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Abstract

Background: As we age, the functioning of the human immune system declines. The results of this are increases in
morbidity and mortality associated with infectious diseases, cancer, cardiovascular disease, and neurodegenerative
disease in elderly individuals, as well as a weakened vaccination response. The aging of the immune system is
thought to affect and be affected by the human virome, the collection of all viruses present in an individual.
Persistent viral infections, such as those caused by certain herpesviruses, can be present in an individual for long
periods of time without any overt pathology, yet are associated with disease in states of compromised immune
function. To better understand the effects on human health of such persistent viral infections, we must first
understand how the human virome changes with age. We have now analyzed the composition of the whole blood
virome of 317 individuals, 21–70 years old, using a metatranscriptomic approach. Use of RNA sequencing data
allows for the unbiased detection of RNA viruses and active DNA viruses.

Results: The data obtained showed that Epstein-Barr virus (EBV) was the most frequently expressed virus, with
other detected viruses being herpes simplex virus 1, human cytomegalovirus, torque teno viruses, and
papillomaviruses. Of the 317 studied blood samples, 68 (21%) had EBV expression, whereas the other detected
viruses were only detected in at most 6 samples (2%). We therefore focused on EBV in our further analyses.
Frequency of EBV detection, relative EBV RNA abundance and the genetic diversity of EBV was not significantly
different between age groups (21–59 and 60–70 years old). No significant correlation was seen between EBV RNA
abundance and age. Deconvolution analysis revealed a significant difference in proportions of activated dendritic
cells, macrophages M1, and activated mast cells between EBV expression positive and negative individuals.

Conclusions: As it is likely that the EBV RNA quantified in this work is derived from reactivation of the latent EBV
virus, these data suggest that age does not affect the rate of reactivation nor the genetic landscape of EBV. These
findings offer new insight on the genetic diversity of a persistent EBV infection in the long-term.
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Background
As we age, the functioning of the human immune sys-
tem declines. Resulting from this are increases in mor-
bidity and mortality associated with infectious diseases,
cancer, cardiovascular disease, and neurodegenerative
disease in elderly individuals, as well as a weakened vac-
cination response [1]. These age-related changes to the
human immune system are referred to as immunosenes-
cence. The disproportionate number of deaths of elderly
individuals in the ongoing COVID-19 pandemic has
been a grim reminder of the susceptibility of older im-
mune systems to novel pathogens [2]. Functionally,
immunosenescence is associated with an increased rate
and severity of infections, autoimmunity, and decreased
response to vaccinations in elderly individuals [3]. At the
cellular level, the hallmark of immunosenescence is the
accumulation of the senescence-associated secretory
phenotype of CD8 positive T cells, which have lost the
CD28 antigen required as a co-stimulatory signal in T
cell activation. In addition to this, the proportion of
CD14 positive monocytes and macrophages is increased
(associated with the general increase of inflammation,
often called inflammaging) and the proportion of
antibody-producing B cells is decreased [4, 5].
During the last decades, substantial evidence has accu-

mulated demonstrating that the human body is colonized
by microbial communities (bacteria, fungi, viruses, and
protozoa), which have a clear impact on human health.
The human virome, the collection of all viruses present in
an individual, is not limited to disease states, as chronic
but asymptomatic viral infections are thought to be com-
mon [6]. The word infection is used here only to denote
the presence of exogenous viruses in the body, as the vi-
ruses may be silent and inactive, without any form of ac-
tive infection. However, study of viromes is challenging,
especially due to the small size of viral genomes and the
high degree of sequence similarity between them [7].
Knowledge of the human virome remains limited [8].
Many of the viruses persistently residing in humans be-

long to the herpesvirus family, such as Epstein-Barr virus
(EBV), cytomegalovirus (CMV) and herpes simplex 1
(HSV-1), and their impact on human health may be much
greater than what is currently understood about infections
that do not typically have severe pathology [5]. For ex-
ample, cytomegalovirus (CMV) is thought to add to the
progressive accumulation of senescent dysfunctional T-
cells, contributing to the frailty syndrome and mortality
[9]. While EBV has been thought to have similar impact
to immunosenescence as CMV [10], the connections be-
tween EBV, immunosenescence and disease are not fully
clear [5]. It is important to note that herpesvirus infections
do have the potential to be severe, which usually occurs in
conditions of immune immaturity, age-associated immune
decline or immune dysregulation [11]. Herpesviruses

establish persistent infections that are occasionally reacti-
vated [5]. In case of persistent, latent CMV infection,
monocyte differentiation results in the transcription of
CMV genes without reactivation [12]. Identification of
detrimental immunomodulatory elements of the micro-
biome is needed to better understand how the immune
system ages and what could be done to slow its decline.
It seems likely that the various defense mechanisms of

the body, both adaptive and innate immune mecha-
nisms, would have a role in the modulation of the com-
position of the microbiomes in the various locations of
the body. This should be clear e.g. in the case of the
blood virome, i.e. the “antigens” are in close contact with
the cells of the immune system. There are several re-
ports about the composition of the virome in different
body compartments, though the results vary between
studies [13, 14]. In the case of blood virome, Moustafa
et al. [15] demonstrated that 94 different DNA viruses
were detectable, however, many of those were due to
widespread DNA contamination of commercial reagents.
One aspect of the virome that remains woefully under-

explored is the diversity of viral species and subspecies
in human populations as well as within individual hu-
man hosts. Viral diversity is multifaceted, as it can be
studied across hosts or within-hosts, it may change over
time, and it exists on different levels such as species,
strain and nucleotide level. The same individual human
can be infected with multiple different strains of the
same virus simultaneously [16], while separate copies of
viral genomes can have small, nucleotide level differ-
ences between copies. Within-host viral populations may
evolve towards greater diversity for the sake of increas-
ing readiness to adapt to new selective pressures [17].
Yet diversity may also be reduced over time as the more
robust variants of the virus become increasingly domin-
ant [18]. One example of the impact of viral diversity is
seen with the COVID-19 variants and the significant dif-
ferences seen between them in infectivity [19].
In the present study we have used RNA sequencing

(RNA-seq) data from the Genotype-Tissue Expression
(GTEx) project that has been obtained from blood sam-
ples taken from individuals of various ages. To fully
understand the behavior and impacts of a virus, one
must know how an infection develops in individuals over
time and how the virus behaves on a population level.
Our aim was therefore to investigate age-associated dif-
ferences in the human virome by identifying viruses,
studying their relative viral RNA abundance as well as
viral diversity. Use of RNA sequencing data allows us to
study RNA viruses as well as active DNA viruses.

Results
RNA-seq data obtained from blood samples was ana-
lyzed to identify viral RNA. On average, sample data
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consisted of 51.5 million raw read pairs (minimum 38.8
million, maximum 316.6 million). After quality control,
the samples had 26.6 million quality read pairs on aver-
age (min 0.5 million, max 55.4 million). As only unam-
biguous mapping was accepted, the mean alignment rate
to human genome was 79.3% (min 54.8%, max 88.7%).
After human read subtraction, 2.3% of non-human reads
(min 0.5%, max 7.7%) aligned to non-viral microbiome
genomes on average.
A total of 12 different virus species were observed

among the 317 samples. Of these, 87 samples contained
at least one virus species. Among the observed virus spe-
cies, the Epstein-Barr virus was the most prevalent, iden-
tified in 68 individuals. Other prevalent viruses were
herpes simplex virus 1 (HSV-1) and cytomegalovirus
(CMV), that were observed in 5 and 6 individuals, re-
spectively. Rare occurrences (3 or less positive individ-
uals) included human mastadenovirus C, variety of
papillomaviruses, Torque Teno viruses and betacorona-
virus (Table 1).
To evaluate the association between age and viral spe-

cies, each sample was classified as young or old, using
the cut-off age of 60 years. Only in the case of EBV was
the number of species-positive samples high enough to
allow group comparison. With aforementioned age cut-
off, the number of EBV positive samples in young and
old groups were 43 and 25, respectively. Frequencies of
EBV positive persons were not significantly different be-
tween age groups (two-sided Pearson’s chi-square test,
p = 0.33) (Table 2). Total EBV RNA abundance in each
sample was estimated by summing the abundances of all
EBV reference sequences. The mean total EBV RNA
abundance was 1.585 and 1.119 reads per million quality
reads in young and old individuals, respectively. No sig-
nificant difference in abundance was observed between
groups (non-parametric Mann-Whitney U-test, p = 0.16)
(Table 2).
Potential linear age-associated differences in EBV RNA

abundance were additionally investigated. No significant
correlation was seen between EBV RNA abundance and
donor age in EBV positive samples (Spearman’s rank
correlation coefficient: −0.13, p-value: 0.29).
As differences in aging and in virus infection have

been reported between the sexes, potential differences in
samples from female and male sample donors were in-
vestigated (Table 3). There were 200 male and 117 fe-
male sample donors. The number of EBV positive
samples was 39 from male sample donors and 29 from
female sample donors. Based on this, 19.5% of samples
from male individuals and 24.8% of samples from female
individuals exhibited EBV expression. Frequencies of the
EBV positive persons were not significantly different be-
tween the sexes (two-sided Pearson’s chi-square test,
p = 0.27). The mean total EBV RNA abundance was

1.454 and 1.360 reads per million quality reads for male
and female individuals, respectively. No significant dif-
ference in abundance was observed between the sexes
(non-parametric Mann-Whitney U-test, p = 0.64). Fur-
thermore, no age-associated significant differences were
seen in abundance when each sex was tested separately,
as non-parametric Mann-Whitney U-test resulted in a
p-value of 0.26 for male sample donors and 0.41 for fe-
male sample donors. No significant correlation was seen
between EBV RNA abundance and age for men (Spear-
man’s rank correlation coefficient: −0.16, p-value: 0.33)
or for women (Spearman’s rank correlation coefficient:
−0.09, p-value: 0.63), when tested separately.
To investigate potential relationships between EBV

and proportions of different immune cells, deconvolu-
tion analysis was used to estimate the proportion of dif-
ferent immune cell types from the studied bulk RNA-
Seq data. Results from the digital cytometry tool CIBER-
SORTx showed a significant p-value (p ≤ 0.05) for 215 of
the 317 samples. A significant p-value from CIBER-
SORTx indicates that the results of the deconvolution
are significantly different from results that would have
been obtained by random chance. Only these 215 sam-
ples with high deconvolution performance were utilized
in downstream analyses. Of the 68 samples that had
EBV expression, 43 had a significant CIBERSORTx p-
value. The cell proportions seen in these 43 samples were
compared to the 172 samples that did not show EBV ex-
pression and had significant deconvolution fitting accur-
acy. Of the 22 different immune cell types differentiated in
the CIBERSORTx LM22 data, significant differences
(p ≤ 0.05) in cell proportions between EBV expression
positive and negative individuals were seen with the
cell types: macrophages M1, activated dendritic cells,
and activated mast cells (Table 4). When the 22 im-
mune cell types were pooled into larger groups (lym-
phocytes, T cells, T cells CD8, T cells CD4, B cells,
NK cells), no significant differences were seen.
For several virus species, such as EBV and HSV-1,

multiple reference sequences were detected. For EBV,
the alignment to 8 reference sequences was observed. Of
these, four were relatively prevalent: reference sequences
HKNPC1, M81, IM-3, and HN4 were observed in 63, 49,
32, and 19 individuals, respectively. Figure 1 shows the
observed RNA abundances of these four reference se-
quences in relation to individuals’ age. In the case of
HSV-1, there were 5 individuals where presence of RNA
was confirmed, and 22 reference sequences. Majority of
sequences were observed in all 5 individuals and total
HSV-1 abundance was high in these persons (Table 1,
Fig. 2).
To assess the age-associated difference in viral diver-

sity, the presence and variety of observed reference se-
quences in young and old individuals were considered.
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Table 1 Summary of the viruses detected in the analysed blood samples (N = 317)

Species Virus subtype of
reference sequence

GenBank accession
of reference
sequence

Sequence
positive
samples

Mean sequence
abundance in
species positive
samples

Number of
species
positive
samples

Mean species
abundance
in species
positive
samples

Epstein-Barr virus HKNPC1 (EBV type 1) JQ009376 63 0.659 68 1.414

M81 KF373730 49 0.421

IM-3 MK973061 32 0.219

HN4 AB850649 19 0.076

NKTCL-SG05 MH144216 3 0.016

Akata (EBV type 1) KC207813 3 0.012

variant BZLF1-C (EBV type 1) KF826537 2 0.007

undefined (LMP mRNA) M58153 1 0.005

Herpes simplex virus 1 MacIntyre MN136523 5 3.588 5 22.200

F GU734771 5 3.532

isolate HSV-v29_day1_culture2 MG708287 5 1.740

F-13 MH999842 5 1.537

KOS, variant Kinchington JQ780693 5 1.535

RDH193 KT425108 5 1.533

unknown (dbp/pol genes) X03181 5 1.387

McKrae JQ730035 5 1.258

CM1 KX791792 5 1.226

K86 MH999839 5 0.964

isolate HSV-v29_day-90_culture1 MG708286 5 0.907

isolate ZW6 KX424525 5 0.571

M-19 MH999850 5 0.541

17 NC_001806 5 0.474

isolate 1319_2005 LT594108 5 0.396

isolate HSV-v29_site12_day3 MG708289 4 0.245

K47 MH999838 3 0.236

OD4 JN420342 3 0.205

McKrae, clone contig00012 KX791997 2 0.165

F-18 g MH999847 2 0.091

isolate B^3 × 1.5 KU310661 1 0.035

isolate B^3 × 1.3 KU310659 1 0.035

Human cytomegalovirus AD169 FJ527563 5 0.249 6 0.647

Towne LT907985 4 0.367

U11 GU179290 1 0.031

Human mastadenovirus C serotype 57 HQ003817 3 0.419 3 1.230

serotype 6, isolate Tonsil 99 HQ413315 2 0.398

serotype 1, strain SH2016 MH183293 2 0.346

serotype 2 MF315029 1 0.066

Torque teno virus 13 isolate TCHN-A AF345526 3 0.848 3 0.848

Betapapillomavirus 1 serotype 195, isolate ACS380 KR816182 2 0.438 3 0.616

serotype 98 FM955837 1 0.178

Betacoronavirus 1 HCoV_OC43/Seattle/USA/SC9430/2018 MN306053 2 0.331 2 0.331
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Only in the case of EBV was there considerable variation
in the prevalence of observed sequences. Figure 3 shows
that EBV positive subjects were not grouped according
to their age group when clustered by their EBV abun-
dance profile. To confirm this, multistep-multiscale
bootstrap resampling was done on the EBV abundance
profiles to quantify the uncertainty involved in the clus-
tering. No significant clustering, as defined by p-value
≤ 0.05, was seen along age group lines, nor was there
significant clustering by sex. No significant age-
associated clustering was seen when male or female
individuals were clustered separately.

Discussion
The results indicate that Epstein-Barr virus (EBV) was
the most frequently expressed virus in the studied sam-
ples. Of the 317 studied blood samples, 68 (21%) had
EBV expression, whereas the other viruses were only de-
tected in at most 6 samples (2%). Therefore, for most of
the viruses detected in this study, with the exception of
EBV, the frequency that they appear in the studied sam-
ples was too low to be able to make meaningful statis-
tical comparisons between age groups. We therefore
focused on EBV in our further analyses. Frequency of
EBV detection, relative EBV RNA abundance and the
genetic diversity of EBV was not significantly different
between age groups (21–59 and 60–70 years old). Nei-
ther was a significant correlation seen between EBV
RNA abundance and age of sample donor. This lack of
significant difference between age groups and absence of

significant correlation with age was true even when test-
ing separately for male and female sample donors.
The RNA-seq data used in this work measures fre-

quency and magnitude of EBV reactivation rather than
seroprevalence of EBV, as seroprevalence of EBV is likely
to be very high in the individuals studied in this work
(21–70 years old). EBV seroprevalence has been reported
to be as high as 89% already in 18–19 year olds [20],
meaning that seroprevalence of EBV between young
adults and the elderly does not differ significantly. In this
context, the results indicate that aging does not contrib-
ute to EBV reactivation.
EBV is known to maintain specific gene expression in

latency. Latency-encoded genes include several nuclear
antigens (EBNA), membrane proteins (LMP1, LMP2A,
and LMP2B), and non-coding RNAs (EBER) [21]. Fur-
thermore, EBV is known to reactivate in stressful condi-
tions [22], and the general reactivation frequency seems
to be quite high [23]. We observed RNA widely from
EBV genome outside of the aforementioned latent genes,
thus implying that this RNA expression results from
EBV reactivation. With this interpretation, there was on-
going reactivation event in 21% of our samples. More-
over, according to some studies, EBV reactivation is not
simply an on and off event, but rather there possibly ex-
ists partial micro-reactivation states, where some subset
of reactivation genes is expressed [5].
It has been shown that genomic diversity of EBV in-

creases during acute EBV infection, which is then
followed by convergence as the infection is resolved and
latency is established [18]. It has also been suggested

Table 1 Summary of the viruses detected in the analysed blood samples (N = 317) (Continued)

Species Virus subtype of
reference sequence

GenBank accession
of reference
sequence

Sequence
positive
samples

Mean sequence
abundance in
species positive
samples

Number of
species
positive
samples

Mean species
abundance
in species
positive
samples

Torque teno virus 29 isolate TTVyon-KC009 AB038621 2 0.310 2 0.310

Betapapillomavirus 4 isolate Beta04_TVMGc2024 MF588686 1 0.960 1 0.960

Gammapapillomavirus 1 serotype 4 NC_001457 1 0.896 1 0.896

Gammapapillomavirus 9 isolate Gamma09_w27c39c MF588712 1 0.426 1 0.426

Betapapillomavirus 2 serotype 23 U31781 1 0.190 2 0.337

serotype 107 EF422221 1 0.147

The detected viruses are identified by species name, subtype name of the reference sequence as well as GenBank accession of the reference sequence. The
number of samples positive for a specific virus is shown on both species and subtype level. Mean RNA abundance is similarly shown on both species and
subtype level.

Table 2 Epstein-Barr virus positive persons and mean of total RNA abundance by age group

Age group Number of persons Number of EBV positive persons Mean of total EBV RNA abundance in positive persons

Age < 60 216 43 1.585

Age≥ 60 101 25 1.119

Difference in frequencies of EBV positive persons was not significant (two-sided Pearson’s chi-square test, p = 0.33). Difference in means was not significant (non-
parametric Mann-Whitney U-test, p = 0.16). Total EBV RNA abundance is shown as reads per million quality reads.
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that during aging, immune systems control over latent
EBV is decreased, allowing EBV to establish chronic in-
fectious state through reactivation [10]. In this context,
we hypothesized that chronic infection would result in
increased genomic diversity as seen in the acute infec-
tion. However, there was no significant age-associated
difference in the EBV diversity, which implies that aged
state differs from that of acute EBV infection. It is pos-
sible that our sample population was too young to reveal
the age-associated chronic infectious state. It is also pos-
sible that nucleotide-level comparison using DNA se-
quencing would still indicate smaller scale differences,
such as in a study by Weiss et al. [18], in which
nucleotide-level EBV diversity was seen to decrease over

time in the same individuals in favor of a more robust
variant.
The cell type proportion deconvolution analysis

showed that of the 22 functionally defined human
hematopoietic cell subsets in CIBERSORTx LM22 data,
significant differences in cell proportions between EBV
expression positive and negative individuals were seen
with the cell types: macrophages M1 (non-parametric
Mann-Whitney U-test, p = 0.043), activated dendritic
cells (p = 0.004), and activated mast cells (p = 0.007).
Macrophages M1 and activated mast cells were present
in significantly greater proportions in EBV expression
negative samples. Activated dendritic cells were present
in significantly greater proportions in EBV expression

Table 3 Epstein-Barr virus positive persons and mean of total RNA abundance by sex

Sex Number of persons Number of EBV positive persons Mean of total EBV RNA abundance in positive persons

Male 200 39 1.454

Female 117 29 1.360

Difference in frequencies of EBV positive persons was not significant (two-sided Pearson’s chi-square test, p = 0.27). Difference in means was not significant (non-
parametric Mann-Whitney U-test, p = 0.64). Total EBV RNA abundance is shown as reads per million quality reads

Table 4 Differences in the proportions of immune cell types between EBV expression positive and negative samples

Cell type EBV pos median % EBV neg median % p-value

B cells, naive 5.73 5.04 0.971

B cells, memory 0.00 0.00 0.287

Plasma cells 3.41 2.88 0.185

T cells, CD8 2.41 2.34 0.985

T cells, CD4 naive 4.57 4.44 0.823

T cells, CD4 memory resting 5.01 7.48 0.389

T cells, CD4 memory activated 3.65 2.24 0.096

T cells, follicular helper 0.00 0.00 0.419

T cells, regulatory 0.00 0.15 0.291

T cells, gamma delta 1.08 0.00 0.432

NK cells, resting 7.17 7.79 0.354

NK cells, activated 0.00 0.00 0.620

Monocytes 9.79 6.23 0.235

Macrophages, M0 3.49 2.42 0.422

Macrophages, M1 0.00 0.53 0.043

Macrophages, M2 0.00 0.00 0.987

Dendritic cells, resting 0.96 0.78 0.696

Dendritic cells, activated 2.91 1.67 0.004

Mast cells, resting 3.01 1.04 0.187

Mast cells, activated 0.00 0.10 0.007

Eosinophils 0.75 0.74 0.848

Neutrophils 6.52 5.04 0.256

Each of the 22 functionally defined human hematopoietic cell subsets included in the CIBERSORTx LM22 data were tested using non-parametric Mann-Whitney U-
test. Of the 215 samples for which CIBERSORTx provided a high confidence deconvolution result, 43 samples had EBV expression compared to the 172 samples
that did not. CIBERSORTx results are given as relative proportions of the 22 cell types and the median values for EBV expression positive and negative samples for
each cell type are shown in this table as percentages. The cell types with significant p-values are shown in bold
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positive samples. Both the strongest significance and the
greatest relative difference in proportions between EBV
expression positive and negative samples was seen with
activated dendritic cells (Table 4). Activation of dendritic
cells in connection to EBV has been previously reported
[24]. No significant differences were seen when these
more specific cell types were pooled into larger groups
(lymphocytes, T cells, T cells CD8, T cells CD4, B cells,
NK cells), indicating that the observed significant differ-
ences are specific to the aforementioned three cell types.
Overall, the viruses detected in this study corresponded

well with an earlier study conducted with GTEx data, al-
though frequencies of viruses were generally lower in our
results [13]. This was probably due to acceptance of only
unambiguous read alignments which enabled study of
viral diversity. Our results were dominated by DNA vi-
ruses, such as herpesviruses, and this is a common result
from earlier blood virome studies [25]. Still, non-
transcribing DNA viruses may remain undetected with
RNA-seq. In addition, certain RNA viruses may have been
missed because of polyA enrichment protocol [26]. Fur-
ther, sensitivity of virus detection was probably suboptimal
also because no viral enrichment was done. On the other

hand, this approach avoids many types of bias in fre-
quency and abundance of detected viruses [27].
As expected from Kumata et al., anellovirus transcrip-

tion seemed rare in this study. Anelloviruses are single-
stranded DNA viruses of family Anelloviridae whose viral
DNA load have been associated with immunosenescence
[28]. Although the blood of the majority of healthy people
is anellovirus positive by PCR [29], studies using RNA-seq
give conflicting results on whether it is commonly tran-
scribed in healthy blood [13, 25]. These differences may
result from geography or its relatively low titer in blood
[30] as high-throughput sequencing has lower sensitivity
than PCR [31]. Many virome studies have detected bacte-
riophages and other non-human viruses from healthy hu-
man blood [15, 32]. However, the scope of this study was
on well-established human viruses and the virome pipeline
was performed accordingly.
It is worth noting that the 5 HSV-1 positive persons

had diverse HSV-1 transcripts and that 4 of them were
old individuals. HSV-1 is another herpesvirus which es-
tablishes latent infection for life in majority of people. Its
reactivation, sometimes asymptomatic, is believed to
contribute to immunosenescence [33] although the exact

Fig. 1 Sample-wise RNA abundances of the four most prevalent EBV reference sequences with age. No clear association is seen with sample
donor age and reference sequence EBV RNA abundance
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reactivation mechanism is unknown [34]. Multiple vari-
ants in the same individual have been reported [35, 36].
Here, a small number of HSV-1 positive samples made
statistical comparisons infeasible, yet this is something
of which further study would be warranted.
Due to the curated and clustered nature of the Viro-

saurus90 reference sequences used in this work, the viral
genes present in the data were analysed to verify the
presence of viral diversity. When EBV alignments were
analysed, our read data was found to cover genes that
were common among the detected EBV reference se-
quences. Because reference sequences of the same virus
species had common gene homologs, high confidence
read alignment to multiple of them suggests viral diver-
sity, even when the reference database consists of only
representative sequences. The viral genes and their re-
spective read counts can be found in Additional file 1.

Conclusions
This metatranscriptomic study of the viromes of 317 in-
dividuals of varying ages found EBV to be by far the
most commonly expressed virus. The frequency of EBV
detection, relative EBV RNA abundance and the genetic
diversity of EBV was found to not be significantly differ-
ent between age groups (21–59 and 60–70 years old).
No significant correlation was seen between EBV RNA

abundances and age. No significant differences were
seen between the sexes, nor were there age-associated
differences when tested separately for male and female
sample donors. As it is likely that this EBV is derived
from reactivation of the latent virus, these data suggest
that age does not significantly affect the rate of reactiva-
tion nor the genetic landscape of EBV.

Methods
Origin of raw data
The polyA-enriched RNA-sequencing data studied in
this work originates from non-diseased whole blood
samples taken as part of the Genotype-Tissue Expres-
sion (GTEx) Project (dbGaP accession number
phs000424.v8.p2). The GTEx project as a whole is an
ongoing effort to build a comprehensive public re-
source to study tissue-specific gene expression and
regulation. As part of the project, 17,382 samples have
been collected from organ and tissue donors, originat-
ing from 54 types of tissue and from 948 individuals.
Samples used in the project are collected from non-
diseased tissue sites and are studied using primarily
molecular assays, including WGS, WES, and RNA-
Seq. The whole blood samples studied in this work
originate from 317 persons. Each person contributed
one sample and their age varied between 21 and 70

Fig. 2 Sample-wise total RNA abundances of HSV-1. Number of individuals where HSV-1 RNA was observed, was 5. Of these, four were
considered old and one was young
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years. All donors were surgical patients or post-
mortem donors [37]. For whole blood collection the
GTEx Tissue Harvesting Work Instruction states that
the collection site preference is the femoral vein,
while the subclavian vein and heart are other possible
sites [38]. The Instruction also states that the prefer-
ence of location will vary for organ donors (usually
arterial line for beating heart donors) compared to
non-beating heart tissue donors (venous route) [38].
Eligibility criteria and sequencing of biological sam-
ples has been described in more detail elsewhere [37,
38].

Virus reference
Virosaurus is a curated virus genome database, aimed
at facilitating clinical metagenomics analysis [39]. The
viral reference sequences used in this work are from
Virosaurus90, which consists of viral GenBank refer-
ence sequences clustered to 90% similarity. Represent-
ing each cluster in Virosaurus90 is a representative
sequence chosen by selecting the longest sequence in
the cluster. Due to the large genome size of herpesvi-
ruses and poxviruses, they are represented by shorter
gene sequences in Virosaurus90 instead of full refer-
ence genomes. In this work, a “reference sequence”

Fig. 3 RNA abundance of different EBV reference sequences in EBV positive persons. Colour scale from blue to red indicates low to high abundance.
Subtype of GenBank accession ID is used as name for each EBV reference sequence on x-axis. Persons were clustered according to Euclidean distance
measure of abundance values (dendrogram on the left). Age group of each person is indicated by side bar (grey: age < 60, black: age≥ 60)
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refers to the chosen representative GenBank reference
sequence. Virus subtypes of representative reference
sequences were retrieved from original publications
via the GenBank database. Here, both accession ID
and name of subtype are used to identify a virus ref-
erence sequence.

Virome pipeline
A Bioinformatics pipeline modified from a study by
Li et al. [25] was run in Puhti supercomputer cluster
of CSC (Espoo, Finland). Paired-end RNA-
sequencingreads of 317 samples were downloaded
from Sequence Read Archive in FASTQ format with
SRA Toolkit (v2.10.8). Low-quality ends (Phred
score < 20) and Illumina Universal Adapters were
trimmed with TrimGalore (v0.6.4; https://github.com/
FelixKrueger/TrimGalore; 10.5.2021). Other quality fil-
tering was performed with following qualifiers of
PRINSEQ (lite v0.20.4) [40]: read length ≥ 50 nucleo-
tides, mean quality score of read ≥25, proportion of
ambiguous bases ≤1%, filter all kinds of duplicates,
DUST score measuring low complexity ≤7. Quality
filtering was confirmed with FastQC (v0.11.8; https://
www.bioinformatics.babraham.ac.uk/projects/fastqc;
10.5.2021).
Quality reads were subtracted sequentially by aligning

them with STAR (v2.7.1a) [41] against human reference
genome (GCF_000001405.26_GRCh38_genomic.fna
from NCBI) and non-viral Human Microbiome Project
genomes (2236 archae, bacterial and fungi genomes
downloaded 15.11.2019 from NCBI) [42]. Only uniquely
mapping reads were subtracted (−-outFilterMultimapN-
max 1). Remaining reads were aligned with Bowtie2
(v2.4.1) [43] against reference sequences of human vi-
ruses in Virosaurus90 database [39]. Only high confi-
dence reads (MAPQ value ≥10) mapped to virus
references were quantified with idxstats tool of SAM-
tools (v1.10) [44].

Detailed analysis of viral abundance
If a virus reference sequence consisted of multiple genes
in Virosaurus90 database, reads mapping to different
genes were summed. After this, a virus reference sequence
was considered detected in a sample if its total read count
in the sample was ≥5 [25]. Virus reference sequences
marked as unverified were removed from the results. In
addition, read alignments were manually verified to be of
viral origin by submitting covered reference regions to
BLASTN search [45] against nt database of NCBI. This
led to removal of certain viruses with high level of hom-
ology to human genes (HIV-1, HIV-2, enterovirus A).
Then, read count of each virus sequence in each sample
was normalized per million quality read pairs:

viral abundance ¼ virus reads in sample
quality read pairs in sample

� 106

Read count data was processed in RStudio (R version
3.6.1; https://www.r-project.org; 10.5.2021). Difference in
means was tested with non-parametric Mann-Whitney
U-test and difference in frequencies was tested with
two-sided Pearson’s chi-squared test (IBM SPSS Statis-
tics version 27). To support presence of viral diversity,
GFF3 annotations for each GenBank reference genome
of detected viruses were downloaded from NCBI Nu-
cleotide database and compared to both Virosaurus90
database and aligned virus reads with the help of BED-
Tools (version 2.29.0) [46], custom Bash scripts and cus-
tom Python scripts. The heatmap and its clustering,
based on Euclidean distance metric, were plotted with R
package heatmap3 [47].

Deconvolution analysis
Deconvolution analysis of different immune cell types
was done utilizing the digital cytometry tool CIBER-
SORTx [48]. CIBERSORTx estimates the abundances of
cell types in a mixed cell population, based on gene ex-
pression data and known connections between genes
and cell types. CIBERSORTx provides an empirical p-
value to evaluate deconvolution performance. The p-
value is calculated by comparing the resulting cell type
fractions with fractions that would have been obtained
by random chance [49]. CIBERSORTx was run utilizing
CIBERSORTx LM22 data, consisting of 22 functionally
defined human hematopoietic subsets [50], as the signa-
ture matrix. Batch correction was enabled, and the num-
ber of permutations set to 1000 for significance analysis.
TPM normalized gene expression values, from whole
blood samples taken from the studied 317 individuals,
were used as the mixture matrix.

Hierarchical clustering of samples based on EBV
expression
Hierarchical clustering of the samples based on EBV
viral RNA abundance was performed to determine
whether any statistically significant clustering along age
group lines could be seen. Spearman correlation was
used as the distance metric, which is robust against out-
liers and non-Gaussian distributions, and can capture
nonlinear relationships [51, 52]. Ward’s minimum in-
crease of sum-of-squares was used as the linkage
method, which has been reported to perform better with
RNA-seq expression data than the more traditional
methods of average and complete linkage [51].
Multistep-multiscale bootstrap resampling was done
with 10,000 bootstrap replications to evaluate the uncer-
tainty involved in the clustering [53]. An approximately
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unbiased (AU) p-value is obtained, which indicates the
bias corrected percentage of dendrogram variants where
the specific cluster was observed.
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