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Micro computed tomography and X-ray imaging as a whole are commonly used imaging tech-
niques in research and medicine. As artificial intelligence has become more and more commonly 
used over the years it has also proven its place in medical imaging. Machine learning is used in 
most fields of research and the development of deep learning has improved the efficiency of AI 
even more. AI has already made detecting diseases and making diagnoses easier and faster and 
in the future, there will be even more improvements in the field of medical technology due to 
artificial intelligence. 

The purpose of this thesis was to examine how micro computed tomography images can be 
improved with artificial intelligence. Moreover, the image reconstructions were done with fewer 
projections than normally to see if image quality could be sustained with a lower projection count. 
Usually in CT imaging the projection count of reconstructions is around one thousand to acquire 
adequate image quality. The images used in this thesis were reconstructed with 1600, 800, 400, 
200, and 100 projections. Dragonfly software was used for the AI. AI models were trained with 
different parameters to find out the best way to enhance image quality.  

As an overall result it can be said that with proper training data, AI is a very viable tool for 
enhancing images. The best results were gained with 800 and 400 projection images. The results 
show that the network training data should be similar to the image enhanced and filtering the 
output data also helps improve image quality. 200 and 100 projection image quality could not be 
improved enough to have practical use. The images taken with different exposure times had so 
few detectable differences that there was nothing that could be concluded from them. 
 

 
 
Keywords: micro-computed tomography, artificial intelligence, image quality 

  



ii 

TIIVISTELMÄ 

Antti Tilja: X-RAY micro computed tomography image enhancement with artificial intelligence 
Diplomityö 
Tampereen yliopisto 
Sähkötekniikan DI-ohjelma 
Toukokuu 2022 
 

Mikro-tietokonetomografia, ja röntgenkuvantaminen ylipäänsä, ovat yleisesti käytettyjä 
kuvantamistapoja sekä tieteellisessä tutkimuksessa että lääketieteessä. Yksi suurimmista 
kehityssuunnista lääketieteellisessä kuvantamisessa nykyään on tekoälyn käyttö, joka on 
yleistynyt runsaasti viime vuosien aikana. Koneoppiminen on jo käytössä suurimmassa osassa 
tieteen aloista. Syväoppimisen kehitys ja suuremmat laskentatehot ovat mahdollistaneet entistä 
tehokkaampien tekoälyjen toteuttamisen. Tekoälyn avulla sairauksia pystytään jo havaitsemaan 
ja hoitamaan paremmin, ja tulevaisuudessa tekoälyllä tulee olemaan vielä suurempi rooli 
lääketieteen alalla ja diagnostiikassa.  

Tämän opinnäytetyön tarkoitus oli tutkia tekoälyn kykyä parantaa mikro-
tietokonetomografiakuvien laatua. Kuvat olivat rekonstruktioitu erilaisilla projektiomäärillä. Tämän 
tarkoitus oli tutkia, kuinka paljon pienemmillä projektiomäärillä rekonstruktioitujen kuvien laatua 
pystyy parantamaan. Yleensä tietokonetomografiassa käytetty projektiomäärä on noin 1000, jotta 
kuvanlaatu on riittävä. Tässä työssä käytetyt kuvat olivat rekonstruktioitu 1600, 800, 400, 200 ja 
100 projektiolla. Tekoälyn opettamiseen käytettiin Dragonfly- tietokoneohjelmaa. Tekoälyjen 
opetuksessa käytettiin erilaisia neuroverkkorakenteita ja opetusdatoja, jotta paras mahdollinen 
vaihtoehto kuvien laadun parantamiseksi löytyisi. 

Työstä saaduista tuloksista havaitaan, että pienemmillä projektiomäärillä rekonstruktioitujen 
kuvien laatua pystytään parantamaan huomattavasti. Parhaat tulokset saatiin kuvilla, jotka olivat 
rekonstruktioitu 800 ja 400 projektiolla. Tuloksista huomataan myös, että tekoälyn opetusdatan 
tulisi olla samankaltaista, kuin parannettavat kuvat. Lisäksi opetusdatan laadukkuus on suoraan 
verrannollinen tekoälyn kykyyn parantaa kuvia. Kuvien, jotka olivat rekonstruktioitu 200 ja 100 
projektiolla, laatua ei pystynyt parantamaan tarpeeksi, jotta niillä olisi jokin käytännön tarkoitus.  
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1. INTRODUCTION 

X-ray imaging and computed tomography are commonly used imaging techniques when 

it comes to research and medicine. Many X-ray techniques are based on samples ability 

to attenuate X-rays. Different materials and tissues have specific attenuation constants 

which gives them different colours in the X-ray images. This imaging method is called 

absorption imaging and it is also largely utilized in micro-computed tomography. The 

image quality of X-ray images can be very good, depending on the contrast differences. 

With bigger attenuation differences in materials, different regions can be seen clearly, 

but materials with low attenuation constants, such as soft tissues, it can be difficult to 

see certain structures. There are some ways to improve the attenuation of certain mate-

rials, for example contrast agents, but finding new solutions for better image quality is 

important. [1] 

Artificial intelligence and machine learning have become widely used in scientific re-

search and everyday life. As data can be gathered from almost anything, AI can be taught 

to perform various tasks. The development of deep learning has made AIs even more 

efficient and powerful. Also massive improvement in computing power have enabled 

more complex AI networks. With the help of deep learning, there has been big advances, 

for example in the field of computer vision, that would not have been possible with just 

machine learning. In CT imaging AI has been used to optimize and automate patient 

positioning, scan positioning, protocol selection, parameter selection, and image recon-

struction, which has led to reduced patient radiation. [1] 

In this study there will be given basic theoretical knowledge of X-ray and the operating 

principles of micro computed tomography. Image reconstruction is also discussed as well 

as the factors affecting image quality and noise. Artificial intelligence is handled by basics 

of machine learning and deep learning and commonly used network structures. 

The aim of this study was to find out how micro-computed tomography image quality can 

be improved with the help of artificial intelligence. Tomographic micro-CT images recon-

structed with different projection counts were used to train different AI networks to im-

prove image quality. These networks were then used to enhance different micro-CT im-

ages to assess the image quality improvements and the usability of the images recon-

structed with lower amounts of projection data. 
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2. X-RAY MICRO COMPUTED TOMOGRAPHY 

Micro-computed tomography is an imaging method used examine the internal structures 

of tissue samples, materials, and even small animals. The resolution on µ-CT images is 

usually in the scale of micrometers. CT scanner has an X-ray tube, which acts as source 

for the X-rays, and a detector. A basic X-ray imaging system has been presented in 

figure 1. The imaging subject is placed between the source and the detector. In normal 

CT scan only the X-ray source and detector spin around the subject but in µ-CT the 

imaging subject can also be placed on base that spins. This spinning emotion enables 

scanning the subject from every angle to create a 3-D model. [2] 

 

 A basic X-ray imaging system. A represent a photon that has been ab-
sorbed. B and E are photons that passed through patient without interacting 
with material. C and D are photons that have scattered. Modified from [3]. 

2.1 X-ray 

X-rays are a form of electromagnetic radiation with ionizing properties. X-ray has been 

widely used in medical imaging since X-ray imaging was discovered in 1895 by Wilhelm 

Röntgen. X-ray imaging, as CT and µ-CT, is based on the scattering and absorption of 
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X-ray photons and detecting the X-ray photons coming from the X-ray source to the de-

tector through the imaging subject. [4] 

The X-rays are produced by accelerating electrons with high voltage between a cathode 

and an anode. When electrons collide with the anode most of their energy turn into heat 

but some of the electrons decelerate in proximity of the atomic nuclei of the anode cre-

ating X-ray bremsstrahlung. The X-ray beam is then directed through the imaging subject 

to the detector where the photon intensities are observed. [4, 5] 

The attenuation of the X-ray depends on the material properties of the subject. The main 

properties are thickness (x) and density (µ). With equation 1 the number of photons (N) 

passing through material can be calculated knowing the number of incident photons (N0). 

The different interactions X-rays have going through the imaging subject are photoelec-

tric effect, pair producing, and Rayleigh and Compton scattering. Due to the energy of 

the X-ray used in most medical imaging photoelectric effect and Compton scattering 

happen more commonly than pair producing and Rayleigh scattering. [4, 5] 

𝑁 = 𝑁0𝑒−µ𝑥     (1) 

2.2 Computed tomography 

As opposed to traditional planar X-ray images CT can be used to acquire cross-sectional 

slices of the whole imaging subject and even 3-D models. This is beneficial when the 

imaging subject has overlaying structures which could not be seen with just X-ray imag-

ing. Typically, a CT scanner (fig. 2) has a rotating gantry and a table for the imaging 

subject. The X-ray source and detectors are located in the gantry. The table is able to 

move through the gantry, so the imaging subject does not need to be disturbed halfway 

through the imaging process. A collimator can be used to shape the X-ray beam which 

in CT scanners are usually in a shape of a cone or fan. In the gantry, at the opposite side 

of the X-ray source, the detector or an array of detectors receives the X-rays that passed 

through the imaging subject. Before the detector there is a possibility to use grids to 

reduce the number of scattered photons. [4, 5] 
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 A typical clinical CT scanner [3]. 

 

The operating principles of micro computed tomography are the same as computed to-

mography, but they have their own special features. The biggest difference between µ-

CT and clinical CT is that the µ-CT is operated on much smaller scale with significantly 

increased resolution and smaller pixel size. CT can be used to examine bigger structures 

on human body, but µ-CT can be used to study the morphology of samples and materi-

als. Due to its smaller size, µ-CT is commonly used in imaging materials or small animals. 

[2, 3, 5] 

2.3 Image reconstruction 

In µ-CT and CT the final tomographic image is reconstructed from a large number of 

projections taken from every angle around the imaging subject. Usually, the number of 

projections needed for a satisfactory CT image is around one thousand. The data from 

individual projections is transferred from the detector to a computer. From the projections 

the computer reconstructs a 3-D model formed of cross-sectional slices. Usually, the 

projection data undergoes some modification before it can be used for reconstruction. 

To reduce noise low signal areas can be smoothened with the help of algorithms that 
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detect those areas. Also scatter correction and interpolation to fix dead pixels can be 

applied. [2, 3] 

There are several different algorithms that can be used for the reconstruction of the pro-

jection data. Commonly used methods for reconstruction are Fourier-based reconstruc-

tion, iterative reconstruction, backprojection, and filtered backprojection. As the compu-

ting power has increased considerably over the years iterative reconstruction is becom-

ing a better option than filtered backprojection which has been the most used method for 

CT reconstruction. [4, 5] 

The backprojection method is based on calculating the attenuation coefficients of all the 

matrix pixels from the projection data. The value obtained from the projection data is 

placed in every pixel in the trajectory. Using several projections to acquire data improves 

the reconstructions accuracy. However, the radial blur still remains in the reconstruction. 

This can be corrected with the filtered backprojection which uses convolution to decon-

volute the blur. Convolution is calculated with equation 2, where p(x) is the old projection 

value, p’(x) is the new projection value and h(x) is the deconvolution kernel, which is 

selected depending on the radial blur. A better-quality reconstruction can then be made 

from the deconvoluted projections. In the Fourier-based reconstruction the convolution 

is implemented with a Fourier transform. [3, 4, 5] 

𝑝′(𝑥) = ∫ 𝑝(𝑥)ℎ(𝑥 − 𝑥′)𝑑𝑥′ ≔ 𝑝(𝑥) ⊗ ℎ(𝑥)
∞

−∞
   (2)  

The iterative reconstruction method (fig. 3) can be used to acquire more accurate recon-

struction with the same amount of projection data or same quality with less projection 

data than other methods. The algorithm uses an initial guess which is an image that is 

used to calculate iterations. The algorithm then uses those iteration to update the image. 

Values from the measured image are compared to the iterated images generated values. 

By calculating the difference between the generated projection values and the real pro-

jection values and error matrix is generated. The error matrix updates with every iteration 

to minimize the error values. Finally, the algorithm forms a tomographic image with better 

accuracy. [3, 4, 5] 
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 The iterative reconstruct method. An Initial guess is used to compute a 
forward projection, which is then compared to the measured data to create an 

error matrix. [4] 

2.4 Image quality 

Image quality can be adjusted with various methods depending on the information that 

needs to be seen from the image. Some of the things that most affect the image quality 

are the imaging subject, radiation dose, and X-ray source and detector. In medical im-

aging contrast and spatial resolution are important image characteristics for image qual-

ity. [4, 6] 

2.4.1 Contrast resolution 

The contrast of an image is defined by the difference of the intensity values in the image. 

In imaging with X-ray, the contrast is due to attenuation differences. A higher contrast 

resolution is required to detect smaller changes of intensity values and structures with 

similar composition. The contrast of an image is composed of two components: detector 

and subject contrast. Detector contrast is dependent on physical properties of the X-ray 

detector. Subject contrast is gained from the X-ray after it has passed through the imag-

ing subject which is why it has more variables that have an effect to its value. These 

variables can be divided into external and internal factors. External factors include the 

characteristics of X-ray source and produced radiation. Internal factors are due to atten-

uation of the radiation in different structures of the imaging subject. [4, 7] 
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The contrast resolution in CT imaging is also determined by reconstruction method, slice 

thickness and radiation exposure time. As mentioned in chapter 2.3. the iterative recon-

struct method can produce better-quality images with less noise and higher contrast res-

olution. Using thicker slices for reconstruction will lower the noise level due to higher 

amount of X-rays used to acquire the data.[4] 

One efficient way to increase contrast is to use contrast agents to enhance the absorp-

tion of the X-rays in specific tissue types. This is especially effective when imaging soft 

tissue. A lot of information can be lost in soft tissue imaging without the use of contrast 

agents due to poor attenuation contrast of soft tissues. Specific tissues can be labeled 

with a contrast agent that has high effective atomic number to enhance the contrast of 

the tissue. Typical contrast agents used in medical imaging are iodine and barium. [4, 6, 

7] 

For a quantitative analysis of image quality some calculations can be made. Contrast-to-

noise ratio (CNR) is used to evaluate the relative contrast difference between two regions 

of interest (ROI) and signal-to-noise ratio (SNR) is used to evaluate the amount of noise 

compared to signal. CNR can be calculated with equation 3, where µ1 and µ2 are the 

mean intensities of different ROIs and δ2 is the standard deviation of the intensity of the 

second ROI. SNR can be calculated with equation 4, where δsample is the standard devi-

ation of the intensity of the sample and δbackground is the standard deviation of the intensity 

of the background which is due to the noise in the image. [2, 6, 7, 8] 

𝐶𝑁𝑅 =
µ1−µ2

δ2
      (3) 

𝑆𝑁𝑅 =
δ𝑠𝑎𝑚𝑝𝑙𝑒

δ𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
     (4) 

2.4.2 Spatial resolution 

Spatial resolution expresses the amount of detail that can be distinguished from the im-

age. Spatial resolution is mainly limited by the imaging equipment and the pixel size of 

the detector. In CT imaging also the reconstruction algorithms, and motion of the gantry 

and the imaging subject affect to the spatial resolution. To measure the spatial resolution 

properties there are few functions such as edge spread, and line spread which relate to 

the response of the imaging system for sharp edge or a line source. In medical imaging 

the spatial resolution is evaluated regularly by performing a line pair measurement. The 

relation between spatial resolution and contrast resolution is demonstrated in figure 4. 

Resolution and contrast in the diagrams decrease as noise increases. [4, 6] 
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 Contrast-detail diagrams. In diagram A there is no noise present. As the 
noise level increases in diagrams B and C more disks become undetectable. 

The yellow line demarcates this disk that can and cannot be seen. [4] 

2.5 Noise 

Noise affects the quality of all medical imaging. Noise is generated from many sources 

and cannot be entirely removed from the picture though some sources of noise are easy 

to avoid like using grids to prevent scattered X-rays going to detector. As in all electronic 

systems, CT scanners are exposed to electronic noise. With low signal levels electric 

noise can have a large impact on the image quality, for example in soft tissues where 

details are hard to distinguish without the help of contrast agents. Electronic noise is also 

caused by the structured noise coming from the detector. As the detector pixel data is 

acquired via amplifier circuits, the difference of the amplifier parameters causes struc-

tured noise. This noise can however be corrected because it is constant. [4, 6] 

Another source of noise is anatomical noise. They are caused by the structures that are 

outside of the examined area. Subtraction imaging can be used to reduce anatomical 

noise. In CT imaging overlapping structures are easily separated so anatomical noise 

can be heavily reduced.[4] 
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3. ARTIFICIAL INTELLIGENCE 

Artificial intelligence has become a widespread technology over the years. Artificial intel-

ligence can be used to conduct feats previously thought to be impossible, for example 

digital assistants or self-driving cars. The number of applications for the use of AI is 

growing exponentially as it is applied to more and more everyday appliances. Artificial 

intelligence has almost become mandatory for many industries due to automation, data 

analysing capabilities, and achieving higher accuracy. [9, 10] 

Artificial intelligence is based on intelligent behaviour of several artefacts. This includes 

operations related to learning, reasoning, acting, and perception in complex environ-

ments. Artificial intelligence has been developed to succeed in these tasks better and 

faster than the human brain is capable of. Though, a machine achieving the intelligence 

of a human still seems impossible, the field of artificial intelligence has had some out-

standing breakthroughs. [9, 10] 

The use of AI is changing the world fast, but the limits of artificial intelligence must be 

recognized before it can be fully utilized. AI networks, much like a brain, learn from data, 

which sets the limits to how much, how fast, and how accurately AI can perform different 

tasks. With more training data and time AIs become better and better. At present most 

AI systems are created to perform one specific task. This is one of the most significant 

downsides in developing artificial intelligence. [9, 10] 

Artificial intelligence, and especially deep learning, has proved to be an essential part in 

the development on the field of medical imaging. In the past years AI and the medical 

applications it provides have generated considerable amount of interest. Deep learning 

techniques can be used to detect and identify risk factors and diseases from radiographic 

images, for example detecting tuberculosis or melanoma. These kind of advances make 

medical diagnosis easier to perform. AI can also be used to process and enhance image 

data to automate and facilitate the acquisition of better quality images. [11, 12] 

Though AI has had substantial improvements that have resulted in great advances in the 

field of medical imaging there are some challenges with using artificial intelligence. Cur-

rently a major challenge to an extensive adoption of AI is the requirement of data for 

training the artificial intelligence networks. A lot of diverse data is needed, and it needs 

to be organized in order to be used effectively. Also finding the optimal network models 

and training methods for different implementations is something that needs further re-

search. In the future these problems will be solved since AI has been proven to obtain 
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information that humans are not able to, and the demand for more efficient medical care 

is constant. [11, 12] 

3.1 Machine learning 

Machine learning is the basic method when implementing AI technology. Machine learn-

ing is a mix of statistical methods and computer science. In machine learning computers 

actions can adapt or alter to gain better accuracy depending on how well adjustments 

correlate on the actual results. This is done by algorithms trained with raw data to gain 

network models with desired features. With enough raw data and training these machine 

learning models can become intelligent enough to acquire results from data that has not 

been tested. [9, 10, 13] 

3.1.1 Supervised learning 

Supervised learning is a method of machine learning that in addition to the learning data 

uses the corresponding labels. This way it is ensured to have the data relate to its correct 

class. The training data consists of raw input data and also the data of desired output 

results. The function model can be simply described with equation 5, 

𝑦𝑖 = 𝑎 + 𝐵𝑥𝑖     (5) 

where yi is the target result, xi is the input data, a is the intercept of y, B is the input 

feature, and i is iterated from 1 to N. [9] 

Supervised learning contains a few different ways it can be implemented. Labelled and 

unlabelled data can be used simultaneously for training. This method is called semi-

supervised learning. Data can also be fed from a dynamic environment to the algorithm 

as a positive or negative feedback. This method is called reinforcement learning and can 

be used for example autonomous cars when driving on a specific route. [9] 

From machine learning techniques, supervised learning is the most extensively used. It 

has been used in many computer game AIs, where the computer learns from previously 

played games and becomes more intelligent. Supervised learning is also commonly used 

method in statistic, for example the k-nearest neighbours algorithm. Some other super-

vised learning examples are support vector machines, Markov models, and Bayesian 

networks, to name a few. [9, 10] 

Another widely used supervised learning model in modern field of machine learning is 

support vector machine. Support vector machines take two multidimensional datasets 

and finds the ideal hyperplane between those two clusters. The model discovers mar-

ginal lines that are adequately separate for not one data point to exist between those 
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marginals and finds a direction for the discovered margins to be as wide as they can be. 

[9, 13] 

3.1.2 Unsupervised learning 

In unsupervised learning, the training data does not contain labels, but instead has hid-

den structures and patterns. From the input data the algorithm tries to detect underlying 

relations and resemblances to create a model. When the desired outputs for the data are 

unknown, it is more difficult to build models. Therefore, similarities in input data are gath-

ered in separate clusters. Unsupervised learning algorithms can utilize dimensionality 

reduction, intrinsic patterns, feature learning, and outlier detection. Unsupervised learn-

ing can also be used in neural computing, for example adaptive resonance theory and 

self-organizing maps. [9, 10] 

One commonly used unsupervised learning method is k-means clustering. The k-means 

clustering algorithm first defines the k. The test data is then randomly split to k clusters. 

In each cluster, the values of the data points are set to mean of the cluster. The data 

values are put on to clusters with the means nearest to the value. The algorithm updates 

the means and clusters all the data. Then it restarts and clusters the data again until the 

mean values are not changing anymore. [9, 10] 

3.2 Deep learning 

For decades, machine learning has been the main field of AI when building models. Pre-

viously building models has required a lot of knowledge in computation, statistical meth-

ods, and data and gaining access to this knowledge was not so easy. The availability of 

required knowledge has improved considerably, and ever more powerful machine learn-

ing models can be made with help of programming and statistical modelling. Deep learn-

ing is a field of AI under machine learning. It can be used to build more complex AI 

models. Deep learning uses neural networks and optimisation to create automated ways 

of detecting patterns and designs from data. The neural structure of deep learning net-

works allows the use of many different algorithms that together can make decisions on 

its own. Deep learning also needs more data for training than machine learning. [9, 10, 

14] 

At present, there are a few different AI libraries, for example TensorFlow, which can 

make building models faster and easier than before. The libraries have made access to 

data and network implementations significantly effortless and with help on deep learning 

many technologies have developed tremendously in the past years. There are many 

neural network structures to choose from and they all have uses in different places. The 
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most used network structures are convolutional neural network and recursive neural net-

work. [9, 10, 14] 

3.2.1 Neural networks 

Neural networks are computing or biological systems that work like neurons or artificial 

nodes. They consist of layers of nodes, with inputs and outputs on the other sides. Neural 

networks are also called black box models due to the nonlinear multilayer structures from 

which it is very difficult to gain any information about the approximated function. Neural 

networks in computing have to be trained with data in order to make any estimations of 

further data and to function as an AI. The learning process for neural networks can be 

either supervised or unsupervised depending on if the output data is specified. [15] 

3.2.2 Artificial neural networks 

With inspirations from the biological neural networks, artificial neural networks are the 

brain-like structures commonly used in the field of AI. Artificial neural networks learn 

progressively with the minimizations of the cost function. The neuron layers in the net-

work have varying number of nodes with different transformation functions and ampli-

tudes that are applied to the inputs. Each of the neurons can send an output of a nonlin-

ear function depending on the inputs. [15, 16, 17] 

 

  A neuron model structure in artificial neural network. [18] 

 

The nonlinear functions are partly weighted (fig. 5) in the network and modulated in iter-

ation. Layer by layer the weights of the neurons are adjusted with each iterations. The 
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iterations continue until the weighting is optimized. Artificial neural networks are regularly 

used with computer vision or speech recognition. [17] 

3.2.3 Feedforward neural network 

Feedforward neural network is a commonly used type of artificial neural network. The 

processes and recall patterns advance from one layer to the following layer as is seen in 

figure 6. There is no looping or backwards progression which is why it is called a feed-

forward network. The lack of reverse connection in the network distinguishes it from re-

current neural networks. [15, 19] 

 

  A feedforward neural network with input, output, and three hidden layers. 
[20]  

3.2.4 Recurrent neural network 

Recurrent neural networks are very similar to feedforward neural networks with excep-

tion of layers being able to form backwards connections or loops. One difficulty with loops 

in recurrent neural networks is that the loop might become endless if the stopping con-

ditions are not taught to the network. This can be avoided by using context neurons, 

computing output over a limited number of iterations, or computing output up until the 

network output stabilizes. [15, 16, 19] 

Recurrent neural networks, like other networks, learn by training with raw data. In com-

parison to feedforward networks, recurrent networks can also use previously generated 

output as an input to produce more output values in the network. [16] 
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3.2.5 Convolutional neural network 

Convolutional neural network is a neural network that uses convolution in some of its 

layers instead of matrix multiplication. Convolutional neural networks can learn high-or-

der features from data, which makes them very effective to use in image recognition and 

computer vision. It is also largely used in voice data processing, text analysis, and robot-

ics. Convolutional neural networks are best trained and used with data with spatial cor-

relation and some visible structure. [21] 

In comparison to other neural networks convolutional neural networks have a better 

structure for processing image data. In convolutional neural network the input image data 

is transformed into output sets of class probabilities through many connected layers. 

Neurons in neural layers can form three-dimensional structures, with specific height, 

length, and depth. These structural attributes make it possible to process image such as 

pixel height and width, and the RGB channels data more efficiently. [21] 

3.2.6 Recursive neural network 

Recursive neural networks function on the recursive nature of many objects for example 

sentences and images. The inputs of the network are reconstructed and as a result clas-

sified based on what kind of content is found. Recursive neural networks have a binary 

tree structure where every parent maps two children recursively and each node is given 

a score. This kind of structure is great for parsing up scenes from images or sentences. 

Recursive neural networks can be applied using forward or backpropagation whether the 

input is at the bottom or the top of the binary tree. [22] 

The two main variants of recursive neural networks are recursive neural tensor networks 

and recursive autoencoders. Recursive autoencoders use a semi-supervised learning 

method which means that there is a small quantity of labelled data. The network is taught 

to reconstruct the input and break it into segments. This method is commonly used in 

natural language processing. Recursive neural tensor networks utilize supervised learn-

ing and calculates vectors for the nodes in the binary tree structure. This network archi-

tecture is great for labelling and segmenting image objects. [23] 

3.2.7 Autoencoder 

Autoencoder is a neural network structure mostly used to learn compressed representa-

tions from datasets. The algorithm uses dimensionality reduction where the input data is 

reproduced with fewer dimensions. Autoencoder networks output layer has a target value 

which is the same value that the input layer has. This means that the number of neurons 
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in the input layer and output layer are the same. Autoencoders are best used with unsu-

pervised learning and unlabelled data. [24] 

Autoencoder networks have two main variations: compression autoencoder and de-

noising autoencoder. Compression autoencoders have a narrow hidden layer before the 

output is expanded back to the input size. Denoising autoencoders inputs have noise or 

some of their features are removed. The denoising autoencoder network learns to de-

noise the output. [24] 
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4. MATERIALS AND METHODS 

The aim of this study is to examine the use of artificial intelligence to enhance µ-CT 

image quality. The work process of this thesis is seen figure 7. 

 

  Process of work in the thesis. 

The images are taken from three different samples of biomaterial which are named after 

their structure: particles, particles and pores, pores and fibers. There is also one biolog-

ical sample which is a pig’s eye. The images were taken with Zeiss Xradia MicroXCT-

400, which is a high resolution 3D X-ray imaging system optimized for imaging complex 

internal structures. Software for the AI was Dragonfly 2020.1 by Object Research Sys-

tems. The Dragonfly software is designed for 3D visualization and analysis. All of the 

images and results presented were gained by using Dragonfly. 

4.1 Images 

For training data of the AI models the images were reconstructed with different number 

of projections varying from 3200 to 100 depending on the sample. 1600 projection was 

used for reference as it is considered to be of standard quality. Particles and pores- 

sample also has a corrected version of the 1600 projection reconstruction, which had 

better quality than the uncorrected version. The pores and fibers- sample was imaged 
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using absorption and phase imaging with varying exposure time, which affected the num-

ber of photons on the detector. A full list of images used can be found in table 1 and 

images of different reconstructions of each sample can be found in appendix A.  

Table 1. List of all the images used in training AI networks and assessing their quality en-
hancing capabilities. 

Sample Voxel size 
(µm) 

Imaging 
technique 

Number of pro-
jections 

Number of photons (only for 
pores and fibers) 

Particles 5,63 Absorption 100  

200  

400  

800  

1600  

Particles and 
pores 

2,28 Absorption 200  

400  

800  

1600  

1600  

Pig eye 28,20 Absorption 200  

400  

800  

1600  

Pores and fi-
bers 

5,64 Phase con-
trast 

1600 400 

1600 3000 

1600 6000 

Absorption 1600 1800 

1600 3500 

1600 7000 

1600 14000 

3200 5000 

 

4.2 AI models 

For the model architecture, there were three different options for denoising found in the 

software: Auto-Encoder, Noise2Noise, and U-Net. Noise2Noise and U-Net are convolu-

tional networks. Each of these were used. The network training was done with different 

amounts of slices varying from 1 to 11 which was the maximum amount. Data augmen-

tation and validation were used. A full list of AI models trained is found in appendix B. 

The AI models were also numbered to simplify referring to them in later parts. 

4.3 Analysis methods 

To evaluate the AI’s ability to enhance the images a total of five different analysis were 

conducted. The first analysis was to examine which of the three available architectures 

was able to produce the best quality images. The second analysis was to find out how 

the quality of the network training input data affects the quality of the images. The third 

analysis was to examine the effect of the network training output data quality on the 
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quality of the images. The fourth analysis was how AI network trained with data from 

different sample than the sample analysed affects the quality of the images. The fifth 

analysis was to examine the effects of exposure time and the number of photons on 

detector on image quality, and how the AI can enhance the images with lower exposure 

time. All of these analyses were applied to images with different reconstruction projection 

count to also see how much different reconstructions can be enhanced.  

All the image slices enhanced were no used in training of the networks and they were 

also mirrored on the x-axis. Before any analyses were done the intensity values of the 

images were normalized to scale from 0 to 255. All numerical values were obtained using 

the histogram tool in Dragonfly. SNR values were calculated for each of the analyses 

using equation 4. How the sample and background area were defined for each sample 

can be found in appendix C. Since there were no specific structures that were examined 

as the picture quality was inspected as a whole the sample area was chosen to be the 

entire image. A relative change for the SNR values was also calculated in some cases 

using equation 6, where x is the calculated SNR value of an enhanced image and xreference 

is the SNR value of the original image. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑥−𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
    (6) 

A line intensity analysis was also conducted in some cases. A line was drawn onto the 

image and intensity values of pixels under the line were used to draw a graph. This 

method was used to see the changes in amount of detail of the images. The placement 

of the line in each of the pictures is also found in appendix C. The lines were placed so 

there would be different structures to see how the sharpness of borders is affected. 

 

4.3.1 Architecture 

The three different architectures available were U-Net, Noise2Noise and Autoencoder. 

Using these architectures, convolutional neural networks can be created. In this first part 

the most suitable architecture for CT image enhancement was examined. 

Three networks were trained for this, one for each type of architecture. Image data used 

was the particles dataset. Input slice count was set to one. Input projection count was 

200 and output projection count was 1600. The images enhanced were the 100, 200, 

400, and 800 projection reconstructions from the particles dataset. 
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4.3.2 Input data quality 

The input data quality testing was conducted by training networks with different input 

projection count. Also different input slice counts were used. In this second part the 

amount of data needed for network training in order to give usable results was tested. 

A total of 18 networks were trained for this part. Image dataset used was the particles 

dataset.  Networks were trained with input projection counts of 200, 400, and 800. Output 

projection count was 1600. For each input projection count networks with input slice 

counts of 1, 3, 5, 7, 9, and 11 were trained. The images enhanced were the 100, 200, 

400, and 800 projection reconstructions from the particles dataset. 

4.3.3 Output data quality 

For the output data quality assessment, networks were trained with different output im-

age data. The purpose of this part was to examine if it is worthwhile to enhance the 

training data before training the network. 

The dataset used for this part was particles and pores. Input projection count was 200 

and output projection count was 1600. Two different networks were trained with original 

and corrected output data. Input slice count was set to one. The images enhanced were 

200, 400, and 800 projection reconstructions from the particles and pores dataset. 

4.3.4 Training with different sample 

In this fourth part images enhanced with networks trained with the same dataset as the 

image and another dataset were tested. This way the necessity to have similar images 

for training the networks as the images enhanced can be found out. 

The datasets used for network training were particles and pig eye. Both datasets were 

used to train three networks. Input projection counts for the networks were 200, 400, and 

800. Output projection count was 1600. Input slice count was 11. The images enhanced 

were 200, 400, and 800 projection reconstructions from the pig eye dataset. 

4.3.5 Photon count and exposure time 

The fifth test was done by using images taken with different exposure times as inputs for 

networks. Also the images used for output data had different exposure times. This way 

it possible to see what kind of improvement in image quality can be achieved with lower 

radiation exposure times and thus photon counts. 

The dataset for network training in this part was pores and fibers with two different kinds 

of images taken with absorption contrast imaging and phase contrast imaging. A total of 
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five networks were trained. Input and output data had varying photon counts from 400 to 

14000. More detailed information about the data used in training of each network is found 

in appendix B. The input slice count was set to 11. The projection count for the images 

was 1600 except for one which had a projection count of 3200. As the normal micro-CT 

images have a photon count at least 5000 for adequate image quality, only the images 

with lower photon count were enhanced. 
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5. RESULTS 

5.1 Architecture 

The SNR calculations for the model architecture comparison are found in table 2. The 

SNR value for the original 1600-projection reconstruction was 7,49. The line intensity 

profiles of the different image enhancements are found in appendix D. In these graphs, 

images of the same reconstruction with use of different AI model to enhance them are 

compared to 1600-projection reconstruction. The U-Net architecture gave the best re-

sults, so it was used in the later parts of the thesis. 

Table 2. The SNR calculations of the model architecture comparison. Image name refers to 
the sample and the projection count used for the reconstruction of the image. The AI model 
number refers to the number presented in appendix B. 

SNR 

Architecture AI model 
number 

Image 

Particles 
100 

Particles 
200 

Particles 
400 

Particles 
800 

Original image 1,95 4,21 4,58 6,24 

Auto-Encoder 1 2,61 7,29 13,08 14,87 
Noise2Noise 2 1,99 7,19 12,62 13,66 

U-Net 4 2,03 9,00 13,67 15,54 

 

Figures 8, 9, and 10 are example images of the 400-projection reconstruction. The im-

ages are enhanced with the three network models used in this part. Figure 11 is the 

original 1600-projection reconstruction for comparison. 
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 400-projection reconstruction of particles dataset enhanced with AI model 
number 1. 
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 400-projection reconstruction of particles dataset enhanced with AI model 
number 2. 
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 400-projection reconstruction of particles dataset enhanced with AI 
model number 3. 
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 1600-projection reconstruction of particles dataset. 

 

5.2 Input data quality 

The SNR calculations for the network training input data quality analysis are found in 

table 3. For better comprehension of the SNR values relative changes were also calcu-

lated and they are found in table 4.  
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Table 3. The SNR calculations of the network training data input quality analysis. AI model 
number refers to the numbers presented in appendix B. The image name refers to the sample 
and the projection count of the reconstruction. 

SNR 

Input 
projection 

count 

AI model 
number 

Image 

Particles 
100 

Particles 
200 

Particles 
400 

Particles 
800 

Original image 1,95 4,21 4,58 6,24 

200 4 2,03 9,00 13,67 15,54 
200 5 1,96 10,81 12,27 12,91 
200 6 1,89 11,91 12,45 14,43 
200 7 1,73 11,51 13,31 15,85 
200 8 1,86 10,96 11,71 12,49 
200 9 1,77 11,83 13,42 13,98 

400 10 2,06 4,49 9,35 11,30 
400 11 1,96 4,69 9,05 10,78 
400 12 2,02 4,68 9,39 11,26 
400 13 2,06 4,99 9,91 11,38 
400 14 1,88 4,98 9,89 10,79 
400 15 1,92 4,88 10,01 11,01 

800 16 2,08 3,37 6,32 8,51 
800 17 2,02 3,58 6,86 8,74 
800 18 2,09 3,44 6,53 8,69 
800 19 2,08 3,51 6,80 8,94 
800 20 1,94 3,48 6,87 8,75 
800 21 1,97 3,45 6,75 8,78 

 
 
Table 4. The SNR relative change calculations of the network training data input quality 

analysis. AI model number refers to the numbers presented in appendix B. The image name re-
fers to the sample and the projection count of the reconstruction. 

SNR relative change (%) 

Input 
projection 

count 

AI model 
number 

Image 

Particles 
100 

Particles 
200 

Particles 
400 

Particles 
800 

200 4 4,10 113,78 198,47 149,04 
200 5 0,51 156,77 167,90 106,89 
200 6 -3,08 182,90 171,83 131,25 
200 7 -11,28 173,40 190,61 154,01 
200 8 -4,62 160,33 155,68 100,16 
200 9 -9,23 181,00 193,01 124,04 

400 10 5,64 6,65 104,15 81,09 
400 11 0,51 11,40 97,60 72,76 
400 12 3,59 11,16 105,02 80,45 
400 13 5,64 18,53 116,38 82,37 
400 14 -3,59 18,29 115,94 72,92 
400 15 -1,54 15,91 118,56 76,44 

800 16 6,67 -19,95 37,99 36,38 
800 17 3,59 -14,96 49,78 40,06 
800 18 7,18 -18,29 42,58 39,26 
800 19 6,67 -16,63 48,47 43,27 
800 20 -0,51 -17,34 50,00 40,22 
800 21 1,03 -18,05 47,38 40,71 

 

Figures 12, 13, 14, and 15 are example images of the 100, 200, 400, and 800 projection 

reconstructions. The images are enhanced with AI model number 10. Figure 16 is the 

original 1600-projection reconstruction for comparison. 
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 100-projection reconstruction of particles dataset enhanced with AI 
model number 10. 
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 200-projection reconstruction of particles dataset enhanced with AI 
model number 10. 
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 400-projection reconstruction of particles dataset enhanced with AI 
model number 10. 
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 800-projection reconstruction of particles dataset enhanced with AI 
model number 10. 
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 1600-projection reconstruction of particles dataset. 

5.3 Output data quality 

The SNR calculations for the network training output data quality analysis are found in 

table 5. The line intensity profiles of the different image enhancements are found in ap-

pendix E. 

Table 5.  The SNR calculations of the network training data output quality analysis. AI model 
number refers to the numbers presented in appendix B. The image name refers to the sample 
and the projection count of the reconstruction. 

 SNR 

Output 
data 

AI 
model 
numbe

r 

Image 

Particle
s and 

pores 200 

Particle
s and 

pores 400 

Particle
s and 

pores 800 

Particle
s and 

pores 1600 

Particle
s and 

pores 1600 
(corrected) 

Original image 3,15 4,02 4,32 4,24 11,89 

Original 22 4,57 4,59 4,58 - - 
Correcte

d 
23 15,71 16,21 15,85 - - 
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In figures 17 – 22 are the images enhanced in this part. The images are enhanced with 

both AI models used in this part. Figures 23 and 24 are the original 1600-projection re-

constructions for comparison. 

 

 200-projection reconstruction of particles and pores dataset en-
hanced with AI model number 22. 

 

 



33 
 

 

 200-projection reconstruction of particles and pores dataset en-
hanced with AI model number 23. 
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 400-projection reconstruction of particles and pores dataset en-
hanced with AI model number 22. 

 



35 
 

 

 400-projection reconstruction of particles and pores dataset en-
hanced with AI model number 23. 
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 800-projection reconstruction of particles and pores dataset en-
hanced with AI model number 22. 
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 800-projection reconstruction of particles and pores dataset en-
hanced with AI model number 22. 
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 1600-projection reconstruction of particles and pores dataset. 
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 1600-projection corrected reconstruction of particles and pores da-
taset. 

 

5.4 Training with different sample 

The SNR calculations for the network training with different sample analysis are found in 

table 6. The SNR value of the original 1600-projection reconstruction was 15,62. 

Table 6. The SNR calculations of the network training with different sample analysis. AI 
model number refers to the numbers presented in appendix B. The image name refers to the 
sample and the projection count of the reconstruction. 

SNR 

Training 
dataset 

AI model 
number 

Image 

Pig eye 200 Pig eye 400 Pig eye 800 

Original image 9,36 12,82 14,78 

Particles 9 21,12 21,43 21,19 

15 15,28 20,43 21,00 

21 11,53 16,53 17,34 

Pig eye 24 15,31 17,61 17,33 

25 13,39 16,37 16,53 

26 11,76 15,28 16,21 
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Figures 25 and 26 are example images of the 800-projection reconstruction. The images 

are enhanced with AI models number 9 and 24. Figure 27 is the 1600-projection recon-

struction for comparison. 

 

 

 800-projection reconstruction of the pig eye dataset enhanced with 
AI model number 9. 
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 800-projection reconstruction of the pig eye dataset enhanced with 
AI model number 24. 
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 1600-projection reconstruction of the pig eye dataset. 

5.5 Photon count and exposure time 

The SNR calculations for the photon count and exposure time analysis are found on 

tables 7 and 8. Table 7 contains the results using the images obtained with absorption 

contrast imaging and table 8 contains the results using the images obtained with phase 

contrast imaging. The line intensity profiles of the different image enhancements are 

found in appendix F. 
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Table 7. The SNR calculations of the network training with different photon count (absorption 
contrast imaging) analysis. AI model number refers to the numbers presented in appendix B. 
The image name refers to the sample and the photon count of the reconstruction. 

SNR 

Training 
output data 
(number of 
photons) 

AI 
model 

number 

Image 

Pores 
and fibers 

1800 

Pores 
and fibers 

3500 

Pores 
and fibers 

7000 

Pores 
and fibers 

14000 

Pores 
and fibers 

5000 

Original image 4,45 4,53 4,61 4,68 3,58 

5000 27 3,05 3,18 - - - 

7000 28 5,10 5,06 - - - 

14000 29 4,94 4,99 - - - 

 
 
Table 8. The SNR calculations of the network training with different photon count (phase 

contrast imaging) analysis. AI model number refers to the numbers presented in appendix B. 
The image name refers to the sample and the photon count of the reconstruction. 

SNR 

Training in-
put data (num-
ber of photons) 

AI model 
number 

Image 

Pores and 
fibers 400 

Pores and 
fibers 3000 

Pores and 
fibers 6000 

Original image 4,05 4,76 4,84 

400 30 5,68 6,03 - 

3000 31 4,74 5,07 - 

 

Figures 19, 20 and 21 are example images of the 1800 photon reconstruction. The im-

ages are enhanced with AI models number 27, 28 and 29. Figures 22 and 23 are exam-

ple images of the 400 photon reconstruction. The images are enhanced with AI models 

number 30 and 31.  
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 1800 photon reconstruction of the pores and fibers (absorption 
contrast) dataset enhanced with AI model number 27. 
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 1800 photon reconstruction of the pores and fibers (absorption 

contrast) dataset enhanced with AI model number 28. 
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 1800 photon reconstruction of the pores and fibers (absorption 

contrast) dataset enhanced with AI model number 29. 
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 400 photon reconstruction of the pores and fibers (absorption con-

trast) dataset enhanced with AI model number 30. 
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 400 photon reconstruction of the pores and fibers (absorption con-

trast) dataset enhanced with AI model number  
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6. DISCUSSION 

In this master’s thesis the abilities of artificial intelligence to enhance μ-CT images were 

tested. There were four different samples that were imaged. The images from the sam-

ples were reconstructed with different number of projections to be able to study if images 

with lower projection count and worse quality can be enhanced enough to make them a 

feasible option for imaging. With lower projection count the imaging time and conse-

quently the radiation dose could be lowered for imaging subjects. 

First the best network architecture was needed to find out from the Dragonfly software. 

From the SNR calculations in table 2 can be seen that there are little differences in the 

SNR values. The line intensity profiles in appendix D, and figures 42 and 43 show that 

U-Net has slightly better abilities to reduce noise and maintain the best similarity in inter-

nal structures. For these reason U-Net was chosen as the network architecture for the 

rest of the network trainings. 

In the second part when examining the effects of input data quality there were networks 

trained with varying input image projection counts and input slice counts. The results 

seen in table 3 tell that the quality of the 100-projection reconstruction is too poor to be 

enhanced or have any use, when compared to the SNR-value of the 1600-projection 

reconstruction from 5.1. Due to these results the 100-projection reconstruction will not 

be used in the later parts. In table 4 there are also relative SNR changes from table 3. 

From these tables can be seen that the networks trained with 200-projection reconstruc-

tion have greatly improved SNR values. The SNR values are quite similar for all of the 

different images at around 10 to 15. But the low quality of the input data will modify some 

of the internal structures as seen in the line intensity profiles of the architecture exami-

nation in appendix D. 

The networks trained with 400-projection reconstruction have much more different ef-

fects on the images enhanced. The 200-projection images quality stays roughly the 

same. 400-projection images are the best quality when enhanced with these networks. 

The quality of the 800-projections images is also a little better. As for the 800-projection 

networks, they are able to enhance only the 400 and 800 projection images and not even 

very much. This might be due to the lower noise level in the input image which correlates 

to the networks ability to denoise. The input slice count has little to none effect on the 

SNR values. In most cases there is slight increase in SNR with higher slice counts but 

nothing that would be considerable enough. 
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The examination of the quality of the output gave very straight forward results in table 5. 

The SNR value stays pretty much the same when enhancing the images with network 

trained with the original output image. But when enhancing with the network trained with 

the corrected output data the SNR values rise from 4 to 15. The line intensity profiles in 

appendix E also show that the boundaries of internal structures are sharper with the 

corrected output image enhancements. 

In the fourth test there were networks with different training data. In table 6 can be seen 

the results that show that the images enhanced with networks trained with projection 

data have higher SNR values than the ones enhanced with networks trained with pig eye 

data. This is due to the lack of structures in the particles data. It is able to denoise the 

image more but also “flattens” it by compressing the intensity values closer to its own. 

As the pig eye images have more complex structures there will be some data loss. 

The final test shows that there are not enough differences between the enhanced images 

with different exposure times. In tables 7 and 8 are the SNR values for the images and 

the values are not improved very much. This is also noticed when examining figures 29, 

30, 31, and 32. Also the line intensity profiled in appendix F show that there are practi-

cally no improvements in the image quality that can be observed. The 5000 photon image 

had a little offset compared to the other images which explains figure 28 and the SNR 

values in table 7. To gain more competent results about the effects of photon count and 

exposure time on image quality there should be more extensive research with more im-

age data. 

With the results combined the best enhancing capabilities would be gained creating a U-

Net network trained with similar dataset as the enhanced images are to make sure there 

will not be too much data loss. The output data should also be filtered or segmented in 

advance for better enhancing properties. 100 and 200 projection reconstruction are not 

likely to have use as the image quality suffers too much. 400 and 800 projection recon-

structions gave the best results in order of acquiring better quality and not losing too 

much data. These reconstructions might have some clinical use in some cases with the 

right AI networks. With lower projection counts less radiation and shorter imaging times 

are a possibility. These results are best applied with Dragonfly software but are feasible 

to implement with other AIs. 

As the input slice count had little effect, more of its effects could be examined with other 

AIs that could have larger slice count than 11 which was the upper limit on the software 

used in this thesis. Other AIs also have different network models which could make some 

different results. As only three networks were examined, it is not likely to find the optimal 
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network. For future research it would also be possible to examine if it is possible to en-

hance the projection data before the reconstruction or train one network with multiple 

different datasets. Also some artificial noise could be added to the training data to see if 

it would improve the denoising capabilities without lowering overall quality. All in all, AI 

clearly has its use in enhancing μ-CT images with a lot of training data and proper im-

plementations of AI. 
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APPENDIX A: REFERENCE IMAGES OF THE 
SAMPLES 

 Particles dataset. From upper-left corner 1600, 800, 400, 200, and 
100 projection reconstructions. 
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 Particles and pores dataset. From upper-left corner 1600, 
1600(corrected), 800, 400, and 200 projection reconstructions.  
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 Pig eye dataset. From upper-left corner 1600, 800, 400, and 200 
projection reconstructions. 
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 Pores and fibers (absorption contrast) dataset. From upper-left cor-
ner 14000, 7000, 5000, 3500 and 1800 photon reconstructions. 
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 Pores and fibers (phase contrast) dataset. From upper-left corner 
6000, 3000 and 400 photon reconstructions. 
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APPENDIX B: AI MODELS 

Table 9. List of AI models trained for the thesis. 

Image sam-
ple 

Model ar-
chitechture 

Input slice 
count 

Input projec-
tion count 
(+photon 
count for 
pores and fi-
bers) 

Output pro-
jection count 
(+photon 
count for 
pores and fi-
bers) 

Number of 
model 

Particles Auto-Encoder 1 200 1600 1 

Noise2Noise 1 200 1600 2 

U-Net 1 100 1600 3 

1 200 1600 4 

3 200 1600 5 

5 200 1600 6 

7 200 1600 7 

9 200 1600 8 

11 200 1600 9 

1 400 1600 10 

3 400 1600 11 

5 400 1600 12 

7 400 1600 13 

9 400 1600 14 

11 400 1600 15 

1 800 1600 16 

3 800 1600 17 

5 800 1600 18 

7 800 1600 19 

9 800 1600 20 

11 800 1600 21 

Particles and 
pores 

U-Net 1 200 1600 22 

1 200 1600 
(corrected 
version) 

23 

Pig eye U-Net 11 200 1600 24 

11 400 1600 25 

11 800 1600 26 

Pores and fi-
bers (absorp-
tion) 

U-Net 11 1600/1800 3200/5000 27 

11 1600/1800 1600/7000 28 

11 1600/1800 1600/14000 29 

Pores and fi-
bers (phase 
contrast) 

U-Net 11 1600/400 1600/6000 30 

11 1600/3000 1600/6000 31 
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APPENDIX C: STANDARD DEVIATION AREAS 
AND LINE PLACEMENTS 

 

 
 Background noise (red) and sample noise (yellow) areas, and line 

intensity placement (blue) in particles dataset. 
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 Background noise (red) and sample noise (yellow) areas, and line 
intensity placement (blue) in particles and pores dataset.  

  



62 
 

  Background noise (red) and sample noise (yellow) areas, and line 
intensity placement (blue) in pig eye dataset. 
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 Background noise (red) and sample noise (yellow) areas, and line 
intensity placement (blue) in pores and fibers dataset.  
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APPENDIX D: ARCHITECTURE LINE INTESITIES 

 Line intensity profiles for the network architecture testing. Original 
1600 projection reconstruction (green), 800 projection enhancement with auto-
encoder (purple), 800 projection enhancement with noise2noise (red), and 800 

projection enhancement with u-net (blue). 
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 Line intensity profiles for the network architecture testing. Original 
1600 projection reconstruction (green), 200 projection enhancement with auto-
encoder (purple), 200 projection enhancement with noise2noise (red), and 200 

projection enhancement with u-net (blue). 
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APPENDIX E: OUTPUT QUALITY LINE 
INTENSITIES 

 Line intensity profiles for the network output quality testing. Original 
1600 projection reconstruction (green), 1600 projection corrected version (pink), 

800 projection enhancement (red), and 800 projection enhancement with cor-
rected version (blue). 
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 Line intensity profiles for the network output quality testing. Original 
1600 projection reconstruction (green), 1600 projection corrected version (pink), 

400 projection enhancement (red), and 400 projection enhancement with cor-
rected version (blue). 
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 Line intensity profiles for the network output quality testing. Original 
1600 projection reconstruction (green), 1600 projection corrected version (pink), 

200 projection enhancement (red), and 200 projection enhancement with cor-
rected version (blue). 
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APPENDIX F: PHOTON COUNT AND EXPOSURE 
TIME LINE INTESITIES 

 
 Line intensity profiles for the photon count testing. Original 1800 

photon reconstruction (green), 1800 photon reconstruction enhanced with net-
work 28 (red), and 1800 photon reconstruction enhanced with network 29 

(blue). 
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 Line intensity profiles for the photon count testing. Original 3500 
photon reconstruction (purple), 3500 photon reconstruction enhanced with net-

work 28 (blue), and 3500 photon reconstruction enhanced with network 29 
(green). 
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 Line intensity profiles for the photon count testing. 400 photon re-
construction enhanced with network 30 (green), 400 photon reconstruction en-
hanced with network 31 (black), 3000 photon reconstruction enhanced with net-

work 30 (red), and 3000 photon reconstruction enhanced with network 31 
(blue). 
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