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Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated 
histological analysis requires ability to computationally separate pathological alterations from normal tissue. 
Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of 
three-dimensional context of the tissue. Yet, the tissue context and spatial determinants are critical in several 
pathologies, such as in understanding growth patterns of cancer in its local environment. Here, we develop 
computational methods for visualization and quantitative assessment of histopathological alterations in three 
dimensions. First, we reconstruct the 3D representation of the whole organ from serial sectioned tissue. Then, 
we proceed to analyze the histological characteristics and regions of interest in 3D. As our example cases, we use 
whole slide images representing hematoxylin-eosin stained whole mouse prostates in a Pten+/- mouse prostate 
tumor model. We show that quantitative assessment of tumor sizes, shapes, and separation between spatial 
locations within the organ enable characterizing and grouping tumors. Further, we show that 3D visualization of 
tissue with computationally quantified features provides an intuitive way to observe tissue pathology. Our results 
underline the heterogeneity in composition and cellular organization within individual tumors. As an example, 
we show how prostate tumors have nuclear density gradients indicating areas of tumor growth directions and 
reflecting varying pressure from the surrounding tissue. The methods presented here are applicable to any tissue 
and different types of pathologies. This work provides a proof-of-principle for gaining a comprehensive view 
from histology by studying it quantitatively in 3D.
1. Introduction

Tissue histology is one of the main determinants in studying and di-

agnosing various pathologies, including cancer. Tumor cells differ from 
normal cells in their appearance in tissue, and tumor cell characteristics 
are often utilized in cancer grading. Solid tumors may also change the 
structure and appearance of the surrounding tissue due to e.g. pressure, 
inflammation, activation of stroma, angiogenesis, and tissue stress re-

sponses they induce. Traditionally, histopathological assessments both 
in research and clinical settings utilize individual tissue sections in 2D, 
resulting in the loss of the three-dimensional context of the tissue. This 
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has left our knowledge of the tissue context and spatial determinants 
in several pathologies incomplete, hampering our understanding of e.g. 
growth patterns of tumors in their local environment.

Currently, traditional microscopy is being increasingly substituted 
by digital pathology, in which tissue sections are imaged to digital 
high-resolution whole slide images (WSI) [20]. In addition to enabling 
detailed visual analysis of the histological samples, the WSIs now en-

able digital analysis and quantification of histological features [20, 23]. 
Although still nontrivial, the digitalization also allows alignment of se-

rial sections into a common coordinate space, resulting in histology data 
represented in 3D according to the original shape and structure of the 
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sample. Workflows for the alignment, also known as image registra-

tion, and reconstruction from the serially sectioned samples, as well as 
for visualization of the tissue in 3D are now needed to understand the 
histological 3D information [11, 14, 17, 24, 25].

Histopathological evaluation of samples is traditionally a very sub-

jective method, where decisions are based on visual inspection of the 
tissue. To support visual assessment, tools enabling objective recogni-

tion and quantification of pathological changes in tissue histology are 
desired. Computing and visualizing quantitative histological features 
would also increase our ability to combine histology with other types of 
data, e.g. information on tumor-associated mutations or gene expression 
obtained by sequencing, and to explore the effects of tumor genotypes 
and molecular alterations with respect to other properties within tis-
sue. To be able to quantify changes in tissue morphology, measurable 
descriptors of the pathology in question need to be computed from 
imaging data. Numerous approaches for feature-based analysis of histo-

logical images have been presented in the literature, see [2, 5, 6, 9, 13, 
34, 44] for select examples of earlier studies. In our prior work, we have 
shown how feature engineering and machine learning enables predic-

tion of neoplastic lesion aggressiveness [29] and in [40] we used a large 
generic feature set for analysis of spatial heterogeneity and for predict-

ing both the genetic background and spatial location of early tumors 
in 2D. Furthermore, we expanded this feature set to handle metastatic 
tissue detection from human breast cancer lymph node samples [38] 
and further expanded the framework to jointly use both engineered and 
deep neural network derived features [39]. However, these methods are 
dependent on the sampling location of the sections and typically do not 
consider the 3D spatial context in any way.

Native volumetric imaging modalities, such as X-ray microtomog-

raphy [41], enable straightforward inclusion of 3D spatial context, but 
lack the resolution for morphological separation of standard histology 
accompanied by high-resolution imaging. Also with histology, differ-

ent microscopy modalities can be used for improved specificity, such as 
by using immunohistochemical staining for labeling specific structures 
in tissue. With multiplexed staining, advanced visualization and spa-

tial analysis of cellular organization and tissue microenvironment can 
be done using standard fluorescence image analytics [31, 35]. Mod-

ern non-invasive techniques, such as tissue clearing [10, 26], enable 
harnessing the potential of 3D pathology [18] and enable developing 
advanced analysis pipelines in 3D [3, 8], but unlike standard sectioning-

based histology, such techniques are not routinely available.

In routine histology pipeline, however, specific immunostainings or 
fluorescence stainings are not always available. On the other hand, us-

ing hematoylin and eosin (HE) based standard reference staining of 
sections only, both the task of capturing the 3D information through 
registration of sections and the subsequent image-based quantifica-

tion of spatial organization and tissue morphology become significantly 
more challenging. Studies by Ourselin et al. [22], Wenzel et al. [42], 
Arganda et al. [1], Roberts et al. [27], Rosetti et al. [28], Kiemen et 
al. [12], and [43] show the potential of computational approach in 
histology-based analysis of the 3D morphology and spatial tissue envi-

ronment. Methods for detailed quantitative characterization and spatial 
analysis of HE-stained tissue in 3D are still needed.

1.1. Contribution of the current study

The aim here is to develop a method for computational reconstruc-

tion, visualization and detailed quantitative assessment of histopatho-

logical alterations in three dimensions. We build on the 3D reconstruc-

tion of serial sectioned tissue samples presented in our earlier work 
[11], where several registration algorithms were evaluated and com-

pared. Here, we develop an improved, generic registration framework 
using the Elastic Stack Alignment algorithm [30] and Bayesian opti-

mization based work warm start for hyperparameter tuning from [11] 
as a basis. Further, we extend the spatial characterization of tissue in 2D 
which we developed for predicting pathologies and genetic background 
2

from murine lesions [29, 40] as well as for human breast cancer metas-

tasis detection [38], by appending the feature set with 3D morphology 
descriptors and by utilizing full 3D tissue data instead of individual 2D 
sections for quantification of the intensity and texture features.

Here, we set out to combine inspecting the gross anatomy of tissue 
and its regions of interest with studying the detailed histology of the 
samples in quantitative fashion in 3D. We present a series of computed 
3D features capable of describing a plethora of tumor characteristics 
in tissue, as well as present ways to visualize histological features in 
three-dimensional spatial maps on organ and on a specific region of 
interest level, providing a novel, detailed view on the spatial proper-

ties of 3D tissue samples. We present a modular computational pipeline 
covering all analysis phases from serial sectioned digital pathology sam-

ples digitized as WSIs into organ-level 3D reconstruction of the tissue 
histology, and quantitative analysis and visualization of tissue morphol-

ogy and characteristics while preserving the spatial context. We provide 
source codes and 3D reconstructions for use and to facilitate further de-

velopment by the community. Using prostate cancer models as a case 
study, we show that the methods presented here allow inspection and 
identification of quantitative characteristics relevant to 3D properties 
of tumors, and identify spatial nuclear gradients in prostate cancer. Al-

though presented here for a specific cancer type, the methods are fully 
generalizable to different tissue types and pathologies.

2. Materials

2.1. Experimental model and subject details

The data represent prostate tissue samples from FVB/N mice het-

erozygous for tumor suppressor Pten and either expressing or not ex-

pressing transgenic miR-32 (Pten+∕− [4] and Pten+∕-xARR2PB-miR32

[15]). All animal experimentation and care procedures were carried 
out in accordance with guidelines and regulations of the national Ani-

mal Experiment Board of Finland, and were approved by the board of 
laboratory animal work of the State Provincial Offices of South Finland 
(licence number ESAVI/6271/04.10.03/2011). The samples have been 
previously described in [15, 40].

3. Methods

3.1. Tissue images and ROI separation

The imaging with whole slide scanning device has been previously 
described in [15, 40]. In brief, the prostates were fixed in PAXgene™ 
tissue fixative and embedded in paraffin. 5 μm tissue sections were 
cut, attached to glass slides, and every tenth section was HE-stained. 
HE-stained slides were whole slide imaged with Zeiss Axioskop40 mi-

croscope (Carl Zeiss MicroImaging, NY, USA) with 10x, 20x or 40x 
objective and a CCD color camera (QICAM Fast; QImaging, Canada) and 
a motorized specimen stage (Märzhäuser Wetzlar GmbH, Germany). 
The automated image acquisition was controlled by the Surveyor imag-

ing system (Objective Imaging, UK). Uncompressed bitmap output was 
converted by JVSdicom Compressor application to JPEG2000 WSI for-

mat [36].

Regions of interest (ROI) were manually marked using a freehand se-

lection tool in ImageJ software (National Institutes of Health, Bethesda, 
MD, USA) [33]. The resulting binary mask was used for extracting the 
ROI from the full resolution original HE image for further processing. 
Where one tumor could reach several acinar lumen within a certain sec-

tion, all affected lumen were included in a single mask. Snapshot images 
for 2D histology figures were obtained through JVSView program [36, 
37] and ImageJ.

3.2. Image registration and 3D volumes

Each image stack has approximately 30 sections with 50 μm dis-

tance. The remaining tissue sections were reserved for subsequent im-
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munohistochemistry stainings and for molecular measurements. The 
data was pre-processed essentially as in Kartasalo et al. [11]. In brief, 
all images were brought to scale of 20x magnification. Sections were 
segmented from each slide into separate image files by computing 
Laplacian of subsampled images (1/16 of original dimensions) and 
thresholding the result using Otsu’s method [21]. Spurious objects and 
holes smaller than 106 μm2 were removed using morphological op-

erations. The images were subsampled to 0.92 μm/pixel (7849x6529 
± 2055x1759 pixels) corresponding roughly to 10x magnification and 
saved in lossless tiff format due to limitations in the registration method 
implementation. The implementation can only produce outputs smaller 
than 231 − 1 pixels. Despite this limitation, the resolution is sufficient 
for detailed quantitative charaterization of the tissue. Following the 
preprocessing, images were registered using Elastic Stack Alignment 
(ESA) [30] using the Fiji [32]/ImageJ implementation. We opted to 
use ESA in this study based on theresults of a rigorous quantitative 
evaluation conducted in out earlier work in [11]. Specifically, ESA 
was found to be the only method among the compared algorithms to 
consistently provide top scores across majority of the metrics. ESA is 
an elastic i.e. deformable registration method that applies piecewise 
affine transformations allowing the formation of complex locally vary-

ing transformations. The algorithm first makes a rough initial alignment 
by computing SIFT features [19] and then finds rigid transformation 
parameters with RANSAC [7]. Once histological sections are roughly 
registered, corresponding locations between sections are searched more 
accurately using normalized cross-correlation. These matches are pro-

cessed through multiple filters to reduce the number of ambiguous 
matches. Remaining matches are used to construct a simulated spring 
system of the registered images, where matching locations across sec-

tions are joined together with virtual springs. Such springs are also 
attached within each section in a triangular mesh pattern to model the 
tissue’s physical properties. The final nonlinear registration is achieved 
by relaxing this spring system so that the sum of spring forces at every 
spring intersection is zero. The final transformation is obtained from 
the triangular spring meshes, where every triangle denotes a piecewise 
affine transform. (See Supplementary figure 1).

In total, the ESA algorithm has over 30 hyperparameters, posing a 
complex optimization challenge. Fortunately, its parameters have the 
tendency to exist in plateaus where the majority of parameter values 
yield good results when used with histological data with similar charac-

teristics as in our current study [11]. We used a Bayesian optimization 
based warm-start for parameter optimization, initializing the parame-

ter settings based on the optimum from our earlier study where similar 
samples were used [11], and then evaluated a fixed amount (N=71) of 
parameter values around this plateau. We evaluated the result for each 
combination to select the best registration according to our evaluation 
metric

𝐸𝑟𝑒𝑔 =

𝑀∑
𝑖=0

𝑁∑
𝑗=0
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𝑖𝑗

)2
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𝑁∑
𝑗=0

|𝐴𝑖𝑗 |
,

where

𝐴 = 𝐼 (𝑆+1) ∗𝐿.

Here, 𝐼𝑆 ∈ ℝ𝑀𝑥𝑁 and 𝐼𝑆+1 ∈ ℝ𝑀𝑥𝑁 are consecutive sections in 
the registered image stack and 𝐿 is the Laplacian operator. The ap-

proach emphasizes tissue area and its prominent features giving mini-

mal weight to the background while not requiring any landmarks. The 
applicability of the metric was confirmed by a histology expert who vi-

sually inspected registered image stacks together with their evaluation 
scores.

Tissue was segmented from the background to produce tissue masks. 
Since both the ROI masks and tissue masks were created for the unreg-

istered images, the same registration transforms were applied to the 
3

mask images to bring them into the common coordinate system. The 
tissue masks are needed for efficiency to compute histological features 
only from tissue regions and also for computing distance features from 
prostate borders.

3.3. Computation of 3D features

From the acquired 3D histological volumes, multiple different types 
of features were computed. We used a set of histological features modi-

fied from earlier studies [29, 38, 40] as a starting point, and tailored the 
feature set for 3D analysis and extended this set with shape and distance 
features extracted from 3D volumes of ROI. The features are presented 
in Table 1 with brief descriptions. The purpose of the 3D feature set is 
to provide a multidimensional quantitative characterization of the vol-

umetric appearance of the tissue (here: prostate) both in terms of shape 
and in terms of spatial distribution of ROI (tumors) with respect to the 
organ and other tumors.

3.4. Visualization of features in 3D

The registered image stacks were visualized in Matlab

(9.6.0.1114505 (R2019a) Update 2). Slices were drawn along the z 
dimension, and the same was repeated for x and y dimensions using 
virtual slices to produce a volume viewable from any angle. Further, 
the remaining background in the sections was excluded from visualiza-

tion by setting the background completely transparent while the rest of 
the numeric range was mapped linearly to make brighter voxels in the 
volume more transparent. Volumetric visualizations with various effects 
(movement/rotation of volumes) were then constructed for easy explo-

ration of 3D data in organ and tumor levels, and both using original 
tissue images and quantitative features as the visualized variable.

3.5. Quantification and statistical analysis

The quantification and numerical analysis was conducted using 
Python software (Python 3.6.8, numpy 1.16.0, pandas 0.23.4, scikit-

image 0.14.2, all details in environment.yml in the Supplementary 
code repository), and visualizations in Matlab (9.6.0.1114505 (R2019a) 
Update 2) as described Method Details. Description of the computa-

tional experiments are given in Results. The presented data consists 
of prostates of 6 mice, with 2-6 tumors per prostate. Half of the mice 
were wild type and half transgenic for overexpressing miR-32 in their 
prostates. The sample size of 22 tumors spans a representative spatial 
distribution in prostate.

4. Results

4.1. Creating 3D representations of mouse prostates with tumors from 
histological sections

We set out to create a pipeline for quantitative spatial analysis in 3D 
(Fig. 1). Mice heterozygous for tumor suppressor Pten form mouse pro-

static intraepithelial neoplasia (mPIN) within 8–12 months (Di Cristo-

fano et al. 1998). In here, we used prostate samples from Pten+∕− mice 
of 10-11 months, when recognizable tumors are evident. Our dataset 
included images of prostates from 6 mice, harboring between 3-9 HG-

PIN tumors per prostate [15, 40]. Three of the mice were transgenic 
for overexpressing miR-32 in their prostates [15]. The distribution of 
these tumors in the prostate has previously been shown to be mostly lo-

cated to the lateral prostate (69%), with individual tumors in the dorsal 
(22%) and ventral (9%) prostates. To ensure sufficient volumes and 3D 
structure to be analyzed, only tumors spanning at least four consecutive 
images (> 150 μm distance) were included in the 3D analysis, resulting 
in 22 tumors in the dataset (2-6 tumors per prostate).

To visualize the histological information of the tissues in three di-

mensions, we first performed registration of WSIs to image stacks by 
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Fig. 1. Pipeline of quantitative spatial analysis in 3D. A) Serial section WSIs are aligned using elastic registration into a 3D stack. B) The 3D tissue stack is used 
as a whole organ model, and regions of interest (tumors) are extracted for subsequent analysis. Binary masks corresponding to the whole tissue and ROI areas are 
collected for visualization and analysis purposes. C) Quantitative analysis is performed for the 3D volumes using shape analysis of the ROI volumes and spatial 
histology analysis for the 2D images within the stack. The quantitative features can be explored using multidimensional numerical analysis and by visualizations in 
their 3D spatial context.
applying an automated elastic registration pipeline using ESA as the 
registration algorithm, with parameter settings optimized for the task. 
The six prostates used in this study are visualized as histological image 
stacks in Fig. 2 (left panels), showing the appearance of the whole tis-
sue as 3D objects and visualizing the main characteristics of the organ. 
To better detect the objects of interest in the organs, transparent visual-

izations of the organs are built, with tumors indicated with individual 
4

colors (Fig. 2, right panels). These visualizations provide an easy and 
intuitive way to study the overall context of the tissue as well as indi-

vidual tumors for their locations, shapes and sizes. Especially, rotating 
the volumes to enhance the visibility through observation via multiple 
angles enhances examining the tissue and tumor characteristics (Sup-

plemental video 1, available on supplementary site).
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Table 1. Feature descriptions.

Feature Description

volume voxel volume * number of white pixels in masked tumor region ( μm3)

surface_area average voxel face area * number of voxels in edge volume ( μm2) (Edge volume is computed by subtracting binary eroded tumor 
region mask from the original mask and stacking resulting images into a volume.)

sphericity volume / surface area

dist_section_center_adj_sum the distance traveled when traversing through each section’s masked tumor region’s center of mass

dist_section_center_endpoints the distance between first and last sections’ masked tumor regions

dist_section_center_straightness the distance between first and last sections masked tumor region / the distance traveled when traversing through each section’s masked 
tumor region’s center of mass

dist_section_center_* statistics computed from distances between adjacent sections’ masked tumor region centers

dist_section_center_diff_* statistics computed from differences of distances between adjacent sections’ masked tumor region centers

length_pca1 length of the volume along principal axis 1
length_pca2 length of the volume along principal axis 2
length_pca3 length of the volume along principal axis 3
length_pca_21_ratio length of principal axis 2 / length of principal axis 1
length_pca_31_ratio length of principal axis 3 / length of principal axis 1
length_pca_32_ratio length of principal axis 3 / length of principal axis 2
length_pca1_scaled length of principal axis 1 / length of principal axis 1
length_pca2_scaled length of principal axis 2 / length of principal axis 1
length_pca3_scaled length of principal axis 3 / length of principal axis 1
dist_pca1_axis_* statistics of distances from each voxel to nearest principal axis point 1
dist_pca2_axis_* statistics of distances from each voxel to nearest principal axis point 2
dist_pca3_axis_* statistics of distances from each voxel to nearest principal axis point 3
pca1_moment_of_intertia volume’s moment of inertia w.r.t. principal axis 1
pca2_moment_of_intertia volume’s moment of inertia w.r.t. principal axis 2
pca3_moment_of_intertia volume’s moment of inertia w.r.t. principal axis 3
center_of_mass_z_in_prostate z coordinate of lesion’s center of mass in prostate’s coordinate system

center_of_mass_y_in_prostate y coordinate of lesion’s center of mass in prostate’s coordinate system

center_of_mass_x_in_prostate x coordinate of lesion’s center of mass in prostate’s coordinate system

moment_of_inertia moment of inertia / volume’s mass

dist_to_tumor_center_* statistics computed from distances of voxels to tumor’s center of mass

bounding_cube_volume volume of the bounding cube

bounding_cube_diagonal_lentgh length of the diagonal of bounding cube

bounding_cube_x_to_diag_ratio bounding cube x / diagonal length

bounding_cube_y_to_diag_ratio bounding cube y / diagonal length

bounding_cube_z_to_diag_ratio bounding cube z / diagonal length

bounding_cube_dim_* statistics of bounding cube dimensions

convex_hull_surface_area surface area of convex hull

convex_hull_area_ratio surface area / convex hull surface area

convex_hull_volume convex hull volume

solidity volume / convex hull volume

section_perimeter_sum sum of sections’ masked tumor area perimeters

section_perimeter_* statistics of sections’ masked tumor area perimeters

section_perimeter_adj_diff_* statistics of differences between adjacent sections’ masked tumor area perimeters

dist_nearest_tumor distance to nearest tumor

dist_furthest_tumor distance to furthest tumor

dist_tumor_average average distance to other tumors

dist_tumor_std standard deviation of distances to other tumors

dist_prostate_anat_center_to_tumor_com distance from prostate’s anatomical center to tumor’s center of mass

dist_prostate_anat_center_to_tumor_border distance from prostate’s anatomical center to tumor’s nearest border

dist_prostate_border_to_tumor_border shortest distance between prostate’s border and tumor’s border
4.2. Quantitative 3D features in tumors

We have previously performed quantitative analysis of the histol-

ogy of these tumors from the annotated tumor areas in 2D section 
WSI’s [40]. While this analysis provided valuable information of the 
histological characteristics of the tissues and tumors, information of 
the 3D context, shape, and spatial and volumetric characteristics of 
the tumors could not be considered with such an approach. Here, we 
wanted to quantitatively characterize the three-dimensional aspects of 
these tumors. For this, we engineered a set of features to describe the 
3D nature in terms of sizes, shapes and different aspects of variance 
in search for quantitative determinants describing and possibly capable 
of subgrouping the tumors (Supplementary Table 1). In addition, we 
calculated statistical descriptors for certain features, such as mean, me-

dian, minimum, maximum, sum, variance, standard deviation, kurtosis, 
and skewness, to capture the distribution of the feature values.
5

Further, in addition to basic size-describing features, such as vol-

ume and features derived from dimensions of the tumors (such as tumor 
lengths, widths, and thicknesses calculated from projections on princi-

pal axes), we included measures describing and helping to identify types 
and variance in tumor shapes. These features are derived from surface 
area, bounding cube and convex hull, such as sphericity and solidity. 
Also features utilizing aspects of the area and number of sections occu-

pied by the tumors, such as features derived from the tumor sections’ 
(i.e. tumor areas in 2D in each tissue section) perimeters were included. 
To assess the locations of the tumors in relation to the host tissue as well 
as to each other, we engineered distance features using the anatomical 
center point in each tissue as a reference point. These anatomical center 
points, defined manually by an expert, are visualized in Supplemental 
Figure 2, depicting also the tumor locations in the prostates with views 
from lateral and dorsal sides.
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Fig. 2. 3D reconstructions of prostate tissues. Six mouse prostates used in the 
study are shown. The prostates represent Pten+∕− (prostates 1-3) or Pten+∕-

xARR2PB-miR32 (prostates 4-6) genotypes in FVB/N mouse strain. Left: His-

tological 3D reconstructions composed of HE-stained sections (5 μm at 50 μm

intervals) For visualization, standard surface interpolation is used in spaces be-

tween sections. The prostates are presented the urethra (white asterisks) with its 
prominent muscle layer facing up, with ventral prostates in the front right cor-

ner. Due to the unencapsulated nature of mouse prostate, the gland structures 
are readily visible whenever not masked with adipose tissue (black asterisks). 
Right: 3D constructions showing the outer borders of the tissues in sections, as 
well as the tumors with individual coloring based on 2D tumor masked regions 
of interest for each prostate.

4.3. 3D features distinguish tumor subgroups

We computed the values for the 3D features for the 22 tumors in the 
dataset and examined their capability to distinguish tumors into sub-

groups. Clustering analysis (Fig. 3A) shows that the main feature cluster 
is formed by approximately half of the features more or less correlat-

ing with the volume of the tumors, while the second half of the features 
forms smaller and less dense clusters. Clustering based on tumors, on 
the other hand, forms three major groups directed by several features 
describing the size and shape of the tumors (Fig. 3A). We used principal 
component analysis (PCA) to reduce dimensionality of the data in order 
to determine whether the features reveal subgroups relevant for the bi-

ology of the tumors. A PCA plot of individual tumors based on the 3D 
features shows that the tumors in the cluster groups indicated in Fig. 3A 
separate to distinguishable locations (Fig. 3B). Closer inspection of 20 
6

features with the highest weight in the PCA analysis (Fig. 3C) indicates 
that cluster 1 exhibits, for example, relatively high and varied bound-

ing cube dimensions, high voxel distances to the first principal axis, 
high length of the third principal axis, high distances and variance in 
tumor area centers between sections and low solidity. These attributes 
indicate large but also complex shaped tumors. On the other hand, tu-

mors in cluster 2 have relatively low distances between tumor section 
centers, long principal axes 2 and 3 as well as high ratios between the 
lengths of these axes and principal axis 1, indicating more round tumor 
shapes. The rest of the tumors, corresponding to cluster 3, are relatively 
more compact, exhibiting smaller size according to several features and 
high solidity.

Although these Pten+∕− tumors belong to two genetic groups (miR-

32 wt and miR-32 transgenic/overexpressing) and show certain prostate 
cancer marker expression differences, they are indistinguishable by vi-

sual inspection in conventional 2D histopathology [15]. Here, inspect-

ing how tumors of the two different genotypes are positioned in the PCA 
analysis revealed that, while small tumors of both phenotypes are inter-

mixed, the 3D feature values show separation among the genotypes in 
the large tumors (Fig. 3D). The larger tumors likely represent an ad-

vanced growth phase compared to the small tumors corresponding to 
early tumors or tumors with less growth potential. Thus, these results 
suggest that the tumor growth patterns have distinguishable features 
in 3D analysis that can be linked to their genotype, depending on the 
growth phase.

The differences indicated in the clustering and PCA analysis 
prompted us to investigate more thoroughly selected 3D features in 
relation to the tumor phenotypes (Fig. 4). Especially, the size and shape-

related features represented strongly in the clustergram heatmap anal-

ysis, as well as certain shape- and location-related features estimated 
to be useful spatial descriptors for tumor pathology, were investigated 
more closely. Three basic 3D object features (volume, sphericity, and 
solidity) are useful in providing individual descriptive patterns for each 
tumor. Interestingly, sphericity is increased overall with increasing vol-

ume of tumors (Fig. 4B), indicating that larger tumors tend to become 
more round rather than having lengthy shapes. On the other hand, 
tumor solidity is decreased with increasing volume, although in a non-

linear fashion (Fig. 4C). These notions support the idea that small and 
early in situ tumors grow along the free space in the narrow and wind-

ing prostate gland lumen, whereas the increased growth pressure makes 
way in the tissue as the tumors enlarge and get more complex surface 
shapes. To this end and as already indicated in the PCA in Fig. 3B, us-

ing the principal axes of tumor maximal lengths in the first, second and 
third angle, in addition to their correlations, create useful features de-

scribing and distinguishing the shapes of the tumors (Supplementary 
Figure 3).

The features describing the tumor locations in the organ show het-

erogeneity with respect to inter-tumor distances (Fig. 4A,D). Also tu-

mor distances to the anatomical center and prostate edge borders vary 
(Fig. 4A), as expected in an organ containing separate lobes with vari-

able length. This may explain why the distance to the anatomical center 
is not correlating with the above mentioned features (Fig. 4A,E), while 
the distances to edges of the organ are clearly shorter with large tumors 
(Fig. 4F,G). This may be indicative of the fact that the prostate in mouse 
is an unencapsulated organ, in which increasing spatial pressure due to 
a growing tumor is most easily relieved by directing growth towards 
the abdominal cavity.

4.4. Visualization of quantitative histological analysis in 3D

Many histological entities, such as pathological areas and tumors, 
span more than one histological 2D section, and the histology may vary 
between different areas of the region of interest. We have previously 
performed a computational analysis of 2D histological features of the 
tissue sections used in this study. Here, in order to understand histo-

logical features in their 3D tissue context, the 3D representations of the 
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Fig. 3. Computational 3D features group prostate tumors. 3D features were computed for each tumor. A) A heatmap representing 3D feature values for individual 
tumors analyzed. Clustering of the data reveals three distinctive groups of tumors, marked as clusters 1-3. B) Principal component analysis (PCA) plot of 3D 
features indicating individual tumors. Clusters 1 and 2 indicated in A are distinguished. C) Biplot of the PCA plot in B, showing 20 features with most weight in 
positioning the tumors in the PCA. D) The same PCA analysis as in B, indicating the genotypes of the tumors. Interestingly, while the clustering in A does not indicate 
genotype-dependence, large tumors in the dataset are positioned to distinguishable groups according to their genotype as indicated.
tissues with tumors are supplemented with this quantitative 2D histo-

logical information.

We selected two differing, informative 2D features from our previous 
study [40] to visualize in the 3D representations and study the distribu-

tion of quantitative data in the whole prostates and the tumors. Eosin 
channel intensity quantifies the red signal (eosin signal computationally 
separated from hematoxylin and mean signal value quantified within 
local support area) highly enriched in proteins in the cell cytoplasm, 
collagen, and muscle fibers. Nuclear density is based on nucleus detec-

tion from hematoxylin signal computationally separated from eosin and 
performed within local support area, and density calculated through 
windowed kernel density estimation.

Fig. 5A shows these features as 3D representations of the same 
prostate, indicating the differential distribution of the signals along 
the tissue and visualizing different structures. While the eosin chan-

nel intensity distinguishes the urethral muscle wall especially well 
(Fig. 5A,B,level A), it is enhanced also in tumor tissue (Fig. 5A,B, level 
B). Nuclear density highlights especially the intraurethral glands from 
normal tissue (Fig. 5A,B,level A), and this feature is also well enhanced 
in the tumor tissue (Fig. 5A,B, level B). Both features visualize the tumor 
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already in the 3D representations, more clearly by the nuclear density 
feature (all 6 prostates shown in Supplementary Figure 4).

A closer inspection of the feature representation in 3D focusing only 
on the ROI may allow observations not visible with surrounding tissue 
masking the view. Studying the nuclear density feature in tumors only 
(Fig. 6 and Supplementary Figure 5) reveals that nuclear distribution 
is not even throughout the tumors, but that there are distinct density 
gradients. Observing the tumors with the feature from several angles 
and comparing that to 3D representation of the tissue with HE-staining 
reveals that the densities of nuclei are higher closer to the outer edges of 
the organ. This notion indicates that the growth density of the tumors is 
higher towards the edges of the unencapsulated organ and, thus, closer 
to lower pressure by the surrounding tissue.

5. Discussion and conclusions

Computational methods for visualization and quantitative assess-

ment of histopathological alterations in three dimensions are required 
to better understand pathological changes in the tissue environment. In 
here, we reconstructed 3D representations of whole organs from serial 
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Fig. 4. Tumor level inspection of selected size, shape and location features. A) Selected 3D features representing size, shape and location of tumors in the prostate 
features, and volumetric surface visualizations of each tumor from two different angles. B)-G) Correlation plots between selected size, shape and location features. 
See main text for details.
histological sections and analyzed the tissue characteristics and regions 
of interest in 3D. Our work shows that quantitative assessment of tumor 
sizes, shapes, and separation between different spatial locations within 
the organ can be used to assess tumor characteristics, and to group 
tumors according to their 3D properties. In addition, our presented 
approach for reconstructing the three-dimensional structure of tissue, 
extracting quantitative descriptors capturing its spatio-morphological 
characteristics, and for visualizing both the histology and computation-

ally quantified feature representation in 3D, provides an intuitive way 
to observe pathological characteristics. Particularly, it offers enhanced 
view on an organ or, e.g., tumor level exploration of the studied tissue, 
as opposed to the traditional way of inspecting the sample section by 
section in 2D.

Traditionally, quantitative features have been used in machine 
learning algorithms, and many methods enable defining which features 
have the highest influence on classification results. We have previously 
used this prostate tumor material in a study where we analyzed spatial 
heterogeneity of neoplastic alterations in these prostate tumors in a 2D 
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setting [40]. We computationally quantified hundreds of features from 
the histological WSIs and used them to build a feature-based machine 
learning model to separate genetic alterations between tumors. Now, 
we presented additional quantitative features to describe the tissue and 
its alterations in 3D. Furthermore, we presented 3D visualizations to ex-

plore the spatial distribution of the important features to associate them 
to anatomical locations and to study what properties they capture. The 
3D visualization and exploration method could be supplemented with 
additional types of data, for example, immunohistochemical stainings, 
spatial transcriptomics, and volumetric imaging modalities.

We used mouse prostates with prostate cancer tumors as a use-case. 
With 3D representations, the tumors could be explored in ways that are 
not possible through standard 2D visualization of histological sections – 
not even when several sections are utilized in a row. The ability to ob-

serve the tissue and the tumors from multiple angles clearly enhances 
the information gained of tumor distribution to tissue, their growth 
patterns and their heterogeneity. Our work presents methods and de-

scriptors to study and represent tumor shapes and sizes, information 
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Fig. 5. Quantitative histological features computed from 2D histology visualized in 3D format. A) 3D representations of a prostate from 1) HE-stained sections 
showing tumors in color and two example levels of histological sections (Level A and B, upper panel), 2) eosin channel intensity feature (lower left panel), and 3) 
nuclear density feature (lower right panel). B) Examples of histological HE-stained sections (left panels) and intensity plots of eosin channel intensity and nuclear 
density features (right panels) of the sections indicated in A). Upper two rows show sections of a whole organ, lower two rows show magnification of inserts marked 
in the upper sections. In level A, urethral muscle wall with high intensity in eosin channel (black asterisk) and intraurethral glands with high intensity in nuclear 
density feature (while asterisk) are shown. In level B, a tumor area with distinctive density compared to normal glandular environment in both feature channels is 
shown (arrowhead).

Fig. 6. Prostate tumors have nuclear density gradients revealed by 3D visualization. An example prostate (no 6) visualized in 3D based on A) computationally 
determined nuclear density and B) the corresponding HE-stained sections with indicated tumors. C-E) Tumor areas are visualized for their nuclear density. The 
magnified views and angles in D-E) reveal a gradient-like spatial density alteration of nuclei in a large tumor, with denser areas with higher number of nuclei close 
to organ edge and likely corresponding to areas of increased growth rate.
which, in here, can be used to distinguish between genetically differ-

ent groups of tumors. Combined to increased number of samples and 
large-scale molecular information, our methods for quantitative char-

acterization of tissue in its 3D spatial context harbor vast potential to 
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investigate and understand the effects of e.g. different genetic alter-

ations to tumor biology.

Our results underline that there is heterogeneity in composition and 
cellular organization within individual tumors, even in the relatively 
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homogeneous genetic setting utilized in here. Thus, the quantitative 
computational methods, such as those presented here, are required 
to screen for relevant descriptors out of reach to the human eye. In 
our example case, the two different genetic groups of mice (Pten+∕−
and Pten+∕-xARR2PB-miR32) showed indistinguishable histopathology 
[15], while the computational 3D feature analysis here revealed dif-

ferences between the larger tumors in the two genetic groups. Fur-

thermore, our visualization of 2D histological features in 3D showed 
increased utility over quantitation only, revealing that prostate tumors 
have nuclear density gradients indicating areas of tumor growth di-

rections. These valuable biological insights provide novel information 
to tumor biology in tissue, and serve as points of direction for future 
studies, especially considering that the tumors in this Pten+∕− prostate 
cancer model are multifocal, representing well the situation in human 
prostate cancer.

Our work provides proof-of-principle for gaining significant addi-

tional information from histology by studying it quantitatively in 3D. 
We used mouse prostates in this study, but the methods presented here 
are applicable also to human tissues as well as several other types of 
pathologies in addition to cancer. We envision the primary use of 3D 
reconstruction from histology as a very promising and powerful tech-

nique for answering questions on spatial pathological patterns in tissue 
and for characterizing spatial heterogeneity of the tissue environment. 
Detailed and quantitative spatial characterization of tissue environment 
also enables the use of advanced visualization techniques, such as vir-

tual reality based immersive and interactive exploration of feature data 
in 3D [16].

Incorporating various other measurement modalities in the 3D mod-

els alongside the histology-based examination shown here, can pro-

vide detailed spatial models combining histology with, e.g., molecular 
level measurements. For example, multiple immunostainings and spa-

tial transcriptomics data would provide detailed spatial models with 
molecular level characteristics of the studied samples. Research applica-

tions aiming at detailed spatial mapping of tissue environment, such as 
characterization of tumor growth patterns, form the most prominent ap-

plication areas, whereas clinical use, despite the increased availability 
of enhanced automated pipelines for histological processing and routine 
slide scanning, is limited by the requirement for serial sectioned sam-

ple volumes. However, in contrast to methods requiring intact tissue 
for volumetric imaging, 3D reconstruction and analysis based on serial 
histological sections can also be utilized for samples already processed 
for histology, or e.g. archived clinical samples. This opens up enormous 
possibilities and sample numbers to utilize in further research.

5.1. Limitations of the study

Despite presenting a generic pipeline for quantitative 3D character-

ization of histological samples, here we limited our analysis to mouse 
prostate tissue in an organ-level case study. Applicability in studying 
pathologies in other tissues and diseases requires 1) sufficient number 
of serial sections to cover histologically meaningful volume enabling ex-

traction of quantitative features in 3D, and 2) sufficient computational 
capacity to handle the memory and computationally intensive pairwise 
registration and computational feature extraction phases. The imple-

mentation (see: Data and Code Availability) is modular and requires 
a versatile computational software stack. Our study covers exploratory 
analysis and interpretation of the feature data and volumetric visual-

izations, while, e.g., statistical significance based feature selection or 
correlative analysis of genotype-feature (phenotype) associations need 
to be explored in subsequent studies.
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