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Abstract
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Master’s thesis
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This thesis aims at implementing an application to recognise hand gesture in
real-time using the Unreal Engine 4 (UE4) game engine. This thesis completes three
tasks. First, neural network models are built to get 2D coordinates of hand joints
from an RGB image. Second, the optimal model is found which has more precise
prediction and less prediction time by using different neural network architectures
and training datasets. Third, 2D hand pose estimation is implemented by using the
trained model in real-time in the UE4 game engine. While there are some research
works on hand pose estimation from an RGB image, they only focus on prediction
accuracy not prediction time.

In this thesis, two neural network architectures for hand pose estimation (HRNet
and ResNet) are studied by analyzing their architectures and performance in testing.
Each architecture is trained by four datasets, so eight models are generated. Each
model is tested on those four datasets. Then, the eight models are tested on self-
taken photos. Their performances are compared through observations based on the
accuracy of predicted hand joints’ position and the real ones.

The prediction accuracy and prediction time are the evaluation indices for evalu-
ating models. This research finds that prediction accuracy of HRNet is little higher
than ResNet, but the prediction time of HRNet is little higher than ResNet. The
training models on the dataset, OneHand10K has batter performance compared to
other datasets.

Keywords: hand pose estimation, hand gesture, Unreal Engine 4, deep neural
network

The originality of this thesis has been checked using the Turnitin Originality Check
service.
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1 INTRODUCTION
The development of technology has applied in mobile applications, personal com-
puters, etc. It has changed people’s daily lives. One of the typical scenarios of
technology in applications is hand pose estimation. Users do some hand gestures as
commands to control smart home devices. They use built-in webcams to capture
users’ hand gestures and do the corresponding actions, e.g. open television, draw
curtains, etc. Moreover, players can play some games by doing some hand gestures
without using mouse or keyboard. However, the prediction accuracy of hand pose
estimation on some devices is bad. Also, the prediction time is long. Some sce-
narios have high requirement in prediction accuracy but some need fast hand pose
prediction. The trade-off between accuracy and speed is a challenge for researchers.

A method to overcome this challenge is testing hand models’ performance on
prediction accuracy and prediction time in different scenarios and some of them are
chosen based on the requirements of specific scenarios. The goal of this thesis is
implementing an application to recognise hand gesture in real-time using the UE4
game engine. The procedure of this thesis work’s pipeline includes researching neural
network architectures for hand gesture recognition, training hand models, getting
prediction of trained models, comparing the performance of inference quality and
speed. The performance of each hand model is evaluated for hand gesture estimation
tasks on self-taken photos. These models are used to do 2D hand pose estimation
on UE4 game engine.

This thesis work is generalizable to real-time applications which need hand pose
estimation. More accurate and fast estimation can be achieved. In this thesis, neural
network models are built to get 2D coordinates of hand joints from an RGB image.
Also, the optimal model is found which has more precise prediction or less prediction
time. The real-time applications can use webcams to capture frames and get 2D
coordinates of users’ hand joints. It can use this data to estimate the meaning of
hand gestures to do the next step. Application developers can choose one of the
models according to their emphasis on accuracy or time.

The structure of the thesis is divided into four parts. Chapter 2 introduces the
fundamental knowledge of Artificial Neural Networks, Convolution Neural Networks
and game engine. Chapter 3 introduces the work of literature review. Different mod-
els of hand pose estimation from a depth images or an RGB image were introduced.
Chapter 4 introduces the evaluation of hand models for a single image and in real-
time application. Chapter 5 draws the conclusion of the thesis.
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2 THEORY
In this thesis, two artificial neural network architectures (ANN) for hand pose esti-
mation, HRNet and ResNet are studied. Each of them is trained by four datasets.
These two models are related to the knowledge of ANN and Convolutional Neural
Network (CNN). Because of this, the essential elements of ANN and its training
process are necessary to be introduced in the first section. CNN is described in the
second section. Its main content is the construction and function of each layer of
CNN. Next, the trained models are used to do 2D hand pose estimation in real-time
using the Unreal Engine 4 game engine (UE4). Hence, in the third section, general
knowledge of game engine, the main systems I used in UE4 are described.

2.1 Artificial Neural Network (ANN)

The name and structure of ANN are modeled from the neural networks in the brains
of animals. In addition, the way data is transformed in ANN resembles the way
organic nerves convey impulses. The fundamental theory of the perceptron, activa-
tion function, multilayer perceptron (MLP), loss function, optimization strategies
in ANN, and forward and backward propagation (FP & BP) are all covered in this
chapter.

2.1.1 Perceptron

The perceptron is the fundamental unit of ANN (Mcculloch and Pitts 1943). It
consists of numerous inputs, an adder, an activation function, and an output y.
The multiple inputs of perceptron are input values which constitute a vector, x =

(x1, x2, ..., xn). The connection intensity of each perceptron in ANN is affected by the
weight value. The greater the weight of an input, the more significant it is. Each
input has a weight associated with it. The weights are represented by a vector,
w = (w1, w2, ..., wn) and it times x by dot production. The sum is then compared
with a threshold (Kanal 2003). The adder then combines x and the threshold. The
structure of a perceptron is shown in Figure 2.1.

The perceptron is used as a binary classifier. The threshold is used to classify
the output of the adder to get the binary result, indicated as 0, 1. The accurate clas-
sification of samples is controlled by the appropriate threshold value. It determines
which output will be used. The output is 1 if w · x is greater than the threshold.
The result is 0 if the value is less than the threshold. On the Equation 2.1, if the
threshold is moved to the side of w · x, b signifies the negative threshold.
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Figure 2.1 The structure of perceptron

y =

1, if w · x + b > 0

0, if w · x + b ≤ 0
(2.1)

2.1.2 Activation function

The activation function f changes the linear output of perceptron to nonlinear so
the ANN is be capable for nonlinear problems. The f takes the output from the
adder and does nonlinear transformation to it. It clamps the output between a
range, e.g. (−1, 1), (0, 1). Some popular activation functions are Sigmoid, Tanh,
ReLU, Softmax.

The function of Sigmoid is shown as Equation 2.2 (Kyurkchiev 2016). When the
independent variable x is getting closer to negative infinity, the σ(x) will be closer to
0. When x is becoming positive infinity, the σ(x) will be near 1. The σ(x) equals to
0.5 when x = 0. Hence, the range of σ(x) is (0, 1). The Sigmoid does normalization
for all of the output, so it is good at predicting probability. Figure 2.2(a) shows the
plot of Sigmoid.

σ(x) =
1

1 + e−x
(2.2)

The function of Tanh is shown as Equation 2.3. When the independent variable
x is getting closer to negative infinity, the tanh(x) will be closer to −1. When x

is becoming positive infinity, the tanh(x) will be near 1. The tanh(x) equals to 0

when x = 0. Hence, the range of tanh(x) is (−1, 1). Figure 2.2(b) shows the plot of
Tanh.
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(a) Sigmoid activation function (b) Tanh activation function

(c) ReLU activation function

Figure 2.2 Some activation functions

tanh(x) =
ex − e−x

ex + e−x
(2.3)

The function of ReLU (Xu et al. 2015) is shown as Equation 2.4. It can also be
written as R(x) = max(0, x). When the independent variable x changes from 0 to
negative infinity, the ReLU will be 0. When x is the positive value, the ReLU will
be same as x. Hence, the range of ReLU is [0,∞). Figure 2.2(c) shows the plot of
ReLU.

R(x) =

x, if x > 0

0, if x ≤ 0
(2.4)

The softmax (Bridle 1989) is used in multiple classification. It maps the output
of multiple perceptrons to a range of (0, 1). The function of softmax is shown as
Equation 2.5, where i denotes a category in multiple classification and the number
of them is J . Its input is a a vector of real numbers. softmax normalizes this vector
to (0, 1) and the sum of yi is 1. Compared to the function max, max only outputs
the maximum value, but softmax outputs the probabilities of obtaining a some of
categorizes. The highest yi denotes a category i has the highest probability. This
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category is the desired prediction.

yi =
exi∑J
j=1 e

xj

, for i = 1, ..., J (2.5)

2.1.3 Multilayer Perceptron (MLP)

Traditional MLP has three layers: input layer, hidden layer and output layer. The
layer consists of multiple perceptrons. Each perceptron is connected to all of the
perceptron in the next layer, which means each layer is fully-connected. The input
or output layer has one layer but the hidden layers might have multiple ones or no
layer. The workflow of ANN is divided into two parts, forward propagation and
backward propagation. The structure of MLP is shown in the Figure 2.3.

Figure 2.3 The structure of MLP

2.1.4 Forward Propagation (FP)

The forward propagation starts from the input layer and ends at the output in the
forward direction. The n input data (x

(0)
0 , x

(0)
1 , ..., x

(0)
n ) is put to the first perceptron

in the first layer of hidden layers, then to others. For this perceptron, if the cor-
responding weights, and bias are (w0,0, w0,1, ..., w0,n), b0 respectively, the activation
function f of the first perceptron processes the data and generates the output, as
shown in the Equation 2.6.

x
(0)
0 = f(w0,0x

(0)
0 + w0,1x

(0)
1 + · · ·+ w0,nx

(0)
n + b0) (2.6)
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The rest of perceptron in this layer do the same way as the first one. Each
output of them composes a matrix, as shown in the Equation 2.7. The Equation 2.8
verctorizes Equation 2.7, where W denotes the matrix of the weight, k means the
number of perceptrons in the first layer of hidden layers.

x
(1)
0

x
(1)
1
...

x
(1)
n

 = f



w0,0 w0,1 · · · w0,n

w1,0 w1,1 · · · w1,n

... ... . . . ...
wk,0 wk,1 · · · wk,n



x
(0)
0

x
(0)
1
...

x
(0)
n

+


b0

b1
...
bn


 (2.7)

x(1) = f(Wx(0) + b) (2.8)

Then, these outputs are transferred to the successive layers as their input. The
the last layer of the hidden layers transfers its output to the output layer. Finally,
the output layer calculates the result. If the output layer has p nodes which means
there are p outputs y, the forward propagation is described as a function, as shown
in the Equation 2.9.

f(x1, x2, ..., xn) =


y0

y1
...
yp

 (2.9)

2.1.5 Loss function

The loss function measures the difference between the predicted ith value ŷi and the
expected value yi, denoted as L(yi, ŷi), which means it can measure the performance
of the prediction ability of an ANN. The loss function of regression includes mean
square error (MSE), mean absolute error (MAE), huber loss, etc. The loss function
of classification includes log loss, hinge loss, etc.

MSE calculates the sums of squares of the difference between predicted value
ŷ and the expected value y, as shown in the Equation 2.10. The range of MSE is
[0,∞). Figure 2.4(a) shows the plot of MSE.

L =
1

n

n∑
i=1

(yi − ŷi)
2 (2.10)

MAE calculates the sums of the absolute value of the difference between pre-
dicted value ŷ and the expected value y, as shown in the Equation 2.11. The range
of MAE is [0,∞). Figure 2.4(b) shows the plot of MAE.
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(a) MSE loss function (b) MAE loss function

(c) Huber loss function (d) Log loss function

(e) Hinge loss function

Figure 2.4 Some loss functions

L =
1

n

n∑
i=1

|yi − ŷi| (2.11)

huber loss improves robustness of MSE to outliers. It uses δ to measure the form
of itself. When |yi− ŷi| is less or equal than δ, huber loss is same as MSE. Otherwise,
huber loss is linear error. It is shown in the Equation 2.12. Figure 2.4(c) shows the
plot of huber loss and compares the plots when δ = 0.1, 1, 10.
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Lδ(y, ŷ) =

1
2
(y − ŷ)2, if |y − ŷ| ≤ δ

δ · (|y − ŷ| − 1
2
δ), otherwise

(2.12)

log loss is also called Cross-entropy loss function. It measures the performance
of logistic regression, as shown in the Equation 2.12. Figure 2.4(d) shows the plot
of log loss.

L = − 1

n

n∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)] (2.13)

hinge loss is used in the maximum of margin, especially Support Vector Machine
(SVM), as shown in the Equation 2.14. Figure 2.4(e) shows the plot of hinge loss.

L = max(0, 1− yŷ) (2.14)

2.1.6 Optimization algorithms in ANN

The initial weights in FP are not the optimal ones in ANN. To get the better ones,
ANN should be trained by optimization algorithms to update weights in each epoch.
The goal of optimization algorithms in deep learning is minimizing the loss func-
tion. Choosing appropriate algorithms and hyperparamters improves the training
efficiency. The optimization algorithms includes gradient descent (Lemaréchal 2010)
and its related algorithms, e.g. Batch Gradient Descent (BGD), Adaptive Moment
Estimation (Adam), etc.

In multivariable calculus ”gradient” represents the vectorization of each param-
eters’ partial derivatives, denoted as ∇f(x, y). At the point (x0, y0), the gradient
is ∇f(x0, y0). It shows that, at the point (x0, y0), the function f(x, y) increaes
most rapidly in the direction of ∇f(x0, y0). In the reversed direction, the function
decreases most rapidly.

Gradient descent obtains the minimum of lost function in the reversed direction
of gradient. If the loss function is convex function, gradient descent will find the
global optimum. If not, it will find global or local optimum. The learning rate
controls the step of gradient descent towards to the local minimum. If the learning
rate is small, the closer to the expected value, the slower the gradient descent moves,
which means that more epochs will be needed in minimization of the lost function.
Figure 2.5 shows that the loss changes based on the weights changes when the
learning rate is small. The big learning rate causes the gradient descent bounces
around the local minimum rather than reaches to it.

Batch Gradient Descent (BGD) uses all of the samples in training. Stochastic
Gradient Descent (SGD) (Robbins 2007) chooses a sample and minimizes the loss
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Figure 2.5 The loss of gradient descent

function of each sample. In each epoch, the optimization of SGD may not move to
the global optimum accurately. Given all of the epochs, SGD moves to but may
fluctuate around the global optimum. It is good at the large dataset compared to
normal gradient descent and BGD. Mini-batch Gradient Descent (MBGD) takes the
balance between SGD and BGD. It takes a mini-batch from all of the samples in
each epoch to calculate gradient.

2.1.7 Back Propagation (BP)

The Back Propagation (BP) (Rumelhart, Geoffrey E. Hinton, and Williams 1988)
and FP trains ANN so the ANN can correct the weights and biases in a loop to
improve the accuracy of the prediction. The loss function measures this accuracy.
It calculates the distance between the predicted output by ANN and the expected
output. The more the distance is, the more error is. In FP, the input data goes
through input layer, hidden layer and output layer. If the output does not meet the
requirements, the predicted value ŷ and the expected value y will be generated to
loss function and fed into BP. In BP, all of the weights in ANN are calculated the
loss function gradient layer by layer. This gradient is used in optimization algorithm
to minimize the loss function by updating all weights in a loop. In each epoch of the
loop, BP fine-tunes the weights and biases based on the loss value of the previous
epoch. The training ends until the error meets the requirement of ANN.
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In FP, the perceptron values, output and the error are calculated. They are put
into BP based on the Chain Rule. The partial derivative of E with respect to wi is
calculated by the product of the partial derivative of E with respect to y and the
partial derivative of y with respect to wi, as shown in the Equation 2.15.

∂E

∂wi

=
∂E

∂y
· ∂y
∂wi

(2.15)

To reduce the error between the predicted value ŷ and the expected value y, the
ŷ should be updated by updating weights, as shown in the Equation 2.16, where w

denotes weight. Updated weight is w+. Error is E. The learning rate is η which
means the step size of each epoch. When all of the weights are updated, the updated
predicted output will be obtained based on the same way as Equation 2.16. The
process of updating weight and the predicted value will be looped until the error
meets the requirement of ANN.

w+ = w − η · ∂E
∂w

(2.16)

2.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) ((Lecun et al. 1998)) is a form of ANN which
is good at processing two-dimensional data, e.g. images. Traditional CNN contains
three layers: convolutional layer, pooling layer and fully-connected layer. Compared
to MLP, CNN does not flatten all of the pixels of the image but keeps the spacial
structure of the pixels, so the features of the images are saved. Besides, CNN can
decrease the large amount of data of images to improve the efficiency of processing
images and save the computation load.

2.2.1 Convolutional layer

The convolutional layer calculates pixels based on cross-correlation operation be-
tween input tensor and kernel tensor. In cross-correlation, each pixel value on the
input tensor times corresponding value on the kernel tensor. Then, each product is
added together as the first value of the output tensor. The cross-correlation opera-
tion causes the size of output less than the input tensor which means some pixels on
the boundaries of the image are lost. To get the rid of pixels lost, extra zero value
pixels are added around the image boundaries. Figure 2.6 shows the kernel moving
on the padding input image and does cross-correlation. The blue area on the input
image means zero padding. The result of calculation is put as the first value on the
upper-left corner of the output image.

The step of a kernel tensor movement is controlled by a parameter, stride. It
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Figure 2.6 The cross-correlation with padding

controls the number of rows and columns passed per slide. The more the stride
is, the less computation of cross-correlation is. If the stride is 1, the kernel tensor
will move 1 column horizontally or 1 row vertically. Meanwhile, if the size of input
tensor, kernel tensor are ih × iw and kh × kw, the output tensor size is shown in the
Equation 2.17.

(ih − kh + 1)× (iw − kw + 1) (2.17)

Given padding and stride, the size of the output tensor is changed from the
Equation 2.17 to the Equation 2.18, where ph, pw are the padding horizontally and
vertically respectively. The stride horizontally and vertically are sh, sw respectively.⌊

ih − kh + ph + sh
sh

⌋
×

⌊
iw − kw + pw + sw

sw

⌋
(2.18)

To make the size of the input tensor and the output one same, ph = kh − 1 and
pw = kw − 1 so the Equation 2.18 is simplified to the Equation 2.19.⌊

ih + sh − 1

sh

⌋
×

⌊
iw + sw − 1

sw

⌋
(2.19)

In a convolutional layer, the kernel tensor starts moving from the upper-left
corner of the input tensor. If it reaches the right side of the input tensor, it will
move from the second row of the upper-left side. When the kernel tensor moves by
one step, the cross-correlation operation is down by one time until it reaches the
bottom-right corner. This process means that the kernel tensor filters the image
and extract the local features. Finally, the convolutional layer generates the feature
map of this image.

If the input has multiple channels d, the channels of kernel should be same as
the input, d. The cross-correlation is calculated in each channels and then add them
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together. For example, color image has three channels: R, G, B so the channels of
kernel should be 3. Figure 2.7 shows the cross-correlation computation with three
input channels.

Figure 2.7 Cross-correlation computation with three input channels

2.2.2 Pooling layer

For the feature map generated by the convolutional layer, the pooling layer reduces
its spatial resolution to decrease the load of computation of CNN. It also decrease the
number of parameters during the calculation in CNN, so the computation efficiency
is improved. As the number of layers increases in CNN, the receptive field of each
perceptron is enlarged, which means the number of perceptrons in the former layers
affects this one in FP will be increased. In this way, the perceptrons in the final
layer will be sensitive to all of the input data.

In the pooling layer, the pooling window slides on the feature map from the
upper-left corner to the upper-right corner based on specified stride with/without
padding. In each step of a pooling window moving, it calculates the corresponding
elements on the feature map. Then, this window starts sliding from the left side
to the right side on the next row back and forth until it reaches the bottom right
corner. Finally, the output image is generated.
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There are many kinds of calculation ways of pooling layers: maximum pooling,
average pooling, stochastic pooling, etc. For the maximum pooling, the pooling
window selects the maximum value from the corresponding elements on the feature
map. For the average pooling, the pooling window calculates the average value. For
the stochastic pooling, the pooling window selects the element based on its value.
The bigger the element is, the high probability this element is selected. Figure 2.8
shows the process of 2× 2 max pooling. Each color represents each part which does
max pooling. If the feature map has multiple channels d, the channels of pooling
window should be same as the input, d. The pooling is operated in each channels.

Figure 2.8 The process of 2× 2 max pooling

2.2.3 Common CNN models

During the development of CNN, many kinds of CNN models were proposed and
developed. LeNet is one of the earliest CNN model which was developed by Yann
LeCun at Bell Labs in 1989. It was used in recognizing the hand written numbers.
The Final version of LeNet was called LeNet-5 (Lecun et al. 1998). Figure 2.9 shows
the structure of LeNet-5.

The input image has 32×32 pixels, only one channel. Except for the input layer,
LeNet-5 comprises seven layers: 3 convolutional layers, 2 average pooling layers and
2 fully-connected layer. The first layer is a convolutional layer. It has six 5 × 5

kernels and generates six 28 × 28 pixels feature maps. Its activation function is
tanh. Its stride is 1. The second layer is a pooling layer whose window’s dimension
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Figure 2.9 The structure of LeNet-5

is 2×2 with the stride 2. It generates 14×14×6 feature maps.The thrid layer is also
a convolutional layer which is similar as the first one. It generates of 10 × 10 × 16

feature maps. The forth layer is a pooling layer. The fifth layer is similar as the first
one but it generates 120 feature maps. The sixth and seventh layers are all fully-
connected layers. The activation function of the first one is tanh and the second one
is Softmax.

Except for LeNet-5, there are other kinds of CNN models. In 2012, Alex Krizhevsky
and other researchers proposed AlexNet (Krizhevsky, Sutskever, and Geoffrey E Hin-
ton 2012). Its structure is similar as LeNet-5 but with deeper layers. It uses multiple
convolutional layers to extract features. ZF Net was proposed by Zeiler and Fergus
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in the competition ILSVRC 2013 (Zeiler and Fergus 2013). It improves AlexNet by
changing the hyperparameters. In the next year of ILSVRC, Simonyan and Zisser-
man designed and proposed VGGNet (Simonyan and Zisserman 2014). They used
16 layers including convolutional layer and fully-connected layer. The dimensions
of convolutional kernels and pooling windows are 3 × 3 and 2 × 2 respectively. In
ILSVRC 2015, Kaiming He proposed ResNet (He et al. 2015). He implemented
skip connections and batch normalization in this model. Also, it does not have
fully-connected layer.

2.3 Game Engine

2.3.1 Game engine and its subsystems

Game engine is a software framework which provides an integrated environments
for game developers. It provides different kinds of built-in tools to simplify and
accelerate game development so game developers can concentrate on game design
and the interaction between the game and players. The engines could be operated
on single or different operating systems, e.g. Windows, Linux, etc. The developed
games could be operated on hardware, e.g. personal computers (PC), PlayStation,
Xbox, Nintendo Switch, etc. The popular game engines in the world are Unreal
Engine, Unity3D, Cocos, etc.

Game engine is a complex system consists of many subsystems, e.g. input man-
agement, audio management, physics engine, etc. Table 2.1 shows the main subsys-
tems and their main functions of a game engine.

Table 2.1 Main subsystems of game engine

subsystems main function
input management recognize the users’ commands,

update objects’ data and properties
audio management generate background music and sound effects

collision management detect collision among objects
animation management simulate movement of characters
network management synchronize all players’ status via network

2D/3D graphics management display 2D/3D graphics on the screen
resources management maintain resources,

load assets,
avoid performance decreasing

physics engine simulate laws of physics
artificial intelligence implement artificial intelligence in games

graphics interface manage the GUI of the game
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2.3.2 Unreal Engine

Unreal Engine is one of widely used game engines in the world. It was developed
by Epic Games. The first generation of Unreal Engine was released in 1998 and the
latest generation, Unreal 5 will be shipped in early 2022. In this thesis, our work is
implemented in Unreal 4.

Unreal 4 is widely used in game development, film making, medical simulation,
car industry, etc., because it has excellent performance in pipeline integration, real-
time rendering, simulation, etc. For pipeline integration, Unreal 4 supports different
kinds of industry standards, e.g. Universal Scene Description (USD), Filmbox (fbx).
It reads or writes the files in these formats with lower time consuming. One of plug-
ins, Datasmith helps game developers import metadata from other software quickly.
One of the visual tool, Visual Dataprep decreases repetitive data preparation. For
rendering, Unreal 4 has Path Tracer, which could decrease the number of setups in
rendering. It also has Forward Rendering, which is good at rendering for VR ex-
periences. Moreover, Movie Render Queue in Unreal 4 could generate high-quality
rendered images for movie rendering works. For simulation, Unreal 4 has both
Cascade and Niagara to make visual effects (VFX). In Cascade, data could not be
shared between particle systems and the other parts in the engine. Also, customiz-
ing modules in Cascade is not user-friendly. However, the next generation of VFX,
Niagara overcomes these weak points so it makes VFX system flexible and easy to
use. Moreover, Unreal 4 uses NVIDIA’s NvCloth solver which is good at particle
simulation for cloth.

Unreal Engine provides Blueprint Visual Scripting system, which could setup
variables on the node-based interface. Developers could define object-oriented classes
or objects and create customized character, events, functions by Blueprint without
coding by themselves. They can also interact with C++, e.g. calling functions in
C++, inheriting C++ classes, etc. For the game developers who can not program in
C++, Blueprints helps them program easily. To realize a complex gameplay element
or construct an object by Blueprint, developers could connect different nodes, events,
functions and variables together with lines.

2.3.3 Skeleton and skeleton hierarchy

In most 3D applications, a skeleton is a digital hierarchical framework that is used
to define bones or joints in a character and in many ways mimics a real biological
skeleton (Unreal Engine 4.27 documentation 2021). A skeleton is composed of bones
and joints. For bones, they represents the visible relationship between joints and
they are not calculable. For joint, there are three types of joints: ball joint, universal
joint and hinge joint. Each joint might has multiple sub-joints and each joint might
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connects multiple bones. Joints and bones are connected linearly to generate joint
chain, which represents the anatomical positions of the joints of creatures in 3D
applications. It always starts at the highest joint and ends at the final bones of the
joint chain. In some 3D applications, e.g. Unreal Engine, joints’ attributes could be
changed so people could control the range of rotations of joints.

Skeleton hierarchy is composed of joints and joint chains with hierarchical rela-
tionship. It always starts from the only one root joint. For the joints on the higher
skeleton hierarchy, it is called parent joint so the lower ones are child joints. The
repetitive structure of joint chain shows that a bone always starts from a parent joint
and points at the child joint. Hence, parent joint or child joint are relative concepts.
If the parent joint is rotated, all of the connected joint chains will be rotated as the
same degree of it. In Unreal Engine, Skeleton Tree shows the skeleton hierarchy.
People could check a specific bone or all of the bones on the same hierarchy.

2.3.4 Skeletal Animation

Skeletal Animation is driven by bone and skinned mesh. Similar as the biological
skin and bones, in 3D game development, skin is composed of vertices and polygon
surfaces. Also, each bone controls the shape and position of the skin. Each vertex
might be controlled by multiple bones. Because of this, the mesh does not has
gap on the joint when the parent bone and the child bone are stretching the same
vertex. For skinned mesh, the mesh has bone weighting. According to the skeleton
hierarchy, when developers change the position and orientation of the parent bone,
all of the child bones see this bone as the origin and they will be translated or
rotated or scaled according to it. Skeletal Animation means that the skinned mesh
is animated based on the skeleton animation.

2.3.5 Inverse Kinematics

Inverse Kinematics (IK) describes the behavior that when a child node moves, the
parent nodes will be moved or rotated according to the child node. In contrast,
Skeletal Animation implements Forward Kinematics (FK) which means changing
the parent bone to control the child bones. However, FK saves the data of position
and rotation of each bone which takes much memory. Also, this data is only available
for a specified skeleton. The Unreal 4, provides an algorithm (IK solver) to control
to rotation in the Inverse Kinematic systems. A target is given to a joint chain. The
end of this chain tries to achieve this target during the movement. For the skeleton
with IK, developers control the all of the bones’ targets. The IK system determines
how each bone react their environment.
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3 LITERATURE REVIEW
The literature review introduces some solutions of hand pose estimation selected
from the HIM2017 Challenge: V2V-PoseNet, Hand PointNet and Pose-REN. More-
over, an on-device and real-time hand tracking solution via MediaPipe is introduced.

3.1 The survey of depth-based hand pose estimation

Popular solutions of three tasks in hand pose estimation are discussed from the
HIM2017 Challenge (Yuan et al. 2017). One of the tasks, single-frame 3D pose
estimation is related to the topic of this thesis. The existing problems in this task
are the occlusion caused by hands or objects and the variation of hand shape. As
the Table 3.1 shows, the selected popular solutions used the methods: 3D CNN
(3D), detection-based methods (De), hierarchical models (Hi), structured models
(St), multi-stage models (M) and residual models (R). Also, each popular solutions
in HIM2017 was evaluated to find the cases of success and failure in Mean errors (in
mm). This paper evaluates top 10 solutions by analyzing the errors: joint visibility
(occluded/visible), subject was visible or invisible during training (seen/unseen). In
this thesis, the method of V2V-PoseNet, oasis and THU_VCLab are researched.

Table 3.1 Example of solutions of single-frame 3D hand pose estimation.

method model input 3D De Hi St M R
V2V-PoseNet 3D CNN 88× 88× 88voxels Y Y N N N Y
oasis hierarchical PointNet 1024 3D points N N N Y N N
THU_VCLab Pose-REN 96× 96 N N Y N Y Y

3.1.1 The analysis of single-frame 3D hand pose estimation
result

The top 10 solutions of single-frame 3D pose estimation are analysed in these aspects:
annotation error, hand joints’ occlusion and unknown subject in the training set,
view point and articulation. They are compared based on the annotation error,
occluded or unknown subject, occluded joints’ number, view point, articulation and
joint type.

First, annotation error is caused by the measurements during annotation. This
paper qualified this error and found that the three selected methods’ outputs are
close to ground truth.
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Second, the paper compared each method in the condition of occlusion or un-
known subject. Hierarchical method is good for occlusion but it is unimportant in
their project. Next, the average of top two detection-based methods accuracy is
better than regression-based ones. Then, cascaded methods outperform single-stage
ones. After that, some structural methods outperform differently in different error
thresholds. Given the simple hand gestures in the thesis, these methods will be
concerned if they perform well in other aspects. For the dimensions of CNN, 2D is
simpler than 3D but 3D can be used if its accuracy is higher than 2D.

Third, the view point means that the angle between camera orientation and
the palm. It is not extreme for the thesis work so the suitable normal range is
[70, 120]. The degree of hand articulation is concerned in this range. In this paper,
V2V-PoseNet has the lowest average error. The oasis is the second one, lower than
THU_VCLab.

Fourth, in this thesis work, the bending angles of fingers are unpredictable. Given
the view point range, [70, 120] on the third point, this thesis chooses the methods
which has lowest average error: V2V-PoseNet < oasis < THU_VCLab.

Fifth, in this thesis work, the joints of the hand are all visible and the presence
of the subject in the training set is seen.

The three methods: V2V-PoseNet, oasis and THU_VCLab perform well in the
analysis of these aspects, so they are selected to research in this thesis.

3.2 Voxel-to-voxel Prediction Network (V2V-PoseNet)

There are two disadvantages in many existing 3D hand gesture recognition methods
(Chen et al. 2020; Fourure et al. 2017). First, the input of them is the depth maps.
which are actually 3D data but they input them as 2D images. This deforms the
shape of hand gestures. Second, they also map 2D depth images to 3D coordinates of
hand gestures’ keypoints directly. This mapping is highly non-linear. Additionally,
they are affected by the poor quality of images, self-occlusion in input images, etc.
A new form of a model, voxel-to-voxel prediction network for pose estimation (V2V-
PoseNet) was proposed to overcome these two disadvantages (Moon, Chang, and
Lee 2018 ).

3.2.1 The comparison of V2V-PoseNet and other 3D hand
gesture recognition models

The target of both traditional and V2V-PoseNet is estimating the 3D coordinates of
all hand keypoints. For a 2D gesture image, the existing 3D hand gesture recognition
methods input it to a 2D CNN and output the 3D coordinates of hand gestures’
keypoints.
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In contrast, the model of V2V-PoseNet does a voxel-to-voxel prediction so it was
designed as 3D CNN. The authors first project the points in the 2D image to 3D
space and discretize this space based on the size of the voxel they defined before.
Second, the authors followed the method (Oberweger and Lepetit 2017). They
calculated the reference point of the 2D hand depth map and put this map to a 2D
CNN. This network outputs the offset from the calculated reference point to the
center of ground-truth joint locations (Moon, Chang, and Lee 2018). They added
this offset to the reference point as a refined reference point. Third, the authors drew
a cubic box around the refined reference point so that they could extract the target
hand. If the depth point is in the voxel, the authors would assign the voxel value
to 1. If not, the value would be assigned to 0. Hence, they changed this 2D image
into a form of 3D voxelization as the input of 3D CNN. This processing gets rid
of perspective deformation. The output would be each voxel’s probability for each
gesture’s keypoints, which would decrease the difficulty of the learning task. The
voxel with the highest probability for each gesture’s keypoints would be extracted.
Then, this voxel would be changed to the form of real-world coordinates as the
ultimate result of V2V-PoseNet. Figure 3.1 shows the structure of V2V-PoseNet
and many existing 3D hand gesture recognition.

Figure 3.1 (top) The process of 3D hand gesture recognition using V2V-PoseNet, (bot-
tom) the process of many existing 3D hand gesture recognition.

3.2.2 The network architecture of V2V-PoseNet

The network architecture of V2V-PoseNet is based on the ”stacked hourglass” net-
work (Newell, Yang, and Deng 2016). Its structure is shown on the top of Figure 3.2.
The first block in the network is a volumetric basic block, whose activation function
is ReLU (Xu et al. 2015). It also contains a volumetric convolution and volumetric
batch normalization (Ioffe and Szegedy 2015). After that, a volumetric downsam-
pling block, which is a volumetric max-pooling layer downsamples the feature map.
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Then, the output goes through three volumetric residual blocks one by one to extract
local features.

The structures of the encoder and decoder are shown on the bottom of Fig-
ure 3.2. The encoder has two connected groups of volumetric downsampling block
and volumetric basic block. In contrast, the decoder has two connected groups of
volumetric upsampling block and volumetric basic block. The volumetric downsam-
pling block decreases the spatial size of the feature map but the upsampling one
enlarges it. To make the progress of upsampling in decoder stable, encoder and
decoder are connected with voxel-wise addition. The volumetric residual blocks in
the encoder and decoder increase the channels’ number.

After the decoder, the output is processed by two consecutive volumetric basic
blocks. Then, The probability of the gesture’s keypoints would be obtained from a
volumetric convolutional layer.

The output of V2V-PoseNet is generated to the 3D heatmap, so people can check
it easily.

H∗
n(i, j, k) = exp

(
−(i− in)

2 + (j − jn)
2 + (k − kn)

2

2σ2

)
(3.1)

In the Equation 3.1, H∗
n(i, j, k) denotes the ground-truth 3D heatmap and n

means nth keypoint. The standard deviation is σ = 1.7. For nth ground-truth
keypoint, (in, jn, kn) is the mean of Gaussian distribution.

The loss function of V2V-PoseNet is MSE.

L =
N∑

n=1

∑
i,j,k

||H∗
n(i, j, k)−Hn(i, j, k)||2 (3.2)

3.3 Hand PointNet

The performance of 3D gesture estimation will be weaken for these reasons. First,
the accuracy will decrease because high dimensions of 3D gesture, hand orientations
variety, similar fingers and their occlusions. Second, the resolution of input will
rise the time and space complexity of 3D CNN. Third, sparse 3D point cloud will
increase the computation load of 3D convolution. To solve these problems, a way was
found to learn 3D hand articulations from 3D point cloud based on the hierarchical
PointNet and Fingertip Refinement Network, which are the improved version of the
basic PointNet (Ge, Y. Cai, et al. 2018).
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Figure 3.2 (top) The structure of V2V-PoseNet, (bottom left) the structure of encoder,
(bottom right) the structure of decoder

3.3.1 The process of Hand PointNet gesture estimation

The authors change a depth image of a hand to a form of 3D point cloud. Then,
the authors use oriented bounding box (OBB) whose orientation is determined by
principal component analysis (PCA) to perform downsampling and normalization of
point cloud. The goal of normalization is improving the authors’ method robustness
to varieties of hand orientation. The normalized points with surface normals will
be the input of hierarchical PointNet. This network extracts the features of the
hand and output is 3D hand joint locations but with low dimension. The Fingertip
Refinement Network takes the k nearest neighbouring fingertip locations and get the
3D hand structures. This network generates the refined their 3D locations as result.
The structure of the whole process is shown on the Figure 3.3.

Figure 3.3 The process of 3D hand pose estimation using Point Sets to a hand depth
image
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3.3.2 Hierarchical PointNet

The basic PointNet is a type of neural network, which inputs a group of points and
outputs the features of this point cloud. Given enough neurons in the network (Ge,
Y. Cai, et al. 2018), it was proved that PointNet has the ability to approximate
arbitrary continuous set functions (Qi et al. 2016 ). To improve the performance of
this network in the extraction of the local structures a hierarchical way, the authors
design hierarchical PointNet. Figure 3.4 shows the structure of the hierarchical
PointNet.

Figure 3.4 The structure of Hierarchial PointNet

The hierarchical PointNet has three abstraction levels. The more abstraction
levels, the less point cloud density. For the first level, N1 points would be chosen
as the centroids of an area and the k nearest neighbouring (kNN) of them would be
grouped as a new area. Then, the PointNet would capture the C1-dim feature of each
area. Finally, the features, centroids, and d-dim coordinates would be transferred to
the second level. In the second and third level, the same steps would be looped but
N1, C1 would be changed to N2, C2 and N3, C3. After the last level, authors would
use basic PointNet to abstract a global point cloud feature from all of the input
points of the third level.

3.3.3 Fingertip Refinement Network

The estimation accuracy of basic PointNet on fingertip is lower than the estimation
on other joints. Also, the authors could refine straightened fingers’ locations are
easily. Hence, the authors designed Fingertip Refinement Network based on basic
PointNet which only focuses on straightened fingers to better the performance of
estimation for fingertip locations.

The process of Fingertip Refinement Network starts with the judgement that if
the finger straightened or not. If the authors find them, they would find the kNN
points of fingertip location from the 3D point cloud. Then, they normalize them
in OBB as the input of the Fingertip Refinement Network and outputs the refined
fingertip 3D location.
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3.4 Pose Guided Structured Region Ensemble Network (Pose-
REN)

3.4.1 Overview of Pose-REN

CNN-based hand pose estimation methods are implemented based on the prediction
of the hand joints heatmaps or the regression of hand joints coordinates (Ye, Yuan,
and Kim 2016; Wan et al. 2017). However, more optimal features of CNN can not
be obtained by these methods for hand pose estimation. To solve this problem, Pose
Guided Structured Region Ensemble Network (Pose-REN) was proposed, which is
built based on the cascaded framework (Chen et al. 2020). It estimates 3D hand
pose from a depth image. Compared to the work (Sun et al. 2015), which trains
multi models to refine hand pose iteratively, Pose-REN only uses one model and
updates feature maps during each iteration.

The whole process of Pose-REN includes initialization of a simple CNN (Init-
CNN), pose guided region extraction and structured region ensemble respectively.
The authors first input a initial hand pose, pose0 from a depth image to a Init-CNN
as the initialization. Figure 3.5 shows this process.

Figure 3.5 The whole process of Pose-REN

The authors input previously estimated pose, poset−1 and the output is the
refined hand pose, poset. In Equation 3.3, P denotes the 3D locations of J hand
joints. A cascaded stage of each iteration is t. A depth image is represented as D.
The regression model is R.

P t = R(P t−1, D) (3.3)

Pose-REN can extract feature regions and generates the features of different
joints of different fingers. The authors used structured connection to regress the
poset. They iterated the process of generating poset to update the poset−1 to get
more accurate result. The Equation 3.4 shows the final estimated hand pose P T will
be obtained at the stage T .
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P T = R(P T−1, D) (3.4)

3.4.2 Pose guided feature extraction method

This stage is the highlight of this paper. Feature maps are generated by feeding
a depth image into a CNN with residual connections. In this CNN, there is a a
Rectified Linear Unit (ReLU) following a convolutional layer. This group is repeated
twice and there are max pooling layers following these two groups. Between two
max pooling layers, there are the residual connections. The feature map, F of
the last convolutional layer is going to be extracted to generate feature regions.
This process is guided by the the estimated hand pose from previous stage, Pt−1 =

{(pt−1
xi , pt−1

yi , pt−1
zi )}Ji=1.

For the ith hand joint, the authors use the intrinsic parameters of the depth
camera to project the real world coordinates into the pixel coordinates of image, as
shown in the Equation 3.5.

(pt−1
ui , pt−1

vi , pt−1
di ) = proj(pt−1

xi , pt−1
yi , pt−1

zi ) (3.5)

Then, the authors use a rectangular window to crop the feature region for the ith

hand joint. They normalize and convert (pt−1
ui , pt−1

vi , pt−1
di ) into coordinates of feature

maps to obtain this window’s coordinates. Afterwards, they get the feature region,
as shown in the Equation 3.6. The coordinates of the top-left corner are btui and btvi.
The feature region’s width and height are w and h respectively.

F t
i = crop(F ; btui, b

t
vi, w, h) (3.6)

3.4.3 Structured region ensemble

When the authors get the feature regions of each joints of each fingers, they use
hierarchically structured region ensemble to model each joint’s constraints, because
human hand has many constraints and correlations between different joints (Lin,
Wu, and Huang 2000). Figure 3.6 shows the structure of this strategy. Different
color of ”feature region.T” or ”.R” represent they are different regions.

The authors first input the feature regions into fully connected layers respec-
tively. Then, they integrate the output of fully connected layers hierarchically. Af-
ter that, the authors concatenate the features of each finger and the output would
be transferred to the fully connected layer. The final hand pose would be regressed.
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Figure 3.6 The structure of the structured region ensemble

3.5 On-device and real-time hand tracking via MediaPipe

Existing hand pose recognition methods either require specialized hardware (e.g.
Ge, Liang, et al. 2018) or can not be real-time (e.g. Ge, Ren, et al. 2019). A
new solution was proposed to overcome this limitation (Zhang et al. 2020). They
designed a hand pose estimation model which includes two parts: palm detector
and hand landmark model. The palm detector takes a RGB image and generates
a hand image inside a bounding box. The hand landmark model receives the palm
detector’s output and predicts the 2.5D landmarks of this hand. Figure 3.7 shows
this process. This solution is implemented by MediaPipe, which can build machine
learning methods on different kinds of platforms. Hence, this solution can track
hand gestures in real-time on mobile devices.

Figure 3.7 The structure of on-device and real-time hand tracking via MediaPipe
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3.5.1 Palm detector

The existing problems for hand tracking are: first, hands have different sizes. Sec-
ond, some of the images of hand are occluded or self-occluded. Third, compared
to face, hands have less distinct features which is hard to detect them. The pro-
posed method via MediaPipe designs a palm detector, using encoder-decoder feature
extractor and minimizing focal loss to solve these problems.

Compared to hand detector, palm detector is simpler. A hand has a palm with
five fingers. The different movement of fingers makes this hand hard to detect, but
the palm has simple shape so it is easy to estimate the a square bounding box (W.
Liu et al. 2016). For the palm detector, it receives a full input image and uses an
oriented hand bounding box to locate palms.

3.5.2 Hand landmark model

The palm detector generates the cropped image by hand bounding box and transfers
it to the hand landmark model, which decreases the need for data augmentation.
The hand landmark model learns hand pose representation. In real-time tracking,
the landmark prediction on the last frame generates the bounding box. Then, this
box is inputted to this frame. In this way, the detector would not be applied on
each frame. The hand landmark model uses regression to output a hand skeleton
inside a detected hand region which consists of 21 2.5 D landmarks.

The hand landmark model generates three kinds of outputs. The first output is a
group of 21 hand landmarks. Each landmark is represented as (x, y, relativedepth).
The authors used two datasets to learn the hand pose representation. The dataset
of real-world images learns the (x, y) in (x, y, relativedepth). The second dataset,
synthetic dataset was created by authors. They sampled one hundred thousand
images from a video of hand pose. Then, they rendered hand poses on the different
backgrounds and mapped it to the corresponding 3D coordinates. The relativedepth
in (x, y, relativedepth) is learned from the synthetic dataset. The second output is
probability of the aligned hand presenting on the cropped images. The authors
referenced the work, which the probability works as a threshold (Simon, Joo, I.
Matthews, et al. 2017). If the score is lower than this threshold, the tracking would
be reset. The third output is handedness, which is binary classification: right or left
hand.

3.6 Residual Learning Framework (ResNet)

The Residual Learning Framework (ResNet) was proposed to decrease the difficulty
of deep neural networks (He et al. 2015). The highlight of this paper is that the
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layers of ResNet learn residual functions. The advantages of ResNet are optimizing
easily and it gets the accuracy by increasing depth of the neural networks.

There is the problem of degradation of training accuracy during the neural net-
work converging. In this situation, the accuracy gets saturated when the neural
network becomes deeper. Then, the accuracy would degraded greatly. Given this
problem, the researchers proposed ResNet. In this model, every stacked layer fit for
residual mapping. If x denotes the input of the layers considered and the desired un-
derlying mapping is denoted by H(x), the residual function could be approximated
by nonlinear layers. The Equation 3.7 shows this approximation.

F (x) := H(x)− x (3.7)

The Equation 3.7 can be reformulated and get F (x) + x, which helps the pre-
condition the problem of not optimal identity mappings. This part was realized by
”shortcut connections” in feedforward neural network (Bishop 1995). The ”short-
cut connections” implements identity mapping and add the output to the output of
stacked layers. Moreover, the ”shortcut connections” is good for training networks
because it does not require many parameters and the computation complexity is not
much.

The output vectors of the stacked layers considered is denoted y and the input
vectors is x. The Equation 3.8 shows how y is obtained, where F (x, {Wi}) is the
residual mapping.

y = F (x, {Wi}) + x (3.8)

ResNet derived from the plain network and the plain network was designed based
on VGG nets (Simonyan and Zisserman 2014). The Figure 3.8 shows the architecture
of VGG, plain network and ResNet. In the plain network, the size of convolutional
layer is 3×3 and it is downsampled with the stride of 2. This network has number 34
weighted layers and there are global average pooling and fully-connected layer in the
end of the network. The architecture of ResNet is similar as the plain network but
”shortcut connections” are inserted to the plain network and this network becomes
counterpart residual version.

3.7 High-Resolution Network (HRNet)

High-Resolution Network (HRNet) was proposed to solve the problems of position-
sensitive vision (Wang et al. 2019). Compared to some existing models which trans-
form between high and low resolution, HRNet can keep high-resolution represen-
tation through from the start to the end of process. HRNet has three versions:
HRNetV1, HRNetV2 and HRNetV2p. My thesis work uses HRNetV2. This model
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Figure 3.8 The structure of VGG nets, plain network and ResNet (He et al. 2015)
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combines the resolution streams from high to low and turn the combination to se-
mantic segmentation.

The input image is fed to a stem first. The stem has 3×3 convolutional layer with
the stride 2. This stem decreases the resolution to 1/4. Then, the stem transfers its
output to the main body, which consists of three steps.

The first step in the main body is parallel multi-resolution convolutions, as shown
by Figure 3.9. This process starts from a high-resolution stream. Then, in each stage,
resolution convolution streams are added from high to low. This form of represen-
tation is semantically strong. After that, those streams are connected in parallel,
which can maintain high-resolution. The repeated fusions of these resolution helps
high-resolution representations. The result of this process has many stages. In the
result, n stages have n streams. Each stream corresponds to n resolutions.

Figure 3.9 The high-resolution network (Wang et al. 2019)

The second step is repeated multi-resolution fusions keeps information exchang-
ing among different resolution streams repeatedly.

The third step is representation head. The low-resolution is re-scaled to high-
resolution by bilinear upsampling. In this process, the number of channels is not
changed.

The instantiation of main body has 4 stages and each stage has its parallel
convolution stream. The resolution of first stream is 1/4. The stream has 4 residual
units and each unit has bottleneck and 3 × 3 convolution. The rest of streams’
resolutions are 1/8, 1/16 and 1/32 respectively. They have 1, 4 and 3 modularized
blocks respectively. Each block has 4 residual units and each unit has two 3 × 3

convolutions for each resolution. The resolution of the main body’s output is 1/4.
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4 EVALUATION OF HAND MODELS FOR A
SINGLE IMAGE AND IN REAL-TIME
APPLICATION
This thesis mainly researched getting 2D coordinates of hand joints from depth
image and RGB image. Depth image is acquired using depth camera, and then the
depth of object in the image is stored. However, the common cameras people often
use don’t have functions to store the depth information of object in an image. Hence,
this thesis only evaluates the quality of different hand models for RGB images.

Although no works about doing 2D hand pose estimation in real-time using UE4,
this thesis studies neural network architectures which do hand pose recognition from
single RGB image. Given the state-of-the-art performance made by graph-based
approaches using ResNet as a backbone to extract image feature maps (Kourbane
and Genc 2022) and complete and efficient feature maps (Guo et al. 2021), this thesis
selects ResNet (He et al. 2015) and HRNet (Wang et al. 2019). ResNet and HRNet
can be applied from various tasks of computer vision, e.g. image recognition, object
detection, object tracking, etc. They can be used to predict 2D coordinates of hand
joints. Which task of computer vision can be applied is based on the dataset on
which the model is trained. The avaliable datasets for 2D hand training are: COCO-
WholeBody, OneHand10K, panoptic2d, RHD. The images and annotations of these
datasets are different, which will be described in detail in the following subsections.
In some degree, the quality of a model is determined by the datasets, because the
image quality and accuracy of annotations varies in the different datasets. Hence,
this thesis trained ResNet and HRNet on four common datasets for hand prediction,
including COCO-WholeBody, OneHand10K, panoptic2d, and RHD.

4.1 Datasets

4.1.1 COCO-WholeBody

There are not whole-body annotations in existing datasets so people have to train
their models independently on each dataset of parts of body, e.g. hand, face, etc.
Given this situation, the dataset of COCO with whole-body annotations was ex-
tended and called the new one as ”COCO-WholeBody” (Jin et al. 2020). The
bounding boxes and keypoints of parts of body in COCO are fully annotated.
COCO-WholeBody is a large-scale dataset which aims at training models of hu-
man whole-body pose estimation. This dataset not only promotes the development
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of human whole-body pose estimation, but also promotes the related areas, e.g.
hand detection. Moreover, this dataset is validated by cross-dataset evaluation.

The keypoints of hand, face and foot in COCO are annotated to generate the
whole-body annotations with the original keypoints of body. Each person is anno-
tated by 4 types of bounding boxes: face, left & right hand and person box. Also,
each person is annotated by 133 keypoints: face, hands, body and feet have 68, 42,
17 and 6 keypoints respectively. Only clear enough boxes will be labled as ”valid”
and they will be labeled keypoints. The annotation has four steps: manually label
boxes, quality control, produce pseudo keypoint labels, manual correction of pseudo
labels. The quality of annotation is measured by three annotators.

COCO-WholeBody has about 130 thousand labeled faces, left & right hand
boxes, 4 million face keypoints and more than 800 thousand hand keypoints. Fig-
ure 4.1 shows an example in the dataset. The degree of blur of images are measured
by log 10 of the Laplacian of their converted form. The images of hands in COCO-
WholeBody have a variety of hand gestures and they are collected in-the-wild. The
2D hand poses are scaled and rotated first. Then they are clustered into the groups
of ”palm”, ”fist” and ”others”.

Figure 4.1 The visualized image in COCO-WholeBody (Jin et al. 2020)

4.1.2 OneHand10K

An RGB in-the-wild hand dataset, OneHand10K to raise the accuracy of hand pose
detection and train their cascaded deep learning mode (Yangang Wang and Y. Liu
2019). This dataset contains silhouette information which is the important cue in the
tasks of human hand tracking. Moreover, this dataset does 2D hand pose estimation
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but it is used in 3D hand pose estimation, given the 2D-to-3D regression algorithms
(Zimmermann and Brox 2017). OneHand10K is supposed to give a benchmark to
promote the development of hand pose estimation.

OneHand10K has 11703 RGB single hand images. Each image shows only one
hand with different kinds of poses. The images are collected from volunteers by
doing limited range of hand gestures. Their actions are captured under different
environments.

The images in the existing RGB hand pose datasets are not annotated well, but
in OneHand10K, each hand images are annotated with 21 joints. Each finger has
4 joints and the palm has 1 joint. For the occluded or invisible keypoints, they
are annotated as (−1,−1) so they will generate zero map in the heatmap. To keep
the annotation quality, the cross-validation is used by using LabelMe (Russell et
al. 2008). First, the dataset is divided into some packages and they are given to
different users randomly. Each package has about 100 images. Second, the users
selected 5 not fully annotated packages. If the package have been validated by more
than three users, it will have been marked as ”completed”. The users will correct
annotation results.

The image which have visible hand in OneHand10K is manually given the seg-
mented masks. If the image has wrist pixels, these pixels will be enrolled into the
segmentation masks. The Figure 4.2 shows the hand mask, the detected 2D hand
pose and the joint heatmaps in OneHand10K.

Figure 4.2 The images of hand mask (left), the detected 2D hand pose (middle) and the
joint heatmaps (right) in OneHand10K (Zimmermann and Brox 2017)

4.1.3 Panoptic Studio dataset with annotated 2D keypoints
for hand images (panoptic2d)

A method was proposed to train a detector for keypoints by using multi-camera
system (Simon, Joo, I. A. Matthews, et al. 2017). This process is called ”multiview
bootstrapping” and it has two steps. The first step is generating initial detector
and triangulating keypoints. The second step is improving detector by training
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reprojected triangulations. The multiview bootstrapping can train hand keypoint
detector for single images and the detector can operate the RGB images in real-time.
My thesis work focuses the work of using detector to annotate raw dataset.

In multiview bootstrapping, the researchers generated an initial keypoint detec-
tor for hands’ keypoints from different viewpoints. The training used MPII Human
Pose dataset and New Zealand Sign Language (NZSL) Exercises (Andriluka et al.
2014; Deaf Studies Department of Victoria University of Wellington 2010). Then,
the initial detector was used on Panoptic Studio dataset and generated noisy la-
bels (Joo et al. 2017). These labels will be triangulated in 3D by using multiview
geometry or marked as outliers.

Figure 4.3 The structure of Multiview Bootstrapping (Simon, Joo, I. A. Matthews, et al.
2017)

The triangulation is implemented by Equation 4.1 and Equation 4.2. In each
iteration i, each frame f , the initial detector di(I

f
v) processes all views V . The

Equation 4.1 shows this step, where v denotes each view. This Equation 4.1 outputs
a set D of 2D location.

D ← {di(Ifv) for v ∈ [1 . . . V ]} (4.1)

Then, each point p are triangulated robustly into a 3D location. The final trian-
gulated position is obtained by minimizing the reprojection error. The Equation 4.2
shows this process, where Ifp is RANSAC inlier set. Pv(X) denotes the projection
from X to view v.

Xf
p = argmax

X

∑
v∈Ifp

∥Pv(X)−Xv
p∥22 (4.2)

4.1.4 Rendered hand pose dataset (RHD)

The existing datasets for hand pose estimation are lack of variation, available sam-
ples and insufficient annotation, so they have bad performance on training deep
neural network. To solve this problem, Rendered hand pose dataset (RHD) was pro-
posed (Zimmermann and Brox 2017). RHD is a large scale 3D hand pose dataset. It
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is introduced based on synthetic hand models and it has various data augmentation,
ground truth 3D keypoints. To promote to labeling performance of this dataset, the
researchers used Mixamo which has human annotators in three-dimensional space.
Then they used Blender to render images.

In the each frame of this dataset, camera location is selected randomly. All of
the centers of hands are lying toward to camera center in the range of [40, 65]cm. To
makes hands partially visible from the current perspective, the camera is rotated.
When the location and orientation of camera are fixed, the background is chosen
randomly and it did not has persons. When each frame is rendered, the researchers
used light and global illumination to make the color of the background image was
matched. They randomized light positions, light intensities and the skin’s specular
reflections. Hence, the visual diversity of the dataset is maximized.

Rendered hand pose dataset is made by 20 characters doing 39 actions. It is
divided into validation set (R-val) and training set (R-train). R-train has 16 char-
acters doing 31 actions and R-val has 4 characters doing 8 actions. The characters
and actions are exclusively exist in either R-train or R-val. All of images’ resolution
are 320× 320. As the Figure 4.4 shows, the skeleton of a hand has 21 keypoints, 33
segmentation masks and 1 background. The keypoints are annotated by 4 keypoints
per finger and 1 for palm. The segmentation maps comprise 3 segments per finger,
1 for palm, 1 for person and 1 for background. For each hand keypoint, it is visible
or occluded.

Figure 4.4 The images in Rendered Handpose Dataset (Zimmermann and Brox 2017)
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4.2 Evaluating hand models for single images

There are four stages in evaluation of hand models: training ResNet and HRNet
on four datasets (COCO-WholeBody, OneHand10K, panoptic2d and RHD), testing
the value of distance for the trained models, analyzing prediction quality of hand
landmarks for own photos and comparing inference time of trained models.

4.2.1 Training ResNet and HRNet on available datasets

The datasets, OneHand10K, panoptic2d and RHD contains hand images, bounding
boxes of left hand and right hand as inputs and x, y coordinates of 21 hand joints
as labels. The index and name of 21 hand joints are seen in the Figure 4.5. COCO-
WholeBody dataset contains x, y coordinates of 134 body joints, including face, pose,
left hand, right hand and feet, so training on this dataset only requires extracting the
annotations of the hands. Moreover, the hand images in OneHand10K, panoptic2d,
and RHD only contain one hand, so the indices of 21 hand joints of left and right
hands are same. Given a single hand image may contain two hands in the COCO-
WholeBody dataset, so the indices of hand joints from the both hands are different,
which are visualized in the Figure 4.6.

The input of ResNet and HRNet is a single processed hand image. The original
images from the dataset were cropped using ground-truth bounding boxes provided
by the datasets. In this step, if a image contains two hands, it will generate two
cropped hand images. Then, the cropped images were resized to 256× 256 and the
output is 2D coordinates of 21 joints of a hand. Both of ResNet and HRNet were
trained 100 epochs with learning rate 0.0005. The training curves of HRNet and
ResNet on four different datasets are shown in the Figure 4.7, Figure 4.8, Figure 4.9,
Figure 4.10 respectively.

4.2.2 Accuracy of prediction of trained models

This thesis compared ResNet and HRNet for hand joints estimation based on the
distance between predicted coordinates of joints and ground truth, which is a simple
way to test the accuracy of predictions. According to the section 4.2.1, ResNet and
HRNet were trained on four datasets respectively, which led to the eight trained
models. Therefore, these eight trained models were also tested on four datasets.
The optimal dataset could be checked for training hand joints estimation model.
Moreover, the inference using hand models requires the bounding box of hands
in an image. In testing, the ground-truth bounding boxes were provided by the
corresponding datasets. However, when making inference for unlabeled data, e.g.
own images or webcam images in real-time testing, a hand detection model was
applied firstly to get bounding boxes.
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Figure 4.5 The annotation of hand joints for the datasets, OneHand10K, panoptic2d,
and RHD

The testing results are shown in the Table 4.1. Given the testing result, the
preditction error of HRNet is slightly lower than error of ResNet. For HRNet, the
trained HRNet on OneHand10K achieved the best performance with reaching 11.21

average distance. The trained HRNet on RHD had 24.82 average distance, which
was the worst prediction result. In contrast, RHD had the worst accuracy even the
it had the lowest distance tested by itself.

Training dataset affects trained model a lot. For example, training HRNet on
OneHand10K produces the lowest average distance error, 11.21, while training HR-
Net on RHD produces the very high errors on other datasets, such as OneHand10K,
although it performs well on RHD. In general, the average distances of ResNet on
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Figure 4.6 The annotation of hand joints in the COCO-WholeBody

(a) HRNet (b) ResNet

Figure 4.7 Loss and training iter of HRNet and ResNet on the data from COCO-
WholeBody

each training dataset were higher than HRNet’s average distance.

4.2.3 Inference quality for own photos

The whole inference pipeline has two stages: hand detection for generating bounding
boxes and predicting 2D coordinates of 21 hand landmarks using cropped image
based on the predicted bounding box in the first stage. The pipeline is shown in the
Algorithm 1. The hand detection model used in hand detection is Cascade R-CNN
(Z. Cai and Vasconcelos 2017) and it was provided (Contributors 2020). Cascade
R-CNN model was trained on OneHand10K for 20 epochs with learning rate 0.001
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(a) HRNet (b) ResNet

Figure 4.8 Loss and training iter of HRNet and ResNet on the data from OneHand10K

(a) HRNet (b) ResNet

Figure 4.9 Loss and training iter of HRNet and ResNet on the data from panoptic2d

(a) HRNet (b) ResNet

Figure 4.10 Loss and training iter of HRNet and ResNet on the data from RHD
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Table 4.1 The distance for testing hand joints estimation models on different datasets

model training dataset testing dataset distance average distance

HRNet

COCO-WholeBody

COCO-WholeBody 4.0893

12.10OneHand10K 12.9400
panoptic2d 4.3049

RHD 27.0655

OneHand10K

COCO-WholeBody 6.8687

11.21OneHand10K 8.5522
panoptic2d 3.1187

RHD 26.2992

panoptic2d

COCO-WholeBody 5.1576

19.06OneHand10K 31.3975
panoptic2d 10.4198

RHD 29.2483

RHD

COCO-WholeBody 8.9891

24.82OneHand10K 71.5026
panoptic2d 17.6406

RHD 1.1405

ResNet

COCO-WholeBody

COCO-WholeBody 4.1126

12.91OneHand10K 13.4151
panoptic2d 6.4795

RHD 27.6169

OneHand10K

COCO-WholeBody 8.7929

12.61OneHand10K 8.0327
panoptic2d 4.3049

RHD 29.3124

panoptic2d

COCO-WholeBody 5.4718

21.21OneHand10K 48.3435
panoptic2d 3.9036

RHD 27.1138

RHD

COCO-WholeBody 12.6383

25.13OneHand10K 69.3415
panoptic2d 17.4732

RHD 1.0690

and input shape is 256× 256.
This thesis tested the hand image with ”OKAY” pose. In this image, most of

joints in the original image are clear and there are less occlusion and bending. For
example, middle finger, ring finger and pinky finger are straight, but only thumb
and forefinger are bending. Joints, such as forefinger4 and thumb1 are occluded.
The Figure 4.11, 4.12, 4.13, 4.14 show the prediction results by using ResNet and
HRNet model trained on the COCO-WholeBody, Onehand10K, panoptic2d, RHD
respectively.

According to these figures, for the models trained on COCO-WholeBody, the
occlusion joint of forefinger are not predicted accurately for the both HRNet and
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Algorithm 1: A pipeline for estimating coordinates of hand joints from a
singe image

Data: A single RGB image
Result: 2D coordinates of hand landmarks
bounding boxes of hands ← Cascade R-CNN model as hand detection ;
while bbx in deteced bounding boxes do

cropped hand image ← cropping original image in the region by bbx
hand landmarks ← Hand joints estimation model

end

ResNet model. However, HRNet is better than the ResNet, by which the 4 joints
of forefinger are not predicted well. For the models trained on the dataset of One-
hand10K, HRNet and ResNet have good prediction on the straight fingers and oc-
cluding or bending joints. If HRNet and ResNet are compared , the prediction for
bending joints, like thumb1 of ResNet is better than HRNet. For the models trained
on the dataset of panoptic2d, HRNet produce a very good prediction but ResNet
doesn’t predict well for forefinger of left hand and middle finger of right hand. For
the models trained on RHD dataset, HRNet is better than the ResNet, but the
prediction of bending and occluding joints of the both model are not good.

(a) HRNet (b) ResNet

Figure 4.11 Visualization of estimation of hand joints (”OK” pose) using models trained
on COCO-WholeBody
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(a) HRNet (b) ResNet

Figure 4.12 Visualization of estimation of hand joints (”OK” pose) using models trained
on Onehand10K dataset

(a) HRNet (b) ResNet

Figure 4.13 Visualization of estimation of hand joints (”OK” pose) using models trained
on panoptic2d dataset
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(a) HRNet (b) ResNet

Figure 4.14 Visualization of estimation of hand joints (”OK” pose) using models trained
on RHD dataset

Moreover, the prediction results of hand images with ”one” pose generated by
HRNet and ResNet trained on different datasets. They are visualized in the Fig-
ure 4.15, 4.16, 4.17, 4.18 respectively. Compared to the above poses, this image
contains more bending and occluding joints. In this case, the predictions by models
trained on the dataset of Onehand10K is obviously better than the models trained
on other datasets. Therefore, training hand joints estimation model on Onehand10K
can produce the better prediction and the performance of HRNet trained on different
datasets is better than that of ResNet.

Therefore, HRNet and ResNet trained by those four dataset have the ability
to predict 21 hand landmarks. For the simple gesture like ”OK”, HRNet outper-
formed ResNet trained on those datasets, but ResNet performed little better than
HRNet on the joint thumb1. For the complex gesture like ”1”, the trained HRNet
on OneHand10K outperformed ResNet on the same dataset.

4.2.4 Inference speed of trained models

In this section, the inference time of HRNet and ResNet is shown in the Table 4.2,
by testing on the all of test dataset in COCO-WholeBody, Onehand10K, panoptic2d
and RHD. From the Table 4.2, the inference speeds of HRNet and ResNet are quite



44

(a) HRNet (b) ResNet

Figure 4.15 Visualization of estimation of hand joints (”one” pose) using models trained
on COCO-WholeBody

(a) HRNet (b) ResNet

Figure 4.16 Visualization of estimation of hand joints (”one” pose) using models trained
on Onehand10K dataset
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(a) HRNet (b) ResNet

Figure 4.17 Visualization of estimation of hand joints (”one” pose) using models trained
on panoptic2d dataset

(a) HRNet (b) ResNet

Figure 4.18 Visualization of estimation of hand joints (”one” pose) using models trained
on RHD dataset
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similar.

Table 4.2 The inference time (per frame) of HRNet and ResNet

model time (1 s / frame)
HRNet 1.20
ResNet 0.90

4.3 Evaluating hand models in real-time

This thesis built a simple application in Unreal Engine 4 (UE4) to test if the infer-
ences from hand models run smoothly in real-time. The input image is the frame
from webcam and each frame is processed by hand models to generate estimated
hand joints. Then the Frames Per Second (FPS) is used to evaluate inference flu-
ency of these models. The FPS is around 33 when using HRNet and 45 when using
ResNet. FPS can be used to determine if they satisfy different applications’ FPS re-
quirements. Moreover, some new applications of hand models were proposed. They
are using estimated hand joints to move object in the world and predicting digital
number.

(a) FPS of the application using HRNet (b) FPS of the application using ResNet

Figure 4.19 FPS of two models

The FPS is calculated by dividing the difference of last frame time (seconds) and
the current frame time (seconds) into 1. For example, Figure 4.19(a) shows FPS of
the application using HRNet. The x-axis shows about 10000 indices and the y-axis
shows the FPS corresponding to each index. The most of FPS values are stable
at 33, except for several lower values. Figure 4.19(b) shows FPS of the application
using ResNet. The x-axis shows about 10000 indices and the y-axis shows the FPS
corresponding to each index. The most of FPS values are stable at 45, except for
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several lower values. For example, the FPS of the first frame is 7.38 because loading
models and initialization take much time.

The first application in real-time is ”moving objects in the world using estimated
hand joints”. This functionality can be realized by using estimated 2D coordinates of
the joint forefinger4. The estimated coordinates from hand models are normalized.
Then normalized coordinates are multiplied with screen resolution, which would get
the real 2D location on the user’s screen. The screenshot of moving a cube in UE4
can be seen in the Figure 4.20.

(a) Moving cube to left side (b) Moving cube to right
side

Figure 4.20 Visualization of moving a cude in UE4

The second application in real-time is ”predicting digital number or pose from
hand images”. Some simple poses can be predicted from the estimated hand joints.
For example, the pose ”one” can be predicted by checking if 2D coordinates of 4

joints of forefinger are in a straight line. The pose ”2”, ”3”, ”5” can be predicted
by testing if coordinates of joints of middle finger, ring finger and pinky finger are
in the straight line. Moreover, the two digits and other simple pose, like ”thumb
up” can be predicted by testing relations of coordinates of hand joints, like if they
are in a straight line. The result of predicting of simple pose can be seen in the
Figure 4.21.
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(a) Pose ”1” (b) Pose ”2”

(c) Pose ”4” (d) Pose ”5”

(e) Pose ”12” (f) Pose ”Thumb Up”

Figure 4.21 Visualization of predictions of poses in UE4
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5 CONCLUSION
In this thesis, two neural network architectures (HRNet and ResNet) were trained
on four datasets (COCO-WholeBody, OneHand10K, panoptic2d and RHD) and
generated eight models for hand pose estimation. Each model was evaluated by
calculating distance and average distance on each datasets. Thus 32 values of dis-
tance and 8 values of average distance were obtained. Moreover, they were tested
on self-taken photos and Unreal Engine 4.

In real-time using UE4, which hand pose estimation models should be chosen
depends on the importance of prediction accuracy or prediction time. This thesis
proves that HRNet trained on the selected four datasets had better performance
than ResNet. The dataset OneHand10K is more suitable for HRNet and ResNet
compared to those four training datasets. Therefore, if applications have high re-
quirements on prediction accuracy, HRNet is better. However, the FPS of ResNet
is little higher than HRNet, so ResNet is better if the prediction time is more im-
portant. If applications do not have strict requirements on prediction accuracy and
time, HRNet has broader applicability than ResNet in general. For example, if one
of two models is applied to boxing games, different hand pose prediction accuracy
affects player’s game experience much more than similar FPS.

The future work of this thesis includes two parts: increasing the hand poses
variety and decreasing the prediction time of HRNet or ResNet. For hand poses
variety, this thesis work can predict a few simple digital numbers and two simple
hand gestures. However, some hand gestures of the numbers from ”six” to ”nine”
are hard to be recognized by calculating hand keypoints’ coordinates. One possible
way is building another model to input those coordinates and output the name of
hand gestures. For decreasing the prediction time of HRNet or ResNet, applications
can react to users’ operations quicker than before so the user experience will be
improved.
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