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Abstract

In this article, we consider data complexity in the context of calcium transient
signal data collected from induced pluripotent stem cell-derived
cardiomyocytes. We present a novel way to measure data complexity based on
the nearest neighbour searching method. Data complexity here is seen as over-
lapping and mixed data classes in addition to a relatively great number of data
cases. Complexity affects classification results, which were run with nearest
neighbour searching, feedforward artificial neural networks and random for-
ests for seven genetic cardiological disease classes and healthy controls. The
data are obtained from individuals carrying mutations for genetic cardiac dis-
eases with induced pluripotent stem cell (iPSC) technology and the diseases
include hypertrophic cardiomyopathy with two different founder gene muta-
tions, dilated cardiomyopathy, long QT syndrome type 1 and 2, Brugada syn-
drome, a severe genetic ventricular arrhythmia (CPVT) and healthy controls.
The data are from calcium transients from spontaneously beating iPSC-derived
cardiomyocytes cultured in a biotechnology laboratory. When the genotype of
the iPSC-derived cardiomyocytes is the same as the donor of the tissue sample
and based on the characteristics of the calcium transients, it was possible to
classify the seven diseases and healthy controls with machine learning. Peak
data first detected before actual pre-processing from calcium transient signals
corresponded to beats (repeating excitation—contraction coupling) of induced
stem cell-derived cardiomyocytes and formed the basis of classification. During
pre-processing of the calcium transient signals, we found that such techniques
among others as even strong outlier cleaning or class size balancing by gener-
ating artificial cases improved only slightly or not at all classification accura-
cies. Therefore, the current data set was sufficiently complicated for our data
complexity study. Random forests produced the best classification accuracies,

68% for all eight classes.
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1 | INTRODUCTION

Subject to data complexity, we understand here how data
items or points are distributed in the attribute space of a
data set. Different data classes may be quite well separa-
ble from each other at their best or rather overlapping
and even mixed in difficult situations. In this sense, data
complexity affects so that the more complex, the lower
classification results are probably obtained while execut-
ing classification tasks with machine learning methods.
Nevertheless, we may improve classification results by
using appropriate pre-processing techniques. We studied
these questions in the present article.

Since our first research articles' with induced plu-
ripotent stem cell-derived cardiomyocyte (iPSC-CMs)
data, that is, data extracted from calcium transient sig-
nals, we extended our data collection comprising seven
genetic cardiologic diseases and controls. Machine learn-
ing can be used to classify calcium transient signals by
using their peaks as data.?

The function of calcium cycling is central in
excitation—contraction coupling of cardiomyocytes.
Abnormal calcium cycling is connected to arrhythmia
associated with cardiac disorders and the study of car-
diomyocyte calcium cycling offers tool to study cardiac
functionality and diseases. Patient-specific iPSC-derived
cardiomyocytes are used to study genetic cardiac diseases,
and these include, for example, long QT syndrome 1 and
2 (LQT1 and LQT2),*° electric disorders of the heart that
predisposes patients to arrhythmias and sudden cardiac
death,” dilated cardiomyopathy (DCM),® a disease of the
heart muscle, hypertrophic cardiomyopathy (HCM),”*°
disorder that affects the structure of heart muscle tissue
leading to arrhythmias and progressive heart failure,
Brugada syndrome (BrS) that predisposes patients to fatal
cardiac arrhythmias,'"'* and catecholaminergic polymor-
phic tachycardia (CPVT), an exercise-induced malignant
arrhythmogenic disorder."*™"> In addition, data of con-
trols (wild type, WT) were included in the study.

We were interested in studying the complexity of data
and particularly in the context of our current calcium tran-
sient signal data being clearly complicated while containing
eight classes and varying data. Data complexity depends on
properties of data sets such as numbers of data items, attri-
butes, distributions of values of different attributes, classes,
possible imbalance of classes and possible outliers or

missing values. Different data complexity measures'® are
given as follows. Overlaps in attribute values of different
classes can be measured with maximum Fisher's discrimi-
nant ratio applying the squared difference of means of two
classes divided by the sum of their variances, volume of
overlap region by using minima and maxima of two classes
of each attribute for computing the length of overlap region,
and maximal attribute efficiency showing how much every
attribute affects the separation of two classes. Another
approach is to measure separability of classes'® where there
are (1) fraction of points on class boundary, (2) ratio of aver-
age intra-/inter-class nearest neighbour distance and
(3) error rate of 1-nearest neighbour classifier. For these
techniques, in (1), a class-independent minimum spanning
tree is computed for a data set counting the number of
items incident to a boundary between two classes. The tree
connects all items to their nearest neighbours. Fractions
incident to different classes versus all items are measured
values. In (2), first, the Euclidean distance is computed from
every item to its nearest neighbour. The average of all dis-
tances to intra-class nearest neighbours and the average of
all distances to inter-class nearest neighbours are calculated.
The ratio of two averages is the measured value, which
compares the intra-class dispersion with the gap between
classes. Measure in (3) is the error rate of a nearest neigh-
bour classifier subject with the training set used according
to leave-one-out. The measure indicates how close the items
of different classes are. Furthermore, data complexity'’ was
first approached theoretically (e.g., minimization) for binary
classification and then different two-dimensional example
distributions were presented by using one to three nested
circles or other curved areas dividing the space into varying
parts so that several parts could be given to the same class.
An instance level analysis was studied, particularly consid-
ering such instances that are frequently misclassified."®

2 | DATA

The research was approved by the Ethics Committee of
Pirkanmaa Hospital District as to culturing and differen-
tiation of human iPSC lines (R08070). Patient-specific
iPSC lines were established and cultured as previously
described.? iPSC lines used in this study were derived
from two LQT1 and two LQT2 patients, two HCM
patients carrying a mutation in a-tropomyocin gene
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FIGURE 1 (A) A normal BrS calcium transient signal with regular peak shapes and sizes. (B) An abnormal BrS transient signal

containing multiple peaks.

(HCMT) and two HCM patients carrying a mutation in
myocin binging protein C gene (HCMM) patients, six
CPVT patients carrying mutations in ryanodine receptor
2 gene for CPVT, one BrS patient carrying a mutation in
SCN5A gene, two DCM patients carrying a mutation
lamin A/C gene, and two healthy control individuals
(WT). The studied iPSC lines were UTA.05605.CPVT,
UTA.05208.CPVT, UTA.07001.CPVT, UTA.03701.CPVT,
UTA.05503.CPVT and UTA.05404.CPVT generated from
CPVT patients carrying cardiac ryanodine receptor
(RyR2) mutations; UTA.14004.SCN5A generated from
BrS patient carrying SCNS5A mutation, UTA.07801.
HCMM, and UTA.06108.HCMM generated from HCM
patients carrying myosin-binding protein C (MYBPC3)
mutations and UTA.02912.HCMT and UTA.13602.HCMT
generated from HCM patients carrying a-tropomyosin
(TPM1); and UTA.00208.LQT1 and UTA.00118.LQT1
generated from LQT1 patients carrying potassium
voltage-gated channel subfamily Q memberl (KCNQ1)
mutation; UTA.03412.LQT?2, UTA 03417.LQT2,
UTA.03809.LQT2 and UTA.03810.LQT2 generated from
LQT2 patients carrying the human ether-a-go-go-related
gene (HERG) mutation; UTA.12619.LMNA and
UTA.12704.LMNA generated from DCM patients with
lamin A and lamin C (LMNA) mutations and
UTA.04602.WT and UTA.04511.WT generated from
healthy control individuals. These iPSCs were differenti-
ated into spontaneously beating cardiomyocytes and dis-
sociated as single cells for calcium imaging studies, in
which cardiomyocytes were loaded with calcium indica-
tors Fura-2 AM (Invitrogen, Molecular Probes) or Fluo-4
AM (Thermo Fisher Scientific) as described ear-
lier.****!3 Calcium transient signals were recorded from
spontaneously beating cardiomyocytes and background
noise was subtracted before further calcium analysis
processing. A signal was determined to be abnormal if
one or more of its peaks were determined as abnormal. A
biotechnological expert had evaluated every entire signal
to be either abnormal or normal to guarantee them as
surely annotated as possible even if the algorithm

developed® could have been used for this purpose. See
example signals in Figure 1.

To detect peaks from signals, the first derivative of
the signal was computed to detect the beginning, maxi-
mum and end of every peak. In those three locations the
first derivative values are close to zero, but elsewhere
mainly greater or less than zero. After the detection of
potential peaks from a signal, small peaks less than 8% of
an estimated average peak amplitude of the entire signal
were removed and evaluated to be probable noise.>” The
minimum number of valid peaks was 1, the maximum
123 and the average 17.

The data set was comprised of seven disease classes
and controls. The total of the calcium transient signals
was 1393: 233 in disease CPVT, 69 in DCM, 270 in
HCMM, 149 in HCMT, 90 in LQT1, 138 in LQT2, 218 BrS
and 226 in controls WT. Respectively, the total of
accepted peaks was 23 720: 2279 acceptable peaks were
found in CPVT, 1169 in DCM, 4416 in HCMM, 2128 in
HCMT, 1617 in LQT1, 3712 in LQT2, and 5577 in BrS
and 2822 in WT signals. Compared with our recent
study,® diseases DCM, LQT2 and BrS and a part of WT
signals were new.

Next, values of suitable peak attributes from the
accepted peaks were computed for the classification of
peaks and finally signals into different classes. The attri-
butes named in Figure 2 were computed for every
accepted peak.

3 | METHODS

After having increased the number of diseases to seven
and the class of controls of the current data set, we
noticed that their classification was more difficult com-
pared with three diseases only and controls of our earlier
study.”> The only pre-processing techniques that could
improve classification accuracies a little (~0%-2%)
depending on ways to build models and test these were
standardization (zscore in Matlab) and weighting
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FIGURE 2 Peak attributes: (1) left and (2) right amplitudes,

(3) left and (4) right durations, approximate location for (5) first
derivative maximum of the left side, location for (6) absolute first
derivative minimum, locations for (7) second derivative absolute
minimum and (8) second derivative maximum, (9) surface area
bounded by the peak curve and line from the peak beginning to the
end, (10) time interval from the maximum of the preceding peak to
the current one, (11) duration from the peak beginning to the first
derivative maximum, (12) duration from the peak maximum to the
first derivative absolute minimum, (13) mean peak duration
computed from the mean of the left and right amplitudes, and

(14) peak curve length

attributes with weight values computed with Relief algo-
rithm."® Standardization changes the values of all attri-
butes to an approximately same interval. This is
important for such machine learning methods as nearest
neighbour searching that use distance measures. In the
current research all programming was made with
Matlab.

Using mainly nearest neighbour searching, we
experimented with several pre-processing techniques
beginning from data cleaning of training data by modify-
ing the algorithm® that was purposed to outlier recogni-
tion so that it was effective to clean “boundary areas” of
data classes. Nevertheless, this did not affect positively,
although we iterated cleaning one time or even a few
times so that ultimately approximately a half of all peak
data were left out. We ran the common 10-fold cross-
validation with nearest neighbour searching and then
with artificial feedforward neural networks for the origi-
nal data and then weighted with Relief algorithm. In
10-fold cross-validation, all data signals are divided ran-
domly into 10 subsets of the approximately same size and
one by one each subset is the current test set and the
other 9 subsets jointly form the corresponding training
set. Neural networks were also run based on one-versus-
all (OVA) and one-versus-one (OVO) principles, that is,
by dividing training data according to eight classes and
operating with these separate parts of the data. After one
cleaning iteration, we still classified by using neural

networks and according to OVO principle. Lastly, in
OVO, we experimented with our novel idea of “predictive
cleaning” where we used misclassified peaks of training
sets and searched for 1-nearest neighbours in the test sets
and removed these. Since various cleaning approaches
did not improve classification results, next we applied
Synthetic Minority Over-sampling Technique (SMOTE)
algorithm,”" with preceding cleaning as described above
or without cleaning, to balance small and large data clas-
ses by generating artificial data items into small classes
less than roughly a half of the largest of BrS class: CPVT,
DCM, HCMT and WT. After SMOTE runs classifications
were performed with nearest neighbour searching. Nei-
ther did the class balancing improve classification results.
All those runs described were executed according to
10-fold cross-validation. All nearest neighbour runs were
executed with Mahalanobis measure, because this pro-
duced better results than Euclidean, cityblock, correla-
tion, cosine, Hamming, Jaccard, or Spearman measures.

After having noticed in the foregoing pre-processing
experiments that the peak data of these calcium transient
signals are relatively complicated while consisting of data
items from seven different disease classes and controls as
the eighth class, we designed a technique to measure the
complexity of data. The technique is based on nearest
neighbour searching that is utilized in several data min-
ing algorithms, for example, SMOTE and Relief men-
tioned above. First, the path of nearest neighbours is
computed so that starting from a randomly chosen peak
(data item) of the whole data, the process searches for its
nearest neighbour, which is not yet visited. The found
one is assigned to be the next neighbour of the path. This
is continued until the last unvisited peak is chosen, see
Figure 3. Thereafter, for every class it is counted along
with the neighbour path how many times the class label
changes from the current class to some other class. Then
for the whole peak data it is counted along with the path
how many times a class changes to some other class. Ulti-
mately, the classwise numbers of class changes are
related to the sizes of classes and the latter class changes
quantity is related to the size of the entire data set. The
algorithm is given in Figure 4.

If there are relatively few changes from one class to
another, complexity is low, close to 0. If there are fre-
quent changes, complexity is clearly higher than in situa-
tions of infrequent class changes. Thus, data complexity
in this context measures how overlapping or mixed the
classes of the data set are.

It is necessary to repeat the process, for example, at
least 10 times and average the complexity values com-
puted, because the choice of the starting item affects
somewhat how neighbour path is constructed. For our
later tests, we first standardized the values of each data
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FIGURE 3 A simple hypothetical nearest neighbour path

(in reality, the dimension of 14 attributes and thousands of data
items originating from also up to eight classes) where two black
dashed arrows indicate the changes from Class 1 to Class 2 and one
green dashed arrow indicates the change from Class 2 to Class

1, but the blue dotted arrows show no class changes. Altogether,
three changes were encountered.

Algorithm for data complexity evaluation:

(1) Choose random starting item s from among n data items.
(2) Repeat n —1 times:
Search for the nearest unvisited neighbor.
Set the found neighbor to the path of nearest neighbors.
(3) Repeat for every class i:
(8.1)  Start from the beginning s of the neighbor path.
(3.2) Set the number of changes c¢i = 0.
(3.3) Repeatn -1 times:
Choose the next neighbor from the neighbor path.
if the preceding neighbor originates from the class i and the current neighbor
from some other class then
ci=ci+1.
(3.4) For class i set complexity value
v = L
sl
where |s;l is the size of class .
(4) Start from item s of the neighbor path.
(5) Set the number of changes d = 0.
(6) Repeat n-1 times:
Choose the next neighbor from the neighbor path.
if the class of the preceding neighbor differs from that of the current one then
d=d+1.
(7) For the whole data set complexity value is as follows.

cv=2

n

FIGURE 4
complexity

Algorithm for the computation of proposed data

attribute applying zscore and then computed weights for
the attributes by using Relief function.

The minimum complexity value of a class in
Equation (1) would be given by one change only after
having found first all items C; of the class i one after
another and only after that the change to some other
class. Here |s;| is the size of class i.

: 1
vt = — | 1

However, if the class contained all the last neighbours of
the neighbour path, the minimum would be equal to
0. The maximum would be obtained if after every item of
the current class an item of some other class were
encountered. Thus, the maximum complexity value
would be 1. This has also the exception in Equation (2)
for the last element of the neighbour path, which has no
successor and gives the following when [ is the last class
of the neighbour path.

c—1|
cvma":—| . 2
pe = @)

Minimum complexity value CV™" of the whole data in
Equation (3) is obtained when the neighbour path is
comprised of unbroken parts, each of these representing
one class only. Then there is a queue of the united clas-
ses, but after the last neighbour of the last class there is
no comparison. C is the number of classes.

m C—1
cymin =, (3)

Since there are n — 1 comparisons for n data items in the
neighbour path, Equation (4) gives the maximum.

1
cymax — "T 4)

Naturally, these minima and maxima are hardly met in
real-world data, but they are the limits for these complex-
ity values.

4 | RESULTS

In Table 1, there are complexity values computed from
2, 4, 6 and 8 classes that were comprised of 4950, 10 941,
16 526 and 23 720 calcium transient signal peaks, respec-
tively. In Figures 5-8, there are visualizations computed
from the whole data and its subsets of 6, 4 and 2 classes.
Reducing two classes stepwise simplifies typically the
classification problem when the attribute space areas or
volumes of those classes still included become more sepa-
rable from each other.

Machine learning modelling and tests with models
were executed according to 10-fold cross-validation. The
same cross-validation training and test folds were used for
different methods and test set-ups, but while using less
than all eight classes, those items representing classes left
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TABLE 1 Complexity values computed from the data of 2, 4, 6 and 8 classes when averages of 10 repetitions of complexity value
computations were computed

Classes
Number of classes
LQT1 HCMM CPVT WT HCMT LQT2 DCM BrS All classes
8 0.497 0.425 0.534 0.550 0.522 0.407 0.518 0.336 0.445
6 0.383 0.475 0.523 0.535 0.367 0.515 0.445
4 0.385 0.419 0.386 0.248 0.347
2 0.208 0.276 0.237
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FIGURE 5 Visualization computed with t-Distributed FIGURE 7 Visualization computed with t-SNE algorithm for
Stochastic Neighbour Embedding (t-SNE) algorithm in Matlab for four classes
all eight classes
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FIGURE 6 Visualization computed with t-SNE algorithm for FIGURE 8 Visualization computed with t-SNE algorithm for

six classes two classes
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TABLE 2

Results of k-nearest neighbour searching classification: (A) Data of eight classes (standardized or not standardized with zscore

and) classified with Mahalanobis distance, (B) data of eight classes when attributes were weighted with Relief algorithm and ties inside

signals were solved with the squared inverses of their distances from nearest neighbours in different classes, (C) data of six classes classified

with Mahalanobis distance similarly to those of eight classes, (D) then data of four classes classified similarly and (E) data of two classes

classified similarly

Average sensitivity (true positive rate) % Accuracy %

Mode of classification k LQT1 HCMM CPVT WT HCMT LQT2 DCM BrS Mean and std
(a) 1 85.6 89.3 55.0 49.2 53.8 59.9 44.5 60.9 63.5+4.1

3 86.7 91.9 52.0 45.1 41.6 53.5 41.9 53.1 59.6 £2.8

5 87.8 90.0 53.7 44.7 45.6 55.6 42.9 52.6 60.1+3.9
(b) 1 84.4 87.0 56.8 48.7 59.1 59.2 46.0 64.2 64.2+3.4
() 1 86.7 70.9 53.2 59.8 70.1 53.1 68.4 + 3.7
(d) 1 73.5 603 739 81.2 70.9 + 3.3
(e) 1 87.6 786 84.0+4.8

out were removed from folds. The purpose was to make
different test set-ups as comparable as possible. However,
for artificial neural networks, five runs were executed for
the whole cross-validation process (with the fixed folds),
because feedforward neural networks use randomly
selected initial values for weight values for connections of
learning neurons.

It is noticeable to remember the character of classify-
ing calcium transient signal data that the classification
task is performed for every peak of signal, and in the pre-
sent data, a signal may contain from 1 to 123 peaks. After
having classified all peaks of a signal, the majority class
of those peaks determines the class of the entire signal.
Nonetheless, a tie as to the majority is then possible.
Thus, for the nearest neighbour searching method, we
ran first the tests without taking ties into consideration
and second taking ties into consideration.

In Table 2, there are results computed with k-nearest
neighbour searching method and Mahalanobis distance
measure that produced better results than those with
Euclidean, cityblock, correlation, Spearman, cosine, Ham-
ming or Jaccard distance measures. In the beginning, the
data items were also standardized with zscore function
attribute by attribute since this was also used for other
tests. Nevertheless, while using Mahalanobis distance mea-
sure, standardization would not have been necessary, when
the covariance calculation of Mahalanobis measure has the
similar effect to classification results. The data items were
also weighted by coefficients computed with Relief algo-
rithm. When other distance measures than Mahalanobis
were applied, standardization pre-processing may be more
or less useful depending on data. For nearest neighbours,
number k searched for from a training set, we used values
1,3, 5,7,9 and 11, but when k equal to 1 always gave the
best result, these are only presented after Table 2 part (a).
In Table 2 part (a), ties in nearest neighbour searching

inside signals were not considered, but they were consid-
ered in parts (b)-(e). If there was a tie, that is, equally
many nearest neighbours from two or more classes subject
to all peaks of a test signal, the following computation was
performed. A weight was computed for every test peak i of
the test signal as to its jth nearest neighbour

1 . .
wy=—,i=1,..,p,j=1,..k, (5)
dij

where dj; is the distance value from a test peak i to its jth
nearest neighbour in the training set. Let C(i, j) be the
class of neighbour j. Vector V containing g components
here according to the number of eight classes of the pre-
sent data is used to store the sums for classes predicted
by nearest neighbours of test case i, which is repeated for
every peak i = 1, ..., p of the test signal:

p k
W(h)=> Y V(C(ij)=h) wjh=1,.g  (6)

i=1 j=1

LifC(i,j)=h
where V(C(i,j):h):{ yel=h
0,if C(i,j) #h
Finally, the class label of the test signal was deter-
mined by the majority vote:

argmax,,_; {W(m)}. (7)

When thinking all cases also being test items in some fold
in modelling and testing 131 ties occurred, rather many,
for all 1393 signals. Obviously, the relatively high number
of ties reflects the complexity of the data. Including the
above consideration of ties improved the uppermost
mean accuracy of Table 2 part (a) only around 0.7%
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TABLE 3

Results of multilayer feedforward (perceptron) neural network when the data standardized with zscore: (A) Data of eight

classes, (B) data of eight classes with weights computed with Relief algorithm in Matlab, data of six classes when classified as in the

preceding alternative, (C) then data of four classes classified similarly and (D) data of two classes similarly

Average sensitivity (true positive rate) % Accuracy %

Mode of Hidden Mean

classification layer size LQT1 HCMM CPVT WT HCMT LQT2 DCM BrS andstd

(a) 36 88.7 82.9 434 33.6 47.2 41.0 65.2 62.7 56.9+4.5

(b) 36 80.3 59.6 474 46.8 69.2 67.0 62.2+4.5

() 36 62.5 59.5 63.5 76.6 64.4+4.5

@ 21 88.5 72.8 82.2+42
TABLE 4 Results of random forests classifier when the data standardized with zscore: (A) Data of eight classes, (B) data of six classes,

(C) data of four classes and (D) data of two classes

Average sensitivity (true positive rate) % Accuracy %
Mode of Number of Mean
classification trees LQT1 HCMM CPVT WT HCMT LQT2 DCM BrS andstd
(a) 112 93.3 85.6 67.9 51.8 55.8 52.7 75.2 69.3 68.1+3.3
(b) 58 87.8 78.1 60.2 57.1 73.1 73.6 73.0+49
() 32 81.1 66.0 72.6 79.7 74.5+5.2
) 36 934  76.6 86.7 +3.8

compared with that of part (b). Table 2 parts (b) and
(c) show how the results became better while decreasing
the number of classes, that is, decreasing data
complexity.

In Table 3, there are results computed with
feedforward neural networks of three layers (one hidden
layer). Levenberg-Marquardt learning algorithm was
applied, which achieved approximately as good classifica-
tion accuracies as those of Bayesian regularization, but
slightly better (~1%) than those given by Resilient bac-
kpropagation algorithm. The parameter of the size of the
hidden layer (the numbers of its neurons or nodes) was
increased from 10 upward, since greater sizes than 10 gave
typically slightly better (up to ~4%-5%) results tested up
to 50 neurons. Results given by sizes 21 or 36 are presented
depending on which gave a little better (~1%) classifica-
tion accuracy. Pre-processing of zscore standardization
and weights computation with Relief algorithm were also
executed, but they would not have been necessary when
feedforward neural networks are not sensitive to scales of
attributes unlike nearest neighbour searching, but they
“tune” network connection weights correspondingly in
their learning processes based on optimization.

In Table 4, there are results obtained by the random
forest classifier.”” In all classification tasks ([a]-[d]), a
random forests classifier was tested from 1 to 150 trees in
a forest with stepsize of 1. Otherwise, we used the default

parameter settings. The same 10-fold cross-validation
division was used with random forests as with other clas-
sification algorithms, and performance measures (accu-
racy and sensitivities) were computed from all folds in
percentages and finally mean and standard deviation of
the performance measures were evaluated. Performance
measures were computed from signal-level predictions,
which were obtained by taking the mode of peak-level
predictions in the case of each signal data. The peak-level
data from each signal was included only in one fold. In
all classification settings ([a]-[d]), data were zscore stan-
dardized to have zero mean and unit variance. The best
parameter setting was selected based on the topmost
accuracy gained from the signal-level predictions. Table 4
results show that the random forests classifier was able to
achieve the highest accuracies within all classification
methods tested.

In Reference 17, an approach of data complexity on
data items was used according to the division into either
classified correctly or incorrectly data items and then k-
nearest neighbours were used by computing for every test
data item how many of its k-nearest neighbours did not
have the same class label as that of the test data item.
Since in Reference 17, complexity was based on either
correctly or incorrectly classified data items, this princi-
ple differed from our approach. Yet, we apply this for a
kind of rough comparison with the results of our method.
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In Table 2, the classification accuracies of rows (b)-
(e) give indirectly such values, since they contain the
classification accuracies of nearest neighbour searching.
By subtracting each accuracy value from 100 and dividing
the difference by 100, we obtain complexity values 0.358,
0.316, 0.291 and 0.160 for the numbers of classes 8, 6,
4 and 2 to be compared with the rightmost complexity
values in Table 1. Both series contain a series of decreas-
ing data complexity, but these cannot be compared as
commensurable when they were computed with two dif-
ferent principles.

5 | CONCLUSION

A method utilizing nearest neighbour searching was
presented for elucidating data complexity. The method
was tested with peak data derived from calcium tran-
sients measured from induced pluripotent
cardiomyocyte-based origin. We showed how data com-
plexity of classes and the subsets of data became smaller
when classes were decreased from 8 to 6, 4 and 2. Data
complexity could be seen in these data, such as classes
are somewhat overlapping each other, and their disper-
sions somewhat intermingled without clear boundaries
between classes. These overlapping and mixing were
abundant enough so that there were probably difficult to
determine any items to be outliers. Thus, data cleaning
did not aid to improve classification accuracies of the cur-
rent data set. On the other hand, when data cleaning did
not aid, it showed that the current data are complicated
and, for this reason, very suitable for the present study.
In general, when data cleaning affects some other data, it
may improve classification results.

The superiority of random forests classifier in this
classification task compared with other methods tested is
important. Random forests being tree-based is a transpar-
ent machine learning method compared with black box
deep learning methods, which are a standard approach in
numerous machine learning tasks nowadays. Transpar-
ency is a crucial issue in medical decision-making and in
other domains as well. When a machine learning is used
for diagnostic purpose, we need to have a way to justify
or check afterwards, how the decision or prediction has
been made. This can be also a mandatory requirement in
practice due to legal purposes, for example, if a machine
learning method is used in real-world situation, likewise
in a hospital environment. Since a random forest is a
tree-based transparent method, we can follow and back-
track, basically, how the decision has been made. It is
excellent from the practical point of view that a random
forest classifier is the best method for classifying diseases
and controls.

ACKNOWLEDGEMENTS
The authors would like to thank Academy of Finland
Centre of Excellence in Body-on-Chip Research.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new
data were created or analyzed in this study.

ORCID
Martti Juhola ‘® https://orcid.org/0000-0003-2298-9553
REFERENCES

1. Juhola M, Penttinen K, Joutsijoki H, et al. Signal analysis and
classification methods for calcium transient data of stem cell
derived cardiomyocytes. Comput Biol Med. 2015;61:1-7. doi:10.
1016/j.compbiomed.2015.03.016

2. Juhola M, Joutsijoki H, Penttinen K, Aalto-Setild K. Detection
of genetic cardiac diseases by Ca2+ transient profiles using
machine learning methods. Sci Rep. 2018;8:9355.

3. Juhola M, Joutsijoki H, Penttinen K, Aalto-Setdld K. Differenti-
ation of genetic cardiac diseases on the basis of artificial intelli-
gence. Eur J Biomed Inform. 2019;15(3):43-52.

4. Kiviaho AL, Ahola A, Larsson K, et al. Distinct electrophysio-
logical and mechanical beating phenotypes of long QT syn-
drome type 1-specific cardiomyocytes -carrying different
mutations. Int J Cardiol Heart Vasc. 2015;25(8):19-31.

5. Kuusela J, Larsson K, Shah D, Prajapati C, Aalto-Setild K. Low
extracellular potassium prolongs repolarization and evokes
early after depolarization in human induced pluripotent stem
cell-derived cardiomyocytes. Biol Open. 2017;6:777-784.

6. Shah D, Prajapati C, Penttinen K, et al. hiPSC-derived car-
diomyocyte model of LQT2 syndrome derived from asymptom-
atic and symptomatic mutation carriers reproduces clinical
differences in aggregates but not in single cells. Cell. 2020;9(5):
1153.

7. Hwang H, Liu R, Maxwell JT, Yang J, Xu C. Machine learning
identifies abnormal Ca*" transients in human induced pluripo-
tent stem cell-derived cardiomyocytes. Sci Rep. 2020;10:16977.

8. Shah D, Virtanen L, Prajapati C, et al. Modeling of LMNA-
related dilated cardiomyopathy using human induced pluripo-
tent stem cells. Cell. 2019;8(6):594.

9. Ojala M, Prajapati C, P6lonen RP, et al. Mutation-specific phe-
notypes in hiPSC-derived cardiomyocytes carrying either
myosin-binding protein C or o-tropomyosin mutation for
hypertrophic cardiomyopathy. Stem Cells Int. 2016;2016:1-16.

10. Prajapati C, Ojala M, Aalto-Setdld K. Divergent effects of adren-
aline in human induced pluripotent stem cell-derived
cardiomyocytes obtained from hypertrophic cardiomyopathy.
Dis Model Mech. 2018;11:dmm032896.

11. Liang P, Sallam K, Wu H, et al. Patient-specific and genome-
edited induced pluripotent stem cell-derived cardiomyocytes
elucidate single-cell phenotype of Brugada syndrome. J Am
Coll Cardiol. 2016;68:2086-2096.

12. Penttinen K, Prajapati C. submitted. 2022.


https://orcid.org/0000-0003-2298-9553
https://orcid.org/0000-0003-2298-9553
info:doi/10.1016/j.compbiomed.2015.03.016
info:doi/10.1016/j.compbiomed.2015.03.016

» | WILEY

13.

14.

15.

16.
17.

18.

19.

JUHOLA ET AL.

Penttinen K, Swan H, Vanninen S, et al. Antiarrhythmic effects
of dantrolene in patients with catecholaminergic polymorphic
ventricular tachycardia and replication of the responses using
iPSC models. PLoS One. 2015;10:5.

Polonen RP, Penttinen K, Swan H, Aalto-Setdld K. Antiar-
rhythmic effects of carvedilol and flecainide in cardiomyocytes
derived from catecholaminergic polymorphic ventricular tachy-
cardia patients. Stem Cells Int. 2018;2018:1-11.

Pélénen RP, Swan H, Aalto-Setdld K. Mutation-specific differ-
ences in arrhythmias and drug responses in CPVT patients:
simultaneous patch clamp and video imaging of iPSC derived
cardiomyocytes. Mol Biol Rep. 2020;47:1067-1077.

Cano J-R. Analysis of data complexity measures for classifica-
tion. Expert Syst Appl. 2013;40:4820-4831.

Smith MR, Martinez T, Giraud-Carrier C. An instance level
analysis of data complexity. Mach Learn. 2014;95:25-256. doi:
10.1007/s10994-013-5422-z

Li L, Abu-Mostafa YS. Data complexity in machine learning,
Caltech Computer Science Technical Report CaltechCSTR:
2006.004. http//resolver.caltech.edu/CaltechCSTR:2006.004
Kira K, Rendell L. The feature selection problem: traditional
methods and a new algorithm, AAAI-92 Proceedings of the

20.

21.

22.

Ninth International Workshop on Machine Learning. 1992. 249-
256. http://www.aaai.org/Library/AAAI/1992/aaai92-020.php
Laurikkala J, Juhola M, Kentala E. Informal identification of
outliers in medical data, 5th International Workshop on Intel-
ligent Data Analysis in Medicine and Pharmacology
(IDAMAP-2000) (A workshop at the 14th European Confer-
ence on Artificial Intelligence, ECAI-2000). 2000. Proceed-
ings, 20-24.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:
synthetic minority over-sampling technique. J Artif Intell Res.
2002;16:321-357.

Breiman L. Random forests. Mach Learn. 2001;45:5-32.

How to cite this article: Juhola M, Joutsijoki H,
Penttinen K, Shah D, Aalto-Setdld K. A method to
measure data complexity of a complicated medical
data set. Int J Imaging Syst Technol. 2022;1-10.
doi:10.1002/ima.22760


info:doi/10.1007/s10994-013-5422-z
http://http/resolver.caltech.edu/CaltechCSTR:2006.004
http://www.aaai.org/Library/AAAI/1992/aaai92-020.php
info:doi/10.1002/ima.22760

	A method to measure data complexity of a complicated medical data set
	1  INTRODUCTION
	2  DATA
	3  METHODS
	4  RESULTS
	5  CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


