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Abstract

Electric vehicles are seen as the key solution for emission-free private transportation.
The share of electric vehicles is small at the time of writing this thesis, but their share
is increasing rapidly. The charging demand is consequently also increasing at a fast
pace. Uncontrolled charging has been seen as an inefficient solution in a large-scale
implementation; thus, there is more pressure to develop intelligent and efficient
charging infrastructure solutions.

This thesis assesses electric vehicle charging from two perspectives: charging load
modelling and control algorithm development. It is necessary to ensure that tests are
carried out reliably in order to develop and evaluate the operation of different
charging algorithms. Electric vehicle charging, especially a large-scale
implementation, often must be examined using simulations; thus, emphasis must be
given to the simulation details. Different solutions may be necessary in different
scenarios in charging algorithm development. The focus in this thesis is on charging
mode 3 of the international charging standard IEC 61851. This thesis divides control
algorithms into three components to advance the algorithm development: Capacity
determination, Capacity allocation, and Capacity usage rate correction. Fach component
corresponds to managing a certain objective in a charging control algorithm.

One of the key findings of this thesis relates to a phenomenon called “non-ideal
charging characteristics”: how to take them into account in charging load modelling
and in charging control algorithms. The non-ideal charging characteristics have often
been neglected in charging load modelling-related studies in the scientific literature,
yet it is shown that they can notably influence the results. A charging current
measurement-based simulation model is developed to take the non-idealities into
account in the charging load modelling, and its accuracy is validated using hardware-
in-the-loop simulations. Additionally, an algorithm feature called “charging
characteristics expectation” is developed to take the non-idealities into account in
the charging control algorithms. The feature allows a control algorithm to track the
potential mismatches between the charging current limits set by the charging stations
and the actual charging currents to overcome the related issues. Additionally, this
thesis assesses peak load limitation-based charging control solutions. It is concluded
that home charging demand can likely be fulfilled in most cases in Finnish
households without a need to increase peak loads of the whole real estate.

Furthermore, to consider varying charging demands of electric vehicle users,
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different charging control prioritization principles, such as mobility requirement,

battery energy status, or price-based, are investigated.
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1 Introduction

There is an increasing need to develop sustainable transportation solutions as global
warming causes pressure to reduce greenhouse gas emissions and oil dependency.
Electric vehicles (EVs) are often seen as the key solution for personal transportation.
However, a wide adoption of EVs poses both challenges and opportunities from the
electricity grid viewpoint as the EVs are charged. EV charging can be controlled to
minimize negative impacts and improve the operation of the electricity grid and
electricity markets. This controlled charging is sometimes known as “smart
charging” (Rautiainen, 2015).

According to a global survey (Miki ez al, 2021), EV charging is expected to be
one of the largest untapped sources for demand response (DR) potential. DR means
the change of power consumption in response to, e.g., market-based signals or grid
states. to balance the electricity supply and demand. Further assessment of different
aspects and applications of DR is excluded from this thesis but can be found, e.g.,
in (Rautiainen, 2015).

1.1 The motivation of the thesis

It is commonly known that uncontrolled EV charging is likely to cause negative
influences on the grid, such as transformer overloading (Lacey ez 4/, 2017), notable
load peaks at the distribution network level (Qian e# al, 2011), or voltage violations
(Shafiq ez al, 2021). EV charging has been studied extensively over the past two
decades to overcome these issues. Significant contributions related to EV charging
control and charging load modelling have been made, yet gaps still remain in the
scientific literature. The goal of this thesis is to make a further advancement to the
knowledge around the topic and enable a smoother transition to EVs from the

charging solutions perspective.

1.2 The scope and objectives of the thesis

This thesis deals with EV charging. Its initial focus was on the development and
evaluation of charging control algorithms. However, it became clear during the work
that more attention must be given to the methods used to model or test the
algorithms’ operation in order to reliably evaluate the operation of different charging
control algorithms. Therefore, the thesis was extended to include the charging load
modelling perspective in addition to the original control algorithm perspective.



Additionally, this thesis gives a special emphasis to “non-ideal charging
characteristics,” which have notable influences on the modelling of EV charging
loads and on optimized control algorithms. Fig. 1.1 illustrates the research areas of
the publications of the thesis.

Electric vehicle charging load management: algorithm and modelling perspectives

Modelling non-ideal
charging characteristics
[P7]

Evolution of EV fleets
[P9]

Charging load
modelling perspective

Influence of temporal
resolution [P11]

Influence of charging
profile modelling
method [P12]

—| Capacity determination I— Pea[kPlloalc)lzmla;ia%f;; ent

SoC-based
prioritization [P3]

Control algorithm
perspective

I Capacity allocation I—

Price-based
prioritization [P8]

Introduction of non-
ideal charging
characteristics and an
adaptive control
algorithm [P6]

Further development of
the adaptive control
algorithm [P7]

Capacity usage rate
correction

Cost analysis of the
developed adaptive
algorithm [P10]

Figure 1.1 Content of this thesis, where P with a number refers to a related original publication.

This thesis focuses on charging mode 3 (IEC 61851), which is intended for the
basic EV charging and includes extended control possibilities. Additionally, this
thesis focuses on decentralized charging solutions in which a charging site can
optimize its operation based on control signals, but no data from the charging site

are transferred to any centralized control unit. Section 2.1.3 presents further



explanations of charging mode 3, along with a brief introduction to other charging
modes. Section 2.2.4 discusses the main differences between centralized and
decentralized charging control methods. The thesis covers different charging
locations and their properties, but home charging and commercial charging are
studied more thoroughly than the other locations. Additionally, the thesis focuses
only on private EVs. However, some of the developed control algorithms and
especially the developed modelling methods may also be applicable to other charging
locations, such as work charging, or to other types of EV fleets, such as buses or
trucks. Furthermore, this thesis focuses on the more traditional grid-to-vehicle
(G2V) operation. However, Subsection 2.2.3. discusses a general outlook of the
potential benefits and issues of the vehicle-to-grid (V2G) operation.

1.3 Research methods

The results of this thesis were mostly achieved by conducting different simulations.
Different initial data, laboratory equipment, and hardware-in-the-loop simulations
were used to improve the accuracy of the simulations. The average driving distance
in publications [P1] and [P2] was based on driving statistics provided by Statistics
Finland (Lahtinen, 2018). A national household travel survey was used in [P3] and
[P5] as a basis to determine the EVs’ driving distance. Travel survey-based modelling
have been shown to be relatively accurate to model EV charging as long as various
input parameters, such as battery sizes and charging powers, are accurately chosen
(Pareschi ez al., 2020). Real charging session data was used in [P7]—[P12] to give a
more accurate basis for values such as the charging timings, the energy requirements,
and the charging powers. The electricity consumption of a household was used in
[P4], [P5], [P11] and the electricity consumption of an apartment building was used
in [P1]-[P3] to evaluate home charging. Furthermore, Photovoltaic (PV) data was
used in [P1] to investigate solar power-based charging control.

Commercial EVs were used to carry out hardware-in-the-loop (HIL) simulations
to ensure realistic charging characteristics and compliance with the related charging
standard (namely IEC 61851) in publications [P5], [P6], [P8], [P10], [P11], [P12]. The
HIL simulations were carried out at the Smart Grid Technology Lab (Spina e al.,
2018) at TU Dortmund University. The laboratory equipment included, e.g., the four
EVs mentioned in Table 1, two charging stations (i.e., Wirelane Doppelstele and
RWE eStation, which both include two 22 kW sockets), and a controllable load up
to 45 kW used as a fast-charging station emulator. Fig. 1.2 presents a picture of the
laboratory setup. Experimental laboratory measurements of multiple EVs were used
in [P7]—[P12] to form more realistic charging profile models for simulation purposes.



Table 1. Key properties of the used EVs

Model Max charging current Max charging power
Nissan Leaf 2012 1x16 A 3.7 kW
Nissan Leaf 2019 1x32 A 7.4 kKW
BMW i3 2016 3x16 A 11.0 kW
Smart EQ ForFour 2020 3x32 A 22.1 kW
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s the algorithm
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Figure 1.2 Laboratory equipment at Smart Grid Technology Lab at TU Dortmund University [P10].

The electricity consumption of a detached house located in Satakunta, Finland,
was measured in December 2018 in ten-second resolution for [P4]. The electricity
consumption data of a detached house located in Pirkanmaa, Finland, was measured
in December 2018 in one-second resolution for studies [P5] and [P11]. The data for
[P5] and [P11] were provided by Tampere University of Applied Sciences (TAMK).
The charging session data used in [P7]—[P12] were provided by IGL technologies.
The data were measured during 2018-2020 in REDI and Tripla and included arrival
time, departure time, active charging time, charged energy and charging peak power
of the charging sessions. REDI and Tripla are both shopping centers located in



Helsinki, Finland, and include over 200 charging points (REDI, 2021; Mall of Tripla,
2021).

1.4 Author’s contributions in publications

The thesis is mainly based on the 12 original publications in which the author of this
thesis has been an essential contributot. Publications [P1]—[P8] and [P10] assess EV
charging management from the control algorithm perspective, whereas publications
[PIL,[P11],[P12] focus on the charging load modelling viewpoint. Apart from
publications [P6] and [P10], the author of this thesis has been the corresponding
author and has been responsible for writing and editing most of the publications’
content. Prof. Pertti Jarventausta and Docent Antti Rautiainen have been the
supervisors of this thesis and have also contributed to all publications through
guidance and providing comments prior to publishing. Dr. Kalle Rauma has
contributed to publications [P5], [P7]—[P9], [P11], [P12] by providing ideas and
comments prior to publishing and has been the corresponding author for
publications [P6], [P10].

The author of this thesis is responsible for developing the control algorithms and
the charging load simulation models in each publication. M.Sc. Juha Koskela
provided insights on the considered PV system, BESS, and apartment building in
[P1]. Pasi Santikko and Hannu Jidrvensivu were the creators of the original control
system that is examined in [P4]. The HIL simulations were carried out by Dr. Kalle
Rauma in publications considering the use of commercial EVs [P5], [P6], [P8],
[P10]. Additionally, the experimental measurements used as initial data in [P7]—-[P12]
were carried out by Dr. Kalle Rauma. Furthermore, Dr. Kalle Rauma helped with
the laboratory implementations of the charging control algorithms in [P5], [P6], [P§],
[P10]. M.Sc. Riku Viri and M.Sc. Johanna Mikinen provided the viewpoints in
publication [P9] related to the parking policy and the model to predict the number
of EVs in the future. All data curation and analysis were done by the author of this
thesis with the exceptions of [P6] and [P10].

1.5 The structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the main
properties of EVs and smart charging solutions. Additionally, the chapter briefly
introduces the three main components in a smart charging algorithm (namely
Capacity determination, Capacity allocation, and Capacity usage rate correction). Chapter 3
discusses the EV charging load modelling and presents the modelling method



developed in [P7]. Chapter 4 explains the meaning of Capacity determination and
discusses different capacity determination principles. Chapter 5 discusses Capacity
allocation along with related issues and solution proposals. Chapter 6 discusses the
need for Capacity usage rate correction along with the developed solution. Chapter 7
finalizes the thesis with its main contributions, a discussion of the results, and future
work proposals. The structure of the thesis was chosen so that the original
publications would be cited in a semi-chronological order, illustrated in Fig. 1.1. The
developed modelling method plays a crucial role in the control algorithm-related
studies [P7], [P8], [P10], so it is necessary to assess the modelling perspective before
the algorithm perspective.



2 Background to EV charging management

This chapter introduces the background of EVs and smart charging. First, it briefly
discusses EVs in terms of the drivers and barriers to wide adoption, different
charging modes, potential charging locations, and a general outlook on the charging
loads. It then discusses the general properties of smart charging. This includes topics
such as the key players in EV charging management, controllability of EV charging,
objectives of smart charging control methods, and structural perspectives of smart

charging algorithms.

2.1 Introduction to electric vehicles

This thesis defines the term EV similar to (Rautiainen, 2015) as being a road vehicle
that utilizes on-board electrical energy storage that can be charged from an energy
source outside the vehicle. EVs include plug-in hybrid electric vehicles (PHEVs) and
battery electric vehicles (BEVs). PHEVSs can utilize both electrical energy and a more
traditional liquid fuel, i.e., gasoline or diesel. BEVs, sometimes also referred to as full
electric vehicles (FEVs), utilize only electrical energy and, thus, often have a larger
battery capacity compared to PHEVs. At the time of writing this thesis, new
commercial PHEVs and BEVs have battery capacities mostly around 8—18 kWh and
40—-100 kWh, respectively (Kane, 2021). The efficiencies vary between the models,
so the rough estimations of the all-electric ranges are mostly around 25-50 km and
250-500 km, respectively (Kane, 2021).

211 Drivers for EV adoption and the current state

There is a need to reduce greenhouse gas emissions to combat climate change, and
this reduction extends to the transportation sector in which EVs are seen as the key
solution. This also requires that carbon neutral energy resources will be used to
charge EVs. Different reduction goals have been set between countries. The goal in
Finland is to reduce domestic transportation emissions by half by 2030 from the
2005 level and completely by 2045 (Ministry of Transport and Communications,
2020). The target is to have 700,000 EVs by 2030, most of which should be BEVs
(Ministry of Transport and Communications, 2020). Various incentives are used to
promote EV adoption to achieve the national targets. In Finland, these incentives
include lower taxation for EVs compared to traditional internal combustion engine
vehicles (ICEVs) (Andersson ez al., 2020) and procurement support for buying a
new electric car or signing a long-term lease agreement for an EV (Finnish Transport

and Communications Agency Traficom, 2018). Besides reducing greenhouse gas



emissions, the use of EVs could help improve the local air quality (International
Energy Agency, 2021) and reduce the noise level (Cao e# al., 2012).

The number of EVs at the time of writing this thesis is relatively small from a
national perspective and represents only a few percent of all road vehicles, yet it is
increasing at a fast pace. According to E-mobility (Sdhkéinen liikenne ry, 2020), the
number of EVs in Finland after the second quartal in 2021 was 77,468. That amount
increased from 40,315 by 37,153 (+92%) in a year. Most of these EVs are PHEVS,
but the share of BEVs increased from 16% to 19% during the year. Around 28% of
the newly registered road vehicles were EVs during the first half of 2021. The total
number of EVs was over 10 million at the end of 2020, which globally represents
1% stock share (International Energy Agency, 2021). The amount increased by 43%
during the year.

2.1.2  Barriers for EV adoption

Five, more or less intertwined, fundamental barriers to a wide adoption of EVs have
been identified: high EV prices, “range anxiety”, battery lifetime, lack of sufficient
charging infrastructure, and uncertainty of the availability of raw materials to
produce enough battery packs for all EVs. High EV prices are mostly due to high
battery prices, which can account for up to around one-third of the total costs of the
vehicle (Ruffo, 2020). However, EV prices have decreased over the past few years,
and there are indications that their prices will decrease further. For example,
according to (Miller, 2020; Ruffo, 2020), the gap between the production costs of
emission-free EVs and the ICEV is estimated to decrease from 45% to 9% in the
ten years from 2020 to 2030. Car manufacturers such as Volkswagen (Halvorson,
2021) and Toyota (Agence France-Presse, 2021) have set plans to reduce EV battery
costs by half in a similar timeframe.

The phenomenon called range anxiety refers to a concern that a BEV might not
have enough driving range to reach a desired destination (Pevec e# al., 2020). The
concern may also affect potential buyers and thus slow the BEV adoption rate.
PHEVs can utilize traditional fuels to extend their driving range, so range anxiety
mostly affects BEV users. However, (Pevec ¢f al., 2020) mentioned that modern
BEVs have enough battery capacity to meet an average driving demand of one week.
Additionally, according to the National Travel Survey 2010-2011, around 51% of all
kilometers are driven as trips with a length of = 50 km in Finland (Rautiainen, 2015),
which can be driven with modern PHEVs by using electrical energy only.
Furthermore, around 90% of all kilometers are driven as trips with a length of < 300
km (Rautiainen, 2015), which are suitable for modern BEVs. The remaining



kilometers are driven as trips that are likely to require a charging stop. Besides the
initial effective range, there have been concerns about the battery lifetime. Batteries
slowly degrade and lose their effective capacity as they are used, and the battery is
often considered unsuitable for an EV if the remaining capacity falls below 60-70 %o
of the original level (Ceyhan, 2019). However, according to (Ceyhan, 2019),
manufacturers already give warranties from 8 years (or ~ 160,000 km) up to lifetime
coverage for EV batteries, which should ease the concerns of potential EV buyers.
At the time of writing this thesis, the number of public charging locations in
Finland is 1,392 (Sihkoinen litkenne ry, 2020). whereas the number of gas stations is
1,900 (Oljy- ja biopolttoaineala ry, 2016). The numbers are not that different, but the
difference is more impactful when considering the driving ranges and fueling times.
In turn, there may be an opportunity to charge EVs at a destination location such as
home, workplace, or shopping center. As mentioned eatrlier, the driving ranges of
modern EVs are mostly less than 500 km, whereas the driving range of ICEVs can
be over 1,000 km. Additionally, the fueling time of an ICEV is roughly around 300
km/min, whereas the charging time of EVs vary more notably. For example, a 350
kW high power charger could provide almost 30 km/min, whereas 3.7 kW charging
power would mean 0.3 km/min (Sihkéinen liikkenne ry, 2020). This causes pressure
to add new charging sites and to improve the charging power to provide faster
charging. However, it should be noted that the actual charging speed is also
dependent on the EV. Additionally, the charging speed may be affected if a charging
control strategy is used. Section 2.2 discusses the general details of charging control.
The millions of EVs must first be manufactured to make a wide adoption of EV's
possible, and the material to make their batteries have not yet been mined
(Castelvecchi, 2021). Lithium-ion batteries are expected to be the dominant energy
storage solution for EVs in the foreseeable future, and a common lithium-ion battery
pack can contain several kilos of lithium, nickel, manganese, and cobalt
(Castelvecchi, 2021). According to (BloombergNEF, 2021), the supply of these
metals is assumed to be sufficient till 2030. The goal is to cut down the usage of
scarce metals and improve battery recycling to solve potential issues of the supply in
the future (Castelvecchi, 2021). The challenges are generally seen as solvable, even
though a very large amount of material will be needed to manufacture the EVs, and

temporal supply hiccups may be seen (Castelvecchi, 2021).

2.1.3  Charging of EVs

There are essentially two options for charging an EV: a charging station or a socket-
outlet. Charging stations can be divided into regular alternating current (AC)



charging and fast direct current (DC) charging. AC charging is when an on-board
charger (OBC) located inside the EV is used to convert the AC into DC to charge
the battery. DC charging is when an off-board charger located in the charging station
is used to feed DC into the EV to charge its battery.

Four charging modes are defined in the international charging standard IEC
61851-1: mode 1, mode 2, mode 3 and mode 4. Modes 2—4 are intended for charging
EVs, whereas mode 1 is mostly intended for charging mopeds and other light
vehicles. Modes 1-3 utilize AC charging, whereas mode 4 utilizes DC. An EV can
be charged from a regular “Schuko” socket outlet using a charging cable that includes
an in-cable control and a protection device in mode 2 charging. The device includes
protection functionalities, e.g., residual current detection. An EV can be charged
using such sockets, although it should be used with caution if the socket is not
intended to withstand continuous high currents such as 16 A, if the socket is old, or
if there is uncertainty regarding the condition of the socket (SESKO ry, 2019).

A specific charging connector or socket outlet is used in mode 3 charging. “Type
2,7 as defined in IEC 62196-2, is used as the de facto socket outlet for mode 3 charging
in Europe. Besides safety-related functionalities, the mode 3 charging method
enables the EV supply equipment (EVSE) to control the maximum current drawn
by the connected vehicle. It should be emphasized that the EVSE cannot force a
certain charging current but instead can only set an upper limit for it, and the EV
itself chooses the actual current to ensure safe and efficient charging of the EV’s
battery. Mode 3 charging can utilize 1-3 phases and currents of 6—80 A. However,
public mode 3 charging stations in Europe provide currents mostly up to 32 A, which
equals a charging power of 22 kW. An EVSE can also set a current limit of 0 A in
mode 3 charging, which effectively equals temporarily disabling the charging session.

Much higher currents can often be used in mode 4 charging, because the method
utilizes an off-board charger and bypasses the EV’s OBC and its potential
limitations. The supported charging powers in mode 4 charging stations are generally
between 22 kW and 150 kW, but there are already a few charging stations in Finland
that provide charging powers up to 350 kW (Sdhkéinen liikenne ry, 2020). The
charging powers of mode 4 charging stations have increased over the past years, and
the powers are anticipated to increase much more (Halvorson, 2021). Similar to
mode 3 charging, the maximum charging current can be controlled by the EVSE.

Additionally, an EV could potentially be charged wirelessly, for which there are
standards such as IEC 61980-1. Wireless charging could be a more convenient
solution from the EV users’ perspective because they are not required to plug in
their EV (Rautiainen, 2015) if the technology evolves enough to enable practical,
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safe, energy efficient and cost-effective wireless charging. However, this thesis
focuses on conductive mode 3 charging because it is robust, it enables a charging
current limitation from the EVSE side, and the charging point costs are much lower
compared to mode 4 charging point costs.

Furthermore, EVs could be re-energized by using battery swapping in which an
EV’s depleted battery is replaced with a charged one. However, because battery
swapping is seen more promising for, e.g., taxis and buses rather than for passenger
vehicles (Zhang, Chen, ef al, 2018), a further discussion of battery swapping is

excluded from this thesis.

214  EV charging locations

EVs can be charged at destination locations such as homes, workplaces, or shopping
centers if suitable charging infrastructures exist, unlike traditional ICEVs. According
to a charging behavior survey (The Finnish Information Centre of Automobile
Sector, 2020), 93% of EV users in Finland have the opportunity for home charging.
(Thingvad ef al., 2021) mentions that the probability for private home charging is
around 60—80% in the United States and in Germany. The higher probability is in
rural areas, whereas the lower probability is in metropolitan areas. Charging
infrastructure exists to a much lesser extent for other charging locations besides the
home. Therefore, adoption of EVs may be especially problematic for people living
in cities because they may not have a home charging option (Thingvad ez a/., 2021).
This also highlights the importance of a public charging opportunity.

As mentioned earlier (subsection 2.1.2), most of the charging demand could be
fulfilled by having a charging opportunity at every destination. However, there is still
a need for public charging stations on the road to ease the range anxiety and to enable
convenient long trips with BEVs. According to E-mobility (Sdhkéinen litkenne ry,
2020), the number of public charging locations in Finland after the second quartal
in 2021 was 1,392. That amount increased by 283 (+26%) in one year. Out of all
public charging locations, 301 have a fast-charging option. In total, the locations
include 4853 mode 3 and 417 mode 4 charging points.

21.5  EVcharging load

EVs are charged in most cases using the electrical energy from the power grid.
According to the Finnish National Travel Survey (Finnish Transport and
Communications Agency Traficom, 2016), passenger cars were driven 42.1 km/day
in Finland in 2016. According to (Kane, 2021), a new BEV consumes roughly 215
Wh/km, which would lead to an average energy demand of around 9.1 kWh per EV
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per day. The total energy demand of EVs also increases as the number of EVs
increases. According to the average domestic travel distance of passenger vehicles
(including vans) and the number of people in Finland (Finnish Transport and
Communications Agency Traficom, 2016), a total of 119 million kilometers are
driven per day. Assuming 215 Wh/km, this would lead to an energy consumption
of around 9.4 TWh per year. According to the open data of Fingrid (Fingrid, 2021),
this represented around 12% of the total electricity consumption in 2020. Thus, the
required charging energy is not seen as a threat from the transmission system and
energy generation viewpoints.

Conversely, because the charging demand varies in terms of time and location, it
may pose a challenge to the local distribution system and electricity consumer level.
(Belonogova e al., 2020) estimated that a wide-scale workplace charging would not
cause overloading problems in the Helsinki, Finland, distribution network. However,
the results are very case specific; thus, the results may not apply to other distribution
networks. The charging load at a household level will be even more notable
compared to its other electricity usage. [P5] mentioned that a household using a
geothermal heat pump as the main heating system can consume 30—60 kWh of
electrical energy in a day, which means that an average charging demand could
increase consumption by 15-30%. More notably, even a relatively slow charging of
an EV with a power of 3.7 kW (230 V, 1x16 A) can be over 50% of the peak load
of the household itself. It is also seen as significant when considering the fact that a
fuse size of 3X25 (three phases with maximum current of 25 A) is common in
Finnish households.

There are increasing opportunities to charge elsewhere, although a home is the
most common charging location. The increased possibilities to charge at different
locations may result in more even distribution of the charging load throughout the
day. Vehicles were on the road a total of 2.5 million hours per day, according to the
average time spent as drivers of passenger vehicles (including vans) in the case of
domestic travelling and the number of people in Finland (Finnish Transport and
Communications Agency Traficom, 2016). Furthermore, according to the Finnish
Transport and Communication Agency, there were 2.9 million passenger cars
(including vans) in Finland in 2016. Based on these values, the vehicles were on the
road only 3.6% of the time, while they were parked at different locations the rest of
the time. A very similar value, 4%, was also mentioned by (Kempton and Tomic,
2005). This means that there is plenty of time available for charging. A charging data
analysis (Rauma ez a/., 2021) showed that the charging load is divided throughout the
day because EV users mostly charge at work from 06:00-13:00, at commercial
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locations from 09:00-20:00, and at home from 14:00-05:00. Even though the load
is not equally distributed over the day, it is likely to enable charging control options
at different times.

2.2 Introduction to smart charging

In this thesis, “smart charging” or “controlled charging” refer to a situation in which
the charging of an EV is influenced to achieve a secondary goal while still trying to
meet the EV’s energy need. A similar definition was used before in, e.g., (Rautiainen,
2015). Smart charging is essentially the opposite of uncontrolled charging in which
EV’s charging begins as soon as it is plugged in to an EVSE, and the charging current
is only limited by the maximum current supported by the OBC of the EV and the
EVSE. This also means that any smart charging control action can only reduce the
charging current or retain it as the same compared to uncontrolled charging. Thus,
compared to uncontrolled charging, smart charging can only prolong the required
charging time or limit the energy that is charged into the EV in a certain time period.
However, the fact that a smart charging solution can be used to improve the cost-
effectiveness of the charging from different perspectives makes it very interesting.
Despite the name, “smart charging” may not always be smart. A poorly chosen
control method may have even more severe negative influences than uncontrolled
charging.

The following subsections present different properties of a typical smart charging
solution. The topics include the key actors in a smart charging scheme, the
controllability of EV charging, bidirectional charging, smart charging control
objectives and approaches, available data and related standards in charging control,
challenges in charging control, and, finally, the three components of a typical smart

charging control algorithm. Fach topic is discussed in a separate subsection.

2.2.1  Key actors in smart charging scheme

The charging loads of electrified car fleets are notable and pose both challenges and
opportunities for multiple actors related to the electricity grid. These actors could
benefit from the use of smart charging. However, each actor may have different
needs and goals, which can complicate the situation and cause conflicts of interest.
The solution may pose notable challenges for another actor when smart charging is
optimized from a single actor perspective. Furthermore, charging schemes include
objects, namely EV and EVSE, which may pose certain limitations.

Perhaps the most obvious object and actor in a smart charging scheme are the
EV and its user. The EV user naturally wants to be able to drive the next trip without
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any unnecessary inconveniences, which means there should be enough energy in the
EV’s battery for the next trip before the intended departure time. The energy
demand could be “flexible,” depending on the driving demand, EV and charging
infrastructure. In this thesis, “flexible” charging load or charging session means that
it is unnecessary to start charging right away to meet the charging demand. However,
the opposite, “non-flexible” charging load or charging session, means that the
charging should be started right away to fulfill the demand as much as possible.
Besides the user’s needs, the EV’s properties also play an important role because the
battery capacity impacts the driving range, and the OBC’s properties define the
supported charging rates.

As mentioned earlier, EVs can be charged in different locations that may have
different charging infrastructures. The infrastructure can directly influence the
charging power. For example, if the EVSE supports only a single-phase charging of
32 A (230 V), the EV cannot charge with a power greater than 7.4 kW even if the
OBC of the EV could support it. Furthermore, the charging system operator (CSO)
who is responsible for the functioning of the charging site may want to control the
charging to achieve safety- or cost-effectiveness-related objectives that may
temporally limit the available charging power even further.

Similar to the CSO, distribution system operators (DSOs) and transmission
system operators (TSOs) may also want to influence EV charging to achieve safety-
or cost-effectiveness-related objectives. Additionally, energy providers could utilize
the controllability of EVs to ensure certain energy usage at certain times. One EV or
even one BV charging site may be too small to have a clear impact on the distribution
system level, transmission system level, or energy provider level; thus, there may be

an aggregator that gathers the flexibility of multiple smaller units together.

2.2.2  Controllability of EV charging

Mode 3 charging is controllable, yet there are some limitations to be considered. As
mentioned earlier, only the maximum current limit can be adjusted, and the EV itself
chooses the actual current. This also means that the charging control system does
not know the actual charging current without feedback. The standard IEC 61851-1
states that the available charging currents in mode 3 charging are 6-80 A.
Additionally, the same current limit indicated by the EVSE is applied for each phase.
However, the maximum and minimum charging currents may be limited by the OBC
of the EV or by the supported currents of the EVSE, and either the EVSE or the
OBC may support only one-phase charging. For example, using a 11 kW (3X16 A,
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230 V) EVSE to charge a Nissan Leaf 2019 that supports 7.4 kW charging (1X32 A,
230 V) leads to a maximum charging power of 3.7 kW (1x16 A, 230 V).

Besides the maximum current, the charging currents supported by the EVSE or
by the EV may be limited to only a discrete set, and the minimum non-zero current
may not always be 6 A. For example, the EVSEs used in the publications of this
thesis support only cutrent limit integers {0, 6, 7, ..., 32}. According to (Lee ¢t al.,
2021), some EVSEs may support only charging cutrent limits of {0, 8, 16, 24, 32},
{0, 16, 32, 48, 64}, or {0.0, 6.0, 6.1, 6.2, ..., 79.9, 80.0}. Similar properties may also
be in EVs. For example, Smart EQ ForFour 2020 only supports charging current
limits between 8-32 A, whereas BMW i3 2016 in “low” mode charges with around
7.5 A when the current limit is 15 A. Fig. 2.1 illustrates the charging currents under
different current limits set by the EVSE. According to the BMW i3 user manual
(BMW AG, 2015), BMW i3 has three different modes (“low”, “reduced”, and
“maximum?”) that influence its charging properties. The BMW is in “low” mode in
Fig. 2.1.

Figure 2.1 Charging currents under different current limits set by the EVSE for a) BMW i3 2016 and b)
Smart EQ ForFour 2020. The BMW in this example is in “low” mode. The charging current
limit decreases by 1 A every 20 seconds until at 6 A it goes to zero.

A lower charging current than the current limit can also occur if, e.g., the OBC
of the EV chooses to charge more slowly to protect the EV’s battery from
overheating or the EV’s battery is at a high state of charge (SoC) and requires a
slower charging rate (Lee, Chang, 7 a/., 2019). It is common that the charging profile
of a lithium-ion battery consists of constant current (CC) and constant voltage (CV)
stages (Li e# al, 2020). The battery voltage level increases in the CC stage as the
battery SoC increases. However, the charging current decreases in the CV stage
before the battery is fully charged. These stages are used to ensure safe charging and
prolonged battery lifetime. Further examination of the electronics inside the EV was
excluded from this thesis because the focus is on the EV charging loads from the
electricity grid perspective. Measurements of charging loads have shown that two
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stages are usually seen from the grid perspective: constant power (CP) and CV. The
charging currents are often very steady in the CP stage with a variation of less than
0.5 A [P7]; however, minor temporal deviances may occur. The charging currents
often decrease before the charging is finished in the CV stage. However, during the
CV stage, the charging currents are not likely to decrease linearly, and differences
between the three phases may be seen. Fig. 2.2 illustrates this, where the charging
currents of BMW i3 2016 in “low” mode and Nissan Leaf 2019 atre presented. Both
charging sessions are uncontrolled, and the energy consumptions are 3.1 kWh and
11.3 kWh, respectively. Fig. 2.2a shows that the OBC of the BMW chooses to switch
from three-phase charging into single-phase charging because the battery is
becoming nearly fully charged and thus requires slower charging. In Fig. 2.2b, the
charging current is around 0.3 A for about 4 min three times before the charging
session finishes.
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Figure 2.2 Charging currents in CP and CV stages for a) BMW i3 2016 and b) Nissan Leaf 2019.

As just mentioned, there are various reasons why an EV may choose a lower
charging current than indicated by the EVSE or why an EV may not utilize three-
phase charging even if the EVSE would support it. This means that even though the
EV charging is considered a controllable load, the charging currents are likely to
deviate from the “ideal” level indicated by the EVSE; thus, feedback is required to
track the actual charging currents. This thesis uses the term “non-ideal charging
characteristics” to define the situation in which the realized charging currents deviate
from the current limit indicated by the EVSE. Additionally, the term “non-linear
charging profile” is commonly used to define a situation in which the charging

currents decrease before the battery is fully charged, which is often the case.

2.2.3  Bidirectional EV charging

The EV acts only as an energy consumer in traditional grid-to-vehicle (G2V)
charging. However, the energy in an EV’s battery could also be discharged back to
the grid, which is called vehicle-to-grid (V2G). This allows an EV to act as energy

16



storage instead of only as an energy consumer. Both the EV and the EVSE must
support this operation to enable a V2G operation. Related international standards,
such as ISO 15118, are being developed to enable a wide adoption of V2G support.

V2G is generally seen as very valuable from the grid perspective (van Triel and
Lipman, 2020) and doable from the EV-usage perspective. As mentioned earlier,
EVs are parked most of the time, and their average daily energy requirement is quite
moderate (Section 2.1.5). This means that the EVs’ batteries are not likely to be under
constant usage; thus, there is a notable potential to use the batteries for DR. For
example, studies have shown that V2G can be used to reduce peak loads (Wang and
Liang, 2017), reduce charging costs (Mouli ¢z al., 2019), and improve the balance
between energy generation and consumption (Zhou and Sun, 2020). There are also
a few variations of V2G. Instead of injecting the discharged power to the grid as in
V2G, the discharged power can be consumed by a household as in vehicle-to-home
(V2H), by a building as in vehicle-to-building (V2B), or by other vehicles as in
vehicle-to-vehicle (V2V). The term vehicle-to-X (V2X) has generally been used to
include all these use cases of bidirectional EV charging. Use case examples in (Datta
et al., 2019) showed that V2H could be used to decrease household electricity costs
by around 11.6% compared with the G2V operation mode. In (Dagdougui ez 4L,
2019), V2B is used to limit peak loads in a smart building, and in (Koufakis ez a/,
2020), V2V is used to reduce charging costs.

However, despite the V2X potential, there are concerns related to user
willingness and the operation’s technicalities. According to a user survey (Geske and
Schumann, 2018), battery degradation and range anxiety are the most notable
concerns. It is commonly considered that batteries degrade as they are charged and
discharged; thus, utilizing V2X may lead to faster battery degradation because the
batteries are charged and discharged more frequently. This is an especially important
factor from the EV user perspective, because the battery can be the most expensive
EV component and determines its driving range. Additionally, if the battery is being
discharged by a CSO and the EV is needed by the user before the expected departure
time, the remaining energy may not be enough for the next trip. This kind of
situation or the concern that this might happen can cause range anxiety and thus
reduce the willingness of EV users to participate in V2X. Furthermore, the survey
responders were concerned about the usage of their data and giving away such access
for their vehicle that they cannot control (Geske and Schumann, 2018). However,
the results also show that the responders are willing to participate in V2G if they
receive monetary benefits. Therefore, the benefits should outweigh the concerns and
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the potential extra effort required from the EV users to encourage them to
participate in V2G operation.

Besides user willingness, the potential benefits of V2G depend on various
technical factors such as battery degradation costs and the efficiency of charging and
discharging. However, multiple studies have not considered battery degradation, as
mentioned in (Ahmadian, Sedghi, Elkamel, ez a/, 2018; Ahmadian, Sedghi,
Mohammadi-Ivatloo, ef al., 2018; Gschwendtner ¢# al., 2021). Nevertheless, if the
battery degradation is considered, different costs or degradation models have been
considered. For example, (Mouli ¢ a/., 2019) considered a fixed value of 4.2 ¢/kWh
(~3.7 ¢/kWh) for cycling degradation, whereas (Ahmadian, Sedghi, Elkamel, ¢7 a/,
2018) considered a total battery degradation that includes calendar degradation in
addition to the cycling degradation. (Gschwendtner e# 4/, 2021) mentioned that the
impact of V2X on battery degradation varies from negative to positive depending
on the parameters and assumptions used in the study. V2G usage leads to higher
energy losses in addition to its influence on battery degradation. According to
(Apostolaki-losifidou ez al., 2017), total charging and discharging losses vary between
12-17% and 30-36%, respectively, and are mostly caused by the power electronics
used for AC-DC conversion. The values mentioned in (Apostolaki-losifidou ez .,
2017) lead to a roundtrip efficiency between 53% and 62%. Notably better roundtrip
efficiencies of 79-88% were measured in (Schram ez al., 2020). The losses seem to
be higher for a low power transfer (~10 A) compared to a higher power transfer
(~16-50 A) (Apostolaki-Tosifidou e# al., 2017; Schram e# al., 2020). These values are
seen as significant, because V2G-related studies have assumed widely different
roundtrip efficiencies or neglected the losses completely (Shirazi and Sachs, 2018;
Schram ez al., 2020). These assumptions, especially both extremes, may lead to either
unrealistically optimistic or pessimistic results from a V2G perspective.

V2X solutions proposed in the literature, such as (Kempton and Tomi¢, 2005;
Wang and Liang, 2017; Ahmadian, Sedghi, Mohammadi-Ivatloo, ez a/., 2018; Mouli
¢t al., 2019; Datta et al., 2019; Koufakis ez al., 2020), depend on user behavior input
to ensure fulfilment of the mobility needs. However, this may pose issues regarding
the required effort from the user and the data’s accuracy (Subsection 5.2.1 discusses
the issues further) and thus complicate the solutions’ implementation. The results in
(Venegas et al., 2021) indicate that V2G would more likely be viable in workplace
charging where the plug-in duration and charging patterns are relatively consistent
versus commercial or home charging. However, a behind-the-meter usage of V2H
or V2B may still be viable for private users (Venegas ez al., 2021).
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According to a review study (Ahmadian, Sedghi, Elkamel, ¢ a/, 2018), the
benefits of V2X have been assessed using different modeling methods and scenarios,
and some studies have seen V2X as economically beneficial, whereas some studies
have not. Thus, some uncertainties seem to remain regarding the actual benefits of
V2X. Additionally, the discharging in V2X may work similarly to the charging in
charging mode 3 (IEC 61851), meaning that an EVSE can potentially set only the
maximum discharging current limit and the EV itself chooses the actual discharging
current. As in G2V operation, there may be several reasons why an EV chooses a
lower current than the EVSE indicates. This may complicate the practical and

efficient implementation of V2X control algorithms even further.

2.24  Smart charging control objectives and approaches

A smart charging solution can be designed from the perspective of any of the key
actors included in the scheme, and more complex solutions may be designed to
consider the benefits of multiple actors. There may be a conflict of interests in the
case of multiple objectives when two or more objectives may not be achieved
simultaneously. This can be taken into account by prioritizing the most important
objective first, such as a grid safety-related objective, over the secondary objective,
such as the charging cost optimization. There are different objectives, such as
minimizing the costs of the used electricity, minimizing load peaks, improving
renewable energy resource (RES) utilization, providing frequency or voltage
regulation, and improving the quality of charging service from the EV user
perspective.

Depending on the charging site location (e.g., home, work, commercial), there
may be different charging behaviors that might make certain objectives more
beneficial than others. For example, it may be difficult to utilize home charging to
improve PV generation usage if the EV is not plugged into the charging point at the
time of available PV generation. Different charging sites may also have different
limitations to be taken into account, such as the available total charging capacity.

Smart charging solutions are generally divided into two approaches: centralized
and decentralized. All EVs in a certain area are directly controlled by a centralized
unit in the centralized control approach. The centralized unit gathers data from the
grid and the EVs to optimize the charging control. EV charging in a single charging
site is optimized in a decentralized control approach by considering only simple
control signals, such as electrical energy pricing, distribution tariffs, local load, and
other EVs in the same charging site. Both approaches have their own advantages

and disadvantages.
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The centralized approach utilizes the power grid and the EV data; thus, it can be
used to achieve the global optimum in objectives such as minimizing the peak loads
in distribution networks while considering different limitations and satisfying the EV
users’ charging demand. However, the required data can also become a problem. For
example, the implementation requires the existence of certain communication links
to gather the power grid and EV data. Furthermore, collecting confidential data of
vehicles and their usages in one location may increase the threat of exposure to
malicious cyber-attacks, and a large-scale implementation might result in an
exponentially high computational burden (Al-Ogaili ¢# a/., 2019).

Due to the limited information available in a decentralized approach, the goal is
to achieve only a local optimum, which may differ from the global optimum. The
charging is optimized using only the locally available control signals, so the
importance of the control signals’ designs, such as distribution tariffs, is emphasized.
However, the approach neither needs very complex communication links nor utilizes
enormous amount of data, so it can be implemented much easier compared to
centralized approaches. Subsection 2.1.5 mentioned that the required total charging
energy at a national level is unlikely to be an issue from the transmission system and
energy generation viewpoints. This also indicates that a reliable operation of a
transmission system may not require charging control that achieves the global
optimum solution. Unevenly distributed charging demands may pose more
challenges at the distribution system level, yet achieving the global optimum at the
load control might not be necessary. Due to these reasons, this thesis focuses on

decentralized approaches.

2.2.5  Available information for charging control and related standards

According to charging mode 3 of the international charging standard IEC 61851-1,
an EV shall indicate its charging status by adjusting the pilot signal voltage. The four
statuses under normal operation (excluding errors and faults) are (A) EV not
connected, (B) EV connected but not ready to receive energy, (C) EV connected and
ready to charge or already charging, and (D) EV connected and ready to charge or
already charging but requires charging area ventilation. This status is known by the
charging controller in the EVSE, and the information can be forwarded to the
charging control system. Within this thesis, EVs with a status of (C) or (D) are
referred to as “active EVs” because they are actively charging or ready to be charged.

At the time of writing this thesis, the information regarding the status is often the
only data available for the charging control system from the charge controller.

Especially newer EVSEs include energy meters, so data such as charging currents
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are often also available. However, charging mode 3 of the standard IEC 61851-1 also
supports digital communication between the EVSE and the EV. General parts of
the digital communication are defined in standard ISO 15118-1. The standard also
defines communication between the EV and EVSE whereby data such as battery
status and EV user mobility needs can be transferred to a charging control system
through the EVSE. The EV user is expected to input the needs into the EV first.
This standard is especially interesting from a smart charging solution viewpoint,
because the aforementioned data could be used to implement different charging

control optimization principles.

2.26  Challenges in EV charging control

There are generally many uncertainties regarding the EV charging management. The
uncertain factors may include EV-related information such as arrival and departure
times, energy requirements, and the willingness of the users to plug in their EVs.
The uncertainties may also be extended to include other factors such as electricity
consumption and production profiles or electricity pricing. These factors may have
an influence especially on an optimized charging control with a certain objective,
such as cost minimization. These factors are not always known beforehand, so EV
charging control often has to deal with predictions or assumption. However, this
thesis excludes a more thorough assessment of different forecasting methods and

their accuracies.

2.2.7  Main components in a smart charging algorithm

There are several aspects to be considered to achieve the desired and optimized
operation in a smart charging algorithm. This thesis divides charging control
algorithms into three components. These components may be intertwined or
unnecessary in some cases, yet each one represents a key function that is often
needed in efficient and optimized control algorithms. The three components are:

o Capacity determination,

o Capacity allocation, and

o Capacity usage rate correction.

Out of the three components, the charging capacity determination is likely the
most studied in the scientific literature. Capacity determination describes the logic
behind the determination of the available charging capacity of a charging site.
Capacity allocation describes the logic behind the distribution of the available charging
capacity. Last, capacity usage rate correction describes the logic behind overcoming the
negative impacts of the non-ideal charging characteristics to achieve the desired
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capacity usage. This is perhaps the least-studied component in the literature.
However, over the past few years, the non-ideal charging characteristics (discussed
in Section 2.2.2) have gained more attention [P7], and the need for capacity nsage rate
correction is becoming more widely known. These three components are discussed
separately in Chapters 4-6 to further elaborate them.
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3  EV charging load modelling

Accurate modelling of EV charging loads is important to ensure safe and optimal
operation of the power grid in a case of a notable EV penetration (Ge ez al., 2020).
A more accurate modelling generally requires more complex methods and a higher
computational capacity that, in turn, leads to more reliable results. Furthermore, the
influences of certain phenomena, such as the non-ideal charging characteristics or
phase unbalance, may not be properly assessed by using simulation parameters,
methods or assumptions that oversimplify the situation. The developed algorithms
may consequently not be applicable or work as intended in real-life charging systems
(Lee et al., 2021). Multiple studies have been carried out in the scientific literature to
improve the accuracy of the charging load modelling and give more strengthened
scientific background for the results.

For example, (Pareschi ez al, 2020) showed that national travel surveys can be
used relatively accurately to model EV charging loads. However, the study underlines
the importance of several modeling parameters such as charging powers and battery
sizes. (Sadeghianpourhamami ez a/, 2018) and (Wolbertus e# al, 2018) analyzed
charging sessions in terms of arrival, sojourn and idle times using data of 1.5 million
and 2.6 million charging sessions, respectively. These studies give insight into the
plug-in behavior of EVs and their charging energy requirements, which can be used
to, e.g., assess the flexibility potential of the EVs. Additionally, (Venegas ¢t al., 2021),
for example, assessed the probability of EV users plugging in their EVs. The results
of the study show that EV fleets with large battery sizes may have decreased their
flexibility potential compared to EV fleets with low battery sizes. This is because the
plug-in frequency decreases and the energy requirement increases for EVs with a
larger battery size. (Zhang et al., 2020) and (Yi et al, 2020) established spatial-
temporal models of EV charging loads. (Zhang ef al, 2020) showed that the
demographics of the EV users have an effect on the daily charging loads. (Yi ez a/,
2020), based on the results, gave different recommendations for charging
infrastructure deployments for different charging locations.

Four gaps were found and assessed despite the numerous studies related to EV
charging modelling. The following subsections discuss these modelling aspects and
present the related advancements made in the original publications. The data and the
laboratory equipment, including the commercial EVs described in Section 1.3, played
an important role in ensuring that the developed methods and obtained results were

realistic.
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3.1 Modelling non-ideal charging characteristics

Section 2.2.2 mentioned that an EVSE can only set the maximum charging current
limit and the EV itself chooses the actual charging current. The charging current will
likely decrease, especially when the EV’s battery is nearly fully charged. Additionally,
an EV may not always use all three phases even if the EVSE supports it. Commercial
EVs can be used in, e.g., a laboratory environment as in [P6] to study the influences
of realistic non-ideal charging characteristics on a small scale. It is necessary,
however, to model them in a reasonable manner to assess the influences caused by
the non-ideal charging characteristics on a large scale. So far, according to the
author’s knowledge, there have been no reasonably accurate models proposed in the
scientific literature. (Lee ¢z al., 2021) acknowledged the importance of modeling the
unbalanced three-phase electrical network and incorporating non-ideal charging
characteristics. However, the study does not propose a method to model non-ideal
three-phase charging sessions.

[P7]’s aim was to develop a charging control algorithm (the algorithm is described
in Section 6.2) to overcome the negative influences of the non-ideal charging
characteristics. It was necessary to model the non-ideal charging characteristics in a
realistic manner to do so. Extended laboratory measurements of the charging
profiles of the Nissan Leaf 2012 and BMW i3 2016 were carried out to this end. The
analysis of the measurements confirmed that the charging currents were steady in
the CP stage with a variation of less than 0.5 A. At around 97.5-99.7% SoC, the CP
stage changed to the CV stage, and the current began to decrease. The analysis also
showed that the exact SoC depends on the charging current limit set by the EVSE.
Fig. 3.1 illustrates the charging currents in the CV stage for a Nissan Leaf 2012 and
BMW i3 2016 for four different current limits set by the EVSE: 16, 12,9, and 6 A.
The BMW is on “maximum” mode in the figure.
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Figure 3.1 Charging currents for (a) Nissan Leaf 2012 and (b) BMW i3, where 11-13 represents phases
and the number in the parentheses represents the current limit set by the EVSE [P7].
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Based on the analysis, it seems reasonable to assume a linear charging profile
during the CP stage. The CV stages of the two charging profiles shown in Fig. 2.2
are clearly non-linear and dissimilar; thus, their modelling in [P7] was done using
separate lookup tables for both EVs. The energy that is missing from the EV’s
battery is calculated at each one second time step of the measurements to form a
lookup table. The energy that is missing from the EV’s battery is referred to as the
energy requirement. The calculations begin from the end of the charging sessions
where the missing energy is zero, ie., the EV is fully charged. The energy
requirements are calculated up to the point that separates the CP and CV stages.
After the energy requirements of each time step are calculated, the lookup table is
formed to link the energy requirements to the realized charging currents. A separate
lookup table is formed for all possible current limit integers supported by the EVs
6, 7,8, ..., 32 A). Only integers are considered here because the used EVSEs
(described in Section 1.3) do not allow floating point current limits. As a result, the
simulation model can determine realistic charging currents based on the following
parameters: EV model, energy requirement (Wh), and current limit set by the EVSE
(A). Fig. 3.2 shows an illustration of the process. The EV is a BMW i3 in “low” mode
in the figure, and the current limit is 6 A. The CP stage changes to the CV stage in
the figure when the energy requirement is 199 Wh.
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Figure 3.2 lllustration of the lookup table for the charging profile of BMW i3 2016 with 6 A charging
current limit set by the EVSE. [1-13 represent phases.

This modelling method is used in [P7] and [P8]. The modelling is extended for
[P9]-[P12] to include charging profiles of a Nissan Leaf 2019 and a Smart EQ
ForFour 2020 using the same method. These four EVs have different charging
characteristics in terms of the maximum charging current and the number of used
phases; thus, they have notably different charging profiles. Therefore, the formed
charging profile models can be used to incorporate widely different charging current
behaviors into the simulation.
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3.2 Evolution of EV fleets

It has been a common practice in EV charging-related studies to assume that all EV's
are similar or that they can utilize the full power supported by the EVSEs. Charging
powers of up to 22 kW are typical for EVSEs in Europe at commercial charging
locations. However, not all EVs can presently utilize such powers due to the
limitations of their OBCs. However, it is reasonable to assume that a higher share of
EVs will adopt more powerful OBCs as the technology evolves. This may naturally
impact the charging loads of the charging site as the EVs become able to draw higher
powers and, perhaps, become fully charged faster. Furthermore, this would impact
long-term decisions such as the optimal sizing of charging infrastructures and
parking policies.

[P9]’s objective was to analyze the current state of the EV fleet, model its
evolution over the next 20 years, and then assess its implications to overcome the
gap in the literature. The main focus was on commercial charging at the Finnish
capital region. The current state of the EV fleet was analyzed using charging data of
Tripla and REDI over a 4-month period (Nov. 2019 — Feb. 2020), including over
8,600 charging sessions in total. The analysis focused on attributes such as charging
powers, energy requirements, arrival times, stay duration, and idle time. The idle time
refers to a duration in which an EV is plugged into the charging point but is not
charging. After the analysis, the development of the EV fleet in terms of the number
of EVs was estimated. The EVs were categorized based on the highest supported
power of their OBCs. The model used data from the Finnish vehicle register and the
socio-demographic data of the vehicle owner to estimate the average speed of car
renewals within different user and area groups. The results of the analysis and the
estimated number of EVs were then used to generate different scenarios, which were
then simulated considering the non-ideal charging characteristics (described in
Section 3.1) to achieve realistic results for the future charging loads.

According to the analysis, most EVs (79.4%) utilize a charging power of 0—4.5
kW. The share of EVs with a maximum power of 4.5-10 kW is 8.1%, 10-15 kW is
9.0%, and 15-25 kW is 3.5%. Fig. 3.3 illustrates the shares of different charging
powers. Another key finding is that most of the charging sessions that have a plug-
in time =5 hours are non-flexible. Around 77% of these charging sessions have an
idle time of less than 5 min, and only around 8% have an idle time of =1 hour.
Importantly, the idle time does not seem to have a correlation to the charging
powers. This indicates that the evolution of the OBCs of the EV fleet will likely
increase their charging loads instead of their flexibility at commercial charging sites.
The evolution may cause the load peak to occur 1-2 hours eatlier in the case of
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uncontrolled charging (Dixon and Bell, 2020) at other charging locations such as
workplaces or homes. In contrast, if the charging is controlled, the evolution could
increase the flexibility of the charging control because the available charging time is
presumably long enough to allow EVs to be fully charged. However, the flexibility
may remain the same if the EVSEs’ supported powers or the available charging

capacity at such locations become the limiting factor.
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Figure 3.3 Distribution of charging peak powers in Tripla and REDI between Nov. 2019 - Feb. 2020
[P9].

The simulation results show that the charged energy and the highest peak load
will increase at a faster pace than the number of EVs. The number of EVs are
estimated to increase by a factor of around 21 between 2020 to 2040, whereas the
daily charged energy and the highest daily peak load will increase by a factor of 39—
72 and 29-48, respectively. The average charging energy per EV will increase from
5.6 to 8.7 kWh to 13.0-19.6 kWh. These values emphasize the importance of
considering the evolution of the EV fleet when evaluating the long-term benefits or
optimal sizing of charging-related infrastructure, such as the total charging capacity
(Dong ez al., 2021), PV system (Deshmukh and Pearce, 2021), or energy storage
system (Haupt ez a/, 2020). The results also indicate that a larger charging site could
utilize the available total charging capacity more efficiently. This further means that
a centralized charging location would be more cost-efficient compared to multiple

smaller charging sites.

3.3 Influence of temporal resolution

EV charging-related studies use a wide range of temporal resolutions from 10 s
(Kikusato e# al., 2020) to 2 h (Sadeghianpourhamami ¢z a/., 2020) for model charging,
and 15-60 min resolutions generally seem to be the most commonly used [P11].

However, the use of a certain resolution is rarely justified, or very little effort has
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been made to analyze the influence of the temporal resolution on the charging load
modelling accuracy [P11]. (Shepero and Munkhammar, 2018) assessed the peak of
the normalized power of uncontrolled charging using six temporal resolutions 1, 5,
10, 15, 30, 60 min. The study shows that the 60 min resolution is relatively accurate
when considering charging powers of 3.7 kW. In contrast, the 1 min resolution is
notably more accurate than the others when considering 22 kW charging powers.
More thorough assessments of the temporal resolution’s influence have been carried
out in (Beck e al, 2016) and (Jaszczur et al., 2021) from a PV self-consumption
viewpoint. The studies indicate that the 15 min temporal resolution is reasonable for
assessing the self-consumption of a PV system. However, when simulating EV
charging, especially controlled charging, a complex control signal and the non-ideal
charging characteristics may complicate the modelling; thus, a finer resolution may
be necessary [P11].

[P11]’s objective was to assess the temporal resolution’s influence on different
scenarios. The electricity consumption data of a five-day period of a detached house
located in Pirkanmaa, Finland, was used to investigate EV charging in a household.
The household data was measured in a one second resolution in December 2018 and
provided by Tampere University of Applied Sciences. In addition to home charging,
the influence of temporal resolution was assessed at a small and at a large charging
site. Real charging session data were used for the large charging site to ensure a more
realistic evaluation, and three subscenarios were considered to further compare
controlled and uncontrolled charging. The REDI charging data (described in Section
1.3) over a three-month period (Jan. — Mar. 2020) were used. The same method
developed in [P7] to pair charging profiles with charging sessions was used. The
study was carried out using numerous simulations, and HIL simulations were
conducted at the Smart Grid Technology Lab of TU Dortmund (described in
Section 1.3).

[P11]’s assessment was carried out by comparing baseline results with simulation
results obtained by using different temporal resolutions. Depending on the scenario,
a baseline is either the results of the actual laboratory measurements or the results
obtained using the finest temporal resolution. Simulations with different resolutions
were carried out using the same charging characteristics modelling method
developed in [P7], which linked the EVs’ energy requirement to charging currents,
and, thus, allowed the simulation model to consider realistic, non-ideal charging
characteristics. After simulating with all temporal resolutions, the results were
compared to the baselines to calculate root mean square errors (RMSE). RMSEs
were calculated for the highest peak load of a single time step in a day, the highest
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houtly peak load in a day, and the hourly charging energies, because these were seen
as the key values that define, e.g., the charging costs.

To summarize [P11]’s results, it was shown that a temporal resolution of one
hour may lead to significant modelling errors, whereas a resolution of 60 seconds is
reasonably accurate in most cases. These results are in line with the study of (Shepero
and Munkhammar, 2018). However, the results also show that a very fine resolution
of one second may be necessary if there is a volatile charging control signal (e.g., a
household’s electricity consumption-based control). In contrast, the uncontrolled
charging of a single EV could be modelled sufficiently accurately with a resolution
of up to 15 min. The results indicate that even though the battery temperature is an
important factor in battery charging, it does not necessarily have to be taken into
account to achieve accurate modelling results. This further means that the non-ideal
charging characteristics modelling method (developed in [P7] and described in
Section 3.1) used in [P7]-[P10] and the used 10 second resolution provide reasonably
accurate results.

3.4  Influence of charging profile modelling method

It has been a common practice to assume linear charging profiles to model EV
charging, i.e., EVs draw constant current over the whole charging session. However,
Section 2.2.2 mentioned that the actual charging current may be below the limit set
by the EVSE, especially when the EV’s battery is becoming fully charged. This
naturally impacts the charging loads; thus, the charging load modelling may be
inaccurate if the non-idealities are not considered. Bilinear charging profiles were
considered in fast charging in (Wei ¢ al, 2018) and (Mouli ez a/., 2019) to overcome
the inaccuracies. The charging current was assumed to be constant over the CP stage
in the bilinear charging profiles and to then decrease linearly to zero over the CV
stage. The stage transition was assumed to occur at 60% SoC (Wei ¢z al., 2018) or at
80% SoC (Mouli et al., 2019), but these assumptions’ accuracies were not assessed.
(Sun et al., 2020) classified different charging profiles using an iterative clustering
framework. The study showed that the number of different charging profiles is
significant, yet they could be classified into a small number of types. These few
charging profile types could then be used to model EV charging profiles with good
accuracy. (Frendo et a/., 2020) modelled charging profiles using machine learning. A
sensitivity analysis was also carried out to demonstrate that the EV charging loads
could be accurately modelled without knowledge of the exact EV model. Instead, it
showed that the maximum charging current and the number of used phases were

much more important attributes. However, the aforementioned studies did not
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assess the influence of different charging profile modelling methods. Therefore, it
remains unknown whether certain simplifications can be made while ensuring
reasonable modelling accuracy.

[P12]’s objective was to assess the influence of different charging profile
modelling methods and the method developed [P7] (described in Section 3.1). The
influence of the modelling methods was assessed in the case of a small and a large
charging site. Real charging session data were used to ensure a more realistic
evaluation for the large charging site. Three subscenarios were considered for the
large charging site to further compare the modelling methods in the case of
controlled or uncontrolled charging. [P11], [P12] similarly utilized the REDI
charging data (described in Section 1.3) over a three-month period (Jan. — Mar. 2020)
and the same method developed in [P7] to pair charging profiles with charging
sessions. Additionally, the study was carried out using numerous simulations and
HIL simulations conducted at the Smart Grid Technology Lab (described in Section
1.3).

[P12]’s assessment was carried out by comparing baseline results with the
simulation results obtained by using different charging profile modelling methods.
Depending on the scenario, the baseline was either the results of the actual laboratory
measurements or the results obtained using the method to model the non-ideal
charging characteristics (developed [P7] and described in Section 3.1) because it was
shown to be the most accurate according to the small charging site’ results. After
simulating using each charging profile modelling method, the results were compared
to the baselines to calculate RMSEs. RMSEs were calculated for the highest peak
load of a single time step in a day, the highest houtly peak load in a day, and the
hourly charging energies, similar to [P11].

[P12]’s results show that the modelling method incorporating the non-ideal
charging characteristics yields accurate results, whereas the linear charging profile
modelling method leads to significant inaccuracies. The results also demonstrate that
a bilinear charging profile modelling method may be sufficiently accurate in most
cases as long as the slope of the current in the CV stage is justified, even though the
modelling method incorporating the non-ideal charging characteristics yields more
accurate results. This result is in line with the studies by (Sun ez a/, 2020) and (Frendo
¢t al., 2020), because they mention that it is not necessary to know the EV type or
the exact charging profile in order to model charging loads with reasonable accuracy.
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4 Capacity determination

This thesis uses capacity determination to describe the logic of determining a charging
site's available capacity or intended capacity usage. There are several reasons that
either directly limit or encourage a CSO to limit a charging site’s available charging
capacity. It is generally important to provide enough energy for each EV for their
next trip. However, this may not always be possible due to certain bottlenecks
limiting the available charging capacity. Additionally, there may also be bottlenecks
on the EV side, such as limited plug-in time or limited power supported by the EV’s
OBC.

The factors that directly limit the charging capacity include all of the charging
infrastructure’s and electricity grid’s bottlenecks, such as charging point sizing, feeder
fuse, feeding cable size, transformer, etc. These limits should have the highest
priority and must be considered at the charging site to ensure safe and continuous
operation. There may be enough capacity to allow uncontrolled charging in some
cases, especially if there are only a few EVSEs. Additionally, if the electricity prices
are static and there are no other incentives to control the charging, uncontrolled
charging is a common solution (Lee e7 4/, 2021). However, uncontrolled charging at
a larger charging site often leads to unnecessarily high investment costs and a lower
return on investment for the charging site because the cables and grid connection
point, etc., must be sized accordingly (Brinkel ez 4/, 2020). A notable share of new
charging sites will likely be retrofitted into an old electricity grid as the number of
EVs increases, which may set more tight limitations for the available EV charging
capacity [P10]. Additionally, (Brinkel e# a/, 2020) mentioned that the benefits of a
higher charging capacity limit often do not outweigh the costs of upgrading the
infrastructure.

There may be economical incentives that encourage the charging site to
temporally limit the charging capacity even further besides the directly limiting
factors that set an upper limit for the available charging capacity. (Lee ¢ al, 2021)
mentioned that certain objectives do not lead to a unique solution; thus, multiple
objectives with different priorities can be considered to optimize charging. The
following sections discuss different objectives that lead to different capacity
determination principles. The focus is on the charging site perspective and the

decentralized control approach.
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4.1 Minimizing charging costs under variable electricity pricing

Minimization of the electrical energy costs of EV charging has been one of the most
studied objectives. For example, charging costs have been minimized under time-of-
use (TOU) pricing in (Cao et al., 2012) and real-time electricity pricing in (Wan ez a/,
2018). These kinds of solutions may be feasible in small-scale implementations in
which the EV charging loads do not significantly influence the total loading at a
distribution or transmission system level. However, this could lead to a situation in
a large-scale implementation in which a notable share of EVs charge at the same
time, creating a high peak demand. Optimizing charging with only TOU prices have
been shown to do as poorly as or even worse than uncontrolled charging because it
reduces the diversity in charging times and thus leads to very high load peaks at the
distribution system level (Kutt ez a/, 2015; Powell ez al., 2020). This is also seen as
problematic in other demand response applications (Repo e al., 2021), and similar

results are expected when real-time pricing is used as the only control signal.

42  Peak load management

A DSO can utilize a demand charge to incentivize peak load limitation in the
decentralized control approach so that the electricity distribution costs increase
based on the highest peak consumption in a certain timeframe. This is also likely to
improve the cost reflectivity of the network tariff structure (Lummi ez a/., 2019; Repo
et al., 2021). There were already a few DSOs in Finland, such as (Helen Electricity
Network Ltd, 2021; Kuopion Sihkéverkko Oy, 2021; Lahti Energia Sihkoverkko
Oy, 2021), that utilized demand charges for small-scale customers during the work
on this thesis. This can make peak load management in EV charging a beneficial
strategy. The use of a demand charge can also be combined with the TOU electricity
pricing as in (Helen Electricity Network Ltd, 2021).

421 Potential benefits of peak load management
Potential benefits in home charging in detached house

[P5] studied home charging in a detached house. The household under investigation
included two EVs (Nissan Leaf 2012 and BMW 13 2016, shown in Table 1) that
should be charged in the evening or at night so they would be ready for use in the
morning. Both EVs were charged using EVSEs that support only single-phase
charging. The driving distances and the departure and arrival times of the EVs in the
experiment were chosen according to the average values of the national passenger
traffic survey (National Travel Survey, 2016). Therefore, the setup represented an
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average household with two cars in which the ICEVs were simply replaced with EVs.
The study considered a tariff structure that included a demand charge component
and a TOU pricing component and compared three scenarios: uncontrolled
charging, uncontrolled night-time charging, and the proposed peak power limiting
control algorithm.

According to [P5]’s results, the proposed algorithm can mitigate the peak load
increment completely and reduce the charging costs almost 60% when compared
with uncontrolled charging. Uncontrolled night-time charging mostly reduces the
volumetric electricity costs instead of the demand charges; thus, it reduces charging

costs around 40% when compared to uncontrolled charging.

Potential benefits in home charging in an apartment building energy
community

[P1] investigated the peak loads in an apartment building energy community that
were under 15% EV penetration. An apartment building energy community model
is one in which the apartments form a community that makes only one contract with
the energy retailer and another with a DSO and divides the electricity costs between
the apartment owners. This model essentially aggregates the total charging load of
all EVs on the apartment building's premises; thus, a charging control system could
benefit the whole energy community.

The results show that the peak power of the whole real estate would rise around
24% and 13% in the case of uncontrolled charging, even with charging powers of
3.7 kW (1x16 A, 230 V) and 1.8 kW (1X8 A, 230 V). The peak power increments
could lead to extra electricity costs of 20.2 €/month and 10.6 €/month, respectively,
in the case of a demand charge of 1.59 €/kW/month as in (Helen Electricity
Network Ltd, 2021). Conversely, the peak load increment could be avoided
completely while still satisfying the charging demand with the use of a simple peak
load management.

Potential benefits in home charging in the case of distributed energy
resources

[P1] also studied the use of a battery energy storage system (BESS) and a PV system
in the apartment building energy community. According to the [P1] results, a
moderately sized PV system (30 kW) and a BESS with 35 kWh energy capacity and
10 kW charging/discharging power can be used to decrease monthly peak powers
of around 22% on average in an apartment building energy community. Interestingly,
the combined use of BESS and PV systems seems to be slightly more beneficial than
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the sum of the benefits of using the BESS and PV systems separately. A simple peak
load management can be used to completely avoid the peak load increment while
still satisfying the charging demand in the case of the considered 15% EV

penetration.

4.2.2  Home charging potential under peak load management
Home charging in a detached house

The power drawn by an EV may be significant, especially in home charging. For
example, in [P4] and [P5], the highest average power consumption of the households
over a one-hour time interval varied between 8.8—12.5 kW (electric heating) and 3.1—
6.9 kW (geothermal heating), respectively. When considering charging powers such
as 3.7 kW (1x16 A, 230 V) or 11.0 kW (3x16 A, 230 V) that are typical charging
power for EVs, it can be seen that an EV can be one of the highest power-consuming
units in a household.

[P5]’s analysis of the household’s electricity consumption showed that there is,
on average, around 50 kWh charging capacity available during the night time (22:00—
7:00) without the need to increase peak demand. The available charging capacity (50
kWh) equals around 274 km when assuming the average driving efficiency of 182
Wh/km seen in the [P5] experiments. Therefore, home charging can likely be carried
out satisfyingly under peak power-based tariffs without increased demand charges if

a proper charging control algorithm is used.

Home charging in an apartment building energy community

[P2] studied home charging in an apartment building energy community. The study
investigated the charging load potential in a situation in which the charging load
should not increase the peak loads of the whole real estate. According to [P2]’s
results, charging demand in the case of up to around 30-50% EV penetration could
be fulfilled in an apartment building energy community without increasing the whole
real estate's peak loads. Conversely, it is estimated that around 65-75% of the total
energy demand could be fulfilled at home without increasing the peak loads if the
EV penetration is 100%.

Improving home charging potential using heating load control

[P4] studied the use of heating load control in an electrically heated household to
improve circumstances for EV charging. The available charging capacity is notable

on average as seen in [P5]’s results, but it is not always guaranteed. Different

34



households’ electricity consumption profiles, a shorter available charging time at
home, or an increased charging demand may still cause range anxiety. Heating loads,
such as space heating and a hot water heater, can often be controlled without a
notable negative impact on the comfort of living, which opens up an opportunity
for improved charging load potential. Unbalanced household electricity
consumption may cause issues, especially in the case of three-phase charging.
Charging mode 3 (IEC 61851) does not allow each phase to be controlled separately,
so three-phase charging is limited according to the phase with the lowest available
capacity. Therefore, controlling a household’s electricity consumption may
significantly influence the available charging capacity. [P4] developed a pilot system
that scheduled heating loads and tested them in an electrically heated household and
measured the available charging capacity.

According to [P4]’s results, the heating load control enabled up to a 30% higher
amount of energy to be charged into an EV. That improvement correlated with the
peak load limitation: The lower the available charging capacity, the more effective
the heating load control will be to improve circumstances for EV charging. Results
also showed that the pilot system is able to reduce peak currents up to 15%
compared with the original situation without heating load control or EV charging.
Additionally, indoor temperatures were measured during the experiment, which
confirmed that the comfort of living did not degrade due to heating load control.

Conclusions of the home charging potential under peak load management

The [P2], [P4] and [P5] results generally indicated that there is likely to be enough
available charging capacity in Finnish households to fulfill most of the charging
demand without needing to increase the whole real estate’s peak loads. Heating load
control can also be used to improve the charging load potential even further or
reduce the peak loads from the original level. Additionally, as mentioned earlier,
home will not likely be the only charging location available; thus, it may not be
necessary to always fully charge EVs at home. Therefore, the use of demand charge
can likely prevent the peak loads from increasing notably for residential customers
even though EVs are becoming more popular and the total energy demand of the

whole real state is increasing due to the charging loads.

423 Potential issues in peak load management

There is often uncertainty regarding the load level when minimizing peak loads,
which leads to optimal results. There is a risk if a load management system tries to
limit peak loading too much that the charged energy will also be limited too much
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and that EV user satisfaction will consequently suffer. However, not limiting the
peak loads enough may cause unnecessary costs if there is a demand charge in use;
thus, it may provide less value for the charging site operator. Historical data can be
used to estimate the upcoming peak load of a real estate. For example, it was seen in
[P2] that the month-to-month variations of the peak loads were -30—+10% for the
apartment building under consideration. Additionally, in (Lee ez a/, 2021), the
historic month-to-month variability in the peak loads of an office building was -16—
+11%. However, this thesis excluded a detailed analysis of the estimation of the
optimal peak load level.

It is also worth noting that even though the tariff that includes a demand charge
is seen as more cost-reflective than the ones using only a constant basic fee and a
volumetric electricity charge, the tariff may have negative influences on the grid’s
available flexibility (Repo ez al., 2021). If the loads are controlled for the benefit of
the charging site, less flexibility may be available for the market, or the required
compensation for the flexibility may increase (Repo ez /., 2021). A wide adoption of
demand charge and peak load limitation-based control systems may become non-
optimal from the DSO viewpoint, especially in the case of high penetration of
centralized RES production.

4.3  Utilization of RES in EV charging

RES, such as production of a local PV system, could be used to charge EVs in a
simple decentralized behind-the-meter control approach where the charging power
is adjusted based on the availability of the RES production. Different load balancing
methods have been proposed using a decentralized control approach in the case of
centralized RES production. (Gong ¢z al., 2020) proposed the dynamic electricity
price control approach to guide EV charging patterns to alleviate the negative
impacts of volatile RES output. This is a relatively simple decentralized control
approach, yet it can be beneficial in small-scale implementations similar to (Spencer
et al., 2021). However, in a large-scale implementation, it is likely to face challenges
identical to other charging cost minimization principles (Kithnbach ez a/, 2021)
(discussed in Section 4.1). The charging load can be more directly controlled to
match the volatile production of RES in a centralized control approach. For
example, (Schuller ez a/., 2015) showed that an aggregator controlling the charging
loads increases RES usage notably compared to a case of uncontrolled charging.
However, due to the centralized control approach issues (mentioned in Subsection
2.2.4), this thesis excludes their further examination. It is generally problematic to
control EV charging to effectively utilize centralized RES production in the case of
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the decentralized control approach. However, to some extent, the load balancing can
be done indirectly through participating in DR markets.

37



5 Capacity allocation

Capacity allocation means the principle that is used to divide the available total charging
capacity for the EVs that are plugged in. As mentioned earlier, the main focus in EV
charging is to enable users to drive their vehicle to the next location, preferably
without unnecessary stops or inconveniences. This charging demand varies in terms
of due time (departure time) and energy requirement (intended driving distance and
driving efficiency). Capacity allocation principles can influence EV user satisfaction
and even the benefits of the charging site in the case of limited available charging
capacity. Naturally, if the available capacity is large enough, the maximum capacity
supported by the EVSE and the EV can be given to each charging session; thus, the
capacity allocation principle is not needed. However, Chapter 4 mentioned that more
situations are expected in the future in which the available charging capacity is
limited; thus, capacity allocation principles will have an increased importance. This

chapter presents and discusses different capacity allocation principles.

2.1 Basic allocation principles

The simplest capacity allocation principles include first-come-first-served (FCES)-
based, round robin, and fair sharing charging. The EVs that have arrived first are
prioritized in FCEFS-based charging and can often charge as fast as possible within
the limits of their OBC, the EVSE, and the available charging capacity. There may
be one or more EVs charging with their maximum power while the charging of the
other EVs has been temporally disabled until it is their turn, depending on the
available charging capacity. The FCES principle can be naturally suitable for some
situations. However, it can often lead to poor EV user convenience in EV charging,
because some EVs do not have to be fully charged and some EVs may experience
very long waiting times. The round robin principle is similar to FCFS, because the
full charging capacity is always given to some EVs, while the others wait for their
turn. However, instead of serving only the ones that arrived first, the EVs that get
charged are cycled, e.g., randomly or based on the amount of time that the charging
current has been supplied (Lee ez al, 2021).

Fair sharing is when the available total charging capacity is divided evenly for all
EVs that are actively requesting charging (Zhang, Pota, ez al., 2018). This benchmark
solution allows all EVs to be simultaneously charging as long as the available
charging capacity is at least #e1seX6 A, where z1sk is the number of EVSEs. This
limitation is based on the standard IEC 61851 that states that the minimum charging
current in mode 3 charging is 6 A. Fair sharing is a reasonable and simple principle
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that does not require any additional data or communication connections, although it
may not be optimal due to the EVs’ unbalanced charging demands. For example, a
prioritization is used to improve RES usage in (Zhang, Pota, ¢z a/., 2018) and total
capacity usage rate in [P3], [P8], and, in (Lee ¢ a/., 2021).

5.2  EV usage-based allocation

EV usage-based capacity allocation could ideally be used to minimize the electricity
costs (Chen ez al., 2017; Datta et al., 2019; Khaki ez a/., 2019; Mouli e# al., 2019; Wei et
al., 2018) and peak loads (Chen ez al., 2017; Datta et al., 2019; Khaki ez al., 2019; Wang
and Liang, 2017) while ensuring that the EVs will always be fully charged or at least
have enough energy for the next trip before departure time. The following
subsection discusses different EV usage-based capacity allocation principles.
However, before that it discusses the acquisition of the EV usage-related data, which

might be problematic and include uncertainties.

5.2.1  Data acquisition

Two solutions have been proposed to acquire the charging requirements of the EVs:
request user inputs or utilize historical data-based estimations (Dogan and Alci,
2018). However, both solutions to acquire the necessary information have
drawbacks. Requesting inputs such as departure times and energy requirements may
feel burdensome from an EV user perspective. This may become an issue and cause
response fatigue such that customers may be unwilling to see a continuous extra
effort for cost savings. This is a known issue in DR applications (Kim and
Shcherbakova, 2011). The solution developed in (Lee e al, 2021) disables the
charging after 15 min from the start if the input is not received to ensure that EV
users input the necessary data. However, this kind of solution may not be attractive
from the EV user perspective. The input data may also not be very accurate, because
it can sometimes be difficult or burdensome to accurately estimate such values (Lee
et al., 2021). Participants significantly underestimated the number of trips in a day in
a mobility prediction survey (Hahnel ez 2/, 2013). The analysis also shows that work-
related traveling was predicted most accurately, whereas shopping and leisure trips
were predicted less accurately. Therefore, it seems that the EV usage-based charging
control can be more reliable in work charging or overnight home charging when the
next departure is work related because the mobility behavior in these cases can be
relatively consistent. It is also worth noting that the user input-based principles are

vulnerable to users exaggerating their needs to improve their own convenience. It
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may be required to provide an incentive for the EV users to increase the accuracy of
the input data (Lee ef al., 2021).

Historical data-based allocation, however, may not require any extra effort from
the EV user. (Lee, Li, ez al., 2019) showed that EV user inputs can be more inaccurate
than a historical data-based prediction. Gaussian mixture models and data over an
8-month period were used in the study, and the charging sites under consideration
were mostly used for work charging. However, much data is required to provide
accurate estimations in all cases. For example, data from multiple years would be
required using machine learning to predict EV usage behavior reasonably accurately
in the case of different holidays (Unterluggauer ¢ al., 2021). The approach might
become unfeasible if the necessary data are unavailable.

5.2.2  EV usage-based charging control principles

(Lee et al., 2021) investigated and compared two basic benchmark solutions to
schedule EV charging: earliest deadline first (EDF) and least laxity first (LLF) to
round robin. Both EDF and LLF are based on the round robin method in which
some of the EVs receive full charging capacity and some have to wait for their turn.
In EDF, the priority is given to the charging sessions based on the earliest departure
time; in LLF, the priority is given based on the necessary charging starting time
needed to meet the charging demand. According to (Xu ez al., 2016), both of these
principles are seen as optimal if there is enough charging capacity to fulfil all energy
requirements before departures. However, these principles may not be optimal if the
available charging capacity is insufficient to fulfil the charging requirements. As
indicated in (Xu ez al., 20106), these kinds of prioritizations can lead to a situation in
which the charging capacity allocation is significantly unbalanced, and some EVs
may not receive practically any capacity.

[P3] modified the least laxity first algorithm to take advantage of the flexible
charging current control included in IEC 61851 mode 3 charging. Instead of
disabling the charging of the non-prioritized charging sessions, the developed
method simply allocated a lower charging capacity. This reduced the risk that some
EVs did not receive any charging capacity. In the developed method, the available
total charging capacity (P,) was divided based on the energy requirement (E,) and
the remaining time before departure (A#) to determine the individual charging
capacities (P;) according to Eq. 5.1. In the equation, 7 is an index for an active EV
and N is the total number of active EVs.

_ Er(n) N Ey(k)
PC(n) - PtC X Atd(n) /Zk:l Atd(k) (5'1)
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[P3] analyzed the charging control operation in an apartment building in the case
of perfect knowledge of the energy requirements and departure times and of some
uncertainties. The results showed that the total energy that is charged into the EV's
can be improved by 2-3% compared to the fair sharing principle when using the
developed method and assuming perfect knowledge of the input data. Additionally,
the amount of energy charged into the EVs is essentially unaffected (change is less
than 0.5%), even if there are prediction errors of £30% in the energy requirements
or X2 h in the departure times. This is because the prediction uncertainties do not
influence the available total charging capacity (Px), and thus, the control system tries
to allocate the same total capacity for the EVs. However, the prediction errors can
have notable impacts on the EVs whose energy requirement or departure time has
been wrongly predicted. Both errors, expecting 30% lower energy requirement or 2
hours later departure, lead to around 0.5—1 kWh reduced charging energy on average,
which equals around a 3—6 km reduced all-electric range. Even if the reduction is
seen as quite modest on average, the magnitude can vary from day-to-day and cause

inconveniences for the EV users.

53 SoC-based allocation

Subsection 2.2.5 mentioned that standard ISO 15118 enables more advanced
communication between EVs and the charging system; thus, parameters such as
battery status could be used in the charging control. Battery status-related
information could be transferred automatically without the need for any predictions
as opposed to departure times and energy requirements. The logic behind the
charging control could also be more transparent and secure from the EV user
perspective, because it does not utilize the estimated or direct data of user behavior.
This makes it an interesting alternative for the EV usage-based principles.

[P3] developed and compared four different battery status-based principles to the
fair sharing principle and to the principle presented in Eq. 5.1 in the previous
subsection. The principles are based on absolute energy in the battery (Eq. 5.2a),
based on percentual SoC (Eq. 5.2b), based on missing absolute energy of the battery
(Eq. 5.2¢), or based on missing percentual SoC (Eq. 5.2d). In the equations, Er1-is
the absolute energy in the battery in kWh, SoC is the battery SoC as a percentage,
and Erm is the maximum battery capacity in kWh. Epy-is rounded up to 0.001
kWh if it is less than that to avoid division with zero in Eq. 5.2a. This also means
that the divider in 5.2b, the percentual SoC, is never zero. In the equations, a higher
priority is given to the EVs that have a lower amount of energy in the battery (Eq.
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5.2a), a lower SoC of the battery (Eq. 5.2b), a higher amount of missing energy in
the battery (Eq. 5.2¢), or a higher missing SoC of the battery (Eq. 5.2d).

P.(n) = Py X Ep (n)/Ek 1EE 1) (5.2a)
Po(n) = Pre X s / St o (5.2b)

Pc(n) = Ptc X (EEV,max(n) - EEV(n))/Zg=1(EEV,max(k) - EEV(k))
(5.2¢)

P.(n) = P, X (100% — SoC(n))/ ¥¥_1(100% — SoC (k)) (5.2d)

According to [P3]’s results, each of these four principles perform better than the
fair sharing principle but worse than the principle presented in Eq. 5.1 using the EV
usage-based information with perfect predictions. The principles shown in Eq. 5.2a,
5.2b, and 5.2d perform almost as well as the EV usage-based principle (Eq. 5.1) in
the case of perfect predictions, whereas the principle shown in Eq. 5.2c is less
efficient. However, if the EV usage-related information is inaccurate, the principles
shown in Eq. 5.2a, 5.2b, and 5.2d might become more efficient. The lower
performance of the principle shown in 5.2c is most likely due to the fact that the
missing energy in a BEV can be notable even though the BEV already has enough
energy for the next trip. Additionally, the absolute value of the missing energy in a
PHEV can be relatively small even though the battery is nearly empty. Therefore,
the principle shown in Eq. 5.2c may heavily prioritize BEVs over PHEVs. The
principle shown in Eq. 5.2d is the most efficient, even though the performance of
the principles shown in Eq. 5.2a, 5.2b, and 5.2d are almost equally good. The results
also indicate that the fair sharing principle is especially inefficient for utilizing the
total charging capacity when the charging demand of the EVs is notably unbalanced.
This kind of situation can occur in a home charging scheme, especially if some of
the EVs are charged at work while the others are charged only at home.

9.4  Price-based prioritization

Another option for allocating charging capacity in a public charging site such as
shopping centers could be based on a price-based prioritization in which the
charging under a higher prioritization costs more than a low priority charging. This

42



kind of solution could guide EV users to choose the higher prioritization only when
necessary. The charging price in a fast-charging station (powers usually 50-350 kW)
can generally be notably higher than in a mode 3 charging station (powers usually up
to 22 kW). Conversely, smart home charging can be cheaper than most public
charging stations. Assuming a scenario where an EV user stops at a shopping center
that has a charging option (up to 22 kW) before going home (and home charging is
available), it is likely that the user will decide not to pay for the charging if the
available electric range of the vehicle is clearly enough for the trip home. However,
an EV user might want to charge with a low priority if the available electric range is
not quite enough or the user experiences range anxiety. If there is a very potential
need for fast-charging in order to drive home, the user might be willing to pay extra
for the prioritized charging at the shopping center to avoid even more expensive
fast-charging costs.

[P8] developed a charging control algorithm that considers different prioritization
levels when allocating the available charging capacity between the active EVs and
assessed its operation at a shopping center’s charging site. In the examined scenario,
it was assumed that there was enough charging capacity to enable all charging
sessions with the minimum charging current (3X6 A). After allocating the minimum
capacity for each charging session, the algorithm allocated one more ampere for a
charging session as long as possible, considering the available charging capacity. The
one ampere increment was given to the charging session with the highest priority
index (p;) which was calculated using the currently allocated capacity (p,) and priority
level (p) according to Eq. 5.3. The control system applied the determined charging
current limits by sending them to the corresponding EVSEs after the capacity
allocation was finished. The algorithm was tested using HIL simulations with
commercial EVs and real charging data, which validated its compatibility with real
EVs and IEC 61851 standard as described in [P8].

_ pc(n)
pl(n) - pz(Tl) (53>

[P8] considered two prioritization levels (low and high) and investigated different
penetrations of EV users requesting prioritization. The EV users were assumed to
request prioritization based on laxity: The lower the laxity (i.e., the more acute
charging demand), the more likely they request prioritization. The solution operates
essentially the same as the fair sharing principle if all or none of the EV users request
prioritization. According to the results, the total charging capacity usage was
improved by up to 2% compared to the fair sharing principle. This result was
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achieved when 20% of the EVs with the lowest laxity were requesting prioritization.
The prioritization improved the charged energy up to 16% from a single EV
perspective.

It is worth noting that a higher prioritization may not always lead to a higher
charging power due to the different limitations in the charging characteristics of EVs.
For example, a Nissan Leaf 2012 has a maximum charging current of 16 A; therefore,
if the EVSE increases the allowed charging current from 16 A to > 16 A, the
charging will be unaffected. This might lead to a situation in which EV users are
uncertain whether they benefit from the higher prioritization or not, which might
discourage them from choosing it. The charging system could calculate the realized
prioritization value, and the potential price increment could be based on that to
alleviate the issue. This kind of solution ensures that EVs users do not pay extra for

nothing.

9.5  Charging with low currents

(Apostolaki-losifidou e# al., 2017) mentioned that, due to the lower efficiency of
power electronics in the case of low charging currents, the charging efficiency of
EVs correlates with the charging current when the currents are = 40 A: Higher
charging currents tend to lead to a higher efficiency. Therefore, limiting the charging
currents of EVs might also decrease the general energy efficiency. The measurement
results of (Kutt ¢z a/., 2013) also indicate that the total harmonic distortion percentage
might be higher with lower charging currents. Furthermore, a lower charging power
may also be inefficient in low ambient temperatures. Some EVs are equipped with
battery heaters, so a lower charging power in a cold ambient temperature might lead
to a more notable share of the power being used for the battery heating instead of
actual charging (Tikka ez al, 2021).

It might be more energy efficient to allow maximum charging current for some
EVs while disabling the charging of other EVs to avoid overloading in the case of a
limited available charging current. The charging mode 3 (IEC 61851-1) allows 0 A
current limit, which effectively disables the charging temporally, so this kind of
control solution is easy to implement. However, this can also be problematic,
because the laboratory measurements have shown that at least the BMW i3 2016
may not start charging again after a few minutes of being disabled. Additionally, most
EVs notify their user if the charging stops (Lee ¢z al, 2021). This could lead to a bad
user experience in a public charging site if the EV users experience range anxiety due
to this, or if they assume that the charging site is malfunctioning. Therefore, in the
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case of limited charging capacity, it may often be advisable to keep charging sessions
ongoing with reduced charging currents despite a slightly reduced energy efficiency.

5.6  Capacity allocation intertwined with capacity determination

It is common in the scientific literature that the charging capacity determination and
allocation are intertwined. This is especially true when they are based on user
mobility demand. It is possible to find the optimum level for, e.g., peak shaving or
charging cost reduction while ensuring customer satisfaction by utilizing EV usage-
based information. However, Subsection 5.2.1 mentioned that uncertainties remain
regarding EV usage-based information.

According to [P3]’s results (discussed in Subsection 5.2.2), the prediction
uncertainties of individual EVs can have a notable impact on the charging of these
specific EVs if the control algorithm utilizes the said data. Conversely, prediction of
the total charging demand of multiple EVs can be quite accurate, because the
prediction uncertainties of individual EVs may partly nullify each other. This
indicates that EV usage-based information could be suitable for determining the
total available capacity needed to achieve certain objectives in EV charging.
However, even if the EV usage-based data are used to determine the total available
capacity, it is worth considering using a separate principle to allocate the available
capacity that is not susceptible to significant prediction errors. This could increase
the robustness against the influences cause by the data uncertainties in real-life

implementations.
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6 Capacity usage rate correction

This chapter discusses capacity usage rate correction. It first discusses the background and
related research. It then introduces a developed adaptive solution that can efficiently
take non-ideal charging characteristics into account and improve the capacity usage
rate. Subsection 2.2.2 mentioned that an EVSE can only set the maximum charging
current limit for EV charging in mode 3 charging according to IEC 61851 and that
the EV itself chooses the actual charging current. There are many different reasons
why all or some of the phase currents in three-phase charging are below the limit set
by the EVSE (discussed in Subsection 2.2.2). The charging current limit set by an
EVSE is often the ideal charging current wanted by the control system in EV
charging management; hence, the real charging current behaviors, in which the actual
charging currents might deviate from the current limit, are referred to as non-ideal

charging characteristics.

6.1 Background

The realized charging currents may vary notably from the limit indicated by the
EVSE due to the EVs’ non-ideal charging characteristics. This also means that the
charging control system does not know the realized current consumption without a
charging current measurement feedback. The upper limit for the charging currents
is controllable and known by the control system, so this issue is unlikely to pose
safety-related risks such as overloading. However, the issue may lead to a suboptimal
operation of the charging site in the case of controlled charging if it is not addressed
in the charging control algorithm.

Unknown charging currents can have two especially notable consequences. First,
in the case of limited available charging capacity for multiple EVs, the issue can lead
to a situation in which a part of the available charging capacity is being unused.
Second, the issue may compromise the efficiency of other potential DR objectives.

Two toy examples are given and discussed below to illustrate the problems.

Toy example of an EVSE with two charging sockets

Let us assume that we have a charging station that has two 1X32 A (230 V) charging
sockets but only supports a total charging capacity of 1X32 A. Now, if there are two
EVs simultaneously that can both draw up to 1X32 A, the fair sharing principle
would allocate 1X16 A for both EVs. Then, if the other EV becomes nearly fully
charged and draws a lower current than 1X16 A, there will be more capacity available
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for the other EV. The available capacity goes to waste if it is not reallocated for the
other EV. There should be a mechanism in the control system that recognizes the
non-idealities (i.e., the mismatch between the current limit set by the EVSE and the
realized current) and reallocates the capacity to the other EV to reclaim the otherwise
unused capacity. According to the measurements conducted for [P9], the CV stage
lasts around 36 min for the Nissan Leaf 2019 when the current limit is 16 A. The
average current is only 3 A during the CV stage. This means that around 13 A
charging current on average could be reallocated in this example for the other EV,
which equals around 1.8 kWh in terms of energy or 10 km in terms of driving
distance (assuming 180 Wh/km). This capacity reallocation could increase the
charging rate of the other EV without causing any negative impacts to the EV with

a lower charging current.

Toy example of a charging site participating in DR market

It may be difficult to participate in DR markets if the charging system is able to adjust
only the upper limit for the charging control and the actual charging currents are
unknown. Let us assume that a BMW i3 2016 with SoC of < 80% is charging at a
charging station that allows 3X32 A (230 V) charging and the charging current limit
is set to 32 A to allow charging as fast as possible. The BMW only supports charging
currents up to 3X16 A, so it charges with a power of 11 kW instead of the available
22 kW assumed by the charging system if the non-idealities are not considered. Now,
if the non-idealities are not considered and there is a DR signal that requests a load
reduction of 10 kW, the charging control system would try to reduce the charging
load from 22 kW (3%x32 A, 230 V) to 12 kW (3X~17 A, 230 V). In this case, the
charging of the BMW would continue with the previous charging current of 3X16
A because the internal limitations of the EV are still tighter than the limit set by the
EVSE. Therefore, the realized power consumption has not changed, and the DR

signal has no impact.

Discussion of the background

A better utilization of the charging capacity, from the EV user perspective, leads
either to a faster charging time or a higher SoC if the EV departs before being fully
charged. This improves the quality of the charging service and can make the charging
site more attractive. Chapter 4 mentioned that there may be very limited charging
capacity available per EV as the number of EVs increases rapidly and the grid is
upgraded relatively slowly. Therefore, the available charging capacity should be used
as effectively as possible. An improved capacity usage rate, from the CSO viewpoint,
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leads to higher income if energy-based (€/kWh) charging pricing is used.
Additionally, participating in DR markets can increase the CSO’s income even
turther. However, effective participation to the DR markets may not be possible if
the non-idealities are not considered properly.

Both of the aforementioned toy examples are very simplified to illustrate the issue
as clearly as possible. There may be a variety of different, simultaneous non-ideal
charging characteristics in a larger charging site with three-phase charging stations;
thus, an efficient and scalable solution is required.

6.2 Related research

It has been common in the scientific literature to assume “ideal” charging
characteristics in which the realized charging current will always be exactly the same
as the current limit set by the EVSE. However, the non-idealities have been gaining
more attention during the past few years. Section 3.1 mentioned that a charging
profile classification was done in (Sun ez a/, 2020) and bilinear charging profiles are
considered in the modelling in (Mouli e a/, 2019) and (Wei ez al., 2018). (Frendo ez
al., 2020) took a machine learning approach to form a lookup table consisting of SoC
and power draw for each EV. This method can be used to consider realistic non-
idealities in the charging modelling, although it may not be suitable for real-time
charging control due to each EV’s significant data requirements.

(Lee, Chang, ez al., 2019) described an adaptive charging network and recognized
the non-idealities. The used charging control utilizes EV user inputs, such as
expected departure time and energy demand, in the charging control. The study
recognizes the non-idealities, although they are not considered in the capacity
allocation. The control system instead uses only the measurements to track the actual
energy delivered, which may deviate from the expected value due to non-ideal
charging characteristics.

[P5] considered home charging of two EVs and recognized the non-idealities.
Charging current measurements are used to calculate the EVs’ unused charging
capacity in real time and reallocate the capacity if possible to improve the capacity
usage rate. A condition shown in Eq. 6.1 was used in the study to determine whether
the charging current is limited by the EV’s OBC instead of the current limit set by
the EVSE. In the condition, @ is a threshold of 1 A, /is the current limit, and » is
the measured charging current. The charging current was assumed to remain the
same even if the current limit was increased if the charging current was limited by
the OBC. This information can be used to determine the amount of unused charging
capacity of one EV and allocate this capacity to the other EV and thus improve the
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capacity usage rate. The study considered home charging with a peak load limitation,
so the available total charging capacity was constantly changing based on the
electricity consumption of the household.

{ifl —m > 0, then charging current is limited by the OBC
else charging current is limited by the current limit
6.1)

(Lee ez al., 2021) described an upgraded version of the adaptive charging network.
The study also recognized that the non-ideal charging characteristics can lead to a
wasted capacity if it is not taken into account. An algorithm was developed slightly
similar to that in [P5] to reclaim the otherwise unused capacity. The algorithm used
two thresholds, ;s and 0, to determine whether there is unused capacity by an EV
or more capacity could be used by the EV. If the measured current () is more than
0slower than the current limit (/), the current limit is lowered to 1 A higher than the
measured current. The current limit is increased by 1 A if the measured current is
less than 6, lower than the current limit, because it is possible that the charging
current is only temporarily lowered by the OBC of the EV. Eq. 6.2 illustrates the
capacity reclamation, where 6; = 0,. Compared to the algorithm developed in [P5],
the advantage of the capacity reclamation algorithm developed in (Lee ez 4/, 2021) is
that it can be scaled for a charging site with multiple EVSEs instead of just two as

in [P5].

ifl-m>0;thenm+1 21 (6.22)
ifl-m<0,thenl+1 21 (6.2b)

The algorithms presented in [P5] and (Lee e a/, 2021) allowed a reclamation of
the unused capacity and were able to recognize if the capacity reclamation was
premature. However, the solutions considered only a single-phase charging; thus,
they do not work efficiently in the case of unbalanced three-phase charging.
Furthermore, the algorithm developed in (Lee ¢ a/., 2021) was unable to recognize
certain charging characteristics, such as that the Smart EQ ForFour charges only
with current limits between 8-32 A. In the case of the Smart and a current limit of
7 A, the charging current would be 0 A and the algorithm developed in (Lee ez al.,
2021) would likely assume that the EV is not requesting charging anymore and try
to reallocate its capacity to other EVs. This would leave the Smart uncharged.

The algorithms developed in (Lee e¢# al, 2021) and [P5] utilized real-time
measurements, so they can likely adapt quite well to most situations in single-phase
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charging systems. However, the solutions do not include any further memory
features regarding the charging characteristics of the active EVs. Therefore, in case
the total capacity or the number of active EVs change, it may take multiple
adjustments before the algorithms reach the optimal capacity allocations. The
standard IEC 61851 does not allow the current limit to be adjusted more frequently
than once per 5 seconds, so the adaptation to new situations might take a while (up
to a few minutes). The capacity usage might not be as efficient as possible during
this delay. Additionally, long delays in the adaptation might have negative influences,
for example, in situations where the charging site participates in DR markets.

6.3  Adaptive charging characteristics expectation

In a case with only a couple of EVs, as in [P5], or in case of single-phase charging,
as in [P5] or (Lee e al., 2021), it was possible to use simpler algorithms to determine
potentially unused charging capacity and reallocate it. However, in a larger charging
site with multiple three-phase EVSEs, it is crucial that the solution is computationally
efficient and can take into account all kinds of non-ideal charging characteristics.
Furthermore, from the convenience perspective, it is necessary that the solution is
easily scalable and can be applied to charging sites with different amount of charging
points up to several hundred charging points, as in REDI (REDI, 2021) or Mall of
Tripla (Mall of Tripla, 2021).

An adaptive charging characteristics expectation (CCE) feature was developed to
fill this demand. This feature allows the control algorithm to estimate the charging
currents before the current limit is applied. The following two subsections discuss
the operation principle and potential benefits.

6.3.1  Operation principle
In [P6], the first version of the CCE feature is developed and introduced. The

fundamental principle of the developed feature is to separately measure the realized
charging currents of each EV and use the measurements to update the charging
characteristics models of the EVs. The charging characteristics model links current
limits to the realized charging currents, and thus, the model can be used to estimate
the charging currents before the current limit is applied. Section 3.1 showed that the
correlation between different current limits and realized currents may be difficult to
model analytically. Therefore, the CCE feature uses a matrix that includes all possible
current limit integers and the corresponding charging currents. This enables an easy
way for the charging control algorithm to calculate the expected charging currents
for each EV depending on the considered current limits. The CCE feature initially
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assumed that each EV has ‘ideal’ charging characteristics, i.e., each phase’s current
will be exactly as indicated by the current limit set by the EVSE. As the charging
sessions continue, the feature keeps updating the matrix based on the measurements
and thus improving the prediction accuracy. The basic measurement-based updating
is called direct memorization function. Fig. 6.1 illustrates the initial charging
characteristics model (a matrix) along with the direct memorization function. In the
figure, I1. represents the current limit set by the EVSE, Iy represents the measured
value, and notation 7—3 denotes different phases in the three-phase system.

New measurement:

I, =6A,

1 IMJ IM,Z -[M,3 IM,|:6-2A= I IM,I IM,J IM,j
6 60 60 60 im;g-éi 6162 61 59
770 7.0 70[ M~ 7,70 70 7.0
8 80 80 80 8 80 80 80
32 320 320 320 32 320 320 32.0

Figure 6.1 lllustration of the initial charging characteristics model (on the left) and Direct Deduction
function which updates the model with a current measurement where the current limit was
6A.

Additionally, the feature evaluates the phase usage of each charging sessions using
the so-called phase detection function. If a phase current is zero while another phase
current in non-zero, the feature recognizes the unused phase and adjusts the matrix
so that the expected currents of that phase are zero for all current limits. Fig. 6.2
illustrates this. The illustrations of the functions related to CCE feature (Figs. 6.1 —
0.4) are independent in order to demonstrate the operation of each function as
clearly as possible. It is worth noting that there may be some delays before the
charging currents ramp up at the beginning of a charging session. Additionally, the
phase currents might have different delays. Therefore, it seems reasonable to activate
the phase detection function, for example, 1 minute after the charging session has
begun, to reduce the risk of incorrectly identifying the used phases of a charging
session.
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New measurement:

IL=6A,
L Ly Ly Iy IM,1:6'1A= Lo Ly, Lys Dys
660 60 607 M0 r6 61 00 00
770 70 70| W 7 170 00 00
8 80 80 80 8 80 00 00
32 320 320 320 32 320 00 00

Figure 6.2 lllustration of Phase Deduction function. In the illustration, the function recognizes that
phases 2 and 3 are unused and thus updates the model so that the phases are assumed to
have zero charging currents regardless of the current limit.

[P7] developed the CCE feature further to achieve more accurate predictions of the
charging currents. The feature was essentially improved with two additional
tunctions: Maxinum Current Dednction and  Indirect Deduction. Maximum Current
Deduction function determines the highest current that the EV can use. Public
charging points may very well support charging currents up to 32 A in mode 3.
However, EVs whose OBCs support charging currents only up to 16 A are very
common. Therefore, deducting the maximum charging current can notably improve
the charging current prediction. The function evaluates if the realized charging
current is notably below the set current limit to determine the maximum charging
current. In the function, a threshold of 5 A was assumed to be suitable to determine
whether the charging sessions had reached its maximum current or not. The
prediction model includes the maximum current variable Izax in addition to the
matrix.

Indirect Deduction function aims to improve the estimation accuracy of those
current limits that are yet not measured but that are between two directly measured
current limits. The initial assumption is ‘ideal’ charging characteristics, so the
estimated currents of the unmeasured current limits may be significantly inaccurate.
The function estimates that the charging currents of the non-measured current limits
are interpolated linearly between the two measured values to enhance the estimation
accuracy. The matrix is extended to include Boolean variables to describe whether
or not the charging currents of certain current limits are measured to accomplish
this. Figs. 6.3 and 6.4 illustrate the operation of Maxinum Current Deduction and Indirect

Deduction functions.
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New measurement:

I, =32A,
I Iy Ty:  Lys Boolean 1y, =16.1A, Iy Ly, Iy Iy; Boolean
P H H H IM.Z =16.3 A, H : H H H
e 1291290 290 200 Fatse| M2 SEA T oo 994 200 29 '
i 29. . . alse - 29 29.0 29.0 29.0 False
[32.0 (30 30.0 30.0 30.0 False|l [163 (30 30.0 30.0 30.0 False|l
31:31.0 31.0 31.0 False 31 31.0 31.0 31.0 False
321320 320 320 False 32161 163 158 True

Figure 6.3 lllustration of Maximum Current Deduction function. In the illustration, the function recognizes
that charging sessions does not draw a higher current than 16.3 A and thus updates the
model so that it is remembered in the future.

New measurement:

I, =14A,
L Lyr o Iys  Iys Boolean 1y, =14.1A, I, Iyi  Iy: Iys; Boolean
Ly, =13.8A,

LoorE b : - ; I ;
ma 1140140 140 140 False| M= 1374A m 114 141 138 137 True

[320 |15/ 150 150 150 False|l i [320 |15 149 148 145 False|l
16 157 158 153 True 16 157 158 153 True

Figure 6.4 lllustration of Indirect Deduction function. In the illustration, the function indirectly deducts
new estimated charging currents for the current limit of 15 which is not measured but lies
between measured current limits of 14 and 16.

The charging characteristics model is updated continuously as the charging
sessions goes on. Eq. 6.3 was used to estimate the charging currents. In the equation,
Ir represents the expected current, p denotes a phase, and L represents the current
limit index. The developed algorithm in [P7] used an iterative approach to allocate
the total charging capacity while considering the built charging characteristics
models. The algorithm started by allocating a minimum 6 A current limit for each
active charging session at the beginning of each iterative loop. Afterwards, in each
iteration, the algorithm evaluated whether a certain current limit could be increased
by 1 A (i.e., the minimum increment with the used EVSEs) without violating the
peak load limitation. The increment was made if the current limit increment was not
estimated to violate the peak limit. In the case of peak load violation, the charging
session was removed from the consideration in the following iterations within the
loop. The process continued as long as there were available capacity and suitable
charging sessions to allocate more capacity. [P7] considered the fair sharing principle.
Therefore, the algorithm tried to increase the EVs’ capacity with even prioritization.
However, by modifying the order in which the capacity increment was considered
for the charging sessions, the algorithm could accomplish different prioritizations.
The price-based prioritization developed in [P8] is an example of this.
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IE,p(L) = min(IM,p (L)' Imax) (6'3)

Each EV was modelled and measured separately, so a separate current
measurement was required for each EVSE. However, it seems that modern IEC
61851 charging mode 3 EVSEs tend to include inbuilt current measurement devices;
thus, this requirement is not likely an issue. The solution does not require any
preliminary information of the EVs, so it does not include a similar data requirement
issue like the machine learning approach presented in (Frendo ez al, 2020).
Furthermore, as mentioned earlier, an EVSE should not adjust charging currents
more frequently than every 5 seconds, and the run time of the algorithms, including
the CCE feature developed in [P6] and [P7], is a fraction of a second. Therefore, the
proposed algorithm is not likely constrained by the computational capacity

requirements.

6.3.2  Benefits

By improving the capacity usage rate, both the EV users and charging system
operator will benefit. [P7] analyzed the capacity usage rate in the case of a peak load
limitation algorithm and the fair sharing principle with and without the CCE feature.
The solution was essentially the benchmark solution presented in (Zhang, Pota, ez
al., 2018) without the CCE feature. [P7]’s results demonstrate that the CCE feature
does not have an impact in case the charging load is minimal compared to the
available charging capacity. This is because the charging load does not have to be
controlled in these cases. Therefore, the charging is only limited by the internal
limitations of the EVs, and any kind of capacity reallocation is not needed. However,
in the case of a significant charging congestion, it was seen that the CCE feature
significantly increases capacity usage rate [P7].

[P10] considered the charging current estimation accuracy and the charging site
profits. The study’s goal was to estimate the charging currents of the next 10 seconds
before the considered current limits were applied. According to the results, the
developed CCE feature can increase the charging energy output of the charging site
by 5.8% on average compared to a solution that does not include the capacity usage
rate correction. The examined case included a peak load limitation algorithm with
the fair sharing principle similar to [P7], in which the solution without the CCE
feature was essentially the same as the benchmark presented in (Zhang, Pota, e/ al.,
2018). The CCE feature also leads to faster charging times and increased customer
satisfaction by improving the charging energy output. The gross profit of the CSO
increases by the same proportion as the energy output if a volumetric energy price
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(€/kWh) is used. Additionally, the CCE feature enables the algorithm to estimate the
current consumption of the charging site before the current limits are applied, which
can be necessary in the case of participating in DR markets. This also means that the
CCE feature enables the charging control algorithm to achieve a certain total
charging power usage more accurately. According to the results, the average
prediction error of the total power consumption was £1% with the CCE feature,
while the benchmark solution without the CCE feature would have a prediction error
of £123%. The results also emphasized that the realized charging currents did not
match the current limits set by the EVSE very well. It is necessary in most smart
charging solutions for the control system to be able to accurately control the charging
powers. The control actions might not have the intended effects, otherwise; thus,

the desired results may not be achieved.

6.4  Capacity usage rate potential

[P7] analyzed the capacity usage rate in the case of perfect knowledge of the charging
characteristics. The results showed that even the algorithm with perfect knowledge
of individual EVs may not reach a 100% capacity usage rate in the case of a fuse-
based limitation. The study considered alternating phase order connections for the
charging points, which is a common practice to mitigate unnecessary phase
unbalance at installation stage. The ideal algorithm instead reached up to an 89%
capacity usage rate over a 70 min congestion period. This was caused by the unevenly
balanced load in the three-phases network. It may not be possible to fully balance
the charging load on the three phases because all EVs are not likely to support three-
phase charging, EVSEs cannot set phase-specific current limits, and single-phase
EVs are unlikely to be evenly distributed on each phase. It is also worth noting that
the ideal situation leads to only one percentage unit higher capacity usage rate than
the algorithm with the proposed CCE feature (89% versus 88%). Therefore, the
CCE feature is seen as relatively optimal.

However, if the charging load is limited according to a certain peak power instead
of a fuse-based limitation, the charging capacity allocation is much simpler because
the charging load does not have to be perfectly balanced over the three phases. In
this case, a 100% capacity usage rate is possible if an adaptive algorithm including,
e.g., the proposed CCE feature, is used [P7].
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6.5  Non-ideal charging characteristics and standardization

It would be possible, in theory, for an EV to communicate the charging
characteristics to the EVSE using, e.g., ISO 15118 and the digital communication
supported by the IEC 61851. However, this solution can be problematic from two
perspectives. First, the charging characteristics are not constant but instead depend
on, e.g., the temperature of the battery and the SoC of the battery. Thus, there would
be a need to update the charging characteristics continuously during the charging
session, which would significantly increase the necessary data transfer between the
EV, EVSE, and the control system. Second, it may not be likely that all EVs would
begin to support the said communication within a short amount of time. Thus, even
if the non-idealities were included in the standardization, there will most likely be at
least a transition period when an adaptive charging solution, such as the CCE feature,

can remarkably improve the charging capacity usage rate [P7].
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7 Conclusions

This thesis assesses electric vehicle charging from a charging control algorithm
perspective as well as from a charging load modelling perspective. Although the
topics are somewhat independent from each other, the modelling methods play an
important role in designing and validating the charging control algorithms.

The charging demand increases as EVs become more popular. The lack of
sufficient charging infrastructure is one of the key challenges that hinders EV
adoption; thus, it is necessary to increase the charging opportunities. However, the
reinforcements of the electricity network are usually very expensive, so the EV
charging infrastructure often has to be retrofitted into an existing electricity grid. A
charging control is needed to ensure the grid’s safe and efficient operation, especially
in these kinds of cases. This thesis refers to any situation in which the charging of
one or more EVs is controlled as “smart charging,” even though it may not always
be optimal. The focus is on mode 3 charging of the IEC 61851 standard.

The main focus in this thesis is on individual charging sites, although it also
discusses distribution system operator and EV user viewpoints. It gives a special
emphasis to so-called “non-ideal charging characteristics,” which poses challenges
both from the algorithm development and the charging load modelling perspectives.
The following section presents and discusses separately the main contributions of
the thesis, the potential limitations of the key findings, and the proposed future work.

7.1 Main contributions

The contributions of this thesis are divided into two categories: scientifically oriented
research results, which could aid future research, and practical implementation-
oriented algorithm development, which can promote smart charging solution
implementations. The contributions are presented within the two categories in the
order of the related publication numbering when possible.

The scientifically oriented research contributions:

v A phenomenon called “non-ideal charging characteristics” is tecognized, and
different charging characteristics in which the realized charging current deviates
from the maximum current limit set by the EVSE are examined and illustrated
in the case of three-phase charging [P0].

v' A simulation model that considers non-ideal charging characteristics is
developed [P7]. The non-ideal charging characteristics are modelled based on
comprehensive measurements of commercial EVs. The accuracy of the
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v

simulation model is validated by comparing the simulation results to laboratory
measurements of the EVs [P11], [P12].

The influence of temporal resolution in EV charging load modelling is
investigated [P11]. A temporal resolution of one minute is seen as sufficiently
accurate in most cases. However, a finer resolution may be necessary in the case
of a complex charging control system. Conversely, a resolution of 15 minutes
can give relatively accurate results in the case of uncontrolled charging.
Different charging profile modelling methods are compared [P12]. It is shown
that the use of linear charging profile models will likely oversimplify the
simulations and lead to notable inaccuracies. It is also shown that the use of
bilinear charging profile models can be quite accurate; thus, more complex
models may not be needed in most cases.

A novel way to divide algorithms into three key components is introduced
(presented for the first time in this introductory part). The components are
Capacity determination, Capacity allocation, and Capacity usage rate correction. Each
component is responsible for achieving a certain objective, and optimized smart
charging solutions are likely to include each of them. This division can help to
clarify the objectives of future research, because there may be a need to improve

the optimality of these components separately.

The practical implementation-oriented contributions:

v

Home charging is analyzed using Finnish National Travel Survey data and real
household electricity consumption data. It seems that the home charging
demand can often be fulfilled in Finland without increasing the peak loads of
the whole real estate [P1], [P2], [P4], [P5]. Therefore, a charging control can be
used to mitigate demand charges in case peak power-based tariffs become more
popular.

Alternative approaches are developed to avoid issues regarding the
implementation and the uncertainties of EV usage-based control algorithms.
Battery state-based [P3] or charging price-based [P8] control algorithms could
be used to allocate available charging capacity for EVs with higher charging
demands. It is also shown that these principles can improve the total energy
dispatch of the charging site.

In home charging, controlling of household’s electric heating loads could be
used to improve circumstances for EV charging and reduce the peak currents of
the whole real estate [P4].
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v' It is shown that a peak load mitigation-based algorithm can completely mitigate
the peak load increment and significantly reduce home charging costs when
compared with uncontrolled charging [P5].

v" The Charging Characteristics Expectation (CCE) algorithm feature is developed
[P6], [P7] to mitigate the negative influences of the non-ideal charging
characteristics. This feature allows a control algorithm to track the charging
characteristics of the EVs, which further allows the algorithm to control the
actual charging load more precisely despite the non-idealities. This is also a key
functionality needed by the charging control system in the case of a DR market
participation. According to the results, the use of the CCE feature can notably
improve the capacity usage rate [P7] and the charging site operator profits [P10].

V" Average charging loads in some public charging sites are estimated to notably
increase [P9]. Most EVs currently support charging powers only up to around 4
kW. EVs are expected to draw more energy within the limited amount of parking
time in public charging locations such as shopping centers as EV technology
evolves and EVs begin to support higher charging powers. It also shown that a
centralized charging location could be more cost efficient from the charging

infrastructure viewpoint compared to multiple smaller charging sites.

7.2 Discussion

Many assumptions and uncertainties still remain, even though most of the key
findings and results of the thesis are either obtained using simulations with real data
or validated using HIL simulations with commercial EVs. The accuracy of the results
could generally be improved by using more detailed data and complex simulation
methods. However, this could also lead to an increased computational capacity
requirement or increased effort required to gather or prepare the necessary data.
Therefore, some compromises often have to be made in simulations.

The charging demand and the buildings’ energy consumption play important
roles when assessing home charging with peak load management, as in [P1]—[P5].
Besides the driving distance, the charging demand is influenced by many factors,
such as driving behavior and ambient temperature, which may vary between every
trip, yet the impact of these factors is not assessed in the publications. Additionally,
the simulations focus on the average driving behavior in Finland; thus, the results
may not be applicable in the case of notably different charging behaviors. The
simulations consider real electricity consumption data of the buildings under study,
so the available charging capacity is realistic. However, these few cases represent
Finnish households; thus, the results may not be applicable in, e.g., other countries
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with dissimilar space heating requirement. Nonetheless, the used simulation models
and methodologies can be used to carry out similar case studies in other
environments.

This thesis acknowledges that EV users do not always plug in their EVs even if
it would be possible, yet, due to a lack of the necessary data, it has not been
considered in the original publications. The results are likely to be affected by the
EV users’ tendency to plug-in when estimating the charging loads of multiple years
into the future. On the one hand, public charging could be more expensive than
home charging; thus, some EV users might choose not to charge unless it is needed
to drive home. On the other hand, RES-powered public charging could occasionally
be cheap in the case of surplus PV of wind power generation; thus, it could
encourage EV users to take advantage of it. However, this is not considered in the
analysis of public charging loads of the future in [P9].

[P11] and [P12] compared the results of the developed simulation model to the
actual EV charging measurements. The modelling errors are minimal in the case of
one second temporal resolution and non-ideal charging characteristics models, so
the simulation model can be considered to be very accurate. However, since the
simulation model considers only the four EV models mentioned in Table 1, it may
not be suitable for modelling other EV models as accurately.

The CCE feature is developed in [P6] and improved in [P7] to overcome non-
ideal charging characteristics in EV charging control. HIL tests have shown that the
feature is able to track the charging characteristics of the considered EVs and allows
the charging control algorithm to estimate the upcoming charging currents with
certain current limits before applying the current limits. It is not possible to know
how well the feature works with other EV models with different charging
characteristics without further testing. However, as the feature does not use any kind
of EV model-specific assumptions or preliminary data, it is assumed to work reliably
with all kinds of EVs.

[P3] and [P8] considered different charging capacity allocation principles. It has
not been possible to test the developed solutions in a large charging site in real life,
so some issues may remain to be solved to make them feasible. The EV user
perspective or experience are especially heavily influenced by the capacity allocation
principle in the case of limited available charging capacity. A profitable charging site
should operate efficiently and be attractive from its customers’ perspective. The EV
user experience and perspective are not thoroughly assessed in this thesis, so it
remains uncertain which types of charging sites or control systems will be most
beneficial.
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7.3 Future work

This thesis focuses on decentralized charging solutions in which grid or market
operators have no direct way to control the controllable loads. These solutions are
likely to be easier to implement, but they pose risks and challenges from the grid
operators’ perspective. Therefore, in the case of a wide implementation of the
decentralized solutions, the grid operators’, energy retailers’ and the flexibility
aggregators’ perspectives should also be investigated to determine whether the
centralized solutions are necessary or not. This thesis also acknowledges the
existence of non-ideal charging characteristics and studies them from algorithm
development and modelling viewpoints. However, the extent to which these non-
idealities influence certain topics is yet to be thoroughly determined. These topics
include, for example, V2G operation, charging flexibility and optimized charging
infrastructure design. Therefore, more work regarding the non-idealities is required.
Furthermore, the EV users’ perspective can be a key factor that influences a charging
site’s profitability; thus, it could be valuable to investigate it more thoroughly.
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Control of EV Charging and BESS to
Reduce Peak Powers in Domestic Real Estate

T. Simolin, A. Rautiainen, J. Koskela, P. Jarventausta

Abstract — The paper discusses the effects of electric vehicle (EV) charging and battery energy
storage systems (BESS) on monthly peak powers in domestic apartment buildings. The introduced
control method for both EV charging and BESS utilizes real-time measurements and memorized
peak power consumptions to determine the available power before exceeding the previous peak
power. This kind of control method could lead to cost savings if the power-based distribution tariff
of distribution system operators (DSO) includes a price component based on monthly peak power.

Some Finnish DSOs have also launched this kind of power-based distribution tariff for small-scale
customers. Simulations indicate that EVs can likely be charged without increasing the monthly peak
powers of real estate when EV penetration is relatively small. Higher EV penetration would lead to

a higher risk of some EVs to not fully charge. There are also indications that BESS can be effective
in limiting monthly peak powers when utilizing the peak saving control method. Copyright © 2009
Praise Worthy Prize S.r.l. - All rights reserved.

Keywords: BESS, EV Charging, Peak Load Management, Power-Based Distribution Tariff

Nomenclature
Npc BESS charging efficiency
NB,p BESS discharging efficiency
Ncp Charging point efficiency

n Inverter efficiency

Ep max Maximum state of charge of BESS

Eg soc State of charge of the BESS

Egy miss Missing energy of EV before becoming fully
charged

P BESS charging power

Pg cmax ~ Maximum BESS charging power

Pg cmaxp Maximum BESS charging power which has
already taken battery SOC into account

Pgp Battery discharging power

Pg pmax ~ Maximum BESS discharging power

Pg pmax,p, Maximum BESS discharging power which
has already taken battery SOC into account

Pcpmax Maximum power of a charging point

Pgy Charging power of a single EV

Pgy cmax ~ Maximum charging power of EV

Peria s Power taken from the grid

Periamax,r Limit for the power taken from the grid due
to the main fuse

Peria,fmm Maximum measured peak power of the
ongoing month

Periat Power injected to the grid

Pgridmax,e Limit for the power injected to the grid due
to the main fuse

Pl max Maximum output power from inverter

P out Power from PV system after inverter losses

Manuscript received January 2007, revised January 2007

Proad Total load of the building and EV charging

Proad,ap Power consumption of the apartment
building

Proaapy  Total EV charging power

Procaioue  Total power output from PV system and
BESS

Ppy Power from PV system

I. Introduction

The interest in EVs has increased globally. For
example, the Finnish government has set a target for
Finland to acquire 250 000 EVs by 2030 [1]. With the
current relative growth of EVs, this target might be
achieved much sooner. Although the target EV count is
equivalent to an EV penetration of less than 10%, the
importance of smart charging should not be overlooked.
Over the last few years, a lot of research has centered on
controlling EV charging. Some work has been made, e.g.,
in [2] and [3], where the EV charging power is limited
based on the limits of the feeder. EV charging peak load—
related studies are presented, e.g., in [4], [5], [6], and [7],
in which the principle for mitigating the increase of peak
load is based on scheduling the EV charging. In [8], a
valley-filling control method has been introduced, making
the increase of peak powers negligible. However, the
research lacks studies of peak power—related problems and
their solutions in the internal networks of domestic real
estate with charging station groups.

In recent years, there has been ongoing discussion in
Europe on shifting DSOs’ distribution tariffs in a power-
based direction. This means that in addition to or instead
of traditional basic (€/month) and volumetric charges

Copyright © 2007 Praise Worthy Prize S.r.1. - All rights reserved
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(€/kWh), there would be a tariff component (€/kW) based
on peak power of some time period, i.e., the latest year or
month. It is worth noting that as peak power is the highest
average power taken from the grid in any I-hour time
period, momentary power consumption can be higher.
Power-based distribution tariffs are enabled by a rollout of
smart meters. In Finland, the electricity consumption of
>99% of network customers including households is
measured by smart meters [9]. As some distribution
system operators in Finland have already started using
power-based distribution tariffs for small-scale customers,
suboptimal control of EV charging could cause an
unnecessary increase in operational costs for EV owners
or their apartment buildings. Therefore, it is reasonable to
investigate options to reduce peak powers.

BESS and photovoltaic (PV) system could be utilized
for the whole building’s load if the energy community
model is used; the apartments form an energy community,
which makes only common contracts with the energy
retailer and DSO when all electricity purchased by the
building from the grid or grid feed is measured with one
meter. The problem is that the law requires that every
customer have the possibility to tender out energy
retailers. The energy community model is possible if all
apartment owners accept and they have the possibility to
resign from the community. This also requires each
apartment to have its own electricity meters in addition to
the common meter so the customers can divide the cost.

This paper investigates a simple peak-shaving
control method in which the free power capacity of the
feeder before exceeding the current peak power of the
ongoing month is continuously calculated in order to
determine the necessary actions. This control method can
be applied to EV charging, where charging power is
lowered if needed, and to BESS, which can be charged
when free capacity is positive and discharged when free
capacity is negative. The developed control method
maximizes EV charging power while preventing
unnecessary peak power increase. This could bring
operational cost savings for apartment owners if a peak
power-based distribution tariff component is used and the
apartment building forms an energy community. To
evaluate the viability of the introduced control method,
potential cost savings will be calculated, and possible
limitations are discussed.

The paper is organized as follows. In section II, the
control method is introduced and discussed. In section III,
the necessary initial data for the case study simulations are
presented. Section IV represents the simulation results,
and Section V finalizes the paper by presenting the
conclusions and future work proposals.

II. The Control Method

Without a proper control method for EV charging,
monthly peak powers, for example of an apartment
building, could increase notably. The monthly peak power

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved

will likely be a popular basis to charge the power-based
fee by DSOs in the future. The idea of this control method
is that the total load of the whole real estate is measured in
real-time, and the highest peak load of the ongoing month
is memorized by the control system. The free capacity
before exceeding the current peak load can then be
continuously calculated to determine if EV charging
power should be decreased or increased, or if BESS should
be charged or discharged.

The main principle of the system structure is illustrated
in Figure 1. According to the standard IEC 61851-1, this
kind of control method is possible in mode 3 EV charging,
where the charging station can restrict and adjust the
maximum AC charging current (per phase) between 6 A
and 80 A. Figures 2 and 3 illustrate the control method
operation when applied to EV charging or BESS,
respectively. The feeder limit shown in Figure 2 is there to
ensure that the charging power would not exceed the limits
of the fuse or the cable of the EV charging feeder. The
highest memorized peak power should be reset at the
beginning of each month so that previous months would
not affect the peak power of the ongoing month.

Power H Charging | —
measurement |~ |controller

Domestic
electricity network

vl

Other
loads

 Power
adjustment’,

EV charging spot 1 EV charging spot n

Fig. 1. The basic setup of the control method.

¥
Free capacity = the highest
memorized peak power -
real-time power consumption

Charging power
is setto 0

Free capacity >
feeder limit

Free capacity
>0

Charging power is set Charging power is set
according to the feeder according to the free
limit capacity

L 4

Fig. 2. Simplified block diagram of the control method for EV
charging.
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'

Free capacity = the highest
memorized peak power -
real-time power consumption

Discharge BESS according
to the negation of the
free capacity

Free capacity
>0

Charge BESS according
to the free capacity

Fig. 3. Simplified block diagram of the control method for BESS.

As shown in Figure 3, BESS should be charged when
the free capacity is positive and discharge when the free
capacity is negative. Charging power should be limited
according to the free capacity to increase the state of
charge (SOC) of BESS as fast as possible without
increasing monthly peak powers. Discharging power
should be limited according to the free capacity to avoid
increasing monthly peak powers while keeping the
remaining SOC as high as possible. In addition to these,
battery properties like the maximum charging and
discharging powers and the maximum and the minimum
SOC levels should also be taken into account.

In simulations of this case study, the total power
consumption of the final hour of the previous month is
used as a starting value for the memorized peak power of
the new month. Another simple option would be to reset
the memorized peak power of the new month to 0.
However, preliminary simulations indicated that the
selected method would result in lower monthly peak
powers and lower uncharged energy of the EVs on
average.

III. Simulation Data and Modeling

1I1.1. Case Description

The investigated case is called “Tammela,” which is an
apartment building built in 1980 in Finland. Between 2013
and 2015, various renovations have been made, which
have resulted in a 67% reduction in purchased energy.
However, the share of electrical energy has increased and
resulted in electrical energy consumption to increase by
around 30%. This is caused by the installation of exhaust
air heat pumps, where produced heat energy replaces the
purchase of energy from district heating. In the
simulations, the models included eight charging points, a
PV system, and a BESS for “Tammela.” These eight
charging points are modeled for daily use and equal to a
local EV penetration of approximately 15%. Simulations
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were carried out based on long-term electricity
consumption measurements made in the apartment
building and electricity production measurements of a 30
kW PV system. Consumption data were measured in
2013-2016 in one-hour intervals, and the PV production
data was measured in 2017 in five-minute intervals.

Figure 4 illustrates the modeled system. The BESS is
modeled so that it can be charged with energy from the PV
system or from the grid. In the simulations, the BESS’
usable energy capacity, maximum charging/discharging
power, and charging/discharging efficiencies are selected
to be 35 kWh, 10 kW, and 0.96, respectively. These
parameters are based on a BESS found on the market [10]
but multiplied by four (except the efficiency) to make it
more impactful for the apartment building. Lithium-ion
batteries typically have a high efficiency of 0.95-0.98
[11]-{13]. The selected BESS power and energy capacity
is a few times larger than the ones meant for a single
household mentioned in [11], [14], and [15]. Therefore,
the BESS is assumed to be reasonable and yet its control
method is expected to have an impact on the peak powers
of the apartment building.

The simulation focuses on a charging power of 3.7 kW
per charging point, which should be roughly suitable for
almost every commercial EV. As EV charging
presumably takes place mostly at night, there is no urgent
need for a higher charging power. Furthermore,
simulations investigate scenarios where the total charging
power of the whole charging station group can be limited
to 11 kW, or to 11 kW and according to the control
method. By limiting the maximum total power of the EV
charging system, cheaper feeding cables and smaller
network connections can be used. This can result in lower
investment costs and in some cases in smaller distribution
fees without a notable effect on EV charging times. Even
though the total charging power limit of 11 kW is under
half of the combined power of all eight charging points,
the simulations do not indicate that it has a negative impact
on EV charging. This is likely due to long-available
charging times and the reasonable energy demands of
EVs, as presented in the following subsection.
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Fig. 4. System arrangement behind the simulations.
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1I1.2. EV Load Modeling

According to Statistics Finland, the average travel
distance per passenger car in Finland was 14 000 km/a in
2017 [16], which would be around 38.4 km/day on
average. Assuming that a typical EV energy consumption
is 0.25 kWh/km, this would lead to a daily charging energy
need of 9.6 kWh, which is also close to the typical battery
capacity of most common plug-in hybrid EVs in Finland.
If charging losses in an EV are assumed to be 10%, the
average daily energy needed from the charging point will
be around 10.7 kWh. The investigated case is an apartment
building, and EV charging is therefore assumed to occur
in the afternoon and night.

To add variety to daily charging sessions, they are
simulated to start between 16.30 and 20.00 and end
between 6.00 and 8.30. The energy needed for the
charging sessions has also been multiplied with factors of
0.5-2.0 in a way that the average energy need of an EV
remains at 9.6 kWh. The schedule for the use of each
charging point (CP) has been presented in Table I.
Possible bigger energy needs for full electric vehicles
(FEV) are left out of this study.

TABLE1
DAILY CHARGING SCHEDULE OF EVS
EV Arrival Departure Missing energy (Wh)
1. 18:30 6:45 10416
2. 19:45 6:15 17904
3. 16:45 8:00 5040
4. 19:00 7:15 11424
5. 17:45 7:45 8256
6. 19:15 6:00 6384
7. 18:15 8:30 10560
8. 17:15 7:15 6816

111.3.  System Modeling

The introduced control method discharges BESS when
power taken from the grid is about to exceed the current
month’s highest peak power. The BESS is also controlled
to discharge to allow a higher EV charging power when
needed. If power taken from the grid is below the peak
power, BESS will be charged. Power used for battery
charging Pg ¢ can be calculated according to (1),

PB,C = min(PB,C,max,pJ max(O, PI,out - PLoad +
PGrid,f,mm)) (1)

where Pp cmaxp is the maximum power that BESS can
receive, Pioy is power from the PV system after inverter
losses, Proad is the sum load of the building and EV
charging, and Pgrigfmm is the measured maximum peak
power of the ongoing month. Power discharged from
BESS Pgp can be calculated according to (2),
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PB,D = min(PB,D,max,pr max(O, _Pl,out + PLaad -
PGrid,f,mm)) (2)

where Pgp,max,p is the maximum power that BESS can
discharge.

Power needed from the grid Pgrigr can be calculated
according to (3),

PGrid,f = min(PLoad - PLocal,out' PGrid,max,f'
maX(PGrid,f,manth,maxv PLoad,ab - PLocal,out)) (3)

where Paridmax. 18 the limit of power taken from the grid
due to the main fuse, Proadan is the consumption of the
apartment building, and Procal,out 1S power coming from the
PV system and BESS. Simulations use a time step of 15
minutes, which allows a whole year to be simulated within
a reasonable amount of time. In order to use the measured
consumption data of the apartment building in the
simulations, an interpolation was necessary to change the
time step of 1 hour to 15 min. This was done by simply
dividing each of the 1-hour energy consumptions evenly
for four parts.

IV. Simulation Results

To evaluate the effects of different settings, simulations
have been carried out for 11 scenarios. These scenarios
have been listed in Table II. Each simulation is done for a
period of one year so that we can examine monthly peak
powers for every month. At first, all scenarios are
calculated using the newest consumption data of the
apartment building (2016) in subsections IV.1.-IV.3. In
subsection IV.4., simulations are carried out using
consumption data of the apartment building during 2013 —
2016 to ensure that the results are repetitive.

TABLEII
SIMULATION SCENARIOS
Scenario Explanation
1. Only apartment building
2. Uncontrolled EV charging with 3.7 kW CPs
3. Uncontrolled EV charging with 1.8 kW CPs
4 EV charging with 3.7 kW CPs, where the total EV
i charging power is limited to 11 kW
EV charging with 3.7 kW CPs, where the total EV
5. charging power is limited to 11 kW and the
introduced peak saving control method is in use
6. Apartment building with 30 kW PV system
7. Scenarios 5 and 6 combined
P Apartment building with 35 kWh / 10 kW BESS,
) which is controlled with the control method
9. Scenarios 5 and 8 combined
10. Scenarios 6 and 8 combined
11. Scenarios 5 and 10 combined

Each scenario includes the consumption for the apartment building.
CPs = Charging points
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1V.1. EV Charging Scenarios

It is well known that uncontrolled EV charging can
cause significant peaks in power consumption [4]-[6].
Figure 5 illustrates the EV charging load curves of
scenarios 1-5. It can be seen that both the peak power of
apartment building and that of an uncontrolled EV
charging occur in the evening, resulting in increased peak
power in the day, presented in Figure 5. In scenario 5, EV
charging power is limited to the peak power of the ongoing
month. This peak power is 30.9 kW in Figure 5, which
causes EV charging to drop around 20:00-21:00.

EV charging load
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Fig. 5. Simulation results of scenarios 1-5.

As seen in Figure 6, scenario 2 results in quite a high
increase in monthly peak powers, whereas in scenario 5,
monthly peak powers will stay the same. For scenarios 2—
5, the average relative increase in monthly peak power
compared to scenario 1 is 23.9%, 13.1%, 16.6%, and
0.0%, respectively.
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Fig. 6. Simulation results of scenarios 1-5.

1V.2.  Effects of PV and BESS on Peak Powers of the
Apartment Building

Figure 7 illustrates the effects of PV and BESS on the
monthly peak powers of the apartment building. These
scenarios (1, 6, 8, and 10) do not include EV charging and
are therefore comparable to each other. The average
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relative decrease in monthly peak powers compared to
scenario 1 is 4.6%, 17.2%, and 22.0% for scenarios 6, 8,
and 10, respectively. Although the PV system is more
often seen as a way to reduce energy consumption, it can
also reduce monthly peak powers in the summer.
However, from the DSO’s point of view, this might not be
very useful as the grid must be planned according to the
worst-case scenario, which is more often during the winter
in Finland.
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Fig. 7. Simulation results of scenarios 1, 6, 8, and 10.

1V.3.  Effects of PV and BESS on Peak Powers of the
Apartment Building with Controlled EV Charging

Figure 8 illustrates the effects of PV and BESS on the
monthly peak powers of the real estate, which includes
apartment buildings and controlled EV charging as in
scenario 5. The average relative decrease in monthly peak
powers compared to scenario 1 are 4.5%, 17.5%, and
21.5% for scenarios 7, 9, and 11, respectively. These
results are close to the ones without EV charging that were
stated above, which indicates that controlled EV charging
would be possible without a notable increase to peak
powers in real estate.
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Fig. 8. Simulation results of scenarios 1, 5, 7,9, and 11.

1V.4.  Economic Effects of Different Scenarios

According to Figures 9 and 10, simulations give similar
results when using different base power consumptions for
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the apartment building. The economic effect of each
scenario can be calculated using the sum of monthly peak
powers. If the cost of the increase in monthly peak power
is 3.72 €/kW (including VAT 24%) [17], the average cost
increase in a month for scenarios 2-5 compared to
scenario 1 would be 47.3 €, 24.9 €, 30.5 €, and 0.0 €,
respectively. As a side note, scenarios 2 and 3 would also
require more expensive investment costs on the feeding
cable as they allow higher maximum power for EV
charging.

As seen in Figure 10, the PV system would also reduce
the monthly peak powers by about 2.02 kW on average,
which results in cost savings of 7.5 €/month. In turn, BESS
would similarly reduce peak powers by 7.97 kW/month on
average, which would result in a cost savings of 29.7
€/month. Again, combining the PV system and BESS
would result in an average of 10.07 kW/month and 37.4
€/month. It can be noticed that combining PV and BESS
seems to reduce peak powers slightly more than the sum
of using only the PV system and BESS. It is also worth
noting that using this control method, BESS seem to be
very effective in reducing peak powers. This can be
deduced from the fact that BESS, with a maximum
discharging power of 10 kW as used in the simulations,
can reduce monthly peak power by no more than 10 kW.
Therefore, the average peak power reduction of 7.97
kW/month would be quite good.

One reason for the high effect of BESS might be the
usage of saunas in the examined apartment building,
which is likely to cause high and relatively short peaks in
power consumption. If the used BESS has enough
capacity, it might be able to mitigate the peak power
consumption taken from the grid in these occasions and
therefore lead to noteworthy results.
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Fig. 9. Simulation results when using apartment building consumption
data from 2013-2016.
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1V.5. Limitations of the Control Method for EV
charging

Figures 9 and 10 show that EV charging can be done
without increasing the monthly peak powers of the real
estate. The main downside of the introduced control
method is the risk of EVs not being fully charged after a
night of being plugged into a charging point. When using
measured consumption data of the apartment building in
2013-2016, 11 of the 16 scenarios that used the control
method for EV charging (scenarios 5, 7, 9, and 11) left
some energy capacity of the EVs uncharged. The largest
amount of uncharged energy occurred when simulating
scenario 9 using the consumption data from 2013 for the
apartment building. This energy was 11.2 kWh, which
equals to 0.036% of the yearly total capacity of possible
EV charging. This also means that an EV would still be
completely uncharged 1.17 times per year on average after
a night of being plugged into a charging point.

In the simulations, scenarios 9 and 11 use BESS to
allow for higher power for EV charging. To execute this,
the controller requires information from BESS about the
available power that can be discharged. Besides that, this
peak saving control method does require only smart
metering of the real estate and charging points. Charging
points require smart metering due to the fact that in mode
3 charging, the controller can only set the maximum
current for a charging point, and the EV itself chooses a
charging current below the limit. Therefore, the controller
might not know the real power consumption of EV
charging without smart metering.

V. Conclusion and Future Work

In conclusion, it can be stated that EV charging can be
conducted alongside an apartment building without
significantly increasing the monthly peak powers of the
whole real estate. The control method, which uses
memorized peak power for the ongoing month and real-
time power measurements, can also be quite effective for
controlling a BESS to reduce monthly peak powers. By
assuming that the apartment building forms an energy
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community and distribution tariff includes a component
based on monthly peak power, this kind of control method
could bring operational cost savings.

The problem with the control method for EV charging
is the risk of EVs remaining uncharged after a night of
being plugged into a charging point. Although the
uncharged energy seems to be relatively small in the
simulated scenarios, it might raise concerns among the
users of the EV charging system. The control method, as
it is presented in this paper, will be particularly
unfavorable for operators of FEV.

To avoid this problem with increased penetration of EV
or FEV, the control method should allow peak powers to
increase if necessary. The allowed increase of peak
powers should be executed in a way that results in the EVs
being fully charged while peak powers remain as low as
possible. This might be a challenge as there are multiple
unknown factors like EV departure time and energy
demand of the EV, which the EV charging system
controller might not be able to use for the optimization of
the charging system. It should also be noted that in order
to fully charge a typical full electric vehicle in one night,
a charging power of 3.7 kW would most likely not be
enough. It might be enough, however, to carry on the next
day.

Future work could investigate different options to allow
higher energy to be charged with a minimal increase in
peak powers in case of a higher energy demand of EVs.
Also, a more detailed analysis of the method, which resets
the memorized peak power, could be conducted as it
seems to have an impact on the uncharged energy
according to preliminary simulations. Future work could
include a thorough techno-economic analysis for both EV
charging and BESS as well. Furthermore, a more
comprehensive investigation of the impacts of different
variables, like charging point power, feeder limit, BESS
attributes, or the time step of the simulations, might be
useful.
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ABSTRACT

The paper discusses electric vehicle (EV) charging control
in apartment buildings in cases of high EV penetration.
The introduced control method for EV charging utilizes
real-time measurements and memorized peak power
consumptions to determine a suitable charging power. The
aim of the control method is to avoid an unnecessary
increase to the peak powers of the whole property, while
still allowing EVs to be charged sufficiently. This kind of
control method could lead to cost savings if the power-
based distribution tariff of distribution system operators
(DSO) included a price component based on monthly peak
power. Some Finnish DSOs have launched this kind of
power-based distribution tariff for small-scale customers
also. Simulations indicate that PHEVs can likely be
sufficiently charged without increasing the monthly peak
powers or controlling other loads of the property when EV
penetration is around 40% or less.

INTRODUCTION

The Finnish government has set a target for Finland to
have 250,000 EVs by 2030 [1], which is equivalent to an
EV penetration of around 10%. However, with the relative
growth of EV penetration during the last five years
according to [2], this target could be achieved by 2023.

It is well known that uncontrolled EV charging can cause
problems for power distribution networks [3—5]. Smart EV
charging can be optimized from different perspectives,
such as minimizing peak loads or electrical energy costs.
Depending on the control method, various issues might
occur. According to [6], use of real-time energy market
pricing for the benefit of EV charging would likely
increase the peak loads for the distribution networks. As
the pricing information would be available to all customers
at once, they would all receive the incentive for turning on
loads at the same time. In [5] and [7] the smart charging
method to reduce peak loads is based on an assumption
where the state of charge (SOC) and departure of every EV
is known, which is not typically the case.

In recent years, there has been ongoing discussion in
Europe on shifting DSOs’ distribution tariffs in a power-
based direction. This means that in addition to or instead
of traditional basic (€/month) and volumetric charges
(€/kWh), there would be a tariff component (€/kW) based
on peak power of some time period, i.e., the latest year or
month. Power-based distribution tariffs are enabled by a
rollout of smart meters. In Finland, the -electricity
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consumption of over 99% of network customers including
households is measured by smart meters [8]. As some
distribution system operators in Finland have already
started using power-based distribution tariffs for small-
scale customers, suboptimal control of EV charging could
cause an unnecessary increase in operational costs.
Therefore, it is reasonable to investigate options to charge
EVs with a minimal increase in the peak powers.

EV charging peak load management in an apartment
building could result in cost savings for each apartment
owner if the energy community model is used; the
apartments form an energy community, which makes one
contract with the energy retailer and another with the DSO.
Each apartment should have its own electricity meter so
the customers can divide the cost of all electricity
purchased by the whole building from the grid. The law
requires that every customer should have the possibility to
tender out energy retailers, so the energy community
model is possible only if all the apartment owners accept
the energy community model.

This paper investigates the EV charging control method
introduced in [9], which aims to keep total peak loads at
minimum while charging EVs alongside an apartment
building. Different scenarios are examined to evaluate the
effects of various parameters and the general accuracy of
the results. The paper includes discussion and simulation
results.

THE CONTROL METHOD

The monthly peak power will likely be a popular basis for
the power-based fee charged by DSOs in the future. By
using fuse or cable capacity as the only limiting factor for
EV charging, the peak powers of the whole property might
increase significantly and thus the operational costs of EV
charging might also increase.

The introduced control method is based on memorizing the
peak power consumption of the month, measuring the
present power consumption of the building, and then
calculating the available power capacity. EV charging
power should then be adjusted according to the available
capacity. The main principle of the system structure is
illustrated in Fig. 1 and the operation of the control method
is illustrated in Fig. 2. This kind of control method is
possible in mode 3 EV charging according to the standard
IEC 61851-1, where the charging station can restrict and
adjust the maximum AC charging current (per phase)
between 6 A and 80 A. In Fig 2., the feeder limit is there
to ensure that the charging power would not exceed the
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limits of the cable or fuse of the EV charging feeder.

To prevent the previous month from affecting the peak
power of the new month, the highest memorized peak
power should be reset at the beginning of each month.
However, the resetting method has a clear impact on the
energy that can be charged to EVs. By setting the starting
value of the memorized peak power too low, there might
not be enough free capacity to charge EVs. And by setting
the starting value too high, the peak powers of the month
might increase more than is necessary. In the subsection
“Resetting methods of the memorized monthly peak
power,” four simple resetting methods are investigated.

Power i, | Charging
measurement *” | controller Power
Domestic adjustment

electricity | ..
networks

Other EV charging spot 1
loads

EV charging spot n
Figure 1. The basic setup of the control method.

| Start
-
- x
Free capacity = the highest
memorized peak power -

Charging power

real-time power consumption issettod |
! I False
N False .
Free capacity > a i‘:_ -~ Free capacity
feeder limit - >0
} True } True

Charging power is set | Charging power is set
according to the feeder according to the free
limit | capacity |

Figure 2. Simplified block diagram of the control method.

SIMULATION DATA AND MODELING
Case description

The investigated case is called “Tammela,” which is an
apartment building built in 1980 in Finland. Between 2013
and 2015, various renovations were made, which resulted
in a 67% reduction in purchased energy. However, the
share of electrical energy increased, resulting in electrical
energy consumption increasing by around 30%. This was
caused by the installation of exhaust air heat pumps, where
produced heat energy replaces the purchase of energy from
district heating.

Simulations were carried out based on long-term
electricity consumption measurements made in the
apartment building. This consumption data was measured
from 2013-2016 at one-hour intervals. The apartment
building has 53 parking spots. The property does not
include any EV charging points at present in real practice,
so all 53 charging points, one for each parking spot, are
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modeled for simulations done in this study. Simulations
focus on a charging power of 3.7 kW per charging point,
which should be roughly suitable for almost every
commercial EV.

EV load modeling

According to [2], the number of plug-in hybrid electric
vehicles (PHEVs) is increasing much more rapidly than
full electric vehicles (FEVs). With the average relative
increase of PHEVs and FEVs during the last five years,
there would be only around 4%—5% FEVs in Finland when
the EV penetration reaches 100%. Therefore, simulations
focus on PHEVs in this paper.

The average travel distance per passenger car was 14,000
km/a in Finland in 2017, according to Statistics Finland
[10]. This equals around 38.4 km/day. To simplify the
simulations, it is assumed that all PHEVs have the same
maximum energy storage capacity of 8.0 kWh and energy
consumption of 280 Wh/km. These are based on the most
common PHEVs in Finland in [11] and data tables found
in [12]. However, the real battery capacities and energy
consumptions depend on the car and the operation
conditions, so the simulations are repeated with slightly
different parameters to improve the reliability of the
results.

The case is an apartment building and, therefore, the EV's
are assumed to depart in the morning and return later in the
evening. Two different schedule types are investigated.
The first assumes every EV departs at the same time and
returns at the same time, e.g., depart at 0600 and return at
1900. This represents the worst-case scenario from the
peak power point-of-view. The other schedule type
includes random variations in the arrival and departure
times. This random variation is normally distributed,
where the median is 0 and the standard deviation is 2.0
hours. The same variation is added to both arrival and
departure time so that the available charging time of each
EV remains the same. The highest delay and advancement
was 5 hours. Four other time variations were made based
on this, but the variation is divided accordingly to get
maximum delays or advancements of 1, 2, 3, or 4 hours.
The effect of available charging time is investigated
separately.

There are also three different driving schemes investigated
in the simulations. The same driving scheme is assumed to
occur daily through the whole year. The first driving
scheme assumes every EV drives exactly 38.4 km/day.
The second and the third driving schemes assume the
average travel distance of EVs stays 38.4 km/day, but the
travel distances varies between 0 km and 100 km with a
standard deviation of 10 or 20 km, respectively. The
needed charging energy of EVs can then be calculated
using the energy consumption and the limitation set by the
maximum usable battery capacity.

System modelin
Simulations use a time step of 15 minutes, which allows a
whole year to be simulated within a reasonable amount of
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time. In order to use the measured consumption data of the
apartment building in the simulations, an interpolation was
necessary to change the time step of 1 hour to 15 min. This
was done by simply dividing each of the 1-hour energy
consumptions evenly into four parts. Power loss in EV
charging is assumed to be 10%, which is reasonable
according to [13]. Acceptable charging speed for the EV is
assumed to remain at the maximum during the whole
charging time, which is relatively accurate for the slow
charging of lithium-ion batteries [3].

In the simulations, for simplicity’s sake the total available
power capacity for EV charging is distributed for every EV
that is connected to a charging point at the time. As there
are often multiple EVs charging simultaneously and only
a limited amount of available charging capacity, some of
the EV charging currents fall below 6 A, which is not
generally supported by the EVs. One solution to this would
be to suspend some of the EV charging sessions so that
there would be enough power for all active EV charging
sessions. The suspended EV charging sessions could be
rotated to achieve even distribution of charging energy. If
the EVs would support all charging powers between e.g.
1.8 — 3.7 kW, roughly all available EV charging power
capacity could be used as long as it is more than the said
minimum charging power of 1.8 kW. The further
investigation of this issue is, however, left out of this

paper.

SIMULATION RESULTS

Resetting methods of the memorized monthly
peak power

Four simple resetting methods are investigated, where the
starting value of memorized peak power is
1. 0,
2. the apartment building power consumption of the
final hour of the previous month,
3. a fraction of the previous month peak power of the
apartment building, or
4. based on the previous month peak power and the
relative monthly peak power difference of the
previous years.
The resetting method could also use statistics from
previous years more sophisticatedly to determine the new
memorized peak power for each month. However, this was
left out from this paper as there have been multiple
renovations in this apartment building, which have
affected the electrical energy consumption, as mentioned
before.
According to the apartment building consumption data
from 2013-2016, the highest decrease in monthly peak
powers of two consecutive months was 27.4%. Therefore,
the multiplier for the third resetting method was chosen to
be 0.7. The fourth resetting method is similar to the third
except that there is an individual multiplier for each month.
Therefore, a maximum relative difference in monthly peak
powers for each month was calculated. These were then
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rounded down to one decimal place resulting in 0.8, 0.8,
0.7,0.7,0.7,0.8,0.9,1.0, 1.1, 0.9, 1.1, and 0.8 for January
to December, respectively. More accurate multipliers
would likely give better results but also increase the risk of
unnecessary increase in monthly peak powers. The ideal
situation was also simulated, where the upcoming peak
power of the apartment building of the new month is
assumed to be perfectly forecasted and set as the starting
value for the memorized peak power.

The impacts of these resetting methods were simulated in
different EV penetrations using the 2016 consumption data
of the apartment building. In these simulations the
available charging time was 1900—0600 and the needed
charging energy of each EV was 8.0 kWh. Results are
shown in Fig. 4 and Table 1. The uncharged energy shown
in the following figures describes the proportion of the
total charging energy need of the EVs that were not
charged. The maximum EV penetration, where over 99%
of the total energy need of all EVs were charged without
increasing the peak powers of the apartment building, is
referred to as “maximum EV penetration without peak
power increase” for the rest of the paper.

The effect of starting values of the memorized peak power

w
8

Zero
W The power of the latest hour of the previous month
0.7 x the peak power of the previous month

Varying percent of the peak power of the previous month
The upcoming peak power of the current month
u I
80 100

20 40

&

w
&

n
5

Uncharged energy (%)
15

E)

60
EV penetration (%)

Figure 4. Simulation results with different starting values
of the memorized peak power.

TABLE I
The maximum EV penetrations without peak power increase
Starting value for the memorized peak power EV .
penetration
Zero 28.3%
The power of the latest hour of the previous month 28.3%
0.7 x the peak power of the previous month 35.8%
Varying percent of the peak power of the previous o
39.6%
month
Perfect forecast of the upcoming peak power of the 43.4%

current month

Simulations indicate that excluding the perfect forecast,
the fourth resetting method, where the starting value of
memorized peak power is based on a fraction of the
memorized peak power from previous years, clearly gives
the best results. This resetting method was selected to be
used in the simulations of the following subsections. The
ideal situation, where the upcoming peak power of the
month is perfectly forecasted, is notably better, but the
selected resetting method reaches close to the same
maximum EV penetration without peak power increase.
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The effect of available EV charging time

To evaluate effects of the available charging time on
charged energy, simulations were carried out using 14,
12.5, 11, 9.5, and 8 hours as the time that EVs can be
charged per day. The daily charging energy need were 8.0
kWh for each EV. These results are shown in Fig. 5. The
maximum EV penetrations without peak power increase
were 47.2%, 43.4%, 39.6%, 35.8%, and 30.2% for the
scenarios that had available EV charging time 14, 12.5, 11,
9.5, and 8 hours, respectively.

Simulations were also conducted on scenarios where the
EV arrival and departure times included some variations,
as mentioned in “EV load modeling.” The available EV
charging time for these scenarios was chosen to be 11
hours and the average arrival and departure time to be 1900
and 0600, respectively. These results have been illustrated
in Fig. 6. The maximum EV penetrations without peak
power increase were 39.6%, 43.4%, 45.3%, 49.1%, 50.9%,
and 54.7% for the scenarios that had charging time
variations of 0, 1, 2, 3, 4 and 5 hours, respectively. It can
be seen that increased variation in EV charging schedule
gives similar results to longer available charging time,
which was expected.

The effect of available charging time
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8

14 hours (from 1700 to 0700)
W 12.5 hours (from 1800 to 0630)
11 hours (from 1300 to 0600)
9.5 hours (frem 2000 te 0530)
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Figure 5. Simulation results with different charging
times.

The effect of charging time variations
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Figure 6. Simulation results with charging time variations.

The effect of the energy need of the EVs

To evaluate effects of the charging energy need of the EVs,
simulations were carried out using the energy need based
on the randomized daily travel distances of PHEVs
mentioned in “EV load modeling” section and different
fixed charging energy needs of PHEVs. The arrival and
departure times were chosen to be 1900 and 0600,
respectively. When the average daily travel distance is
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divided evenly for every PHEV, the usable battery
capacity of PHEVs will be the limiting factor of the
charging energy need. Therefore, longer driving distances
will not increase the energy need of a PHEV, but a shorter
driving distance may decrease the energy need of the
PHEV. Therefore, more randomized travel distances
results in lower total energy need of the PHEVs and thus
more PHEVs can be charged without peak power increase.
This can be seen from Fig. 7, where the scheme with more
randomized travel distances will result in lower uncharged
energies. The maximum EV penetrations without peak
power increase were 39.6%, 41.5%, and 43.4% for the
scenarios that had randomized driving distances with a
standard deviation of 0, 10, and 20 km, respectively.

The effect of the actual charging energy need of PHEVs is
illustrated in Fig. 8. The maximum EV penetrations
without peak power increase were 39.6%, 32.1%, 26.4%,
22.6%, and 18.9% for the scenarios that had required EV
charging energy 8.0, 10.0, 12.0, 14.0, and 16.0 kWh,
respectively.

The effect of travel distance variations of PHEVs
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Figure 7. Simulation results with different daily driving
distances of PHEVs.
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Figure 8. Simulation results with different charging energy
needs of PHEVs.

EV charging using different consumption data of
the apartment building

To investigate the reliability of the results, simulations
were also carried out using the consumption data of the
apartment building from 2013-2016. The simulation used
the slightly randomized EV driving scheme mentioned
earlier: average arrival time 1900, average departure time
0600, and +2 as the maximum variation in arrival and
departure times. The results have been illustrated in Fig. 9.
The maximum EV penetrations without peak power
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increase were 47.2%, 41.5%, 39.6%, and 35.8% for the
years 2016, 2015, 2014, and 2013, respectively.

The annual growth in electricity consumption of the
apartment building during 2013-2016 was around 10%.
The average monthly peak power also increased each year
about 6%. The increase in electricity consumption and the
increase in monthly peak powers seems to correlate with
the maximum EV penetration without peak power
increase. The higher the electricity consumption and
monthly peak powers an apartment building has, the more
EVs can be charged, when the EV charging power is
limited with this kind of control method.

The effect of the building consumption

60
EV penetration (%)

= 2016
2015
2014
2013
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]

Uncharged energ
5 &

o wn
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Figure 9. Simulation results using building consumption
data from years 2013-2016.

CONCLUSION AND FUTURE WORK

According to the simulation results presented in this paper,
EVs could be charged alongside an apartment building
relatively well without notably increasing the peak powers,
when using the introduced control method. The maximum
EV penetration, where PHEVs can be charged at least 99%
on average without peak power increase, would be up to
around 30 — 50%. It can be seen that in case of 100%
PHEV penetration, only around 25 — 35% of the energy
need of PHEVs were left uncharged.

There are multiple assumptions and simplifications, which
might affect the results one way or another. Also, the
electricity consumption of apartment buildings, which is a
key factor in this study, varies from case to case and year
to year and thus has an impact on the results. The impacts
of FEVs are also left out of this study. However, these
simulations are somewhat pessimistic, because EV
charging is assumed to occur only at the apartment
building. The more EV charging occurs at the workplace
and the more EVs are charged at fast charging stations, the
less charging needs to be done at the residential area.
Future work could investigate smart options to increase
peak power only when necessary to allow more EVs to be
charged sufficiently. The EV charging outside of
residential areas should also be assessed so that the
required EV charging energy demand could be estimated
more accurately. Future work should also confirm that the
FEVs would have always enough energy to carry on after
anight of charging when using this kind of control method.
Modeling could also be improved in future studies by
using, for example, the results of the national travel survey
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data, where real departure and arrival times are recorded,
or by taking into account that charging powers under 1.8
kW are not accepted.
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Abstract — The share of electric vehicles (EVs) in the market has been growing rapidly during the
past few years. A lot of research has been conducted to enable smart charging, which would fulfill
EV user needs while considering technical limitations of the grid and incentives provided by the
electricity market. However, the major part of the developed charging methods uses information of
EV near-future driving profiles, e.g. departure time and energy need of the next trip, which can be
problematic to achieve accurately enough. This kind of information will require either an extra
communication link between the EV user and the EV charging controller, or EV tracking. Regardless
of how the information is acquired, some uncertainty is likely in the predictions, which can cause
undesired results. The aim of this paper is to assess these prediction error-related issues for
distributing available charging capacity and to introduce alternative EV charging control methods
that eliminate prediction error-related challenges. The results indicate that the EV battery state-
based methods can distribute available charging capacity almost as effectively as the EV near future
driving profile-based method with perfect predictions. Copyright © 2020 Praise Worthy Prize S.r.1.

- All rights reserved.

Keywords: Control Algorithm, EV charging, Peak Power Limitation, Prediction uncertainty

Nomenclature
DSO Distribution system operator
EMS Energy management system

EV Electric vehicle

FEV Full electric vehicle
HKDE Hybrid kernel density estimator
PHEV  Plug-in hybrid electric vehicle

PV Photovoltaic

SOC State of charge

V2G Vehicle-to-grid

Egy Energy stored in battery of the EV

Erymee  Maximum usable battery capacity

E, Predicted charging energy requirement for the
next trip

N Number of EVs currently charging

P, Charging power of an EV

P Total charging capacity available which can be
used without increasing the monthly peak
powers of the real estate

Aty Predicted available charging time before

departure

1. Introduction

Global warming is increasing pressure for green energy
solutions. In the transportation sector, wide adoption of
electric vehicles (EVs) is a key factor in reducing
emissions. Finland has set a target of around 2 million EVs
and 250,000 biogas vehicles by 2045 [1], which would
form the basis for emission-free transportation. As the
number of EVs in use increases, smart charging becomes

Manuscript received January 2007, revised January 2007

increasingly more necessary to ensure maximum EV user
satisfaction and optimize grid operation within technical
limits.

11.  Related Work and Motivation

Literature [2]-[26] describes multiple EV charging
optimization methods investigated. In [2], an intelligent
charging system is designed to efficiently manage
charging process considering the interests of both
customers and business. Additionally, battery charging
characteristics are taken into account. In [3], an event
driven model predictive control strategy, which provides
cost-effective charging for EV users, is presented. In [4],
EV charging is optimized considering uncertainty of
electricity price. In [5], the developed control strategy
minimizes electricity costs of photovoltaic (PV)-assisted
charging station while guaranteeing completeness of EV
charging demand. In [6], multi-agent trilayer EV charging
framework is proposed. In the framework, each agent has
its own objective function which it solves locally so that
privacy is preserved. A centralized and a decentralized EV
charging coordination are compared in [7]. The results
demonstrate that the decentralized method achieves a
satisfactory performance in improving the balance
between the EV charging demand and locally generated
wind power. In [8], approximate dynamic programming-
based energy management system (EMS) is developed to
determine optimal charging start time of each EV rather
than controlling charging rates.

In [9], an algorithm to calculate optimal charging or
discharging to reduce costs is proposed, and its
effectiveness is demonstrated. Two algorithms that can fit
multiple charging modes and diverse charging rate

Copyright © 2007 Praise Worthy Prize S.r.1. - All rights reserved
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scenarios for distribution-side management is designed in
[10]. Both algorithms are shown to be promising in terms
of efficiency and accuracy. In [11], a single mixed integer
linear programing formulation that considers local PV
production, dynamic tariffs, and distribution network
constraints for charging EVs is proposed. Simulations are
used to demonstrate effectiveness of the EMS. An
improved particle swarm optimization algorithm is
proposed to control EV charging and discharging in [12].
Simulations were implemented to prove the effectiveness
of the proposed algorithm. A pricing controlled EV
charging and discharging strategy for households is
proposed in [13]. The main advantage of the control
strategy is that it can be utilized for different electricity
markets to minimize electricity costs. In [14], a dynamic
programming formulation is established by considering
bidirectional energy flow, non-stationary energy demand,
battery characteristics, and time-of-use electricity price. In
[15], daily energy costs are minimized utilizing
bidirectional EV charging and realistic EV battery model.
Additionally, computational complexity is reduced by
proving that a state-dependent four-threshold feedback
policy is optimal for EV energy management. In [16],
multiple heuristic algorithms are used to solve
optimization problem, in which EV user profits are
maximized while considering battery degradation.
Numerical results are used to illustrate that genetic
algorithm presents the most profitable charging
scheduling for EV owners. In [17], a distributed EV
charging coordination is proposed to allocate EV demand
to valley period and minimize network load variance by
utilizing vehicle-to-grid (V2G). In [18], a decentralized
iterative algorithm is introduced to manage EV charging
and discharging while considering EV charging demand.
Additionally, a droop-based control algorithm is
developed aiming to provide power regulation. An optimal
EV charging scheduling with option of V2G and vehicle-
to-vehicle energy transfer to increase customer
satisfaction is proposed in [19]. The formulation is
expanded so that additional battery storage is considered.
In [20], a multi-objective EV charging and discharging
method to minimize total operational costs and emissions
is proposed. The Benders decomposition technique is used
to solve the optimization model.

In [21], a closed-loop V2G control strategy which
fulfills EV charging demand and offer frequency
regulation is proposed. Simulations are conducted to
ensure the expected operation. In [22], a control strategy
for large-scale EVs, BESSs, and traditional FR resources
is presented. Dynamic simulations of a power system are
performed to verify its effectiveness. A coordinated
sectional droop charging control strategy for frequency
regulation is proposed in [23]. Simulations are used to
verify the performance of the proposed strategy in a
microgrid with high wind power penetration. A
decentralized EV charging control for valley-filling is
proposed in [24]. The control framework also considers
grid constraints and allow flexible EV users to adjust the
weighting factor between grid-level objective and their

Copyright © 2020 Praise Worthy Prize S.r.l. - All rights reserved

individual objective. In [25], a concept of charging
requirement index is proposed. The index is then used as
a basis for an EV aggregation model to achieve valley-
filling with low computational load. In [26], EV charging
under limited power capacity is studied, and a new policy
called least laxity ratio is introduced to balance EV
charging capacity allocation.

In all these previously mentioned studies, the control
method utilizes EV near future driving information to
optimize the charging schedules. In most cases, this
information includes the departure time and the energy
need for the next trip. The major concerns with this
information are acquisition and reliability. The EV driving
profile-related data can be based on historical data or
gained as an EV user input as mentioned, e.g., in [16].
Regardless of the acquisition method, the information will
most likely contain some uncertainty. For example, future
driving behavior does not always correspond to historical
driving behavior or the user could estimate departure time
incorrectly. Since there can be changes in driving/traveling
plans or other unexpected occurrences, user input can also
be seen as a prediction, which always contains uncertainty.
This may have undesired effects if the uncertain
information is used as a basis for charging optimization.
Further analysis of the EV near future driving information
acquisition methods in practice is left out of this paper.

It seems that relatively little effort has been made so far
to assess the effects of the uncertainty of EV near future
driving information. In [14], the EV driving profile is
estimated by an exponentially weighted moving average
algorithm in order to minimize energy costs while
considering time-of-use pricing. The proposed scheme
performs quite well compared to a scheme with prior
knowledge of a person’s EV driving profile. In [27], a trip
prediction model is proposed to predict the next arrival
location and the waiting time at the current location. The
results indicate a mean prediction error of 4 hours in
waiting time before the next trip, but the effect of the
prediction error was not studied. In [28], hybrid kernel
density estimator (HKDE) is proposed to address the
uncertainties of EV user behavior by utilizing months of
historical data. The HKDE prediction resulted in mean
error deviation of 0.75 hours for stay durations and 1.68
kWh for energy consumption. The overall results based on
the predicted behavior of EVs are close to the results
utilizing real behavior of EVs, but the impacts for
individual EVs were not mentioned.

To minimize the negative impacts of the EV charging
demand uncertainty, there have been a few proposals. In
[3], the uncertainties are taken into account by allowing
the EV users to modify the original near future driving
information and by establishing a minimum guaranteed
charging profile. Similar minimum energy condition is
used in [9]. The approach in [3] might be complex from
the users’ point-of-view. In [29] a stochastic dynamic
programming method is developed, which gives a
satisfactory dispatch even without perfect predictions of
the hourly load demands. In [30], a reasonable level of EV
user comfort is ensured by requiring a certain state of
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charge (SOC) within 3 hours of arrival time and a higher
SOC at the expected departure time. However, these
studies do not consider individual EVs.

The control strategies of the previously mentioned
studies, which use the EV near future driving information
in optimization, are minimizing electricity costs [2]-[16],
enabling smart V2G operation [9]-[22], enhancing
frequency stability [21]-[23], utilizing the valley-filling
control method [17], [24], [25], or limiting peak loads
[26]. Since electricity cost minimization can cause load
peaks to the network as mentioned in [28] and [31], and
the peak power-based grid tariff set by distribution system
operators (DSO) is becoming more popular (e.g., in
Finland), a peak power limitation control method is
considered in this paper. Regardless of the control method,
the EV near future driving information has been essential
to ensure EV user comfort while pursuing the main
objective.

As an alternative basis for the EV near future driving
information, the control method could utilize information
about the energy stored in the EV battery at the present
moment. This information could be e.g. the actual energy
(Wh) or the percentage SOC. This kind of information is
less likely to include errors and can be more likely
transmitted from an EV to a charging control system
autonomously. Furthermore, this could simplify the
control method and make it easier to adopt from the EV
user point of view, as the logic of the control method can
be understood more easily.

12. Contributions and Structure

The contribution of this paper is to assess the problems
of using the EV near future driving information to
distribute the available charging capacity among multiple
EVs. In addition, alternative solutions are introduced and
discussed. Simulations are conducted to enable
comparison of these control methods.

The rest of the paper is organized as follows. Different
control methods are presented in Section II. In Section I1I,
the data used in the simulations and the simulation model
are described. The simulation results are presented in
Section IV. Practical implications of the results are
discussed in Section V. In Section VI, the paper is finalized
with conclusions and intended future work.

II. Control Methods

There has been growing interest in applying a power-
based grid tariff charged by DSOs. There are variations in
determining the peak power-based pricing component, but
monthly peak power is emerging as the most popular basis
for the fee in the present implementations. Therefore, peak
power management can be an economically beneficial
strategy for a customer. In this paper, the investigated
control method is based on the one presented in [32],
which acts similarly to the valley-filling control methods.
In the control method presented in [32], the present power
consumption of the real estate is measured, and the peak
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power of the ongoing month is memorized. The available
EV charging capacity, which will not increase the peak
power of the real estate, can then be calculated. The
operation of the control method is illustrated in Fig. 1. The
feeder limit in Fig. 1 is there to ensure that the charging
power would not exceed the limits of the cable or the fuse
of the EV charging feeder.
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Fig. 1. Simplified block diagram of the control method

Only even distribution of the available charging
capacity was considered in [32]. In addition to even
distribution of the available charging capacity, five
alternative methods are proposed in the following two
subsections. The maximum available EV charging
capacity remains the same, but the distribution method
may affect the total energy that can be charged to EVs at
home. This is due to the fact that available charging time
of the EVs varies, and each EV has a limited battery
capacity.

1I.1.  Utilizing EV Near Future Driving Information

The EV near future driving information-based (future
prediction) charging method assumes departure time and
energy requirement for the next trip to be known for each
EV. The departure time can be used to calculate the
available charging time. The aim of this charging method
is to prioritize charging for those EVs that do not have
enough energy for their next trip. After that, the available
charging capacity is distributed evenly amongst all EVs
since the trip after the next trip is unknown. Charging
power P of an EV which requires energy for the next trip
can be calculated as in (1),

_ Er(n) N Er(k)
P.(n) = P X Atd(n)/zkzlAtd(k)’ (1

where Py is the total charging capacity available that can
be used without increasing the monthly peak powers of the
real estate, E; is the predicted energy charging requirement
for the next trip, Atq is the predicted available charging
time before the next departure, and N is the number of EVs
currently charging. In addition to the selected distribution
method, the charging is limited by the maximum charging
power of the charging point.
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11.2.  Utilizing EV Battery Information

One option for smart distribution of the available
charging capacity would be using information about the
energy stored in the batteries of the EVs. This information
could be based on the actual energy (Wh), the percentual
SOC (%), the actual missing energy (Wh), or the
percentual missing SOC (%). The inverse of the actual
energy stored in the battery of the EV (based on energy)
could be used to distribute more energy for the EVs with
less energy. In this case, the charging power for an EV can
be calculated as in (2),

_ 1 N 1
Fe(n) = Prc % Egy(n) / Zic=a Egy (k) 2)

where Egy is the actual energy (Wh) stored in the EV
battery. Similarly, the inverse of the percentual SOC
(based on SOC) could be used to distribute more charging
energy for the EVs that have the least energy compared to
their usable battery capacity. In this case, the charging
power for an EV can be calculated as in (3),

P.(n) = Py X SOC(n)/Zk 1soc(k) 3

where the SOC is percentual energy stored in the battery
of the EV. When using distribution methods (2) or (3),
charging of an almost empty EV would be highly
prioritized at the beginning of its charging period.
However, the prioritization falls relatively fast as the
stored energy and SOC increases.

When using the actual missing energy of the EVs
(based on missing energy) to distribute the available EV
charging capacity, the charging power for an EV can be
calculated as in (4),

EEV,max(n)—Egy(n) (4)

P, =P X
=) e N (EEV.max(0)—Egy ()

where the Egv max is the maximum usable battery capacity.
Similarly, when using the missing percentual SOC of the
EVs (based on missing SOC) to distribute the available
EV charging capacity, the charging power for an EV can
be calculated as in (5),

_ 100%—S0C (n)
Fe(n) = Pre X YR-1(100%-S0C (K))’ )

The distribution method based on the inverse of the
percentual SOC (3) or the actual missing energy (4) can
be favorable for the full electric vehicle (FEV) users
compared to the plug-in hybrid electric vehicle (PHEV)
users. This is because of the higher battery capacity of the
FEVs, which will result in a higher inverse of the
percentual SOC or a higher actual missing energy.
Although these four battery energy state-based control
methods do not guarantee the fulfilment of the needed
charging requirements, the control methods can still be
effective at distributing available charging capacity for
EVs with low energy levels.

Copyright © 2020 Praise Worthy Prize S.r.l. - All rights reserved

The utilization of information about the energy stored
in the battery of the EV will require a communication link
between the EV and the charging control system.
However, if a suitable communication link exists, this
kind of information could potentially be transmitted
autonomously from the EV to the charging control system
without risks of prediction errors.

III. Simulation Data and Modeling

III.1. Case Description

Simulations were carried out based on long-term
electricity consumption measurements made in an
apartment building called Tammela, which was built in
1980 in Finland. This consumption data was measured in
2016 at one-hour intervals. The monthly peak powers of
the building are presented in Fig. 2. The property does not
include any EV charging points at present in real practice,
so all 53 simulated charging points, one for each parking
spot, are modeled as including an EV for the simulations
done in this study. The simulations focus on a charging
power of 3.7 kW per charging point, which should be
roughly suitable for almost every commercial EV. Since
the available time for home charging is often quite long,
the power limit of the charging points is not likely to be an
issue.

Zs0
§ 40
3 30
&
20
10
0

Jan. Feb. March April May June July Aug. Sep. Oct. Nov. Dec.

Fig. 2. Peak powers of the real estate

1I1.2. EV Properties and Driving Profiles

The average driving distance per passenger car for
those who live in an apartment building was 13,650
km/year in Finland in 2016 [33]. The probability
distribution for the yearly driving distances (real
probability distribution) is presented in Fig. 3. The same
probability is also applied to the driving distances of the
53 EVs considered in the simulations (used probability
distribution). It is likely that FEVs with similar
characteristics as used in the simulations of this paper
would be driven roughly the same way as the present
internal combustion engine cars. The data of [33] show
that today >88% of the cumulative mileage consists of
trips with length of <300 km, which corresponds roughly
with the average range of the FEVs simulated in our study.
Yearly driving distances are divided into daily average
distances and assigned to the 53 EVs in random order.
These average daily travel distances are shown in Fig. 4.
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Fig. 4. Distribution of average daily travel distances

According to [34], the average daily travel distance per
passenger car driver was around 110.7%, 103.0%,
107.6%, and 78.6% of the yearly average (23.4 km) in
spring (March-May), summer (June-August), autumn
(September-November), and  winter  (December-
February), respectively. Also, the average daily travel
distance per passenger car driver was around 101.7%,
107.3%, 85.9%, 106.0%, 122.6%, 78.6%, and 97.4% of
the yearly average for Monday to Sunday, respectively
[34]. Since there can be several drivers per vehicle
throughout the day, the average travel distance of drivers
and vehicles may differ. However, in this case, it is
reasonable to assume a linear correlation between the
travel distances of the vehicles and the drivers. The actual
daily travel distances can then be calculated as a
multiplication of the base daily travel distances shown in
Fig. 4 and the factors based on the weekday and month.

The daily energy usage of each EV can be calculated as
a multiplication of the daily travel distance and the energy
consumption of the EV. The energy consumption is
assumed to be a constant 180 Wh/km for each EV. This is
close to the numbers used in, e.g., [7], [16]. The usable
battery capacity of the FEVs is assumed to be normally
distributed, where the average is 60 kWh and the standard
deviation is 15 kWh. This is not the case in Finland
currently, but since the battery capacity of FEVs may
increase in the future, this assumption is reasonable when
assessing future scenarios. The usable battery capacity of
the PHEVs is assumed to be normally distributed, where
the average is 9 kWh and the standard deviation is 1 kWh.

The simulation focuses on EV penetration of 100%, but
the share of FEVs and PHEVSs varies. The share of FEVs
is either 0%, 33%, 66%, or 100%. Usable battery
capacities in the case of 33% of EVs being FEVs are
presented in Fig. 5. The order of the FEVs and PHEVs is
randomly selected.

Since accurate information about passenger car
departure and arrival times is not available and thus
available home charging duration is not known,
assumptions must be made. The departure and arrival
times are assumed to be normally distributed. During
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weekdays, the average departure and arrival times are
07:00 and 19:00, respectively, and the standard deviations
are 1 hour and 1.5 hours, respectively. For weekends, the
average departure and arrival times are 11:00 and 18:00,
respectively, with a standard deviation of 2.5 hours for
both. The distribution of available home charging time for
the weekdays and the weekends is presented in Fig. 6.
These assumptions are somewhat in line with the trip
timing distribution for the passenger car drivers mentioned
in [34].
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Fig. 5. Distribution of usable battery capacities in the case where 33%
of EVs are FEVs and 67% are PHEVs
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Fig. 6. Distribution of available home charging time during (a)
weekdays and (b) weekends

111.3. System Modeling

Simulations use a time step of 15 minutes, which allows
a whole year to be simulated within a reasonable amount
of time. In order to use the measured consumption data of
the apartment building in the simulations, an interpolation
was necessary to change the time step of 1 hour to 15 min.
This was done by simply dividing each of the 1-hour
energy consumptions evenly into four parts. Power loss in
the EV charging is assumed to be 10%, which is close to
the efficiencies used in, e.g. [13], [14], [20], and [35].
Acceptable charging speed for the EV is assumed to
remain at the maximum during the whole charging time.
In the simulations, for simplicity’s sake the EVs are
assumed to support all charging powers between 0 and 3.7
kW.

The investigated EV charging control methods are only
applied to home charging conducted while the EVs are
parked at the apartment building. However, for some of
the EV users, an optional slow charging at work is also
considered. This charging is assumed to be a constant 1.84
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TABLEI
CHARACTERISTICS OF THE SPECIFIC EVS

EV11 EV14 EV30 EV42 EV45
Type PHEV FEV PHEV PHEV FEV
Avg. travel distance (km/d) 38.7 60.6 27.8 71.5 38.7
Usable battery capacity (kWh) 10.0 47.0 9.0 9.0 64.0
All electric range (km) 55.6 261.1 50.0 50.0 355.6
Departure (weekdays) 8:15 6:15 7:15 8:15 7:15
Arrival (weekdays) 19:00 20:30 19:15 20:45 19:30
Departure (weekends) 11:15 11:45 10:00 9:15 14:30
Arrival (weekends) 17:00 16:15 16:45 13:30 20:45

kW (8 A, 230 V) and last for 8 hours, resulting in
maximum energy drawn from the grid of 14.72 kWh.
When taking the charging efficiency of 0.9 into account,
the charged energy at work will be up to 13.2 kWh per
day. The work charging is assumed to be possible only
during weekdays. To properly calculate the need for extra
charging or the use of gasoline, it is necessary to know the
travel distance from home to work and vice versa.
According to [34], work-related travel covers around
31.6% of the total average daily travel distances of
passenger car drivers. If the EV users worked 5 days a
week, the share of work-related travel would be around
44.27% during the workdays. By assuming that half of
work-related travel occurs before work charging, 22.1%
of the daily travel distance is covered in the morning from
home to workplace and 77.9% is covered later in the
evening from workplace to home during workdays. The
home charging is assumed to start after the additional
stops, e.g., shopping or other activities, and therefore the
traveled distance between work charging and home
charging is much longer.

IV. Simulation Results

The simulation results focus on the extra energy
requirement, which indicates the amount of electrical
energy that the EVs need, in addition to the home charging
and the work charging, in order to travel the designated
trips using only electrical energy. The required extra
energy can be obtained by, e.g., using a fast charging
station. Additionally, PHEVs may use gasoline to finish
off a trip when the electricity runs out. PHEVs especially
may require extra energy regardless of how much charging
is done at home or at work if the trips are longer than their
all-electric range.

The simulation results are compared in three scenarios,
where in addition to the home charging, a slow charging
at work is also possible for 0%, 40% (EVs 1-21), or 80%
(EVs 1-42) of the EVs, respectively. Since car preheaters
are widely used in workplaces in Finland, a high
penetration of workplace EV charging is possible. The
following subsections IV.I-IV.3 consider a FEV
penetration of 33%. The impacts of different shares of
FEVs and PHEVs are investigated in subsection 1V .4.

To investigate the effects of prediction errors for
individual EVs, five random EVs of the 53 are selected for
closer look. These EVs are referred to as EV11, EV14,
EV30, EV42, and EV45, which are based on their order
number. The prediction errors examined in subsections
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IV.2 and IV.3 are investigated by applying the prediction
error either for all EVs or these five specific EVs. EV14
and EV45 are FEVs whereas EV11, EV30, and EV42 are
PHEVs. The main characteristics of these five EV are
presented in Table 1.

The results in the next subsections are based on the
parameters presented in section III. The simulations were
repeated twice using different randomly generated sets of
EV-related parameters—i.e., travel distances, usable
battery capacities, and available charging times. The
results were very similar, but their detailed presentation is
left out of this paper. The following conclusions were
applicable for each simulation case.

IV.1. Comparison of Different Control Methods

As shown in Fig. 7(a), a major part, around 81-84%, of
the total charging energy required by the EVs during the
whole year can be charged at home in scenario 1 when
taking the restrictions of the peak power management into
account. When the available home charging capacity is
distributed evenly, the share of the required extra energy
is 18.9%. For all other algorithms the share of required
extra energy is slightly lower, around 16.8-18.1%.
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Fig. 7. Energy sources for EV charging in (a) scenario 1, (b) scenario 2,
and (c) scenario 3
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If 40% or 80% of the EVs have an opportunity for 8
hours of slow charging during the workdays, as in scenario
2 or in scenario 3, respectively, the required extra charging
for all EVs drops significantly compared to scenario 1.
This can be seen from Fig. 7. The extra energy
requirements of the EVs are between 1.12-1.28, 0.58—
0.86, or 0.35-0.43 kWh per day on average for scenarios
1, 2 and 3 respectively. This is illustrated Fig. 8. In all
three scenarios, the even distribution method seems to
give the worst results whereas the future prediction gives
the best results. The most notable difference can be seen
in scenario 2, which was expected, as the uneven
opportunity for work charging is causing more uneven
charging demands at home. However, it should be noted
that for the future prediction method, a precise prediction
is assumed which is not likely to be the case most of the
time.
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Fig. 8. Average daily extra energy requirement for scenarios 1-3

As mentioned earlier, distributing the available
charging capacity based on the inverse of the percentual
SOC or the actual missing energy (kWh) of the EV battery
will be favorable for the FEVs (EV14 and EV45).
Distributing the available charging capacity based on the
inverse of the actual energy (kWh) or the missing SOC of
the EV battery is fairer for the PHEVs (EV11, EV30, and
EV42). This can be seen from Fig. 9 where the extra
energy requirement is presented for the specific EVs in
scenarios 1 and 2.
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Fig. 9. The average daily extra energy requirement of the specific EVs
in (a) scenario 1 and (b) scenario 2
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The EV42 has notably higher daily trip distances than
its all-electric range and thus some extra energy is required
in order to complete the daily trips. The other specific EVs
have nearly zero extra energy need in scenario 2 as seen in
Fig. 9(b). When investigating the five specified EVs,
scenario 3 is similar to scenario 2 but the EV42 requires
less extra energy whereas the other specified EVs do not
require any extra energy.

1V.2.  Effects of Energy Requirement Prediction Error

To evaluate the prediction error effects of the future
energy demand, different cases are considered. Prediction
error range within +30% of the energy consumption of the
next trip is examined, which equals an average error of
+11.2 km or +2.0 kWh. This is close to the mean
prediction error deviation mentioned in [28]. The same
prediction error is applied either to the five specified EVs,
which represent roughly 10% of the EVs, or for all EVs.
Depending on the EV near future driving information
acquisition method, these kinds of cases could occur. For
example, if the near future driving information is based on
historical data, random prediction errors may be likely. On
the other hand, if the information is based on user input,
all EV users might be tempted to exaggerate the charging
demand to ensure sufficient energy for the next trip.

Results of the cases where the same prediction error is
applied to the five specified EVs or to all EVs are
presented in Fig. 10. The prediction error does not seem to
have a notable effect when considering average extra
energy requirement for all EVs. This is most likely
because the available charging capacity remains the same,
but the intended distribution method is compromised as a
result of the prediction error. Therefore, almost the same
amount of energy can be charged to all EVs in total and
thus the average extra energy requirement of all EVs

might not be notably affected.
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Fig. 10. The average daily extra energy requirement of all EVs when
the energy demand is predicted similarly wrong (a) for the five specific
EVs and (b) for all EVs

Even though the average extra energy requirement of
all EVs remains the same, the prediction error may have
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notable impact on the individual EVs. In order to
determine the effects of the prediction errors on the
specific EVs, their extra energy requirements must be
investigated separately. The prediction error impacts for
the five specific EVs with the prediction error have been
illustrated in Fig. 11 for scenario 1. There seems to be
clear correlation with the prediction error and the extra
energy need of the EVs. The lower the predicted
consumption is compared to the real future consumption,
the higher the extra energy requirement will be.

In Fig. 11, the energy consumption prediction error of
-30% for the specific five EVs equals to an average error
of 0.24 kWh when considering all EVs. However, the
extra energy requirements of the EV11, EV14, EV30, and
EV45 are almost double when compared to the case with
prediction error of 0%. Due to the prediction error, the all-
electric range would be reduced by up to 2.8, 5.9, 2.3, 0.2,
and 2.2 km on average for the EV11, EV14, EV30, EV42,
and EV45, respectively. Even though the prediction error
will most likely vary from day to day and not remain the
same as in these simulations, the effects of these prediction
errors may seem displeasing from the EV user point of
view.

WEV11 WEV14 WEV30 EVA2 MEV4S

N

Energy (kwWh)
Noow

-30% -15% 0% +15% +30%
Energy requirement prediction error

Fig. 1. The average daily extra energy requirement for the five specific
EVs with energy demand prediction error in scenario 1

1V.3.  Effect of Departure Time Prediction Error

Prediction error of the EVs’ departure times has an
effect similar to the prediction error of energy demand.
With a prediction error of £2 hours, the average extra
energy requirement of all EVs remained almost the same.
This is illustrated in Fig. 12 where the error is applied to
the five specific EVs or to all EVs. When examining the
effects for the specific EVs with the prediction error, more
notable impacts can be seen. Predicting a later departure
time than the real departure time seems to increase the
extra energy requirement of the EV. This is illustrated in
Fig. 13. Predicting a two hours later departure would mean
around 2.0, 3.7, 1.5, 2.4, and 1.7 km reduced all-electric
range on average for the EV11, EV14, EV30, EV42, and
EV45, respectively.
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1V.4. Effects of Different FEV and PHEV Penetrations

Since some PHEVs have longer daily trips than their
all-electric range, a higher FEV penetration may reduce
the average extra energy need of EVs. On the other hand,
FEVs cannot utilize traditional fuels, such as gasoline, to
continue a trip after running out of electricity, and thus it
is more important for FEVs to have enough electrical
energy available. Simulation results for the cases with
different shares of PHEVs and FEVs are shown in Fig. 14.
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Fig. 14. The average daily extra energy requirement in different FEV
and PHEV penetrations in (a) scenario 1 and (b) scenario 2
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V. Discussion

As seen from the results, the EV near future driving
profile-based charging method can be used to effectively
distribute available charging capacity for the EVs. When
considering the total charging capacity distributed to all
EVs, the prediction uncertainties do not seem to have
notable impact. However, the prediction uncertainties can
have more notable effects for individual EVs. As seen
from the results in the previous section, moderate
prediction errors in the departure time and the energy
requirement cause some inconvenience to the EV users.

The most common methods to acquire EV near future
driving profiles are EV user input and tracking of the EVs.
From the EV user point of view, both methods can be
problematic. Requiring users to input departure times or
energy requirements could be burdensome and cause, e.g.,
response fatigue, which has been one of the most common
barriers in demand response programs [36]. And as
mentioned earlier, the users might, for example,
exaggerate the charging requirements, which could
diminish the efficiency of the control method.
Additionally, it is worth mentioning that using EV user
inputs in the charging controller requires an extra
communication link between the EV user and the charging
controller. Tracking of the EVs can be relatively accurate
if there is enough data available. However, comprehensive
data may not be easily accessible. Also, historical data-
based prediction needs updating each time a resident or the
behavior of a resident changes (change of workplace, etc.),
which could happen quite often in an apartment building,
as an example.

When considering the above, it might be reasonable to
find other solutions to distribute available EV charging
energy than EV near future driving profile-based methods.
Depending on the investigated scenario, the efficiency of
the presented EV battery-based control methods varied.
However, their overall efficiency was relatively good
compared to the EV near future driving profile-based
method.

In the examined case, the monthly peak powers are
limited to lower the peak power-based costs for the EV
users. Depending on the availability of workplace
charging, there may be a need to allow higher peak loads
at the apartment building. Since higher peak loads are
likely to cause higher costs as peak power-based demand
charges are becoming more popular, the peak loads should
be increased only the minimum amount which satisfies the
EV users. Therefore, smart distribution of the available
charging capacity will most likely still be necessary.
Energy demand-based predictions could potentially still
be suitable for predicting the required total EV charging
energy, which could be used to determine, for example,
the minimum necessary peak load that allows EVs to be
charged sufficiently. This kind of prediction would again
be prone to uncertainties, but the potential prediction error
impacts could be distributed more evenly among all EVs,
if, for instance, battery state-based charging distribution is
used.

Copyright © 2020 Praise Worthy Prize S.r.l. - All rights reserved

VI. Conclusions and Future Work

In this paper, relatively simple control methods, which
utilize either EV near future driving information or
information on the stored energy of the EV battery to
distribute the available charging capacity between
multiple EVs, are presented and discussed. The EV near
future driving profile-based control method can be
effective at distributing the available EV charging
capacity. It is also not too sensitive to prediction errors
when considering all EVs together. However, prediction
errors can have more notable and unevenly distributed
impacts for individual EVs. More complex prediction-
based charging control methods might have even greater
negative impact to the EVs with unexpected behaviors.
Adopting such an EV charging control method which
utilized future predictions might cause concerns amongst
the EV users.

Alternatively, the available home charging capacity
could be distributed based on the actual energy or the
percentual SOC of the EV battery. This kind of control
method can be almost as effective as the future charging
demand-based control method with perfect predictions
and notably more efficient compared to the charging
method with even distribution when the EVs have uneven
charging demands. Utilization of battery state-based
information requires a simple communication link
between EV and the charging control system. However,
with the communication link, the information could be
transmitted automatically. Since the information is about
the present state, prediction errors, etc. do not influence
the control method negatively. This kind of control
method may seem a more attractive option from the EV
user point of view.

Future work will investigate EV battery energy-based
charging algorithms in different cases and scenarios. Also,
options to utilize V2G without the EV near future driving
information should be explored.
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Abstract—It is well known that uncontrolled EV charging may
cause high peak loads and overloading. However, limiting the
EV charging power may also reduce the total energy, which can
be charged into the EV in a certain time period. This might raise
concerns especially among full electric vehicle users as they
cannot use traditional fuels e.g. gasoline to continue the trip
after electricity runs out. In this paper, a control system which
controls residential heating loads to enable higher EV charging
powers without sacrificing comfort of living is introduced and
discussed. Results of a real pilot system and two different
simulations are presented. The results indicate that compared to
the case with only EV charging current adjustment, up to
around 30% more energy can be charged into the EV over a
night by utilizing the presented control system.

Index Terms—EV charging, Load control, Peak load limitation,
Residential real estate

I.  INTRODUCTION

There have been growing interest in electric vehicles
(EVs). Although the amount of EVs in Finland is still low, the
amount has almost doubled each year during the past few
years [1]. Typical residential real estate e.g. detached house
may not be suitable for a new high-power load like
uncontrolled EV charging. To reduce the risk of overloading,
there are at least a few simple options e.g. utilization of slow
one-phase charging or charging current adjustment of mode 3
charging. Mode 3 charging can be adjusted according to the
main fuse and the real time current consumption of the real
estate, which eliminates the risk of EV charging related
overloading completely.

As full-electric vehicles (FEVs) cannot utilize alternative
fuels to continue the trip after electricity runs out, it becomes
more important to charge energy into the FEVs as much as
possible. By limiting charging current too much, the FEV
users may need to use public charging stations more often than
necessary. This can be a concerning factor and reduce the
adoption rate of the emission free vehicles.

In Finland, heating is likely to be one of the largest energy
consumers of a real estate. Since delaying heating load e.g. for
an hour may not have a notable impact on the comfort of
living, electric heating can be utilized as a controllable load
quite well. For the same reason, hot water heater can be used
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as a controllable load similarly. If these kinds of loads can be
controlled optimally, the EV charging circumstances could be
improved.

In the literature, there have been multiple studies related to
EV charging in a residential real estate e.g. [2]-[6]. However,
these studies focus mostly on energy cost minimization. In [7],
domestic load management including EV charging control to
limit peak loads have been discussed. To the best of the
authors’ knowledge, load control of a residential real estate to
improve EV charging circumstances have not been studied
properly. In this paper, the potential of a residential real estate
heating load control to enable higher EV charging currents is
investigated. A control system is developed and tested in a
pilot case. Additionally, a simulation model of the control
system is formulated. The performance of the control system
is analyzed by examining the results of the pilot case and the
simulation model.

The rest of the paper is organized as follows. Control
method is introduced in section II. Pilot case and simulation
model are described in section III. The simulation results and
the pilot measurements are compared in section IV. In section,
V the paper is finalized with conclusions and discussion.

II.  CONTROL METHOD

The fundamental idea of the control method is to keep
available current for EV charging in the suitable range (e.g. 8—
16 A) by controlling the controllable loads (e.g. electric
heating and hot water heater). The available EV charging
current capacity is the difference between allowed peak
current and measured real time currents. In case of three-phase
EV charging, the available EV charging current is the
minimum available current of the three phase currents. This
paper focuses on three-phase EV charging. However, the
control method could be applied to one-phase charging as
well. The information about the available EV charging current
is transmitted to actual EV charging point at short time
intervals.

According to standard IEC 61851-1 [8], the maximum AC
charging current per phase can be adjusted between 6 A and
80 A in mode 3 EV charging. Since 25 A is a typical main
fuse size in Finland, a charging point with maximum charging
current below 25 A (e.g. 16 A) might be feasible. There have



also been reports that some EVs cannot utilize currents lower
than 8 A and thus the current which can be used for EV
charging might be limited to 816 A. This acceptable charging
current range is assumed within this paper. In addition to the
minimum and maximum current, a target current is also
included to the control method. This target current is used to
determine if more controllable loads should be turned off to
enable higher available EV charging current, or if some of the
controllable loads should be turned on.

To secure comfort of living, there should be a limiting
factor (e.g. timer) for each controllable load, which ensures
that the load is not turned off too long. Depending on the
nature of the controllable load and the required level of the
comfort of living, acceptable controllability of the load may
vary. Since there are multiple different potential use cases for
the control system, it is important to retain flexibility.
Different EVs can utilize different charging powers so the
minimum and maximum current should be adjustable. The
basic setup of the control system and a simplified block
diagram of the most fundamental function of the control
method are presented in Fig. 1 and 2 respectively.

3 x
25 A
Current N Control
measurement |’ system
Domestic BN
electricity A7
networks R
AR
Other Controllable
loads

loads (n pcs) EV charging spot

Fig. 1. The basic setup of the control system.
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turned off to achieve
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current or at least
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Turn them off

Fig. 2. Simplified block diagram of the main function of the control method.

By knowing the currents of the controllable loads, the
control system can estimate new available charging current
before the actual control action. However, the control system
does not know whether the controllable load is on or off
without separate feedback. To achieve lower investment and
installation costs of the control system, separate feedbacks of

the controllable loads are not considered in the control system
in this paper. This can lead into a situation where the control
system toggles a certain controllable load off which does not
actually increase the available charging current as expected.
However, this most likely does not have a notable negative
impact as the control system can correct the potential problem
in the next control cycle in e.g. 5 seconds.

III. PiLoT CASE

In order to approximate the usefulness and effectiveness of
the control system, a pilot case was implemented. The pilot
case is an electrically heated detached house located in
Satakunta area in Finland. The main fuse size of the real estate
is 25 A and there are 6 underfloor heaters and a hot water
heater which can be used as controllable loads. There is a two-
time tariff in use, and these controllable loads can be forced by
a separate switch to utilize only cheaper night-time electricity.
In case of a forced utilization of night-time electricity, the
loads can draw power only during the night-time (22:00—
07:00). The pilot case did not include actual EV charging.
However, the pilot system was operated in a way that EV
charging circumstances would be improved.

A. Preliminary Measurements

To enable comparison of the pilot case to the original
situation, preliminary measurements of the real estate were
conducted. Based on the measurements, it was possible to
simulate different scenarios and approximate the energy which
could be charged into the EV over a night.

The total currents of the real estate were measured over a
one-week long period for each phase. During this one-week
period, all underfloor heaters were forced to utilize only the
cheaper night-time electricity. The hot water heater was used
without this limitation the first four days (Monday-Thursday)
but was toggled on for the last three days (Friday—Sunday) to
utilize only night-time electricity. This way the typical peak
loads in both situations could be observed.

According to the measurements, the average current over
the whole week for phase 1, 2, and 3 were 3.3 A, 5.9 A, and
7.0 A, respectively, whereas the highest one-hour peak
currents were 20.0 A, 21.1 A, and 13.8 A, respectively. The
measurements show that the night-time consumption is
already relatively high without EV charging and thus
uncontrolled EV charging may cause overloading.

During, e.g., Friday-Saturday, there won’t be almost any
current capacity left for three-phase EV charging around
midnight when hot water heater is on simultaneously with
space heating loads. Regardless of the utilization of night-time
electricity, similar situation could occur anyway, and thus
uncontrolled three-phase charging is inadvisable. The
preliminary measurements indicate that around 12 A one-
phase charging would be possible for the phase 3. This would
occasionally cause minor overloading but might not trip the
overload protection as the standard SFS-EN 60269-1 (IEC
60269-1:2006) defines that a fuse with a nominal current (In)
between 16 A < In < 63 A should withstand a current of
1.25x1, for an hour (in 20 °C ambient temperature).



The current consumption of each controllable load was
also measured separately. These are presented in Table 1. It
can be seen that most of the controllable load capacity is
connected to phases 1 and 2, whereas the phase 3 has highest
average loading.

TABLE 1. PROPERTIES OF THE CONTROLLABLE LOADS
Load Phase Current consumption (A)
Underfloor heater 1 1 4.8
Underfloor heater 2 1 8.4
Underfloor heater 3 2 6.2
Underfloor heater 4 2 49
Underfloor heater 5 3 4.5
Underfloor heater 6 3 33
Hot water heater 1 and 2 6.9 and 7.1, respectively

B. Simulation Model

To evaluate the effects of different parameters and to
demonstrate the operation of the control method before testing
the pilot system, simulation model for the pilot house is
formulated. Since the preliminary measurements of the pilot
case only included the total phase currents of the real estate,
the exact energy consumption of the controllable loads could
not be deduced. Therefore, assumptions and simplifications
have to be made in the simulation model. However, even a
rough model enables estimating the operation and potential
benefits of the control system.

Firstly, the hot water heater is not modeled as a
controllable load as it is problematic to determine when it is
on and off. For simplicity reasons, the controllable loads are
assumed to be on during the night-time if the related phase
current is over a certain threshold. Since the space heating is
restricted to utilize night-time electricity only, it could be
determined that the space heating is off during daytime. These
thresholds ensure that the controllable loads will not be
considered being on if the related phase current is not high
enough. The downside of this assumption is that e.g.
underfloor heater 1 is considered being on more than
underfloor heater 2, which may not be the case. The thresholds
are chosen based on the current consumptions of the
controllable loads and the minimum currents of the
corresponding phase. The thresholds have been presented in
Table I1. The assumption on how the controllable loads is on
have been illustrated in Fig. 3.

If a certain controllable load is turned off by the control
system to allow higher EV charging current or to limit peak
loads, the control duration is calculated. In order to ensure the
required level of the comfort of living, the duration of the off
period is to be restricted using an adjustable timer. Depending
whether the controllable load would be otherwise on or off,
the missed heating duration is calculated and used to achieve
the same indoor temperature later. In the simulation model and
pilot system, the maximum control duration of each
controllable load is limited to 2 hours per a four-hour period.
For simplicity reasons, it is assumed that the load control only
delays the amount of heating. The fact that indoor temperature
may slightly decrease during the load rescheduling and thus

longer period of heating might be required afterwards to
achieve the same peak indoor temperature is not considered in
the simulation model.

TABLE II. SIMULATION ASSUMPTIONS OF THE CONTROLLABLE LOADS
Load Phase Current threshold (A)
Underfloor heater 1 1 4.8
Underfloor heater 2 1 13.2
Underfloor heater 3 2 6.6
Underfloor heater 4 2 11.5
Underfloor heater 5 3 5.5
Underfloor heater 6 3 8.8
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Fig. 3. Currents of the controllable loads on Friday—Saturday in the
simulation model.

The impact of the control method is presented in Fig. 4. In
Fig. 4, the maximum allowed total current of the real estate is
24.9 A and the target EV charging current is 12 A. Therefore,
the control method attempts to limit phase currents to 12.9 A
by rescheduling the controllable loads if necessary. If any of
the phase currents rise above 16.9 A, there will be less than 8§
A available EV charging capacity and thus EV charging must
be halted. The available charging duration is assumed to be
from 18:00 to 06:00. Fig. 4 shows that some of the
controllable loads will be scheduled after 07:00. If the heating
of the property is utilizing night-time electricity only, the
heating load occurring after 7:00 would actually be scheduled
to the later periods of the day, after 22:00. This may cause
lower room temperatures. This could be solved e.g. by
estimating the delayed heating load and restricting the EV
charging current before morning to enable enough heating.
However, this is not taken into account in the simulation
model nor in the pilot system.
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Fig. 4. Simulation results of the rescheduling of the controllable loads on
Wednesday—Thursday in case of 24.9 A maximum total current of the real
estate and 12 A as target EV charging current.

C. Pilot System

The pilot system consists of an automation system which
controls 7 contactors, one for each controllable load. The
controllable loads are still controlled by the original
thermostats, but the pilot system is able to delay the heating
loads when necessary by controlling the contactors. The pilot
system utilizes the previously mentioned control method
(illustrated in Fig. 2) and the system is tested in four different
scenarios which are described in the next section.

IV. RESULTS

The idea of the pilot case is to test the core functions of the
control system and estimate the benefits. Based on the
measurements and simulations, four test scenarios are chosen.
These scenarios have been presented in Table III. The duration
of each scenario is around 72 hours, and the EV charging is
assumed to be conducted between 18:00-06:00.

The effectiveness of the pilot system and the accuracy of
the simulation model is assessed in the following subsections.
All scenarios are investigated by comparing three cases:

1. Pilot system measurements

2. Results of the simulation model
3. Without heating load control

In case 3, the heating loads are not controlled but the EV
charging current is simply assumed to be adjusted according
to the free capacity. Cases 2 and 3 are based on the
preliminary measurements and thus there is likely to be some
differences on the electricity consumption of the real estate
compared to the pilot measurements. However, the average
outdoor temperature was similar during the preliminary
measurements and the pilot system testing (around 0°C). For
better comparison, same weekdays are chosen for each case.
Available charging energy is calculated using a voltage level
of 230 V and assuming that the EV could utilize any charging
current between 8—16 A.

TABLE III. TEST SCENARIOS FOR THE PILOT SYSTEM
Forced night-time Total current Target current
Scenario electricity limit of the real | of EV charging
utilization estate (A) (A)
Hot water heater and
L underfloor heaters 249 12
5 Only underfloor 15 10
heaters
3 Only underfloor 200 9
heaters
4. None 18.0 9

To examine the comfort of living, floor temperatures were
measured from several different locations before and during
the pilot system testing. The temperature measurements were
conducted in the morning and the results indicate that the pilot
system did not have noticeable impact on the temperatures in
any of the following scenarios. The variation in the floor
temperatures were mostly within +0.5°C range from the
preliminary measurements.

A. Scenario 1

The idea of the scenario 1 is to utilize night-time electricity
as much as possible for controllable loads and EV charging
without risk of overloading. In Fig. 5, one-minute averages of
the phase currents and available charging current of the pilot
system case have been presented. It can be seen that the phase
currents are kept relatively steady through the night and there
will be plenty of available charging capacity during the whole
charging period. The numerical results for this scenario are
presented in Table I'V.

When comparing the case without heating load control and
the simulation model, it can be seen that heating load
controlling enables around 6.8% (7.8 kWh) higher EV
charging energy. This percentage is relatively low due to the
fact that average EV charging current over the charging period
is already close to the maximum and the charging current does
not need to be restricted very much. In the pilot system, the
energy consumption is 21.7% (10.9 kWh) higher, but the
available EV charging energy is about the same than in the
case without heating load control.



TABLE IV.

RESULTS OF SCENARIO 1

Pilot Simulation Without heating
system® model® load control®
L1(A) 6.0 4.0 4.0
L2 (A) 8.0 6.8 6.9
L3 (A) 8.2 7.3 7.3
Available charging
current (A) 13.9 14.8 13.9
Available charging
energy (kKWh) 114.8 122.8 115.0
Required charging
interruption (min) 38 0.6 17.6

a. Daily average values of the three charging periods (18:00-06:00) between Monday—Thursday.
The maximum current of the real estate and the target charging current were 24.9 A and 12.0 A,
respectively.
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The energy consumption of the simulation model is around
8.1% (5.1 kWh) lower than in the case without heating load
control, which means that the control system is scheduling the
controllable loads partly outside of the investigated charging
period (18:00-06:00). Also, the control system allows about
18.8% (16.2 kWh) more energy to be charged to the EV when
comparing the simulation model to the case without heating
load control. In the pilot system, the energy consumption of
the real estate is 6.0% (3.4 kWh) and 13.6% (8.5 kWh) lower
than in the case of simulation model and the case without
heating load control, respectively. However, the available EV
charging energy is also 6.1% (6.3 kWh) and 26.0% (22.5
kWh) higher, respectively.

Lower energy consumption of the real estate during the
pilot system case is likely because the hot water heater is
utilizing only night-time electricity between Friday—Sunday
during the preliminary measurements. For a better
comparison, the results of Thursday—Friday are investigated
separately and presented in Table V.

From Table V, it can be seen that while the energy
consumption of the real estate is 11.7% (6.6 kWh) higher in
the pilot system case than the case without heating load
control, the available charging energy is 4.3% (4.3 kWh)
higher for the pilot system. When comparing the simulation
model case and the case without heating load control, 10.9%
(6.2 kWh) of the total load is scheduled outside of the
investigated charging period and 16.1% (16.1 kWh) higher
charging energy is achieved.

—L3

17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00
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Fig. 5. Measured currents of the real estate and the available EV charging
capacity in the pilot system case on Wednesday—Thursday.

B. Scenario 2

In scenario 2, the peak current is limited to 22.5 A.
According to the preliminary measurements, the real estate
peak current average of one-hour period are 20.0, 21.1, and
13.8 for phases 1 to 3, respectively. Therefore, this peak
current limitation could be possible regardless of the heating
load controlling if the EV charging current is controlled.

TABLE V. RESULTS OF SCENARIO 2 ON A SPECIFIC DAY
Pilot Simulation Without heating
system® model® load control®

L1 (A) 6.6 4.1 44

L2 (A) 9.0 6.4 72

L3 (A) 73 7.8 9.0
Avaifiif?zr)gmg 12.6 14.0 12.1
AV:;?E; (Cﬁl\;‘\;f)mg 104.1 1159 99.8
Gt | s |03

a. Daily average values of the charging period (18:00-06:00) between Thursday—Friday. The
maximum current of the real estate and the target charging current were 22.5 A and 10.0 A,
respectively.

C. Scenario 3

The idea of the scenario 3 is to investigate if the peak
currents could be limited to 20.0 A, which is less than the
peak-hour current of phase 2 in the preliminary measurements,
while allowing reasonable amount of energy to be charged
into EV. In Table VI the results of scenario 3 is presented.
According to the pilot system measurements, currents for
phases 2 and 3 are successfully limited to 20.0 A. However,
the peak average current of a one-hour period for phase 1 was
22.0 A. According to the data collected from the pilot system,
this unexpected peak current could have been avoided. Due to
unknown reason, the pilot system was not able to schedule the
controllable loads of phase 1 to a later time period.



TABLE VL RESULTS OF SCENARIO 3

Pilot Simulation Without heating
system” model’ load control®
L1(A) 5.1 4.0 4.0
L2 (A) 6.5 6.6 6.9
L3 (A) 6.0 6.9 7.3
Available charging
current (A) 11.5 11.7 9.1
Available charging
energy (kWh) 94.8 96.6 75.0
Required charging 303 309 2363
interruption (min) ) ) )

a. Daily average values of the three charging periods (18:00-06:00) between Monday—Thursday.
The maximum current of the real estate and the target charging current were 20.0 A and 9.0 A,
respectively.

In scenario 3, the simulation model schedules 4.8% (2.4
kWh) of the real estate load outside of the investigated
charging period and enabled 28.8% (21.6 kWh) higher EV
charging energy. In pilot system case, the energy consumption
is 3.9% (2.0 kWh) lower but the available EV charging energy
is 26.4% (19.8 kWh) higher when compared to the case
without heating load control.

D. Scenario 4

In scenario 4, the aim is to reduce peak currents even more
by allowing all controllable loads to utilize also daytime
electricity. The pilot system results cannot be compared
properly to the simulation model or to the case without heating
load control since the preliminary measurements were not
conducted for this kind of scenario where all controllable
loads could utilize either night-time or daytime electricity.

According to the pilot system measurements, the peak
currents were successfully limited to 18.0 A while reasonable
amount of energy could have been charged into the EV. This
suggests that even higher peak power reduction could possibly
be achieved with the control system in the pilot case.

V. CONCLUSIONS AND DISCUSSION

The core function of the presented control system is to
limit peak currents while improving the circumstances for EV
charging. Besides the unexpected peak current in scenario 3,
the pilot system executed the core functions well. Since the
energy consumption of the real estate vary from day to day,
the accuracy of the simulation model cannot be directly
proven by comparing current consumptions of the pilot system
and simulation model. However, the results of the pilot system
and simulation model in scenarios 1-3 are at least somewhat
in line with each other even though the simulation model
included a few simplifications.

When comparing the scenarios 1-3, it can be seen that the
control system is more effective compared to the case without
heating load control when the real estate energy consumption
is relatively high compared to the peak power limit. In the
selected scenarios, the heating load control enabled around 6—
30% more energy to be charged to an EV. It should be noted

that different EVs can utilize different charging currents and
thus the actual gain may vary even more.

While enabling higher average charging powers, the
control system can also limit peak loads and provide better
utilization of cheaper night-time electricity. In addition to
eliminating the risk of overloading related issues, the peak
load control can bring operational cost savings if a power-
based tariff component (€/kW of some period) is used by the
distribution system operator. According to [9], these kinds of
demand-based distribution tariffs are likely becoming more
popular as they are potentially more cost-reflective than the
present distribution tariffs of small-scale customers.

In each scenario, the potential charging energy is quite
high, around 50-120 kWh. This would be more than enough
to fully charge a typical FEV. However, the assumed 12-hour
charging period may not always be possible and thus the
potential charging energy may be notable lower. Depending
on the driving requirements and available charging time, the
control system could, for example, reduce the need to use
public charging stations notably.

Encouraged by the good results, an application for a patent
was filed [10]. The intention is to continue developing flexible
energy management systems suitable for different real estates.

REFERENCES

[1] J Traficom, “Vehicles in traffic by Vehicle class, Driving power and
Quarter,” [Accessed 13.8.2019] (Available:
http://trafi2.stat.fi/PXWeb/pxweb/en/TraFi/TraFi__Liikennekaytossa_o
levat_ajoneuvot/040_kanta tau_104.px/table/tableViewLayoutl/?rxid=
d44ee935-2646-4¢12-85d6-766dc63e196d)

[2] X. Liang, T. T. Lie, and M. H. Haque, "A cost-effective EV charging
method designed for residential homes with renewable energy," 2014
International Conference on Connected Vehicles and Expo (ICCVE),
Vienna, 2014, pp. 207-208.

[3] Z.Wan, H. Li, H. He, and D. Prokhorov, "A Data-Driven Approach for
Real-Time Residential EV Charging Management," 2018 IEEE Power
& Energy Society General Meeting (PESGM), Portland, OR, 2018, pp.
1-5.

[4] Y.Ogata and T. Namerikawa, "Energy Management of Smart Home by
Model Predictive Control Based on EV State Prediction," 2019 12th
Asian Control Conference (ASCC), Kitakyushu-shi, Japan, 2019, pp.
410-415.

[S] U. Datta, N. Saiprasad, A. Kalam, J. Shi, and A. Zayegh, “A
price-regulated electric vehicle charge-discharge strategy for G2V,
V2H, and V2G,” International Journal of Energy Research, vol. 43, (2),
pp. 1032-1042, Feb. 2019.

[6] A. Dargahi, S. Ploix, A. Soroudi, and F. Wurtz, "Optimal household
energy management using V2H flexibilities," Compel, vol. 33, (3), pp.
777-792,2014.

[71 A. Rautiainen, “Aspects of Electric Vehicles and Demand Response in
Electricity Grids,” Ph.D. dissertation, Department of Electrical Energy
Engineering, Tampere University, Tampere, 2015.

[8] International Standard IEC 61851-1: "Electric vehicle conductive
charging system - Part 1: General requirements,” 2017.

[9] K. Lummi, A. Mutanen, P. Jarventausta, “Upcoming changes in
distribution network tariffs — potential harmonization needs for demand
charges,” 25th International conference on electricity distribution
(CIRED), Madrid, June 2019.

[10] Sandy Beach Oy, “An apparatus and a method for managing residential
electrical loads,” Finnish Patent 20195394, May 13, 2019.



PUBLICATION
5

Optimized controlled charging of electric vehicles under peak power-based
electricity pricing

T. Simolin, K. Rauma, A. Rautiainen, P. Jirventausta

IET Smart Grid, vol. 3, no. 6, Dec. 2020, pp. 751-759
https://doi.org/10.1049/iet-stg.2020.0100

Publication reprinted with the permission of the copyright holders.






The Institution of
Engineering and Technology

IET Smart Grid l

Special Section: Achieving an Integrated Smart Power Grid and
Intelligent Transportation System

elSSN 2515-2947

Received on 28th April 2020
Revised 17th August 2020
Accepted on 5th October 2020
E-First on 11th November 2020
doi: 10.1049/iet-stg.2020.0100
www.ietdl.org

Optimised controlled charging of electric
vehicles under peak power-based electricity
pricing

Toni Simolin® =, Kalle Rauma?, Pertti Jarventausta’, Antti Rautiainen3

"Unit of Electrical Engineering, Tampere University, Korkeakoulunkatu 7, 33720 Tampere, Finland

2Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, Emil-Figge-Str. 76, 44227 Dortmund,
Germany

3Pohjois-Karjalan Sahks Oy, Rantakatu 29, 80100 Joensuu, Finland

=1 E-mail: toni.simolin@tuni.fi

Abstract: This study presents a practical control method for electric vehicle (EV) charging optimisation for detached and
attached houses. The developed EV charging control method utilises real-time measurements to minimise charging costs of up
to two EVs in a single household. Since some Finnish distribution system operators have already launched peak power-based
distribution tariffs for small-scale customers and because there is a lot of discussion on this kind of tariff development, the
control method considers peak power-based charges. Additionally, the proposed smart charging control method utilises
charging current measurements as feedback to reallocate unused charging capacity if an EV does not utilise the whole capacity
allocated for it. The control method is implemented and tested with commercial EVs. The conducted hardware-in-the-loop
simulations and measurements confirm that the control method works as intended. The proposed smart charging control

reduces EV charging electricity distribution costs around 60% when compared to the uncontrolled EV charging.

1 Introduction

According to [1], the share of detached houses and attached houses
of all Finnish dwellings are 38 and 14%, respectively. Furthermore,
50 and 22% of the households living in detached or attached
houses, respectively, include two cars [2]. As electric vehicles
(EVs) are emerging and more traditional internal combustion
engine vehicles are being replaced by EVs, a notable number of
detached and attached houses in Finland are likely to include two
EVs in the future. The number of EVs in Finland have almost
doubled every year since 2012 [3], and thus, the need for smart
charging solutions is quickly increasing. The amount of EVs was
around 30,000 at the end of 2019 [3]. Although a block of flats is
the most common type of dwelling in Finland [1], only under 7%
of these households include a second car [2]; therefore, EV
charging in a block of flats is left out of this paper. Due to range
anxiety, which is discussed further in [4], and the practicality of
home charging, it is likely that many EV owners prefer to charge at
home. Therefore, it is of great importance to enable cost-effective
and practical domestic charging solutions.

It is a well-known fact that uncontrolled EV charging can
negatively impact electric networks due to the daily load peak in a
residential area and often occur soon after people arrive home after
work [5, 6]. Peak load management could be a key incentive for
decentralised EV charging control methods to prevent potential
congestions caused by uncontrolled EV charging. In Finland, three
distribution system operators already use peak power-based tariffs
for households and other small-scale customers [7-9]. According
to [10, 11], peak power-based tariffs are becoming more popular as
they can improve the electricity pricing cost reflectivity. Therefore,
peak load management as the main objective of the home charging
control should be investigated. Since peak power-based tariff
structures also tend to include traditional time-of-use (TOU)
pricing, as seen in [7-9], night-time charging should be preferred.
In Finland, there are currently no tariffs that combine demand
charges and real-time (RT) electricity pricing, and thus, RT pricing
is not considered in this paper.

IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 751-759

1.1 Related work

Several studies in the literature, such as [12—15], have optimised
EV charging in residential real estates. These studies optimise
charging cost under TOU electricity pricing [12] or RT pricing
[13—15]. However, these studies did not consider modern peak
power-based tariffs. Several studies, such as [16-18], have already
stated that solely TOU or RT electricity price minimisation-based
EV charging can cause even higher load peaks than uncontrolled
charging.

EV charging peak load limitations have been studied from
different viewpoints, e.g. in cases of non-residential building [19],
apartment building energy community [20], and residential real
estate [21]. In [19], a real-time valley-filling algorithm to reduce
peak demand in commercial and industrial buildings is proposed.
Data such as charging time and energy dispensed from real EV
charging sessions is used to determine the maximum flexibility of
the EV charging. In [20], EV charging powers are adjusted to limit
total monthly peak loads of an apartment building energy
community. The peak power limit for a new month is estimated
based on historical data, and then, if necessary, the limit is adjusted
to a new level based on real-time measurements. In [21], the EV
charging scheduling objective is to flatten the net load profile of a
residential real estate with a photovoltaic (PV) generator. The
charging scheduling problems were formulated and solved with
quadratic programming approaches.

The algorithms presented in these studies limit peak loading,
but they share common shortcomings when it comes to real-life
solutions. EVs are often assumed to use the charging current set by
the EV supply equipment (EVSE) as in [19-21], but the EVSE can
only set the maximum charging current, and the EV on-board
charger (OBC) decides the charging current below this limit.
Therefore, an EV might not utilise the whole charging capacity
allocated to it. This is discussed further in Section 2.1. If there is
more than one EV, as opposed to [21], this can result in a non-ideal
utilisation of the available charging capacity. Furthermore, many
studies, such as [19, 21], assume that plug-in durations or energy
requirements are known by the EVSE. Since an accurate historical
data-based prediction is not always available and the EV owners
might not be willing to actively input their driving needs due to
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response fatigue [22], access to this kind of information may be
difficult to obtain. Some EV models allow the user to track the
battery SOC via a mobile application. However, there is currently
no standardised method to transfer the data, and not all EV models
have such a feature. Therefore, the utilisation of such information
is excluded from this paper.

Load control implementations with commercial EVs are
studied, e.g. in [23, 24]. Study [23] presents a practical EV
charging load control solution in which the total EV charging load
limit is based on PV input and the maximum constant loading of
the transformer. However, due to the high total charging capacity
and the low number of charging points, there is no need to pause
any charging sessions. Additionally, the load control does not
consider the fact that EVs may not utilise the whole charging
capacity allocated to them. Therefore, the control algorithm can be
more simplified. In [24], a unique physical testbed for large-scale
EV charging research is described, and a practical framework for
online scheduling based on model predictive control and convex
optimisation is presented. For optimisation purposes, the control
system utilises a mobile application to collect user inputs, such as
their expected departure and energy demand. Additionally, the
charging currents are measured and used as feedback for the
control algorithm. However, there was no mention of allocating the
unused capacity for other EVs. It also remains to be seen how
actively the EV users are willing to keep reporting their departure
times and energy demands.

It is also worth mentioning that the EV charging peak loads
could be mitigated by using, e.g. a battery energy storage system
(BESS) as in [25]. Additionally, vehicle-to-grid (V2G) can be used
for peak shaving and valley-filling as mentioned in [26]. However,
this paper focuses solely on grid-to-vehicle charging, which
ensures that battery degradation is not increased due to more
frequent charging and discharging sessions. Additionally, at
present, most of the commercial EVs and charging controllers,
including the ones mentioned in Section 3.3, do not support V2G
operation, and thus, V2G is excluded from this paper. Auxiliary
energy storages for the household are not considered in this paper
either, as they would increase the total system costs notably.

Based on the literature review, there does not seem to be an
optimised but practical home charging solution, which considers
modern peak power-based tariffs and the fact that a household
might very likely include a second EV. This fact is the major
motivation for this paper.

1.2 Contributions and structure

The contribution of this paper is to develop a smart charging
control algorithm, which minimises the charging costs in a
residential real estate under a modern peak power-based tariff and
reallocates the unused charging capacity if an EV does not utilise
the whole capacity allocated to it. According to the authors’ best
knowledge, there are no similar works presented in the literature.
The effectiveness of the proposed control algorithm is
demonstrated with commercial EVs through hardware-in-the-loop
(HIL) simulations. The proposed control algorithm includes
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advantages such as the suitability for households with one or two
EVs and the ease of implementation. The control algorithm does
not rely heavily on predictions nor knowledge about the future. It is
only assumed that the EV's are connected to charging points during
the night time.

The rest of the paper is organised as follows. In Section 2, EV
charging control is discussed, and the smart charging algorithm is
introduced. In Section 3, the investigated case, related parameters,
and laboratory setup are described. The results are presented in
Section 4. Section 5 discusses the control system requirements, the
assumptions made in the case study, and the suitability of the
control system in other countries. In Section 6, the paper is
finalised with conclusions.

2 Charging control

In the next subsection, the relevant properties of EV charging
control are discussed. After that, the developed smart charging
method and two simpler control strategies are described. These
simpler control strategies are only used for comparison purposes.
The idea is that the simpler control strategies do not require a
separate control system, and thus, their implementation would be
easier. However, the simpler control strategies do not dynamically
limit currents nor peak powers, and they do not prevent
overloading nor an increase in the peak power-based costs. This
paper focuses on single-phase charging as it is often sufficient
when considering the long parking duration and the moderate
charging requirements of domestic charging. However, the smart
charging algorithm could be extended to be suitable for three-phase
charging with moderate modifications.

2.1 Controllability of EV charging

According to IEC 61851-1, the allowed charging current limits in
mode 3 charging are 6-80 A [27]. An EVSE can use pulse-width
modulation (PWM) through a control pilot circuit to indicate the
charging current limit for the EV. By changing the duty cycle of the
PWM signal, the EVSE can indicate a new maximum charging
current limit. The standard limits the EVSE from initiating a new
charging current limit within 5 s of the previous current limit.

IEC 61851-1 also determines that an EV shall indicate the
readiness to receive energy. This is done by adjusting the EV side
resistance of the control pilot circuit, which affects pilot voltage
measured at the EVSE output. The information can be transferred
forward from the charging controller to the control unit so that the
number of EVs requiring charging energy can be calculated. This
can be used to distribute the available charging capacity more
effectively.

As mentioned in [24], an EV can charge with a lower rate than
the pilot signal indicates for multiple reasons. For example, the
maximum charging rate of the vehicle's OBC or the charging cable
might cause a lower limit. Also, the OBC charger may choose a
lower charging rate to protect the battery from overheating, or the
battery might require slower charging when it is nearly fully
charged. In Fig. 1, an example is given for the BMW i3 and Nissan
Leaf (technical characteristics are shown in Section 3.3), where the
charging currents decrease in the last ~20 and ~26 min,
respectively, before becoming fully charged. The initial SOCs are
about 33 and 40% for the BMW and Nissan, respectively. The
charging currents are constant for about 2:02 and 2:37h,
respectively, before the batteries are close to being fully charged.
Additionally, some EVs may be able to use only a few specific
charging currents. For example, according to the measurements,
the BMW i3 used in this study can only utilise 6 or 16 A currents
for charging. Therefore, if a charging current limit of 15 A is set by
the charging controller, the BMW would start charging with 6 A.

It is reasonable to assume that EVs can utilise different charging
currents more flexibly in the future as OBCs will go through
technical improvements. However, it is likely that there will be
more opportunities for charging at different locations, such as
homes, workplaces, and within the vicinity of commercial
buildings. Therefore, it will be more likely that EVs are often close
to their final SOCs, and in order to fully utilise available charging
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Fig. 3 Block diagram of the control method

capacity in the case of multiple EVs, it becomes necessary to
measure the actual charging currents drawn by the EVs.

Even though this paper does not consider V2G, it is worth
mentioning that the V2G operation is likely to include similar non-
ideal characteristics, where e.g. the vehicle's OBC might choose a
lower discharging rate to protect the battery. Therefore, future V2G
studies should be carried out using commercial EVs, which
supports the V2G operation.

IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 751-759

2.2 Proposed smart charging algorithm

The objective of the smart charging control method proposed in
this paper is to reactively limit the peak loads and currents if
necessary while ensuring that the available power capacity (APC)
is used as effectively as possible. Additionally, the control method
delays the EV charging to night-time hours (22:00-7:00) to reduce
charging energy costs. Therefore, the EVs should be parked at
home and plugged in to the charging points during the night. To
balance phase loads, the control method gives priority to the phase
with the lowest non-controllable load when only one EV can be
charged at a time. The restriction to limit the total peak power of
the real estate includes an acceptance that by using the charging
algorithm, the EV charging process will take a longer time than
without the algorithm.

To limit peak loading, it is necessary for the control method to
know the highest non-controllable load peak of the building and its
real-time electricity consumption. These can then be used to
calculate the APC for EV charging, which will not increase the
peak loads and thus peak power-based costs. It should be
mentioned that the selected tariff [7] accounts for only 80% of the
peak powers during night time, which effectively allows 25%
higher peak loads during those hours without additional costs. It is
expected that demand charges will be more notable in the future,
and thus, the tariff with the highest demand charge is selected. The
night-time peak power limit Pj;,i; can be determined according to
the following equation:

P g 7<i<m
Pjimiy = max{ 0.8 . (D

Ppcak(t) XSF, t <7ort>22

where Py is the highest measured peak load, SF is a safety
factor, and ¢ is hour. The control method is chosen to adjust
charging currents every 10 s. Since the charging currents cannot be
adjusted more frequently according to the peak load limit and the
real-time energy consumption of the household, a peak power
safety factor of 0.99 is used to limit the highest allowed peak load
to 1% under the target peak load. The highest non-controllable load
peak can be estimated, and the control method can use the
measurement data to detect whether the non-controllable loads
reach a new peak value. A similar peak load management principle
is used in [20].

The setup of the control system is presented in Fig. 2, and the
block diagram of the control method is presented in Fig. 3. The
control system can be, e.g. a microcomputer that runs the algorithm
script. The control system requests EV charging states and realised
charging current information from EVSEs and then sends new
current limits calculated using the algorithm. Household electricity
consumption and line voltages are measured using the household's
smart meter and are sent to the control system when requested.

The algorithm starts (part 1 in Fig. 3) by calculating the
available current capacities for phases 4 and B (ACC,, ACC,
respectively), the APC, and the number of EVs requiring a charge
(N). ACC, and ACCy, represent the currents that are available for
EV charging while considering the household electricity
consumption and the limit set by the main fuse of the building (25
A). APC represents the power available for EV charging while
considering the household power consumption and the highest
allowed peak load. The equations for ACC,, ACCp, and APC are
presented in (2), where Ifq represents the current limit of the main
fuse of the household (25 A), I is safety marginal (0.1 A) for the
fuse, I,~I, are phase currents, and Phoysehold 1S the power
consumption of the household

ACCy(1) = Ituse — La(t) — It
ACCH(1) = Iryse — 1p(1) — Isr ()
APC(#) = Piimit(t) — Phousehol(?)

If both ACC, and ACC,, are below the minimum current limit (6
A), the APC is too low, it is daytime, or there are no EVs requiring
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a charge, the EV charging should be disabled (part 2 in Fig. 3). To
allow charging, APC should be high enough so that there are at
least 6 A for EV charging with the present voltage level (~230 V),
which is measured in real time. If only one EV requires charging,
the charging current should be limited according to APC and the
respective ACC (part 3 in Fig. 3). The conditions and the charging
current limits Cyyp; for the EVs that are connected to phases 4 and
B, respectively, are presented in (3), where S represents the
charging state of an EV in accordance to the IEC 61851-1 standard,
V' is phase voltage, and /¢ max is the maximum current allowed by
the charging point. Charging is only allowed if the charging state is
C (EV is ready to receive energy) or D (EV is ready to receive
energy but requires charging area ventilation) [27]. In most cases,
the charging area ventilation is only necessary with higher charging
powers (>32 A), and thus, its further analysation is excluded from
this paper

if (S,() = C or S,(t) = D) and ACC,(1) > 6
and N = 1 and APC(r)/V,(t) > 6 then

Ciimit. o) = min (ACC,(t), APC()/V(®), Iep.max) G
Climit,5(1) = 0

if (Sy(f) = C or Sy(2) = D) and ACC,(1) > 6

and N = 1 and APC(7)/V,(t) > 6 then

Ciimito(t) =0 ©b)
Ciimit (1) = min (ACCy(r), APC1)/Vi(©), Ip max)

To allow two EVs to charge simultaneously, both ACC, and ACC,,
should be at least the minimum limit (6 A). Additionally, APC
should be high enough so that the minimum charging current (6 A)
for both EVs does not cause a new load peak in the given phase
voltage levels (part 4 in Fig. 3). Available charging currents of up
to 16 A could be used effectively to charge one EV. However, the
algorithm prefers to charge two EVs, if possible, as it promotes
phase load balancing within the real estate network. As mentioned
earlier, an EV may not be able to utilise the whole charging current
set by the EVSE. Therefore, the realised charging currents are
measured and used as a feedback. If an EV is drawing less current
than the set limit, the difference should be allocated to the other
EV.

The condition to allow two simultaneous charging sessions is
presented in (4). To allocate available charging capacity effectively,
preliminary allocations Cpye limit are calculated first based on (5).
After that, the algorithm calculates the unused charging capacity
Cunused Of the previous control cycle from both EVs, as shown in
(6), where Cipeasured 18 the measured charging current. A margin of
1 A is used to determine whether the OBC is limiting the charging
current below the set charging current limit. If the OBC limits the
charging current, the expected charging currents Cexpected are
calculated based on (7), which assumes that the charging current
will stay on the same level set by the OBC even if its limit is
increased. Finally, the charging current limits are updated
according to (8)

if N =2and APC(r)/avg(V, (1), V(1)) > 12

4
and ACC,(7) > 6 and ACCy(t) > 6then @

Cprc.]imil,a(t) = min (ACC”(Z), Icp,maxa APC(’)/Z/Va)
Cpre,limil.b(t) = min (ACCy(1), ]cp.mam (5)
(APC(?) = Ciimit.o(t) X V) V1))

[Cunused.a(t = 1) = Giimit.at = 1) = Crneasured.o(1) ©
Cunused 5 = 1) = Ciimie 5t — 1) = Crneasured.5(1)
lccxpcclcd,a(t +1) = min (Cprc,limil,a(t), Cmcasurcd,a(t)) 1)
Cexpected ot + 1) = min (Cpre timit 5(): Cieasured,6(1))
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Giimit,a(t) = min (ACC,(?), Iepmaxs
Core.limit.a(®) + Cpre.limit.5(f) = Cexpected, (! + 1), (8a)
(APC(1) = Coxpectea. ot + 1) X V) V(1)

Climitp(1) = min (ACCp(®), Iep maxs
Cprc,]imil,b(t) + Cprc.limil,a(t) - chpcclcd,a(t +1), (8b)
(APC(®) = Cexpecteaalt + 1) X V) V(1)

If ACC, or ACCy is below the minimum limit (6 A) or if APC is
not high enough to allow charging for the two EVs, only one EV
can be charged (part 5 in Fig. 3). The conditions and charging
current limits are presented in the following equations:

if (ACCy(r) < 6 or (ACC,(r) > ACCy(t) and
APC(t)/avg(V (1), V)(t))) < 12)and N = 2 then

. (92)
Ciimit.o(t) = min (ACCy(1), APC(t)/V (1), Iep.ma)
Climi 5(H) = 0
if (ACC,(r) < 6 or (ACC,(t) > ACC,(r) and
APC(t)/avg(V (1), V)(t))) < 12)and N = 2 then %
9b)

Cimito(H) =0
Ciimies(t) = min (ACCy(1), APC()/V(®), Icpmax)

This case study does not consider a distributed generation such as
solar power. However, optimal solar power use would be relatively
simple in this case. The same algorithm, shown in Fig. 3, can be
used during the daytime if it is modified so that the available
charging capacity is equal to the excess solar energy that is not
consumed by the household.

2.3 Simpler charging strategies

Naturally, the simplest EV charging strategy is the uncontrolled
charging, where the EVs start charging immediately after being
plugged in after arriving home. This would be the easiest solution
for EV owners as this would not require any extra effort or any
kind of charging control system at the charging station.

As TOU electricity pricing is commonly used in detached
households in Finland, the next most obvious simple control
strategy would be to delay charging until night time (uncontrolled
night-time charging). However, this would not likely lower the
peak loads that much. In fact, if controllable loads, e.g. space
heating and the hot water heater, are already utilising only night-
time electricity, night-time EV charging could cause even higher
peak loads, as mentioned in [18].

3 Case description

The developed charging algorithm is tested using HIL simulations
with a modified commercial charging station and two commercial
EVs. A detailed description about the simulation environment is
presented in the following subsections.

3.1 Detached house under study

The studied case is a detached house located in Pirkanmaa,
Finland. It was built in 2010. The floor area of the building is 158
m?2, and a geothermal heat pump is used as the main heating
system. This represents a typical Finnish detached house.

The electricity consumption was measured in December 2018
in Is intervals. The daily average outdoor temperature was
between —1 and —5°C throughout the measurement period.
Wintertime was chosen to be investigated in this case study so that
the heating load would be high, with a limited capacity for EV
charging. The highest measured hourly peak load was 6.88 kW. For
phases A—C, the average currents over the whole measurement
period were 2.9, 2.3, and 3.6 A, whereas the highest 1 h peak
currents were 12.7, 12.4, and 13.8 A, respectively. The highest
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Table 1 EV departure and arrival times
Day EV Departure Arrival
Sat 15.12. A 10:00 15:00
B 11:00 16:00
Sun 16.12. A 10:00 15:00
B 11:00 16:00
Mon 17.12. A 7:00 17:00
B 7:30 18:00
Tue 18.12. A 7:00 17:00
B 7:30 18:00
Wed 19.12. A 7:00 17:00
B 7:30 18:00
Thu 20.12. A 7:00 17:00
B 7:30 18:00
Table 2 Technical characteristics of the EVs
Vehicle Nissan Leaf (A) BMW i3 (B)
model 2014-15 BMW i3 (94 Ah)
battery capacity 67 Ah 94 Ah
battery rated voltage 360V 353V
battery energy capacity 24.1 kWh 33.2kWh
OBC efficiency 0.89% 0.925%
connector |IEC 62196 Type 1 Type 2
max charging current 16 A 32A
max supported AC charging 1-phase AC 3-phase AC

hourly peak loads and daily electrical energy consumptions are
presented in Fig. 4.

The electricity consumption measurement started on Saturday
(15.12.) at 12:53 h, which explains the low energy consumption
during that day. There is notable loading every day around 18:00—
20:00 h, but three of the highest daily load peaks occurred at 9:00,
12:00, and 22:00 h. The main fuse is sized as 3 x 25 A.

The residents own two passenger cars. Due to the limits set by
the main fuse, the study focuses on charging points with a
maximum charging current of 16 A. As phase C has the highest
average loading, phases 4 and B are chosen for EV charging. Phase
B has the lowest average and peak loading, so it is logical to use it
to charge the EV with a higher charging requirement.

3.2 EV driving profiles

According to [28], passenger cars were driven almost 33,000 km/a
in total in Finnish households with two cars in 2016. Car (B),
driven the most, had an average distance of 21,900 km/a, whereas
the other (A) had 11,000 km/a. The yearly driving distances equal
to around 59.8 and 30.1 km/day, respectively. Passenger car trips
most often start around 7:00 or 16:00 h on weekdays, according to
[28]. During weekends, the most active passenger car usage is
between 10:00 and 16:00 h [28]. The departure and arrival times
used in this study are presented in Table 1. These values are used
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oy KoCoS | | Charging
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GE real-time simulation
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[}

ﬁ Prerecorded household

consumption data

Fig. 5 Simplified scheme of the laboratory setting

Fig. 6 Laboratory setup

as a basis for this study. However, the impacts of different driving
behaviours are discussed in Section 5.1.

3.3 Laboratory setup

The practical implementation of the EV charging control system is
carried out at the Smart Grid Technology Lab [29] at TU Dortmund
University. The lab included Nissan Leaf (A), BMW i3 (B), and a
charging station, which made it possible to conduct the study. The
technical characteristics of the EVs are presented in Table 2. The
used charging point is a modified RWE eSTATION charging
station with two independent charging sockets. Both charging
sockets are suitable for charging powers up to 22 kW (400 V AC),
but one of them is modified into a one-phase socket by
disconnecting phases 4 and C. This was necessary to make sure
that the BMW would charge using only phase B. The Nissan Leaf
uses one-phase (phase A4 in this case) charging regardless of the
opportunity for three-phase charging. As charging controllers, there
were two Phoenix Contact Advanced EV charge controllers (type
EM-CP-PP-ETH), which are fully compatible with the IEC
61851-1 standard and allow limiting the charging currents and
reading the charging states through Modbus TCP/IP.

The control algorithm and the household simulations are run on
a computer that was connected to the same local area network with
a KoCoS EPPE CX power quality meter and charge controllers.
The algorithm is implemented using the Python programming
language and a Modbus library (ModbusTcpClient). The KoCoS
meter measured the total electricity consumption and line voltages.
In a real-life case, a smart meter could provide the same
measurements as the KoCoS meter in this case. The KoCoS meter
and the charging station are connected to the 400 V laboratory
network. The pre-recorded household electricity consumption data
are simulated and read from an Excel file in real time. The lab
setup topology and the setup of the lab are presented in Figs. 5 and
6, respectively. The laboratory has been previously used in, e.g.
[30], where the EVs were controlled to limit voltage violations and
network congestion.
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Fig. 8 Operation of the proposed charging control algorithm

4 Results

The results of the HIL simulations are presented in this section.
Table 3 presents the driving distances of the measurement period as
well as the energy consumptions, which are calculated by using the
values (currents and voltages) measured throughout the charging
sessions.

The energy consumptions shown in Table 3 are the electrical
energy drawn from the residential network, including losses, such
as OBC and EVSE losses.

4.1 Analysing the operation of the proposed control algorithm

According to the results, the smart charging algorithm works as
intended. This is illustrated in Fig. 7, where the peak load is
successfully limited below 5.97 kW during the night time.

In Figs. 7-9, notations a—c represent phases, H is for household,
C is for charging, and CL is for charging current limit set by the
charging controller. Fig. 7 is presented in 1 min resolutions. A peak
load of 4.77 kW was measured earlier on the same day during the
daytime, resulting in the peak power limit of 5.97 kW according to
(1). Fig. 7 shows that the EV charging load is increased and
reduced depending on the electricity consumption of the
household.

During the charging sessions, several unideal characteristics are
identified, as illustrated in Fig. 8. Fig. 8a shows that there is always
a delay of a few seconds between the current limit set by the
charging controller and the actual charging current. This can cause
short load peaks if the household consumption suddenly rises as in
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Table 3 EV driving statistics

Day EV  Driving Average Energy
distance, km speed, km/h  consumption,
kWh
Sat15.12. A 28.3 67.4 5.3
B 66.1 76.1 13.5
Sun 16.12. A 37.9 35.8 6.6
B 58.2 51.7 9.2
Mon 17.12. A 29.3 37.9 5.3
B 72.0 55.9 12.6
Tue 18.12. A 30.0 441 5.6
B 58.1 69.6 11
Wed 19.12. A 28.8 411 5.3
B 62.6 713 10.4
Thu 20.12. A 33.2 46.6 6.1
B 62.7 80.3 12.3
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Fig. 9 Charging sessions for Monday

Fig. 8b at 22:38 h. However, this kind of peak load only lasts for
about one control cycle which, in this case, is 10 s and thus its
impact is negligible. In Fig. 8a, there is a slight anomaly in the
behaviour of the Nissan (connected to phase A4) at 22:25 h. The
algorithm allows a 9-15 A charging current for the Nissan at
22:25:10 h, but the charging starts after 40 s (22:25:50 h). Within
this time, the algorithm notices the unused charging capacity and
allocates it for the BMW (connected to phase B). This causes a
slight charging current peak for the BMW at 22:25h. The
measurements show that the control algorithm can reallocate
unused charging capacity, but the used control cycle of 10 s might
be unnecessarily short and result in a high number of control
actions.

As shown in Fig. 4, there is a notable load peak (6.88 kW) in
the real estate on Sunday. Therefore, the peak load limit is 8.60 kW
during the night time according to (1) for the rest of the
measurement period. Since the limit is quite high, the EVs are
charged relatively fast. In Fig. 9, the charging sessions are
illustrated for Monday.

4.2 Comparing the control strategies

For practical reasons, simpler control strategies are only simulated.
The charging currents are assumed to stay at a constant 16 A for
the bulk part of the charging sessions. The charging currents at
high SOCs are modelled based on measurements of uncontrolled
charging sessions. For the Nissan and the BMW, the charging
currents start to decrease when there is under 0.90 and 0.39 kWh of
energy, respectively, remaining to be charged. The charging curves
at the final SOCs are presented in Fig. 10 in 1 min resolution.

The total charging energy is 103.2 kWh during the six days that
were studied. By assuming that the average daily charging
requirement stays the same, the total charging energy requirement
would be 533.4 kWh for all of December. For the sake of
simplicity, the peak power of 6.88 kW is assumed to be the peak
power that determines monthly demand charges for the case where
EV charging is not considered. These values can then be used to
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Table 4 EV charging-related monthly electricity distribution costs
Control strategy Cost type Increment Cost
uncontrolled charging daytime electricity 533.4 kWh 13.8€
night-time electricity 0.0 kWh 0.0€
peak power 2.5 kW 41€
uncontrolled night-time charging daytime electricity 0.0 kWh 0.0€
night-time electricity 533.4 kWh 72€
peak power 2.2 kW 3.5€
proposed smart charging daytime electricity 0.0 kWh 0.0€
night-time electricity 533.4 kWh 72¢€
peak power 0.0 kW 0.0€

calculate the monthly electricity distribution cost increments, when
EVs are charged using different control strategies. The selected
tariff presented in [7] includes demand charge (Gpeak power = 1.59 €/
kW,month) and TOU pricing (Denergy,day = 2-59 ¢/kWh during the
daytime and Denergynight = 1.35 ¢/kWh during the night time). The
equations to calculate peak power-based costs caused by EV
charging are presented in (10), where Xepergy day is the costs of
daytime energy consumption, Xenergy,night 1S the costs of night-time
energy consumption, Xpeqx is the peak power-based costs, Eqay is
the daytime energy consumption, and Eyjgp is the night-time
energy consumption. The cost increments are presented in Table 4

AXenergy.day = Qenerg)ﬁday * AEday
AXenergy. night = genergy,nighl * AEnighl (]0)
AXpeuk = 0pu\k * APpeak

The proposed smart charging algorithm reduces charging costs by
around 59.8% (10.7 €) when compared to uncontrolled charging.
The uncontrolled night-time charging mostly affects the volumetric
electricity costs instead of the peak demand charges. In Fig. 11, the
total power consumptions in 1 min resolutions are presented for
Monday.

It is worth mentioning that one of the uncontrolled night-time
charging sessions could be delayed to later hours of the night. This
could give time for the first sessions to finish before the second
starts. Therefore, it reduces the probability of two simultaneous
charging sessions and could reduce peak power-based costs.
However, in practice, this could be an unreliable solution and
inconvenient from the EV user's perspective. A very late charging
start time could result in a higher probability that the EV would not
be fully charged in the morning, and an earlier charging start time
would more likely cause a similar peak load increase.

5 Discussion

This section discusses the requirements of the control system, the
suitability of the control system in other countries, and the potential
impacts of different EV usage. The discussions are divided into
two separate subsections.

IET Smart Grid, 2020, Vol. 3 Iss. 6, pp. 751-759

5.1 Requirements and suitability

The control system requires that the household consumption be
measured with a smart meter. The smart meter is also a key
component to enable more complex tariffs, such as peak power-
based tariffs. In Finland, the electricity consumption is measured
by smart meters for over 99% of the network customers [31].
According to [32], 35% of households in the EU were equipped
with smart meters in 2018. The current expectation is that smart
meter penetration will reach 77 and 92% in 2024 and 2030,
respectively. However, there are already several countries with
smart meter penetrations of >80%, such as Denmark, Estonia, Italy,
Malta, Spain, and Sweden [32].

The control system also requires that the realised charging
currents be measured. Usually, this cannot be done by the charging
controller itself, and thus, a separated energy meter is required on
the EVSE. However, it is becoming more common that even the
low-cost EVSEs include an energy meter as it does not notably
affect the total costs of the EVSE.

The presented control method is suitable for detached houses
and attached houses that include one or two EVs. Only 5% of the
detached or semi-detached households include a third vehicle [2];
thus, they have been excluded from this paper. According to
Eurostat [33], around 57% of the European population lives in
detached or semi-detached houses, stating the importance of smart
EV charging control in detached and attached houses. In Fig. 12,
the 15 countries with the highest percent of residents living in
detached houses or semi-detached houses are presented [33].

5.2 Impact of different driving behaviours

In this paper, it is assumed that the EVs would be charged solely at
home. In reality, there are an increasing number of charging
opportunities in, e.g. workplaces and shopping centres. Therefore,
the real home charging requirement might be lower in most cases.
However, a shorter driving distance would mostly decrease the
electricity volumetric costs, and a home charging energy
requirement of >3.6 kWh (~20 km) could still cause the same
maximum peak power increase. Additionally, in case of
uncontrolled charging, it takes only 1 day where the household
peak consumption and the EV charging load coincide to cause
unnecessarily high monthly demand charges. Therefore, from a

757

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



® Detached house ™ Semi-detached house ® Flat © Others

=
oo
=5

—PIUI

OOOO

S
Ireland —m

Share
e
(el
X

GBR

Croatia |
Norway E—

Belgium Sm——

Netherlands EEEs—"

Serbia EE——
Cyprus E—

Slovenia

Hungary

Romania E—
Denmark  E—
France N
Finland ne——
Luxembourg ="

EU - 28 mmme—

Country

Fig. 12 Distribution of population by dwelling type in 2018

demand charge point-of-view, longer or shorter driving distances
may not have notable effects.

According to the household electricity —consumption
measurements, the household consumes electrical energy around
10.5-16.0 kWh at night (22:00-7:00 h). As mentioned earlier, the
highest load peak of the household is 6.88 kW. Since it occurs
during the day, a loading of 8.60 kW can be allowed at night time
without increasing the monthly peak power-based costs. Based on
this loading limit and the night-time energy consumptions of the
household, there is around 45.9-51.5 kWh of energy capacity for
EV charging. This means that there would be enough charging
capacity even if the daily driving distance of the EVs is doubled.
The results shown in Fig. 9 also support this claim, as both EVs are
fully charged before 2:30 h, which is the midpoint of the night time
(22:00-7:00 h).

In this paper, it is also assumed that EVs are connected to the
charging points at night (22:00-7:00 h). However, depending on
the case (different charging requirements and different household
electricity consumption), occasional late-night arrivals or early
morning departures might not have any negative impacts. This is
because the charging sessions finish before 2:10 h on average, so
the required parking duration is not likely to be an issue.

When the EVs are driven notably more than average, or if they
should be charged as fast as possible regardless of the costs, the
residents should be allowed to manually override the charging load
management. During this kind of event, the control system should
only limit currents to avoid overloading. This would maximise the
EV charging rates within the safe limits and thus minimise the
charging need outside of home.

6 Conclusions

In this paper, a practical EV charging control method for detached
and attached households is presented. Additionally, its operation is
demonstrated using HIL simulations with commercial EVs. The
control method is able to optimise the charging of two EVs under a
peak power-based tariff.

The results of the HIL simulations show that the proposed smart
charging algorithm successfully limits peak loading of the real
estate and reallocates unused charging capacities for the other EV.
When considering a modern peak power-based tariff, the algorithm
reduces peak loads by 2.5 kW and offers around a 59.8% cost
savings compared to uncontrolled charging. The objective for the
charging control optimisation is based on Finland's specific needs.
However, based on the statistical analysis, the control method will
be useful in several other countries once peak power-based tariffs
become more common for small-scale customers.

This paper does not consider V2G charging, BESS, or
distributed generation, e.g. solar power. However, these topics will
be studied in future works. Additionally, the presented charging
algorithm accounts for a maximum number of two EVs, but it will
be extended to be suitable for a higher number of EVs.
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Abstract

The inconvenient nature of non-ideal charging characteristics is demonstrated from a
power system point of view. A new adaptive charging algorithm that accounts for non-
ideal charging characteristics is introduced. The proposed algorithm increases the local
network capacity utilization rate and reduces charging times. The first unique element of
the charging algorithm is exploitation of the measured charging currents instead of ideal
or predefined values. The second novelty is the introduction of a short-term memory
called expected charging currents. This makes the algorithm capable of adapting to the
unique charging characteristics of each vehicle individually without the necessity to obtain
any information from the vehicle or the user. The proposed algorithm caters to various
non-idealities, such as phase unbalances or the offset between the current set point and
the real charging current but is still relatively simple and computationally light. The al-
gorithm is compatible with charging standard IEC 61851 and is validated under different
test cases with commercial electric vehicles.

Open access funding enabled and organized by
Projekt DEAL.

1 | INTRODUCTION

Because of the increasing popularity of electric vehicles (EVs),
charging them is expected to have a notable impact on the
power distribution network [1, 2]. To avoid overinvestment in
network components, charging management will become a
necessity in the future [3]. Insufficient charging infrastructure
and long charging times are regarded as obstacles for EV's [4-6].
That is why capacity-efficiency and reduced charging times
should be relevant considerations when designing a charging
algorithm. With a more efficient algorithm, the charging system
operator can minimize the idle capacity of the power network,
which leads to shorter charging times and a higher-quality
charging service. To the authors’ knowledge, this efficiency is
not considered under realistic conditions in the charging algo-
rithms that have been presented in the research literature.

By network capacity, we refer to the capacity of the power
network at the charging site. Usually, this is part of the electricity
network at the real estate (parking hall etc.). Several algorithms
for EV charging management are offered in the scientific
literature. However, the shortage of most is that they do not

focus on the efficient use of network capacity, with the result
that many of these proposed solutions may lead to low usage
rates in real life. In addition, most available algorithms are
tested only through computer simulations, which may not
guarantee that they work as efficiently in reality as in the simu-
lation. In reality, there are significant differences in the behav-
iour of EVs that in the worst case could jeopatdize the correct
functioning of a charging algorithm or reduce its efficiency.
The work presented in [7] focuses on developing an online
charging algorithm and testing it with a fleet of 55 real charging
stations. A time step of 5 min is used for the operation of the
algorithm. A distinguishing aspect of the work is that it con-
siders real-life constraints such as a non-ideal charging curve,
unbalanced phase conductors, and unknown state-of-charge
(SoC) of the EV battery. The charging current is measured at
the charging station, but it is not used for control purposes.
The batteties are charged according to a predefined two-stage
model. First, a constant current is allowed up to 80% of the
SoC followed by a decreasing current model. A benefit of this
approach is that it is closer to the real load curve of most EVs
than a completely constant load curve. However, each EV

"This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2021 The Authors. [ET Electrical Systems in Transportation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

310 IET Electr. Syst. Transp. 2021;11:310-321.

wileyonlinelibrary.com/journal/els2


https://doi.org/10.1049/els2.12025
https://orcid.org/0000-0002-5553-8751
https://orcid.org/0000-0002-0254-1113
mailto:kalle.rauma@tu-dortmund.de
https://orcid.org/0000-0002-5553-8751
https://orcid.org/0000-0002-0254-1113
http://wileyonlinelibrary.com/journal/els2

RAUMA ET AL.

| 3m

model has a different load curve, which means that applying
the same load model for all EVs will inevitably decrease the
efficiency of the charging algorithm. The great advantage of
this paper in comparison with [7] is that it handles each EV
separately in real time without relying on predefined models,
which makes it more adaptive and reliable.

In [8], an adaptive chatging algorithm is presented. The
work also considers unbalanced charging and is able to carry
out phase balancing. The algorithm is run every 10 min. Unlike
this paper, the studies in [8] are based on simulations and the
compatibility with the standards is not discussed. It is not
clearly explained, how the currents are measured and how they
are applied in the charging management. In [9], an adaptive
charging algorithm with the objective of peak-load manage-
ment is introduced. The major lacks in [9] are that unbalanced
charging is not considered and the actual charging currents are
not used as an input to the algorithm. The operation of the
algorithm is validated through simulations and no dynamic
charging characteristics of the EVs are mentioned, which
makes the work much less detailed than this paper.

In [10, 11], a charging management algorithm to cope with
fluctuating available power is presented. It also considers
various user groups through prioritization. The algorithm does
not consider different phases or the fact that EVs may not
charge according to the current value used as a set point. The
algorithm is tested in a hardware-in-the-loop simulation using
three electronic loads that mimic EVs but not with real EVs or
charging hardware. Neither does the work discuss its suitability
on practical applications or compatibility with current charging
standards.

The article [12] tackles a similar problem of EV charging
under changing power capacity. The algorithm is tested through
simulations with a time step of 10 min. Herein, the different
phases are not taken into account. The charging stations used
have a maximum charging power of 50 kW, which means the
algorithm is oriented towards DC charging stations.

Another algorithm that uses predefined load cutrves to
control the charging algorithm is presented in [13]. A neural
network—based algorithm is trained with a dataset that consists
of data from more than 10,000 charging session and includes
18 different EV models. The algorithm performs well, but the
drawbacks are the large amount of data and computationally
heavy data processing. Data from all EV models has to be
available so that the neural network model can be trained to
accommodate all EVs, which may not be realistic in a practical
setting. The SoC is used in the algorithm and is estimated
based on the dataset. The algorithm does not account for
different phases separately as the work done here. In contrast
to our work, the algorithm presented in [13] can be compu-
tationally burdensome and prone to errors in real life.

Different phases and the problem of phase unbalance is
considered in [14]. The problem is solved by using a phase
switcher at each charging station. The approach is verified
through simulations with a time step of 15 min. The work does
not include tests on real EVs. The results lack the real measured
charging curves that would likely impact the results significantly.
The work in [15] introduces a new EV charging algorithm with

the main objective to reduce losses in the low voltage distribution
network and considers phase balancing for domestic single-
phase chargers. In addition, the impact of loss minimization,
load flattening, and phase balancing on the increased charging
times is not included in the work. Likewise, compatibility with
common charging standards is not mentioned.

As seen in the state of the art, there are no algorithms that
use the actual measured current as feedback to the algorithm
and are compatible with the commercial charging standards as
well as validated with real EVs. The non-idealities considered
by the algorithm presented include the following:

e At three-phase charging stations, a customer can charge by
using one, two, or three phases.

® The charging phase(s) can be any, or any combination, of
the three phases.

® Charging can be unbalanced—different currents drawn
from different phases.

® The charging system operator does not know beforehand
which phases the EV uses for charging.

® The current drawn by the EV is altered during a charging
session.

® The EV can use any current for charging below the
maximum current limit, or set point, at the charging station.

® There is always an offset (positive or negative) between the
current set point and the real charging current.

® There is always a time delay from the moment the current
set point is changed to the moment that the desired charging
current is reached.

Accounting for the above non-idealities will improve the
efficiency of any adaptive charging algorithm. To the knowl-
edge of the authors, no paper considering all of the above non-
idealities in charging management can be found in the litera-
ture. This is the major difference between this work and the
previous works. The aim of this work is to provide a strategy
for how the non-idealities of EV charging can be accounted
for to make each charging process more capacity efficient. The
algorithm presented can be used with a fixed maximum current
for the charging site. In addition, the algorithm can be used
with any other strategy that determines the maximum current
of the charging site according to an external signal, such as the
price of electricity. That is to say, the algorithm of this work
does not replace, but complements, other charging algorithms.
Thus, this paper addresses this previously unstudied topic, and
the proposed algorithm answers different questions from those
of most other research on EV charging algorithms. The main
contributions of this paper are the following:

® Demonstrate that non-idealities exist in EV charging that
have not been considered in previous research.

® Identify the impact of these non-idealities on EV charging
management.

® Provide a novel strategy how the non-idealities can be
handled in a commercial EV charging application.

® The strategy considers the above-mentioned factors and
improves the use rate of network capacity at the charging
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site significantly in comparison with the previously sug-
gested algorithms.

® The strategy is tested using commercial EVs and charging
infrastructure.

The remaining parts of this paper are organized as follows.
Section 2 describes the experimental setup used. Section 3
introduces the proposed charging algorithm. Section 4 presents
the experimental results. Section 5 discusses the obtained re-
sults. Finally, Section 6 presents the conclusion and suggests
ideas for future work.

2 | EXPERIMENTAL SETUP

This section covers the descriptions of the experimental labo-
ratory setups. The first subsection describes the organization of
the current set point response test. The second subsection de-
scribes the experimental setup of the algorithm validation by
using two real EVs. The third subsection covers the experimental
testing of the proposed algorithm under a real test case. All
laboratory tests are carried out at TU Dortmund University [16].

2.1 | Current set point response test

The purpose of the current set point response test is to
measure how quickly popular commercial EV models react
when the current set point is changed at a charging station. In
addition to the time delays, the offsets between different cur-
rent set points and the real charging currents are observed. The
measurements are coordinated by a Python script that sends
the current set points to the charging station and reads the
current measurement. The communication is carried out by
using Modbus TCP/IP protocol. The used charging station is
an RWE eStation equipped with a Phoenix Contact Advanced
EV Charge Controller. The controller supports the standard
IEC 61851-1. The currents are measured at the charging sta-
tion once per second with a KoCoS EPPE PX power quality
analyzer and KoCoS ACP 300 current probes.

During the first 10 s of the test, the charging is disabled. At
the beginning of the 11" second, the charging process is
enabled, and the current set point is set to 6 A. At the
beginning of the 21° second, the current is set to 7 A. The
current set point is increased every 10 s until it reaches 16 A.
After that, it is again reduced by 1 A every 10 s until it reaches
6 A and finally the charging is disabled. The used charging
controller supports integer values with a minimum resolution
of 1 A when controlling the charging current. Thus, steps
smaller than 1 A are not possible. That is why a current step of
1 A is used thorough in all experiments and in the presented
charging algorithm. For additional clarification, the idea of
current set point response test is to assess the behaviour of the
EVs at all possible current set points that a commercial
charging controller can have between 0 and 16 A.

A Modbus signal is registered and sent to the charging station
once it is executed by the Python programme. However, there

TABLE 1 Characteristics of the used electric vehicles

Vehicle model Charging phase Max. charging current Connector

Nissan Leaf Phase A 16 A Type 1
BMW i3 3-phase 16 A (‘max.) Type 2
BMW i3 3-phase 16 A (‘reduced’) Type 2
BMW i3 3-phase 16 A (low’) Type 2

TABLE 2 The differences between the different charging modes of
BMW i3 according to the manufacturer [17]

Current set point ‘Maximum’ mode ‘Reduced’ mode ‘Low’ mode

8 A 8 A 6 A 6 A
10 A 10 A 7.5 A 6 A
12 A 12 A 9A 6 A
15 A 15 A 11.25 A 75 A

are communication delays before the signal reaches the EV, such
as the mechanical movement of the contactor at the charging
station, when enabling and disabling the charging, causes an
additional time delay. Thus, these delays are in the range of 2—4 s
and ate included in the delays seen in the measurement results.
The used EV models are shown in Table 1.

A charging controller at a charging station sets the current
set point, but an EV can charge with any current below that set
point. It should be noticed that an EV can have charging
modes or settings. The purpose of the different charging
modes may be to increase the energy efficiency or safety. For
example, the BMW i3 has three charging modes for AC
charging: ‘low’, ‘reduced’ and ‘maximum’ mode [17]. These
modes cannot be changed from the charging station. The
current is measured only at the charging phases: for the Nissan
Leaf phase A and BMW i3 phases A, B, and C.

Table 2 shows the differences between the different
charging modes of the BMW i3 [17]. The settings are country-
specific and vary between different areas [17].

2.2 | Validation of the charging algorithm
Here the experimental setup of the second test is explained.
The objective is to validate the algorithm in a laboratory
environment by using two real EVs so that the behaviour of
the EVs is easy to observe. Moreover, this test proves that the
algorithm is compatible with the standard IEC 61851.

The laboratory setting is similar to the one of the current
set point response test with the exception that now both
charging sockets are measured with KoCoS EPPE PX power
quality analyzers that communicate with the controlling com-
puter via Modbus TCP/IP. The control algorithm is written in
Python and runs on a computer in the laboratory. In the al-
gorithm, measured current less than 1 A is considered as noise
and set to 0. This is to prevent a noise-originated malfunction
of the algorithm. Even if the algorithm runs in the time steps
of 1 min, the current measurements are taken every 20 s. The
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scheme of the experimental setup is illustrated in Figure 1. The
setup with the charging station, the measurement equipment
and the used EVs can be seen in Figure 2.

To understand the details of the following Tests 1, 2, and 3,
the uncontrolled charging curves of the Nissan Leaf and BMW
i3 are presented in Figures 3 and 4.

In Figures 3 and 4, not the complete charging curve, but
the part of decreasing current is presented. The starting SoC of
the Nissan Leaf is 92% and the SoC of the BMW i3 is 87%.
The current measurement is taken every 10 s. The BMW i3 is
in ‘maximum’ mode. It is important to point out that by using
two EVs, the details of the functioning of the proposed al-
gorithm are distinguishable. The common purpose of the tests
is to demonstrate in a detailed manner that the algorithm
works with real hardware.

In continuation, the used three test cases are presented.
The tests are selected so that the performance of the proposed
charging algorithm can be observed in detail under challenging

4 8 12 16 20 24 28 32 36 40
Time (min)

FIGURE 4 Decreasing-current part of the uncontrolled charging
curve of BMW i3

circumstances. In each test case, a limit for the total current
(current drawn by the Nissan Leaf summed by current drawn
by the BMW i3) is set. This is the total current that the
charging site uses to supply EVs. In Tests 1 and 3, the limit is
20 A, and in Test 2, it is 15 A. In reality, this limit would be
defined by a selected electro-technical limit, such as the rating
of the fuses, cables or a transformer. In the following tests, two
EVs are used, so the limit is set lower than it would be in a
reality to increase the complexity of the test cases and to verify
the operation of the algorithm.

221 | Test1

The purpose of this test is to demonstrate the dynamic per-
formance of the charging algorithm. In this test, the BMW i3 is
set to ‘low” mode to see the functioning of the algorithm as
evidently as possible. This is because in this mode, the BMW i3
has fewer current steps than in other modes, and as a conse-
quence, the offset between the current set point at a charging
station and the real charging current is larger and thus better
observable. Before the start of the test, the initial SoC of the
Nissan Leaf is 50% and the SoC of the BMW i3 is 85%. In this
test, the maximum limit for both EVs is selected as 20 A,
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which means that both EVs cannot charge at full current
simultaneously and the algorithm has to limit the charging.

222 | Test2

This test shows the performance of the algorithm in another
situation with a lower current limit and with different starting
SoCs of the EVs than in Test 1. In addition, the BMW i3 is in a
different charging mode. The total limit of the current is set to
15 A, which means that any of the two EVs is not able
to charge with maximum current. The BMW i3 is set to
‘maximum’ mode. The starting SoC of the BMW i3 is 73% and
of the Nissan Leaf is 90%.

223 | Test3

The objective of this test is to show how the algorithm
detects that two EVs charge at different phases, so charging
current does not need to be limited. The total current limit
is 20 A. On the side of the BMW i3, phase A and phase C
are disconnected at the charging station, so the BMW i3 can
only charge using phase B. The Nissan Leaf is charged at
phase A as in all tests. The BMW i3 is set to ‘maximum’
mode. The initial SoC of Nissan Leaf is 85%, while the
BMW i3 has 70%.

3 | CHARGING ALGORITHM

Before the description of the algorithm, it is important to
underline that the objective is to form a set of practices that
create a basis for other charging management algorithms. The
proposed algorithm is illustrated in Figure 5. The algorithm is
executed in 1 min time steps.

The algorithm is divided into two parts. Firstly, the 3-phase
capacity is divided evenly between all EVs in state C or D,
meaning that they ate ready to receive energy (see Table 3). An
even division of the 3-phase charging capacity means that total
charging capacity (in amperes) is divided by the number of
active charging sessions. The decimals of the division are
eliminated, and the remaining natural number is given as a set
point to all active charging sessions. Secondly, the remaining
capacity is divided between 1-phase EVs, repeating phases A,
B, and C (phase p). This means that the 1-phase charging
sessions may receive higher allowed current. However, 3-phase
charging sessions are still likely to receive higher charging
powers.

When an EV is connected, the algorithm supposes that
the EV charges at three phases. The algorithm gives one-time
step to the EV to react. During this time, the algorithm
memorizes which phase(s) the EV uses for charging. Because
some EVs react slowly, one time step is required to avoid a
malfunction.

A core feature of the algorithm is that it learns the
behaviour of the EV that is currently charging through the
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FIGURE 5 Flowchart of proposed charging algorithm
TABLE 3 Simplified charging states according to IEC 61851
State Message
A EV not connected
B EV or Electric Vehicle Supply Equipment
not ready to receive energy
C EV is charging
D Charging is possible. EV requires charging area ventilation.
E Error
F Fault

Abbreviation: EV, electric vehicle.

use of expected charging currents. For clarity, this is
described in an own subsection. Simplified explanations of
the charging states according to the standard IEC 61851 are
explained in Table 3. It is important to notice that even
though each EV is modelled separately by means of ex-
pected charging currents, the algorithm is computationally
light, which makes it easily scalable to cover large charging
sites.
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TABLE 5 Expected charging currents during second time step of the
algorithm for BMW i3 after updating first-row values. All values in amperes

Set point Phase A Phase B Phase C

6 6.3 5.8 5.7

7 7.0 7.0 7.0

8 8.0 8.0 8.0

9 9.0 9.0 9.0

32 32.0 32.0 32.0
3.1 | Expected charging currents

The idea of expected charging currents is to make the algorithm
capable of memorizing the unique charging characteristics of a
charging session without the need for obtaining any information
from the vehicle. Expected charging currents keeps track on each
EV of which phases are being used and how much current is
drawn from each phase. It is important to underline that ex-
pected charging cutrents are not calculated, but they are direct
measurements of phases A, B, and C at the charging station.

When an EV is connected to a charging station and
changes from state A to state B, the behaviour of the EV is
expected to be ‘ideal’ and three-phase connected. This means
that the EV draws exactly the current indicated by the current
set point at each phase. Expected charging currents of each
charging session are updated every time the algorithm is
executed. An update means that the three-phase currents at the
given current set point are added to expected charging cur-
rents. An illustration of how expected charging currents are
structured and updated as illustrated in Tables 4 and 5. During
the very first time step of the algorithm, the EV is expected to
be ‘ideal’. In this case, expected charging currents for any
charging station are as presented in Table 4.

During the second execution of the algorithm, expected
charging currents is updated according to the measured cur-
rent. The measured current values are stored in the columns
labelled according to the phases as A, B, and C. In the case of
the BMW i3, for example, the expected charging currents after
the first update are presented in Table 5.

The BMW i3 charges at 3 X 6 A, but in reality, offsets in
the phase currents exist. This procedure is continued through

20 40 60 80 100 120 140 160 180 200 220
Time (s)

FIGURE 6 Measured current of Nissan Leaf and current set point

the whole charging process. If the algorithm detects that cur-
rent flows only during one phase (a single-phase EV), the
values of the other phases are set to 0. Allowing each EV to
start charging with 6 A means that the algorithm allows tem-
porary overload of maximum 6 A per EV. However, this
overload will last 1 min as maximum. In case of a failure when
reading a current measurement, the algorithm uses the previ-
ously measured value. This alleviates the impacts of short
communication failures while still allowing the algorithm to
operate on each control cycle.

4 | RESULTS

This section first presents the results of the current set point
response test. Subsequently, the results of the algorithm vali-
dation are introduced.

4.1 | Current set point response test

The results of the current set point response test of the EVs in
Table 1 are presented in Figures 6-9. The current of phase A
of the Nissan Leaf and the current set point are illustrated in
Figure 2.

In Figure 6, it is observed that the Nissan Leaf starts to
react within 2 s after the charging is enabled. It takes 10 s to
reach 6 A charging current from the disabled position. Once
the charging is enabled, the next charging current is reached
within the maximum time of 2 s. Similar time delays are seen
thorough the increasing part (0 to 110 s) as well as the
decreasing part (110 to 220 s) of the test.

The current offset is higher with a higher charging current.
When the current set point is 7 A, the maximum measured
current is 7.24 A. The largest offset is measured when the
current set point is at 16 A, in this case the current is 16.84 A.
According to the standard IEC 61851, the maximum current
drawn by the EV does not include inrush or leakage currents.
The currents of phases A, B, and C of the BMW i3 under
different charging modes and the current set point are shown
in Figutes 7 (low’ mode), 8 (‘reduced’ mode), and 9
(‘maximum’ mode).
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FIGURE 7 Measured current of BMW i3 (low’ mode) and current set
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Measured current of BMW i3 (‘maximum’ mode) and

Through all three charging modes, phase C has the shortest
response time. When the BMW i3 is on the ‘low” mode, five
levels of charging currents are measured at phase C with the
following set points: 6, 7, 8, 9 and 16 A. In ‘reduced’ mode,
different current levels are measured with the set points 6, 7, 8,
9,10, 11, 12, 13 and 16 A.

Most of the time, current at phase A has the most elevated
values. In low’ mode, the largest measured difference of the

6 12 18 24 30 36 42 48 54 60
Time (min)

FIGURE 10 Sum of the measured phase currents of both electric
vehicles and the limit in Test 1

current between phase A and phase C is 2.3 A. In ‘reduced’
mode it is 3.3 A and in ‘maximum’ mode, it is 2.3 A. However,
these values are measured during the transient times when the
current is changing from one set point to another one. Most of
the time, the current difference between phase A and phase C
is around 1 A.

In ‘low” mode, the differences between the measured phase
currents and the current set point is the largest. At steady state,
the largest measured offset between phase C and the set point
is 796 A at the time step 124 s (in Figure 7). In ‘reduced’
mode, the measured currents are closer to the set point
(Figure 8) and in ‘maximum’ mode, even more (Figure 9).
However, it is crucial to consider that at low’ and ‘reduced’
modes, the EV is not designed to charge at the set point
current but has its internal limitations [17]. These limitations
cannot be changed by the charging controller at the charging
station.

When the Nissan Leaf mostly draws current that is higher
than the set point, in the case of the BMW i3, it depends on the
phase. On the ‘maximum’ mode, during the time when the
charging is enabled, phase A has an average bias of 0.93 A,
phase B 0.73 A and phase C 1.03 A from the set point.
Therefore, once the current has reached the desired level,
phase B follows the set point most accurately.

4.2 | Validation of charging algorithm

The results of Tests 1, 2, and 3 are presented in the
following three subsections to validate the correct func-
tioning of the algorithm with real EVs. The results from
Figure 10 onwards are shown in corresponding order. Only
the phase currents where the EVs draw energy are illus-
trated. The solid lines present currents and the non-solid
lines present the limit (light blue) or the corresponding
current set point (grey).

To increase the readability, each test is divided into steps
(@), (b), (c) etc. and highlighted by a grey or white back-
ground colout, all of which is clarified in detail following the
figures.
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FIGURE 12 Measurements of BMW i3 in Test 1

421 | Test 1
Results of Test 1 are observed in Figures 10 (the sum of the
currents), 11 (Nissan Leaf), and 12 (BMW i3).

(a) At the beginning, no EV is connected. At about 3.5 min,
the BMW is connected. The algorithm allows the BMW to
charge with 6 A using all three phases. During this minute,
the algorithm verifies how much free charging capacity the
charging site has. Because no other vehicles are connected,
the algorithm gives 20 A to the BMW. Thus, BWM in-
creases the charging current to full capacity (~16 A). The
measured ripple at phase A between 6 and 9 min
(Figures 10 and 12) is characteristic behaviour of the BMW
i3 and is not caused by the algorithm.

(b) At minute 12, the Nissan Leaf is connected to the charging
station. Since the algorithm allows the Nissan to start
charging at ~6 A, and the BMW is using ~16 A at phase
A, the total current of the charging site at phase A in-
creases to ~22 A. In the next control cycle, the algorithm
notices that the current limit is exceeded and calculates
new current set points to both EVs. By design, the algo-
rithm aims at dividing the charging current as evenly as
possible between the EVs. Thus, it establishes a set point
of 10 A to both EVs. However, in ‘low” mode, BMW
charges at ~6.3 A (measured in Figure 7) with the set point

of 10 A. Hence, ~3.7 A of the charging capacity allocated
to BMW is not used. The algorithm allocates 3 A more to
the Nissan, and it starts charging at ~13 A. This is the
maximum capacity that can be allocated to the Nissan
without exceeding the total limit of the charging site
(20 A).

It is important to notice that in (b), the efficiency of the
algorithm is easily observable. If the algorithm did not have an
adaptive nature, the real charging current of the BMW (~6.3 A)
could not be detected, and as a consequence, additional current
(3 A) could not be allocated to the Nissan. Thus, the Nissan
would have continued to charge at ~10 A instead of ~13 A,
representing a longer charging time.

(c) The Nissan is charging at ~13 A and the BMW at ~6.3 A.
Due to the used charging controller, current is regulated in
the steps of 1 A, the total current is slightly less than 20 A
(Figure 10).

(d) At minute 44, BWM starts the decreasing-current phase of
charging since the battery is close to be full. This charac-
teristic can be also clearly seen in Figure 4. Decreasing
charging current of the BMW means that more capacity
can be allocated to the Nissan. As the BMW frees the
charging capacity, the algorithm allocates more charging
capacity to the Nissan. This is seen as stepwise increase of
the set point and the charging current in Figure 11.

() The Nissan charges at ~16.9 A. At minute 51, phase A
current of the BMW increases to ~5.7 A. This is charac-
teristic of the BMW i3, and the same phenomenon is
visible also in Figure 4. The increasing current of the
BMW can be seen as a peak of ~22.7 A in Figure 10. The
algorithm reacts to this by decreasing the set point of
the Nissan to 13 A. When the BMW naturally decreases
the charging current, more charging capacity is allocated
to the Nissan by increasing the set point of the Nissan to
14 A. When the BMW stops charging as a result of its fully
charged battery at minute 53, the whole charging capacity
of the charging site (20 A) is allocated to the Nissan.
However, the Nissan can charge at ~16.8 A, as measured
also in Figure 3.

422 | ‘Test2

Results of Test 2 are presented in Figures 13, 14, and 15.

(a) At minute 0, no EV is connected. During minute 1, the
Nissan Leaf is connected to the charging station. Directly
when the Nissan is connected, 6 A is allocated to it.
During this minute, the algorithm calculates the capacity
that can be allocated to the Nissan. Since the limit of the
charging site is 15 A and there are no other EVs con-
nected, the algorithm allocates 15 A to the Nissan.
Consequently, the charging current of the Nissan in-
creases. However, with the set point of 15 A, the Nissan
Leaf actually charges at ~15.2 A, which would mean
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FIGURE 15 Measurements of BMW i3 in Test 2

(b)

~0.2 A ovetload. This behaviour is also measured in
Figure 6. As a consequence, the algorithm reduces the set
point of the Nissan to 14 A, and the Nissan actually
charges at ~13.9 A. This is an inherent characteristic of the
algorithm to guarantee that the total current limit of the
charging site is not exceeded over several minutes.

At minute 22, the BMW i3 is connected to the charging
station. Since the Nissan is already charging at ~14 A and
6 A is allocated to the BMW when connected, and the

©
@

©
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BMW slowly increases its charging current, a maximum
peak of ~16.1 A is experienced at phase A. Other phases
are not overloaded. The algorithm corrects the overload
situation by dividing the charging capacity between both
EVs as evenly as possible. Thus, it allocates 7 A to the
Nissan and 8 A to BWM. Howevert, it notices that with the
set point of 8 A, the BMW actually draws ~8.2 A and
the Nissan ~6.9 A, so the algorithm reduces the set point
of the BMW to 7 A and increases the set point of the
Nissan to 8 A. Then, the algorithm learns that the Nissan
charges ~7.9 A with the set point of 8 A and that the
BMW charges ~7.2 with the set point of 7 A, so it reduces
the set point of the Nissan to 7 A, resulting in a charging
current of ~6.9 A. Thus, the set point of both EVs is set
to 7 A with the total resulting charging current of ~14.1 A.
Both EVs are charging with a constant charging current.
During minute 91, the Nissan Leaf starts to reduce its
charging current because of the high SoC of the battery.
Throughout this time, the current oscillates. This is a
characteristic of the Nissan Leaf, which is seen also in
Figure 3. This causes stepwise increments and reductions
of the current set point of the BMW i3. During this time,
short overloading occur (Figure 13), with the highest peak
of ~21.1 A. At minute 102, the battery of the Nissan Leaf
is full and it stops charging.

Since the Nissan Leaf does not charge anymore, the total
capacity (15 A) could be allocated to the BMW i3. How-
ever, during (d), the algorithm has memorized that with
the set point of 15 A, the BMW i3 charges slightly more
than 15 A at phase A. This has been registered in expected
charging currents of the BMW i3. Thus, the algorithm
fixes the set point of the BMW i3 to 14 A instead of 15 A
with the aim at avoiding a long-term overload. The BMW
i3 continues to charge with the set point at 14 A.

| Test 3

Lastly, the results of Test 3 are presented in Figures 16, 17, and
18. It should be noticed that in this test, the BMW i3 uses only
phase B to charge because of the physical disconnection
of phase A and phase C. That is why only the measurements at
phase B of the BMW i3 are presented. The current limit of the
charging site is set to 20 A.

@

®)

At the beginning, no EV is connected to the charging
station. Before minute 2, the Nissan Leaf is connected.
During the first minute of connection, the algorithm has
set the set point of the Nissan Leaf to 6 A.

Approximately at 2 min 20 s, the set point of the Nissan is
set to maximum of 20 A, since no other EVs are con-
nected to phase A. The Nissan continues charging with the
maximum current, which is measured at ~16.7 A. In
the moment of 5 min 20 s, the BMW i3 is connected to the
charging station. In this case, the BMW i3 is charging only
at phase B, but the algorithm does not have such
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25 currents of the Nissan Leaf it knows that with the set point
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FIGURE 18 Measurements of BMW i3 in Test 3

information, so it supposes that the BMW will charge in 3-
phase manner as explained in Section 4.1.

(c) Thealgorithm expects that the BMW i3 chatrges 3-phase and
divides the charging capacity evenly to both EVs. Thus, it
increases the set point of the BMW i3 from 6 to 10 A and
reduces the set point of the Nissan Leaf from 20 to 10 A.

(d) The algorithm learns that the BMW i3 charges only at
phase B. In addition it knows that the Nissan Leaf uses
only phase A. In addition, from expected charging

The measurements demonstrate that the delays from a change
in the current set point to a steady state are mostly a matter of
a few seconds. Standard IEC 61851 defines 5 s as the time an
EV has to react to a new current limit, and during this time, the
charging controller shall not change the current limit. This sets
the absolute minimum limit for the time step that can be used
to execute the algorithm. To guarantee the correct functioning
of the charging algorithm, a time step shorter than 5 s should
not be used. Otherwise, not all EVs may have time to reach a
new current set point. The used communication technology,
the charging controller, and the charging station can have an
impact on delays.

In the current set point response test, the current set points
are changed in 1 A steps. The charging dynamics may be
different if, for instance, the set point is set from 6 to 16 A.
This should be verified in further development work. The
current set point test illustrates that there is always a difference
between the current set point and the real charging current.
With the measured EV models and charging modes, there is a
great variety of offset. The largest measured offset at a steady
state with the BMW i3 is 7.96 A, which was measured in the
low’ mode at the time step 124 s (in Figure 7) in phase C.
From the point of view of the EV, this is really not an offset,
because the EV is not even meant to be charged at the current
indicated by the set point. In this case, the EV is designed to
charge at 7.5 A [17] and in reality, it charges at 7.04 A in phase
C, while the algorithm would like it to charge at 15 A. The issue
is that the charging algorithm is not aware of the internal
limitations of the EV and does not know that by changing the
charging mode, a higher charging current can be used. Thus,
from the viewpoint of the EV, the offset is 0.46 A, and from
the viewpoint of the charging algorithm, the offset is 7.96 A.

Such an extreme offset can have a fundamental reducing
impact on the efficiency of a charging algorithm, especially,
when controlling several EVs at the same charging site.
Otherwise, when the difference between the current offset and
the measured cutrent is, say, less than 1 A, it probably will not
have much impact small charging sites. Another story is in the
case of large sites with tens of simultaneous charging sessions.
In that case, even offsets of 1 A may accumulate up to tens of
amperes. If the charging current was not measured at all but
expected that the EVs charge exactly the current defined by the
set point, it could lead to overloading cables or a distribution
transformer.

In reality, the EV fleet consists of different models with
different load curves and offsets. This leads to a balancing
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effect at a large charging site and reduces the risk of mal-
function of the algorithm due to the accumulation of the
offsets at the same phase. For better general knowledge, the
current set point response test covering more EV models
should be repeated to see the variations between different EV
models in this regard. However, the proposed charging algo-
rithm takes the offsets into account.

The validation of the proposed algorithm through three
tests show that the algorithm works as intended with com-
mercial EVs, under various circumstances. The algorithm
adapts well in situations, where current drawn by EV or EVs
increases or decreases suddenly. The proposed algorithm
complies well with the charging standard IEC 61851.

EV models possess different characteristics with regard to
charging [18]. Even the same EV can behave in different ways
depending on its charging settings. The charging system
operator does not know what kind of charging curve the EV
connected to a charging station has. It is also possible that even
the EV driver is not aware of the charging settings. This poses
a potential reduction in efficiency of the charging management
algorithm applied by the charging operator. If the charging
management algorithm is unable to regulate the charging
current as intended or if the gap between the current set point
and the real charging current is overlooked, it is likely that there
is network capacity allocated to an EV that in reality is not used
completely. Perhaps this unused capacity could be allocated to
another EV. For instance, if 10 A is allocated to an EV, but it
chatges with only 6 A, the resting 4 A could be used by another
vehicle.

While in the case of most EVs, the load curve statts to
decrease during the last 1%—-3% of the SoC. Keeping in mind
the average daily distances, a large part of the time, the EVs are
charged during this decreasing phase [19]. As one EV releases
network capacity because of the decreasing current phase of
the charging process, this free capacity is reallocated to other
EVs. This is an inherent and efficient characteristic of using
measured currents in the charging algorithm. In this regard, the
efficiency of the proposed algorithm is assessed in Tests 1
and 2.

In essence, the less accurately the charging operator can
regulate the charging current of the charging EVs, the higher
is the inefficiency of the charging system as a whole because
the charging management algorithm does not perform as it
was designed to. The problem of phase imbalance can be
mitigated through phase swapping [20] at difference charging
stations. This helps to alleviate the problem but does not
guarantee that it will be eliminated. The algorithm handles
well sudden unbalances as seen in Test 1. In addition, it
operates even under a case of long-term unbalance as seen in
Test 3.

Even if the algorithm allows a temporal overload of
maximum 6 A per vehicle, in a real case, it is very unlikely that
it would pose a problem because of two reasons. Firstly, the
fuses of a charging site do not react immediately to small
overloads. For example, a widely used gG fuse must withstand
25% overcurrent at least 1 h, according to the standard IEC
60269. In addition, such short-term overcurrent does not have

time to overheat the network components. Secondly, it is un-
likely that many EVs are connected to the charging station
exactly within the same minute at the same charging site. The
performance of the algorithm under overloads is seen in Tests
1 and 2.

It can be argued that from the customer point of view, it
might be important that the charging process starts as soon as
possible when the EV is connected to the charging station. In
this way, a customer notices immediately that the EV starts
charging and does not worry that the EV will not charge
because of a malfunction, for example. This may improve the
user experience.

The proposed algorithm is especially suitable for large
charging sites with tens or hundreds of charging stations. This
is because it may not be economically feasible to size the
network of such site to be able to cover the peak demand.
Apart from that, many large charging sites, such as shopping
centres, have a high percentage of short charging sessions [19].
Thus, an efficient charging management is likely to be reflected
as higher SoCs of the batteries and improved customer
experience.

Even if the algorithm focuses on the network capacity at
the charging site, more efficient use of this capacity may be also
indirectly beneficial for the distribution network upstream.
With a view to practical applications, an advantage of the
proposed algorithm is that it is mathematically easy to under-
stand and computationally lightweight. It does not include
computationally neural
networks.

demanding algorithms, such as

6 | CONCLUSION AND FUTURE WORK

An original algorithm for EV charging management is pre-
sented. The proposed algorithm creates a basis for further
charging algorithms to become more efficient in real charging
solutions. The novelty of the algorithm is twofold.

Firstly, the proposed algorithm considers several non-ideal
charging behaviours of EVs in which no comprehensive so-
lutions have previously been proposed. These non-idealities
are the unknown charging phase or phases, the offset be-
tween the real charging current and the current set point at the
charging station, unbalanced charging, and the otherwise un-
known charging curve. The key to the algorithm is that it is
based on measurements of the actual charging current and
does not rely on predefined load curves. Thus, no modelling or
data about the EVs is necessaty.

Secondly, the algorithm focusses on maximizing the
charging current within the capacity limits of the power
network or otherwise set limit. This leads to a high use rate for
the power network and a reduction in charging times.

According to the test with commercial EVs, the algorithm
is robust, straightforward, and computationally light. These are
positive aspects with a view towards practical applications. In
addition, the algorithm does not need any additional infor-
mation from the vehicle or user. The only requirement is that
the vehicle must fulfil charging standard IEC 61851. The
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algorithm is tested experimentally by using commercial EVs
and charging infrastructure. Consequently, the algorithm is
suitable for real applications and compatible with charging
standard IEC 61851. For communication amongst the algo-
rithm, charging controllers, and measurements devices, Mod-
bus TCP/IP is used, which is a well-established and robust
communication protocol.

To the best knowledge of the authors, no other algorithm
in the published research literature uses measured phase cur-
rents in the operation of charging management. Neither has
any other algorithm had the main objective to maximize used
network capacity to overcome the non-ideal behaviour of EVs.
Therefore, the presented work fills a gap in research
knowledge.

In the future, new strategies to improve expected charging
currents will be studied, and the algorithm will be improved
against oscillations. The performance of the algorithm will also
be compared with other charging management algorithms.
Additionally, the algorithm will be tested using a larger number
of real EVs and charging stations to prove its scale capabilities.
Lastly, the algorithm will be validated by a commercial charging
system operator in a field test.
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1 | INTRODUCTION

As electric vehicles (EVs) are emerging at a fast pace, smart
charging solutions are becoming increasingly important.
When it comes to real-life EV chatrging solutions, there are
often numerous unknown variables to be considered. These
unknown vatiables include the EV user-dependent charging
behaviour (available charging time and energy requirement)
and the EV technology-dependent charging characteristics,
which define the current consumption at each moment of
time. Herein, the term ‘charging characteristics’ is used to
describe the complex correlation of the realised charging
currents to the factors, such as the current limit set by the
electric vehicle supply equipment (EVSE), the temperature
and state-of-charge (SOC) of the EV battery, and the limi-
tations of the on-board charger (OBC). For the develop-
ment of efficient smart charging solutions, consideration of
realistic charging behaviours and charging characteristics is

imperative.

Kalle Rauma?®

| Antti Rautiainen’ | Pertti Jiirventausta1

Abstract

As electric vehicles (EVs) are emerging, smart and adaptive charging algorithms have
become necessary to ensure safe and efficient operation of the grid. In the scientific
literature, most of the proposed charging control algorithms focus solely on EV usage-
related behaviour, while the charging characteristics of EVs are overlooked. Herein,
realistic charging characteristics are illustrated and discussed. More notably, to overcome
the issues caused by the non-idealities in charging characteristics, a new adaptive charging
characteristics expectation algorithm is proposed. The objective of this algorithm is to
enable accurate estimation of the non-ideal charging characteristics. This can be used to
reallocate any unused charging capacity and to ensure that the intended total capacity is
used effectively. The effectiveness of the proposed algorithm is demonstrated using
hardware-in-the-loop simulations with commercial EVs and real charging data. The re-
sults show that the proposed algorithm achieves an 88%—97% capacity usage rate, while
the current benchmark solution achieves only 45%.

1.1 | Related research and motivation

In the scientific literature, the EV charging behaviour has
been analysed from the EV use perspective (hourly/daily
level) by using, for example, traffic survey data [1-8], energy
metre-level data [9], and actual measurements of charging
sessions [6, 10-13]. However, in addition to the differences
in EVs' usage, the EVs also have different charging char-
acteristics. It is often assumed that the EV charging current
can be fully controlled, but in reality, the EVSE can only set
the maximum charging current, and the EV can choose any
charging current below the limit. There are several reasons
for an EV to charge with a lower current than the limit set
by the EVSE such as the vehicle's maximum charging rate
being lower than the limit or the OBC may choose a lower
charging rate to protect the battery from overheating [14].
The impacts of all these reasons are referred to as non-ideal
charging characteristics as the charging current deviates from
the current limit set by the EVSE.

"This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
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From previous studies [1-14], only [4, 14] mention non-
ideal charging characteristics, whereas the rest focus solely on
EV usage-related behaviour. In [14], the realised charging
currents are measured to determine the energy levels of the
EVs more accurately. However, there is no mention of real-
locating the unused charging capacity when an EV is drawing
less current than the set limit. In [4], experimental measure-
ments of a Citroen C-Zero are used to form a simplified model
for the final charging curve. However, no other non-ideal
charging characteristics are considered, and the same model
is assumed for each EV in the simulations.

The issue regarding the non-idealities has recently been
brought up in [15-17] and a solution is presented in [16, 17]. In
[15], the final charging curves of 304 charging sessions are
analysed. According to the analysis the different charging
curves can be classified into six types with reasonable accuracy.
In [16], a data-driven approach for integrating a machine
learning model to predict the charging profiles is proposed.
According to that study, the realised utilisation rate of the
charging capacity was 65.8% of the planned utilisation when
the EVs are assumed to draw the maximum power, whereas
the proposed prediction algorithm achieves a 94.4% utilisation
rate. The increased capacity usage rate leads to a higher
charging energy dispatch and higher final SOC for the EVsina
limited infrastructure without the need for costly upgrades of
the charging infrastructure [16]. Thus, these results signify the
importance of the consideration of the non-ideal characteris-
tics. However, even though the results of the proposed solu-
tion are very promising, there is a notable drawback. The
approach requires a large data set of the charging processes of
the EVs and the trained model only reflects the charging
characteristics of the models included in the data set. There-
fore, its usability might be restricted if the necessary data are
not available. In [17], a capacity reallocation algorithm is pro-
posed for a case considering two EVs and a peak power-based
tariff. The algorithm is tested using hardware-in-the-loop
(HIL) simulations with commercial EVs. The results show
that the algorithm effectively reallocates unused charging ca-
pacity. However, the algorithm is limited to only two single-
phase EVs and the reallocation method is not scalable to a
larger charging site.

In public charging stations, it is not reasonable to assume
that the charging characteristics of individual EVs can be
accurately predicted in advance. In addition, the charge point
operators do not have access to internal battery variables [16].
A control system can be made without feedback of the
charging current measurements, but this does not enable
the control algorithm to observe the realised charging load.
The potential deviation between the planned loading and the
realised loading is especially significant when considering
three-phase charging points [16], because a notable share of all
EVs (include both full EVs and plug-in hybrid EVs) support
only single-phase charging. By measuring the charging currents,
the control algorithm can learn or adapt to the charging
characteristics of each EV during the charging sessions, which
can then be used for optimisation purposes. Control algo-
rithms with an ability to adapt and learn have been studied

before in, for example, [18-27]. However, the adaptation and
learning in these studies focus on the usage-related behaviour,
while the limitations caused by the non-ideal charging char-
acteristics are overlooked.

When it comes to practical solutions that are compatible
with the charging standards and commercial EVs, the present
state-of-the-art solution is to assume that each active EV draws
the current indicated by the EVSE, as in [28, 29]. An EV being
active refers to a situation where it is plugged in and ready to
receive energy. Both these studies acknowledge the fact that
the realised charging currents of the EVs may be well below
the limit set by the EVSE. In [28], the realised charging cur-
rents are measured and used to calculate the realised energy
consumption of the EVs, but neither of the studies offers any
solutions to reallocate the unused charging capacity.

Based on the literature review, it seems that the non-ideal
charging characteristics and their impacts are attracting more
attention. However, according to the best knowledge of the
authors, practical and scalable solutions to overcome the
potential deviation between the planned and realised loading
have not been proposed. This kind of solution can increase
the charging capacity utilisation rate, which may reduce the
necessary investment cost of the local electric grid or
improve the quality of the charging service (QoCS), that is,
increase the charged energy [16]. A greater charged energy
also improves the utilisation rate of the charging points and
can lead to higher revenues for the charging operator if a
volumetric charging energy pricing is used. In addition, the
deviation between the planned and realised loading may have
negative impacts on smart charging objectives, such as fre-
quency regulation.

1.2 | Contributions

The aim herein is to thoroughly illustrate the non-ideal
charging characteristics and discuss their impacts. More
importantly, an adaptive charging characteristics expectation
(CCE) algorithm is proposed to minimise the wasted capacity
caused by the non-idealities. This is a crucial step towards
capacity-efficient charging sites. The proposed algorithm is
compared to the ideal situation, where the charging charac-
teristics are perfectly predicted, and to the present benchmark
situation where the charging currents are assumed to be equal
to the limit set by the EVSE. To ensure the intended operation
under realistic conditions, the experiment is carried out using
HIL simulations with two commercial EVs and measured data
of real charging sessions.

The contributions are as follows:

1. Illustrating the complexity of the non-ideal charging char-
acteristics. Unlike other previously mentioned studies
regarding the non-idealities, the non-ideal charging char-
acteristics under different current limits set by the EVSE
are analysed herein.

2. Development of an adaptive CCE algorithm that enables
the charging control system to estimate the potentially
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unused three-phase charging capacity and reallocate it
effectively among the active EVs.

3. Formulating a simulation model that considers non-ideal
charging characteristics. The simulation model can be
used with real EVs (HIL simulation) or without (only
simulated EVs).

4. Comparing the proposed algorithm to the present benchmark
solution and to the ideal case. This can be used to determine
the usefulness and optimality of the proposed algorithm.

1.3 | Structure

The controllability of EV charging and the non-ideal charging
characteristics are discussed in Section 2. The control algorithm
basis and the proposed CCE algorithm are described in Sec-
tion 3. Section 4 presents the experiment setup, including the
HIL simulation model, the used data and the laboratory setup. In
Section 5, the results are presented and discussed. Finally, the
conclusions are provided in Section 6.

2 | BACKGROUND FOR EV CHARGING
CONTROL

The focus herein is on the charging mode 3 defined in the
Standard IEC 61851-1. The charging mode 3 includes extended
control options while still being cost-efficient, and it is meant to
be the basic charging mode for EVs. There may be a need for a
charging control also in a fast charging site, but the objective of a
fast-charging station is often to provide as much charging power
as is safely possible. Consequently, the charging control objective
may be different, for example, to utilise an auxiliary battery en-
ergy storage system to reduce charging demand peaks from the
grid point of view [30]. Therefore, further consideration of fast-
charging solutions is not discussed here.

2.1 | Controllability

As stated in [31], mode 3 charging supports currents between 6
and 80 A. To indicate a charging current limit for the EV, the
EVSE can adjust the duty cycle of the pulse width modulation
signal through the control pilot circuit. The EV should then
adjust its charging current to the limit or below it. The same
charging current limit is for each phase and thus the EVSE
cannot control phases separately.

There are several non-ideal characteristics that can cause a
phase current to be lower than the limit indicated by the
EVSE. In a three-phase charging point, the most trivial and yet
the most impactful issue is the fact that some EVs support
only single-phase or two-phase charging. In addition, the OBC
or the charging cable may limit the maximum charging current
to, for example, 16 A. Other reasons include the OBC reducing
the charging current to protect the battery from overheating or
the vehicle's battery being neatly fully charge and thus
requiring slower charging [14].

2.2 | Nonideal charging characteristics

It may be trivial that different EVs have different charging
characteristics. However, an EV may also have different in-
ternal charging modes which can affect the charging charac-
teristics of the EV. For example, BWM i3 has three different
charging modes: ‘maximum’, ‘reduced’ and ‘low’ [32]. Only the
EV user can change the charging mode. Table 1 summarises
the examined EVs [33]. Since there are no accurate data
available regarding their charging efficiencies, the OBC effi-
ciency is assumed to be the same for each mode of the BMW.
Comprehensive details regarding the differences between the
three modes of the BMW are not available as it is presumably a
trade secret.

The same Smart Grid Technology laboratory [34] and
equipment (including the two EVs, the charging point and two
energy analysers) are used to measure the realistic non-ideal
charging characteristics and to conduct the HIL simulation
experiment. The equipment is described in more detail in
Section 4.3.

The aim here is not to assess the technical details of the
EVs which define their charging characteristics. Instead, the
authors illustrate different charging characteristics and discuss
their impacts from the charging control system point of view.

221 | Steady state charging currents
Based on the conducted charging current measurements with
different current limits, the charging current seems to be steady
(variation of <0.5 A) until around 98% SOC. However, the
steady-state currents might be slightly over or notably under
the limit set by the charging controller. This is illustrated in
Figure 1, where the charging current limit for the BMW in low
mode is changed every 20 s. The symbols 11-13 in the legend
represent phase currents. In Figure 1, the largest difference
between the limit and the realised charging currents after a 20-s
adjustment period is 7.7 A. This is the largest measured de-
viation between the current limit and the realised charging
current of the considered EVs. Similar currents were seen even
with longer adjustment periods. This means that the BMW in
low mode would charge with currents of around 7.6 A (I1),
7.5 A (I2) and 7.3 A (I3) when the current limit is 15 A. More
importantly, Figure 1 shows that all EVs may not be able to use
all charging currents between their minimum and maximum
supported charging currents, which has been assumed in [16].
For the other BMW modes (i.e. reduced mode and maximum
mode), the deviation between the current limit and the realised
current is smaller. For the Nissan Leaf, the steady-state single-
phase charging currents deviate £0.8 A from the current limit.
For the sake of conserving space, these are not illustrated.
While the chatging characteristics of, for example, BWM's
low mode are likely to be more energy efficient or safer from the
EV perspective they pose a challenge from the charging control
system point of view. This is because there is no standardised way
for a charging control system to gain access to the information
regarding the charging characteristics of the EVs.
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TABLE 1 EV models and charging modes
EV model Charging mode Battery capacity OBC efficiency
BMW i3 (94 AH) Maximum mode 33.2 kWh 0.865"
Reduced mode
Low mode
Nissan Leaf - 24.1 kWh 0.899"

Abbreviations: EV, electric vehicle; OBC, on-board charger.
“Efficiency for model BMW i3 (120 Ah).
bhfﬁcicncy for model Nissan Leaf Acenta (40 kWh).
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FIGURE 1 Charging characteristics of BMW i3 in low mode
2.2.2 | Adaption time to a new current limit

The steady-state charging current measurements show that it
takes around 2-15 s for an EV to reach the new steady state
after the current limit changes. The reaction time to decreased
current limit seems to be faster, around two seconds for both
EVs. A greater change of the current limit does not seem to
impact the adaption time. This was seen in the measurements
where the current limit is changed in steps of 5 and 10 A. An
illustration of these measurements is not included here due to
space restrictions.

There seems to be a relatively consistent delay when the
charging is supposed to start. This delay is often around 10 s as
seen in Figure 1. In three-phase charging, there may also be
notable differences between the phases. As shown in Figure 1,
one phase current (I3) may react much faster than the others.
This characteristic was seen in each measurement of the BMW.

2.2.3 | Charging currents in the final SOCs under
a constant current limit

Different EVs may have dissimilar charging characteristics also
at the final SOCs. To illustrate this, the final charging curves of
both EVs are presented in Figure 2. In this figure, BMW
maximum mode is chosen as its final charging curves depend
more notably on the current limit compared to the other modes.
The illustration of the remaining two modes is excluded to

conserve space. The final charging curves are measured for all
current limits (6—16 A), but for the sake of clarity, only the curves
with 6, 9, 12 and 16 A limits are presented. In Figure 2b, the
three-phase charging of BMW changes into a single-phase
charging at around the mid-point of the final charging curve.
After the change, the current I1 triples quickly. There seems to be
a clear correlation between the steady-state charging current and
the point where the three-phase charging changes into a single-
phase charging,

The energy drawn during the final charging curve depends
notably on the current limit. For the Nissan and the BMW this
energy varies between 0.09-0.71 and 0.16-0.91 kWh, respec-
tively. Assuming the efficiencies presented in Table 1, the final
charging curves start at around 97.5%-99.7% and 97.5%—
99.6% SOC for the Nissan and BMW, respectively.

3 | CHARGING CONTROL ALGORITHM

To overcome the challenges posed by the non-ideal charging
characteristics, an adaptive CCE algorithm is proposed. The
algorithm utilises real-time charging current measurement as
feedback to memorise and deduct the charging characteristics.
As opposed to the solution presented in [16], this solution does
not require any preliminary data and is computationally light,
which are valuable qualities in real-life implementations. The
CCE algorithm is designed to complement other charging al-
gorithms to ensure that they operate as intended, even when
the EVs have non-ideal charging characteristics. Therefore, an
algorithm basis is needed to demonstrate the efficiency of the
CCE algorithm. The main objective of the algorithm basis is
to:

1. Limit the charging currents according to the limits of the
local electricity network

2. Distribute the whole charging capacity evenly between the
active EVs.

The algorithm basis is essentially the same as the current
benchmark solution used in, for example, [28, 29]. The algo-
rithm does not require any user inputs or preliminary knowl-
edge about the arriving EVs. The following subsection
presents the CCE algorithm.

3.1 | Proposed charging characteristic
expectation algorithm

In short, the idea of the CCE algorithm is to use charging
current measurements to determine the charging characteris-
tics of each active EV, and then use that information to real-
locate any potentially unused charging capacity of an EV to
other EVs. Modelling each charging session separately makes
the algorithm scalable, which is the main issue in the solution
presented in [17]. In addition, the modelling considers three-
phase charging as opposed to the solution presented in [17]
that focuses only on single-phase charging.
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FIGURE 2 Final charging curves for (a) Nissan Leaf and (b) BMW i3
in maximum mode

The charging characteristics model is constituted of a
maximum current and a matrix of all current limit-
correspondences from 6 A to the maximum current sup-
ported by the charging point (e.g. 16 or 32 A). Each cur-
rent limit-correspondence is constituted of the current limit,
phase currents and a Boolean variable. In the beginning of
a charging session, when the algorithm notices a change of
a charging state from ‘A’ to ‘B’, ‘C’, or ‘D’, the charging
characteristics model is initialised, and ideal charging char-
acteristics are assumed. If the charging state is ‘B’, ‘C’ or
D’, an EV is connected to the charging point, whereas the
state ‘A’ means that an EV is not connected [31]. Further
explanation of the standard is not presented here due to
space restrictions. The initial charging characteristics model
is presented in Figure 3. In the figure, the currents Iy,
Iy> and Iy5 in the matrix present the presumed currents
when the corresponding current limit (f;) is set by the
EVSE. The Boolean variable is used to keep track of which
values are actual measurements and which are initial
assumptions.

The algorithm begins by updating the charging character-
istics model of each active EV based on the current mea-
surements. The updating process is constituted of four
different functions: direct memorisation, phase detection,
maximum current deduction and indirect deduction. These
functions are described in the next subsections. After updating

the expected charging characteristics, the algorithm calculates

Ims Boolean

6.0 False
7.0 False ]
8.0 False
32.0 False

FIGURE 3 Initial charging characteristics model

the number of EVs present. This can be done by accessing the
charging state information known by the IEC 61851-1
compliant mode 3 charging controller.

After calculating the number of active EVs, the algorithm
allocates the available three-phase charging capacity evenly.
The capacity distribution process is iterative and considers the
charging characteristics memorised and deducted by the CCE
algorithm. At the beginning of the distribution process, a 6 A
limit is assumed for each active charging session as it is the
minimum current limit according to [31]. In each iteration step,
the capacity distribution process considers allocating 1 A
higher charging current limit for a certain charging session and
evaluates whether the expected total charging currents for the
charging site will be within the intended limits. If the 1 A
higher current limit can be allocated for the charging session,
the algorithm updates the considered current limit for the
charging session and moves to the next charging session to
maintain an even capacity allocation. This will be repeated until
a current limit incrementation will result in too high expected
total charging currents or until all active charging sessions have
the maximum current limits supported by the charging points.
This ensures that the non-ideal charging characteristics of each
EV are taken into account and the charging capacity will be
reallocated if necessary.

Afterwards, there may be single-phase capacity available for
allocation and thus the algorithm carries out a similar iterative
distribution process for each phase separately. The CCE al-
gorithm deducts the phase usage of each charging session,
which makes it possible to optimise phase-specific capacity
utilisation. After the algorithm has determined the current
limits that are expected to lead to optimal capacity usage rate,
the current limits will be sent to the corresponding EVSEs to
be put into effect. A simplified block diagram of the control
algorithm is presented in Figure 4.

3.1.1 | Direct memorisation
Each time the charging currents are measured, the mea-
surements are updated for the corresponding current limit
and the Boolean variable is set to true. An example is given
in Figure 5, where the current limit is 10 A and currents of
10.2, 10.1 and 9.9 A are measured afterwards. It should be
noted that it may take around 10 s for an EV to properly
react to the current limit. Therefore, using a shorter time
step may result in an inaccurate charging characteristics
model.

The direct memorisation is only memorising the measured
values. To improve the rate at which the

charging
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I

FIGURE 4 Simplified block diagram of the control algorithm
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FIGURE 5 Direct memorisation of newly measured charging currents

characteristics modelling evolves, the following three functions
use reasonable assumptions made based on the analysis of the
non-ideal charging characteristics presented in Section 2.2.

3.1.2 | Phase detection

This function aims to determine which phases are used in the
charging session. If one phase current is clearly above zero,
while a current on another phase is zero, it means that the
phase with zero current is not used. After recognising an un-
used phase, the charging characteristics model is updated so
that there are not assumed to be curtents on the phase

regardless of the current limit. An illustration is presented in
Figure 6.

There are two key factors which should be considered in
this function. First, there may be noise measured by the current
metre and thus a small threshold, for example, 1 A, should be
used to determine whether a current is zero or not. Second, as
mentioned earlier, it may take longer than 10 s for an EV to
start charging after the charging is allowed. Therefore, the
phase detection function should not be used without a clear
delay after the charging is allowed.

3.1.3 | Maximum current deduction

The goal of this function is to determine the highest current
that an EV can use. Public charging points may very well be
suitable for charging currents of up to 3 X 32 A, but EVs with
<16 A maximum supported charging current in mode 3 (IEC
61851-1) are very common. Since it is very likely that most
EVs cannot utilise the higher end currents, the accuracy of the
charging characteristics model may be improved notably after
deducting the maximum charging current.

The maximum current deduction function checks if the
measured charging current is clearly below the set current limit.
And, if so, the measured current is assumed to be the
maximum charging current for the present EV. As shown in
Figure 1, there may be notable differences (>7 A) between the
current limit and the charging current even though the current
has not reached its maximum value. Therefore, a threshold of a
couple of amperes should be used to determine whether there
is a clear difference between the current limit and the measured
charging current. However, since the algorithm can always
relearn the maximum charging current for each session, there
is no need for a remarkably high threshold (e.g. >7 A) which
would minimise the risk of erroneous maximum charging
cutrent deduction.

The maximum current is taken into account according
to Equation (1), where Ii; represents the expected charging
current, Iy represents the corresponding currents in the
matrix, I, represents the maximum current, L denotes
the considered current limit, and the subscript p denotes the
phase.

Ig,(L) :min[]Mw(L),[mﬂx}. (1)

3.1.4 | Indirect deduction

The aim of this function is to improve the modelling accuracy
of those current limit-correspondences which are yet not
directly measured but which are between two directly measured
current limit-correspondences. Since the non-measured cut-
rent limit-correspondences are assumed to be ideal, they may
be significantly inaccurate (potentially over 7 A difference as
shown in Figure 1). The current limit-correspondences seems
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FIGURE 6 Detection of unused phases in the present charging
session

to be logical in a way that a higher current limit results in equal
or higher charging currents, whereas a lower current limit re-
sults in equal or lower charging currents. Therefore, two
directly measured current limit-correspondences can be used
to determine boundaries for all non-measured correspon-
dences between them. Since more accurate prediction becomes
very complex and requires more input data, it is reasonable to
assume that the non-measured current limit-correspondences
are settled linearly between the two directly measured
correspondences.

After receiving a current measurement, the indirect
deduction function is used to check whether there are non-
measured current limit-correspondences between the adja-
cent directly measured correspondences. This is made possible
with the Boolean variables. If a measured correspondence is
found after one or more non-measured correspondences, the
non-measured correspondences are updated. The operation of
this function is illustrated in Figure 7.

4 | EXPERIMENT

In order to ensure compliance with commercial EVs, the
verification of the charging control algorithm is carried out
using HIL simulations. To further improve the overall accuracy
of the simulation model, real charging behaviour data and
realistic charging characteristics (illustrated in Section 2.2) are
used. The following subsections describe the used simulation
model, modelling of charging characteristics, the laboratory
setup and the simulation case.

4.1 | Simulation model

The expetiment consists of up to two HIL charging points,
which are described in Section 4.3, and a necessary amount of
fully simulated charging points. The key feature of the simu-
lation model is the coupling of realistic charging profiles
(Section 4.2) and real charging session data (Section 4.4). The
simulation model and the used algorithms are implemented
using Python programming language, and a time step of 10 s is

I Imi Im2 Im3 Boolean
: s b New measurement:

Iimax

o |9 89 88 86 True L=114,
(320,110 100 100 100 Faise|] ~ L=107A,
11 110 11.0 11.0 False L=10.6 A,
N : : : L=102A
It Imy  Im2 Im3 Boolean
Tonas : P : : s
989 88 86 True
[32:0, 10{ 98 9.7 94 False ]
11 107 106 102 True
FIGURE 7 Indirect charging characteristics deduction

used to calculate the values of the simulated EVs and to
measure the charging currents of the HIL charging points.

The control algorithm is run every 60 s unless a new EV
arrival is observed. To avoid potential overloading, the control
algorithm does not allow charging for a new charging session
until the control algorithm has allocated the charging capacity
properly. In the case of a new EV arrival, the control algorithm
is run on the very next time step. This improves the EV user
convenience as the charging will start with minimal delay.

As mentioned in Section 2.2, there may be a delay of over
10 s before a charging session starts properly. Therefore, the
algorithm waits 1 min after the start of the charging sessions
before enabling phase detection and maximum current

deduction functions to avoid erroneous characteristics
deduction.
4.2 | Modelling of EV charging profiles

This subsection describes the modelling of the charging pro-
files in the simulation model and should not be confused with
charging characteristics modelled by the CCE algorithm. The
charging profiles are modelled based on the measurements
illustrated in Section 2.2. Another option to model battery
behaviour would be the use of equivalent circuit models
(ECM). However, this approach is problematic as the detailed
parameters of an ECM as well as the battery pack composition
are generally trade secrets of the manufacturers and cumber-
some to determine via experimental battery measurements and
reverse engineering [16]. The charging profiles are measured
for each current limit for both EVs and for each BMW
charging mode mentioned in Table 1. The currents, voltages
and time are then used to calculate the missing energy of the
EV battery. The energies, currents and current limits are then
used to determine realistic charging profiles for each EV (and
for each BMW's charging mode) in which the charging current
depends on the EV battery energy level and the charging
current limit set by the charging controller.

The impacts of the battery temperature and other external
factors are not considered in these models. Therefore, a slight
deviance between the modelled charging currents and the
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laboratory measurements is expected. However, the charging
profiles can still be used to introduce realistic non-ideal
charging characteristics to the simulation model.

4.3 | Laboratory setup
The experiment was carried out at the Smart Grid Technology
Lab [34] at TU Dortmund University. The HIL simulations
used the same EVs described in Table 1. A modified RWE
eSTATION charging station with two charging sockets suitable
for up to 22 kW (400 V AC) charging power was used. The
charging station included two Phoenix Contract Advanced EV
Charge Controllers (type EM-CP-PP-ETH)
compatible with IEC 61851-1 standard.

The algorithm uses a Modbus library (PyModbus [35]) which
enables it to control the charging current limits of the charging

which are

controllers and to read registers such as the charging state. A
similar Modbus connection is used for two KoCoS EPPE PX
power quality analysers with KoCoS ACP 300 current probes to
measure phase voltages and charging currents. The setup for the
HIL simulations is illustrated in Figure 8, and a photograph of
the setup is presented in Figure 9.

While the run time of one loop of the script (including the
proposed CCE algorithm) is a fraction of a second, the queries
through the Modbus connection may occasionally take several
seconds. The selected time step of 10 s works well without any
issues but the tests with shorter time steps does show an
increasing chance of the queries not having enough time to
receive a response.

4.4 | Simulation case

The simulation case uses real charging data measured at Mall of
Tripla [36], which is located in Helsinki, Finland. There are nearly
300 charging points, and the charging points for public use can
supply charging powers up to 22 kW. The data consist of around
5000 charging sessions recorded over a G6-month period
(October 2019-March 2020). The charging sessions were un-
controlled. The data include start time, stop time, energy con-
sumption and peak power of each charging session.

According to the charging data, there were up to 20
simultaneous charging sessions. Since the utilisation rate of the
charging infrastructure was so low, the simulations consider
only 20 charging points and a total charging capacity limit of
3 x 120 A. As a consequence, the algorithm basis mentioned
in Section 3 is needed to limit the charging currents during
congestions. Since there are always at least 3 X 6 A charging
capacity for each charging session, there is no need to
temporatily disable any charging sessions.

The simulations consider three scenatios. These scenarios
are based on the 3 days with the highest number of charging
sessions and the highest total energy consumptions. By assuming
that the peak power of three-phase charging would be over
10 kW, the EV types (single-phase or three-phase) can be esti-
mated. Scenarios 1 and 2 represent the days with the highest

400 V
3-phase
LV network

Charging
station

[

Qi Control algorithm and real-time
simulation of the parking lot

%
:“h‘h-\ Prerecorded charging _: :_ Charging point
characteristics data usage data ﬁ

FIGURE 8 The setup for the hardware-in-the-loop (HIL) simulations.
HIL, hardware-in-the-loop

FIGURE 9 The laboratory setup

number of single-phase and three-phase charging sessions,
respectively, whereas Scenario 3 represents the day with the
highest energy consumption. All single-phase charging sessions
are modelled based on the Nissan, whereas all three-phase
charging sessions are modelled based on the BMW. The BMW
modes for the three-phase charging sessions are chosen arbi-
trarily. The scenarios are presented in Table 2, and the charging
point occupation rate is illustrated in Figure 10. Since these
charging sessions are uncontrolled, their total charged enetgies
are used as a reference value to represent the 100% QoCS level
used herein for comparison purposes. For each examined algo-
rithm, the QoCS is calculated by dividing its total charged energy
with the total charged energy of the uncontrolled case.

In addition to these scenarios, simulations are conducted to
provide an example of a peak power-based charging control
algorithm and to demonstrate its differences regarding the
capacity allocation. This example is based on Scenario 3, but
the charging capacity is limited to 82.8 kW, which equals an
average phase current of 120 A (230 V). However, in this case,
the fuse size is assumed to be higher, and thus, the currents
on the individual phases are allowed to rise above 120 A as
long as the total charging load is within the power limit. In the
future, peak power-based electricity tariffs are likely to become
more popular as they improve the cost-reflectivity of the
electricity pricing [37]. As a result, there will be an incentive to
limit peak loading in charging sites and thus effective capacity
utilisation becomes mote valuable.
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TABLE 2 Scenarios

Number of electric vehicle charging Three-phase charging

Single-phase charging Total charged

sessions sessions sessions energy Date
1. 66 4 62 372 kWh 22 Feb 2020
2. 61 12 49 428 kWh 19 Oct 2019
3. 59 10 49 454 kWh 14 Dec 2019
20 - the realised power consumption and Py, is the maximum
——Scenario 1 . .
=18 . allowed power determined based on, for example, the fuse size
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216 . or other peak load limit.
o ——Scenario 3
214
@
> 12 P(r)
2 Connl) =5 ?
o max
5 8
R .
o 5.1 | Scenarios 1-3
2
0 The results of Scenarios 1-3 are summarised in Table 3.
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FIGURE 10 Charging point utilisation for Scenarios 1-3

5 | RESULTS
The simulations are carried out using four different algorithms:
Algorithm 1 Uncontrolled charging

Algorithm 2 Control without an adaptive CCE al-
gorithm (the present benchmark solution),

Algorithm 3 Control with the proposed CCE
algorithm

Algorithm 4 Control with perfect knowledge of the
charging characteristics

The same algorithm basis (presented in Section 3) is used for
Algorithms 2—4, and only the adaption method to the different
charging characteristics varies. The second algorithm does not
include an adaptive CCE algorithm and thus the control algo-
rithm essentially assumes charging characteristics of each EV to
stay ideal. The third algorithm utilises the proposed CCE algo-
rithm. The fourth algorithm has perfect knowledge about the
charging characteristics and battery energy levels. Due to the
required preliminary knowledge, the fourth algorithm can only
be simulated. As the first two algorithms are less complex, only
the third algorithm is carried out as an HIL simulation. However,
the charging requirements of the EVs are kept the same
regardless of the chosen algorithm. The fourth algorithm is used
to assess the optimality of the proposed CCE algorithm and to
determine the upper bound of the possible capacity usage rate
without the risks of overloads. The capacity usage rate (Cusage) is
calculated according to Equation (2), where ¢ is time index, P is

peak is relatively modest. However, Algorithm 2 simply di-
vides the available charging capacity among the EVs without
recognising that some of the EVs draw much lower currents
than the limit set by the EVSEs. Since the unused capacity
is not reallocated to other EVs, it is essentially wasted,
resulting in lower QoCS.

In Scenario 3, there is a notable charging load congestion
between 13:30 and 14:48 h and a smaller congestion between
16:42 and 17:13 h. In the case of uncontrolled charging, the
highest current peaks at 144 A, which means an overload of
24 A (20%), and thus, a peak load limitation is necessary. The
currents in case of Algorithms 3 and 4 are very similar and thus
the proposed CCE feature seems to operate near ideally. Ac-
cording to the simulations, even Algorithm 4 results in a slight
QoCS reduction of 8.1 kWh (1.8%), whereas Algorithms 2 and
3 resulted in a QoCS reduction of 148.2 (32.6%) kWh and 9.7
(2.1%) kWh, respectively. The currents in Scenario 3 are pre-
sented in Figure 11.

To illustrate the charging currents in more detail, the
moment of the more notable congestion is presented in
Figure 12. Algorithms 3 and 4 result in very similar charging
currents. Since the control algorithms are run only every 60 s
or in the case of a new EV arrival, neither algorithms can fully
utilise the whole charging capacity without the risk of a slight
overload. In addition, the charging sessions are not likely to be
equally distributed for the three phases, which may lower the
optimal capacity usage rate. The average capacity usage rates
during 13:30-14:40 h are 45.4%, 87.9% and 88.9% for the
Algorithms 2—4, respectively.

5.2 | Peak powet-based capacity allocation

This example demonstrates that a peak power limit-based
charging capacity allocation is more straightforward than, for
example, fuse size-based capacity allocation. This is because a
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TABLE 3 Results of Scenatios 1-3

Scenario Algorithm QoCS  Charged energy Uncharged energy

1. 1. 100.0% 372.1 kWh 0.0 kWh
2. 77.6% 288.8 kWh 83.3 kWh
3. 100.0% 371.9 kWh 0.2 kWh
4. 100.0% 372.0 kWh 0.1 kWh

2. 1 100.0% 427.8 kWh 0.0 kWh
2. 84.5% 361.4 kWh 66.4 kWh
3. 100.0% 427.8 kWh 0.0 kWh
4. 100.0% 427.8 kWh 0.0 kWh

3. 1 100.0% 454.3 kWh 0.0 kWh
2. 67.4% 306.0 kWh 148.2 kWh
3. 97.9% 444.6 kWh 9.7 kWh
4. 98.2% 446.1 kWh 8.1 kWh

Abbreviation: QoCS, quality of the charging service.

power-based capacity allocation does not requite perfectly
balanced load for each phase. Therefore, a higher capacity
usage can be achieved. However, it is still necessary to consider
each phase separately to avoid phase-specific overloading, and
an adaptive CCE algorithm is still required to effectively allo-
cate the intended total charging capacity. In this case, 96.5%
average capacity usage is achieved during 13:30-14:40 with the
proposed CCE algorithm. The charging currents are presented
in Figure 13. Without an adaptive CCE algorithm, the capacity
usage would be 45.4%, whereas the ideal algorithm would
result in 98.0% capacity usage rate over the same period. The
QoCS for Algorithms 2—4 are 67.4%, 99.8% and 99.9%,
respectively.

It is worth mentioning that even a higher capacity usage
percent is possible by exploiting the fact that in some cases,
such as [17], the objective is to limit the average power of a 1-h
long period to a certain level, and thus, the power is allowed to
momentarily be higher than the targeted level.

5.3 | Discussion

Based on the results, by not considering an adaptive CCE al-
gorithm over half of the charging capacity would remain un-
used. In addition, even an ideal algorithm may not achieve
higher a fuse size-based maximum capacity usage rate than
89%. This is because of the unevenly balanced charging loads
and the non-ideal EV charging characteristics, which reduces
the controllability of the charging load. When comparing Al-
gorithm 3 (the proposed CCE algorithm) and Algorithm 2 (the
present benchmark solution), the average charged energy is
increased by 96.0 kWh by the CCE algorithm. Consequently,
the average QoCS is improved from 76.5% to 99.3%. These
results underline the usefulness of the CCE algorithm to
maximise the QoCS while minimising the investment costs of
the required charging infrastructure. When comparing the
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FIGURE 11 Charging currents in Scenario 3 in the case of

(a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3 and (d) Algorithm 4

CCE algorithm to Algorithm 4 (perfect preliminary knowledge
of the charging characteristics), the average charged energy is
only 0.6 kWh higher with Algorithm 4. The average QoCS is
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FIGURE 13 Charging currents in a power capacity allocation example
utilising the proposed charging characteristics expectation (CCE) algorithm
in Scenario 3. CCE, chatging characteristics expectation

99.4% with Algorithm 4. Based on these results, it can be seen
that the proposed CCE algorithm overcomes the issues posed
by the non-ideal charging characteristics near ideally.

The non-ideal charging charactetistics would particularly
affect the algorithms that schedule the charging of EVs based
on their individual energy requirements and departure times,
such as the algorithms presented in [1, 2, 4, 11, 24]. The im-
pacts to the individual EVs cannot be completely avoided but
the proposed CCE algorithm could be used to ensure that the

whole intended chatging capacity is used efficiently, which will
improve the average QoCS of all EVs.

It is worth mentioning that the charging standard IEC
61851 supports digital data communication between the EV
and the EVSE which, in theory, could replace the need for the
proposed CCE algorithm. However, this communication
approach is problematic from two perspectives. First, the
charging characteristics are complex, and the charging current
depends on variables such as the temperature. In addition, the
correlation between the charging current and the current limit
set by the EVSE is not always linear as presented in Figure 1.
Thus, in order to accurately keep track of the charging char-
acteristics of an EV, the control system requires multiple
updated data sets of the charging characteristics throughout
every charging session. This would increase the data transfer
between EV, EVSE, and the control system notably. Second,
even if the data transfer would be supported by some of the
EVs in the near future, it might take a long time for all EVs to
be able to support this data transfer. In the meantime, the
proposed solution will be very valuable. Based on the opti-
mality of the proposed solution, it may even be argued that
there is no need for EVs to be able to inform the EVSE or the
main control system about their charging characteristics.

The vehicle-to-X (V2X) is not considered herein as it is not
supported by the used EVs and charging point. It is reasonable
to assume that the V2X operation also includes non-ideal
characteristics that will limit its controllability. The proposed
CCE algorithm could be modified relatively easily to consider
V2X operation. However, to ensure its effective operations, it
should be tested using EVs and charging points that support
bidirectional power flow.

6 | CONCLUSIONS AND FUTURE
WORK

The often-overlooked issues caused by the non-ideal charging
characteristics of commercial EVs have been illustrated and
discussed herein. While the non-ideal charging chatacteristics
may make the charging safer and more energy efficient from
the EV's perspective, they pose a challenge from the charging
control system point of view. There is currently no stand-
ardised way for a control system to gain access to the infor-
mation regarding the EVs' charging characteristics. Therefore,
an adaptive CCE algorithm seems to be a prominent solution
to ensure that the intended charging capacity is effectively used
in public charging sites.

An adaptive CCE algorithm is proposed herein. The
algorithm utilised charging current measurements to memorise
and deduct charging characteristics of the EVs without any
preliminary knowledge. This information is then used to
ensure that the intended capacity is effectively used resulting in
a higher quality of charging service. The proposed CCE
algorithm is tested using HIL simulations with commercial
EVs to ensure compliance with the standard IEC 61851-1. In
order to test the operation in a larger charging site, a simulation
model is developed that couples realistic charging profiles
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(charging current over time) with real charging data (arrival
time, departure time and energy requirement). Thus, the
simulation model ensures that the non-ideal charging charac-
teristics, which cause the charging current to deviate from the
current limit set by the EVSE, are realistically modelled.

According to the simulation results, the proposed CCE al-
gorithm operates almost as well as the ideal algorithm with
petfect knowledge. When compared to the present benchmark
solution, the total daily charging energy is increase by 96 kWh on
average, resulting in the average QoCS increasing from 76% to
99%. In addition, the results show that the proposed CCE al-
gorithm reaches up to 88% maximum charging capacity usage
rate over the congestion hour if the capacity is determined by a
fuse size, whereas the ideal control algorithm reaches 89% and
the present benchmark solution reaches only 45%. If the avail-
able charging capacity is limited to a certain peak power, the
capacity allocation does not require perfectly balanced phase
loading, Therefore, the capacity allocation is simpler and a higher
capacity usage rate is possible. In this case, the proposed CCE
algorithm reaches the 97% maximum capacity usage rate.

The result also gives an indication that over 98% QoCS can
be achieved in a public charging site with multiple 22 kW
charging points even if the total charging capacity per charging
point results in 3 X 6 A. To determine more comprehensive
guidelines to maximise the QoCS while minimising the
investment costs of the necessary charging infrastructure at
public charging sites, extended simulations will be carried out
for different charging sites. Additional future works include
testing of the proposed CCE algorithm in a pilot case with
multiple charging points and analysis of non-ideal discharging
characteristics in V2X operation.
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Abstract

At present, EVs are emerging at a fast pace. This may cause pressure for commercial buildings to offer electric vehicle (EV)
charging services for their customers. In a cost-efficient charging site, it is necessary to find a balance between the costs and the
offered quality of charging service (QoCS). This may be a difficult task as the charging requirements of the customers are
unpredictable and vary daily. In this paper, an algorithm using a charging price—based prioritization is proposed and discussed.
This can be used to take unpredictable charging requirements into account and to improve the QoCS while requiring a minimal
effort from the EV users. To ensure an improvement in the QoCS and the practicality of its implementation, the algorithm is
tested using hardware-in-the-loop simulations with two commercial EVs and real charging data. The results verify that the QoCS
can be improved by 2% on average and by up to 16% for a single EV user. This leads to a more attractive and more cost-efficient

charging site.
1 Introduction

Due to their environmentally friendly nature, electric
vehicles (EVs) are emerging at a fast pace. Since the range
anxiety is common among the EV users [1], commercial
buildings, e.g. shopping centres, may want to offer charging
services to attract customers. However, it can be a
challenging task to design a cost-efficient charging site that
provides a high quality of charging service (QoCS) with
minimum investment costs.

In this paper, the charged energy of an uncontrolled case is
chosen to represent the level of 100% QoCS. Since the
uncontrolled charging represents the maximum charged
energy under the limitations set by, e.g., the on-board
charger (OBC) of the EV, the maximum charging power of
the EV supply equipment (EVSE), and the available
charging time, it is a reasonable reference value to evaluate
the negative impacts of a charging control algorithms.

The QoCS could be optimized using the driving schedules
and the charging demands. However, requesting such
information from the EV users could be burdensome and
requires a suitable interface [2]. Additionally, it may be
difficult for an EV user to predict an accurate duration of
their stay at commercial locations, such as shopping centres.
And, if the users are requested to report their parking time
and charging demand, they may be tempted to exaggerate
their needs to improve their own convenience. Therefore, a
price-based prioritization could be used to allocate charging

capacity to those with more urgent demand. This can also
increase the utilization rate of the total charging capacity,
and thus, lead to a more cost-efficient charging site.

In the scientific literature, several algorithms to improve
QoCS are presented [3]-[6]. However, these studies [3]-[6]
share common deficiencies: the limitations of the OBCs of
the EVs or the compatibility with commercial EVs are not
considered. Therefore, the practicalities of the proposed
solutions are not thoroughly assessed. As mentioned in [7],
there are several non-ideal charging characteristics, such as
the EV’s on-board charger reducing the charging current to
protect the battery from overheating or the vehicle’s
maximum charging rate being lower than the current limit
indicated by the charging controller. These factors may
impact the QoCS. According to [8], more than 76% of the
EV users see a high QoCS as more important factor than the
price of the charged energy. Thus, these factors should be
considered in order to accurately evaluate the operation of
the proposed charging solution in a real-life
implementation.

This paper proposes a charging control algorithm that
considers prioritization levels to distribute the available
charging capacity between the EVs. The proposed solution
is partly similar to the mechanism presented in [6].
However, the proposed algorithm offers more flexible
prioritization options, ensures high capacity usage rate
while considering non-ideal charging characteristics, and
operates in real-time. The algorithm is tested using
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hardware-in-the-loop  (HIL) simulations with two
commercial EVs and real charging data to ensure
practicality and compatibility with the IEC 61851 charging
standard. The algorithm does not require any user inputs
other than the request of whether to prioritize or not.

The remainder of the paper is organized as follows. The
proposed control method is presented in Section 2. The
details of the experiment are presented in Section 3. The
results are presented and discussed in Section 4. Finally, the
conclusions are provided in Section 5.

2 EV charging control method

To know whether the OBC of the EV limits the realized
charging current, the control method uses a charging current
measurement feedback of all EVSEs. The measurements are
used to detect the number of used phases and memorize the
correlation between the current limit set by the EVSE and
the realized charging currents. This function is referred to
as charging characteristics expectation (CCE) algorithm
that enables the control algorithm to adapt to the charging
profile of each EV without any preliminary knowledge.
The algorithm utilizes prioritization levels to distribute the
total charging capacity between all EVs. The prioritization
levels could be linked to charging prices so that a higher
charging price equals a higher prioritization level. This
leaves the decision to the customers and guides them to
choose a higher priority only when it is necessary. The
proposed control method could be applied into charging
algorithm that focuses on determining the available
charging capacity to improve its capacity utilization rate and
enable prioritization-based capacity distribution.

The charging capacity allocation algorithm is illustrated in
Algorithm 1. It begins by gathering a list of charging points
with an active charging session (list_ ACP). After that, the
current limit of each charging session is initialized to 6 A
which is the minimum current limit (IEC 61851). The
available charging capacity (ACC) to be allocated in the
main loop can then be calculated based on the total charging
current limit (TCCL) and the minimum value returned by
total CCE function. This total CCE function returns the
expected charging currents of each phase (A, B, and C) of
all EVs which can then be used to calculate remaining
available charging capacity.

To allocate the remaining charging capacity, the algorithm
considers a priority index (p;) that is determined based on
the prioritization level (p1) and the currently allocated
capacity (p.) according to Eq. 1. The charging current limit
of the charging session with the lowest p; will be increased
by one ampere in each cycle of the loop until the total
capacity is allocated or until there are no more suitable
charging sessions remaining. A charging session becomes
unsuitable if the allocated charging current limit reaches the
maximum current of the charging point (row 7) or if at least
one of the phase currents would rise above the total charging
current limit when the current limit of the charging session
increases (row 12).

_ pc(m)

pi(n) = " ey

Algorithm 1 prioritization-based capacity allocation

def distribute_capacity_based_on_priority():

1. list. ACP =check CPs_with_active charging_session()

2. for i in range(length(list ACP)):

3. list_ ACP[i].current_limit =6

4. ACC = TCCL - min(total_CCE())

5. while ACC > 0 and length(list. ACP) > 0:

6. list_ ACP.sort(key = priority_index, order = ascending)

7. iflist ACP[0].max_current <= list ACP[0].current_limit:

8. delete list ACP[0]

9. else:

10. list_ ACP[0].current_limit = list ACP[0].current_limit + 1

11. list. ACP[0].priority index =list ACP[0].current_limit /
list ACP[0].prioritization_level

12. if max(total CCE()) > TCCL:

13. list_ ACP[0].current_limit = list ACP[0].current_limit - 1
14. delete list ACP[0]

15. ACC =TCCL - min(total_CCE())

16. return

3 Experiment

In the following subsections, the used charging data, the
simulation model, the scenarios, and the laboratory setup
are described. The use of commercial EVs and real charging
data ensures compliancy with the charging standard IEC
61851 and that the scenarios are realistic.

3.1 Data

The experiment utilizes real charging data measured at Mall
of Tripla [9] located in Helsinki, Finland. At the charging
site, there are almost 300 charging points suitable for 22 kW
charging power. The data was measured between 10/2019—
3/2020 and consists of nearly 5,000 uncontrolled charging
sessions. The data include information such as arrival and
departure times, active charging times, energies charged,
and charging peak powers.

3.2 HIL simulation model

The HIL simulation model includes two real charging points
and a necessary amount of fully simulated charging points.
The simulation model utilizes preliminary measured EV
charging profiles in the modelling. The charging profiles of
both EVs (Nissan Leaf and BMW i3) are measured for all
possible charging current limits (integers) set by the EVSE
to build a simulation model for the charging profiles where
the charging current depends on the current limit set by the
EVSE and the energy that is missing from the battery of the
EV. This ensures that the non-ideal charging characteristics
(e.g. on-board charger starts limiting the charging current
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when the battery becomes nearly fully charged) are taken
fully into account. The algorithm uses a time step of 10
seconds. At each time step, all values of the simulated EVs
are calculated and the charging currents of the HIL charging
points are measured. The control algorithm is run every 60
seconds or in the next time step after a new EV is plugged
into a charging point.

3.3 Laboratory setup

Besides the EVs (Nissan Leaf and BMW i3), the laboratory
equipment includes a charging station (a modified RWE
eSTATION) with two charging sockets (22kW, 3x32 A,
400 V) and charge controllers (Phoenix Contact Advanced
EV charge Controllers, type EM-CP-PP-ETH). The
charging currents are measured with KoCoS EPPE PX
power quality analysers with KoCoS ACP 300 current
probes. The algorithm is implemented by using Python
programming language, and a Modbus library (PyModbus
[10]) is used to enable communication with the charging
controllers and the metering devices. The experiment is
carried out at the Smart Grid Technology Lab at TU
Dortmund University [11]. The laboratory setup is shown in
Fig. 1.

Fig. 1. Laboratory setup
3.4 Scenarios

According to the charging data, the charging point
utilization rates are currently very low at the Mall of Tripla.
Therefore, to investigate realistic scenarios with higher EV
penetrations, charging sessions of two consecutive days are
grouped into one day. Three scenarios are considered which
represents the days with the highest energy consumption.
The scenarios are illustrated in Table 1. To increase the need
for peak load management that may also reduce the QoCS,
the charging capacity of each three phase is limited to
(Mmaxx6 A), where the nue is the highest number of
simultaneously present EVs.

The data does not contain information whether a charging
session is a single-phase or a three-phase. However, if the
peak power of a charging session is higher than 10 kW, it is
likely to be a three-phase one. Two-phase charging sessions
are also possible but, for the simplicity’s sake, all charging

sessions are assumed to be single-phase or three-phase
depending on whether their peak power is under or over 10
kW. This information is then used to couple each charging
sessions with the modelled charging profile of either the
Nissan (single-phase) or the BMW (three-phase).

Since the priority preference of the EV users and the
willingness to pay for it are unknown, the priority levels
have to be assumed. For demonstration purposes, two
prioritization levels are assumed: either 1 or 5. This means
that the algorithm tries to allocate 5 times more capacity for
the more prioritized charging sessions. In each scenario, the
higher prioritization level is given to 0%, 20%, 40%, 60%,
or 80% of the EVs. The higher prioritization levels are given
to the EVs with the highest energy requirement indexes
(E.;), which are calculated according to Eq. 2, where E. is
the energy consumption, #, is the parking time, and Pya is
the maximum charging power (3.68 kW for a single-phase
and 11.04 kW for a three-phase charging session).

Er,i(n) =E.(n) — ty () X Brax(m).  (2)

It is worth mentioning that all charging sessions will receive
at least the minimum capacity (3x6 A) and the algorithm
always tries to allocate the whole available charging
capacity. This means that both prioritized and non-
prioritized sessions receive the same minimum capacity
during peak congestion hours or the same maximum
capacity if there are only a few EVs present.

Table 1 Scenario data

Scenario 1. 2. 3.

Charging sessions

96 (16/80)  106(21/85) 101 (12/89
Grarsines (16/80) @1/85) 101 (12/89)
Total charged 760 kWh 707 kWh 692 kWh

energy
Hima 37 2 31
Date 14—-15t% 18—19th 18—19th
Dec. 2019 Oct. 2019 Jan. 2020
4 Results

As mentioned earlier, the uncontrolled charging is used as a
reference to represent 100% QoCS level. The average
QoCS of all EVs in each scenario and case are presented in
Fig. 2. The results show that by offering an option for a
prioritized charging, the charging system operator can
improve the average QoCS. According to Fig. 2, the QoCS
is the highest when the prioritization is requested by around
20% of the customers. This information can be used to
design optimal pricing levels for commercial charging sites.
Determination of the actual pricing levels (€/kWh) is
excluded from this paper. In Fig. 2, it can be seen that when
comparing the cases with 0% and 20% prioritization in
Scenario 1, the prioritization increases the QoCS up to 1.9%
which results in 14.9 kWh higher charged energy.



CIRED 2021 Conference

Geneva, 20 — 23 September 2021

100
N N
98 § N \§
< 9 § § , §:
& \ N N/ 0%
CaR | | \ N w20%
v . . \ | a0
92 § § %3 i 60%

Scenario 1 Scenario 2 Scenario 3

Fig. 2. QoCS in each scenario and case

In Fig. 3, the total charging currents in Scenario 1 between
13:50-15:50 are presented for the cases where none of the
EV users request prioritization and where 20% of the users
request prioritization. During the congestion hour between
14:00-15:00, the currents in Phase 2 and 3 are higher for the
case with 20% of users requesting prioritization (Fig. 3 b)
which explains the higher QoCS. The prioritization has
more notable impacts on the individual EVs than the
average of all EVs. This is illustrated in Fig. 4, where the
charging currents of a BMW i3 in Scenario 1 are presented.
In Fig. 4 aand Fig. 4 b, none of the EVs and 20% of the EVs
(including the BMW 1i3) are prioritized, respectively. The
QoCS for the BMW in these cases are 83.9% and 100.0%,
respectively. The request of the prioritization results in 3.5
kWh higher charged energy for the BMW.
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Fig. 3. Charging currents in Scenario 1 when (a) none of
the EV users and (b) 20% of the EV wusers request
prioritization
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Fig. 4. Charging currents of a BMW i3 in Scenario 1 (a)
without prioritization and (b) with prioritization

As mentioned earlier, prioritized and non-prioritized
charging sessions receive the same capacity during peak
congestion hours or if there are only a few EVs present.
Therefore, it might be reasonable to increase the price of the
charged energy of a prioritized charging session only when
the prioritization increases the charging power compared to
the non-prioritized sessions. This could simplify the
situation from the EV user perspective as a customer would
not have to pay extra in case of the prioritization is not
possible.

5 Conclusion

This paper proposes a price—based prioritization algorithm
for EV charging. The algorithm is tested by using HIL
simulations with two commercial EVs and real charging
data. The strengths of the proposed algorithm include the
ease of implementation and its convenience from the user
perspective as the only required information is whether to
prioritize or not.

The results show that the highest QoCS is achieved when
around 20% of the EVs users with the highest charging
requirement are requesting prioritization. This increases the
average QoCS up to 1.9% which means 14.9 kWh increase
in the daily total charged energy. More notably, the QoCS
of an individual EV user increases up to 16.1%.
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HIGHLIGHTS

o The charging powers of the current electric vehicle fleet are analyzed.

e Almost 80% of the electric vehicles support only around 4 kW charging powers.

o The development of the electric vehicle fleet during 2020-2040 is modelled.

o The energy requirement in commercial locations is predicted to increase by 134%.

o The peak of the normalized power is predicted to increase by 77%.

ARTICLE INFO ABSTRACT
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Parking policy

Electric vehicle (EV) charging is widely studied in the scientific literature. However, there seems to be a notable
research gap regarding the charging power limitations of the on-board chargers of the EVs. In this paper, the
present state of the maximum charging powers of the on-board chargers is thoroughly analysed using data from
two commercial charging sites. Furthermore, the results of the analysis are used along with an EV fleet devel-
opment model to form realistic future scenarios, which are then used for a simulation model that couples the

charging sessions with measured charging profiles. The results of the simulations show that, due to the evolution
of the EV fleet, the average energy consumption in commercial locations will increase by 134% on average from
5.6 to 8.7 kWh/EV to 13.0-19.6 kWh/EV during 2020-2040. Similarly, the peak of the normalized power in-
creases by 77% on average from 1.1 to 1.4 kW/EV to 1.6-2.9 kW/EV. These values are essential to guide long-
term decisions such as optimal sizing of charging infrastructure and parking policies.

1. Introduction

Electric vehicles (EVs) are seen as a major establisher of environ-
mentally friendlier mobility, both globally and in Finland. Previous
studies show that charging infrastructure is one of the concerns hin-
dering users from investing in electric vehicles [1,2]. Although the shift
towards electric vehicles does not create a large increase in total energy
demand, the effects in low voltage networks are major as they are not
designed to work with large and sudden power peaks caused by vehicle
charging. This may cause problems within the low-voltage networks
feeding large parking areas, and therefore, electric vehicle parking

* Corresponding author.
E-mail address: toni.simolin@tuni.fi (T. Simolin).

https://doi.org/10.1016/j.apenergy.2021.117651

should be considered when organizing the parking in general.

Parking policy can be used to guide where and when cars are parked
and, consequently, where and when electric cars are charged. Limita-
tions in a building’s electrical systems and parking availability may lead
to a lack of charging points, thus creating barriers to the uptake of EVs
[3]. Therefore, the development of EV charging infrastructure should be
aligned with the parking policy. Several studies have investigated how
charging infrastructure affects the uptake of EVs, but there is a clear
research gap in the alignment of parking policy and the development of
EV charging infrastructures. Many cities have set strategies to increase
the number of EV charging points, but there is a lack of knowledge about
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how the charging powers of the EVs will evolve, how this will affect the
development of charging sites, and how this should be taken into ac-
count in parking policy.

Over the past few years, the modelling of the EV charging load has
improved significantly. Accurate prediction of the electric vehicle load is
of great importance for the optimal dispatching and safe operation of the
power grid [4]. Several studies have recently contributed to analysing or
predicting the EV charging loads in terms of energy (kWh) and charging
time. However, according to the authors’ knowledge, there are two
notable research gaps:

o the charging peak powers of individual EVs are not analysed, and

o the development of the EV fleet in terms of the supported charging
powers is not examined to further increase the prediction accuracy of
the future charging loads.

In a commercial charging station, charging powers of up to 22 kW
(charging mode 3, IEC 61851) are typical in Europe. However, in such
locations, to accurately predict or model the charging load, it is
important to consider the limits of the EVs’ on-board chargers (OBC).
This is due to the fact that accounting for only the nominal powers of the
charging stations does not reflect the real charging behaviour, since
most EVs cannot use the full 22 kW capacity. At present, a relatively
small percentage of EVs support such charging powers. Therefore,
without considering the limits of the individual EVs, the modelled
charging load is likely to be significantly inaccurate.

1.1. Literature review

The most common solution for modelling the EV charging loads is
based on travelling traditional passenger vehicles [5], e.g. using travel
surveys, as in [6-12]. In [5], the effectiveness of travel surveys to model
EV charging demand is evaluated by comparing the modelling results
with the measurements obtained from several EV field tests. The study
states that travel surveys can be used to model EV charging loads with
reasonable accuracy. However, the sensitivity analysis highlights the
importance of accurately modelling input parameters, such as charging
power. Furthermore, the fact that OBCs of the EVs may constitute the
actual bottleneck in the charging process is acknowledged but not
analysed.

In [6], the EV charging simulations are conducted while considering
people’s demographics and social attributes. According to the results,
the attributes have a considerable effect on the magnitude and peak time
of the charging load. The study [9] uses an artificial neural network to
improve the forecasting accuracy of EV travel behaviour. The results
show that an aggregator’s financial losses could be reduced compared to
conventional forecasting methods. In [11], a mixed-integer linear pro-
gramming model for decisions is proposed to control EV charging and
the use of an energy storage system. The results show that the opera-
tional costs of a charging hub microgrid can be significantly reduced.
The study [12] establishes a spatial-temporal distribution model to
assess charging loads. Monte Carlo simulation is used to show that the
charging loads vary notably between different charging sites.

Previously mentioned approaches based on travel surveys, such as
[6,7,9,11,12], often tend to overlook the impacts of charging powers. In
[10], two scenarios with different charging powers are compared. The
main conclusions of the effects of increased charger powers are that the
charging demand peak will occur 1-2 h earlier, and the number of
simultaneous charging sessions decreases in the scenario with higher
charging powers. In [8], three charging powers (3.7 kW, 6.9 kW and 22
kW) are considered. From the charging power perspective, the study
concludes that higher charging power results in higher variability in the
charging load and requires smaller time resolution to accurately eval-
uate the load peaks.

Real EV charging data are used in, e.g. [4,13-16]. In [4], state of
charge (SOC) curves of different types of EVs are analysed to evaluate

Applied Energy 303 (2021) 117651

charging prediction models. In [13] and [14], datasets of 1.5 M and 2.6
M charging sessions, respectively, are used to thoroughly analyse
arrival, sojourn and idle times. In [15], the driving profile is based on
real data of EVs including SOC, ambient temperature, driving distance
and charging time. In [16], the data of 55 electric taxis, including
accumulated range, velocity and position of the vehicle and SOC, are
used to analyse and predict energy consumption. In real EV data—based
solutions that have the information of plug-in time and charging energy,
e.g. [13,15], the data can be used to calculate the average charging
power. However, the charging peak powers of the EVs are not assessed in
these studies.

Additionally, as the technology evolves, it is reasonable to assume
that more EVs adopt more powerful OBCs, which naturally impacts the
EVs’ charging loads. Forecasting the number of EVs in the future is
discussed in [7,17], and different EV penetrations are considered in
[8,18]. In [7], the future demand of EVs from 2020 to 2050 is investi-
gated by using country-specific projections of the EV fleet development
while assuming separate shares for battery electric vehicles (BEVs) and
plug-in hybrid electric vehicles (PHEVs). In [17], the number of EV
adopters is based on the potential market size, the coefficient of inno-
vation (influenced by external factors, such as monetary subsidy, non-
monetary policies, oil price, charging infrastructure and industry
maturity) and the coefficient of imitation (reflecting the impacts of
previous adopters). However, none of the previously mentioned studies
considers the development of the OBCs of the EVs in terms of maximum
supported charging powers.

In simulations, it is also common to model linear charging profiles, i.
e. assume that EVs can be charged with a fixed power over the whole
charging session as in [6-10,12,13,18,19]. Study [17] simply assumes
that the power decreases linearly after the SOC reaches 85% in charging
sessions with a charging power of over 20 kW. In reality, there are
several factors, such as a nearly-fully charged battery or high battery
temperature, that can cause the OBC to limit the charging current [20].
In this paper, the non-linear charging profile refers to a situation where
the charging current decreases as the battery is becoming fully charged.
In [21], it is shown that the real daily charging load considering non-
linear profiles can deviate up to 34.2% from the case that assumes
that EVs can utilize constant maximum power. This emphasizes the need
to consider realistic charging profiles.

Since the EV charging infrastructure is located in parking spaces, the
development of charging infrastructure and parking policy are inter-
twined. The challenges of building charging infrastructure can hinder
the uptake of EVs [3]. Many cities have recognized the importance of
building charging infrastructure and have made requirements for new
buildings to have charging points installed or at least to have readiness
for charging points so that they can be installed afterwards. In Finland,
there is a new law that regulates the number of charging points in new
buildings and buildings undergoing major renovations [22].

However, these charging infrastructure requirements consider only
the number of charging points. So far, there has been little discussion
about the development of charging power limitations of the EVs" OBCs
and how this will affect the low-voltage network and the cost-efficient
ways of building charging infrastructures. Additionally, it is important
to study how this should be taken into account in parking policy.

1.2. Contributions and structure

Based on the research gaps identified in the literature review, four
research questions were formed. The contribution of the paper is to
address these questions and provide useful perspectives and numeric
results to further improve future studies relating to EV charging. Addi-
tionally, the results can be used by policymakers to enhance the sus-
tainability of private-sector transportation from the charging solution
point of view. The research questions are as follows:
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1. What is the influence of different charging powers on the charging sessions
at commercial charging sites? To address this question, we thoroughly
analyse charging session data from the charging power perspective
(Section 2.1).

2. How does the EV fleet develop in terms of supported charging powers
(charging mode 3, IEC 61851)? To answer this, a car fleet develop-
ment model is utilized along with the gathered information of
existing EV models to estimate the development until 2040 (Section
2.2).

3. What are the impacts of the development of the EV fleet in commercial
charging sites in terms of charging energy and peak loading? To answer
this question, different simulation cases and scenarios are formed
based on the analysis of the charging characteristics and the EV fleet
(Section 3). In this study, to model the charging loads, a simulation
model that considers non-linear charging profiles is used. In the
simulation model, preliminary laboratory measurements of four
commercial EVs are used to determine the correlation between the
charging power and the SOC of the battery. Therefore, the model
produces realistic non-linear charging profiles where the charging
power decreases before the battery becomes fully charged. After the
simulations, the results are analysed (Section 4).

4. How should the development of the charging energy and peak loads be
taken into account in parking policy? To address this question, we
discuss how our findings in relation to the development of the
charging energy and peak loads should be considered while making
long-term decisions related to charging infrastructure and parking
(Section 5).

The paper is finalized in Section 6 by stating the main conclusions
and key findings. In this section, the research questions are briefly
addressed separately.

2. Data analysis

This section describes the data used in the analysis and presents key
findings. The analysis is done separately for the EV charging data and
the development of the EV fleet in the following subsections. The
analysis focuses on commercial charging sites in the Finnish capital
region.

2.1. Charging data

The charging analysis uses real data measured at the Mall of Tripla
and the shopping centre REDI, which are both located in Helsinki,
Finland. There are nearly 300 [23] and 200 [24] charging points at
Tripla and REDI, respectively. In both locations, the charging points
provide three-phase charging up to 22 kW. Additionally, the parking
areas in both locations are warm, which reduces the need to use the
charging energy to warm up the EV or the battery of the EV. Thus, the
charging energy can be used mostly for charging the EV batteries. The
data consist of charging sessions recorded over a 6-month period (10/
2019-3/2020). However, there seem to be notably fewer charging ses-
sions recorded during March 2020 compared to previous months,
assumably due to COVID-19. This is also assumed to have impacted
parking and charging behaviours and, therefore, the data for March
2020 are excluded. Since the EV penetration increases exponentially, a
subset of data (including 3518 sessions from Tripla and 5107 sessions
from REDI) measured between 1.11.2019 and 29.2.2020 is selected to
represent the average charging behaviour at the beginning of 2020. The
charging sessions are uncontrolled, and thus, the charging powers are
only limited by the OBCs of the EVs or by the charging point (22 kW).
The data include plug-in time, connection time, active charging time,
energy consumption and peak power of each charging session.

The data show that most of the charging sessions have a peak
charging power of around 4 kW. Two other clear clusters are also seen:
~7.5 and ~ 11 kW. These are expected, as the charging powers of
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commercial EVs in charging mode 3 (IEC 61851) often tend to be 3.7 kW
(equalling a single phase 16 A at 230 V), 7.4 kW (1 x 32 A), or 11.0 kW
(3 x 16 A). New models are also likely to support 22 kW (3 x 32 A)
charging. However, the share of these models is currently marginal. The
share of charging sessions with maximum a power of 0-4.5 kW is 79.4%,
4.5-10 kW is 8.1%, 10-15 kW is 9.0%, and 15-25 kW is 3.5%. The
distribution of the charging peak powers is shown in Fig. 1.

In Fig. 1, it can be seen that some EVs actually charge with a power
greater than 22 kW. This can be explained by the natural variation in
voltage levels, which affects the exact charging power. Furthermore, as
observed in [25], EV charging currents may slightly exceed the limits set
by the charging point.

In the analysis, the charging behaviour is separated into weekdays
and weekends for both charging sites, resulting in four different cases. It
is assumed that in each case, the probability distribution of the arrival
and parking times remain the same when the EV penetration increases.
Furthermore, it is assumed that seasons do not substantially impact the
sojourn and idle time, as stated in [13]. In this paper, idle time refers to
the time that an EV is connected to a charging point, but the charging
process is stopped due to a fully charged battery. The data show a cor-
relation between arrival time and parking duration. For example, on a
weekday at REDI, there is a noticeable peak in the arrival times in the
morning around 8:00; most importantly, a notable share of these EVs
stay 8-10 h. It is likely that these EVs are used for commuting. Park &
Ride, which is available at REDI on weekdays between 06:30 and 17:30
[24], is a parking facility with public transport connections, allowing
commuters to leave their cars outside the city centre and continue their
journey via public transport. REDI is located next to Kalasatama metro
station, which offers connection to Helsinki city centre. The average
number of EVs arriving each hour is presented in Fig. 2 for the case of a
weekday at REDI. In the figure, the colour indicates the category of the
stay duration, where the unit for the durations is a minute. For example,
on average, 7.0 EVs arrive during 8-9 h, and 2.7 of them stay 480-600
min.
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According to the data, a clear correlation exists between the charging
peak power and the charging energy of the session. The charging ses-
sions with low charging powers tend to charge less than 10 kWh,
whereas a large share of charging sessions with high charging powers
charge over 15 kWh. This can be seen in Fig. 3, which presents the
average number of EVs with certain charging powers during weekdays
at REDL. In the figure, the colour indicates the category of the amount of
charged energy, where the unit for the energy is a kWh. The arrival
hours with plug-in durations and charging powers with charging en-
ergies for other cases are presented in Figs. A.1 and A.2 in the Appendix.

In Fig. 4, the distribution of parking times over charging peak powers
of both charging sites is illustrated. In the figure, only the charging
sessions with fewer than 5 h of parking time are included to better
represent the behaviour of the customers at the shopping centres instead
of work charging behaviour. The figure shows that the charging power
does not seem to correlate with the stay duration. The study in [14]
supports this claim by concluding that the parking time at charging
stations (up to 11 kW) are mostly aligned with the parking behaviour
and preferences instead of the energy requirement.
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Fig. 6. Block diagram of the EV fleet model to forecast the number of PHEVs
and BEVs in 2040.

According to the data, EVs rarely become fully charged, as the
parking time and supported charging power act as bottlenecks. This is
also true even for the charging sessions that utilize charging powers of
11-22 kW. Therefore, when the share of EV models that support higher
charging powers (charging mode 3, IEC-61851) increases, the charging
energy will also increase in these kinds of locations. In Fig. 5, the dis-
tribution of idle time is presented for both charging sites. Again, only the
charging sessions with parking times below 5 h are included. It can be
seen that 68.0-84.7% (average 77.4%) of the charging sessions with a
plug-in time of fewer than 5 h have idle time of less than 5 min, and
fewer than 8.2% have an idle time of 1 h or more. Most importantly,
higher charging power does not seem to increase the idle time. The study
in [12] is aligned with the results by stating that fulfilling the charging
demand at commercial locations, such as shopping centres, often re-
quires a higher charging power compared with home and work
charging.



T. Simolin et al.

In other types of locations such as the home or workplace, long
parking time enables EVs to be fully charged with a moderate charging
power. In those cases, a higher charging power will lead to increased
flexibility, as the charging can be scheduled more freely from the EV
user perspective.

2.2. Development of EV fleet in Finnish Capital Region

To estimate the number of EVs in the Finnish Capital Region during
the next 20 years, the baseline scenario results of a prior developed
Finnish car fleet model were used. The results of the EV fleet analysis are
limited to BEVs and PHEVs located in 4 cities (Helsinki, Espoo, Vantaa
and Kauniainen) forming the Finnish Capital region, so that it would
respect the expected catchment areas of Tripla and REDI. The model
provides both the current car fleet as well as the estimated yearly car
fleet development to the year 2040. The model uses disaggregate single-
vehicle data from the Finnish vehicle register and combines it with the
socio-demographic data of the vehicle owner to calculate the average
speed of car renewal within different user and area groups. The average
age of cars and EV-acquisition probabilities differ between user and area
groups, and they are based on a statistical analysis of car fleet history
and survey results regarding EV adoption [26,27].

In Fig. 6, an outline of the car fleet model is presented. As the starting
dataset, open data from the Finnish car fleet [28] were used. In addition
to the open data fields, the dataset in this study obtained additional
fields containing basic information about the registered users of cars.
The additional fields were the gender of the registered user (male/fe-
male/na), the area the car is registered to (first three digits of the Finnish
postal code), year of birth of the registered user (yyyy), age of the
registered user, and the datetime-stamp of last inspection of the car,
when the mileage of the car was last recorded.

However, not all fields of the open data were needed. The car
introduction dates were used to track the age of the cars and technical
details were used to see the propulsion type of each car. The postal code
was used to categorise the cars in within different area types (according
to urban-rural classification by Finnish Environment Institute) and the
municipality code was used to track the population development. The
area type, age groups (18-24, 25-34, 35-44, 45-54, 55-64, 65-74, over
75), and gender information were used to form categories of every
combination of age, gender and area type. This categorisation was
chosen as the urban-rural classification is widely used in Finland to
reflect differences between areas at the level of a regional structure. Age
and gender groups were defined as such because those have been widely
used in other research (for example Finnish research and surveys
regarding future car use), but they are still wide enough to have large
sample size for each category.

The average age of the cars was calculated for each category to
produce the end-of-life (EOL) date for every car in that category. Even
though this method loses some of the details of a single car, it allows
large scale modelling, where only the total composition of the fleet is
forecasted. It also takes into account that the average age of cars in
Finland varies largely between different areas [29]. The EOL was
calculated based on the averages as the data only had a snapshot of
Finnish car fleet (for 31st of July 2018), and therefore it did not allow to
have more specific calculation method. In the study, it is assumed that
the average age of the cars in every category is stable to the end of the
simulation. When a car exits the fleet on EOL-day, a replacement enters
into the fleet on EOL + 1 day, so there is no overlap or gaps between
generations. Whenever a car exits the fleet, it can no longer re-enter.

After defining the EOL of every car, an estimation was made on how
the probability to obtain a non-EV, a BEV, or a PHEV changes over time
in the future. The yearly probabilities are estimated based on the Finnish
national forecasts [30] so that the yearly number of new cars with
certain propulsion (non-EV, PHEV, BEV) follows the estimated path. If a
car has an EOL estimate before 2040, a new replacement at the EOL
point is generated as many times as needed so that the new replacement
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Fig. 7. Model estimated renewal speed of the car fleet in the Finnish Capital

Region, where the colours represent the number of times the car owners have
replaced their cars since 2020.

Table 1
Supported charging powers of new EVs.
Charging powers 3.7 kW 7.4 kW 11.0 kW 22.1 kW
Scenario 1 PHEVs 70% 30% - -
BEVs - 50% 25% 25%
Scenario 2 PHEVs 70% 30% - -
BEVs - 40% 30% 30%
Scenario 3 PHEVs 70% 30% - -
BEVs - 20% 40% 40%
200
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Fig. 8. Development of the EVs according to Scenario 2.

exists at the year 2040. As the model memorizes each car, the number of
PHEVs and BEVs in use in any given year during 2020-2040 can be
obtained.

In the car fleet model, it was assumed that the ratio between the
population and cars stays stable. To consider the change in the popu-
lation, the Finnish population forecast [31] was used to calculate yearly
changes of population in every municipality to correct the car amounts
to respect the forecasted population development. Finally, the results
were limited to BEVs and PHEVs for the desired area to know the annual
number of EVs.

In Fig. 7, the average car fleet renewal speed in the Finnish Capital
Region is presented. The number of cars used in 2020 is assumed as
iteration zero, and the figure depicts how large a share of the car fleet
has been upgraded to a newer model at any given year.

According to the car fleet model, the total number of EVs in the
Finnish Capital region will increase from 7,972 to 72,712 by 2030 and to
173,319 by 2040. In this paper, we assume that the average number of
charging sessions at REDI and Tripla will increase in the same
proportion.

For the current car fleet, where specific car models are known, the EV
Database [32] is used to gather information about the charging power
and technology in existing EV models. This information was used to
classify every existing EV in the area based on its maximum charging
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power, which was either 3.7, 7.4, 11.0 or 22.1 kW.

For new PHEVs, it is assumed that 70% will have an OBC with a
maximum power of 3.7 kW and 30% with a 7.4 kW max. The BEVs are
assumed to be 7.4 kW, 11.0 kW or 22.1 kW. The exact shares will depend
on the scenario. Three different scenarios are studied to assess uncer-
tainty regarding the charging powers of new EVs. The distribution of the
charging powers of new EVs for each scenario is shown in Table 1, and
the number of EVs with certain charging powers for Scenario 2 are
shown in Fig. 8.

Due to the relatively slow renewal speed of the car fleet, the share of
EVs that support only 3.7 kW seems to be dominant for the next 5-10
years. After that, the share of the higher charging powers takes over. In
Scenario 2, the share of EVs that support 3.7 kW is 12.9%, 7.4 kW is
38.2%, 11.0 kW is 24.5%, and 22.1 kW is 24.5% in 2040.

3. Modelling power demand

This section describes the generation of the simulation cases and the
used simulation model that generates the power consumption profiles
for all EVs. Both the cases and the model are described in separate
subsections.

3.1. Simulation cases

By combining the development of the EV fleet and the average
number of charging sessions in each case (REDI/Tripla and weekday/
weekend), the number of charging sessions can be estimated for the
following years. In this paper, the charging load for 2020, 2025, 2030,
2035, and 2040 are studied. As mentioned earlier, it is assumed that the
average daily number of charging sessions in REDI and Tripla increases
by the same proportion as the total number of EVs in the Finnish Capital
Region. The charging powers of the new EVs in each scenario are
determined using the shares presented in Table 1. The exact number of
charging sessions separated by their charging powers are presented in
Table A.1 in the Appendix.

After determining the total amount of EVs with certain charging
powers, the correlation between the charging powers and the charged
energies presented in Fig. 3 (for the case of a weekday in REDI) and in
Fig. A.2 (for all cases) is used to determine the amounts of energy to be
charged. However, since there have been only 12 charging sessions with
charging powers of 15-25 kW at Tripla in the data, it does not form a
well scalable probability distribution. Therefore, the combined data of
both REDI (includes 289 charging sessions with charging powers of
15-25 kW) and Tripla are used to determine the amounts of energy to be
charged for the EVs with charging powers of 15-25 kW for Tripla.

As the charging power does not have a clear correlation with the
arrival hours or stay durations, the arrival timings and stay durations are
generated separately and are randomly allocated for the EVs. The gen-
eration is done using the correlation between the arrival hours and stay
duration categories presented in Fig. 2 (for the case of a weekday in
REDI) and in Fig. A.1 (for all cases). The exact minute of the arrival times
and the exact charging energy within the category (i.e. “0-2 kWh”, “2-4
kWh”, etc.) are randomly generated.

As mentioned earlier, EVs rarely become fully charged at the inves-
tigated charging locations as the parking time and supported charging
power act as bottlenecks. This means that the charged energies in the
datasets determine only the lower bound for the actual missing energies
of the EVs. To carry out the simulations, it is assumed that the charged
energy in the data is the exact energy that was initially missing from the
EV when it was plugged in. This assumption is likely to reduce the total
charging loads. However, since the same assumption is made for each
simulation case, the results are comparable with each other.

3.2. Simulation model

The used simulation model couples realistic charging profiles (phase
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currents for each time step) with charging session data (arrival time,
departure time and charging energy requirement). The charging profiles
of the EVs are modelled based on real measurements of uncontrolled
charging sessions of four different commercial EVs with a time-
resolution of one second. These measurements are then used to calcu-
late the energies that are missing from the batteries of the EVs (i.e.
charging energy requirements) of each time step. The process goes
backwards from the end of the charging sessions where the missing
energies are zero. Then, a lookup table is formed separately for each EV
to represent the correlation between the realized charging currents and
the missing energy. Thus, the simulation model takes the limitations of
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Table 2
Electric vehicles.

Model Max charging Max charging Charging power
current power group
Nissan 2012 1x16 A 3.7 kW 0-4.5 kW
Nissan 2019 1x32 A 7.4 kW 4.5-10 kW
BMW i3 3x16 A 11.0 kW 10-15 kW
Smart 3x32A 22.1 kW 15-25 kW
forfour
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Fig. 11. Average charging energy consumption per EV.

the OBCs fully into account and is able to produce realistic non-linear
charging profiles where the charging current decreases before the bat-
tery becomes fully charged. Instead of percentual SOC, the simulation
model considers only the energy in Wh that is missing from the batteries
of the EVs as this method does not require the maximum battery ca-
pacities to be known.

As an example, the charging profile model for BMW i3 is illustrated
in Fig. 9. If the missing energy is greater or equal to 1058 Wh, the
charging currents are 15.9 (phase a), 15.5 (phase b) and 15.1 A (phase
). According to the conducted measurements, the charging currents
have very little variation (less than 0.5 A) until the battery is close to
being fully charged. Therefore, the charging profile model of BMW i3
assumes constant charging currents when the missing energy is greater
than 1058 Wh. As seen in the figure, the BMW utilizes mostly three-
phase charging but switches to a single-phase charging when the
missing energy is around 235 Wh.

As mentioned in [20], the charging currents also depend on the
temperature of the battery. However, due to the increasing complexity,
it is left out of the modelling. The operating principle of the simulation
model is illustrated in Fig. 10.

The used EV models include Nissan Leaf 2012, Nissan Leaf 2019,
BMW i3, and Smart forfour EQ. These EVs have different charging
characteristics, thus enabling a comprehensive basis for the modelling of
large EV fleets. According to the ablation study in [21], when consid-
ering charge profiles in heterogeneous EV fleets, the number of phases
used for charging and the maximum current are much more important
than the exact EV model. Therefore, the EVs shown in Table 2 can be
used to model most EV charging profiles with a reasonable accuracy.

As mentioned in [8], a time resolution of 1 min is notably more ac-
curate than one of 5 min when modelling momentary peak loads in 22
kW charging powers. However, since the study did not consider finer
time resolutions, a finer time resolution may yield even more accurate
results. Therefore, the model uses a time resolution of 10 s.

The simulation model considers three phase charging points. The
phase order of the charging point alternates, as it is common practice to
avoid unnecessary phase imbalance, which may occur especially if there
are multiple EVs that utilize only a single phase for charging. In the
simulations, the arriving EVs are assigned randomly for available
charging points.
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Fig. 13. Increment of the average charging energy and the PNP.
4. Results

The key numeric results of the simulations are presented in Table A.2
in the Appendix. From the results, it can be seen that the total charging
load and the highest peak load in commercial locations will increase at a
faster pace than the number of EVs. For example, the total daily charging
energy and the highest daily peak power increase over the 20 years by
factors of 39.2-71.5 and 29.0-48.1, respectively, while the number of
EVs increases by a factor of 20.6-21.1. This is due to the increased share
of EVs with more powerful OBCs, which allows the EVs to charge more
energy within the very limited amount of available plug-in time.

To enable a more straightforward comparison with other charging
sites and locations, the average charged energy per EV and the peak of
the normalized power (PNP) are calculated and presented in Figs. 11 and
12, respectively. In the figures, ‘R’ denotes REDI, ‘T" denotes Tripla, the
numbers 1-3 denote the scenario, ‘wd’ denotes weekday, and ‘we’ de-
notes weekend. The peak of the normalized power is defined in [8] and
can be calculated according to Eq. (1),
pNp = P €8]

ngy

where P,y is the highest peak load and ngy is the total number of
EVs.

In Fig. 11, it can be seen that the average charging energy per EV is
expected to increase relatively linearly over the next 20 years, from 5.6
to 8.7 kWh to 13.0-19.6 kWh. As the PNP depends heavily on the tim-
ings of the charging sessions, it includes a higher variability. Nonethe-
less, the PNP rises from 1.1 to 1.4 kW/EV to 1.6-2.9 kW/EV. The results
also show that the average charging energy per EV increases more than
the PNP. This is illustrated in Fig. 13, where the increment of the average
charging energy per EV (E) and the PNP (P) over the 20 years can be
compared. The figure shows that the solid bars (increment of the energy)
are consistently higher than the striped bars (increment of the PNP), i.e.
the average charging energy clearly increases at a faster pace than the
PNP in next 20 years. This is assumed to be due to the fact that the higher
the daily number of charging sessions, the less likely it is that most of
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Fig. 15. Current consumption on a weekday at REDI in 2040 for (a) Scenario 1,
(b) Scenario 2 and (c) Scenario 3.

them will be charging with maximum power at the same time. The re-
sults shown in Table A.2 support this claim as the highest number of EVs
simultaneously plugged in in a day (Nmay) per the total number of EVs in
a day (Ngy) decreases over the years in most cases as the total number of
EVs in a day increases. On average, the increment of the average
charging energy per EV is + 133.5%, whereas the increment of the PNP
is + 77.1%.

According to the simulations, each case results in different charging
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behaviour from a timing perspective. To illustrate this, the number of
charging sessions for each case in 2040 is presented in Fig. 14. Although
the average daily number of charging sessions for a weekday at REDI
(993) and a weekend at Tripla (949) are relatively close, the use of
charging points in terms of time of occupancy are very different. This
can be explained by the different distribution of arrival times over plug-
in durations, as illustrated in Fig. A.1. On the weekend at Tripla, EV
users tend to arrive later and stay for a shorter amount of time compared
to weekdays at REDI.

The charging loads on weekdays at REDI in 2040 are illustrated in
Fig. 15. Contrary to the results mentioned in [10], the charging peak
demand does not seem to be earlier for scenarios where the average
charging power of the EVs is higher. Instead, the charging peak demand
is higher for the scenarios where the average charging power of the EVs
is higher. From the figure, it can also be seen that the loading imbalance
of the three phases varies between the scenarios.

Further phase imbalance analysis is carried out using Eq. (2), where
I, represents the percentual phase imbalance for each time step t, Alnqy,
avg is the maximum deviation of any phase current from the average
current Ioy. In each simulation case, the average phase imbalance of
each time step is calculated. To avoid potential distortion caused by, e.g.
a random single-phase EV charging at nighttime, the average phase
imbalance is limited to time steps with at least three EVs present. The
average phase imbalance for each simulation case is presented in Fig. 16.
In the figure, the phase imbalance is shown to decrease over the years,
and Scenario 3 tends to lead to a slightly lower phase imbalance
compared with Scenario 1. This indicates that the decreasing phase
imbalance correlates more notably with the increasing number of EVs
than the increasing share of EVs that support three-phase charging.

Al avg (1)
Layg (1)

L(t) = x 100% (&)

5. Discussion

The simulation results promote the idea of centralized charging lo-
cations from two perspectives. Firstly, as seen in Fig. 13, an increasing
number of EVs in a charging site will increase total energy consumption
more than the peak power demand. Secondly, the average phase
imbalance decreases as the number of EVs increases, as seen in Fig. 16.
Therefore, to ensure a certain level of user satisfaction, the total
charging capacity per charging point can be lower in larger charging
sites than in smaller charging sites. The centralization of small charging
sites into larger ones may also result in lower infrastructure costs per EV.
If the site is large enough, it can also be connected directly to a higher
voltage level, eliminating the potential bottlenecks of the low voltage
network.

Regardless of the size of the charging site, the development of the
charging energy demand and the peak power demand obviously impact
the optimal sizing of charging infrastructure. This may also include
other components such as PV systems and energy storage systems (ESSs)
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Fig. Al. Average number of EVs arriving each hour where the colours indicate the categories for stay durations (min) in the case of (a) REDI weekday, (b) REDI

weekend, (c) Tripla weekday and (d) Tripla weekend.

that are coupled with the charging site. Since the lifetime of PV systems
and ESSs are quite long, the development of the EV fleet in terms of size
and charging powers will impact the total benefits. Therefore, studies
considering the sizing of the charging capacity [33], PV systems [19] or
ESS [11] could benefit from the results presented in this paper to
enhance the accuracy of the calculations. Besides avoiding potential
overinvestments, the accurate load modelling can be used to ensure
satisfying quality of the charging service, i.e. the energy charged to the
EVs. According to the survey presented in [34], the quality of the
charging service is seen as a more important factor than the charging
costs.

As the charging powers of the EVs and the average energy con-
sumption of the charging sessions in commercial locations increases, a
larger part of the home charging load is fulfilled by commercial
charging. This means that the load is shifted from later evening to
daytime, which can be beneficial from a renewable energy perspective
as the solar energy can be utilized more efficiently by the EV fleet. To
take full advantage of this, commercial charging sites should use
charging points that support powers up to 22 kW along with a cost-
effective PV system. It would be worth considering the use of sub-
sidies or policies to encourage such arrangements in commercial
charging locations as it would be a logical step towards fully renewable
energy-powered EVs.

6. Conclusions

This paper has analysed the charging characteristics in commercial
charging locations in terms of supported charging powers. Additionally,
two simulation models are used. The first model estimates the devel-
opment of the electric vehicle (EV) fleet and the supported charging
powers of the EVs. The second model simulates the charging loads in fine
detail. Based on the results, it is evident that the supported charging
powers of the EVs have a significant impact on the charging loads when
considering charging points with a nominal power of > 3.7 kW.

The investigated research questions and the findings of the study are
listed below:

1. What s the influence of different charging powers on the charging sessions
at commercial charging sites? According to the data analysis, 77% of
the charging sessions on average have idle time of less than 5 min in
commercial locations, which means that the charging process con-
tinues throughout the whole plug-in duration in most cases. Impor-
tantly, a higher supported charging power of the EV does not seem to
increase the idle time, which indicates that the available charging
time together with the charging power forms a bottleneck for the
charged energy. As a consequence, when the EV fleet develops and
EVs begin to support higher charging powers, the average charging
energy per EV will also increase in these locations. Since most of the
analysed charging sessions (79%) support only charging powers
below 4.5 kW, the increase is likely to be notable. Meanwhile, the
flexibility of the EVs may not increase remarkably unless both the
charging site and the EVs begin to support over 22 kW charging
powers.

. How does the EV fleet develop in terms of supported charging powers? The
results indicate that the share of EVs with ~ 3.7 kW maximum
charging powers will dominate the next 5-10 years. However, after
that, most EVs begin to support higher charging powers. In 2040, the
estimated share of EVs that support around 3.7 kW is 12.9%, 7.4 kW
is 38.2%, 11.0 kW is 24.5% and 22.1 kW is 24.5%.

. What are the impacts of the development of the EV fleet in commercial
charging sites in terms of charging energy and peak loading? According
to the simulations, both the average charging energy per EV and the
peak of the normalized power will increase notably over the next 20
years. The average energy will increase from 5.6 to 8.7 kWh/EV to
13.0-19.6 kWh/EV (+133.5% on average), while the peak of the
normalized power increases from 1.1 to 1.4 kW/EV to 1.6-2.9 kW/
EV (+77.1% on average).

. How should the development of the charging energy and peak loads be
taken into account in parking policy? According to the results,
centralized charging solutions could lead to a more cost-effective
utilization of charging capacity, thus lowering the infrastructure
costs per EV. If the site is large enough, it can also be connected
directly to a higher voltage level. Additionally, centralized parking
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Fig. A2. Average number of EVs with certain charging powers, where the colours indicate the categories for the amount of charged energy (kWh) in the case of (a)

REDI weekday, (b) REDI weekend, (c) Tripla weekday and (d) Tripla weekend.

allows new forms of city development, as it frees the parking spaces
from the street level to be used by other sustainable forms of trans-
port. These factors should be considered when planning the imple-
mentation and location of new parking spaces.

Overall, the results of the study are quite valuable. They can be used
to improve the accuracy and reliability of future simulations related to
topics such as load forecasting, flexibility evaluation, and optimal sizing
of charging infrastructure. Additionally, policymakers can use these

perspective. Future work aims to investigate the impacts of the
increasing charging powers of the EVs in other charging sites, such as
homes and workplaces. Furthermore, the influence of the charging loads
of different charging sites on each other will be studied.
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Table A1
The number of EVs in the simulation cases separated by their charging powers.
Charging power (kW) 3.7 7.2 11.0 221 Total
2020 REDI Weekday 35 5 3 3 46
Weekend 26 4 3 2 35
Tripla Weekday 20 1 3 0 24
Weekend 37 1 5 0 44
Scenario 1 Scenario 2 Scenario 3
Charging power (kW) 3.7 7.2 11.0 22.1 3.7 7.2 11.0 22.1 3.7 7.2 11.0 221 Total
2025 REDI Weekday 117 31 9 29 117 30 9 30 117 29 10 30 186
Weekend 91 24 7 23 90 24 8 23 91 23 8 23 145
Tripla Weekday 64 14 6 14 64 14 6 14 64 13 6 15 98
Weekend 116 26 11 25 116 25 11 26 117 24 11 26 178
2030 REDI Weekday 168 140 47 62 168 124 55 70 167 91 72 87 417
Weekend 130 109 37 48 129 96 44 55 130 71 56 67 324
Tripla Weekday 90 72 26 31 90 63 30 36 90 46 39 44 219
Weekend 164 130 47 57 164 114 55 65 164 83 71 80 398
2035 REDI Weekday 144 300 123 120 144 252 147 144 144 156 195 192 687
Weekend 111 234 96 93 111 196 115 112 112 121 152 149 534
Tripla Weekday 78 156 66 62 78 131 79 74 78 80 104 100 362
Weekend 142 283 119 112 142 237 142 135 142 145 188 181 656
2040 REDI Weekday 130 460 204 199 130 378 245 240 130 217 326 320 993
Weekend 101 357 159 155 101 294 191 186 101 168 254 249 772
Tripla Weekday 71 240 109 103 71 197 130 125 71 112 173 167 523
Weekend 129 435 197 188 129 358 236 226 129 203 313 304 949
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Table A2
Key numeric results of the simulations.
REDI Tripla
2020 Weekday Nev (Nmax) 46 (20) Nev (Nmax) 24 (6)
Prax (kW) 65.5 Prax (kW) 27.4
E (kWh) 401.4 E (kWh) 135.4
E/Ngy (kWh) 8.73 E/Ngy (kWh) 5.64
Prmax/Ney (kW) 1.42 Prax/Ney (kW) 114
Weekend Nev (Nmax) 35(8) Nev (Nmax) 44 (13)
Prax (kW) 48.7 Prnax (kW) 48.5
E (kWh) 270.0 E (kWh) 274.1
E/Ngy (kWh) 7.71 E/Ngy (kWh) 6.23
Pmax/Ney (kW) 1.39 Prax/Ney (kW) 1.10
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
2025 Weekday Niy (Nimax) 186 (72) Nev (Nmax) 98 (21)
Prnax (KW) 319.7 320.6 326.4 Prnax (KW) 131.6 154.6 151.0
E (kWh) 2040.2 2050.6 2063.3 E (kWh) 959.6 970.8 1030.1
E/Ngy (kWh) 11.97 11.02 11.09 E/Ngy (kWh) 9.79 9.91 10.51
Prnax/Ney (KW) 1.72 1.72 1.75 Pmax/Nev (kW) 1.34 1.58 1.54
Weekend Nev (Nmax) 145 (40) Nev (Nmax) 178 (49)
Prax (kW) 209.0 201.1 201.1 Prax (kW) 246.4 271.5 280.0
E (kWh) 1341.77 1352.42 1345.41 E (kWh) 1529.3 1581.1 1587.0
E/Ngy (kWh) 9.25 9.33 9.28 E/Ngy (kWh) 8.59 8.88 8.92
Prax/NEy (KW) 1.44 1.39 1.39 Ppnax/Ney (KW) 1.38 1.53 1.57
2030 Weekday Nev (Nmax) 417 (154) Nev (Nmax) 219 (46)
Prax (KW) 814.0 835.8 866.2 Ppnax (kW) 299.83 340.31 374.91
E (kWh) 5344.6 5514.1 6018.2 E (kWh) 24229 2639.3 2873.8
E/Ngy (kWh) 12.82 13.22 14.43 E/Ngy (kWh) 11.06 12.05 13.12
Prax/Ney (KW) 1.95 2.00 2.08 Prax/Nev (kW) 1.37 1.55 1.71
Weekend Ngv (Nmax) 324 (91) Nev (Nmax) 398(103)
Ponax (KW) 581.9 637.4 687.9 Prnax (KW) 611.9 676.3 686.8
E (kWh) 3619.6 3726.6 4037.6 E (kWh) 4064.2 4352.3 4854.7
E/Ngy (kWh) 11.17 11.50 12.46 E/Ngy (kWh) 10.21 10.94 12.20
Prnax/Ney (KW) 1.80 1.97 2.12 Prnax/Ney (kW) 1.54 1.70 1.73
2035 Weekday Nev (Nmax) 687 (252) Nev (Nmax) 362 (76)
Prax (kW) 1536.9 1672.1 1882.5 Prax (KW) 600.6 629.5 767.3
E (kWh) 10329.9 10987.7 12317.0 E (kWh) 4898.4 5268.9 6134.7
E/Ngy (kWh) 15.04 15.99 17.93 E/Ngy (kWh) 13.53 14.55 16.95
Prnax/Ney (KW) 2.24 2.43 2.74 Prnax/Ney (KW) 1.66 1.74 2.12
Weekend Nev (Nmax) 534 (138) Nev (Nmax) 656 (165)
Prmax (KW) 1031.7 1123.6 1227.1 Prax (kW) 1391.9 1297.4 1657.5
E (kWh) 6927.2 7451.1 8272.1 E (kWh) 7929.0 8621.2 10092.7
E/Ngy (kWh) 12.97 13.95 15.49 E/Ngy (kWh) 12.09 13.14 15.39
Prax/Nev (KW) 1.93 2.10 2.30 Prax/Ney (kW) 2.12 1.98 2.53
2040 Weekday Niy (Nimax) 993 (356) Nev (Nmax) 523(108)
Prax (kW) 2412.0 2578.6 2902.1 Prax (kW) 821.7 995.5 1046.7
E (kWh) 16213.6 17353.0 19435.8 E (kWh) 7696.4 8462.0 9814.5
E/Ngy (kWh) 16.33 17.48 19.57 E/Ngy (kWh) 14.72 16.18 18.77
Prax/Ney (KW) 2.43 2.60 2.92 Pnax/Ney (kW) 1.57 1.90 2.00
Weekend Nev (Nmax) 772 (204) Nev (Nmax) 949 (251)
Prax (kW) 1539.9 1748.0 1923.4 Prax (kW) 1813.2 2102.1 2382.9
E (kWh) 10859.5 11676.6 13128.0 E (kWh) 12366.7 13626.9 16062.9
E/Ngy (kWh) 14.07 15.13 17.01 E/Ngy (kWh) 13.03 14.36 16.93
Prnax/Ny (KW) 1.99 2.26 2.49 Pumax/Ngy (KW) 1.91 222 2.51

Ngy is the total number of EVs in a day, Npay is the highest number of EVs simultaneously plugged in in a day, E is the total charged energy (kWh) in a day, Ppay is the

highest peak load (kW) in a day
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Abstract

The adaptive charging algorithms of today divide the available charging capacity of a charg-
ing site between the electric vehicles without knowing how much current each vehicle
draws in reality. Thus, they are not able to detect deviations between the current set point
at the charging station and the real charging current. This leads to a situation where the
charging capacity of the charging site is not used optimally. This paper presents an algo-
rithm including a novel feature, Expected Characteristic Expectation and tested under
realistic circumstances. Itis demonstrated that the proposed algorithm enhances the adapt-
ability of the charging site, increasing the efficiency of the used network capacity up to
about 2 kWh per charging point per day in compatison with the previous benchmark algo-
rithm. The algorithm is able to increase the average monetary benefits of the charging
operators by up to around 5.8%, that is 0.6 € per charging point per day. No input, such
as departure time, is required from the user. The proposed algorithm has been tested with
real electric vehicles and charging stations and is compatible with the IEC 61851 charging
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1 | INTRODUCTION

With an increasing need to build new charging sites for electric
vehicles (EVs), a remarkable consideration is that most of the
new charging sites must be retrofitted to an already existing net-
work infrastructure [1]. This is likely to pose challenges with
the current capacity, particularly during the daily peak hours.
In most cases, a reinforcement of the network results in high
costs and is not economically feasible [2]. Regardless of the lim-
ited network capacity, the charging time is a critical constraint
in order to provide a charging service of high quality. Another
issue is that each EV possesses different charging characteris-
tics, or non-idealities [3]. Ignoring this aspect will reduce the
charging efficiency when it comes to the use of network capacity
and increase charging times [4—0]. It is shown that about 76% of
the users of public charging stations find a high-quality charging
service more important than the price of charging [7]. With such
restrictions from the side of the network and from the side of

standard. The charging algorithm is applicable in practice as it is described in this paper.

the customers, a highly efficient and adaptive charging algorithm
is a key element to improve the quality of the charging service.

In the literature review of this paper, six requirements to
develop a practical charging algorithm are considered. These
requirements are used to highlight the differences between
already published research works and this paper. The require-
ments are as follows:

1. Is the algorithm tested by applying real charging data? Com-
mercial EVs have a wide range of charging characteristics
and the charging habits of the users are strongly dependent
on the type of the charging site.

2. Are the non-ideal charging characteristics considered? In
practice, this means the use of charging curves that are mea-
sured on real EVs with sufficient accuracy. If the goal is to
develop an algorithm to manage charging in a time frame of
seconds or a few minutes, real, session-based charging data
does not reveal the dynamic charging characteristics of each
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TABLE 1  Comparison of related research works
6) Utilizes measured

1) Tested 3) Compliancy current of EVs as
using real 2) Non-ideal with charging 5) Control feedback for the
charging charging standards 4) Tested with time-step < real-time charging

Reference data considered tested real EVs 1 min management algorithm

19] yes no yes (J1772) yes no (15 min) no

[10] yes no yes (J1772) yes not mentioned no

[11] no no yes (IEC 61851) yes yes (30's) no

[5] yes yes no no yes (1 min) no

[12] no no no no yes (1 min) no

[13] yes no no no no (15 min) no

[14] no no no no no (30 min) no

[15] no no no no no (60 min) no

[16-20] no no no no no (15 min) no

[21-23] no no no no not mentioned no

vehicle that could cause undesirable decisions of the algo-
rithm in practice.

3. Is the compliancy of the algorithm with the charging stan-
dards verified? It is important to ensure that the algorithm is
able to work with commercial charging stations and electric
vehicles as well as to rule out any unrealistic features of the
algorithm.

4. Is the algorithm tested with real EVs and charging stations,
cither directly or via hardware-in-the-loop simulations?

5. Is the time step applied by the algorithm short enough so
that no meaningful dynamic phenomena, such as sudden
power peaks, remain unnoticed? The results in [8] suggest
that a time step longer than one minute may not be accurate
enough to observe the load peaks when operating charging
stations with nominal powers up to 22 kW.

6. Does the algorithm utilize measured charging currents of the
EVs in its operation? In order to make the algorithm agile
and adaptive, it should use as accurate values of currents as
possible.

In the best case, all six abovementioned requirements are
included when developing a practical algorithm for charging
management that works with the commercial hardware of today.
Table 1 summarizes related works found in the literature where
real-time charging management algorithms are developed and
evaluates their matching with the abovementioned six require-
ments. Then, the contribution of our work is stated against the
papers that the authors consider the most relevant for this work.

In [5], a real-time charging management algorithm with a
focus on non-ideal charging characteristics is presented. The
algorithm is based on neural network models, which means that
the neural network must be trained with the charging charac-
teristics of each EV model before the algorithm works in an
optimal manner. The study overlooks the fact that the charg-
ing curve is different at each current set point [4], but the same
charging curve is used for all current set points, which will result
in a reduced accuracy to predict charging profiles in a practical
application. Also, the simulation or the algorithm, does not take

into account that the charging curve depends on the tempera-
ture and the lifetime of the battery, which will further reduce
the performance of the algorithm. In order to reach the optimal
operation, all EV models should be measured at all possible set
points in different temperatures. This would be extremely labo-
rious and unpractical. Because of the fact that the operation of
the algorithm is based on predefined charging curves, all abnor-
malities in the charging curve are automatically ignored. The
algorithm in [5] requires a certain computation time between the
connection of the EV to the charging point and the start of the
charging session to schedule the charging sessions. If this com-
putation time becomes too long, customer experience may be
reduced. The scheduling algorithm in [5] works in time slots of
15 min, which means that if an unexpected charging behaviour
occurs, the scheduler must wait until the end of the time slot to
consider the behaviout, which can be too long time for some
applications.

In [10] it is mentioned that the individual charging charac-
teristics of each EV complicate priority sharing, This is due
to the fact that the EVs do not always charge according to
the indicated maximum power. However, no solution for the
issue is offered. In [9], an adaptive charging algorithm is pre-
sented, where the charging current is used to measure the energy
consumption of each vehicle, but is not used as an input to
the charging algorithm. The algorithm is tested with single-
phase AC chargers and a fast charger, not with three-phase AC
chargers. In [17], constant-current and constant-voltage charg-
ing stages are included in the mathematical modelling of the
EVs. This makes the scheduling algorithm more efficient than
considering only a constant charging curve. However, only one
generic load curve is used, which makes it inaccurate in a real
application.

The work in [21], presents a real-time adaptive charging
algorithm. The algorithm uses discrete charging powers: 0 kW,
20 kW, 40 kW and 62.5 kW, for every EV, which can be ineffi-
cient from the network-capacity viewpoint. In [24], the capacity
utilization rates of the charging stations are increased by chang-
ing their physical locations in the network, but these are rather
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fixed solutions than algorithms, as the solution presented in this
paper.

The second study with a focus on non-ideal charging
behaviour of EVs is presented in [6]. In the work, an offline
method for clustering charging curves is presented. Even if
the work does not present a real-time method to deal with
non-idealities, it underlines the importance of considering non-
idealities in charging management.

The literature review in Table 1 shows that non-ideal charging
characteristics are taken into account only in one study develop-
ing a real-time algorithm for charging management. In addition,
no algorithm uses the measured charging current as an input to
the charging management algorithm. Three works are identified
where the algorithm is proven to be functional with real elec-
tric vehicles and charging stations or is otherwise proven to be
compatible with the charging standards. What is also noticeable
in Table 1 is that most real-time algorithms have a fixed operat-
ing time-step of 15 min or more. This is rather long for many
applications of demand response [8].

In this paper, the term ‘network adaptivity’ means that the
charging current that is available for a charging site changes over
time and, consequently, the current drawn by the charging site
adapts to these changes. The term ‘capacity efficiency’ describes
how many percent of the charging current that is available for
the charging site is used by the charging site (consisting of one
or more charging points). To the best of the authors” knowledge,
no other paper has considered the capacity efficiency related to
EV charging as it is done in this work.

To fill the identified gaps in research, the contribution of this
paper is as follows:

1. Propose a novel adaptive charging algorithm, called CCE
(charging characteristic expectation) algorithm that employs
actual charging currents and has a capacity to learn the charg-
ing characteristics of the charging EV. The CCE algorithm
would enhance the operation of the charging algorithms, for
example the ones presented in [9, 10, 17] and [21], by reduc-
ing idle network capacity and charging times. The charging
algorithm is extended to function with a prioritized fast-
charging station or under varying load in the network.

2. Test the functionality of the algorithm with four real electric
vehicles, charging stations and a fast-charging station emula-
tor via hardware-in-the-loop simulations. The hardware test-
ing guarantees that the algorithm is compatible with the IEC
61851 charging standard. All data used in the hardware-in-
the-loop simulations are real, measured data.

3. Compare the proposed charging algorithm with a commonly
used reference algorithm.

4. Demonstrates that the CCE algorithm outperforms the ref-
erence algorithm in terms of efficient use of the charging
capacity.

Non-idealities of EV charging and their impacts on chatging
management, supported by detailed laboratory measurements,
are studied in [3], where an initial version of such adaptive algo-
rithm is also presented. The benefits of an adaptive charging
algorithm on a larger simulation case are further explored in

[4]. In comparison with [3] and [4], in this paper, the algo-
rithm is further developed by a complete reorganization and
including a load prioritization. Also, new features, such as met-
rics on the performance of the algorithm are added. In addition,
new EV models are added to the simulation model as well as
used in the experiments as hardware. Further, an extent compat-
ison between the CCE algorithm and the reference algorithm is
carried out.

The remainder of the paper is structured as follows. Section 2
presents the complete algorithm step-by-step. CCE, which is
a remarkable feature of the algorithm, is explained in its own
sub-section. Also, the reference algorithm is separated as a sub-
section. Section 3 describes the used data and the modelling in
the hardware-in-the-loop simulations as well as the laboratory
setup. Section 4 provides the results of the experiments and Sec-
tion 5 discusses the results and their implications. Section 6 con-
cludes the paper and gives directions to the future work.

2 | PROPOSED CHARGING
ALGORITHM

This section explains the functioning of the proposed charg-
ing algorithm. Henceforth, the algorithm is referred to as the
CCE algorithm according to its distinctive feature called CCE.
The reference algorithm that is used for comparison purposes,
is briefly explained in Section 2.1. A flowchart of the CCE algo-
rithm is presented in Figure 1. The main idea of the algorithm
is to find the most suitable current set points for each charg-
ing station so that the current capacity available for the charging
site is used as efficiently as possible without causing an overload.
The time step of the algorithm is 10 s. The algorithm does not
require any input from the user. The maximum current that is
shared between the prioritized load(s) and the charging points
can be a fixed value, for example an ampacity of the feeder
where the charging stations are connected, or non-fixed, such
as the free current capacity at the feeding secondary substation.
In order to enhance the readability of Figure 1, the steps of the
algorithm are numbered and explained separately in the text.

Step 1-2: The currents of the prioritized load(s) are read. In
the experiments of this study, the prioritized load is a DC fast
charging station, but it could be any other network load, such
as a cutrent measurement from a building that is connected to
the same feeder. The fast-charging station is selected as a prior-
itized load in order to maintain the quality of service as high as
possible for the fast-charging customers. This selection is done
because the use of fast charging stations has usually a higher
price than charging stations with lower nominal charging power.
Thus, the fast-charging station is not controlled by the CCE
algorithm. In this step, also the actual 3-phase charging currents
of each charging station are read.

Step 3: A set of performance metrics is calculated. The met-
rics include, for example, the error between the predicted and
the actual charging current of each vehicle as well as the total
error consisting of the sums of the errors for each time step.
Also, the charged energies and the capacity usage rates of each
charging station are calculated. Finally, the metrics are saved for
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FIGURE 1 A flowchart of the proposed charging algorithm

later analysis. In operational use, such detailed data for each time
step may not be necessary and the number of metrics can be
reduced.

Step 4: The CCE model is updated for each charging session
based on current measurements in Step 2. In short, the CCE
model enables the algorithm to estimate the upcoming charging
currents before applying the current set point. A CCE model
is a matrix where the charging current of each phase at each
current set point is memorized. The details of the CCE model
are described in Section 2.1.

Step 5: A list of active charging sessions is formed. An active
charging session refers to a charging session where an EV is
connected to the charging station and is ready to be charged
(status B in IEC 61851) or charging (status C or D).

Step 6: 6 A for each active charging session is allocated. This
is the minimum non-zero charging current according to IEC
61851. The idea is that each EV can always be charged with at
least 6 A, which is important from the user experience point-of-
view.

Step 7-8: Once 6 A for each active charging session is allo-
cated, the remaining current capacity is calculated for each
phase. The remaining charging capacities are calculated based
on the CCE models. If there is still available charging capacity
in the network to be allocated, the algorithm continues the inner
loop to Step 9. Otherwise, it moves to Step 14.

Step 9: From Step 8, a secondary loop is started. The idea of
this loop is to increase the charging current of each EV by 1 A
until the whole charging capacity is used or there are no more
EVs that can increase their charging current without causing an
overload. It is important to notice that the current set points
are not sent to the charging stations yet, but only in Step 14.
In this step, the possibility to allocate +1 A without causing
overloading is estimated using the CCE model. Additionally, the
algorithm considers the maximum current limit of the charging
point. If it is not possible to allocate +1 A for the first EV in the
list, the algorithm moves to Step 10. Otherwise, the algorithm
moves to Step 11.

Step 10: If the charging session is unsuitable for further
capacity allocation, it is removed from the list of active charg-
ing sessions and the algorithm returns to Step 8.

Step 11-13: If possible, +1 A is allocated to the EV and the
EV is placed at the end of the list. This ensures even capacity
allocation among the active charging sessions. Afterwards, the
remaining current capacity is recalculated.

Step 14-15: A physical signal of the current set point is sent
from the computer that runs the algorithm to each charging sta-
tion with an active charging session (including the ones removed
from the list). Once the set points are sent, the algorithm waits
until the end of the 10 s time step before starting a new time
step.

It is important to point out that always, when the remain-
ing current capacity is calculated, it is done so that the current
capacity is not exceeded in any of the three phases. So, the cur-
rent in phases A, B and C must stay below the maximum current
limit. The algorithm is developed in Python.

2.1 | Charging characteristics expectation

The CCE model is a way to memorize the charging currents
of each EV. The CCE is a crucial component to improve the
performance of the algorithm. It is computationally light, which
enables fast computation and high scalability.

A CCE model is essentially a matrix that includes the phase
currents of an EV at all current set points. The use of CCE
allows an accurate prediction of the charging currents of an EV,
before the current set point is sent to the charging station (Step
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14 in Figure 1). Each CCE model is updated in every iteration of
the algorithm with new measurements values of the phase cur-
rents of the corresponding charging session. Thus, each CCE
model corrects itself during a charging session, which is a way
to include non-ideal or non-linear characteristics in the charging
algorithm.

When an EV arrives at the charging station, the CCE model
supposes that the EV charges exactly according to the current
set point and is able to use the maximum current of the charging
station. Thus, the initial CCE matrix is

Ly 14 Iy I Meas
6 6.0 6.0 6.0  False
L as| 7 7.0 7.0 7.0  False

32.0,1 8 8.0 8.0 8.0  [alse

32 32.0 32.0 320 [false

whete /;; ,,, is the maximum current of the charging session.
This is typically either 3 X 16 A or 3 X 32 A (11 kW or 22 kW)
in Europe. [, is the current set point at the charging station
controller. /4, Iy and /- are the measutred phase currents at the
given current set point /;,. The matrix is updated at each itera-
tion loop. At the beginning, the values are set according to the
set point values (as in (1)). This is an initial assumption as there
is no preliminary knowledge of the chatging sessions. Meas is
a Boolean variable to indicate whether the values of /4, /3 and
I are measured values (Z7xe) or initial values (fz/se). For exam-
ple, after the first loop, if the CCE of a charging station receives
measurement at current set point 6 A: /4 = 6.2 A4,/ =5.7 A
and /o = 5.4 A, the CCE is updated as

Ly Ly Iz Io Meas

6 62 57 54 True
Lomae |7 7.0 7.0 7.0  False (2)
32.0, |8 80 8.0 8.0 False

32 32.0 32.0 32.0 [alse

As seen in (2), the updated values are bolded in purple. In this
way, the CCE model learns a part of the charging characteristics
of the EV, and thus, the accuracy of the CCE model to estimate
the upcoming charging currents increases. In order to acceler-
ate the operation of the charging algorithm, CCE includes three
auxiliary functions.

The first function detects the charging phases of an EV.
When the EV has charged during few seconds and if current
at one ot two phases are obviously above 0 A and one ot two
phases ate close to 0 A, the corresponding columns (74, /5 and
1) of the latter one(s) will be set to 0.0 A.

The second function verifies the highest charging current of
an EV. The function calculates the difference between the cur-
rent set point and the realized charging current. If the difference

is more than a couple of amperes, the realized current is set as
the maximum charging current of the charging session (7 ,4)-

The third function interpolates values of /4, /5 and /¢ that are
not yet measured (Meas = False), but lay between two measured
values (Meas = True). The measured values provide the upper
and the lower boundary for the estimation. The interpolated
value is placed linearly between the measured values.

When measuring the charging currents to update the CCE
model, it is important to consider that each EV has a different
reaction time to the input signals. When a new current set point
is set, it may take up to even 10 s before the EV starts reacting
to the new current set point. Another point is the noise in the
measurement devices that should not be confused with charging
current.

2.2 | Reference algorithm

The same hardwate-in-the-loop simulations are carried out with
the CCE algorithm as well as with a reference algorithm. The
reference algorithm is a fair sharing algorithm that divides the
available charging capacity equally among the charging vehicles
as

P,

available, t
B, = tobttar e

N yactive, t

where P, , is the energy that each vehicle receives [10] at a given
time step 7. P, ¢ 15 the available charging capacity to be
divided between all vehicles at time step 7. 7,4, is the number
of active charging sessions. In addition to [10], the algorithm is
used in [9] as well as by several commercial charging operators
and charging point manufacturers [25-27]. In [5], the fair shar-
ing algorithm is used as a reference algorithm, like in this paper.
Thus, the algorithm can be considered as a benchmark and is
referred to as the ‘reference’ algorithm throughout this paper.

3 | USED DATA, MODELLING
AND LABORATORY SETUP

In this section, the used data and how it is used in hardware-in-
the-loop simulations are described. Also, general descriptions of
the studied cases are provided.

3.1 | Case description

The charging site modelled in the hardware-in-the-loop simu-
lations is located in the district of Kreuzviertel, in the city of
Dortmund, Germany. There are plans to install 40 new charging
stations in Kreuzviertel in 2021. The charging stations are man-
ufactured by Wirelane and provide three-phase AC charging up
to 22 kW via a Type 2 connector. The charging stations are oper-
ated by a local energy company. High and irregular variations in
load make the EV charging loads at different sites very diffi-
cult, or nearly impossible [18], to be predicted with sufficient
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accuracy. In addition, a significant rotation of short-time cus-
tomers will intensify the use of the charging stations. In spite
of the demanding charging environment and limited network
capacity, a high quality of charging service will be offered.
This makes Kreuzviertel a feasible location for an adaptive and
capacity-efficient charging algorithm. Furthermore, more AC
charging points or DC charging stations might be installed in
the area in the future.

3.2 | Used charging data and modelling

As suggested in [28] and in [29], creating synthetic load curves
from mobility data involves several possibilities for pitfalls. That
is why real charging data is used in this work. The data is mea-
sured at a commercial charging site at Dortmund city centre,
located close to the planned charging site, and is expected to
possess similar user behaviour as the charging site under this
case study. The power of these two charging stations is lim-
ited to 22 kW and any further smart charging strategies are
not employed, so the EVs are charged with their respective
maximum charging powers. They are in commercial use and
equipped with Type 2 sockets.

The measured average parking time at the site where the
charging data is measured is 3 h 53 min and the average
charged energy is 11.3 kWh, which is much higher in com-
parison with other studies, such as [30-34]. From the data set,
it is not possible to see when the charging is finished, which
means that exact average charging powers cannot be directly
concluded.

In this study, four different EV models consisting of six dif-
ferent charging characteristics are used. The EV models are Nis-
san Leaf ZEO 2012 (1 X 16 A), Nissan Leaf 2019 (1 X 32 A),
BMW i3 1761 2016 (3 X 16 A) and Smart EQ forfour 2020 (3
X 32 A). The reason behind the selection of these EV models
in the study is that they cover the most of the common com-
binations of phases and maximum AC charging currents on the
market:

+ 37kW (1 X 16 A),
© 6.6kW (1 X32A),
« 11kW (3 X 16 A) and
« 22kW (3 X 32 A).

These EV models are also common in the European mar-
ket. More details of the EVs used in this study are included in
Section 3.3.

From the measured charging data, the used energy is divided
by the parking time of the charging session in order to have an
estimated average charging power. Then, the EV model of each
charging session is concluded as follows:

1. all charging sessions with an estimated average power
of > 15 kW are modelled as Smart forfour,

2. all charging sessions with parking time < 2 h and estimated
average charging power between 8 kW and 15 kW are mod-
elled as BMW i3,

3. all charging sessions with parking time < 2 h and estimated
average charging power between 4 kW and 8 kW are mod-
elled as Nissan Leaf 2019,

4. all charging sessions with patking time < 2 h and estimated
average charging power between 0 kW and 4 kW are mod-
elled as Nissan Leaf 2012 and,

5. the EV model for the rest of the charging sessions is selected
arbitrarily.

The idea is that each charging session is linked to one of the
abovementioned EV models. By far, most charging sessions fall
in categories (1) to (4), so the estimate is relatively accurate. The
reason why 2 h is selected in categories (2) to (4) is that the
shorter the charging session, the more likely it is that the esti-
mated average charging power is close to the real maximum
charging power. In other words, the shorter the charging ses-
sion, the more likely it is to be inflexible [30]. The mode of the
BMW i3 (low’, ‘reduced’ or ‘maximum’ mode) is selected ran-
domly. More information about the charging modes of BMW i3
can be found in [35] and related measurements are presented in
[3]-

The charging data from the two charging points are com-
bined to cover eight charging points. This is done so that the
different days of the week are not mixed. Three weekdays are
selected for this study: Tuesday, Wednesday and Friday. For
example, data from several Tuesdays at two charging stations
are assembled so that representative data for a Tuesday of eight
charging points are obtained. The same is tepeated to gather
charging sessions for Wednesday and Friday. As a result, the
charging schedules of one typical Tuesday, one typical Wednes-
day and one typical Saturday consisting of real charging sessions
are formed. The charging behaviour at a charging site varies
typically according to the weekday. In order to form as realis-
tic charging schedules as possible, it is important that charging
sessions from different weekdays are not mixed with each other.

The charging data for the fast-charging station is obtained
from the same dataset as used in [32]. The charging data is from
the urban area of Oslo, which is expected to have similar charg-
ing behaviour as a fast-charging site in Dortmund would have.
Also, the same weekdays, Tuesday, Wednesday and Friday, are
respected when selecting the data from the fast-charging sta-
tion. The currents of the fast-charging station used in the study
for each day are illustrated in Figure 2.

The main intention of the work is to assess the performance
of the proposed charging algorithm duting a typical day, not in
a worst-case scenario. That is why any special circumstances are
avoided when selecting the days for the simulations. In this way,
it is proven that the algorithm brings benefits to daily operation,
instead of only during extreme cases.

In reality, more than four different EV models are used at
the real charging site, however, using four categories (e.g. EV
models) allows us to construct a rather comprehensive and real-
istic simulation model for virtual EVs. The load curves of the
EVs are modelled very accurately based on real measurements
carried out on the same EVs models presented previously.
Every possible charging curve within the possibilities of the IEC
61851 charging standard and commercial charging controllers is
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considered. This means that the load curves are measured at
every current set point with a resolution of 1 second:

* Nissan Leaf 2012 and BMW i3: 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 and 16A, and

* Nissan Leaf 2019 and Smart forfour: 6,7, 8,9, 10, 11, 12, 13,
14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31 and 32 A.

These measurements are used as a model to simulate virtual
EVs. More information about the modelling of the virtual EVs
used in the HIL-simulation is found in [4].

3.3 | Laboratory setup

The algorithms are tested through hardware-in-the-loop simu-
lations carried out at TU Dortmund University [36]. The labo-
ratory setup resembles a public parking and charging site with
eight AC charging stations (22 kW, 32 A each) and one fast
charging station (45 kW, 65 A), that are connected to the same
400 V 3-phase feeder. Figure 3 illustrates a simplified scheme of
the laboratory setup.

It is important to notice that according to IEC 61851 charg-
ing standard, the minimum possible charging current set point
is 6 A. Any set points between 6 A and 0 A are not allowed
according to the standard. In this case, the total current limit is
set high enough that the power of the fast-charging station does
not need to be reduced. This is to guarantee a maximum quality
of service to the fast-charging station, which is typically more
costly to the users than an AC charging station.

A limit of 115 A per phase is set as the maximum cur-
rent of the whole charging site (/,,,). The idea behind set-
ting 7, to 115 A is that all AC charging stations are able to
operate at least with the minimum charging current and the
fast-charging station with the nominal one, simultaneously. The

AN
10 kV power 4 "m},\
distribution <& 0P @ = Current measurement
network _:557,
10/0.4 kV

| Lo Fast charging station

max = 115 A f—>——@A)> emulator,
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Wirelane charging station, P, = 22kW
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RWE eStation charging station, P, = 22 kW
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!
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Real-time o ek ® )
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L i-(® > Virtual EV
1
L_-(Ay+» Virtual EV
FIGURE 3  Laboratory setup for the Hardware-in-the-Loop simulations

to evaluate the algorithms

fast-charging station draws a maximum power of 45 kW that is
about 64.95 A per phase. If, at the same moment, all AC charg-
ing stations operate at the minimum capacity, that is 6 A, then
64.95 A4+ 6 X 8.4~ 113 A. Thus 115 A is slightly above 113
A and guarantees the intended operation. This is a trade-off
between the flexibility of the charging site, quality of the charg-
ing service and customer experience.

The hardware-in-the-loop simulation consists of a hardware
and a real-time simulation that are linked to each other via Mod-
bus TCP communication. Four commercial electric vehicles;
Nissan Leaf 2012, Nissan Leaf 2019, BMW i3 and Smart for-
four EQ, are used. The EVs ate connected to two commer-
cial charging stations (each charging station has two charging
sockets): Wirelane Doppelstele and RWE eStation. At the RWE
charging station, currents from phases A, B and C are measured
by using a KoCoS EPPE PX power quality analyser. Wirelane
charging station already includes a current measurement off the
shelf. The charging stations are connected to the 400 V 3-phase
power network of the laboratory. In parallel with the charging
stations, a programmable load is connected and used as a fast
charging station emulator. The load is controlled according to
the fast-charging schedules illustrated in Figure 2. Thus, it has
the same electrical characteristics as a fast charging station.
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With the real EVs, the driven distances are calculated based
on the energy consumption in the real charging data for each
simulated day. When assessing the different algorithms, exactly
the same routes are driven, and the same SoCs are obtained, in
each case. In this way, the results can be compared with high
accuracy.

The real-time simulation is written in Python and runs on a
computer in the laboratory. The simulation includes four virtual
charging points that are virtually connected to the same feeder
as the real charging points. The virtual EV models are selected
according to the procedure clarified in Section 3.2. During one
day, one charging station can host several virtual charging ses-
sions. In addition, the charging curves of the virtual EVs are
based on measurements with an accuracy of 1 s, as explained in
Section 3.2. Figure 4 shows a photo of the laboratory during the
experiments.

4 | RESULTS

In this section, the results of the hardware-in-the-loop simu-
lations are presented. Each illustration from Figure 5 to Fig-
ure 10, shows the results of the CCE algorithm in the upper
half and the results of the reference algorithm are in the lower
half. The summed charging currents of phases A, B and C as
well as the current limit 7, .. are presented from Figure 5 to
Figure 10. The current limit 7, .. is the maximum available
current capacity that can be shared between all non-prioritized
EVs, which means all charging stations, except the fast charg-
ing station. Each phase has an own maximum current limit. But
since the fast-charging load causes very balanced three-phase
loading from the grid point-of-view, the current limit of each
phase is almost the same. Thus, only one current limit is shown
in the results. The current limits are calculated according to

]mm,mwc,a = ]mwc - [[Jri,a
lmm,mﬂx,li = [”mx - [pri,/a 5 (7)

[.mm,max,r = [rmx - [pn',/
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FIGURE 5 The phase currents and the available capacity limit on

Tuesday: the CCE algorithm (above) and the reference algorithm (below)
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FIGURE 6 The currents of Tuesday from 10 h to 14 h: the CCE

algorithm (above) and the reference algorithm (below)

where /,,,; is the current of the prioritized fast charging point
and a—c denotes each phase. When the fast charging station is
idle ( Z,; = 0), the current limit 7,,,, is 115 A, as presented in
(7). When the fast charging station operates, the current limit
(L) for the AC charging stations is decreased. For the sake of
clarity, the results are shown during the whole period (24 h) as
well as during the peak hours (1014 h). The results of Tuesday
are presented in Figure 5 and in Figure 6.

In both, Figure 5 and in Figure 6, it can be seen that the
charging stations operate closer to their limits when the CCE
algorithm is used (upper halves of the figures) as opposed to
the reference algorithm (lower halves). This is evident, especially
between 11 h 20 min and 12 h 5 min, where the average value
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of current on phase A is 104.3 A with the CCE algorithm and
72.9 A with the reference algorithm. This means that during the
time the reference algorithm operates at 69.9% of the capacity
of the CCE algorithm. This means that at least some of the EVs
are able to charge faster with the CCE algorithm than with the
reference algorithm. The results of Wednesday are presented in
Figure 7 and in Figure 8.

The results of Wednesday are similar to the results of Tues-
day; the summed chatging currents are often higher, or at least
not lower, with the CCE algorithm than with the reference algo-
rithm. A major difference is between 11 h 30 min and 12 h
30 min, when the average current on phase B is 72.2 A with
the CCE algorithm and 53.4 A with the reference algorithm.
During this time period, the reference algorithm charges 73.9%
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FIGURE 9  The phase currents and the available capacity limit on Friday:
the CCE algorithm (above) and the compared algorithm (below)
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FIGURE 10 The currents of Wednesday from 10 h to 14 h: the CCE
algorithm (above) and the compared algorithm (below)

of the current on phase B compared with the CCE algorithm.
The results of Friday are illustrated in Figure 9 and in Figure 10.
Again it is seen that, especially between 11 h and 12 h, the charg-
ing current with the CCE algorithm are closer to the current
limit (Z;,,,,, yar.) When using the CCE algorithm than with the ref-
erence algorithm.

Due to the fact that not all EVs are charged fully during
the charging sessions, higher charging current means that they
charge more energy during the same amount of time when
the CCE algorithm is used. If a charging operator charges
its customer based on the amount of charged energy, the
operator achieves higher earnings with the CCE than with
the reference algorithm. Because of the higher charging cur-
rents on average, the CCE algorithm causes a slightly higher
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TABLE 2 Summarized results when comparing the reference algorithm with the CCE algorithm

Tuesday Tuesday Wednesday Wednesday Friday Friday

(reference) (proposed) (reference) (proposed) (reference) (proposed)
Charged energy (kWh) 178.33 194.01 202.19 212.44 261.02 270.69
Gross profit (€) 53.50 58.20 60.66 63.73 78.31 81.21
Capacity utilization 18.03 18.84 18.74 19.29 22.20 2271

rate (%)
Prediction error (A) 48.79 0.42 47.85 0.42 68.80 0.39
Prediction etror (%0) 130.49 0.85 108.80 0.82 130.34 0.61
TABLE 3  Changes in the performance of the charging site when comparing the reference and the CCE algorithm
Tuesday Wednesday Friday

Charged energy +15.65 kWh (8.79%)
+4.7 € (8.79%)
+4.30%

—99.14%

Gross profit
Capacity utilization rate

Prediction error

+10.25 kWh (5.07%) +9.67 kWh (3.71%)

+3.07 € (5.07%) +2.9 € (3.63%)
+2.85% +2.25%
—99.12% —99.43%

capacity utilization rate than the reference algorithm. As the
result of the learning mechanism in the CCE algorithm, it can
predict the charging currents more accurately than the reference
algorithm, which increases the adaptability of the algorithm in
general. Table 2 presents the charged energies, gross profits,
capacity utilization rates and prediction errors each day with
the proposed as well as with the reference algorithm. The gross
profit is calculated based on the energy price of 0.3 €/kWh that
is a common rate of commercial charging operators at public
AC charging sites across Germany [37]. In Table 3, the perfor-
mance of the CCE algorithm is compared with the reference
algorithm.

Table 3 shows the CCE algorithm improves the performance
of the charging site in all analysed aspects. On average, daily
charged energy increases by 11.86 kWh. The average gross
profit increases by 3.56 € per day that is 5.8%. The capac-
ity utilization rate increases by 3.13% and the prediction error
decreases by 99.23% per day on average. In the worst day, that
is on Friday, the CCE algorithm increases the charged energy
of the site by nearly 10 kWh, resulting in almost 3 € higher
gross profits than the reference algorithm, which is 8.8%. Con-
sequently, the capacity utilization rate increases by more than
2% and the prediction error decreases by more than 99%. It
should be taken into account that the studied charging site is
small, consists of only eight charging stations. The benefits of
the CCE algorithm are much higher at larger sites, for exam-
ple, shopping centres, with tens, or even hundreds, of charging
stations.

Since the number of EVs increases rapidly and the charg-
ing powers are increasing, the EV charging sites are expected
to operate closer to their limits in the near future. That is why
it is valuable to analyse the difference between the CCE algo-
rithm and the reference algorithm during a peak hour with many
simultaneous charging sessions. Table 4 shows the differences in

charged energies and gross profit in the time frame from 11 h
to 12 h.

Table 4 shows even more drastic differences between the two
algorithms. A remarkable difference is that on average, about
24.5% more energy is charged duting the peak hour with the
CCE algorithm. When comparing Table 3 with Table 4 it can
be seen that most of the advantages of the CCE algorithm are
gained during the peak time.

5 | DISCUSSION

It is demonstrated that the current state-of-the-art adaptive
charging algorithm does not provide as high utilization of avail-
able charging capacity as possible. An alternative adaptive charg-
ing algorithm is presented and compared against the previous
benchmark algorithm. The key factor why the CCE algorithm
performs better than the compared benchmark algorithm is
that it uses real charging currents as an input to the algorithm.
In other words, the algorithm efficiently divides the available
charging capacity amongst the active charging sessions while
considering their real charging currents. Simply, without current
measurements, it is not possible to know how much current the
EVs draw and the real-time charging management cannot be
organized that accurately. The accuracy of the charging algo-
rithm is further enhanced with a simple learning mechanism,
CCE that makes the algorithm capable of memorizing and fore-
casting the real charging current of each connected EV with a
given current set point. It is demonstrated that the CCE algo-
rithm gives a great advantage over the reference algorithm espe-
cially during the hours when the charging site operates close to
its capacity limits.

For many demand response applications, it is crucial that the
charging algorithm recognizes the charging currents of the EVs.
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TABLE 4

Changes in the performance of the chatging site when comparing the reference and the CCE algotithm between 11 h and 12h

Tuesday

Wednesday Friday

Charged energy +8.45 kWh (20.56%)

Gross profit +2.54€

+11.54 kWh (34.43%) +6.12 kWh (18.42%)

As an example, if a BMW i3 charges at a 22 kW charging point
that allows the maximum charging capacity (22 kW, 3 X 32 A,
230 V), consequently the BMW charges at its maximum capac-
ity (11 kW, 3 X 16 A, 230 V). The energy management system
of the charging site wishes to set a new current set point to the
BMW so that the charging power of the BMW is reduced by
5.5 kW. By using the reference algorithm. The energy manage-
ment system would reduce the charging power from 22 kW to
16.5 kW (22 kW — 5.5 kW = 16.5 kW). This means that the
BMW would still continue charging with its maximum capacity
(11 kW, 3 X 16 A, 230 V) and finally, the real charging current is
not reduced at all. Without a reasonable measurement and antic-
ipation of charging currents, it may be difficult to obtain the
expected load value for a given charging site in a short amount
of time. That is why the applicability of the reference algorithm
in demand response applications, such as in peak shaving or fre-
quency regulation, is questionable. On the contrary, the CCE
algorithm enables an accurate way to set the power consump-
tion of the charging site to a wished value, as demonstrated by
the results.

The benefits to be obtained from the use of the CCE algo-
rithm are highly dependent on the number and the type of
the charging stations, the maximum allowed charging current
and the charging behaviour of the customers (charging dura-
tions and simultaneity). The results show meaningful benefits
over the reference algorithm even on average days and cir-
cumstances. On one hand, the algorithm can be guaranteed
that the available charging capacity is used efficiently, which
decreases the charging times, improves the customer experience
and increases the economic gains of the charging operator. On
the other hand, the algorithm can be used to prevent overloads
in the feeding distribution network. After all, the algorithm leads
to increased utilization of network capacity, which can lead to
savings in the network investment costs.

From the power system-viewpoint, the constant-voltage
phase of the charging curve is where a notable share of the
charging capacity may be lost, if the decreasing charging current
is not recognized by the algorithm Due to the fact that the EVs
with 32 A charging current may have a longer constant-voltage
phase, the difference between the charging current and the cur-
rent set point is significant during longer time than with 16 A
EVs. For example, for Nissan Leaf 2012, the constant-voltage
phase takes about 25 minutes, and for Nissan Leaf 2019, it takes
about 1 h 28 min, under the nominal charging currents, 16 A
and 32 A, respectively. An example of the lost network capac-
ity and the effectiveness of the CCE algorithm is illustrated in
Figure 11.

In Figure 11, the grey dotted line shows the current set
point. When the reference algorithm is used, the control system
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FIGURE 11  Idle charging capacity that can be allocated to other electric

vehicles (grey area) during the constant-voltage charging phase. The purple line
is the measured charging current (Phase A) of Nissan Leaf 2012. The grey
dotted line is the current set point. The yellow line is the expected charging
current of the CCE algorithm

practically assumes that the realized loading follows the set
point. On the contrary, the yellow dotted line illustrates the
expected charging current, when the CCE algorithm is applied.
When the reference algorithm is used and the current drawn by
the EV is supposed to be the same as the nominal current of
the charging station, the unused capacity in the network is the
difference between the realized charging current and the cur-
rent set point (the grey area in Figure 11). When the algorithm
is used, this capacity is estimated and allocated to other vehicles
if thete are no additional network constraints. Due to small and
sudden fluctuations of the charging currents in practice, some-
times the CCE algorithm forecasts the expected charging cur-
rent marginally lower than it is. In such a situation, the algorithm
can allocate more charging capacity to the charging site than it
has. In reality, such errors are relatively rare and ate likely to be
evened with the simultaneous charging of several vehicles.

Some commercial EVs turn to a ‘waiting” mode, when the
charging cable is connected to the EV if the charging station
does not instantly allow charging. The EV remains in this mode
until the charging starts. However, some EV models stay in the
‘waiting’ mode for some minutes. If the charging process does
not start, let’s say, within 1-2 min, the EV goes to a “stand by”
mode. During the ‘stand by’ mode, the charging process cannot
be started without disconnecting and connecting the charging
cable physically from the EV. Such behaviour is observed for
BMW i3, for example [35].

In the future, peak-power based electricity tariffs are likely to
become more common as they improve the cost-reflectivity of
the electricity pricing [38]. As a consequence. there may be situ-
ations where it is economically feasible to limit the peak loading
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at the charging site below the capacity that would normally be
available. This further emphasizes the need to effectively utilize
the available charging capacity.

Although the algorithm presented in this paper is intended
for a charging site where all charging stations are connected
in a star-configuration, the CCE feature of the algorithm is
topology-independent and can be applied to more complex net-
work configurations, including several series and parallel con-
nections. In this case, the rest of the algorithm, excluding CCE,
should be adapted to such network configuration.

5.1 | Deployment of the proposed charging
algorithm in practice

When a charging point operator plans to use the CCE algo-
rithm in the daily operation of its charging sites, it does not
entail significant additional equipment of operational costs com-
pared with the already existing solution. Most importantly, each
charging station must be equipped with a controller that is able
to control the charging current according to the local standard,
such as IEC 61851, in Europe. In addition, the charging sta-
tion should have a current measurement, this can be embed-
ded in the energy meter or can be a separate device. Generally,
energy meters with the capability to deliver a current measure-
ment are common in modern charging stations. A usual indus-
trial solution is that an energy meter is physically connected to
the charging controller, via a master-slave structure, where the
charging controller is the master and the energy meter is the
slave. When a current measurement is asked by, for example, the
server where the CCE algorithm is running, the server sends a
message to the controller that further reads the measurement
value from the energy meter and sends the measurement value
to the server.

The crucial technical requirements to be able to operate the
CCE algorithm in a real case are:

* a charging controller,

* a current measutement device,

* communication media, such as LTE, 4G or Ethernet, and
* abackend server, where the algorithm is running,

In practice, all requirements are already fulfilled by a typi-
cal European charging point operator. Thus, it can be said that
deploying the CCE algorithm does not entail significant addi-
tional equipment or operational costs compared with most solu-
tions of today. There may be regulations considering data pri-
vacy and communication media that vary from country to coun-
try, which must be taken into account.

6 | CONCLUSION AND FUTURE WORK

The adaptive charging algorithms of today overlook the non-
ideal charging characteristics of EVs. As a consequence, they
are likely to operate in a non-optimal way, leading to wasted
charging capacity and increased charging times. To contribute
to this problem, a new charging algorithm that shows an evident

advantage over the benchmark charging algorithm is proposed.
The performance of the charging algorithm is proved under
realistic circumstances and tested with real EVs. In a site of
eight charging stations, the proposed CCE algorithm increases
the capacity utilization rate by 3.13% and the charging capac-
ity by 11.9 kWh per day on average. This means that the algo-
rithm brings an additional gross profit of about 3.6 € per day
for eight charging points, so about 0.6 € per charging point, to
the charging operator. This means an increment of 5.8% in the
average gross profit. During the peak hour, the CCE algorithm
can deliver 24.4% more energy to the EVs than the reference
algorithm, which shows that the benefits of the algorithm are
likely to increase in the near future when charging sites will be
used more than they are used today.

The algorithm is compatible with the IEC 61851 charging
standard and can be applied as presented in this paper. Besides,
no information, such as the state-of-charge of the battery or
leaving time, from the user is necessary. The algorithm can be
applied to modern charging stations without the need for spe-
cialized additional hardware.

Future work focuses on testing the algorithm in commer-
cial operation, altogether in about 40 charging stations in Dort-
mund, Germany. To gain more insights from the pilot test, addi-
tional metrics that help to design following versions of the algo-
rithm are developed. Additionally, it will be studied, how much
CCE can improve the performance of other charging algo-
rithms found in the research literature. Also, the use of the pro-
posed algorithm in the case of complex configurations (several
parallel and series connections) of the power network within a

charging site will be studied.
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In the scientific literature, various temporal resolutions have been used to model electric vehicle charging loads.
However, in most studies, the used temporal resolution lacks a proper justification. To provide a strengthened
theoretical background for all future studies related to electric vehicle charging load modeling, this paper in-
vestigates the influence of temporal resolution in different scenarios. To ensure reliable baselines for the com-
parisons, hardware-in-the-loop simulations with different commercial electric vehicles are carried out. The
conducted hardware-in-the-loop simulations consists of 134 real charging sessions in total. In order to compare
the influence of different temporal resolutions, a simulation model is developed. The simulation model utilizes
comprehensive preliminary measurement-based charging profiles that can be used to model controlled charging
in fine detail. The simulation results demonstrate that the simulation model provides sufficiently accurate results
in most cases with a temporal resolution of one second. Conversely, a temporal resolution of 3600 s may lead to a
modeling error of 50% or even higher. Additionally, the paper shows that the necessary resolution to achieve a
modeling error of 5% or less vary between 1 and 900 s depending on the scenario. However, in most cases,

resolution of 60 s is reasonably accurate.

1. Introduction

In the scientific literature, it has been a common practice to model
electric vehicle (EV) charging loads by using a temporal resolution of
15-60 min. However, the accuracies of different temporal resolutions
are not properly analyzed. Therefore, the inaccuracies of the modeling
results remain currently unknown.

When using a temporal resolution of, e.g., 60 min, the model rounds
up the arrival and departure times to full hours. Additionally, only an
average load of each time step can be modeled. Naturally, the coarser
the resolution, the more significant the inaccuracies are likely to be.
Furthermore, in case a charging control algorithm is used, the used
temporal resolution of the simulation model also has an influence on the
control signal. This may be a crucial factor from two points of view.
Firstly, according to the charging standard IEC 61851, the minimum
allowed current limit to be set by the EV supply equipment (EVSE) is 6 A
which equals to 1.38 kW (230 V) in a single-phase charging point. Thus,
the EVSE cannot force an EV to charge with a power of, e.g., 1 kW.
Secondly, as shown in [1], EVs may not be able to use all charging
currents between the minimum current limit of the EVSE (6 A) and the
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maximum supported charging current of the on-board charger (OBC) of
the EV. By overlooking these factors, the charging load modeling may be
inaccurate especially in case of controlled charging.

1.1. Related studies

The influence of temporal resolution have been assessed e.g. from a
PV self-consumption point-of-view [2,3]. In [2], it is shown that the
temporal resolution of the load profiles is more critical for the accuracy
of the determination of self-consumption rates than the resolution of the
PV generation. In [3], it is demonstrated that the error in yearly
self-consumption is around 3.6%, 6.1%, 9.3%, and 12.5% when the
temporal resolution is 5, 15, 30, and 60 min, respectively. According to
these studies, a temporal resolution of 15 min is reasonably accurate to
assess self-consumption of the PV generations. Conversely, for the
optimal sizing of a battery inverter power of an energy storage system, a
temporal resolution of 5 min or finer is necessary [2]. In case of
modeling an uncontrolled EV charging load, these results could poten-
tially be used as guidelines as there are no charging control signals to be
considered. However, as mentioned earlier, there are two especially
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Table 1.
Recent studies related to EV charging load modeling.

Refs. T The main objective of the study
[51 2h Define Markov decision process formulation in reinforcement
learning framework
[6] 1h Minimize charging costs and negative impacts of volatile
renewable energy resource output
[71 1h Voltage control through a charging pricing strategy of fast
charging stations
[8] 1h Develop a multi-agent system to simulate energy hub with various
EV penetrations
[91 1h Optimize the quality of the charging service through a pricing
scheme
[10] 1h Determine optimal EV charging stations and distributed
generation units to minimize costs
[11] 1h Determine optimal charging stations in case of increasing EV
penetration
[12] 1h Frequency regulation through vehicle-to-grid control while
considering several uncertainties
[13] 1h Reduce power system generation costs through a flexible EV
charge/travel schedule
[14] 30 Minimize EV charging costs through scheduling models
min
[15] 30 Reduce peak demand in the grid through charging scheduling
min
[16] 30 Minimize load variance and charging costs through charging
min behavior prediction
[171 30 Propose a probabilistic approach to evaluate the impact of EVs on
min distribution system
[18] 15 Propose a spatial-temporal method to model EV charging loads in
min distribution network
[19] 15 Manage the power imbalance among feeders through tie-line
min voltage-source converters
[20] 15 Minimize peak-valley load difference through coordinated
min charging scheduling
[21] 15 Minimize charging costs and emissions with and without grid
min reinforcement
[22] 15 Reduce EV charging costs in a workplace through vehicle-to-grid
min control
[23] 10 Analyze the impacts of the EV charging load on the grid using
min Markov Chain simulation
[24] 5min  Propose a data-driven approach for load modeling to guide
infrastructure planning
[25] 1 min Maximize self-consumption of photovoltaic generation via
charging coordination
[26] 1min  Present a spatial-temporal EV charging load simulation model that
considers e.g. traffic
[27] 1min  Minimize charging costs while ensuring quality of charging service
[28] 15s Provide centralized frequency regulation with reduced
communication requirements
[29] 10s Coordinate EV charging loads to increase photovoltaic self-

consumption

notable factors in controlled charging which may require a finer tem-
poral resolution in order to preserve reasonable modeling accuracy.

In [4], the impact of different temporal resolutions on the peak of the
normalized power (PNP) of uncontrolled EV charging is assessed. The
results show that the PNP can be relatively accurately evaluated even
with a resolution of 60 min when considering charging powers of 3.7
kW. When considering 22 kW charging powers, a resolution of 1 min is
notably more accurate than 5 min. However, no further analyses of the
impacts of the temporal resolution are conducted, and finer temporal
resolutions are not considered. According to the authors’ knowledge, no
other studies regarding the assessment of the influence of the temporal
resolution on EV charging load modeling are yet carried out.

To give an outlook of the research related to EV charging load
modeling, Table 1 lists 25 recent studies. For each study, the temporal
resolution (T) of the modeling is presented. Additionally, a short
description of the objective of the study is shown.

As shown in Table 1, a wide range of temporal resolutions is used to
model EV charging loads. In all aforementioned studies, modeling of
multiple EVs were considered. Additionally, controlled charging was
considered in each study except in [17-19,23,26]. However, very little
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effort is made to justify the selected resolutions or to assess the potential
inaccuracies of the results. In [5] and [22], it is acknowledged that the
temporal resolution affects the accuracy of the results. However, a
further investigation is left out of the papers.

1.2. Contributions and structure

Based on the literature review, it seems necessary to assess the im-
pacts of the temporal resolution of the EV charging load modeling. To fill
the gaps in the literature, four research questions are formed:

1 What is the impact of the temporal resolution when modeling home
charging or a small charging site? To address this question, multiple
hardware-in-the-loop (HIL) simulations are carried out using 1-4
commercial EVs. The results are then compared with simulation re-
sults obtained by using different temporal resolutions (Sections 3.1
and 3.2).

2 What is the impact of the temporal resolution when modeling a large
charging site? This question is addressed by simulating a three-month
period using different temporal resolutions (Section 3.3). In this
scenario, the EV charging behavior is based on real-world charging
data of a commercial charging site.

3 How accurately the EV charging loads can be modeled using the developed
simulation model? To address this question, the results of the HIL
simulations are compared with the simulations results obtained by
using one second temporal resolution (Section 3.5).

4 Which temporal resolutions are necessary in different situations to ensure
reasonably accurate modeling? To address this question, the coarsest
temporal resolutions that achieve a modeling error of less than 5%
are presented separately for each scenario (Section 3.6).

The contribution of this paper is to carry out a thorough analysis that
fills the related gap in the scientific literature and provides justified
answers for the research questions. Furthermore, the goal is to provide
useful guidelines and a strengthened scientific background for future
studies regarding the EV charging load modeling.

The rest of the paper is as follows. Section 2 describes the assessment
method. Section 3 analyses the results of each scenario. Additionally, the
results are analyzed from the perspective of the overall accuracy of the
simulation model, and the necessary resolutions to achieve reasonably
accurate results in different scenarios are presented. The paper is
finalized with conclusions in Section 4 where the research questions are
addressed separately.

2. Assessment method

This section describes the used data, the key values of interest, the
examined scenarios, the used control method, the experimental setup of
the HIL simulations, and the used simulation model. Each part forms its
own subsection.

2.1. Used data

To evaluate home charging, household electricity consumption data
of a five-day period is used. The data was measured in December 2018 in
one-second resolution at a detached house located in Pirkanmaa,
Finland. The building is built in 2010 and its floor area is 158 m2 A
geothermal heat pump is used as the main heating system. This repre-
sents a typical new Finnish detached house. The daily energy con-
sumption and the daily peak load varies between 34.4-59.0 kWh and
5.9-7.9 kW, respectively.

In order to evaluate a large charging site in a realistic manner,
charging session data of REDI is used. REDI is a shopping center located
in Helsinki, Finland, and has over 200 charging points that support 22
kW charging [30]. The data is gathered over a three-month period in
2020 (January-March) and contains 3801 charging sessions which
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Fig. 1. The average number of EVs plugged in at REDI.
Table 2.

The used electric vehicles.

EV Max charging power

Nissan Leaf 2012
Nissan Leaf 2019
BMW i3 2016

Smart EQ forfour 2020

3.7kW (1 x 16 A)
7.4kW (1 x 32A)
11.0 kW (3 x 16 A)
22.1kW (3 x 32A)

Table 3
Examined scenarios.

Site Nimax Ne Control method
S1 A household with one EV 1 45 PLM
S2 A small charging site 4 25 PLM
S3 A large charging site 21 89°? Unc. / PLM

Npax is the maximum number of simultaneous charging sessions.
N, is the number of different events.
@ Scenario 3 is examined using pure simulations over an 89-day period.

results in 42.7 charging sessions per day. The data includes arrival and
departure times in one second temporal resolution, charged energy, and
charging peak power. According to the data, EVs have on average a stay
duration of 236 min, an active charging time of 101 min, and a charged
energy of 7.4 kWh. It is also seen that in 59.3% of the charging sessions
the stay duration is less than 5 min longer than the active charging time.
This means that the stay duration often acts as a bottleneck, and
consequently, most EVs are not fully charged before departure. The
average daily number of EVs plugged in at REDI is illustrated in Fig. 1.

2.2. Key values of interest

This paper aims to assess the impacts of temporal resolution in
various scenarios. In order to assess the influence, three key values are
examined. The key values are:

o The highest momentary peak load (P)
e The highest hourly peak load (Pp)
e The charged energy (E)

The highest momentary peak load simply refers to the highest peak
load value of a single time step in a single day. The highest hourly peak
load refers to the highest average loading during a one-hour long period
in a single day. This is an interesting value as it can be the basis for a
power-based distribution tariff component as in [31-33]. In Scenario 1,
the peak loads include both the EV charging load and the household’s
electricity consumption. The charged energy refers to the energy that is
charged during each one-hour time slot (i.e., 0:00-1:00, 1:00-2:00 etc.).
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This definition is made due to the selection that one hour is the coarsest
temporal resolution. Furthermore, the temporal resolution in electricity
pricing is often one hour and thus a modeling error in the hourly energy
consumptions may affect certain cost or benefit analysis.

2.3. Examined scenarios

The simulations focus on three scenarios: (S1) a household with one
EV, (S2) a small charging station with four charging points, and (S3) a
large charging site with up to 21 simultaneous charging sessions. The
first scenario (S1) is carried out using three EVs: Nissan Leaf 2012,
Nissan Leaf 2019, and BMW i3. The home charging sessions are assumed
to begin at evening. However, to generate more different circumstances,
the HIL experiments are carried out using three different starting times
for the charging sessions: 17:00, 19:00, and 21:00 h. A single simulated
circumstance that has certain arrival time(s) and energy requirement(s)
is referred to as an event. In Scenario 1, there are 45 (5 days x 3 starting
times x 3 EVs) different events. To ensure more straightforward
comparability, the driving distances of the EVs are kept constant at 24
km, which equals to the average daily driving distance in Finland [34].
Depending on the charging and driving efficiencies of the EVs, the en-
ergy drawn from the grid (the charging losses are included) varies be-
tween 3.5 and 6.0 kWh.

The second scenario (S2) is carried out in 25 different events. In each
event, 3 or 4 of the EVs shown in Table 2 are used which results in 89 HIL
charging sessions in total. For each event, the arrival times, the depar-
ture times, and the driving distances are randomly selected. In this
scenario, the average driving distance is 19.1 km (distances vary be-
tween 4.3 and 65.0 km). This results in an average energy requirement
of 3.8 kWh (energies vary between 0.8 and 11.6 kWh) from the grid
point of view. The arrival times of the EVs varies between 16 h and 22 h
and thus create circumstances where 1-4 EVs are simultaneously
requesting charging. Sojourn times were assumed to be long enough so
that the EVs can be fully charged.

The third scenario (S3) is formed using the charging session data of
REDI. For the modeling purposes, the recorded charging peak powers
are used to determine the type of the EV according to Eq. (1), where P, is
charging peak power. The third scenario is divided into three sub-
scenarios based on the used control method: an uncontrolled charging, a
peak load management (PLM) with a total charging current limit of 3 x
160 A, or a PLM with a total charging current limit of 3 x 126 A. In the
case of uncontrolled charging, the highest peak current was 191 A ac-
cording to the simulations. These subscenarios are used to determine the
impact of the temporal resolution together with the use of charging
control to the modeling accuracy in a large charging site. The control
method is presented in the next subsection.

The EVs and the key parameters of the scenarios are presented in
Tables 2 and 3, respectively. According to an ablation study [35], the
actual EV model is not necessary attribute to model charging profiles
accurately. Instead, the number of used phases and the maximum cur-
rent drawn are more crucial. Therefore, as the four EVs considered in
this paper have different combinations of the number of used phases and
the maximum current drawn, they can be used to represent different EV
fleets quite well.

EV,pe = Nissan Leaf 2012, if 0 kW < P, < 4.5 kW
EVy,. = Nissan Leaf 2019, if 4.5 kW < P, < 10 kW
EV,yp = BMW i3 2016, if 10 kW < P, < 15 kW
EVype = Smart EQ 2020, if 15 kW < P, <25 kW

@

It is worth mentioning that the charging data of REDI cannot be used
to accurately determine the initial missing energy from the EVs. As
around 60% of the EVs depart before the charging is finished, the
charged energies essentially pose a lower bound for the initially missing
energies of the EVs. In this paper, the charged energy in the data is
assumed to be the exact energy that is initially missing from the EV when
it is plugged in. This simplification means that the total charging
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Fig. 4. The laboratory setup.

energies in the simulations are likely lower than in reality. However, the
same assumption is applied for the simulations of each temporal reso-
lution and thus the results are comparable with each other.

To form a baseline, each event in Scenarios 1 and 2 is carried out as a
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HIL simulation with commercial EVs. After that, the events are simu-
lated with seven different temporal resolutions (1, 10, 30, 60, 300, 900,
and 3600 s). These simulations are carried out without any HIL
component. Scenario 3 is only simulated with the different temporal
resolutions, and the results obtained using the temporal resolution of
one second is chosen to be the baseline for this scenario. Further
explanation of the experimental HIL simulation setup and the simulation
model is given in Sections 2.5 and 2.6, respectively.

2.4. Control method

It is worth emphasizing that the following control method in itself is
not the focus of this paper. Instead, the idea is simply to create situations
where the charging currents are limited by the control system in contrast
to the uncontrolled charging where the charging currents are only
limited by the OBCs of the EVs. The aim of the control method is to limit
peak loading. In Scenario 1, the daily load peak of the household is
assumed to be known in advance and the charging power is limited so
that the total load of the real estate and EV charging does not cause a
higher daily load peak. An illustration of the loading of the household
and the peak load limit is given in Fig. 2. In the figure, the green area
between the peak load limit (gray dotted line) and the electricity con-
sumption of the household (purple area) represents the capacity that is
available for EV charging. The charging capacity for the EV can be
calculated according to Eq. (2), where t is a time step, Ppyqy is the highest
daily peak load of the household, and Ppgysenold is the power consumption
of the household.

Prv(t) = Puar — Prousenota(t). @

In Scenario 2, the total loading of the charging station is limited to 3
x 32 A which allows all four charging sessions to be simultaneously
active, yet a dynamic load management is required if more than one EV
is charging simultaneously. In this paper, fair sharing algorithm pre-
sented in [36] is used which divides the available charging capacity
evenly among the EVs. The capacity allocation is illustrated in Eq. (3)
[36], where Pgy is the allocated power for each EV, Pcgpqciry is the
available total charging capacity, and N is the number of active EVs
requesting to be charged. Scenario 3 is essentially the same than Sce-
nario 2 except that depending on the subscenario the total loading is
either: not limited, limited to 3 x 160 A, or limited to 3 x 126 A.

Pav(e) = Cote, ®

As stated in the charging standard IEC 61851, an EVSE cannot set a
new charging current limit for an EV more frequently than once every 5
s. Therefore, in case of HIL simulation or simulation with one-second
resolution, the control algorithm is run every 5 s. In case of other res-
olutions, the control algorithm is run every time step.

2.5. Experimental setup

The idea of the experimental setup is to form the baselines for Sce-
narios 1 and 2 by measuring the real charging events. Then, the base-
lines are compared with the simulations. The experiments are carried
out as HIL simulations at the Smart Grid Technology Lab [37] at TU
Dortmund University. The hardware components include the four EVs
(shown in Table 2) and two charging stations (Wirelane Doppelstele and
RWE eStation). Both charging stations include two 22 kW (230 V, 3 x
32 A) sockets. The charging currents at RWE charging station are
measured by using KoCoS EPPE PX power quality analyzers whereas
Wirelane charging station includes built-in current measurement de-
vices for both sockets.

The control algorithm is implemented using Python programming
language. The algorithm is run on a computer that is connected to the
same local network with the charging points so that the system is able to
adjust the charging current limits of the EVSE and read measurements of
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the realized charging currents in real-time. A pre-recorded household
electricity consumption data (described in Section 2.1) is read from an
Excel file to simulate the household electricity consumption. The
experimental setups for Scenarios 1 and 2 are shown in Fig. 3. Due to the
limitations of the laboratory equipment, Scenario 3 with up to 21
simultaneous charging sessions can only be simulated. The simulated
setup for Scenario 3 is similar than the setup shown in Fig. 3(b) but there
are 21 virtual charging points instead of the 4 physical charging points.
A picture of the laboratory setup is shown in Fig. 4.

2.6. Simulation model

The idea of the simulation model is to allow the baselines of each
scenario to be replicated with different temporal resolutions. These must
be done as pure simulations without any HIL components. To model the
EVs as accurately as possible, the modeling of the EVs is based on actual
preliminary measurements of the EVs. The charging profile is measured
in 1 s resolution for each EV for each possible charging current limit
(integer) set by the EVSE. Only the current limit integers (6, 7, 8, ... 32
A) are considered as the charging stations does not allow floating point
numbers as current limits.

The preliminary measurements are used to calculate the missing
energy from the batteries in each time step. The calculation begins from
the end of the measurement where the missing energy is zero (i.e., the
EV is fully charged). Then, a lookup table is formed to link a missing
energy (Wh) to a charging current vector representing each phase cur-
rent (A). The process and a formed lookup table is illustrated in Fig. 5. In
the figure, the EV model is BMW i3 2016 and the current limit set by the
EVSE is 6 A. A separate lookup table is formed for each EV and for each
possible current limit. The lookup table is formed only for the part where
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Fig. 7. Illustration of Nissan Leaf 2012 charging profile.

the charging current is decreasing. For the constant power part (e.g.,
energy requirement of > 199 Wh in Fig. 5), the model assumes constant
currents. The process and the received charging profile models are
essentially the same than the ones mentioned in [38]. However, in this
paper, different current limits are considered and thus the model can be
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Fig. 10. RMSE in the charged energies in Scenario 1.

used to simulate controlled charging instead of only uncontrolled
charging. In this paper, the energy that is missing from the battery of an
EV is referred to as energy requirement.

As opposed to [38], the simulation model is modified to consider
different time resolutions. Coarser time resolutions are obtained by
averaging the values of the considered time period. In Fig. 6, an un-
controlled charging session of Nissan Leaf 2012 (i.e., the current limit set
by the EVSE is > 16 A) is illustrated in different cases. In the figure,
“HIL” represents actual laboratory measurements whereas the rest
represent simulation results with different temporal resolutions. In each
of these cases, the EV draws 5.2 kWh from the grid. However, it can be
clearly seen that a coarser time resolution results in a higher deviation
between the measured charging profile and the simulated charging
profile.

The operation of the simulation model is illustrated in Fig. 7. At the
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beginning, the model reads general input data and EV related input data.
Since the arrivals and departures may not necessarily occur at an exact
time step in all temporal resolutions, they are rounded to the closest time
step. For example, an arrival time of 12:33:21 would be rounded to
12:30:00 or 13:00:00 in case of 15 min or 1 h resolutions, respectively.

After determining the initial values, the model simulates the EV
charging until all EVs are fully charged or departed. In each time step,
the model determines the status of each EV (away of plugged in). For the
EVs that are plugged in, the charging control algorithm determines the
charging current limits according to Eq. (2) or (3) depending on the
scenario. After that, the charging currents are determined according to
the charging profile models (lookup tables) where the realized charging
currents depends on the current limits and the energy requirements.
Finally, at the end of each time step, the remaining energy requirements
of the EVs are updated based on the determined charging currents
(assuming 230 V).

In the home charging scenario, the real-time power consumption of
the household acts as a control signal for the EV charging according to
Eq. (2). Even though the control is in real-time, it includes a small delay
as the power consumption must be measured first before it can be used
as a control signal. In the simulations, the delay is considered in case of
temporal resolutions of 1-30 s. For example, in case of 30 s temporal
resolution, this means that an average household power consumption of
the previous 30 s period is used to determine the EV charging current
limit for the next 30 s period. In case of resolutions of 60-3600 s, the
delay of the real-time control is neglected as it yields more accurate
results than using a delay of 60-3600 s. Therefore, for temporal reso-
lutions of 60-3600 s, the average power consumption of a single time
step is used to determine the EV charging current limit for the very same
time step.

It is worth noting that minor deviation between the HIL measure-
ments and the simulation results are expected as the simulation model
does not consider factors such as battery temperatures in the modeling.
It is commonly known that the battery temperature plays an important
role in the EV charging and it must be considered by the battery man-
agement system to prevent dangerous situations and to maximize the
performance and cycle life of battery [39]. From the power grid point of
view, this can be seen, e.g., as a reduced charging current if the OBC tries
to protect the battery from overheating [40]. However, due to the
increased complexity of the modeling and the data requirements to form
the model, the temperature factor is excluded from the simulation
model.

3. Results

In this section, the results of each scenario are presented in separate
subsections. In Scenarios 1-3, the results related to powers are presented
as root mean square percentage errors (RMSPEs) calculated according to
Eq. (4), where p represents the baseline, p represents the compared case
(i.e., simulation results obtained with different temporal resolutions),
and t is a charging event (or a day in Scenario 3). As mentioned earlier,
HIL measurements form the baselines in Scenario 1 and 2. Since there
are not enough EVs to carry out the Scenario 3 in a similar fashion than
Scenarios 1 and 2, the simulation results of the most accurate temporal
resolution (1 s) are chosen to form the baseline for Scenario 3. The re-
sults related to charged energy are presented as root mean square errors
(RMSEs). Percentual error related to the charged energy is assessed later
in Section 3.4. Additionally, the general accuracy of the simulation
model and the recommended temporal resolutions are investigated
separately in Sections 3.5 and 3.6, respectively.

(€]
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To provide further values that may help future studies to select the
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Fig. 11. RMSPE in the highest momentary peak loads in Scenario 2. Fig. 14. RMSPE in the highest hourly peak loads in Scenario 2.
Table 4 Table 5
RMSPE and RMSE for all charging events in Scenario 1. RMSPE and RMSE for all charging events in Scenario 2.
Case P (%) Pp (%) E E* E® Case P Py E
HIL 0.0 0.0 0 Wh 0 Wh 0 Wh HIL 0.0% 0.0% 0 Wh
1s 1.7 0.6 60 Wh 53 Wh 71 Wh 1s 10.1% 1.9% 145 Wh
10s 8.7 0.6 62 Wh 54 Wh 75 Wh 10s 10.2% 1.9% 145 Wh
30s 19.2 0.9 69 Wh 56 Wh 89 Wh 30s 10.4% 1.9% 146 Wh
60s 19.3 1.1 77 Wh 57 Wh 103 Wh 60s 11.1% 1.9% 155 Wh
300s 20.8 3.3 184 Wh 66 Wh 295 Wh 300s 16.1% 2.8% 265 Wh
900s 23.0 6.2 398 Wh 98 Wh 654 Wh 900s 25.2% 7.5% 676 Wh
3600s 31.1 8.1 707 Wh 132 Wh 1172 Wh 3600s 51.2% 27.1% 2254 Wh
@ includes only the charging sessions that are moderately controlled.
" includes only the charging sessions that are heavily controlled.
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Fig. 12. RMSE in the charged energies for moderately controlled and heavily
controlled charging sessions in Scenario 1.
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Fig. 13. RMSE in the charged energies in Scenario 2.

appropriate temporal resolution, mean absolute errors (MAEs) are also
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Table 6
RMSE for all charging events in Scenario 3.
Case P (%) Py, (%) E
1s 0.0 0.0 0 Wh
10s 0.2 0.2 44 Wh
30s 1.1 0.4 110 Wh
60s 1.3 0.3 121 Wh
300s 3.3 1.5 380 Wh
900s 7.7 3.0 1026 Wh
3600s 20.4 9.8 3713 Wh
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Fig. 19. Percentual error for charged energy in all scenarios.
calculated. However, to retain the flow of the paper, the MAEs are

presented in the Appendix. The MAEs for Scenarios 1-3 are presented in
Tables A1-A3, respectively.
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Table 7

RMSE for Scenarios 1 and 2 with 1 s temporal resolution.
Scenario P (%) Py (%) E (%)
S1 (Nissan Leaf 2012) 2.4 0.3 2.8
S1 (Nissan Leaf 2019) 1.1 0.6 1.6
S1 (BMW i3 2016) 1.4 0.8 4.8
S1 (AlD 1.7 0.6 3.1
S2 (3 EVs) 1.3 0.7 2.3
S2 (4 EVs) 13.4 2.4 4.3
S2 (Al 10.1 1.9 3.8

Table 8

Recommended temporal resolutions depending on the type of scenario and the
considered values.

Scenario P Py E
Home charging, uncontrolled 1s 300 s 900 s
Home charging, controlled 1s 300 s 1s

A small charging site, controlled 60s? 300 s 60 s

A large charging site, uncontrolled 300s>¢ 900s® 300"
A large charging site, controlled 300s>¢ 900s"® 300"

2 In a few simulations, even a temporal resolution of 1 s resulted in an error of
>10%. However, in such events, the temporal resolution of 60 s yielded results
as good as the 1 s resolution. Therefore, the 60 s resolution is seen sufficient.

b Baseline (i.e. reference point) is the simulation result with 1 s temporal
resolution instead of hardware-in-the-loop simulation.

¢ The evaluation of the simulation model indicates that the modeling of the
highest momentary peak load is subject to a notable error and thus the presented
temporal resolution may not be accurate.

3.1. Scenario 1: a household with one EV

In Scenario 1, the households electricity consumption acts as a
control signal for the EV charging according to Eq. (2) as mentioned
earlier. The results for the scenario are illustrated in Figs. 8-11. In Fig. 8,
the RMSPEs in the highest momentary peak loads are presented. In the
figure, it can be seen that the error is notable (5.8-12.4%) with even a
temporal resolution of 10 s. For temporal resolution of 1 s and 60 s the
error varies between 1.1-2.4% and 15.1-22.8%, respectively. These
results were expected due to the volatile nature of the electricity con-
sumption in households where the highest momentary peak load often
lasts only for a short duration. In case of one-hour temporal resolution,
the RMSPE is 27.8-34.3%. The relative errors in the highest hourly peak
loads are presented for Scenario 1 in Fig. 9. When comparing Figs. 8 and
9, it can be seen that in all cases the error in the highest hourly peak
loads is lower than the error in the highest momentary peak loads. Even
in case of one-hour temporal resolution the error is less than 12.4%. For
temporal resolutions of 60 s and 300 s the error varies between 0.5-1.8%
and 0.5-5.6%, respectively.

The RMSEs in the charged energies are presented in Fig. 10. As seen
in the figure, the relative error is very small (34-101 Wh) when the
temporal resolution is 60 s. However, coarser resolutions tend to result
in notably higher errors. In one-hour resolution, the error of all EVs is
707 Wh. By considering the fact that the average charging load of all
hourly time slots in Scenario 1 where an EV is charging is 1927 Wh, the
RMSE is seen considerable. A closer examination regarding the charged
energy reveals a clear correlation between the magnitude of the error
and the charging control. As mentioned earlier, an EVSE can adjust the
charging current limit only between 6 and 80 A in charging mode 3
according to the IEC 61851 charging standard. If the available charging
capacity is below 6 A, the charging must be paused until there is enough
capacity available. In case of coarser temporal resolutions, more details
of the household’s electricity consumption are lost. And, since the
household’s electricity consumption is a key factor for the EV charging
control in Scenario 1, coarser temporal resolutions may have notable
impacts on the error of the charged energy.
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In Fig. 11, the errors in the charged energies are presented separately
for the charging sessions that are moderately controlled and heavily
controlled. The term “moderately controlled” refers to charging sessions
where the charging of the baseline did not have to be paused due to a
lack of available capacity whereas the term “heavily controlled” refers to
charging sessions where the charging of the baseline was paused. As
seen in the figure, a finer resolution is much more important if the al-
gorithm has to temporarily disable the charging. It is also worth noting
that the IEC 61851 charging standard does not allow each phase to be
controlled separately. Therefore, a three-phase charging session requires
a higher minimum capacity than a single-phase charging session. This
explains why the error for BMW in Fig. 10 is more heavily dependent on
the temporal resolution compared to the two other EVs. The results for
Scenario 1 are presented in Table 4.

It is reasonable to note that in Scenario 1, the plug-in times for the
EVs were at 17:00:00, 19:00:00, or 21:00:00 and thus they were not
affected by the change of the temporal resolution. Therefore, the errors
seen in the results presents the influence of the temporal resolution of
the control signal for a single EV. However, when modeling real-life
situations, the temporal resolution is likely to affect the modeling ac-
curacy also if the plug-in and plug-out times are rounded up by the
model.

3.2. Scenario 2: a small charging site

The results of Scenario 2 are illustrated in Figs. 12-14. In Fig. 12, it
can be seen that the highest momentary peak loads cannot always be
accurately modeled by the simulation model even with the 1 s resolu-
tion. This means that the other assumptions and simplifications in the
simulation model, such as the exclusion of considering battery temper-
atures, can have notable impacts to the modeling accuracy. According to
a closer investigation, the simulation model was not always able to
model the charging currents in the decreasing current stage correctly.
This caused some charging sessions in the simulation model to finish a
few minutes earlier or later than in HIL measurements. And, since the
available charging capacity is divided evenly among the EVs that are
requesting to be charged according to Eq. (3), a modeling error in one
charging sessions can influence the charging capacity distribution if
there is a charging control algorithm in use as in this scenario. As the
status of the EVs are modeled wrong for only a few minutes, it does not
affect the hourly peak powers or charged energies very much as it can
affect the momentary peak loads as seen in Figs. 12-14. It is also worth
mentioning that the issue is especially significant due to the fact that
there are only a few EVs. In case of multiple EVs (as in Scenario 3), it is
less impactful if, e.g., the status of one EV (requesting charging or not) is
modeled wrong as it does not have relatively high influence on the total
load. Conversely, if there is only one EV (as in Scenario 1), the same
issue is not possible.

The above-mentioned issue occurs only in the events with four EVs,
and thus, the events with three EVs are modeled more accurately
especially in case of 1-60 s resolutions. For coarser resolutions (> 300 s),
the error becomes increasingly more notable and the difference between
the events that have three or four EVs diminish. This is assumed to be
due to the errors caused by coarse temporal resolutions become much
more significant than the error caused by the other assumptions and
simplifications in the simulation model excluding the temporal
resolution.

The errors in the highest hourly peak loads are presented in Fig. 13.
The errors seem to be relatively consistent, between 0.5-3.6%, for res-
olutions of 1-300 s. For resolutions of 900 s and 3600 s, the error in-
creases to 6.8-8.3% and 14.7-33.8%, respectively. The errors in the
charged energies are presented for Scenario 2 in Fig. 14. The errors for
all charging events are between 145 and 155 Wh in case of temporal
resolutions of 1-60 s. For coarser resolutions of 300, 900, and 3600 s, the
error increases exponentially to 265, 676, and 2254 Wh, respectively.
The results for Scenario 2 are presented in Table 5.
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3.3. Scenario 3: a large charging site

To demonstrate the influence of different temporal resolutions in a
commercial charging site, an illustration of Scenario 3 is given in Fig. 15.
The day selected for the figure represents an average day in terms of
daily charged energy. As seen in the figure, one-hour temporal resolu-
tion clearly results in a lower total charging power compared to other
resolution. This is due to the fact that in 13.3% of the 3801 charging
sessions the arrival and departure times round up to the same hour, i.e.,
the charging session do not essentially happen in case of one-hour res-
olution. In case of 900 s resolution, the arrival and departure times
round up to the same moment in 3.1% of the charging sessions. In terms
of energy, these charging sessions represents 3.0% (3600 s resolution)
and 0.04% (900 s resolution) of the total charged energy according to
the charging data.

The errors in the highest momentary peak loads in Scenario 3 is
presented in Fig. 16. The figure shows that the error is relatively small
(< 1.6%) when the resolution is < 60 s. For coarser resolutions, the error
begins to increase notably. For the highest hourly peak loads, the results
are similar but around half of the magnitude. The relative errors in the
highest hourly peak loads are illustrated in Fig. 17. The errors in the
charged energies in Scenario 3 are presented in Fig. 18. For each sub-
scenario, the errors are < 174 Wh for resolutions of < 60 s. For coarser
resolutions of 300, 900, and 3600 s, the errors increase exponentially to
334-436, 971-1122, and 3236-4142 kWh, respectively. The results for
Scenario 3 are presented in Table 6.

3.4. Comparison of the absolute errors of the charged energies

Due to the fact that the temporal resolution affects the charged en-
ergies in each hourly time slot and may cause it to be zero in some hourly
slots, the RMSPE for the charged energies were not possible to be
calculated in a similar fashion than the peak loads. The RMSE in the
charged energy is converted into percentual RMSE using Eq. (5), where
the Egusk is the absolute RMSE (kWh) and Ep,, is the average hourly load
of all one-hour time slots where at least one EV is charging. The results
are presented in Fig. 19, where S1-S3 represents different scenarios. It
can be seen that the relative error is moderately low (0.7-7.0%) in all
scenarios in case of 60 s temporal resolution. In case of coarser resolu-
tions, the error increases, but the increment is substantially dependent
on the scenario.

)
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3.5. Evaluating the simulation model

According to the simulation results of Scenarios 1 and 2, the simu-
lation model successfully models the key values accurately with one
second temporal resolution. The simulation results of the one-second
temporal resolution are presented in Table 7. In most scenarios, the
relative error in the highest momentary peak load is around 1-2%.
However, the error in Scenario 2 with charging events of four EVs or all
events is over 10%. As mentioned earlier, this exceptionally high error
originates from the other assumptions and simplifications in the simu-
lation model, such as the exclusion of considering battery temperatures
in the modeling. Similar effect is seen also in the errors of the highest
hourly peak loads. However, in all scenarios, the error in the highest
hourly peak loads is much smaller compared to the errors of the highest
momentary peak loads. The errors of the charged energies vary between
1.6 and 4.8% and there do not seem to be a clear trend between the
scenarios and the magnitude of the error. Overall, the results indicate
that the simulation model is sufficiently accurate to model the key
values of the EV charging in most scenarios even though the battery
temperatures are not considered in the model.

As mentioned earlier, the simulation model does not consider all
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factors that influence the charging load modeling. Therefore, the sim-
ulations with different temporal resolutions include two types of
modeling inaccuracies: temporal resolution-based modeling error and
the errors cause by all other factors, such as the exclusion of battery
temperature in the modeling. In case of a fine temporal resolution, the
other factors are the dominant cause for the modeling errors whereas, in
case of a coarse resolution, the temporal resolution-based inaccuracies
are dominant. In Scenarios 1 and 2, the temporal resolution-based error
seems to become the dominant cause of modeling errors after the tem-
poral resolution of 60 s. This explains why the error is relatively steady
for resolutions of 1-60 s and increases rapidly after resolution of 60 s in,
e.g., Figs. 9-14. Additionally, as the baseline for the comparisons in
Scenario 3 is the simulation results with 1 s temporal resolution instead
of HIL measurements, the results include only the temporal resolution-
based errors. Therefore, a more consistent correlation between the
modeling errors and the temporal resolution is seen in Scenario 3 than in
Scenarios 1 and 2.

3.6. Recommended temporal resolutions

As seen in the results, simplified simulations with excessively coarse
temporal resolutions may lead to significant modeling inaccuracies. For
example, when using one-hour temporal resolution, the error may be
over 50% in the highest momentary peak loads (as seen in Fig. 12), over
30% in the highest hourly peak loads (as seen in Fig. 13), or almost 80%
in the charged energies (as seen in Fig. 19). Therefore, it is clear that the
use of a justified temporal resolution in simulations is vital to ensure a
reasonable modeling accuracy.

In Table 8, the necessary temporal resolution to achieve a relative
error of less than 5% is shown separately for each key value and for each
different type of scenario. Since Scenario 3 could not be carried out as
HIL simulation, the baseline is the simulation results with 1 s temporal
resolution. To summarize Table 8, it can be said that to model the
highest momentary peak load accurately, a fine temporal resolution of
1-60 s is necessary. To model the highest hourly peak load, a temporal
resolution of 300-900 s is reasonable.

In order to model the charged energies accurately, the necessary
temporal resolution vary more notable depending on the situation. If
there is a volatile control signal (e.g., household’s energy consumption-
based control) and the charging session may be required to be tempo-
rally stopped, a very fine temporal resolution of even 1 s may be
necessary. Conversely, to model the charged energy of a single EV
without a complex control mechanism, a temporal resolution of
300-900 s should be sufficiently accurate. In a scenario that is between
the two extremes, a temporal resolution of 60 s is likely to be reasonably
accurate.

It is worth noting that this paper considers measurement-based
charging load profiles in the modeling which often leads to quite accu-
rate results as shown in Section 3.5. In case of more simplified charging
load modeling approaches, the charging load modeling may contain
some inaccuracies that are not related to the temporal resolution. Thus,
even the use of temporal resolution of 1 s may not lead to accurate re-
sults in that case. However, by using the recommended temporal reso-
lutions of Table 8, it is reasonable to assume that the EV charging load
modeling will not include any significant temporal resolution related
errors.

3.7. Discussion

The simulations of this paper consider only uncontrolled charging
and controlled charging with a peak load management. It is expected
that different scenarios using different control algorithms may require

10
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different temporal resolutions to be sufficiently accurate. However, all
control algorithms presented in the scientific literature cannot be tested
using HIL simulations with commercial EV, which sets some limitations
to this kind of study. For example, the considered EVs do not support
vehicle-to-grid operation and are not able to transfer information, such
as battery-status, to the control system.

However, the results of this paper can also be used as guidelines for
different scenarios that use other charging control algorithms. To
determine the reasonably accurate temporal resolutions in case of other
control algorithms, the focus should be put on the control signal and
how it is affected by the change of the temporal resolution. For example,
if charging is controlled based on hourly electricity prices, the control
signal’s resolution is an hour. Therefore, the use of one-hour resolution
or finer does not negatively influence on the accuracy of the control
signal. This means that charging control based solely on hourly elec-
tricity prices could be simulated with a similar accuracy as uncontrolled
charging, and sufficiently accurately results could be obtained using
300-900 s resolution (see Table 8.). Furthermore, if a control algorithm
combines a peak load management with a volumetric electricity price
(€/kWh) optimization, the price optimization is not assumed to have an
influence on the recommended temporal resolution, and thus the rec-
ommended temporal resolution is 1-300 s depending on the situation
(see Table 8).

Other benchmark algorithms, such as earliest deadline first and least
laxity first, may depend on the mobility requirements of the EVs
including departure time or energy requirements. However, these al-
gorithms are not expected to be notably dependent on the used temporal
resolution. This is because the change of temporal resolution does not
influence on the energy requirement. Additionally, the simulation model
already has to consider the departure time even in the case of uncon-
trolled charging to determine when charging is allowed or not. A similar
reasoning can potentially be used in case of other control algorithms to
determine a reasonably accurate temporal resolution.

4. Conclusions

In this paper, the influence of the temporal resolution on the electric
vehicle charging load modeling is assessed. To form realistic baselines
for the simulations, laboratory experiments with up to four commercial
electric vehicles are carried out. In addition, to evaluate electric vehicle
charging at home or at a large charging site, detailed household’s
electricity consumption data and charging session data of REDI shop-
ping center was used. Furthermore, a laboratory measurement-based
electric vehicle charging simulation model is developed.

The investigated research questions and the findings of the study are
as follows:

1 What is the impact of the temporal resolution when modeling home
charging or a small charging site? In most cases, the modeling error is
relatively modest with temporal resolutions of < 60 s but increases
exponentially with higher temporal resolutions. However, for home
charging in which the peak load is the sum of the charging load and
the household’s electricity consumption, the modeling error is
notable (> 8.7% on average) already with temporal resolutions of
>10s.

What is the impact of the temporal resolution when modeling a large
charging site? According to the results, a temporal resolution of
300-900 s may be sufficient to model the total load of a large
charging site in case of uncontrolled charging or a relatively simple
control method. However, it is noted that in commercial charging
sites, the parking duration may not always be very long. Therefore,

N
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exceedingly coarse resolution (e.g. one-hour) may lead to a situation
where some of the charging sessions are excluded from the modeling.

3 How accurately the electric vehicle charging loads can be modeled using
the developed simulation model? The simulation results indicate that
the developed simulation model is sufficiently accurate (error less
than 5%) in most cases even though the battery temperatures are not
included in the model. However, the results also show that due to this
simplification, there may be notable inaccuracies mostly in the
highest momentary peak loads.

4 Which temporal resolutions are necessary in different situations to ensure
reasonably accurate modeling? To model the highest hourly peak
loads, a temporal resolution of 300 s is seen sufficiently accurate
regardless of the size of the charging site and the use of control al-
gorithm. To model the highest momentary peak loads in a charging
site, a temporal resolution of 60-300 s is reasonably accurate.
However, if the peak load is also dependent on an external load, such
as a volatile household’s electricity consumption, a very fine reso-
lution of 1 s may be necessary. To model the charged energy in each
hourly time slot accurately, the necessary temporal resolution varies
significantly depending on the scenario. In case of uncontrolled
charging of a single electric vehicle, a resolution of up to 900 s may
be sufficient. However, if the charging is controlled and there is a
chance that the charging must be temporally stopped (e.g. to avoid
load peaks), a very fine temporal resolution of 1 s may be necessary.
In other cases, a temporal resolution of 60 s is likely to be sufficiently
accurate to model the charge energy.

As shown in this paper, the influence of the temporal resolution is of
great importance and the use of a justified resolution should not be
overlooked. To strengthen the theoretical background of all future
electric vehicle charging related simulations, this paper provides guid-
ance in terms of the necessary temporal resolution of the electric vehicle
charging load modeling. Since the modeling methods and parameters
play an important role in the simulations, future work should consider
different EVs and investigate how different modeling methods influence
on the modeling accuracy.
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Appendix

Tables A1-A3.

Table Al

MAEs for Scenario 1.
Case P Py E E* E®
HIL ow ow 0 Wh 0 Wh 0 Wh
1s 57 W 23 W 29 Wh 30 Wh 27 Wh
10s 572 W 25W 31 Wh 29 Wh 35 Wh
30s 694 W 36 W 41 Wh 32 Wh 57 Wh
60s 1513 W 39W 47 Wh 38 Wh 63 Wh
300s 1660 W 86 W 106 Wh 46 Wh 210 Wh
900s 1883 W 165W 203 Wh 66 Wh 443 Wh
3600s 2613 W 252 W 332 Wh 77 Wh 777 Wh

a
b

includes only the charging sessions that are moderately controlled.
includes only the charging sessions that are heavily controlled.

Table A2
MAE:s for Scenario 2.
Case P Py E
HIL ow ow 0 Wh
1s 822 W 100w 85 Wh
10s 820 W 100 W 87 Wh
30s 857 W 98 W 92 Wh
60s 975 W 97 W 103 Wh
300s 1615 W 172 W 194 Wh
900s 3371 W 462 W 506 Wh
3600s 7908 W 1323 W 1707 Wh
Table A3
MAEs for Scenario 3.
Case P Py E
1s ow ow 0 Wh
10s 41 W 19W 11 Wh
30s 181 W 63 W 43 Wh
60s 280 W 67 W 59 Wh
300s 964 W 339w 238 Wh
900s 2517 W 929 W 685 Wh
3600s 8891 W 3375 W 2577 Wh
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Abstract

In the scientific literature, it has been a common assumption that electric vehicles (EVs)
draw a constant current during the whole charging session. In reality, EV charging pro-
files are not linear, and the non-linearities have recently gained more attention. However,
a thorough analysis of the influences of different charging profile modelling methods is
not yet carried out. This paper aims to fill this gap by comparing experimental measure-
ments of four commercial EVs and results of a developed simulation model that con-
siders different charging profile modelling methods. According to the results, the use of
linear charging profiles may lead to notable modelling inaccuracies (error > 30%) whereas
the use of measurement-based non-linear charging profile models yields relatively accu-
rate results (error mostly < 3.5%). The results also demonstrate that the use of a simple,
but justified, bilinear charging profile model is likely to be sufficiently accurate in most

scenatios.

1 | INTRODUCTION

Over the past few years, a lot of work has been done to
improve the electric vehicle (EV) chatrging load modelling meth-
ods. This work is necessary in order to accurately predict EV
charging loads which further enables safe and efficient oper-
ation of the power grid [1]. However, at the present, there
remains a gap in the scientific literature regarding the modelling
accuracies.

1.1 | Literature review
To give an outlook of the EV charging load modelling related
research found in the scientific literature, 25 recent studies are
listed in Table 1. For each study, the modelling method of the
EV charging profiles is presented. In this paper, a charging pro-
file refers to the charging current behaviour over the charging
session.

As seen in the Table 1, most of these recent studies con-
sider a linear charging profile (i.e. the simplest method where
the current stays constant over the whole charging session) to

model the EV charging. In [24— 20], it is acknowledged that the
charging power is non-linearly dependent on the state of charge
(SoC). To overcome the issue, only SoCs between 5% and 95%
are considered in [24]. In [25] and [26], bilinear charging pro-
files are used. However, very little effort is made to justify the
modelling method or to assess its influence on the modelling
accutacy.

To classify different charging profiles, an iterative clustering
framework is developed in [27]. The results show that even
though the number of different charging profiles is significant,
they can be classified into a small number of types (in the study,
304 different charging profiles are successfully classified into
six types). These types can then be used to model charging
behaviour with a reasonable accuracy. In [28], machine learn-
ing is used to form charging profile models and predict charg-
ing currents. The simulation results show that the XGBoost
machine learning model yields the most accurate results with a
mean absolute error of 126 W. Additionally, an ablation study is
conducted to demonstrate that the exact EV model is not neces-
sary to attribute to accurately model charging profiles. Instead,
the necessary information includes charging features such as the
number of phases and the maximum current used for charging.
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TABLE 1  Recent studies

Ref. Charging profile modelling method

[1-24] Linear

[25] Bilinear: charging power decrease linearly to zero after 60% SoC
[26] Bilinear: charging power decrease lineatly to zero after 80% SoC

Based on [27] and [28], it seems that there is no need to have
a separate charging profile model for each different EV model.
However, these studies do not assess the influence of the use of
simplified charging profiles on the modelling accuracy. There-
fore, the need to consider more accurate charging profile mod-
els remains currently unknown.

1.2 | Contribution and structure

Based on the literature review, it seems necessary to assess the
influence of the EV charging profile modelling methods on
the charging load modelling. To fill the gap in the literature,
expetimental measurements of a small charging site are com-
pared with simulation results obtained by using different charg-
ing profile models. Similar simulations are also carried out for a
large charging site using real charging data. The goal is to ana-
lyze the impact of different charging profile modelling methods
on the charging load modelling accuracy in different situations.
The results provide guidance and strengthen the scientific back-
ground for future studies related to EV charging load modelling.
It is worth emphasizing that this paper focuses on the charging
loads seen from the charging site point-of-view. The contribu-
tions of this paper are listed below.

* Assessing the accuracy of the linear charging profile mod-
elling method that is widely used in the scientific literature.

Assessing the accuracy of a measurement-based non-linear
charging profile modelling method, in which the charging
profiles are formulated based on experimental measurements
of the considered EVs.

* Formulating bilinear charging profiles based on the experi-
mental measurements and assessing the modelling accuracies
of these charging profile models. Two bilinear charging pro-
file modelling methods are considered. The first utilizes a sep-
arate charging profile for each EV and for each current limit,
and the second utilizes a single bilinear charging profile that
is applied for all EVs and for all current limits.

Evaluating the influence of using charging control together
with different charging profile modelling methods on the

modelling accuracy.

The rest of the paper is as follows. Section 2 describes the
assessment method including the simulation model and the
experimental hardware-in-the-loop (HIL) measurements. Sec-
tion 3 presents and analyses the results. The paper is finalized
with conclusions in Section 4.

2 | ASSESSMENT METHOD

This section desctibes the key values of interest, the different
charging profile modelling methods, the used charging data, the
two examined scenatios, the used control method, the experi-
mental HIL laboratory setup, and the used simulation model.
Each topic forms its own subsection.

2.1 | Key values of interest

This paper assesses the influence of different charging profile
modelling methods on the modelling accuracy in two different
scenarios. To achieve this, three key values are examined: the
highest peak power (P), the highest hourly peak power (Ph),
and the charged energy (E). These values are often needed to
determine, for example, the charging costs of an EV user, the
costs and profits of a charging site operator, and the EV user
satisfaction. Consequently, if these values are incorrect, the eco-
nomical assessment of the charging site will also be unreliable.
These values can also be used to estimate the optimal sizing of
the charging infrastructure, and thus, inaccurately modelling the
values could lead to over sizing or under sizing. Therefore, these
values should be modelled accurately, and thus, they are consid-
ered as the key values in the assessment.

The highest peak power simply refers to the highest peak
power measurement value of a single time step (10 s) in a day,
whereas the highest houtly peak power refers to the highest
average loading during a 1-h-long period in a day. The highest
houtly peak power is an interesting value because it can be the
basis for a power-based distribution tariff component as in [29].
The charged energy refers to the energy that is charged during
each 1-h time slot (i.e. 0:00-1:00, 1:00—2:00 etc.). This definition
is made because the temporal resolution in electricity pricing is
often 1 h, and thus, a modelling error in the hourly level may
affect certain cost or benefit analysis.

For each key value, a percentual root mean square error
(RMSE) is calculated by comparing the simulation results to the
results of the selected baseline (described in Section 2.4). The
petcentual RMSE for the highest peak power and the highest
hourly peak power is calculated using (1), where Dalue is either
P or Ph, Ny is the number of cases or days (25 cases for Sce-
natio 1 and 89 days for Scenatio 2, described in Section 2.4),
subscript b represents baseline, and subscript ¢ represents the
compared value. Since an houtly charged energy can be zero,
the percentual RMSE for the charged energy is calculated using
(2) and (3), where ERys, b 15 the absolute RMSE (in kWh) and
Ly 1s the average hourly charging load (in kWh).
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FIGURE 1  Charging profile lookup table for Nissan Leaf 2012 with 11 A
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2.2 | Different charging profile models

In this study, five different charging profiles are compared: real
HIL measurement, measurement-based non-linear (NL) model,
bilinear (BL) model made separately for each EV and for each
current limit set by the EV supply equipment (EVSE), unified
bilinear (UBL) model which is used for each EV and for each
current limit set by the EVSE, and linear (L)) model.

The NL charging profiles are obtained by measuring the cur-
rent drawn from the grid of each EV with all possible current
limits (integers) set by the EVSE in 10-s resolution. Only cur-
rent limit integers are considered as the used charging points
(described in Section 2.6) do not support floating point cur-
rent limits. The measurements are used to calculate the miss-
ing energy from the batteries in each time step. The calculation
begins from the end of the charging session where the miss-
ing energy, referred to as energy requirement, is zero (i.e. the
EV is fully charged). The process is illustrated in Figure 1 for
the charging of Nissan Leaf 2012 with a current limit of 11 A
set by the EVSE. In this case (Figure 1), the energy require-
ment (£R) of 400 Wh separates the constant power (CP) and
the constant voltage (CV) stages. After calculating the energies,
a lookup table is formed to link the calculated energy require-
ments to the measured charging currents.

The lookup table is formed only for the CV stage of the
charging profile. The charging current is assumed to be con-
stant over the whole CP stage in the modelling methods. This is
seen reasonably accurate because the charging current is shown
to be very steady (variation of less than 0.5 A) during the CP
stage [30]. After forming the lookup tables for all current limits,
a three-dimensional lookup table is formed which links the cur-
rent limit set by the EVSE (in amperes) and the missing energy
of the EV (in Wh) to the charging currents (each phase cur-
rent in amperes). A separate three-dimensional lookup table is
formed for each EV. The process and the received charging pro-
file models are similar than the ones mentioned in [30] and [31].
However, in this paper, other charging profile modelling meth-
ods (BL, UBL, and L) are also considered and compated.

TABLE 2  The used electric vehicles

EV Charging power

Nissan Leaf 2012 37kW (1X 16 A)
74KW (1 X 32 A)
11.0kW (3 X 16 A)

221 kW (3 X 32 A)

Nissan Leaf 2019
BMW i3 2016
Smart EQ for four 2020

35 ——Nissan Leaf 2012 ‘Nissan Leaf 2019
.30 —BMW i3 2016 ——Smart forfour 2020
E 25
e -20
§--15
@« -10

-5
0
6 8 10 12 14 16 18 20 22 24 26 28 30 32
Current limit (A)
FIGURE 2  Slope of charging current in CV stage

The BL charging profile model utilizes the previously men-
tioned measurements to determine the energy requirement (£g
in Wh) at which point the charging currents begin to decrease
(i.e. the point separating CP and CV stages). Then, Equation (4)
is used to calculate the slope & that leads to the same energy
(£R) being charged in the CV stage, where L. denotes current
limit set by the EVSE, M denotes EV model, /cp denotes the
current in the CP stage, U denotes phase voltage (230 V). For
the three-phase EVs (namely BMW and smart, as shown later
in Table 2), separate slope for each phase is calculated. In the
BL charging profile model, the slope is calculated separately for
each EV and for each current limit set by the EVSE. The slopes
are illustrated in Figure 2. For current limits 6—16 A, the charg-
ing of smart stop without a clear CV stage. This results in a very
small £ and thus a very high a. These slopes are considered to
be outliers, and thus, they are excluded from the consideration
and from the figure. Additionally, only the average slope of the
three phases is presented for BMW and smart in the figure.

Uep (L, M) X U

LM) =
& (L, 2% B (L, M)

®

The UBL charging profiles are formed using the same aver-
age slope for all EVs and all current limits set by the EVSE.
The slope is the result of first calculating an average slope of
each EV (Nissan Leaf 2012—12.8 mA /s, Nissan Leaf 2019—
15.9 mA /s, BMW i3 2016—19.4 mA /s, Smart for four 2020—
13.1 mA/s), and then calculating the average of all EVs which
is —=15.3 mA/s. The same average slope is assumed to affect
cach phase current, and thus, the charging powers of the three-
phase EVs are decreasing three times as fast as the powers of
the single-phase EVs.
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According to the data, the EVs have an average stay dura-
FIGURE 3  Illustration of Nissan Leaf 2012 charging profile tion of 236 min, an average active charging time of 101 min,

The L charging profile model assumes that the charging cur-
rents do not decrease when the EV is becoming fully charged.
The charging profiles are illustrated in Figure 3 for Nissan Leaf
2012. In the figure, the charging is uncontrolled (i.e. current
limit is >16 A) and the initial energy requirement is 5.2 kWh.
Regardless of the modelling method, the EV draws 5.2 kWh
from the grid. However, it can be clearly seen that different
modelling methods result in different currents in the CV stage.

Itis worth noting that some deviations between the HIL mea-
surements and the simulation results are expected because the
simulation model does not consider battery temperatures in the
modelling. It is commonly known that a battery temperature
plays an important role in the charging management of an EV,
and thus, it should be considered the battery management sys-
tem of the EV. However, due to the increased complexity of
the modelling and the data requirements to form the model, the
temperature factor is excluded from the charging load simula-
tion model.

Additionally, this paper does not consider either percentual
SoCs or charging efficiencies. Since the HIL charging current
measurements were not able to record the SoCs of the EVs
during the charging and the considered charging session data
(described in Section 2.3) also measured charged energies in
kWh, it is more convenient to consider energy requirements
in kWh instead of utilizing SoC in this paper. Because this
paper only deals with charging energies and currents seen from
the grid point-of-view, the charging losses are being included.
Therefore, the impact of not considering charging efficiencies
explicitly is not expected to have a notable influence on the
results.

2.3 | Useddata

To evaluate a large charging site in a realistic manner, charg-
ing session data of REDI is used. REDI is a shopping cen-
tre located in Helsinki, Finland, which has over 200 charging
points that support 22-kW charging [32]. The data is gathered
over 89 days in 2020 (January—March) and contains 3801 charg-
ing sessions which results in 42.7 charging sessions per day. The
data includes arrival and departure time, active charging time,
charged energy, and charging peak power. All charging sessions
are uncontrolled.

and an average charged energy of 7.4 kWh. It is also seen that
in 59.3% of the charging sessions the stay duration is less than
5 min longer than the active charging time. This indicates that
the stay duration often acts as a bottleneck, and consequently,
most EVs are not fully charged before departure. It is worth
noting that a further analysis of the EV usage-related behaviour
(parking time and driving requirements) is excluded from the
paper. Instead, the focus is on the charging profiles (i.e. charg-
ing current drawn over the charging session) and the modelling
accuracies of the different charging profile models.

2.4 | Examined scenarios

The simulations focus on two scenarios: a small charging station
with four charging points and a large charging site with up to 21
simultaneous charging sessions. Scenario 1 is carried out in 25
different cases. In each case, three or four of the EVs shown
in Table 2 are charged which results in 89 HIL charging ses-
sions in total. For each event, the arrival times, the departure
times, and the driving distances are randomly selected. In this
scenatio, the average driving distance is 19.1 km (min 4.3 km and
max 65.0 km). This leads to an average energy requirement of
3.8 kWh (min 0.8 kWh and max 11.6 kWh) from the grid point-
of-view (i.e. the charging losses are included). The arrival times
of the EVs vary between 16 and 22 h and thus create circum-
stances where 1-4 EVs are simultaneously requesting charging,
Sojourn times are assumed to be long enough so that the EVs
can be fully charged. In each event, a peak load management
(PLM) with a total charging current limit of 3 X 32 A is used.
The used PLM is described in Section 2.5.

Scenario 2 is formed using the charging session data of the
89 days of REDI. For the modelling purposes, the recorded
charging peak powers are used to determine the type of the EV
according to (5), where P, is the charging peak power. The sec-
ond scenario is divided into three subscenarios based on the
used control method: an uncontrolled charging (Unc.), PLM
with a total charging current limit of 3 X 160 A, or PLM with
a total charging current limit of 3 X 126 A. These limits are
chosen based on preliminaty simulation results that show that
the highest peak currentis 191 A in case of uncontrolled charg-
ing. The subscenarios are used to determine the impact of the
modelling method together with the use of charging control to
the modelling accuracy in a large chatging site. The EVs and
the key parameters of the scenarios are presented in Tables 2
and 3, respectively. The control method is presented in the next
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subsection.

LV = Nissan Leaf 2012, if 0 kW < 7, < 4.5 kW

type

EVipe = Nissan Leaf 2019, if 4.5 kW < £, <10 kW

EV,

type

= BMW 732016, if 10 kW < 7, < 15kW

EV,

type

= Smart EQ fourfour 2020, if 15 kW < 7, <25 kW

©)

In Scenario 1, HIL. measurements are used to set realis-
tic baselines for the comparisons. Due to the limited num-
ber of available EVs, Scenario 2 with up to 21 simultaneous
charging sessions can only be simulated. In that scenario, the
measurement-based NL charging profile models are used to
form the baselines because they are the most accurate in Sce-
nario 1 according to the results seen in Section 3.1.

2.5 | Charging control method

In this paper, a benchmark control algorithm, fair sharing, pre-
sented in [33] is used. The algorithm divides the available charg-
ing capacity evenly among the EVs. The capacity allocation is
illustrated in (6), where /gy is the allocated current for each EV,
Lioa1 Is the available total charging capacity, and /Vis the number
of active EVs requesting to be charged. The current limit is then
sent to the EV through the corresponding EVSE according to
IEC 61,851 charging mode 3.

]cotal 6
NGO ©)

Ly )=
It should be noted that the following control method in itself
is not the focus of this paper. Instead, the goal is to create
a situation that is the opposite of uncontrolled charging: the
charging capacity is very limited and the state of a single EV
(charging or not charging) influences on the available charging
capacity of all EVs that are charging at the moment. In Sce-
nario 1, the maximum total loading of the charging station (3
X 32 A) allows all four charging sessions to be simultaneously
active. However, a dynamic PLM is required if more than one
EV is simultaneously charging. The subscenarios of Scenario 2
are effectively the same than Scenario 1 except that the total
loading is either not limited, limited to 3 X 160 A, or limited to
3X 126 A.

2.6 | Experimental setup

The idea of the experimental setup is to form the baselines for
Scenario 1 by measuring the real charging events. The experi-
ments are carried out as HIL simulations at TU Dortmund Uni-
versity [34]. The hardware components include the four EVs
mentioned in Table 2 and two charging stations (Wirelane Dop-
pelstele and RWE eStation). Both charging stations include two
22 kW (230 V, 3 X 32 A) sockets. The charging currents at the

Charging station

400V
3-phase —®—> EV
L network : EV

Itotal

EV

@
RCas

FIGURE 4  The experimental setup for Scenario 1

FIGURE 5

The laboratory setup

RWE charging station are measured by using KoCoS EPPE
PX power quality analysers, whereas Wirelane charging station
includes built-in current measurement devices for both sockets.

PLM is implemented using Python programming language.
The algorithm is run on a computer that is connected to the
same local network with the charging points so that the system is
able to adjust the charging current limits of the EVSE and read
the measurements of the realized charging currents in real time.
The experimental setup for Scenario 1 is shown in Figure 4. The
simulated setup for Scenario 2 is similar than the setup shown in
Figure 4, but there are 21 virtual charging points instead of the
four physical charging points. A picture of the laboratory setup
is shown in Figure 5.

2.7 | Simulation model

The idea of the simulation model is to allow the real charging
sessions to be replicated with different charging profile mod-
elling methods. These must be done as pure simulations without
any HIL components. A similar simulation model is used pre-
viously in [30] and [31]. However, in these studies, only a single
charging profile modelling method (NL) was considered, and
thus, the influence of different modelling methods could not be
assessed.

The operation of the simulation model is illustrated in
Figure 6. At the beginning, the model reads general input
data and EV related input data. After the initialization, the
model simulates the EV charging until all EVs have either been
fully charged or been departed. In each time step, the model
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Read simulation input data:
-Charging profile modeling method
-Available total charging capacity

Read EV input data:
-Arrival times
-Departure times
-Energy requirements
|
v
Update the status of each EV
(away or plugged in)
v

Determine charging current
limit for each EV according
to the control algorithm

v

Determine the charging currents of
the EVs that are plugged in based on
the considered modeling method and

the charging current limit
v
Update the remaining energy
requirements based on the determined
charging currents of the time step

Next time step

FIGURE 6  Block diagram of the simulation model

determines the status of each EV (away or plugged in). For
the EVs that are plugged in, the charging control algorithm
determines the charging current limits according to (6). After
that, the charging currents are determined according to the
considered charging profile models and the determined current
limits. Finally, at the end of each time step, the remaining
energy requirements of the EVs are updated based on the
determined charging currents. The simulation model uses a
temporal resolution of 10s.

3 | RESULTS

3.1 | Scenario 1: A small charging site

The results of Scenario 1 are presented in Figure 7. It can be
seen that the highest hourly peak power and the charged energy
can be modelled most accurately using the NL charging profiles

30 | ®™P mPh mE
g 25
2is
E 10
; 1. L.
0 =
HIL NL BL UBL L
Modeling method
FIGURE 7  Results of scenario 1
8
7 | ®™P (Unc.)
/\;6 B P (max 3x160 A)
;i B P (max 3x126 A)
2]
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NL BL UBL L
Modeling method
FIGURE 8 RMSE of the highest peak powers in Scenario 2
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FIGURE 9 RMSE of the highest hourly peak powers in Scenario 2

(RMSE of 1.62% and 3.45%, respectively). The use of separate
BL charging profiles or the UBL charging profile yields smaller
RMSE:s in terms of the highest peak power (8.30% and 5.80%,
respectively) and slightly higher RMSEs in terms of the high-
est houtly peak power (2.88% and 2.72%, respectively) and the
charged energy (3.49% and 4.39%, respectively). Most signifi-
cantly, the results show that the use of L charging profile leads
to notable modelling errors (31.21% for the highest peak load,
7.62% for the highest hourly peak power, and 9.05% for the
charged energy).

3.2 | Scenario 2: A large charging site

The modelling RMSEs of each key value of Scenario 2 are pre-
sented separately in Figures 8-10. Again, the results clearly indi-
cate that the use of L charging profiles yields the highest RMSEs
(5.59%—5.86% for the highest peak power, 2.29%—06.52% for
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FIGURE 10 RMSE of the charged energy in Scenario 2

the highest hourly peak power, and 2.95%—7.84% for the charge
energy). Compared to each other, the use of BL or UBL charg-
ing profiles yields similar results (1.87%—3.37% for the highest
peak power, 0.64%—2.83% for the highest hourly peak power,
and 1.19%-3.65% for the charged energy) even though the BL
charging profile is slightly more accurate in each scenario.

4 | DISCUSSION

The results of Scenario 1 demonstrate that the use of NL charg-
ing profiles can be made to enable a high modelling accuracy
for the EV charging load simulations even though the battery
temperatures are not taken into account. However, some mod-
elling inaccuracies were expected and seen due to this simplifi-
cation. According to the results, the highest hourly peak power
and the charged energy can be modelled accurately (RMSE of <
3.45%), whereas the highest peak power is more susceptible to
modelling errors (RMSE of 9.29%).

In general, the results show that the use of L charging pro-
files is likely to lead to significant modelling errors (RMSE of
2.29%-31.21%). Conversely, the use of BL or UBL charging
profiles seems to be reasonably accurate compared to the HIL
measurements and to the results obtained using NL charging
profiles (RMSE of 0.64%—4.39% when excluding the highest
peak power in Scenario 1). These results indicate that the use of
a simple BL charging profile is likely to be sufficiently accurate
in most cases as long as the slope of the CV stage is justified.
This kind of result was expected because the studies [27] and
[28] indicated that an EV model-specific charging profile model
(such as the non-linear profile model considered in this paper)
may not be needed in order to model charging loads relatively
accurately.

The comparison of the three subscenarios of Scenario 2
shows that the uncontrolled charging can be modelled more
accurately in terms of the highest houtly peak power (seen in
Figure 9) and the charged energy (seen in Figure 10) than the
controlled charging. This is assumed to be due to two rea-
sons. Firstly, in case of controlled charging, the capacity allo-
cation is influenced by the number of EVs actively requesting
energy. Secondly, compared to the usage of the other modelling
methods, the EVs become fully charging faster when using lin-
ear charging profile model (seen in Figure 3). This means that
the use of linear charging profiles is inaccurate to model the

charging states of the EVs (requesting to be charged or not)
which further influences the control algorithm. In general, these
results indicate that the more complex the considered con-
trol algorithm is, the more complex charging profile modelling
methods should be used. In terms of the highest peak power,
there does not seem to be a similar correlation to the use of
charging control (seen in Figure 8) even though the loads are
affected in case of controlled charging by the two reasons just
mentioned. This is expected to be due to the fact that the high-
est peak load only takes into account the single highest value.
So, despite the loads being modelled more inaccurately over the
course of the simulated periods in case of controlled charging, it
seems that the highest momentary power is often achieved with
a similar accuracy regardless of the use of charging control. It
is also worth noting that the highest peak load seems to be less
susceptible to modelling inaccuracies when the number of EVs
increases. This can be seen by comparing the results of Scenar-
ios 1 and 2.

5 | CONCLUSIONS

In this paper, the influence of the chatrging profile modelling
method on the EV charging load is assessed. Laboratory exper-
iments with up to four commercial EVs are carried out to form
realistic baselines for the comparisons. In addition, to evaluate
charging at a large charging site, charging session data of REDI
shopping centre is used.

The results show that the use of linear charging profile can
lead to significant modelling errors, and thus, it is not recom-
mended to be used especially in case of controlled charging. It is
shown that the use of measurement-based non-linear charging
profiles is likely to lead to the most accurate modelling. How-
ever, the results also demonstrate that the use of a simple, but
justified, bilinear charging profile model can also lead to reason-
ably accurate results.

According to the measurements and calculations of this
paper, the charging currents of commercial EVs decrease
around 15.3 mA/s per phase on average in the constant volt-
age stage. Also, the results shown in this paper demonstrate that
using this value to model charging profiles leads to reasonable
low modelling errors of 0.64%0—4.39% for the highest hourly
peak power and the charged energy. Therefore, it can be used
in future studies, which relates to EV charging load modelling
from the charging site point-of-view, to ensure reasonable mod-
elling accuracy with reduced computational requirements. Addi-
tionally, the results of this paper show that the battery tempera-
tures do not have a notable influence on the charging loads seen
from the charging site point-of-view, and thus, it may not be
necessary to consider them in the related studies.

The results of this paper indicate that uncontrolled charging
can be modelled more accurately than controlled charging. To
investigate the accuracies of different charging profile modelling
methods in case of different control algorithms, more work
is required. However, this can be a challenging task because
the commercially available EVs may have some limitations. For
example, some EVs may not support vehicle-to-grid, or they
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may not be able to communicate certain information, such as
SoC, to the control system. And, if real measurements are not
used as a baseline for the comparisons, it may be difficult to
assess the accuracies of different modelling methods in differ-
ent scenarios.
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