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Abstract
This study focuses on the strain hardening and adiabatic heating of two stainless steels after a sudden increase of strain rate. 
Tensile tests were performed where the strain rate was rapidly increased from ~ 10–4 s−1 to 1.3 × 103 s−1. Synchronized full 
field strain and temperature measurements were carried out with Digital Image Correlation and Infrared Thermography to 
analyze the materials behavior immediately after the strain rate jump. The results show that the temperature increases gradu-
ally while the strain hardening rate drops immediately after the strain rate jump. The temperature increase due to adiabatic 
heating does not seem to explain the drop in the strain hardening rate, thus the strain rate seems to have a direct effect on the 
strain hardening rate of the studied steels.
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Introduction

Austenitic stainless steels provide a good combination of 
mechanical properties and corrosion resistance, and are 
therefore widely used in, for example, transportation, oil 
and gas, medical and electrical engineering applications. 
In metastable alloys the strain-induced martensitic phase 
transformation produces higher ductility and strength. From 
the early works of Olson and Cohen [1, 2], a great deal of 
effort has gone into studying the mechanisms and param-
eters affecting the strain-induced phase transformation. It is 
widely known that the phase transformation rate is reduced 
as the temperature increases [3, 4]. The phase transforma-
tion rate is also reduced when the deformation occurs at 
high strain rates [5]. At high strain rates, the temperature 
increases due to adiabatic heating. The dominant theory is 
that, at high strain rates, the temperature rise due to adiabatic 
heating increases the stacking fault energy, suppressing the 
martensitic phase transformation [6–11]. Other researchers 

[12–15] suggest that also the strain rate itself, and not only 
the adiabatic heating, has a direct effect on the martensitic 
phase transformation.

It is evident that more work is needed to quantitatively 
separate the effects of temperature and strain rate on the 
martensitic phase transformation. On this line, Isakov et al. 
[16] performed tensile strain rate jump tests on a AISI 301 
steel. In these tests, the strain rate was suddenly increased 
by several orders of magnitude, from quasi-static to dynamic 
conditions. The authors observed that the strain hardening 
rate of the steel decreased instantaneously after the sud-
den increase of strain rate. A previous study of the current 
authors showed that the specimen deformed uniformly after 
the sudden increase of strain rate until necking started [17]. 
However previous investigations have not been able to pro-
vide adequate evidence on what happens to the temperature 
of the specimen during a rapid change of strain rate. This 
report provides convincing experimental data which shows 
that the thermomechanical behavior and especially the adi-
abatic heating of the two studied austenitic steels is predict-
able during a sudden increase of strain rate. The results show 
that the temperature of both steels increases moderately after 
the strain rate jump, and no unexpected behavior is observed. 
This indicates clearly that the strain rate jump test can be 
used for the evaluation of the material behavior. The results 
show that the instantaneous drop in the strain hardening rate 
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observed in the metastable austenitic steel is not caused by 
sudden increase in the bulk temperature of the specimen.

Materials and Experimental Methodology

Two standard stainless steel AISI 301 LN (EN 1.4318) and 
AISI 316 (EN 1.4420) were studied in the 2B cold rolling 
condition. Tension specimens with a gage length of 8 mm, 
and a shoulder radius of 2 mm and a width of 4 mm were 
laser cut from 2 mm sheets provided by Outokumpu Stain-
less LTD. The rolling direction was parallel to the loading 
direction. The specimens were tested in tension at a strain 
rate of ~ 2 × 10–4 s−1 until reaching a predetermined defor-
mation where the strain rate was suddenly increased up to 
1.3 × 103 s−1 by impacting the striker bar driven by com-
pressed air to the flange at the free end of the incident bar. 
These strain rate jump tests were performed using a modi-
fied Tensile Split Hopkinson Bar (TSHB). Figure 1 shows 
a schematic picture of the test setup. For further details see 
ref. [18].

Full field strain and temperature measurements were 
carried out using Digital Image Correlation (DIC) and 
Infrared Thermography (IRT). The low rate loading of the 
test was recorded using two 5 MPix E-lite cameras with 
200 mm lenses at a frame rate of 2 Hz, whereas the high 
rate loading was recorded using a Photron SA-X2 high 

speed camera with 100 mm lens at a frame rate of 90 kHz 
with a resolution of 640 × 152 pixels. A Telops Fast-IR-
M2K infrared camera was imaging the opposite side of 
the specimen synchronously with the high speed optical 
camera at 90 kHz with a resolution of 64 × 4 pixels. Fig-
ure 2 shows the setup used for the full field measurements 
during the strain rate jump tests.

The strains were obtained with Davis10 (LaVision 
GmbH) software. A high contrast speckle pattern was 
applied on the specimen surface with a 0.4 mm tip marker. 
Before starting each test, the unloaded specimen was 
imaged with both the low and the high-speed DIC sys-
tems. These images were used as the reference image to 
calculate the strain. The engineering strain on the speci-
men was calculated by placing a virtual extensometer of 
6 mm length on the same location in both low and high-
speed images. A more detailed description of the digital 
image processing of the images and the use of the virtual 
extensometer is given in ref. [15].

The thermal data requires a calibration to convert radio-
metric temperature into true surface temperature. The tem-
perature calibration was performed by heating a specimen 
slowly while measuring its temperature with the camera 
and a thermocouple that was spot welded to the surface of 
the specimen. The details of the calibration can be found 
in ref. [15].

Fig. 1   Schematic picture of the modified Tensile Split Hopkinson Bar, adapted from [17]

Fig. 2   Experimental setup for 
the full field strain and tempera-
ture measurement during the 
strain rate jump tests [15]
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Results

Figure 3 presents the true stress – true strain and strain hard-
ening rate curves for the studied materials. The strain hard-
ening rate 

(

��

��

)

 was calculated from the stress strain curve. 
Figure 3a and b show the data from tests carried out without 
the strain rate jump at strain rates of 2 × 10–4  s−1 and 
1.3 × 103 s−1. For the stable 316 steel, increasing the strain 
rate increases the flow stress without affecting the strain 
hardening rate of the material. For the metastable 301 steel, 
however, the stress–strain curve at the lower strain rate has 
an S-shape due to the strain-induced phase transformation. 
At 2 × 10–4 s−1, the 301 steel strain hardens notably with the 
accumulation of plastic strain. At the strain rate of 
1.3 × 103  s−1, the stress–strain curve no longer has the 
S-shape and the strain hardening rate of the material does 
not increase with further deformation. Figure 3c–h show the 
results of the jump tests where the increase of strain rate 
occurs after a pre-strain of 0.10 (c-d), 0.20 (e–f), and around 
0.30 (g-h). For the stable 316 steel, the strain hardening rate 
seems to be unaffected by the strain rate jump at any studied 
pre-strain. For the metastable 301, the sudden increase of 
strain rate at a pre-strain of 0.10 seems to have very little 
effect on the strain hardening rate, but when the sudden 
increase of strain rate takes place at 0.20 and 0.30 of pre-
strain, however, the strain hardening rate drops significantly 
after jump.

Figure 4 shows the measured temperature increase as a 
function of true strain during the high rate loading part of 
the tests. It can be observed that the slope of the temperature 
increase becomes steeper as the amount of plastic prestrain 
increases. This can be explained by the increased flow stress 
after the jump, which increases the amount of mechanical 
work put into the specimen for further deformation. The 

temperature increase measured after certain amount of 
deformation is lower for the stable 316 steel (Fig. 4a) than 
that measured for the metastable 301 steel (Fig. 4b). How-
ever, for all the tests, both with and without strain rate jump, 
the temperature increases gradually once the high rate load-
ing starts. After the first 0.05 mm/mm of true strain, the 
highest measured temperature increase is 12 K. The resolu-
tion, accuracy and uncertainties related to the measurements 
are discussed in detail in ref. [19].

Discussion

A clear decrease in the strain hardening rate can be observed 
in the strain rate jump experiments of the metastable stain-
less steel, which indicates that the rate at which the micro-
structure evolves changes dramatically when the strain rate is 
increased. This is caused by the changes in the phase trans-
formation rate which decreases significantly at high strain 
rate [14]. However, the immediate decrease in the strain 
hardening rate cannot be explained by macroscopic heating 
of the specimen, as the bulk temperature does not increase 
suddenly during the strain rate jump. Instead, a gradual tem-
perature increase is observed. Therefore, this finding sug-
gests that either the strain rate itself affects the dynamics 
of the strain induced martensite transformation and/or that 
the adiabatic heating may be heterogeneous and some local 
‘hot spots’ are formed in the microstructure. These locally 
heated areas then may affect the transformation behavior 
more strongly than what the global or average heating sug-
gests. Further investigations on the local microstructure level 
deformation and adiabatic heating are needed.
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Conclusions

This study led to the following conclusions:

•	 The bulk heating of the specimen does not suddenly 
increase during or after a large upward strain rate jump, 

instead the temperature rises gradually, as is expected 
based on the conversion of plastic deformation work into 
heat.

•	 The results indicate that the global adiabatic heating is 
not responsible for the sudden change in the strain hard-
ening and phase transformation rates that is observed in 
a strain rate jump test of metastable austenitic steels.

The processed data is available through ref. [20].

Fig. 3   True stress—true strain curves and strain hardening rates of 
the stable 316 steel (on the left) and the metastable 301 steel (on the 
right) at the constant strain rates of 2 × 10–4 s−1 and 1.3 × 103 s−1 (a, 
b), and strain rate jumps at the true strain of, approximately, 0.10 (c, 
d), 0.20 (e, f), and 0.30 (g, h)

◂

Fig. 4   Temperature increase as a function of true strain during high rate loading of the tests for a the stable 316 steel and b the metastable 301 
steel. The specimen was at room temperature (298 K) at the beginning of the test
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