
Testing Approaches And Tools For AWS Lambda
Serverless-Based Applications

Eetu Rinta-Jaskari
CloudSEA Group

Tampere University
Tampere, Finland

eetu.rintajaskari@gmail.com

Christopher Allen
CloudSEA Group

Tampere University
Tampere, Finland

christopher.allen@tuni.fi

Tamara Meghla
CloudSEA Group

Tampere University
Tampere, Finland

tamara.meghla@tuni.fi

Davide Taibi
CloudSEA Group

Tampere University
Tampere, Finland
davide.taibi@tuni.fi

Abstract—With serverless-based applications are increasing
their popularity, little is known on testing practices and tools
available to test serverless functions. This work aims to identify
testing approaches for serverless functions built for the Amazon
Web Services cloud platform, and to demonstrate how to im-
plement them to a full-stack application. For this purpose, we
implemented unit, integration and system tests to an existing open
source application providing insights of the testing practices and
and tools applicable. Results shows that all the testing practices
are applicable, even if there is a lack of tools to support end-to-
end tests, especially for debugging.

Index Terms—software testing, serverless testing, faas test,
lambda test, serverless function, Amazon Web Services, Lambda,
Function-as-a-Service, Infrastructure-as-Code.

I. INTRODUCTION

Serverless functions are a recent form of software that live
in the cloud. They are, first and foremost, cloud-native ap-
plications. The technology promotes building small functions,
leading the applications towards a microservice structure [1].
In the context of cloud services, serverless functions refer to
the FaaS (Function-as-a-Service) category of services provided
by cloud providers such as Google Cloud Platform (Cloud
Functions), Amazon Web Services (AWS Lambda), and Mi-
crosoft’s Azure (Azure Functions) [2]–[4].

Despite the benefits introduced by the serverless technology,
serverless-based applications faces new challenges, mainly due
to the increase of the system complexity and the reduced
observability of the system [5]–[7].

Testing serverless-based applications increases in complex-
ity, and some type of testing are more complex, compared to
traditional monolithic applications [2]. While different patterns
for composing serverless-based applications have been defined
by practitioners [8], testing practices and patterns are very
limited.

The goal of this work is to understand what testing ap-
proaches are applicable in AWS lambda-based applications
and which tools can be applied in the testing process.

For this purpose, we selected an open source serverless-
based application and we developed a set of tests using a set
of alternative tools.

We selected AWS lambda, since it is currently the most
adopted serverless platform. However, the results of this work

can be also applied in different platforms in case of non AWS-
specific tools.

The results of this work will be beneficial for practitioners
that are interested to understand how to test serverless func-
tions, and which tools can be adopted, and to researchers that
can further develop serverless-specific testing techniques and
tools.

The remainder of this paper is structured as follows. Section
2 presents related works on testing serverless-based applica-
tions. Section 3 describes the open source application we se-
lected for implementing the different tests. Section 4 presents
the testing approaches identified the the tools adopted. Section
5 Discusses results while Section 6 presents conclusions and
draws future works.

II. RELATED WORKS

In this Section, we summarize the related works on server-
less testing, considering unit, integration, and system level
testing.

As for Unit Tests, Zambrano [9], relies on running local
versions of services like traditional SQL databases for testing.
It is also possible to simulate some cloud services locally. For
example, AWS has a local executable available for their Dy-
namoDB. There are also third-party solutions, like LocalStack,
which can simulate a more extensive palette of AWS services
locally utilizing Docker containers.

In Hybrid testing, integration tests are performed with real
or simulated cloud resources while the tests are run in the
local machine. However, the cloud services, including the
serverless functions, can be placed into a private subnet that
is not accessible from the public internet1.

As for cloud-integration testing, where the serverless func-
tion is deployed in the cloud and run against real-world
services, [10]–[14] advocate for testing against real-world
cloud services as the most reliable results are achieved that
way regarding the functionality of the integrations in a real
execution scenario. There is always a level of uncertainty
regarding how well a local simulation is able to mirror its
cloud counterpart [5]. In that regard, cloud integration testing
would be the best option for validating integration into to cloud

1AWS VPC https://aws.amazon.com/vpc/



services. However, testing deployed functions in the cloud
leads in most cases to black-box testing, as there is no access
to the application runtime, making it challenging to observe
the code execution or to inject mocks. There can be scenarios
where some integration, like a payment processor, has to be
mocked, as described in the book by Simovic [13]. In this
scenario, hybrid testing is likely a better choice. In general,
serverless functions can be directly invoked through multiple
tools, including the AWS Console website and AWS CLI.
Indirect invocations are done by whatever triggers the Lambda
may have, like an API Gateway, in which case invocations can
be done via command-line tools like curl or REST clients
like Postman. A third manual technique mentioned is to
simulate the Lambda on the local machine using AWS SAM
or Serverless Framework command-line tools.

The System Testing approaches mentioned in the literature
were mainly focused on load testing and end-to-end testing.
The idea in end-to-end testing is to invoke the application by
simulating a real-world execution scenario. There are many
ways of end-to-end testing a cloud system, as there are
a plethora of use-cases and different triggers available for
serverless functions. For example, if we have an application
that is triggered by an upload to an S3 bucket, the apparent
test case would be to do just that and then monitor the invoked
Lambda for its execution. However, this kind of approach
can be challenging to implement, error-prone, and the tests
generally run for more extended periods as they might have
to rely on timers [6].

Load testing could be used to get statistical measurements of
code efficiency. However, Simovic [13] notes that the necessity
of load testing is questionable, as the performance of the
services is generally well documented and easily observable.

III. THE FULL-STACK APPLICATION

In order to understand which testing technique can be
effectively implemented in practice, and how to implement
them, we first selected an open source full-stack serverless-
based application. Then, we implemented tests at all the
different levels, using different tools.

The application selected is aimed at showcasing how full-
stack web applications can be developed using the Serverless
Framework. The application was chosen based on the follow-
ing suitability criteria:

1) The application has enough complexity to write mean-
ingful tests

2) The application is a cloud-native program with integra-
tions to other AWS services

3) The application gives a good representation of real-world
REST API applications, also in the sense that it is built
with the Serverless Framework

4) The application has sufficient documentation available
through the Git repository along with the Serverless
Framework’s online resources for test development

Based on the aforementioned criteria, we selected the
Fullstack application. A complete description of the selected
application is available in the official repository2.

A. Application Description & Architecture

The full-stack application is a simple login and registration
sample application with no other functionalities or purpose.

The back end serverless function is built using the Serverless
Framework 3, and the Express [15] framework aimed towards
building traditional REST APIs. As Express applications
are not able to work in AWS Lambda as-is, the Express
application is wrapped under the Serverless Framework’s
serverless-http package which acts as an intermediary,
converting Lambda invocations to Express requests. The ap-
plication uses AWS’ official SDK programming toolkit to in-
terface with AWS’ DynamoDB which is used to store the user
account information. The application uses a separate Express
middleware library (Passport.js) to handle authorizations
when the user logs in. Authorizations are managed using JSON
Web Tokens (JWTs)4.

As seen in Figure 1, the application consists of the front end
application hosted in an Amazon S3 bucket with CloudFront
in charge of distributing the files to the end-user client. The
back end application is hosted in AWS Lambda, which is
interfaced through an AWS API Gateway integration that is
open to connections publicly. The application is not placed
into a private cloud subnet. Therefore, access to services is
restricted only using AWS IAM (Identity & Access Manager)
roles, policies, and AWS Lambda permissions.

Fig. 1. The full-stack application architecture.

The front end application is a Single Page Application (SPA)
created with React.

In order to easily deploy the application, we adopted the
Pulumi framework. Pulumi is a framework for programmatic
cloud infrastructure management. The benefit of using IaC in

2The Full-Stack Application (original repository)
https://github.com/serverless-components/fullstack-app

3https://www.serverless.com/
4JSON Web Tokens - jwt.io

https://github.com/serverless-components/fullstack-app


combination with testing is that when the cloud infrastructure
is deployed from scratch for each test run, it is ensured that the
cloud infrastructure and the state of the services are as intended
for every test run, making the tests run more consistently.

IV. THE TESTING APPROACHES

In this Section, we describe the testing approaches we
implemented in the Full-Stack application. The application’s
repository is available at [16]. The repository also includes all
the tests and all the code developed for this work.

The original application does not have any pre-existing tests
in its Git repository. Therefore, there were not any existing
dependencies regarding testing frameworks and other tooling
choices.

We developed a complete test-suite from scratch. The com-
plete list of tests developed is available at [16]. The general
scope of the tests is the back end serverless function, with
end-to-end tests extending to the entire full-stack application.
The Pulumi application and the front end application were
not tested separately. The application tests can be found under
the directory api/tests within the GitHub repository [16].
Additional configuration for Cypress5, including the Pulumi
deployment and tear down processes, can be found under the
api/cypress directory.

The unit test suites reached a total coverage of 100% in all
areas for the testable units. The integration test cases reached a
statement coverage of 93.33%, a branch coverage of 74.07%,
a function coverage of 100%, and a line coverage of 100%.
The combined coverage is 100% in all areas.

A. Testing Tools

This section describes the tools used for testing, as well as
alternatives available.

1) General Purpose Testing Framework: The unit and in-
tegration tests for the full-stack application were implemented
using the Jest6 testing framework. Jest was developed by
Facebook, and it was chosen for the unit and integration tests
based on its simplicity, flexibility, previous experience, and
support for a wide range of frameworks and technologies,
including TypeScript. It is built for the Node.js JavaScript
runtime and is a general-purpose testing framework. Jest
comes packaged with the most common functionalities needed
in application testing; setup and tear-down processes, mocking,
assertions, snapshots, coverage statistics, parallel testing, and
support for asynchronous testing.

Alternative Frameworks There are multiple alternative
general-purpose testing frameworks for JavaScript (and Type-
Script) testing.

One alternative is Mocha [17], which has less functionality
packaged out-of-the-box compared to Jest. However, the syn-
tax and functionality offered by its API closely resemble Jests.
For example, the setup and tear-down hook functionality are
the same, with minor naming differences; the beforeAll
hook used for test preparation in Jest is equivalent to the

5Cypress https://www.cypress.io
6Jest javascript testing. https://jestjs.io/

before hook in Mocha. Mocha is often paired with addi-
tional libraries, such as Chai [18] for assertions and Sinon.JS
[19] for mocking, as it does not offer that functionality by
itself.

Jasmine [20] is another alternative testing framework offer-
ing a similar set of functionalities and API to Jest and Mocha
and has built-in support for assertions and mocking.

2) End-to-End Testing Framework: The Cypress frame-
work was chosen for E2E testing due to its ease of use, range
of features, and previous experience. Cypress is more inde-
pendent than its competitors. It relies on Selenium7, allowing
it to provide a more simple testing API for writing tests. The
test preparation process in Cypress differs slightly from Jest,
as any setup and tear-down tasks that can not be run in the
test browser need to be executed separately by implementing
a Cypress plugin. The Cypress plugins additionally allow
executing predefined back end tasks from the test suite itself.
As seen in Figure 2, Cypress also allows running the test
interactively, where it opens up the browser window allowing
the developer to view the test execution in real-time. The
interactive mode also supports viewing a specific point in
time during the test execution, including the state of the user
interface. Cypress supports Chrome, Firefox, Edge, Electron,
and Brave web browsers for test automation.

Fig. 2. Cypress in interactive mode while running tests on Chrome.

Alternative Frameworks
The Selenium framework is one of the popular choices for

E2E testing with web browsers. The Selenium WebDriver
automates browser execution natively in a somewhat simi-
lar manner to how the Cypress framework does. The key
difference is that Cypress runs within the browser, whereas
Selenium is a separate standalone application. Because of this,
Cypress is limited on features that Selenium can offer, such
as remote browser control, multiple browser tabs, multiple
parallel browsers, and being limited to one web URL per test
suite.

Besides the default Selenium WebDriver implementations,
multiple E2E frameworks and libraries are built on top of the
Selenium core or that support it through the W3C WebDriver
standard [21] derived from Selenium. For example, Night-

7Selenium https://www.selenium.dev/



watch.js and WebdriverIO both support Selenium along with
other drivers built using the aforementioned W3C standard.

B. Unit Tests

As expected, the unit tests written for the back end API are
not affected by the application being a serverless application.
For the most part, the application implementation was already
divided into small testable units, removing the need to refactor
the application code in any significant way. As the back end
application is a simple API consisting of three endpoints,
achieving a high level of test coverage was not difficult. The
unit test cases described in [16], were devised by analyzing
the pre-existing behaviour of the application code.

The path testing white-box technique was utilized in the
unit tests. The goal of the path testing technique is to test
all possible code execution paths comprehensively [22]. Each
unit was tested in isolation from other units by mocking their
implementations. The mocks were created through Jest’s spy
functionality which spies for function calls to a specified
module and injects mocks that replace the original function
implementations. The integration with AWS DynamoDB was
mocked using the mocking library aws-sdk-mock that is
available through NPM. The library provides the ability to
inject mocks to the AWS SDK library similarly as Jest does,
preventing any fundamental interactions with DynamoDB
from taking place. The main app.ts file of the API applica-
tion itself is not unit tested, as it mainly maps the controller
functions to Express HTTP endpoints which are tested through
integration testing. The Express middleware configuration used
to authorize incoming HTTP requests to the API was also left
out to be tested in the integration tests.

It is interesting to note that setting up the tests and mocks
takes more code lines to implement in general than the actual
test itself.

1) Alternative Tools & Methods: The unit tests for the full-
stack application were implemented using the Jest framework.
Alternatively, any general-purpose testing framework that sup-
ports mocking could be used. Since unit testing is white-
box testing that commonly utilizes mocks, it generally limits
tooling choices to general-purpose testing frameworks.

C. Integration Tests

The test cases are designed to test the different possible
responses yielded by requests to the API but do not aim for
the same level of branch coverage for individual units as their
unit tests. All test cases are applicable to each testing approach,
except for one test case, as it requires mocking to be reliably
reproduced, which is not possible during the cloud testing
approach without direct access to the application runtime. As
the back end application code is already implemented and the
application is small-scale, the big-bang approach was used for
integration testing.

As the back end application uses a traditional API frame-
work, Express, there are two different methods of calling the
application from the test code for local and hybrid integration
testing. The first is to invoke the wrapped Lambda handler,

which is how the application is invoked when deployed to
AWS Lambda, and would also be the default method for
testing if the application did not use a separate API framework.
The second method possible in this case, is to implement tests
using more traditional API testing methods and libraries, like
the supertest testing library available through NPM. The
main difference between these two methods is that calling the
Lambda handler function is generally slightly more laborious,
as the tests need to build and provide the handler with
appropriate invocation event and context objects from the
test code. The downside of not testing through the Lambda
handler is that the tests skip one integration layer, the wrapper.
Nevertheless, since the serverless-http8 wrapper library
itself is well tested, it is assumed that the wrapper layer works
as expected. Additionally, the wrapper layer is tested via cloud
integration testing and end-to-end testing approaches. To verify
both of the methods described here, the local integration tests
included in the GitHub repository contains two versions of
the same suites; one using the traditional API tests with the
supertest library, and the other by calling the Lambda
handler with appropriate event and context objects (found
under the handler-tests directory of the local integration
test directory).

1) Local Integration Tests: The local integration tests of
serverless functions resemble unit testing in many ways, except
that the application is tested as a single combined unit. The
method of injecting mocks stays the same, except that now
only the external integrations, like the DynamoDB queries, are
mocked. Similarly to unit testing, the path testing white-box
technique was used for local integration tests.

The benefit of local integration testing is that the tests are
fast and consistent since they are not hindered by the external
integrations thanks to the isolation. Mocking allows testing the
code extensively, although it can be a labour-intensive process.
Since the local integration testing approach relies on general-
purpose testing frameworks, incremental integration testing is
also supported. The test suites are isolated from cloud services,
and therefore there is no need to run the Pulumi application.
Therefore, there are no concerns regarding if the states of the
cloud services conflict with the tests.

The downside of local testing is that the functionality of the
DynamoDB integration is not validated. While the DynamoDB
queries are mocked to provide the same response object
structure as the real-world service, the local integration tests
alone do leave some uncertainty regarding real interactions.
It is important to make sure the mocked response objects
replicate real-world data as closely as possible when designing
the tests.

2) Hybrid Integration Tests: In the hybrid integration tests,
the full-stack application instance remains on the local ma-
chine but is connected to an actual AWS DynamoDB service.
To achieve this, the tests need to have a pre-deployed Dy-
namoDB table in AWS. This can be done by either having a
long term testing environment or automating the infrastructure

8https://www.npmjs.com/package/serverless-http



deployment as a part of the test suite. In the latter approach,
there is no concern regarding what data may already be in
the DynamoDB table, but the deployment process introduces
an overhead in execution time. With the former approach, the
overhead is avoided, but special care needs to be taken when
designing and preparing tests so that there are no remnants of
previous test runs in the database that may conflict with new
test runs. Running the tests against cloud services also incurs
time overhead due to network connections, and the hybrid tests
are therefore slower than local integration tests run against
mocks.

The benefit of hybrid testing is that the tests validate the
actual integration with the DynamoDB service while enabling
the injection mocks to the application runtime. This aspect
allows simulating various test scenarios (edge cases) that are
unlikely to occur in a production environment akin to local
integration testing, which would be difficult to achieve with
cloud integration tests. A downside to the hybrid approach
is that the test suites do not test the integration of the entire
back end cloud infrastructure, namely the integration between
AWS Lambda and DynamoDB. The hybrid testing approach
supports incremental integration testing alongside the big-bang
approach, as it supports mocking.

The implemented hybrid tests are set to deploy the infras-
tructure with the Pulumi application before running. Currently,
as there is only one test suite for hybrid testing the full-stack
application, the infrastructure deployment is handled there. If
there would be multiple files of tests (testing suites) or other
tests that want to be run against the cloud infrastructure si-
multaneously, then the deployment procedure could be moved
to Jest’s global configuration. The Jest configuration allows
setting up global setup and tear-down scripts. Alternatively,
the tests could be refactored to support pre-existing cloud
infrastructure.

3) Cloud Integration Tests: The cloud integration tests are
different from the other approaches because there is no access
to the eventual function runtime, and therefore mock injection
is not possible. This obstacle limits the possible testable
scenarios, and testing edge cases becomes difficult. The back
end application is deployed entirely to the cloud infrastructure,
and tests are run against the AWS API Gateway endpoint.
The additional benefit of this approach is that it tests the
correctness of the back end infrastructure configuration, the
Pulumi application. Coverage statistics cannot be collected
for the tests without access to the application runtime, as the
general-purpose testing framework cannot observe the code
execution.

As cloud integration tests rely on the cloud infrastructure,
issues such as Lambda cold starts need to be accounted for in
the tests. For example, a cold start can quickly slow down the
test to a point where the default timeouts of testing frameworks
are exceeded, leading to tests failing even though nothing went
wrong.

The same supertest testing library used in the local
and hybrid approaches is used for the cloud tests. The library
supports connecting directly to external endpoints through a

web URL (Uniform Resource Locator) in addition to testing
the Express application directly, which was the case in the
local and hybrid approaches. Similarly to the hybrid tests, the
full-stack application’s cloud tests are set up to deploy the
infrastructure via the Pulumi application before the tests.

Cloud integration testing starts to shift slightly over to
end-to-end testing territory, as the REST API is technically
one non-graphical User Interface (UI). However, E2E tests
generally have a broader scope, e.g. testing the system through
the front end application. The cloud integration testing method
only supports the big-bang approach of integration testing,
where all modules need to be implemented and are tested
simultaneously.

4) Alternative Tools & Methods: The integration tests were
implemented for the full-stack application using the general-
purpose Jest framework. This choice made it easy to make mi-
nor modifications to the same set of tests to fit each approach.
As an alternative to Jest, the tests could be implemented using
any other general-purpose testing framework.

Additionally, when it comes to cloud integration testing,
there are multiple alternative methods available for implement-
ing the tests, depending on the type of the application. Since
the back end application is an HTTP API, an alternative way
to test the API is by using REST clients such as Postman 9 that
have built-in support for building automatic API testing suites.
For a more general method for all types of Lambdas, AWS
offers a test harness that invokes the Lambda directly 10. A
similar direct invocation type of testing can also be achieved by
using the previously discussed CLI tools offered by Amazon
that can invoke the function from the command-line, which
can then be used in combination with command-line scripts for
automation. Additionally, the Pulumi framework could be used
for cloud integration testing, as its integration testing phase
supports runtime testing of the deployed application itself 11.

For the hybrid approach, it is possible to run Lambdas
locally by using the Serverless Framework CLI3, along with
other CLI tools such as those offered by Amazon 12. The
local Lambda instance can then be used with API test suites,
including the current set of tests through minor modifications.
Most CLI tools also support invoking the Lambda function
with some event directly on the local machine. The down-
side of these alternative methods is that they generally do
not support mocking, nor can they offer coverage statistics,
diminishing some of the approach’s benefits and limiting the
possible testing scenarios.

D. System Tests

When end-to-end testing full-stack applications, it is primar-
ily done by opening the front end application in a browser,
usually a headless browser controlled by the test program.
Headless browsers are regular web browsers executed in the

9https://www.postman.com
10https://aws.amazon.com/blogs/compute/serverless-testing-with-aws-

lambda/
11https://www.pulumi.com/
12https://aws.amazon.com/tools/



background that have the added benefit of rendering web pages
the same way as if an end-user used them. Because headless
browsers render the web page entirely, it is possible to take
screenshots and video recordings while testing, which helps
analyze the test results and troubleshoot the tests themselves.
The Cypress testing API is designed in a way where asyn-
chronous actions like clicks, page loads, and HTTP requests
to back end services are handled automatically.

The E2E test cases listed in [16], are based on the available
actions and features on the front end application. After each
test case is run, Cypress returns to its original state and
navigates to the application front page. All internal browser
stores and cookies are reset for each test case. The test
suite is set to deploy the entire infrastructure via the Pulumi
application by default. However, it is also possible to pass
on a pre-deployed front end application URL to Cypress
using environment variables, skipping the Pulumi deployments
altogether. Each time, the tests generate a new user. There
is no separate clean-up procedure outside of destroying the
Pulumi application infrastructure altogether at the end of
testing, allowing multiple test runs to be executed on the same
infrastructure.

There are some challenges to E2E testing. For example,
unexpected network failures can happen during tests. Tests
can also time out if an HTTP request to a back end service
takes longer than expected, which is a realistic scenario with
serverless applications that suffer from cold-starts. The timeout
for the first requests sent to the back end Lambda had to be
increased in the E2E tests to account for the cold start. Since
tests generally should not rely on previous tests to pass for
consistency, all phases of a test dealing with the back end
Lambda should account for cold starts unless the test suite is
set up to warm up the Lambda function beforehand.

1) Alternative Tools & Methods: Since E2E testing, by
definition, is testing the entire application flow through a user
interface, there are no alternative methods for E2E testing.
Alternative E2E testing frameworks can always be used, which
were discussed more in Section IV-A2.

When it comes to other system testing approaches outside of
E2E, the implementation of load tests for Lambda APIs does
not differ from load testing any common API, as Lambdas
similarly have an endpoint available through the AWS API
Gateway. For Lambdas with other types of triggers, load
testing can be done using AWS’ Lambda testing harness10 or
by some other similar tool that invokes the Lambda in parallel.
However, as highlighted in Section II, the overall necessity of
load and stress testing Lambdas is questionable as they scale
automatically to answer the load within known limits.

The Figure 3 shows the back end Lambda’s execution
flow for the applied integration testing approaches. The local
integration tests are cut-off from AWS cloud via mocking,
whereas hybrid integration tests use the DynamoDB service.
The cloud tests are executed by calling the API Gateway
endpoint. If the cloud tests were implemented by invoking the
Lambda directly instead of HTTP requests through the API
Gateway, the API Gateway service could be removed entirely.

Fig. 3. Test execution flow graph of the integration testing approaches for
the back end Lambda.

V. DISCUSSION

As expected, unit testing was not impacted in a signifi-
cant way due to the serverless application model. However,
the need for mocking became more emphasized with the
integrations to external services. The use of cloud vendor-
specific SDKs increases the complexity of mocking, but it
was discovered that there are mocking libraries available for
the Node.js runtime to overcome that challenge.

Integration testing was impacted by the serverless appli-
cation model. The full-stack application’s integration tests
required either mocking for isolation from the cloud services
or pre-deployed service infrastructure to run against. Local
integration testing utilizing mocks is a good approach to
test the application itself but leaves uncertainty regarding
integrations to cloud services. Hybrid and cloud integration
tests can validate these integrations, and hybrid testing pro-
vides a middle ground between the two approaches. Hybrid
integration testing supports mocking akin to local testing while
requiring less cloud infrastructure than cloud testing. Hybrid
testing is also able to provide test coverage information, unlike
cloud testing. On the other hand, cloud testing provides more
realistic results regarding how the application behaves in a
real-world production-like execution environment.

The serverless application model did not impact the demon-
strated end-to-end system testing approach itself in a sig-
nificant way. However, the dependency on dynamic cloud
infrastructure does introduce some challenges. E2E testing
requires an endpoint URL to attach to, which can be dynamic
depending on the infrastructure used in the tests. The URL
of a pre-deployed CloudFront distribution has to be retrieved
beforehand and fed to the test suite, or the cloud infrastructure
needs to be deployed as part of the test setup process,
significantly prolonging test execution.



1) Complexity of Testing: Implementing the tests them-
selves was a relatively straightforward process. The application
implementation was ready to be tested and simple to under-
stand. Mocking was not difficult, thanks to the pre-existing
mocking library for the AWS SDK, as well as Jest’s mocking
features. The same test cases for the integration tests could be
easily applied to each approach with only minor changes to
the test suites.

The most complex part of the testing was the cloud infras-
tructure itself. The application used the Serverless Framework
for deployments, which is primarily a command-line tool.
Additionally, the original implementation used the Serverless
Framework Components, which do not give out much in-
formation or control regarding the infrastructure itself. The
infrastructure had to be manually converted to a traditional
Serverless Framework definition format, and later on, the
Pulumi application. The infrastructure definitions had to be
manually collected using the information available through
the AWS Web Console once the original implementation had
been deployed. However, once the infrastructure management
had been converted to the Pulumi IaC application, it was easy
to incorporate infrastructure automation into the tests through
Pulumi’s automation API.

Without the automated infrastructure management, running
the tests is more cumbersome and requires more setup if
placed into a CI pipeline. Without the automation API, the
infrastructural information, like API Gateway endpoints and
DynamoDB table names, would need to be resolved from
AWS separately and passed to the tests using environmental
configurations. Additionally, the tests and infrastructure would
need to be designed so that consequent test runs do not conflict
with each other.

VI. CONCLUSION

In conclusion, this work has explored practical approaches
for testing AWS Lambdas, and demonstrated how they can be
applied in practice.

The results show that serverless applications built on FaaS
can be unit, integration, and system tested using various
approaches. Three distinct approaches for integration testing
were identified in the source literature; local, hybrid, and
cloud. Each of these approaches come with advantages and
disadvantages that were discussed. The general suggestion
based on the results is to run tests against real-world cloud
services either in integration or system tests, or both, to ensure
the integrations to cloud services are functioning as expected.
However, when considering end-to-end testing, different sys-
tems might require different testing approaches and tooling,
which will be part of future investigation. The reliability of

This work was limited to discovering testing approaches for
applications built for the AWS cloud platform. Therefore, we
can see an opening for future work to explore the different
approaches applicable in other cloud platforms and globally

locally simulated cloud services in regards to hybrid testing is
also an open issue currently.
applicable approaches, including serverless-based systems de-
ployed on other platforms, but also on edge [23], [24].

REFERENCES

[1] J. Nupponen and D. Taibi, “Serverless: What it is, what to do and
what not to do,” in 2020 IEEE International Conference on Software
Architecture Companion (ICSA-C), 2020, pp. 49–50.

[2] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” in Research
Advances in Cloud Computing, 2017, pp. 1–20.

[3] N. Kratzke, “A brief history of cloud application architectures,” Applied
Sciences, vol. 8, no. 8, 2018.

[4] D. Taibi, J. Spillner, and K. Wawruch, “Serverless computing-where are
we now, and where are we heading?” IEEE Software, vol. 38, no. 1, pp.
25–31, 2021.

[5] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of function-as-a-service software development in indus-
trial practice,” The Journal of systems and software, vol. 149, 2019.

[6] V. Lenarduzzi and A. Panichella, “Serverless testing: Tool vendors’ and
experts’ points of view,” IEEE Software, vol. 38, no. 1, pp. 54–60, 2021.

[7] V. Lenarduzzi, J. Daly, A. Martini, S. Panichella, and D. A. Tamburri,
“Toward a technical debt conceptualization for serverless computing,”
IEEE Software, vol. 38, no. 1, pp. 40–47, 2021.

[8] D. Taibi, N. El Ioini, P. Claus, and J. R. S. Niederkofler, “Patterns
for serverless functions (function-as-a-service): A multivocal literature
review,” in Proceedings of the 10th International Conference on Cloud
Computing and Services Science - Volume 1: CLOSER,, INSTICC.
SciTePress, 2020, pp. 181–192.

[9] B. Zambrano, Serverless Design Patterns and Best Practices, 1st ed.
Packt Publishing, 2018.

[10] J. Katzer, Learning Serverless. O’Reilly Media Inc, 2020.
[11] J. Chapin, Programming AWS Lambda : build and deploy serverless

applications with Java, 1st ed. Sebastopol, California: O’Reilly, 2020.
[12] S. Patterson, Learn AWS Serverless Computing: A Beginner’s Guide to

Using AWS Lambda, Amazon API Gateway, and Services from Amazon
Web Services. Birmingham: Packt Publishing, Limited, 2019.

[13] A. Simovic and S. Stojanovic, Serverless Applications with Node.js,
1st ed. Manning Publications, 2019.

[14] D. Zanon, Building serverless web applications : build scalable web
apps using Serverless Framework on AWS, 1st ed. Birmingham,
England: Packt Publishing, 2017.

[15] OpenJS Foundation. (2021) Express - node.js web application
framework. [Online]. Available: https://expressjs.com/

[16] Eetu Rinta-Jaskari. (2021) Serverless testing practices for aws lambdas.
[Online]. Available: https://github.com/clowee/fullstack-app

[17] The OpenJS Foundation. (2021) Mocha - the fun, simple, flexible
javascript testing framework. [Online]. Available: https://mochajs.org/

[18] Chai.js. (2021) Chai. [Online]. Available: https://www.chaijs.com/
[19] Sinon. (2021) Sinon.js - standalone test fakes, spies, stubs and mocks

for javascript. [Online]. Available: https://sinonjs.org/
[20] Pivotal Labs. (2021) Jasmine - a javascript testing framework. [Online].

Available: https://github.com/jasmine/jasmine/
[21] World Wide Web Consortium (W3C). (2021) Webdriver. [Online].

Available: https://w3c.github.io/webdriver/
[22] A. Verma, A. Khatana, and S. Chaudhary, “A comparative study of black

box testing and white box testing,” International Journal of Computer
Sciences and Engineering, vol. 5, no. 12, pp. 301–304, 2017.

[23] N. El Ioini, D. Hästbacka, C. Pahl, and D. Taibi, “Platforms for serverless
at edge: A review,” in 1st International Workshop on Edge Migration
and Architecture, 09 2020.

[24] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: Vision and challenges,” in 2021 Australasian Computer
Science Week Multiconference, ser. ACSW ’21, 2021.

View publication statsView publication stats

https://expressjs.com/
https://github.com/clowee/fullstack-app
https://mochajs.org/
https://www.chaijs.com/
https://sinonjs.org/
https://github.com/jasmine/jasmine/
https://w3c.github.io/webdriver/
https://www.researchgate.net/publication/358138859

	Introduction
	Related Works
	The Full-Stack Application
	Application Description & Architecture

	The Testing Approaches
	Testing Tools
	General Purpose Testing Framework
	End-to-End Testing Framework

	Unit Tests
	Alternative Tools & Methods

	Integration Tests
	Local Integration Tests
	Hybrid Integration Tests
	Cloud Integration Tests
	Alternative Tools & Methods

	System Tests
	Alternative Tools & Methods


	Discussion
	Complexity of Testing

	Conclusion
	References

