represents a fast and easy-to-use tool for
the final step of most omics-data analyses and allows a clear inter-
pretation of the comparison of multiple experimental conditions
with different levels of abstractions. More information on the
methods implemented in the FunMappOne tool can be found in
TableS3. Many tools are currently available (TableS4) to perform
functional and enrichment analysis of omics derived gene lists.
To the best of our knowledge, FunMappOne is the only method
that summarises the results based on the hierarchical structure
of the annotations. Moreover, we are not aware of other publicly
available tools that cluster and compare the profiles from multiple
experiments.

2.3. INfORM: inference of network response modules

INfORM is an ensemble method for robust gene co-expression
network inference and responsive module detection and interpre-
tation [16]. INfORM computes co-expression networks based on
multiple correlation and mutual information statistics and multi-
ple network inference algorithms (TableS5). It makes use of the
Borda method [71], implemented into the R TopKLists package
[72], to integrate all the co-expression networks generated from
the ensemble strategy into a final one, ensuring reliable and robust
results.

Moreover, INfORM implements widely used community detec-
tion algorithms for relevant responsive module identification
(TableS5). The quality of responsive modules is assessed by evalu-
ating several characteristics of their nodes and edges, such as their
centrality score (computed by several centrality measures such as
degree, shortest path among nodes, betweenness), differential
log2-fold change, p-value, the median rank of edge weights and
1416
number of nodes. These measures are graphically represented in
an easy-to-interpret radar chart that also shows the robustness
of the modules. INfORM also gives the possibility to perform a
functional over-representation analysis of the GO terms over-
represented in each responsive module and to compare the simi-
larity between different modules based on the GO terms they
enrich. The GO-based module similarity can be visualised as a tile
plot to guide the selection of functionally related modules.
INfORM, therefore, allows the user to merge statistically significant
and biologically relevant modules into an optimised response
module. A complete list of methods used in each step of the
INfORM analysis is reported in TableS5. We compared INfORM
with three publicly available network inference tools (TableS6).
Our analysis shows that INfORM is the only one to implement an
ensemble strategy. Ensemble methodologies that combine multi-
ple gene co-expression network inference methods give more
robust and reliable results [73].

2.4. VOLTA: adVanced mOLecular neTwork Analysis

VOLTA is a network analysis Python package, suited for complex
co-expression network analysis [36]. The INfORM and VOLTA tools
can be used in combination to compute co-expression networks
and to perform advanced network analysis. VOLTA allows the anal-
ysis of a single co-expression network, as well as the comparison,
clustering and analysis of multiple networks. VOLTA implements
several state-of-the-art methodologies for the computation of net-
work similarities and distances, network clustering, community
detections, network simplification and common sub-modules
identification (TableS7). When compared to other similar software
(TableS8), VOLTA offers the widest range of functionalities. VOLTA
also allows the comparison of multiple networks and the identifi-
cation of common sub-structures in different networks. Moreover,
VOLTA is a highly flexible tool, allowing users to construct their
own custom analysis pipelines, through its individual components.
This provides users full control over parameter selection, function
selection as well as the combination and re-use of functionalities in
different application scenarios. In addition, VOLTA is not only suit-
able for experienced users but also for novices, as it can be used as
a plug-and-play system to suit the individual needs of different
users.

2.5. INSIdE NANO: integrated network analysis for nanomaterial
characterisation

INSIdE NANO is a network-based web tool ( http://inano.bio-
byte.de/) for toxicogenomics-based read-across of nanomaterials
[6]. The INSIdE NANO network integrates four phenotypic entities
in the form of experimental gene expression data for nanomaterial
exposures and drug treatments, and prior knowledge between
genes known to be associated with chemical exposures or human
diseases (TableS9).

In this interaction network, different entities can be compared
under the hypothesis that the relatedness of different pairs of
exposures can be estimated using the degree of similarity between
their specific patterns of the mechanism of action (TableS9).
INSIdE NANO can thus be used to contextualize the effects of the
nanomaterial exposure on gene regulation by comparing them
with those of chemicals and drugs with respect to particular
diseases.

The read-across analysis is performed by scanning the network
in search of heterogeneous cliques, containing one node for each
phenotypic entity category (TableS9). For each clique, the nanoma-
terial behaviour with respect to a disease can be compared to that
of drugs and chemicals. The user can query the database by provid-
ing one or more phenotypic entities of interest and a threshold of

http://inano.biobyte.de/
http://inano.biobyte.de/
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their similarity score. The output will be a list of cliques containing
the entities of interest and other entities strongly connected to
them (based on the input threshold). The resulting cliques are pri-
oritised based on the number of known connections that they con-
tain (e.g. drugs used to treat diseases, or chemicals known to cause
diseases). Moreover, the INSIdE NANO interface allows investigat-
ing which genes underlie the connection.

2.6. BMDx: Benchmark Dose analysis for transcriptomics data

BMDx is a tool for Benchmark Dose (BMD) analysis of omics
data developed in R with a shiny graphical interface [10]. The tool
analyses transcriptomics data for which multiple doses, at single or
multiple time points, are available. It provides a comprehensive
survey of dose-dependent transcriptional changes together with
dose estimates at which different cellular processes are altered.
BMDx can analyse and compare multiple data sets at the same
time, making the comparison of different experiments easy.

The steps of the analysis consist of i) filtering the genes by
ANOVA or trend test; ii) model fitting and selection. Computation
of the BMD (benchmark dose), BMDL, (BMD lower bound), BMDU
(BMD upper bound), and IC50 (inhibitory concentration 50) or
EC50 (effective concentration 50) for the remaining genes; featur-
ing an interactive visualisation of the fitted model for every gene;
iii) functional annotation enrichment of the dose-dependent
genes; and iv) comparison of the list of genes/pathways obtained
at different time points and experiments. A description of the
methods used in the BMDx tool is provided in TableS10. We com-
pared BMDx with other tools for benchmark dose analysis
(TableS11). BMDx is one of the few that is able to analyse multiple
experiments at the same time. BMDx is designed for the compara-
tive analysis of different toxicogenomics experiments (e.g. multi-
ple chemical exposures) at single or multiple time points. The
gene expression data that BMDx accepts as input have to be
already preprocessed and normalised. This can be easily achieved
with the eUTOPIA module. Moreover, the FunMappOne functional-
ities are included in the BMDx interface, making it simple to com-
pare different experiments by means of the hierarchical structure
of the pathways or GO terms that are enriched by the dose-
dependent genes.

2.7. TinderMIX: Time-dose integrated modelling of toxicogenomics
data

TinderMIX offers a solution for the simultaneous evaluation of
dose-dependent molecular alterations at multiple time points
[12]. It provides a tool for the investigation of dynamic dose-
dependent alterations improving the interpretation of the kinetics
of molecular changes (TableS12). Furthermore, TinderMIX allows
the identification of groups of genes with similar sensitivity and
kinetics, which can help to identify relevant patterns in biological
processes in response to exposures.

TinderMIX fits multiple models of the molecular alteration
(measured as fold-changes) as a function of dose and time. Then,
it selects the best fitting model for each gene and represents it as
a 2D contour plot. This results in an integrated time- and dose–ef-
fect map, where a responsive area is identified based on the user-
selected threshold. The responsive area consists of the area in
which a monotonic alteration can be observed with respect to
the doses for a subset of the time points. Each gene showing
dynamic dose-dependent response is then labelled according to
the integrated point of departure that considers both the time
and the dose, giving insight into the sensitivity and kinetics of
the molecular alterations. Finally, the dynamic dose–response as
a whole can be investigated by grouping the genes by the assigned
labels and identifying over-represented pathways for each group.
1417
A few other time- and dose/concentration integrative analysis
have been suggested for the modelling of gene expression data.
[74] To the best of our knowledge, TinderMIX is currently the only
method that gives an estimation of the dynamic point of departure
of the molecular alterations.

2.8. FPRF: A robust and accurate method for feature selection and
prioritisation from multi-class omics data

FPRF (Fuzzy Pattern Random Forest) implements a feature
selection algorithm for multi-omics data. The tool is optimised
for the detection of highly relevant patterns associated with pre-
dictive variables (TableS13) [19]. Feature relevance determination
is a fundamental step for the discovery of biomarkers (e.g. genes
able to discriminate with high precision in different clinical condi-
tions) together with the development of predictive models based
on these features. The most commonly used approaches to feature
selection are univariate and wrapper methods. Despite their diffu-
sion, a common problem of these and other approaches is the sta-
bility of relevant features.

FPRF is based on the Random Forests algorithm [75] and a
robust feature selection mechanism based on a data transforma-
tion process called fuzzy patterns. Before model training, data is
discretised into fuzzy patterns employing a set of membership
functions, assigning to each feature (a gene or transcript) a fuzzy
level of activity (low, low-middle, middle, middle-high, high). After
this process, the fuzzy patterns are used to build a predictive
model based on random forests, which is in turn used to prioritise
the fuzzy patterns using permutation-based feature relevance
scores. FPRF produces a predictive model based on the fuzzy pat-
terns, together with a list of prioritised features based on their rel-
evance in the learning phase. When compared to other tools, FPRF
is one of the few to combine fuzzy pattern generation over the data
set and random forest learning models (TableS14)

2.9. GARBO: Genetic AlgoRithm for biomarker selection in high-
dimensional Omics

Genetic AlgoRithm for biomarker selection in high-dimensional
Omics (GARBO) is a multi-island-based genetic algorithm for the
concurrent optimisation of model accuracy and the number of fea-
tures used in predictive tasks [20]. The optimisation strategy
implemented in GARBO is based on variable length chromosome,
dynamic genetic operators, migration of optimal individuals in
the populations and a random forest based fitness evaluation
(TableS15). Given a classification task, GARBO explores the space
of feature sets by evaluating the accuracy related to random forest
classifiers built upon these sets to find the best-performing/
minimum-sized set.

GARBO has been validated on the classification of cancer
patients and the prediction of drug sensitivity using omics data
from The Cancer Genome Atlas (TCGA), The Cancer Cell Line Ency-
clopedia (CCLE), and the Genomics of Drug Sensitivity in Cancer
(GDSC). Compared to six other state-of-the-art algorithms, GARBO
demonstrated good performances in optimising both accuracy and
number of features [20]. A comparative analysis between GARBO
and other tools is present in TableS16.

2.10. MaNGA: A multi-niche/multi-objective genetic algorithm for
QSAR modelling

MaNGA is a multi-niche/multi-objective genetic algorithm for
quantitative structure–activity relationship (QSAR) modelling that
simultaneously enables stable feature selection as well as robust
and validated regression models with maximised applicability
domain (TableS17) [21].
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Starting from chemical descriptors and a continuously mea-
sured endpoint for a given set of compounds, MaNGA builds pre-
dictive models that are both internally and externally validated.
The models are optimised for high predictivity and reliable appli-
cability domain. MaNGA strategy starts with creating multiple
niches with an independent training-test split of the data set.
While the population in each niche evolves independently towards
the optimal solution, the niches are also communicating between
each other and migrating their optimal solutions. When compared
with other QSAR tools, MaNGA is one of the few to perform multi-
objective feature selection (TableS18). Indeed, the selected models
are ranked according to i) their number of selected molecular
descriptors, ii) their predictive performances, iii) applicability
domain and iv) their stability across the different niches. The
top-ranked model is returned as the final solution.
2.11. hyQSAR: Hybrid quantitative structure–activity relationship
modelling

hyQSAR is a suite of instruments for training and analysing
data-driven QSAR models [22]. Its models can be fed with struc-
tural data of chemical compounds (e.g. molecular descriptors or
substructure fingerprints), transcriptomic data (e.g., gene expres-
sion values or fold changes), or both, and applied to predict a
numerical activity/property of interest. hyQSAR predictions are
based on linear models, and during training, the least absolute
shrinkage and selection operator (LASSO) is used to improve gener-
alisation and feature selection (TableS19). The user can choose
between several transformations to be applied separately to the
structural and the transcriptional components of the input. The
hyper-parameters are the penalisation factor of LASSO and, option-
ally, the exponents of the transformations for the structural and
the transcriptomic inputs. They are chosen by grid search, using
random splits to improve generalisability. hyQSAR allows internal
and external model validation according to the Organisation for
Economic Co-operation and Development (OECD) requirements.
To the best of our knowledge, hyQSAR is one of the few strategy
that generate QSAR models with mixed omics and cheminformat-
ics features (TableS18).
2.12. MVDA: A multi-view clustering approach

The MVDA (Multi-View Data Analysis) is a tool for clustering
samples in a multi-omics data set. MVDA implements a multi-
view late integration strategy that combines dimensionality reduc-
tion, unsupervised learning clustering, and matrix factorisation
[17].

MVDA analyses multi-omics data for the same set of samples
and, if available, an initial samples stratification, and produces a
multi-view clustering computed by taking into account: i) the
sample stratification over all omics data layers, ii) the influence
of the omics layer on each cluster and iii) the relevant omics fea-
tures characterising each cluster. The first step of the MVDA anal-
ysis consists of reducing the dimensionality of the omics layers by
clustering the features and extracting a representative prototype,
such as the cluster centroid, for each group. These prototypes are
used to cluster the samples in each omic layer. Eventually, a
matrix-factorisation approach is used to combine the single view
grouping into a multi-view clustering. If an initial sample stratifi-
cation is available, a feature selection step on the prototype or a
semi-supervised matrix factorisation can be also performed. A
description of the steps and methods implemented in the MVDA
methodology, and its comparison to other similar tools, are avail-
able in TablesS20 and S21.
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2.13. MOSIM: Multi-omics data simulator

The ability of multi-view learning algorithms to take into
account different omics data layers allows this class of algorithms
to build more robust models of the biological system under study.
To ease the development and debugging of new algorithms, it is
important to rely on perfectly known ground-truth benchmark
data. In the case of biological systems, this is not always possible,
and to this purpose, MOSIM (Multi-Omics Simulator) has been pro-
posed as a generator of synthetic multi-omics data based on graph
theory and ordinary differential equations (TableS22) [18].

MOSIM can reproduce key characteristics of transcriptional and
post-transcriptional regulatory networks topology, such as hierar-
chical modularity and the scale-free property of many real-life net-
work systems. Moreover, the rate of concentration of transcripts is
explicitly modelled. The strength of MOSIM is derived by the inte-
gration of these two aspects, specifically, the complex interaction
patterns described by the modules in the network are reflected
in the model of activity of each entity (gene or miRNA) which
can produce complex behaviours such as cooperation, competition,
and inhibition of regulatory entities acting on each node of the net-
work. To the best of our knowledge, MOSIM is one of the few tools
able to model multi-view entities such as mRNA, miRNA and tran-
scription factors (TableS23).
3. Use of the Nextcast components

Toxicogenomics aims at linking the safety assessment of chem-
icals to the underlying biological mechanisms. However, this can
pose multiple challenges, such as the identification of the best
experimental design, a standardised way for data preprocessing,
identification of the modelling methodologies that can be used
for omics data, as well as concerns related to the robustness and
quality of the results and their interpretation. Nextcast offers a
flexible solution for tackling these problems. The modular struc-
ture allows the use of the tools independently or in combination
to produce more complex pipelines that can turn raw data into sci-
entific knowledge. Here, we provide examples of Nextcast pipeli-
nes able to answer specific biological questions.
3.1. Characterisation of the MOA of a compound

One of the key aspects addressed by toxicogenomics investiga-
tion is the characterisation of the mechanism of action (MOA) of a
compound. The MOA comprises all the molecular alterations
induced by a specific exposure. The characterisation of the MOA
can be performed by comparing transcriptomics or epigenomics
data between the sample groups and identifying the differences
induced by the exposure.

In Fig. 2, we provide some possible approaches available in
Nextcast for the investigation of the MOA. To ensure a robust
and reproducible analysis the raw transcriptomics data need to
be systematically preprocessed. This can be achieved through a
well-established pipeline implemented in the eUTOPIA tool [14].
After an evaluation (visual and statistical) of the normalisation,
batch effect removal, and quality control procedures, an annotated
expression matrix can be generated. Moreover, pairwise compar-
isons between treatments or different conditions can be performed
(e.g. treatment vs. control), generating a list of differentially
expressed genes (DEGs).

To grasp the systemic effects in the biological system, the bio-
logical activities and the molecular responses triggered by the
chemical exposure should be investigated (e.g., immune system
activation, changes in the metabolism, effects on the cell cycle,
triggered apoptotic pathways). An easy-to-do characterisation of



Fig. 2. Nextcast pipeline for the characterisation of the MOA of a compound. Raw omics data is preprocessed with eUTOPIA. The output of the tool includes a matrix with
normalised (and batch corrected) expression values and a list of differentially expressed genes. This data can be fed to INfORM to identify a set of responsive gene modules.
VOLTA can be further used to analyse networks built with INfORM. Alternatively, differentially expressed genes can be directly provided as the input for the FunMappOne tool
to perform enrichment analysis and identify the underlying biological processes. The result is a list of regulated genes and corresponding enriched pathways or regulated
genes in co-expressed modules and their corresponding pathways. The red box represents the input for the pipeline while the green box describes the outcome of the
pipeline. The dark blue boxes correspond to the individual Nextcast components of the ‘‘Analytics” category, and the light blue boxes indicate the intermediate outputs/
inputs.
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the MOA can be achieved by running FunMappOne [15], either
directly with the set of DEGs, or after an intermediate step of
prioritising gene modules with INfORM and VOLTA [16,36].
Eventually, the enriched terms obtained from FunMappOne allow
characterising the functional effects of the compound on a
more systemic level. Furthermore, it is possible to investigate the
specific key genes and their activation patterns (up-regulation/
down-regulation) in the biological functions to further explore
the MOA.

The suggested strategy has been successfully utilised in a wide
range of applications ranging from the study of nickel-induced
allergic contact dermatitis [29], copper oxide nanoparticles
induced asthma [24], and the characterisation of the effects of
ten carbon nanomaterials in three cell lines [76]. Moreover, the
eUTOPIA pipeline has been widely applied to create harmonised
transcriptomics data collections [28,25]. FunMappOne, on the
other hand, has proven to be an effective tool for comparing the
pathway enrichment of different experimental conditions in multi-
ple studies [37,7]. The Nextcast components have also been used
jointly to characterise the transcriptomic signature underlying ato-
pic dermatitis [32]. Two sets of relevant genes involved in the dis-
ease were identified and functionally characterised and compared
employing the FunMappOne visualisation, while INfORM was used
to study the co-expression network and the corresponding mod-
ules of differentially expressed genes between lesional and non-
lesional samples. Furthermore, in a recent study by Kinaret et al.,
eUTOPIA and FunMappOne have been successfully utilised to char-
acterise the mechanism of toxicity of 28 distinct nanomaterials by
interpreting the varying effects observed in mouse airways [27].
Fig. 3. Nextcast pipeline for the estimation of relevant doses of chemical exposure. Ra
(and batch corrected) expression values and a list of differentially expressed genes. These
to identify dynamic-dose responsive genes. Eventually, enrichment analysis can be c
processes. The red box indicates the input for the pipeline, while the green boxes mar
”Analytics” category, and the light blue box shows the intermediate output/input.
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3.2. Using toxicogenomics in estimating relevant doses for a compound

The study of the dose–response relationship is one of the
cornerstones of toxicology. It is used to observe the relationship
of exposures and apical endpoints to determine safe, hazardous,
beneficial and/or effective exposure levels of chemicals, drugs,
and compounds. BMD analysis is a relevant tool in health risk
assessment to identify the effective doses of compounds to trigger
particular biological responses [10,11,77]. Furthermore, it is rele-
vant to distinguish between the patterns of molecular alteration
that are a direct consequence of the exposure from secondary
effects resulting from genomic regulatory loops. The BMDx tool
can be used to identify genes with expression patterns showing
dose–response behaviour and estimate their active concentrations
or benchmark doses [10]. In the case of experiments where multi-
ple time-points are available, the TinderMIX tool can be instru-
mental in identifying genes showing a dynamic-dose dependent
effect and estimate their PODs [12].

Fig. 3 provides a suggested pipeline for the dose–response anal-
ysis of toxicogenomics data using Nextcast. The combination of the
tools allows a flexible approach from preprocessing to functional
annotation of the dose-dependent features. BMDx can be particu-
larly useful for gaining BMD values for each gene and mean BMD
values for biological pathways [10], as well as for comparing mul-
tiple exposures. TinderMIX, on the other hand, can be used to
obtain dynamic-dose dependent PODs for each gene [12]. Eventu-
ally, genes showing a relevant (time-) dose-dependency can be
functionally annotated by FunMappOne, helping to understand
the impact of a chemical [15].
w omics data can be preprocessed with eUTOPIA to obtain a matrix with normalised
data can be given in input to BMDx for a benchmark dose analysis or to TinderMIX

onducted for the set of dose-dependent genes to identify the affected biological
k the output. The dark blue boxes are the individual Nextcast components of the



Fig. 4. Nextcast pipeline for biomarker identification from toxicogenomics data. Raw omics data can be preprocessed with eUTOPIA. Preprocessed transcriptomics data
can be provided as input to INfORM, VOLTA (after INfORM), BMDx, or TinderMIX to identify a set of biomarkers in a univariate way. The whole list of genes or only the
prioritised set can be provided to the feature selection algorithm (GARBO or FPRF) to identify the smallest predictive set of biomarkers. The red boxes represent the input for
the pipeline. The sample category is the variable of interest for the biomarker discovery phase. The lighter green box marks the output of the pipeline, dark blue and dark
green boxes indicate the individual Nextcast components belonging to the ”Analytics” and ”modelling” categories, respectively. The light blue boxes represent the
intermediate outputs/inputs.

A. Serra, Laura Aliisa Saarimäki, A. Pavel et al. Computational and Structural Biotechnology Journal 20 (2022) 1413–1426
The strategy was recently applied for the systematic compar-
ison of the gene expression and DNA methylation dynamic dose–
response in a macrophage model after multi-walled carbon nan-
otube (MWCNT) exposure [5]. Gene expression and DNA methyla-
tion data were preprocessed and analysed by using eUTOPIA, while
TinderMIX was used to identify dynamic dose-dependent features
whose functionality was annotated and compared using
FunMappOne.

3.3. Toxicogenomics and structural predictors

Early assessment of adverse effects induced by drugs or chem-
ical exposures in humans is critical to avoid potential long-lasting
harm. Moreover, the identification of valuable biomarkers from
toxicogenomics data plays a central role in toxicity assessment,
since they can be detected earlier than histopathological or clinical
phenotypes. To this end, Nextcast provides multiple customisable
pipelines (Fig. 4). The eUTOPIA tool supports the preprocessing of
the raw data and produces an expression matrix and a ranked list
of significantly altered genes between the exposed and control
samples [14].

These genes can be already considered markers of exposure
since they represent the whole set of molecular alterations induced
in the biological system. Alternatively, the most central genes
involved in the processes can be identified in a gene co-
expression network by using INfORM [16]. Alternatively, genes
can be prioritised based on dose-dependency by the means of
the BMDx or TinderMIX tools. To take into account the non-
Fig. 5. Nextcast pipeline for biomarkers identification and QSAR models developm
preprocessed with eUTOPIA. Then, the preprocessed transcriptomics data, chemical repr
identify the optimal predictive model. The red boxes indicate the input for the pipeline w
Nextcast components, and the light blue box represents the intermediate output/input.
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linear dependencies among expression levels, the univariate anal-
ysis of individual genes should be complemented by multivariate
feature selection. The goal of feature selection is to express high-
dimensional data with a low number of features to reveal signifi-
cant underlying information and to identify a set of biomarkers
for a particular phenotype. Nextcast has two feature selection
methods available that can be used in this pipeline. One is FPRF,
which is a random forest-based method that produces a ranking
of the genes based on their discriminative power [19]. The other
one is GARBO, which implements more advanced modelling based
on a genetic algorithm that allows the modelling of non-linear cor-
relation between candidate biomarkers and the phenotype of
interest [20]. Both methods can be implemented to derive a
reduced set of responsive genes, taking into account the predictiv-
ity with respect to the level of a toxic response. FPRF and GARBO
can be run on the whole set of genes available in the data set or,
to reduce their computational cost, they can be run on a prioritised
set of genes that can be represented by: i) the differentially
expressed genes identified with eUTOPIA, ii) the genes involved
into relevant co-expression modules identified with INfORM or
iii) the dynamic dose-dependent genes identified with BMDx or
TinderMIX. The INfORM and GARBO methodologies were recently
applied to identify candidate biomarkers to distinguish between
irritant and allergic contact dermatitis [63]. INfORM was used to
infer and compare co-expression networks of the two kinds of der-
matitis. The GARBO methodology was then applied to optimise the
number of relevant features to use when testing the accuracy of
omics-based biomarker panels.
ent from toxicogenomics and cheminformatics data. Raw omics data can be
esentation data, and the outcome variable can be provided to hyQSAR or MaNGA to
hile the green box is the output. The dark blue and the yellow box are the individual
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Another important aspect tackled down by toxicogenomics is
the modelling of an outcome of interest, for example, chemical tox-
icity, starting from transcriptomics data from exposure experi-
ments and chemical characteristics of the compounds, such as
the PubChem CACTVS fingerprints, molecular descriptors and so
on. This can be streamlined in Nextcast by combining the eUTOPIA
and the hyQSAR or MaNGA modules. hyQSAR and MaNGA are two
algorithms for QSAR modelling [21,22]. The transcriptomics data is
first fed to eUTOPIA producing an expression matrix (Fig. 5). hyQ-
SAR and MaNGA are modules that can then be used to train predic-
tive models for a variable of interest, such as chemical toxicity, by
integrating toxicogenomics and cheminformatics data. Several
aspects can dictate the choice of the predictive module (i.e. MaNGA
or hyQSAR). Based on the dimensionality of the data set, hyQSAR
may be preferred over MaNGA when the sample size is relatively
small (e.g. less than 100 samples) since it learns a linear model
and the only other hyper-parameter to estimate is the amount of
regularisation. On the other hand, MaNGA may be preferred when
the sample size is high since it is possible to learn more flexible
models like Random Forests and SVMs, that usually require a
higher amount of samples to reliably capture non-linear relation-
ships and account for feature interactions at the expense of exten-
sive hyper-parameters tuning and higher computational demands.
Both approaches generate predictive models that are internally
and externally validated according to the QSAR standards [21,22].

A similar strategy was used in a recent publication, where the
hyQSAR tool was applied to build hybrid QSAR models for the pre-
diction of the binding affinity to human serum albumin from tran-
scriptomics data and molecular descriptors for a set of 57 drugs
[22]. The developed model was compared with those identified
only using the molecular descriptors, as in classical QSAR analysis.
The results showed that the hybrid model had overall better pre-
dictive performances. Moreover, the model was also shown to be
able to provide new avenues for the interpretation of chemical-
biological interactions.

3.4. Multi-view clustering for chemical read-across

Multi-view learning and data integration strategies have
become well-established methodologies in biomedical research
where more comprehensive knowledge can be derived from the
joint analysis of multiple data layers [78,52,79]. Multi-view learn-
ing, and in particular multi-view unsupervised clustering, is avail-
able in Nextcast through the use of the MVDA pipeline [17] (Fig. 6).

An example of the application of MVDA is the read-across anal-
ysis of compounds based on their toxicogenomics and chemical
Fig. 6. Nextcast pipeline with multi-view clustering for chemical read-across. Raw om
the same samples and/or chemical structure data (e.g. molecular descriptors) can be f
influence of each view on the clustering. Red boxes indicate the input while the lighter g
the individual Nextcast components, and the light blue boxes correspond to the interm
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characterisation. The use of computational strategies for hazard
assessment is essential to reduce the time and costs of the safety
assessment of compounds. Classical read-across-based approaches
are based on the assumption that structurally similar compounds
also have similar toxicokinetic and toxicodynamic properties
[80]. Thus one can hypothesise that compounds with unknown
properties will most likely behave in a manner that resembles
the most structurally similar ones. A complementary approach
can be based on the grouping of compounds based on toxicoge-
nomics data where compounds inducing similar molecular alter-
ations would be clustered together. More interestingly, intrinsic
properties and toxicogenomics data can be integrated to obtain a
more comprehensive clustering. This integrative clustering analy-
sis can be performed with our MVDA tool, by using toxicogenomics
(e.g. gene expression profiles, methylation data, etc.) signatures and
structural data of chemical agents (e.g. binary fingerprints, molec-
ular descriptors, etc.) as input.

If the user has omics data available in a raw data format, the
eUTOPIA tool can be used to obtain their robust and effective pre-
processing. Otherwise, the preprocessed omics data can be fed
directly into the MVDA pipeline. The results of the analysis will
be a grouping of the compounds based on both intrinsic properties
and molecular alteration information and a score of the influence
of each view on each final group.

MVDA was originally developed as a tool for patient subtyping
from multi-omics data [17]. However, it is a general-purpose tool
that can be used in different domains of applications. For example,
Li et al. [46] applied it to perform a multi-view clustering of
patients from medical imaging data by integrating histogram fea-
tures from multi-parametric magnetic resonance imaging.

3.5. Interoperability of Nextcast data formats

Nextcast uses data representations that comply with well-
accepted standardised formats [81] and offers a high degree of
interoperability of its outputs with other external software (Table 2
and supplementary methods). As for the interoperability between
the Nextcast components, some of the analytics tools require the
expression data and the metadata table, describing the samples,
to be manipulated and stored as spreadsheet files. Automatic con-
version of the eUTOPIA outputs in a ready-to-use format for BMDx,
INfORM and FunMappOne is provided in the eUTOPIA interface. In
particular, the spreadsheet file required as input for the FunMap-
pOne module can be generated by specifying which of the compar-
isons performed during the analysis should be included and how
they are grouped. The gene expression matrix and the list of genes
ics data can be preprocessed with eUTOPIA. The preprocessed multi-view data for
ed to MVDA to obtain the multi-view cluster assignment of each sample and the
reen boxes mark the output of the pipeline. The dark blue and dark green boxes are
ediate output/input.
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with log2-fold changes and p-values, required by INfORM for the
generation of the networks, can be exported from eUTOPIA for each
one of the comparisons. The user can choose to include all the
genes present in the experimental data or to filter them by using
only the genes that are differentially expressed in each compari-
son. Lastly, if preprocessing data with an experimental setup con-
taining multiple doses and/or multiple time points, the data can be
directly exported in a format ready for the BMDx tool. Other kind
of data filtering, splitting or merging with external data sets needs
to be manipulated either manually or through the use of cus-
tomised scripts outside the Nextcast environment.

3.6. Example application of the Nextcast pipelines on real data

Toxicogenomics aims at linking the safety assessment of chem-
icals to the underlying biological mechanisms by means of omics
data analysis [2–4]. In the last years, many datasets have been gen-
erated to characterise the molecular mechanism of action (MOA) of
chemical exposure by transcriptomics profiling the exposed sys-
tem. The FAIRness of the data sharing and reusing is a topic cur-
rently discussed by the scientific community [90–92]. The
availability of well-reported standardised pipelines in Nextcast
also support and increase the FAIRness of the data [91]. Analysis
of toxicogenomic data generally consists in elucidating the MOA
of exposure and to identifying related biomarkers. The most com-
mon approach is to characterise the MOA as the molecules that are
significantly altered between the exposed and the control samples
as shown in Fig. 2. More recently, particular relevance has been
given to the dose dependent analysis of toxicogenomic data for
the identification transcriptomic alterations with a monotonic pat-
ter with respect to increasing doses or concentrations. It could be
speculated that these alterations can be used to dissect the direct
effects of the exposure from other secondary regulatory circuits
Fig. 7. Example application of the characterisation of the MWCNT MOA employing INfO
analysis. The normalised expression matrix, as well as the lists of differentially expresse
deregulated 1,000 genes across the exposures and to produce inputs for INfORM. (C) I
according to their topological properties. (D) The first 200 positions of each list were
FunMappOne was used to perform enrichment analysis of the KEGG human pathways.
different doses and time points.
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happening in the cells. Moreover, benchmark dose analysis allow
to identify the reference doses at which particular cellular pro-
cesses are altered [93]. This type of analysis can be easily per-
formed in Nextcast as shown in Fig. 3. In the last decade, it has
become clear that complex phenotypes are the results of the inter-
actions of different molecules. Thus, biological network analysis
has been successfully increasingly applied in toxicogenomic stud-
ies [94]. Markers of exposures can be identified by studying the
gene co-expression network starting from transcriptomics data
[4,95]. For example, Nextcast offers the possibility to identify key
genes associated to the exposures as those more central to the
co-expression networks in terms of different topological properties
(Fig. 2). In the following sections we showcase how the theoretical
pipelines described in Figs. 2 can be applied to address the afore-
mentioned points. We used toxicogenomics data derived from a
dose-time exposure series of multi-walled carbon nanotubes
(MWCNT) on THP-1 macrophages (data previously published in
Saarimäki & Kinaret et al. [5], available on the NCBI Gene Expres-
sion Omnibus (GEO) database under the series accession number
GSE146710). Detailed information on the analyses can be found
in the supplementary methods.

3.6.1. Characterisation of the MOA of MWCNT
Prioritising the most significant molecular perturbations is an

effective way to characterise the MOA of a compound [95]. Here
we showcase an example of MOA characterisation of MWCNT that
first uses network based metrics to prioritise relevant genes and
than characterise them by means of functional annotation
(Fig. 2). The alternative strategy that performs directly functional
annotation of the differentially expressed genes is shown in Fig-
ure S1. The pipelines start with the preprocessing of the data and
the identification of the differentially expressed genes using eUTO-
PIA (Fig. 7A). After co-expression network inference, INfORM is
RM. (A) eUTOPIA was used to preprocess input raw data and to perform differential
d genes, were exported. (B) A custom script was used to select the most frequently
NfORM was used to infer the gene co-expression networks and to rank the genes
selected and combined in a format compatible with the FunMappOne input. (E)
(F) The output was interpreted for MOA characterisation of MWCNT exposures at



Fig. 8. Example application of the characterisation of the dose–response to MWCNT with BMDx. The preprocessed data were downloaded from eUTOPIA in a format
compatible with the BMDx input. After completing the benchmark dose analysis, the results can be explored via various visual presentations. For example, (A) the
distributions of the computed BMD values were compared between the time points. The BMD values computed at 24 h of exposure exhibit a higher peak at low doses
compared to the later time points. (B) the Venn diagram indicates a larger number of dose-dependent genes at 24 h than at 48 and 72 h. (C) The best model for TNF with the
computed BMD (blue), BMDL (red), BMDU (green) and IC/EC50 (green) values. (D) Selected pathways enriched in the functional enrichment indicate that the mean BMD
values for distinct biological functions increase at later time points. The colour of the cell represents the mean BMD values of the genes enriching the pathway. (E) Line graph
representing the genes enriching TNF signalling pathway at 48 h with their BMD, BMDL and BMDU values plotted.
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able to prioritise the genes in the network based on both a consen-
sus of centrality measures and the level of deregulation of the gene
expression (Fig. 7C). Fig. 7C reports an example of gene rank
obtained from the high dose and early time point MWCNT expo-
sure. The data reported in the table highlights the prominent role
of the immune response in the adaptation response, as well as
the control of cell cycle and apoptosis. FunMappOne is able to sum-
marise the functions of the relevant genes as an heatmap (Fig. 7E).
As expected, the FunMappone output always presents the highest
values of deregulation at 24 h, regardless of the dose, while the sys-
tem gradually turned back towards homeostasis at 48 and 72 h,
respectively. In detail, low and intermediate doses after 3 days of
exposure, virtually showed the complete resolution of the inflam-
matory response as compared to day 1. Furthermore, the ampli-
tude of the adaptation response increased with the dose. As
expected, both inflammatory and pro-fibrotic pathways were up-
regulated one day after all the exposures: TNF, NFjB and IL-17,
among the others, showed a consistent up-regulation that
increased with the dose. NFjB role in MWCNT molecular mecha-
nism of toxicity has been extensively studied and is well accepted
[96]. Similarly, IL-17 mediates protective innate immunity mecha-
nisms against a plethora of pathogens, and is nowadays regarded a
potential pivotal therapeutical target in inflammation pathogene-
sis [97–102].

3.6.2. Characterisation of the dose–response to MWCNT and
identification of effective doses

Benchmark dose analysis can help to distinguish the direct
effects of an exposure from the indirect ones, as they are likely
to show dose-dependent alteration. At the same time, understand-
ing the point of departure, i.e. the dose at which the expression of a
gene diverges from the steady state, can help in the estimation of
safe or effective doses of controlled exposures. Here we showcase
how the pipeline shown in Fig. 3 can elucidating the dose-
dependent effects of MWCNT exposure. After preprocessing the
data with eUTOPIA, the bechmark dose dependent analysis was
performed by means of BMDx. As a result, distinct sets of dose-
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dependent genes were obtained for each time point (Fig. 8A and
8B). Specifically, 4170, 2246 and 2801 genes were considered
altered in a dose-dependent manner at 24 h, 48 h and 72 h, respec-
tively (Fig. 8B). The results can be investigated through various
visualisations, both at the level of individual genes as well as at
the level of the gene sets at each time point with comparisons
between them. Here, we showcase the distribution of the calcu-
lated BMD values at each time point (Fig. 8A), how these gene sets
overlap (Fig. 8B) as well as the representation of the model fit on
the gene TNF at 48 h (Fig. 8C). These results suggest that more
genes are showing dose-dependent changes in their expression
at 24 h as compared to later time points. Furthermore, the BMD
values are generally lower at 24 h as compared to 48 and 72 h.
The higher BMD values at later time points recapitulate the mech-
anisms observed in the previous network based example. At lower
exposure doses, the system generally adapts and reaches home-
ostasis faster than at higher doses. Hence, the doses at which sig-
nificant changes can be observed still at 48 h and 72 are higher
than those at 24 h and before. The dose-responsive genes can be
characterised by means of functional enrichment. A small selection
of the enriched pathways is shown here for the purpose of clarity
(Fig. 8D). For instance, the heatmap shows that the KEGG term
‘‘Cytokine-cytokine receptor interaction” is enriched at all
instances with increasing mean BMD value at each time point. This
value can be used as an estimation for the dose at which significant
changes related to the biological function can be observed. Finally,
the BMDL, BMD and BMDU values for the genes in a specific path-
way (e.g., TNF signalling pathway in Fig. 8E) can be investigated.

4. Conclusions

Currently, a large amount of toxicogenomics data is available to
the scientific community [103,104,25]. This data is used to answer
different questions such as mechanism of action reconstruction,
biomarker selection, evaluation of dose dependent alteration,
inference of molecular co-alteration, which require complex and
specific analytical strategies. Many modular and heterogeneous
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components may be strung together in novel ways to answer these
research questions on an ever-growing size of experimental and
simulated data sets. Abstracting the software from the underlying
programming languages and execution environments improves
both user’s experience and the scalability of workflows. It also
allows integration of new workflow steps and even existing web
services. Therefore, we developed the Nextcast software suite,
which contains a wide variety of tools for comprehensive, easy-
to-perform toxicogenomic data analysis. As scientific workflows
usually involve multiple actors with different levels of involvement
and technical expertise, Nextcast aims at catering to these actors
with multiple entry points to the development of the data pipeli-
nes, and it guides users with diverse backgrounds in the evaluation
of the workflows and their results. Nextcast is further designed to
allow high flexibility in any type of analysis that needs to be per-
formed while providing standardised pipelines and ensuring the
compatibility between the provided tools. While these standard-
ised pipelines compiled using the state-of-the-art methods are a
step towards more robust and reproducible toxicogenomics, the
importance of documentation of the decisions taken during the
analytical steps should not be overlooked. Solely reporting the
methods and parameters is often not enough to obtain full repro-
ducibility. Instead, complete documentation and scientific justifi-
cation of choices made during the experiment and data analysis
is crucial for gaining trust in toxicogenomics derived evidence. In
conclusion, Nextcast provides the needed, user-friendly infrastruc-
ture to make comparable, systematic toxicogenomic analysis, and
thus it will be of great support to the scientific community, regula-
tors, and stakeholders.
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