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A B S T R A C T

This paper proposes a novel modelling approach for a heavy-duty manipulator with parallel–
serial structures connected in series. Each considered parallel–serial structure contains a revolute
segment with rigid links connected by a passive revolute joint and actuated by a linear hydraulic
actuator, thus forming a closed kinematic loop. In addition, prismatic segments, consisting
of prismatic joints driven by hydraulic linear actuators, also are considered. Expressions for
actuator forces are derived using the Newton–Euler (N–E) dynamics formulation. The derivation
process does not assume massless actuators decoupled from manipulator links, which is common
in the Lagrange dynamics formulation. Actuator pressure dynamics are included in the analysis,
leading in total to a third-order system of ordinary differential equations (ODEs). With fewer
parameters than its predecessors, the proposed model in the N–E framework inspires revision
of the virtual decomposition control (VDC) systematic process to formulate a control law based
on the new model. The virtual stability of each generic manipulator revolute and prismatic
segment is obtained, leading to the Lyapunov stability of the entire robot.

. Introduction

Mathematical modelling and model-based control have drawn much attention in the field of electrically driven robots, as in [1–4].
Hydraulic actuators have higher power-to-weight ratio and robustness and less cost compared to their electric counterparts for

iven payloads. In addition, they can generate high force/torque without overheating, and load holding can be carried out without
ny energy use, as reported in detail in [5].

Hydraulic robotic manipulators also are receiving attention, primarily because different original equipment manufacturers invest
ast resources in developing automated solutions for their products, as recounted in more detail in [6]. Aspirations to increase
roductivity and reduce human error, operating costs and energy consumption are bound to change heavy-duty working machines
nto field-robotic systems. In addition to all this, a high number of units sold, together with the substantial growth in market size
hat is projected, further motivates hydraulic robotics research [7].

Nonlinear model-based (NMB) control techniques have stood out as being able to provide the most advanced control performance
or hydraulic robotic manipulators, exploiting the highly nonlinear mathematical model of a manipulator and the desired motion
ynamics [7,8]. These model-based methods in motion control rely predominantly on explicit equations of motion (EOMs).
mplementing these controllers requires solving the inverse dynamics problem, i.e. calculating the forces/moments required to
roduce linear/angular accelerations in a rigid-body system. When using these calculations in real-time motion control, the choice
f a modelling framework and a computationally efficient inverse dynamics algorithm is highly significant. No less important is the
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proper formulation of feedback terms, which are bound to exist in the control law to ensure closed-loop stability. Thus, it is also
desirable for a modelling framework to be in line with the systematic addressing of closed-loop stability.

Among the various approaches for dynamics modelling, the Lagrange formulation, based on the kinetic and potential energy,
nd the N–E formulation, based on the balance of forces acting on a rigid manipulator link, are the two most common [9], and
he N–E approach is considered more fundamental [10]. Apart from these two most frequently employed formalisms, varieties of
ane’s equations [11] also have been used to model different manipulators.

The Lagrange formulation has been used extensively to model revolute segments of parallel–serial manipulators with passive
evolute joints actuated by linear actuators. In the mainstream of this kind of approach, a hydraulic robot with closed kinematic
oops is modelled mainly as a series of nearly rigid bodies in a kinematic chain, with linear actuators considered decoupled from
anipulator links and usually approximated as massless. This removes the need to calculate the Lagrange multipliers, [12]. However,

he question of modelling accuracy is raised since discrepancies in dynamics calculations may exist at high velocities, where actuator
nertial forces can significantly affect the system dynamics. At zero velocity, actuator masses also induce forces/moments of a
ertain magnitude. Notable examples of this kind of simplified modelling, using the Lagrange formalism, can be found in [13–
5]. The equivalent piston and cylinder mass notion has been a step closer to a more accurate model in [8], but closed-loop
inematics were not considered. Even with these a priori approximations, after including actuator dynamics, control of a hydraulic
anipulator, described with a third-order model in the form of ODEs, using specific NMB techniques such as feedback linearisation

r backstepping, introduces significant complexities.
A dynamics model of a hydraulic excavator with closed kinematic loops containing passive revolute joints and linear actuators

lso has been given in the form of Kane’s equations in [16]. However, this neglected the masses of the hydraulic actuators, and it
id not deal with closed-loop kinematics. A complete and general dynamics model without any approximations, together with the
etermination of actuator forces for rigid links connected with passive joints, actuated by the electrically driven linear actuators,
s given in [17]. Kane’s equations, obtained by combining screw theory and the principle of virtual work, were used. Actuator
ynamics and a control algorithm were not included.

The reformulation of the N–E approach, using 6D (spatial) vectors, given in [18], has had the most notable use in the virtual
ecomposition control (VDC) community. It has become a central modelling tool, which has been proven in real-time control
pplications and has shown superior performance, [7].

In the VDC approach, any manipulator is divided into several modular subsystems. Kinematics and dynamics of each subsystem
btained after the decomposition are being separately analysed. Relying on the notions of required velocity and required force,
s will be demonstrated, and taking full advantage of the N–E dynamics, the stability of the entire robot with actuator dynamics
ccounted can be rigorously guaranteed by systematically choosing control laws at the subsystem level, without imposing additional
pproximations.

Control action in VDC predominantly relies on feed-forward terms that, in essence, generate actuation forces based on inverse
ynamics. Feedback exists to overcome uncertainties, maintain stability and address transition issues. With careful choice of control
alues, virtual stability (see Definition 4) on the level of each particular manipulator segment can be achieved. The virtual stability
f every manipulator segment (revolute or prismatic) per se will guarantee the equivalent of Lyapunov stability, 𝐿2 and 𝐿∞, stability
f the entire robot [19].

The modularity in the VDC approach arises because changing the control (or dynamics) equations of one subsystem does not
ffect the control equations of the rest of the system. This property makes the VDC a candidate for a leading control technique in
uture industrial innovations since the modularity property is crucial for handling complexity, as discussed in [20].

Many SoA real-world robotics control performances have been reported for both hydraulic and electric actuators in the VDC
ramework, such as [21–26]. A performance index 𝜌 that presents the ratio of a maximum absolute position error and maximum
bsolute velocity, see [7], has often been used for benchmarking. A small value of this performance index (which indicates high
erformance) is obtained in all works assumed to be SoA and which rely on accurate system modelling.

Depending on how the virtual decomposition is performed, governing sets of EOMs vary since reaction forces are different at
ifferent virtual cutting points (VCPs). Thus, the most convenient way to decompose the manipulator is to determine the least
umber of subsystems, accompanied by the least number of parameters having a clear physical interpretation. At any rate, the
inal values of actuator forces/moments must remain the same, irrespective of the decomposition. Furthermore, it is necessary to
mphasise that control computations in the VDC are proportional to the number of subsystems (see [19]), and every additional
ubsystem means that more on-line computational burden is added. A simple mass object, observed as a subsystem with 𝑁 DOFs,
ntroduces a need to form at least 4𝑁 additional equations since substantial quantities as total forces, forces, required total forces,
nd required forces must be calculated as will be elaborated in more detail. Different transformation matrices, on-line parameter
alue updates in adaptive control, and others may also be required.

This paper contributes with the novel mathematical model in the N–E framework, using 6D vectors, to address the dynamics of the
onsidered class of hydraulic manipulators. The proposed model has the following new essential properties: (1) the required number
f virtual subsystems in the analysis of the manipulator dynamics is decreased, (2) the straightforward expression for the actuator
orces is derived, free of many surplus factors used earlier, (3) the model can be easily incorporated into the VDC framework,
roviding the simplified control forming process and guaranteeing stability.

The more detailed descriptions of the above contributions are as follows:
(1) A general manipulator from Fig. 1, containing revolute segments with a closed kinematic loop and prismatic segments

onnected in series, can be decomposed into fewer subsystems than in the VDC mainstream approach.
2
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Fig. 1. Virtual decomposition of a manipulator using the approach presented here.

Fig. 2. Virtual decomposition of a manipulator in the VDC mainstream.

Fig. 3. Comparing virtual decompositions of relevant manipulator segments.

Fig. 2 shows the same general manipulator decomposition resulting from the prevailing VDC approach. Fig. 3 compares in
ore detail virtual decompositions using the currently widely accepted and here presented approach. As Fig. 3(a) shows, a revolute

egment followed by another revolute segment now has one less subsystem in the analysis, and Fig. 3(b) shows that the same applies
o a revolute segment followed by a prismatic segment.

Considering that prismatic segments are a minority compared to revolute segments, this result is more striking, since a robot
onsisting of 𝑛 revolute segments in series will now have 𝑛 subsystems instead of 2 𝑛. This means that at least 4 𝑛𝑁 fewer equations
ill be formed in the process.

Apart from the decrease of computational load, the preparation process is shortened since fewer inertia tensors, masses, and
osition vectors have to be known and thus determined using CAD software or identified.
(2) Dynamic interconnections between subsystems in the stated structures with closed kinematic chains have been strictly

ddressed using the so-called load distribution factors and internal force vectors in the existing VDC literature and papers. Analytic
xpressions for these did not exist until they were derived and validated in [27], and since then are widely used. The broader use
f derived expressions is hindered by them being overly burdensome, which is a pity considering their potential real-world impact.

This paper shows that both load distribution factors and internal force vectors are surplus terms when calculating actuator forces
n these manipulators. Actuator forces are now calculated using a computationally more efficient procedure. Apart from the decrease
3
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of the computational load, clarity for the broader audience of readers is increased. The new model also makes the identification
procedures more intuitive and makes all subsequent analyses less complex.

(3) Finally, a systematic process for formulating the control law using the new mathematical model is presented. Respective
qualities of the model are passed to this new VDC implementation scheme, making it consequently more intuitive and requiring less
on-line computations than earlier schemes. All the related stability proofs can be easily derived using the new model.

The rest of the paper is organised as follows. Section 2 presents essential mathematical preliminaries used for modelling, control
ormulation and stability analysis. Section 3 presents kinematics and dynamics analysis with central theoretical modelling results
resented here. Sections 4 and 5 present how to form control values and provide stability of the whole manipulator. Section 6
resents an algorithm for the systematic formulation of control law. Section 7 validates the theoretical results by comparing them
o results obtained using a commercial software package. Section 8 provides a discussion of the results. Section 9 presents the
onclusions. Proofs of theorems are given in appendices.

. Mathematical foundations and some VDC preliminaries

All the preliminaries in this section are reproduced from [19], where relevant proofs for the theorems stated here can be found.

.1. Dynamics of a rigid body

Every rigid body in the analysis will have at least one three-dimensional coordinate system {𝐀} (called frame {𝐀} in the following
text) attached to it.

Let the linear and angular velocities as sensed in frame {𝐀} be denoted throughout the paper as 𝐀𝒗 =
(𝐀𝑣x 𝐀𝑣y 𝐀𝑣z

)𝑇 and
𝐀𝝎 =

(𝐀𝜔x
𝐀𝜔y

𝐀𝜔z
)𝑇 , respectively. Further, adopting the notation from [19], the 6D linear/angular velocity vector of frame

{𝐀} can be written as:
𝐀𝑽 =

(𝐀𝒗𝑇 𝐀𝝎𝑇 )𝑇 ∈ R6. (1)

Let the force and moment vectors applied to the origin of frame {𝐀} be similarly denoted as velocities using notation 𝐀𝒇 =
𝐀𝑓x 𝐀𝑓y 𝐀𝑓z

)𝑇 for forces and notation 𝐀𝒎 =
(𝐀𝑚x

𝐀𝑚y
𝐀𝑚z

)𝑇 for moments.
Same as the 6D linear/angular velocity vector in Eq. (1), the 6D force/moment vector, as sensed and expressed in frame {𝐀}, is

ntroduced as:
𝐀𝑭 =

(𝐀𝒇𝑇 𝐀𝒎𝑇 )𝑇 ∈ R6. (2)

Further, let frame {𝐁} also be attached to the same rigid body as frame {𝐀}. Also, moving the force from the frame {𝐀} origin
o the frame {𝐁} origin introduces the moment of that force about the frame {𝐁} origin. Consequently, quantities from Eqs. (1) and
2) transform as:

𝐁𝑽 = 𝐀𝐔𝑇
𝐁

𝐀𝑽 , (3)

nd
𝐀𝑭 = 𝐀𝐔𝐁

𝐁𝑭 , (4)

here 𝐀𝐔𝐁 ∈ R6×6 in Eqs. (3) and (4) is a force/moment transformation matrix, transforming the force/moment vector measured
nd expressed in frame {𝐁} to the same force/moment vector measured and expressed in frame {𝐀}. The transformation matrix can
e further written as:

𝐀𝐔𝐁 =
( 𝐀𝐑𝐁 𝐎3×3
(𝐀𝒓𝐀𝐁×

) 𝐀𝐑𝐁
𝐀𝐑𝐁

)

, (5)

here 𝐀𝐑𝐁 ∈ R3×3 is a rotation (direction cosine) matrix from frame {𝐀} to frame {𝐁}, and
(𝐀𝒓𝐀𝐁×

)

is a skew-symmetric matrix
perator defined as:

(𝐀𝒓𝐀𝐁×
)

=
⎛

⎜

⎜

⎝

0 −𝑟z 𝑟y
𝑟z 0 −𝑟x
−𝑟y 𝑟x 0

⎞

⎟

⎟

⎠

, (6)

ith 𝑟x, 𝑟y and 𝑟z denoting distances from the origin of frame {𝐀} to the origin of frame {𝐁} along the frame {𝐀} 𝑥-, 𝑦- and 𝑧-axis,
espectively.

The net force/moment vector 𝐀𝑭 ∗ ∈ R6 of the rigid body, in frame {𝐀} is:

𝐌𝐀
d
d𝑡

(𝐀𝑽
)

+ 𝐂𝐀
(𝐀𝝎

) 𝐀𝑽 +𝐆𝐀 = 𝐀𝑭 ∗, (7)

here 𝐌𝐀 ∈ R6×6 is the mass matrix, 𝐂𝐀
(𝐀𝝎

)

∈ R6×6 is the matrix of Coriolis and centrifugal terms and 𝐆𝐀 ∈ R6 includes the
4

ravity terms. Detailed expressions describing these matrices are given in [19].
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2.2. Required velocities and required forces/moments

The required velocity is a significant notion in the VDC framework, and it differs from the desired velocity. While the desired
elocity serves as the reference trajectory of velocity with respect to time, the required velocity includes both the desired velocity
nd one or more terms that are related to control errors, such as position and force errors. When the control objective is to make
robot track its desired trajectory, it is required that the desired position and desired velocity from the path generator match as

etter as possible the measured velocity and position. If the control is performed in the joint space with the goal to track the given
rajectory (we note that the required trajectory tracking can also be designed directly in the Cartesian space as shown in Section
.3.6 in [19]), then the required joint velocities can be formed as:

�̇�𝑗𝑟 = �̇�𝑗𝑑 + 𝜆𝑞𝑗
(

𝑞𝑗𝑑 − 𝑞𝑗
)

,

if the joint is revolute, or as:

�̇�𝑡𝑗𝑟 = �̇�𝑡𝑗𝑑 + 𝜆𝑥𝑗
(

𝑥𝑡𝑗𝑑 − 𝑥𝑡𝑗
)

,

if the joint is prismatic, where �̇�𝑗𝑑 is the desired revolute joint angular velocity, 𝑞𝑗𝑑 is the desired revolute joint angle, 𝑞𝑗 is the
easured revolute joint angle, �̇�𝑡𝑗𝑑 is the desired prismatic joint linear velocity, 𝑥𝑡𝑗𝑑 is the desired prismatic joint linear extension,
𝑡𝑗 is the measured prismatic joint extension with 𝜆𝑥𝑗 , 𝜆𝑞𝑗 > 0, being positive adjustable parameters.

Once the required joint velocities are obtained, the required linear/angular velocity vectors in any frame {𝐀}, labelled as 𝐀𝑽 𝑟 are
ormed just by following relations in the kinematic chain, going from the manipulator base to the tip and replacing �̇�𝑗 with �̇�𝑗𝑟 and
�̇�𝑡𝑗 with �̇�𝑡𝑗𝑟. The only additional effort in the case of closed kinematic loops considered here would be to relate required velocities
n kinematic closed-loops using the loop-closure functions, as will be shown in more detail. Required force/moment vector presents
standard notion in the VDC and is defined as:

𝐌𝐀
d
d𝑡

(𝐀𝑽 𝑟
)

+ 𝐂𝐀
(𝐀𝝎

) 𝐀𝑽 𝑟 +𝐆𝐀 +𝐊𝐀
(𝐀𝑽 𝑟 − 𝐀𝑽

)

= 𝐀𝑭 ∗
𝑟 , (8)

here 𝐊𝐀 ∈ R6×6 is a positive-definite matrix. Its forming is based on Eq. (7), and usage will be addressed in more detail later in
he paper.

.3. 𝐿2 And 𝐿∞ functions

efinition 1 ([19]). The Lebesgue space, denoted as 𝐿𝑝 with 𝑝 being a positive integer, contains all Lebesgue measurable and
ntegrable functions 𝑓 (𝑡):

‖𝑓 (𝑡)‖𝑝 = lim
𝑇→∞

[

∫

𝑇

0
|𝑓 (𝑡)|𝑝 𝑑𝜏

]1∕𝑝

< +∞. (9)

(a) A Lebesgue measurable function 𝑓 (𝑡) ∈ 𝐿2 if and only if

lim
𝑇→∞∫

𝑇

0
|𝑓 (𝑡)|2 𝑑𝜏 < +∞.

(b) A Lebesgue measurable function 𝑓 (𝑡) ∈ 𝐿∞ if and only if
max

𝑡∈[0,+∞)
|𝑓 (𝑡)| 𝑑𝜏 < +∞.

emma 1 ([28]). If 𝑒(𝑡) ∈ 𝐿2 and �̇�(𝑡) ∈ 𝐿∞ then lim
𝑡→∞

𝑒(𝑡) → 0.

2.4. Virtual stability

Simple oriented graphs are used to represent the topological structure and control relations of a complex robot.

Definition 2 ([19]). A graph consists of nodes and edges. A directed graph is a graph in which all the edges have directions. An
oriented graph is a directed graph in which each edge has a unique direction. A simple oriented graph is an oriented graph in which
no loop is formed.

Virtual power flow (VPF) is an essential feature of the VDC approach. VPF defines dynamic interactions between subsystems per
Definition 3, and it plays a vital role in virtual stability, which is given with Definition 4.

Definition 3 ([19]). With respect to frame {𝐀}, virtual power flow (VPF) is defined as the inner product of the linear/angular
velocity vector error and the force/moment vector error, that is:

𝑝𝐀 =
(𝐀𝑽 𝑟 − 𝐀𝑽

)𝑇 (𝐀𝑭 𝑟 − 𝐀𝑭
)

, (10)

where 𝐀𝑽 − 𝐀𝑽 ∈ R6, 𝐀𝑭 − 𝐀𝑭 ∈ R6.
5

𝑟 𝑟
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Definition 4 ([19]). A subsystem that is virtually decomposed from a complex robot is said to be virtually stable, with its affiliated
ector 𝐱(𝑡) being a virtual function in 𝐿∞ and its affiliated vector 𝐲(𝑡) being a function in 𝐿2, if and only if there exists a non-negative

accompanying function:

𝜈 ⩾ 1
2
𝐱(𝑡)𝑇 𝐏 𝐱(𝑡), (11)

such that

�̇� ⩽ −𝐲(𝑡)𝑇 𝐐𝐲(𝑡) − 𝑠(𝑡) + 𝑝𝐀 − 𝑝𝐂 (12)

holds, subject to:

∫

∞

0
𝑠(𝑡)𝑑𝜏 ⩾ −𝛾𝑠, (13)

where 0 ⩽ 𝛾𝑠 ⩽ ∞, and 𝐏 and 𝐐 are two block-diagonal positive-definite matrices, and 𝑝𝐀 and 𝑝𝐂 denote the sum of VPFs in the
sense of Definition 3 at frames {𝐀} (placed at driven VCPs) and {𝐂} (placed at driving VCPs).

In Definition 4, 𝑠(𝑡) = 0 is a special case that satisfies the definition.
In Definition 4 a virtual function in 𝐿𝑝 is a candidate function in 𝐿𝑝 for 𝑝 = 2,∞. A virtual function in 𝐿𝑝 becomes a function in

𝐿𝑝 when every subsystem of a complex robot is virtually stable.
The unique characteristic of virtual stability is that VPF appears in the time derivative of the non-negative accompanying function

assigned to each subsystem. These VPFs represent the dynamic interactions among subsystems. All the VPFs in the system cancel
out since one subsystem’s driven point is the driving point of the adjoined subsystem and virtual power flows are the same, except
that they have opposite signs.

Theorem 2 ([19]). Consider a complex robot that is virtually decomposed into subsystems and is represented by a simple oriented graph
in Definition 2. If every subsystem is virtually stable in the sense of Definition 4, then all virtual functions in 𝐿2 are functions in 𝐿2 and all
virtual functions in 𝐿∞ are functions in 𝐿∞.

Theorem 2 makes it possible to focus on the virtual stability of every subsystem in lieu of ensuring the stability of the entire
robot.

3. Kinematics and dynamics of a generic manipulator structure

The following analysis considers the 𝑗th generic manipulator structure, as shown in Fig. 4. It consists of a revolute and a prismatic
segment. Without loss of generality, it can be assumed that the prismatic segment has only one linear hydraulic actuator for clarity.

The hydraulic manipulator consists of 𝑛 structures like this in series, whereas prismatic segments might not exist in every
structure, depending on the analysed configuration.

3.1. Virtual decomposition

In the analysis of the closed kinematic loop, virtual cutting can be performed, and open kinematic tree structures are obtained
as the first step [29–31]. Virtual cutting points are also significant in the VDC approach as separation interfaces that conceptually
cut through a rigid body.

Parts that come from the VCP maintain equal positions and orientations. Furthermore, at a VCP, force/moment vectors can be
exerted from one part to another. Every VCP is considered a driving VCP for a subsystem from which the force/moment vector is
exerted, and it is considered a driven VCP for another subsystem to which the force/moment vector is exerted [19].

The mass object 𝑂1𝑗 and the link 𝐿𝑗1 from Fig. 4 are treated as joined in the revolute segment decomposition, contrasting all
the prevailing approaches. The proposed decomposition is shown in more detail in Fig. 5a.

After virtually cutting the closed kinematic chain, the open kinematic chain 1𝑗 has a passive revolute joint, and the open kinematic
chain 2𝑗 contains a linear hydraulic actuator. The structure can now be presented as a set of modular subsystems. The optional
subsystems that originate from the prismatic segment are shown in Fig. 5b and Fig. 5c. They are treated as in the VDC mainstream.

The optional existence of the prismatic segment also introduces the open kinematic chain 3𝑗, which contains a linear hydraulic
actuator, into the analysis.

The division of a manipulator segment into subsystems by virtual decomposition creates a demand for various well-defined
body-fixed frames so that all linear/angular velocity and force/moment relations can be established.

Different frames are used here to describe the motion of every subsystem obtained by virtual decomposition. To analyse the
𝑗th revolute segment kinematics and dynamics, 14 body-fixed frames

{
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{

𝐁𝟐𝐣
}

,
{

𝐁𝟏𝐣
}

,
{

𝐁𝟑𝐣
}

,
{

𝐁𝟒𝐣
}

,
{

𝐓𝐜𝐣
}

,
{

𝐓𝟏𝐣
}

,
{

𝐓𝟐𝐣
}

,
{

𝐏𝟏𝐣
}

,
{

𝐏𝟐𝐣
}

,
{

𝐁𝐜,𝐣+𝟏
}

,
{

𝐃𝟏𝐣
}

and
{

𝐄𝟏𝐣
}

are introduced, and they are all attached, as shown in Fig. 5a. If a prismatic segment exists
in the 𝑗th segment, additional frames

{

𝐁𝟓𝐣
}

,
{

𝐏𝟑𝐣
}

,
{

𝐃𝟐𝐣
}

and
{

𝐄𝟐𝐣
}

will be needed to account for kinematics and dynamics of that
linear hydraulic actuator and mass object 𝑂2𝑗 . They are shown in Figs. 5b and 5c. It is important to note here that some frames are
just configuration-dependent auxiliary frames, introducing generality into the analysis.
6
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Fig. 4. Generic 𝑗th manipulator structure.

Fig. 5. Virtually decomposed manipulator structure.

For a start, frame
{

𝐄𝟏𝐣
}

in Fig. 5a coincides with one of three frames shown in dashed lines:
{

𝐁𝐜,𝐣+𝟏
}

,
{

𝐏𝟐𝐣
}

or
{

𝐃𝟏𝐣
}

. The other
two frames shown with dashed lines will not exist, depending on manipulator configuration, as will be discussed. The same applies
to frame

{

𝐄
}

in relation to frames
{

𝐁
}

and
{

𝐃
}

in Fig. 5c.
7

𝟐𝐣 𝐜,𝐣+𝟏 𝟐𝐣
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Some of the frames will mainly serve in the result derivation process, so extreme care about them may not be needed once all
ecessary relations are derived, and a new algorithmic approach to VDC deployment is established.

A simple oriented graph is shown in Fig. 6, where an optional prismatic segment is shown with dashed lines.

Fig. 6. Simple oriented graph of the manipulator structure.
It is worth emphasising that frames at the driven point of the revolute segment are coincident (see Fig. 5a):

{

𝐁𝐜𝐣
}

=
{

𝐁𝟎𝐣
}

=
{

𝐁𝟐𝐣
}

, (14)

s at the revolute segment driving point, frames
{

𝐓𝐜𝐣
}

,
{

𝐓𝟏𝐣
}

and
{

𝐓𝟐𝐣
}

coincide:
{

𝐓𝐜𝐣
}

=
{

𝐓𝟏𝐣
}

=
{

𝐓𝟐𝐣
}

. (15)

The 𝑥-𝑦 plane of every frame is located at the plane defined by three revolute joints. Their angles reference passive revolute
oints as 𝑞𝑗 -, 𝑞𝑗1- and 𝑞𝑗2-joint.

The origins of frames
{

𝐁𝐜𝐣
}

=
{

𝐁𝟎𝐣
}

=
{

𝐁𝟐𝐣
}

are located at the 𝑞𝑗1-joint, and their 𝑥-axes point to the 𝑞𝑗 -joint. Then, the frame
𝐁𝟏𝐣

}

origin is located at the 𝑞𝑗 -joint, and its 𝑥-axis points to the 𝑞𝑗2-joint. Origins of frames
{

𝐓𝐜𝐣
}

=
{

𝐓𝟏𝐣
}

=
{

𝐓𝟐𝐣
}

are located at
he 𝑞𝑗2-joint, and they have the same orientation as frame

{

𝐁𝟏𝐣
}

. The origin of frame
{

𝐁𝟑𝐣
}

is located at the 𝑞𝑗1-joint, and its 𝑥-axis
oints to the 𝑞𝑗2-joint. The origin of the

{

𝐁𝟒𝐣
}

frame is at the end of the linear hydraulic actuator piston, and its 𝑥-axis points to
he 𝑞𝑗2-joint. The last frame of the open kinematic chain 2𝑗 is

{

𝐏𝟏𝐣
}

, located at the 𝑞𝑗2-joint with the same orientation as the
{

𝐁𝟒𝐣
}

rame. Frame
{

𝐏𝟐𝐣
}

has its origin where the driven point of a prismatic segment and the manipulator link connect. The action of
he surroundings on the manipulator is expressed in the frame

{

𝐃𝟏𝐣
}

.
Similarly, as shown in Fig. 5c, frame

{

𝐏𝟑𝐣
}

has its origin where the prismatic segment driving point and the manipulator link
hat follows connect. Frame

{

𝐃𝟐𝐣
}

expresses the effect of surroundings on the manipulator imposed on the link that comes after the
inear actuator. Since the manipulator usually interacts with its surroundings only using the end-effector, frames

{

𝐃𝟏𝐣
}

and
{

𝐃𝟐𝐣
}

,
= 1,… , 𝑛 − 1 can be removed from consideration. Depending on the manipulator configuration, i.e. whether the end-effector is

onnected to the link that precedes or follows a prismatic segment, only frame
{

𝐃𝟏𝐧
}

or frame
{

𝐃𝟐𝐧
}

exists, and they are mutually
xclusive.

ssumption 1. A manipulator interacts with its surroundings using its end-effector.

orollary 1. Only frame
{

𝐃𝟏𝐧
}

or frame
{

𝐃𝟐𝐧
}

exists on the manipulator.

Recall that the notion of the end-effector implies that there are no manipulator links after it in the manipulator serial chain.
herefore, the existence of frame

{

𝐃𝟏𝐧
}

excludes the existence of frames
{

𝐁𝐜,𝐧+𝟏
}

and
{

𝐏𝟐𝐧
}

. The same applies to frames
{

𝐃𝟐𝐧
}

and
𝐁𝐜,𝐧+𝟏

}

. Frame
{

𝐁𝐜,𝐣+𝟏
}

coincides with the driven point of the (𝑗 + 1)-th revolute segment. In practice, it is not likely to encounter
he prismatic joint driven point on the same link where there exists a revolute segment driven connection. This leads to the following
ssumption, considering manipulator configurations:

ssumption 2. The driven point of a revolute segment and the driven point of a prismatic segment are never connected to the
ame link.

orollary 2. The existence of the frame
{

𝐁𝐜,𝐣+𝟏
}

excludes the existence of the frame
{

𝐏𝟐𝐣
}

and vice versa.

As noted, frames
{

𝐄𝟏𝐣
}

and
{

𝐄𝟐𝐣
}

are introduced for the sake of generality. Based on Fig. 5, Assumption 1, and Assumption 2,
rame

{

𝐄𝟏𝐣
}

can be:

{

𝐄𝟏𝐣
}

=

⎧

⎪

⎨

⎪

⎩

{

𝐁𝐜,𝐣+𝟏
}

, if a revolute segment follows, going from base to tip,
{

𝐏𝟐𝐣
}

, if a prismatic segment follows, going from base to tip,
{

𝐃𝟏𝐧
}

, if an end-effector is at the end of a link.
(16)

oreover, frame
{

𝐄𝟐𝐣
}

can be one of the following:

{

𝐄𝟐𝐣
}

=
{ {

𝐁𝐜,𝐣+𝟏
}

, if a revolute segment follows, going from base to tip,
{

𝐃𝟐𝐧
}

, if an end-effector is at the end of a link. (17)
8

Relations given by Eqs. (16) and (17) play a significant role in the general algorithm.
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3.2. Kinematic relations

In VDC, kinematic relations are used primarily to formulate the total forces needed to act on rigid bodies, based on the required
elocities. Before carrying out the kinematic analysis of the 𝑗th manipulator structure, important geometric relations for the 𝑗th

closed chain, representing constraints, must be introduced.

3.2.1. Loop-closure functions
Constraints must be introduced to accompany the virtual cutting approach in a closed kinematic loop analysis. Here, analytic

loop-closure functions can be incorporated into the analysis.
The joint angle of every revolute segment must be related to the corresponding piston displacement and the other two

closed-chain angles 𝑞𝑗1 and 𝑞𝑗2, using known lengths.
Referring to Fig. 4 and considering the introduced sign conventions, these relations are:

𝑥𝑗 =
√

𝐿2
𝑗 + 𝐿2

𝑗1 + 2𝐿𝑗 𝐿𝑗1 cos 𝑞𝑗 − 𝑥𝑗0, (18)

𝑞𝑗1 = −arccos
⎛

⎜

⎜

⎝

𝐿2
𝑗1 −

(

𝑥𝑗 + 𝑥𝑗0
)2 − 𝐿2

𝑗

−2
(

𝑥𝑗 + 𝑥𝑗0
)

𝐿𝑗

⎞

⎟

⎟

⎠

, (19)

𝑞𝑗2 = −arccos
⎛

⎜

⎜

⎝

𝐿2
𝑗 −

(

𝑥𝑗 + 𝑥𝑗0
)2 − 𝐿2

𝑗1

−2
(

𝑥𝑗 + 𝑥𝑗0
)

𝐿𝑗1

⎞

⎟

⎟

⎠

, (20)

where 𝐿𝑗 and 𝐿𝑗1 are lengths between the frames, and 𝑥𝑗0 is the effective length of the hydraulic linear actuator at zero piston
troke. These values are assumed to be known with a high degree of accuracy. Differentiating Eqs. (18)–(20) and appropriately
ransforming them, the following expressions for velocities hold:

�̇�𝑗 = −
𝐿𝑗 𝐿𝑗1 sin 𝑞𝑗
𝑥𝑗 + 𝑥𝑗0

�̇�𝑗 , (21)

�̇�𝑗1 = −

(

𝑥𝑗 + 𝑥𝑗0
)

− 𝐿𝑗 cos 𝑞𝑗1
(

𝑥𝑗 + 𝑥𝑗0
)

𝐿𝑗 sin 𝑞𝑗1
�̇�𝑗 , (22)

�̇�𝑗2 = −

(

𝑥𝑗 + 𝑥𝑗0
)

− 𝐿𝑗1 cos 𝑞𝑗2
(

𝑥𝑗 + 𝑥𝑗0
)

𝐿𝑗1 sin 𝑞𝑗2
�̇�𝑗 . (23)

3.2.2. Subsystem velocities
Let the linear/angular velocity vector 𝐁𝐜𝐣𝑽 be known from recursive calculations carried out through preceding subsystems. From

Eq. (14), and Fig. 5(a) it follows that:
𝐁𝐜𝐣𝑽 = 𝐁𝟎𝐣𝑽 = 𝐁𝟐𝐣𝑽 . (24)

Linear/angular velocities in the open kinematic chain 1𝑗 can be written as:
𝐁𝟏𝐣𝐕 = 𝐳𝜏 �̇�𝑗 + 𝐁𝟎𝐣𝐔𝑇

𝐁𝟏𝐣
𝐁𝟎𝐣𝑽 , (25)

and
𝐓𝟏𝐣𝑽 = 𝐁𝟏𝐣𝐔𝑇

𝐓𝟏𝐣
𝐁𝟏𝐣𝑽 , (26)

where 𝐳𝜏 =
(

0 0 0 0 0 1
)𝑇 .

Similarly, linear/angular velocities in the open kinematic chain 2𝑗 are:
𝐁𝟑𝐣𝑽 = 𝐳𝜏 �̇�𝑗1 + 𝐁𝟐𝐣𝐔𝑇

𝐁𝟑𝐣
𝐁𝟐𝐣𝑽 , (27)

𝐁𝟒𝐣𝑽 = 𝐱𝑓 �̇�𝑗 +
𝐁𝟑𝐣𝐔𝑇

𝐁𝟒𝐣
𝐁𝟑𝐣𝑽 , (28)

and
𝐓𝟐𝐣𝑽 = 𝐳𝜏 �̇�𝑗2 + 𝐁𝟒𝐣𝐔𝑇

𝐓𝟐𝐣
𝐁𝟒𝐣𝑽 , (29)

where 𝐱𝑓 =
(

1 0 0 0 0 0
)𝑇 .

Per Eq. (15), linear/angular velocities at the driving VCP of the closed kinematic chain are:
𝐓𝐜𝐣𝑽 = 𝐓𝟏𝐣𝑽 = 𝐓𝟐𝐣𝑽 . (30)

Finally, linear/angular velocities measured and expressed in frame
{

𝐄𝟏𝐣
}

can be calculated as:

𝐄𝟏𝐣𝑽 = 𝐓𝐜𝐣𝐔𝑇
𝐄𝟏𝐣

𝐓𝐜𝐣𝑽 . (31)
9
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When a prismatic joint exists in the considered 𝑗th manipulator structure, additional kinematic relations have to be established.
n the case of a prismatic joint existence, Eq. (16) holds that

{

𝐄𝟏𝐣
}

=
{

𝐏𝟐𝐣
}

, and Eq. (31) reads:

𝐏𝟐𝐣𝑽 = 𝐓𝐜𝐣𝐔𝑇
𝐏𝟐𝐣

𝐓𝐜𝐣𝑽 . (32)

Further kinematic relations for a linear hydraulic actuator per Fig. 5b and Fig. 5c can be written as:
𝐁𝟓𝐣𝑽 = 𝐱𝑓 �̇�𝑡𝑗 +

𝐏𝟐𝐣𝐔𝑇
𝐁𝟓𝐣

𝐏𝟐𝐣𝑽 , (33)

and
𝐏𝟑𝐣𝑽 = 𝐁𝟓𝐣𝐔𝑇

𝐏𝟑𝐣
𝐁𝟓𝐣𝑽 . (34)

3.2.3. Forming required velocities
It is shown in [19] that the position control can be performed through a velocity controller by incorporating a position error

term into the required velocity. Once the desired velocities are calculated solving the inverse kinematics, the required velocities are
formed, as already described in 2.2. For revolute segments, in the case of integrated piston position feedback, required velocities
can be formed as:

�̇�𝑗𝑟 = �̇�𝑗𝑑 + 𝜆𝑥𝑗
(

𝑥𝑗𝑑 − 𝑥𝑗
)

, (35)

where 𝜆𝑥𝑗 ∈ R is a positive constant.
By contrast, if the required piston velocities are known, the rotating joint velocities needed can be calculated using Eq. (21)

again. If the integrated rotating joint position feedback is implemented, required velocities in closed chains can be alternatively
formed as:

�̇�𝑗𝑟 = �̇�𝑗𝑑 + 𝜆𝑞𝑗
(

𝑞𝑗𝑑 − 𝑞𝑗
)

, (36)

where 𝜆𝑞𝑗 ∈ R is again a positive constant, and the required piston velocities can be inferred from Eq. (21). For prismatic joints
with integrated piston position feedback, required velocities are formed as:

�̇�𝑡𝑗𝑟 = �̇�𝑡𝑗𝑑 + 𝜆𝑡𝑗
(

𝑥𝑡𝑗𝑑 − 𝑥𝑡𝑗
)

, (37)

where 𝜆𝑡𝑗 ∈ R is a positive constant. Knowing required velocities for pistons and joints enables forming the required velocities, and
this is essential for control, since required forces are formed using these, as will be shown.

Reusing Eqs. (24)–(31) with required joint velocities �̇�𝑗𝑟 and piston velocities �̇�𝑡𝑗𝑟 gives an extensive set of equations to determine
the required velocities:

𝐁𝐜𝐣𝑽 𝑟 =
𝐁𝟎𝐣𝑽 𝑟 =

𝐁𝟐𝐣𝑽 𝑟, (38)

𝐁𝟏𝐣𝐕𝑟 = 𝐳𝜏 �̇�𝑗𝑟 + 𝐁𝟎𝐣𝐔𝑇
𝐁𝟏𝐣

𝐁𝟎𝐣𝑽 𝑟, (39)

𝐓𝟏𝐣𝑽 𝑟 =
𝐁𝟏𝐣𝐔𝑇

𝐓𝟏𝐣
𝐁𝟏𝐣𝑽 𝑟, (40)

𝐁𝟑𝐣𝑽 𝑟 = 𝐳𝜏 �̇�𝑗1𝑟 + 𝐁𝟐𝐣𝐔𝑇
𝐁𝟑𝐣

𝐁𝟐𝐣𝑽 𝑟, (41)

𝐁𝟒𝐣𝑽 𝑟 = 𝐱𝑓 �̇�𝑗𝑟 +
𝐁𝟑𝐣𝐔𝑇

𝐁𝟒𝐣
𝐁𝟑𝐣𝑽 𝑟, (42)

𝐓𝟐𝐣𝑽 𝑟 = 𝐳𝜏 �̇�𝑗2𝑟 + 𝐁𝟒𝐣𝐔𝑇
𝐓𝟐𝐣

𝐁𝟒𝐣𝑽 𝑟, (43)

𝐓𝐜𝐣𝑽 𝑟 =
𝐓𝟏𝐣𝑽 𝑟 =

𝐓𝟐𝐣𝑽 𝑟, (44)

and
𝐄𝟏𝐣𝑽 𝑟 =

𝐓𝐜𝐣𝐔𝑇
𝐄𝟏𝐣

𝐓𝐜𝐣𝑽 𝑟. (45)

In the case where there exists a prismatic joint,
{

𝐄𝟏𝐣
}

=
{

𝐏𝟐𝐣
}

, and these expressions follow:

𝐏𝟐𝐣𝑽 𝑟 =
𝐓𝐜𝐣𝐔𝑇

𝐏𝟐𝐣
𝐓𝐜𝐣𝑽 𝑟, (46)

𝐁𝟓𝐣𝑽 𝑟 = 𝐱𝑓 �̇�𝑡𝑗𝑟 +
𝐏𝟐𝐣𝐔𝑇

𝐁𝟓𝐣
𝐏𝟐𝐣𝑽 𝑟, (47)

nd
𝐏𝟑𝐣𝑽 𝑟 =

𝐁𝟓𝐣𝐔𝑇
𝐏𝟑𝐣

𝐁𝟓𝐣𝑽 𝑟. (48)
10
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3.3. Dynamics relations

The proposed reduced set of governing EOMs for the decomposed 𝑗th manipulator structure, using the suggested virtual
decomposition, differs from the one obtained following the VDC mainstream. Nevertheless, the calculations proposed here yield
the same values of actuator forces as earlier approaches had. Eq. (7) describes the motion of a rigid body with constant mass. It is
used here repeatedly to describe the motion of several subsystems: both revolute segment links from Fig. 5a, both cylinder cases
and pistons with a rod from Figs. 5a and 5b and the mass object from Fig. 5c. The total force acting on each subsystem from Fig. 5
can be modelled as:

𝐌𝐀
d
d𝑡

(𝐀𝑽
)

+ 𝐂𝐀
(𝐀𝝎

) 𝐀𝑽 +𝐆𝐀 = 𝐀𝑭 ∗, (49)

here instead of a general frame 𝐀, one of the distinct frames 𝐁𝟎𝐣, 𝐁𝟏𝐣, 𝐁𝟑𝐣, 𝐁𝟒𝐣, 𝐏𝟐𝐣, 𝐁𝟓𝐣 or 𝐏𝟑𝐣 is used for each separate subsystem.
elocities 𝐁𝟎𝐣𝑽 , 𝐁𝟏𝐣𝑽 , 𝐁𝟑𝐣𝑽 , 𝐁𝟒𝐣𝑽 , 𝐏𝟐𝐣𝑽 , 𝐁𝟓𝐣𝑽 and 𝐏𝟑𝐣𝑽 also are necessary. They are given with Eqs. (24)–(34).

.3.1. Prismatic segment dynamics
Let the force/moment vector 𝐄𝟐𝐣𝑭 be known from previous recursive calculations through other subsystems. From both Eq. (17)

nd Fig. 5c, it follows that:

𝐄𝟐𝐣𝑭 =
{ 𝐁𝐜,𝐣+𝟏𝑭 , if a revolute segment preceded, going from tip to base,

𝐃𝟐𝐧𝑭 , if an end-effector is at the end of a link. (50)

The total force/moment acting on the mass object 𝑂2𝑗 can be expressed as:

𝐏𝟑𝐣𝑭 ∗ = 𝐏𝟑𝐣𝑭 − 𝐏𝟑𝐣𝐔𝐄𝟐𝐣
𝐄𝟐𝐣𝑭 . (51)

This enables the force/moment vector 𝐏𝟑𝐣𝑭 to be calculated as:
𝐏𝟑𝐣𝑭 = 𝐏𝟑𝐣𝑭 ∗ + 𝐏𝟑𝐣𝐔𝐄𝟐𝐣

𝐄𝟐𝐣𝑭 . (52)

Next, the total force/moment acting on the piston from Fig. 5b is:
𝐁𝟓𝐣𝑭 ∗ = 𝐁𝟓𝐣𝑭 − 𝐁𝟓𝐣𝐔𝐏𝟑𝐣

𝐏𝟑𝐣𝑭 . (53)

Thus, force 𝐁𝟓𝐣𝑭 can be expressed as:
𝐁𝟓𝐣𝑭 = 𝐁𝟓𝐣𝑭 ∗ + 𝐁𝟓𝐣𝐔𝐏𝟑𝐣

𝐏𝟑𝐣𝑭 . (54)

Linear actuator force can now be readily calculated as:

𝑓𝑐𝑡𝑗 = 𝐱𝑇𝑓
𝐁𝟓𝐣𝑭 , (55)

nd force 𝐏𝟐𝐣𝑭 , which propagates to the revolute segment, is:
𝐏𝟐𝐣𝑭 = 𝐏𝟐𝐣𝑭 ∗ + 𝐏𝟐𝐣𝐔𝐁𝟓𝐣

𝐁𝟓𝐣𝑭 . (56)

.3.2. Revolute segment dynamics
As in the VDC mainstream, it is assumed that the main friction in this type of revolute segment occurs between the piston and

ylinder case. Thus, other frictions will be neglected, and this yields the following assumption:

ssumption 3. Friction moments in all the rotating joints are equal to zero.

orollary 3. The following expressions can be written and assumed to be valid:

𝐳𝑇𝜏
𝐁𝟏𝐣𝑭 = 0, (57)

𝐳𝑇𝜏
𝐏𝟏𝐣𝑭 = 0, (58)

𝐳𝑇𝜏
𝐁𝟑𝐣𝑭 = 0. (59)

The introduction of Assumption 3 does not make this analysis less general. Rather, it simplifies it using practical claims. If friction
oments in particular joints cannot be neglected, they can be added to the analysis.

Let the force/moment vector 𝐄𝟏𝐣𝑭 be known from previous recursive calculations through other subsystems. Again, from both
q. (16) and Fig. 5a, it follows that:

𝐄𝟏𝐣𝑭 =

⎧

⎪

⎨

⎪

⎩

𝐁𝐜,𝐣+𝟏𝑭 , if a revolute segment preceded, going from tip to base,
𝐏𝟐𝐣𝑭 , if a prismatic segment preceded, going from tip to base,
𝐃𝟏𝐧𝑭 , if an end-effector is at the end of a link.

(60)
11
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The dynamics of all subsystems using recursive calculations can be addressed starting from EOM for link 𝐿𝑗1:

𝐁𝟏𝐣𝑭 = 𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭 − 𝐁𝟏𝐣𝐔𝐏𝟏𝐣

𝐏𝟏𝐣𝑭 . (61)

The other dynamics equation for the open kinematic chain 1𝑗 is the EOM for link 𝐿𝑗 :

𝐁𝟎𝐣𝑭 = 𝐁𝟎𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣
𝐁𝟏𝐣𝑭 . (62)

Similarly, EOMs for the open kinematic chain 2𝑗 are:
𝐁𝟒𝐣𝑭 = 𝐁𝟒𝐣𝑭 ∗ + 𝐁𝟒𝐣𝐔𝐏𝟏𝐣

𝐏𝟏𝐣𝑭 , (63)

𝐁𝟑𝐣𝑭 = 𝐁𝟑𝐣𝑭 ∗ + 𝐁𝟑𝐣𝐔𝐁𝟒𝐣
𝐁𝟒𝐣𝑭 , (64)

𝐁𝟐𝐣𝑭 = 𝐁𝟐𝐣𝐔𝐁𝟑𝐣
𝐁𝟑𝐣𝑭 , (65)

nd finally, the force/moment vector at the driven VCP is:
𝐁𝐜𝐣𝑭 = 𝐁𝟎𝐣𝑭 + 𝐁𝟐𝐣𝑭 . (66)

The actuator force is calculated as:

𝑓𝑐𝑗 = 𝐱𝑇𝑓
𝐁𝟒𝐣𝑭 . (67)

hich is an essential expression, since it is directly used in the control law and stability analysis; thus, a straightforward solution is
ought.

heorem 3. Let the force 𝐄𝟏𝐣𝑭 acting on the revolute segment from Fig. 5a be known from previous calculations through other subsystems.
hen, the linear actuator force can be determined as:

𝑓𝑐𝑗 = 𝐱𝑇𝑓
𝐁𝟒𝐣𝑭 ∗ −

𝐳𝑇𝜏
(

𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭

)

𝐿𝑗1 sin 𝑞𝑗2
−

𝐳𝑇𝜏
(

𝐁𝟑𝐣𝑭 ∗
)

+ 𝐳𝑇𝜏
(

𝐁𝟒𝐣𝑭 ∗
)

+ 𝐲𝑇𝑓
(

𝐁𝟒𝐣𝑭 ∗
)

(

𝑥𝑗 + 𝑥𝑗0 − 𝑙𝑐𝑗
)

(

𝑥𝑗 + 𝑥𝑗0
)

tan 𝑞𝑗2
. (68)

Theorem 4. Let the force 𝐄𝟏𝐣𝑭 acting on the revolute segment from Fig. 5a be known from previous calculations through other subsystems.
Then, the total force acting on the driven point of the revolute segment is:

𝐁𝐜𝐣𝑭 = 𝐁𝟎𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣
𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣

𝐁𝟑𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣
𝐁𝟑𝐣𝐔𝐁𝟒𝐣

𝐁𝟒𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣
𝐁𝟏𝐣𝐔𝐄𝟏𝐣

𝐄𝟏𝐣𝑭 . (69)

The proofs of Theorems 3 and 4 are given in Appendix A and Appendix B, respectively.

.3.3. Forming required force/moment vectors
The required force/moment vector for every subsystem of the 𝑗th manipulator structure can be easily obtained by replacing 𝐀

n Eq. (7) with 𝐁𝟎𝐣, 𝐁𝟏𝐣, 𝐁𝟑𝐣, 𝐁𝟒𝐣, 𝐏𝟐𝐣, 𝐁𝟓𝐣 and 𝐏𝟑𝐣 for different subsystems.
Velocities 𝐁𝟎𝐣𝑽 𝑟, 𝐁𝟏𝐣𝑽 𝑟, 𝐁𝟑𝐣𝑽 𝑟, 𝐁𝟒𝐣𝑽 𝑟, 𝐏𝟐𝐣𝑽 𝑟, 𝐁𝟓𝐣𝑽 𝑟 and 𝐏𝟑𝐣𝑽 𝑟 also are necessary, and they are obtained with series of Eqs. (38)–(48).

f frame
{

𝐄𝟐𝐣
}

exists, then the required force/moment vector is deduced from Eq. (50) as:

𝐄𝟐𝐣𝑭 𝑟 =
{ 𝐁𝐜,𝐣+𝟏𝑭 𝑟, if a revolute segment preceded going from tip to base,

𝐃𝟐𝐧𝑭 𝑟, if an end-effector is at the end of a link. (70)

Then the following required force/moment vectors can be calculated:
𝐏𝟑𝐣𝑭𝑟 =

𝐏𝟑𝐣𝑭 ∗
𝑟 + 𝐏𝟑𝐣𝐔𝐄𝟐𝐣

𝐄𝟐𝐣𝑭𝑟, (71)

𝐁𝟓𝐣𝑭𝑟 =
𝐁𝟓𝐣𝑭 ∗

𝑟 + 𝐁𝟓𝐣𝐔𝐏𝟑𝐣
𝐏𝟑𝐣𝑭𝑟, (72)

𝑓𝑐𝑡𝑗𝑟 = 𝐱𝑇𝑓
𝐁𝟓𝐣𝑭𝑟, (73)

𝐏𝟐𝐣𝑭𝑟 =
𝐏𝟐𝐣𝑭 ∗

𝑟 + 𝐏𝟐𝐣𝐔𝐁𝟓𝐣
𝐁𝟓𝐣𝑭𝑟. (74)

Required force/moment vector 𝐄𝟏𝐣𝑭 is easily deduced from Eq. (75) as:

𝐄𝟏𝐣𝑭𝑟 =

⎧

⎪

⎨

⎪

⎩

𝐁𝐜,𝐣+𝟏𝑭𝑟, if a revolute segment preceded, going from tip to base,
𝐏𝟐𝐣𝑭𝑟, if a prismatic segment preceded, going from tip to base,
𝐃𝟏𝐧𝑭𝑟, if an end-effector is at the end of a link.

(75)
12
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One of the last essential results is a straightforward expression for the required linear actuator force calculation, that follows
rom Eq. (68) as:

𝑓𝑐𝑗𝑟 = 𝐱𝑇𝑓
𝐁𝟒𝐣𝑭 ∗

𝑟 −
𝐳𝑇𝜏

(

𝐁𝟏𝐣𝑭 ∗
𝑟 +

𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭 𝑟

)

𝐿𝑗1 sin 𝑞𝑗2
−

𝐳𝑇𝜏
(

𝐁𝟑𝐣𝑭 ∗
𝑟

)

+ 𝐳𝑇𝜏
(

𝐁𝟒𝐣𝑭 ∗
𝑟

)

+ 𝐲𝑇𝑓
(

𝐁𝟒𝐣𝑭 ∗
𝑟

)

(

𝑥𝑗 + 𝑥𝑗0 − 𝑙𝑐𝑗
)

(

𝑥𝑗 + 𝑥𝑗0
)

tan 𝑞𝑗2
. (76)

Finally, the required force/moment vector acting on the driven point of a revolute segment also is obtained independent of any
nternal forces and moments as:

𝐁𝐜𝐣𝑭𝑟 =
𝐁𝟎𝐣𝑭 ∗

𝑟 + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣
𝐁𝟏𝐣𝑭 ∗

𝑟 + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣
𝐁𝟑𝐣𝑭 ∗

𝑟 + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣
𝐁𝟑𝐣𝐔𝐁𝟒𝐣

𝐁𝟒𝐣𝑭 ∗
𝑟 + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣

𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭𝑟. (77)

This vector is used for calculations related to the revolute segment. This concludes the kinematics and dynamics analysis.

3.4. Pressure and spool valve dynamics

Both pressure and spool valve dynamics play an essential role in forming control action and securing the stability of the whole
system. The same analysis shown for the linear hydraulic actuator in the 𝑗th revolute segment can be applied to the linear hydraulic
actuator driving the 𝑗th prismatic joint, and it will not be repeated. It is only necessary to note the differences in subscripts for these
two in the later analysis.

Piston force in the 𝑗th revolute segment calculated using Eq. (68) does not include friction contribution. The friction model, if
assumed to be increasing, continuous and antisymmetric, accords with many types of friction encountered in practice, including
Coulomb, viscous and LuGre friction (see [4]). The piston force from Eq. (68) with added friction term 𝑓𝑓𝑗 can be written as:

𝑓𝑝𝑗 = 𝑓𝑐𝑗 + 𝑓𝑓𝑗 . (78)

Piston force, Eq. (78), also can be determined from chamber pressures:

𝑓𝑝𝑗 = 𝐴𝑎𝑗 𝑝𝑎𝑗 − 𝐴𝑏𝑗 𝑝𝑏𝑗 , (79)

where 𝐴𝑎𝑗 and 𝐴𝑏𝑗 denote cross-sectional areas, while 𝑝𝑎𝑗 and 𝑝𝑏𝑗 are pressures in linear hydraulic actuator cylinder chambers, all
shown in Fig. 4.

Continuity equations written for linear hydraulic actuators describe pressure changes in both cylinder chambers as:

�̇�𝑎𝑗 =
𝛽
𝐴𝑎𝑗

(𝑄𝑎𝑗

𝑥𝑗
− 𝐴𝑎𝑗

�̇�𝑗
𝑥𝑗

)

, (80)

and

�̇�𝑏𝑗 =
𝛽
𝐴𝑏𝑗

( 𝑄𝑏𝑗

𝑠𝑗 − 𝑥𝑗
+ 𝐴𝑏𝑗

�̇�𝑗
𝑠𝑗 − 𝑥𝑗

)

, (81)

where 𝛽 denotes the oil bulk modulus.

Assumption 4. Piston positions 𝑥𝑗 and 𝑥𝑡𝑗 in linear hydraulic actuators never reach their limiting positions at cylinder ends.

Corollary 4. The following inequalities hold: 0 < 𝑥𝑗 < 𝑠𝑗 , 0 < 𝑥𝑡𝑗 < 𝑠𝑡𝑗 .

Assumption 4 on piston positions ensures that singularities are avoided in Eqs. (80) and (81). Their validity is ensured by careful
trajectory planning. These assumptions can also be removed by investing additional modelling effort to model dead volumes and
leakage flows, as shown in [32]. Volumetric flows through orifices of the 𝑗th spool valve in Fig. 4, which controls the flow to linear
hydraulic actuator chambers in the revolute segment, are:

𝑄𝑎𝑗 = 𝑐𝑝1𝑗 𝜐(𝑝𝑠 − 𝑝𝑎𝑗 ) 𝑢𝑗 𝑆(𝑢𝑗 ) + 𝑐𝑛1𝑗 𝜐(𝑝𝑎𝑗 − 𝑝𝑟) 𝑢𝑗 𝑆(−𝑢𝑗 ), (82)

and

𝑄𝑏𝑗 = −𝑐𝑛2𝑗 𝜐(𝑝𝑏𝑗 − 𝑝𝑟) 𝑢𝑗 𝑆(𝑢𝑗 ) − 𝑐𝑝2𝑗 𝜐(𝑝𝑠 − 𝑝𝑏𝑗 ) 𝑢𝑗 𝑆(−𝑢𝑗 ), (83)

where 𝑐𝑝1𝑗 , 𝑐𝑝2𝑗 , 𝑐𝑛1𝑗 and 𝑐𝑛2𝑗 are flow coefficients, 𝑝𝑠 is the supply pressure, 𝑝𝑟 is the return-line pressure, and 𝑆(𝑢𝑗 ) is the selection
function defined as:

𝑆(𝑢𝑗 ) =
{

1, if 𝑢𝑗 > 0,
0, if 𝑢𝑗 ⩽ 0,

(84)

and 𝜐(𝛥𝑝𝑗 ) is the function related to drops in pressure:

𝜐(𝛥𝑝𝑗 ) = sign(𝛥𝑝𝑗 )
√

|

|

|

𝛥𝑝𝑗
|

|

|

. (85)

A voltage-related term that is significant for further analysis is defined as:

𝑢𝑓𝑗 =
𝑄𝑎𝑗 −

𝑄𝑏𝑗 , (86)
13
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and it lets Eq. (79) be rewritten, using Eq. (80) and (81), as:

̇𝑓𝑝𝑗 = 𝛽
(

𝑢𝑓𝑗 −
(𝐴𝑎𝑗

𝑥𝑗
+

𝐴𝑏𝑗

𝑠𝑗 − 𝑥𝑗

)

�̇�𝑗

)

. (87)

The voltage-related term 𝑢𝑓𝑗 , Eq. (86), can be expressed from Eq. (87) as:

𝑢𝑓𝑗 =
̇𝑓𝑝𝑗
𝛽

+
(𝐴𝑎𝑗

𝑥𝑗
+

𝐴𝑏𝑗

𝑠𝑗 − 𝑥𝑗

)

�̇�𝑗 . (88)

Assumption 5. Pressures in linear hydraulic actuator chambers are always smaller than the supply pressure, and they are always
higher than the return line pressure, which is never zero.

Corollary 5. The following inequalities for pressures hold: 𝑝𝑠 > 𝑝𝑎𝑗 > 𝑝𝑟 ⩾ 0, 𝑝𝑠 > 𝑝𝑏𝑗 > 𝑝𝑟 ⩾ 0, 𝑝𝑠 > 𝑝𝑎𝑡𝑗 > 𝑝𝑟 ⩾ 0, 𝑝𝑠 > 𝑝𝑏𝑡𝑗 > 𝑝𝑟 ⩾ 0.

Assumption 5 provides univalence between 𝑢𝑗 and 𝑢𝑓𝑗 . Combining Assumption 5 with Eqs. (82) and (83), the spool valve voltage
can be expressed as:

𝑢𝑗 =
𝑢𝑓𝑗 𝑆(𝑢𝑓𝑗 )

( 𝑐𝑝1𝑗 𝜐(𝑝𝑠 − 𝑝𝑎𝑗 )
𝑥𝑗

+
𝑐𝑛2𝑗 𝜐(𝑝𝑏𝑗 − 𝑝𝑟)

𝑠𝑗 − 𝑥𝑗

)
+

𝑢𝑓𝑗 𝑆(−𝑢𝑓𝑗 )
( 𝑐𝑝2𝑗 𝜐(𝑝𝑠 − 𝑝𝑏𝑗 )

𝑠𝑗 − 𝑥𝑗
+

𝑐𝑛1𝑗 𝜐(𝑝𝑎𝑗 − 𝑝𝑟)
𝑥𝑗

)
.

(89)

4. Forming the control action

A control action is formed so that system stability is ensured and all values converge to their respective required levels. The
required value for the voltage-related term from Eq. (88) for a revolute segment is formed as:

𝑢𝑓𝑗𝑟 =
̇𝑓𝑝𝑗𝑟
𝛽

+
(𝐴𝑎𝑗

𝑥𝑗
+

𝐴𝑏𝑗

𝑠𝑗 − 𝑥𝑗

)

�̇�𝑗 + 𝑘𝑥𝑗
(

�̇�𝑗𝑟 − �̇�𝑗
)

+ 𝑘𝑓𝑗
(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)

, (90)

and the control voltage is calculated as:

𝑢𝑗 =
𝑢𝑓𝑗𝑟 𝑆(𝑢𝑓𝑗𝑟)

( 𝑐𝑝1𝑗 𝜐(𝑝𝑠 − 𝑝𝑎𝑗 )
𝑥𝑗

+
𝑐𝑛2𝑗 𝜐(𝑝𝑏𝑗 − 𝑝𝑟)

𝑠𝑗 − 𝑥𝑗

)
+

𝑢𝑓𝑗𝑟 𝑆(−𝑢𝑓𝑗𝑟)
( 𝑐𝑝2𝑗 𝜐(𝑝𝑠 − 𝑝𝑏𝑗 )

𝑠𝑗 − 𝑥𝑗
+

𝑐𝑛1𝑗 𝜐(𝑝𝑎𝑗 − 𝑝𝑟)
𝑥𝑗

)
.

(91)

For a prismatic segment, the required voltage-related term Eq. (88) is:

𝑢𝑓𝑡𝑗𝑟 =
̇𝑓𝑝𝑡𝑗𝑟
𝛽

+
(𝐴𝑎𝑡𝑗

𝑥𝑡𝑗
+

𝐴𝑏𝑡𝑗

𝑠𝑡𝑗 − 𝑥𝑡𝑗

)

�̇�𝑡𝑗 + 𝑘𝑥𝑡𝑗
(

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

+ 𝑘𝑓𝑡𝑗
(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)

, (92)

and the control voltage is:

𝑢𝑡𝑗 =
𝑢𝑓𝑡𝑗𝑟 𝑆(𝑢𝑓𝑡𝑗𝑟)

( 𝑐𝑝1𝑡𝑗𝜐(𝑝𝑠 − 𝑝𝑎𝑡𝑗 )
𝑥𝑡𝑗

+
𝑐𝑛2𝑡𝑗 𝜐(𝑝𝑏𝑡𝑗 − 𝑝𝑟)

𝑠𝑡𝑗 − 𝑥𝑡𝑗

)
+

𝑢𝑓𝑡𝑗𝑟 𝑆(−𝑢𝑓𝑡𝑗𝑟)
( 𝑐𝑝2𝑡𝑗 𝜐(𝑝𝑠 − 𝑝𝑏𝑡𝑗 )

𝑠𝑡𝑗 − 𝑥𝑡𝑗
+

𝑐𝑛1𝑡𝑗𝜐(𝑝𝑎𝑡𝑗 − 𝑝𝑟)
𝑥𝑡𝑗

)
.

(93)

5. Stability analysis

Per Theorem 2, this analysis can be carried out only for the general 𝑗th manipulator segment. The stability of the entire
manipulator is mathematically equivalent to the virtual stability of every manipulator module.

For purposes of analysis, a set of frames important for stability analysis is:

𝐒𝐣 =
{

𝐁𝟎𝐣,𝐁𝟏𝐣,𝐁𝟑𝐣,𝐁𝟒𝐣,𝐁𝟓𝐣,𝐏𝟐𝐣,𝐏𝟑𝐣
}

. (94)

Theorem 5. Let the non-negative accompanying function for the 𝑗th manipulator segment in the most general case considered here be
chosen as the sum:

𝜈𝑗 =
∑

𝐀∈𝐒𝐣

𝜈𝐀 + 𝜈𝑝𝑗 + 𝜈𝑝𝑡𝑗 , (95)

where individual non-negative accompanying function 𝜈𝐀 is chosen as:

𝜈𝐀 = 1
2
(𝐀𝑽𝑟 − 𝐀𝑽

)𝑇 𝐌𝐀
(𝐀𝑽𝑟 − 𝐀𝑽

)

, (96)

and let the non-negative accompanying functions for linear hydraulic actuators in the revolute segment and prismatic segment be chosen as:

𝜈𝑝𝑗 =

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)2

, (97)
14
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and

𝜈𝑝𝑡𝑗 =

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)2

2 𝛽 𝑘𝑥𝑡𝑗
, (98)

respectively. By forming control actions for linear hydraulic actuators in the revolute and prismatic segments using Eqs. (90)–(93), a derivative
of the non-negative accompanying function assigned to the 𝑗th manipulator structure is:

�̇�𝑗 = �̇�𝐵5𝑗
+ �̇�𝑃2𝑗 + �̇�𝑃3𝑗 + �̇�𝐵1𝑗

+ �̇�𝐵0𝑗
+ �̇�𝐵4𝑗

+ �̇�𝐵3𝑗
+ �̇�𝑝𝑗 + �̇�𝑝𝑡𝑗 ⩽

−
∑

𝐀∈𝐒𝐣

(𝐀𝑽𝑟 − 𝐀𝑽
)𝑇 𝐊𝐀

(𝐀𝑽𝑟 − 𝐀𝑽
)

+ 𝑝𝐁𝐜𝐣
− 𝑝𝐄𝟐𝐣

−
𝑘𝑓𝑗
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)2 −

𝑘𝑓𝑡𝑗
𝑘𝑥𝑡𝑗

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)2 . (99)

It implies the virtual stability of the 𝑗-th manipulator structure per Definition 4, and consequently of the whole manipulator, per Theorem 2,
implies:

�̇�𝑗𝑑 − �̇�𝑗 → 0, 𝑞𝑗𝑑 − 𝑞𝑗 → 0, �̇�𝑗𝑑 − �̇�𝑗 → 0, 𝑥𝑗𝑑 − 𝑥𝑗 → 0, �̇�𝑡𝑗𝑑 − �̇�𝑡𝑗 → 0, 𝑥𝑡𝑗𝑑 − 𝑥𝑡𝑗 → 0. (100)

The proof is given in Appendix C.

6. Systematic formulation of control law

The discussed control law formulation can be shown algorithmically.
At the beginning of the systematic control law formulation, a step must be performed that will not be needed again. It is to

determine which frames coincide with general frames
{

𝐄𝟏𝐣
}

and
{

𝐄𝟐𝐣
}

and whether a general frame
{

𝐄𝟐𝐣
}

exists in a particular
manipulator structure.

Fig. 7. Algorithm for determining
{

𝐄𝟏𝐣
}

and/or
{

𝐄𝟐𝐣
}

frames.
By proceeding from the manipulator base to the manipulator end-effector, separate manipulator structures, as in Fig. 4, must

e identified, and for each manipulator structure, frames
{

𝐄𝟏𝐣
}

and
{

𝐄𝟐𝐣
}

must be established, using the dense procedure given by
qs. (16) and (17), Fig. 7. The latter does not exist if there is no prismatic segment in the considered manipulator structure.

Current values of linear/angular velocities are calculated first, going from the manipulator base to the end-effector. For each
anipulator structure, as in Fig. 4, calculations are carried out from the driven to the driving point of a revolute segment, using
qs. (24)–(31). If a prismatic segment exists, calculations are continued using Eqs. (32)–(34). The procedure from Fig. 8 is repeated
or every manipulator structure in the series.

Current values of relevant forces are calculated from the end-effector, i.e. from frame
{

𝐄𝟐𝐣
}

of every 𝑗th manipulator structure
f the prismatic segment exists in the structure. If that is not the case, calculations start from frame

{

𝐄𝟏𝐣
}

in the 𝑗th manipulator
tructure. Calculations are carried out to the manipulator structure’s driven point, and this procedure is repeated for all manipulator
tructures up to the first, starting from 𝑗 = 𝑛. If frame

{

𝐄𝟐𝐣
}

exists, current values for forces in the prismatic segment are calculated
sing Eqs. (51)–(56). Frame

{

𝐄𝟏𝐣
}

will exist in any case, regardless of whether frame
{

𝐄𝟐𝐣
}

exists. All the necessary values of
orces in a revolute segment are calculated using Eqs. (68) and (69). The procedure from Fig. 9 is repeated for all the manipulator
ubsystems. By performing these calculations, inertial and gravity terms are accounted for, but the reminder should be set again
o bring the attention to the inclusion of the friction force whose impact cannot be neglected. After solving the inverse kinematics
roblem, the required linear/angular velocities are calculated using relations Eqs. (38)–(45) and eventually Eqs. (46)–(48) in the
ase of prismatic segment existence.
15
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Fig. 8. Algorithm for calculating linear/angular velocities and forces/moments.

Fig. 9. Algorithm for calculating the required linear/angular velocities and forces/moments.
16
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Eqs. (35)–(37) for required joint velocities are also needed in the process. The calculations of forces/moments starts with
Eqs. (71)–(74) if the prismatic segment exists, and it continues with expressions Eqs. (76) and (77). These are the only two
expressions that require evaluation when a prismatic segment does not exist. Finally, control voltages are formed using Eqs. (90)
and (91) and/or Eqs. (92) and (93).

7. Simulation results

The proposed forces modelling scheme has been verified in the Simscape Multibody™ simulation environment. A hydraulic
manipulator from the subset of the manipulators proposed in this paper was the focus. The simulation was created using CAD
models of the laboratory installation from Fig. 10.

Fig. 10. Laboratory stand that inspired the simulation.
A more detailed description of this particular experimental setup can be found in papers [33], and [34]. For the simulation

results that follow, it is relevant to emphasise that the servo valves are connected as:

(1) Bosch Rexroth NG6 size servo solenoid valve (40 l/min at 𝛥𝑝 = 35 bar per notch) for the Lift cylinder,
(2) Bosch Rexroth NG10 size servo solenoid valve (100 l/min at 𝛥𝑝 = 35 bar per notch) for the Tilt cylinder.

Fig. 11 shows the simulation environment explorer at one point in time, in one of many poses during the simulation used to
verify forces modelling method. The same figure also contains sketched the desired A-B-C-D path used later in the control system
simulation and also contains labels for relevant pressures in the simulation, together with axis labels for the world frame. Pressures
in the Lift cylinder are labelled as 𝑝𝑎1 and 𝑝𝑏1, while the pressures in the Tilt cylinder are labelled as 𝑝𝑎2 and 𝑝𝑏2.

Fig. 11. Simulation explorer showing manipulator model used to validate the method.
17
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In order to verify the proposed inverse dynamics method, direct actuation in the simulation was performed using reasonably
hosen but still generally random and uncorrelated changes for generalised manipulator coordinates.

The type of actuation (hydraulic/electric) is not relevant at this point. The proposed theoretical approach was not related in any
ay to the particular test stand, and thus the results from Fig. 12 validate the derived results numerically.

Fig. 12. Comparison of piston forces calculated using Eq. (68) and SimScape™.
Since there is no information about equations used in the simulation environment, and since this internal numerical approach

is affected by many factors, such as the choice of the solver, a relative error of up to 0.2% for reasonably short integration time,
especially considering the magnitudes of the forces, qualifies the proposed inverse dynamics approach for further use.

To compare the execution times in Simulink, the run/sim time ratio from the Solver Profiler is used. Employing the variable-step
ode45 solver with the relative tolerance setting set to 10−7, the run/sim time ratio in the case of the SimScape™ model is about
0.14s. For the presented model, the same run/sim time ratio is 0.05s using the ode4 fixed-step solver with the step size of 0.001s.

Physical quantities such as pressures, volumetric flows, and valve voltages were irrelevant when actuator forces were calculated
since the method does not account for the type of actuators. When applying the proposed control law in the particular case of
hydraulic actuators, it is required to calculate appropriate pressures and, consequently, valve control voltages as functions of the
required forces.

For the considered manipulator, one typical planar task of reaching some starting point (labelled here as A), and after that
performing two A-B-C-D loops with a fast transition (two seconds from one trajectory point to the other) along the quintic rest-to-
rest path, as sketched in Fig. 11 can be investigated in order to obtain values for pressures and control voltages and perform the
preliminary assessment of the control algorithm.

The desired and the obtained trajectory in the simulation are shown in Fig. 13. Fig. 14 shows required and achieved piston forces
in the Lift (𝑓𝑝1𝑟, 𝑓𝑝1) and Tilt (𝑓𝑝2𝑟, 𝑓𝑝2) cylinders. Fig. 15 shows pressure changes in the Lift and Tilt cylinders during the simulated
xperiment. These are labelled in Fig. 11.

Control voltages have a limited range of ±10V, and the corresponding time changes for both control valves in the simulated
xperiment are shown in Fig. 16. The supply pressure is assumed to be constant at 185 bar with the return pressure also being
onstant at 10 bar. All the results in Figs. 13 − 16 present the simulation results obtained using the control forming approach, which
elies on the presented novel modelling scheme.
18
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Fig. 13. Desired and obtained tool centre point path.

Fig. 14. Required and obtained piston forces.

Fig. 15. Pressures in the Lift and Tilt cylinders.
19
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Fig. 16. Control voltages for directional valves.

The simulation has addressed some important practical aspects, such as the noise presence in all the measurements, which, in
turn, required the introduction of appropriate signal filtering, which is all to be tested, verified and discussed in more detail in future
experimental work. Also, the implemented friction model is assumed to be precisely known. The friction forces are not compensated
using the parameter adaptation, which will probably be necessary during the experimental part to achieve better performance and
will be addressed in more detail.

8. Discussion

The final analytic expression presented here, used to calculate actuator forces in revolute segments and given by Eq. (68) can
also be obtained following the algorithm in [27] and performing a simplification through careful symbolic manipulation. Anyhow,
this has remained unnoticed so far.

Using directly Eq. (68), at least five different trigonometric operations, 14 multiplications, and one fewer division have to be
performed to obtain the same linear actuator force value in one revolute segment. The number of necessary operations that are
computationally expensive is significantly reduced, while the final SoA expressions remain intact. Since previously used, additional
auxiliary quantities, are no longer needed, the whole analysis is now more intuitive and straightforward.

Apart from that, an independent comparison with results obtained using Simscape Multibody™ for one particular manipulator
onfiguration was performed, providing confirmation of the correctness of the proposed expressions.

In addition, the proposed virtual decomposition approach decreases the number of subsystems needed for the analysis. Mass
bjects between the driving VCP of a revolute segment and the driven VCP of the following revolute/prismatic segment do not have
o be considered separately anymore. This reduces the total number of equations for at least 4 𝑛𝑁 , and possibly more, depending
n the additional algorithm complexities. It also lowers the number of inputs to the algorithm, i.e. fewer inertia tensors, lengths,
asses, and similar must be known in the process.

Virtual stability of the generic manipulator structure from Fig. 4 per Definition 4 is ensured by proper formulation of control
alues. This, in turn, guarantees the stability of the entire robot per Theorem 2 and as a consequence, physical quantities converge
o their required values.

This different decomposition leaves the virtual stability of the manipulator structure intact, and because of this, a subsystem can
e controlled independently from the rest of the system, using one of the main ideas of VDC, modularity.

This reformulation of the linear hydraulic actuator forces model in types of manipulators relevant in practice can be used to
ewrite all the existing VDC results and formulate new ones with less effort. The reformulation is expected to yield many results in
his SoA NMB, stability-guaranteeing, modular control technique, proven to be implementable in real time.

. Conclusions

This paper provides reformulated general dynamics equations in the N–E framework, using the 6D vector formulation for a
elevant parallel–serial hydraulic manipulator configuration often encountered in practice.

As with previous N–E models in the VDC framework, the proposed model does not use usual approximations, which puts it in
ront of traditional models based on the Lagrange formulation.

The reformulation leads to a more straightforward analytic solution for calculation of a linear hydraulic actuator force when this
ctuator exists as a part of a 3-bar revolute segment with a passive joint in a hydraulic manipulator.
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In contrast to the reported modelling schemes in the N–E framework, the method presented here is more intuitive and efficient
ince fewer equations are formed. Actuator forces can now be calculated without surplus factors required by previous approaches,
sing fewer calculation operations in the process.

The proposed scheme for actuator force calculation has been validated both in simulation and analytically, using numerical results
rom Simscape Multibody™ and the current SoA analytic expressions as a reference. The analysis has considerable significance when
DC is used to control the hydraulic manipulators essential in practical applications.

A systematic subsystem-based process to formulate control law has been presented in the VDC framework using the new dynamics
odel, which also encompasses pressure dynamics while rigorously guaranteeing Lyapunov stability of the whole manipulator.

It is also expected that this reformulated systematic approach for VDC implementation, based on the proposed model, becomes
de-facto standard in the VDC community since it leads to experimentally verified, state-of-the-art (SoA) analytic expressions in a
uch more straightforward way.
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ppendix A. Proof of Theorem 3

roof. Let the motion of link 𝐿𝑗1 be described with Eq. (61). To derive the final result, some special properties of the transformation
matrices are used. The force/moment transformation matrix, which relates frames

{

𝐁𝟏𝐣
}

and
{

𝐏𝟏𝐣
}

is:

𝐁𝟏𝐣𝐔𝐏𝟏𝐣 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos 𝑞𝑗2 sin 𝑞𝑗2 0 0 0 0
− sin 𝑞𝑗2 cos 𝑞𝑗2 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 𝑞𝑗2 sin 𝑞𝑗2 0
0 0 −𝐿𝑗1 − sin 𝑞𝑗2 cos 𝑞𝑗2 0

−𝐿𝑗1 sin 𝑞𝑗2 𝐿𝑗1 cos 𝑞𝑗2 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.1)

The forces/moments with neglected friction in the 𝑞𝑗2-joint per Eq. (58) are:

𝐏𝟏𝐣𝑭 =
(𝑃1𝑗𝑓x

𝑃1𝑗𝑓y 0 0 0 0
)𝑇 . (A.2)

The motion equation, Eq. (61), combined with Eq. (57) and (A.2) gives:

𝐳𝑇𝜏
(

𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭

)

= −𝑃1𝑗𝑓x 𝐿𝑗1 sin 𝑞𝑗2 +
𝑃1𝑗𝑓y 𝐿𝑗1 cos 𝑞𝑗2, (A.3)

nd Eq. (A.3) presents the starting point from which the solution is obtained.
The piston and rod subsystem moves only in the direction of the local frame 𝑥-axis, so its motion is constrained. It also has an

ngular velocity about the local frame 𝑧-axis different from zero. The force/moment vector at the
{

𝐁𝟒𝐣
}

frame is modelled as:

𝐁𝟒𝐣𝑭 =
(𝐵4𝑗𝑓x

𝐵4𝑗𝑓y 0 0 0 𝐵4𝑗𝑚z
)𝑇 . (A.4)

The force/moment transformation matrix from frame
{

𝐏𝟏𝐣
}

to frame
{

𝐁𝟒𝐣
}

has a very simple structure, because 𝐁𝟒𝐣𝐑𝐏𝟏𝐣 = 𝐈3×3:

𝐁𝟒𝐣𝐔𝐏𝟏𝐣 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −𝑙𝑐𝑗 0 1 0
0 𝑙𝑐𝑗 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.5)

here 𝑙𝑐𝑗 is the length of the piston and rod from Fig. 4. Eq. (63), combined with Eqs. (A.4) and (A.5) yields a simpler form, which
s very significant for further analysis. That is, separate EOMs from Eq. (63) become:

𝐵4𝑗𝑓 = 𝐱𝑇
(

𝐁𝟒𝐣𝑭 ∗
)

+ 𝑃1𝑗𝑓 , (A.6)
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𝐵4𝑗𝑓y = 𝐲𝑇𝑓
(

𝐁𝟒𝐣𝑭 ∗
)

+ 𝑃1𝑗𝑓y , (A.7)

and

𝐵4𝑗𝑚z = 𝐳𝑇𝜏
(

𝐁𝟒𝐣𝑭 ∗
)

+ 𝑃1𝑗𝑓y 𝑙𝑐𝑗 , (A.8)

where 𝐲𝑓 =
(

0 1 0 0 0 0
)𝑇 .

The force/moment transformation matrix from frame
{

𝐁𝟒𝐣
}

to frame
{

𝐁𝟑𝐣
}

also has a very simple structure. Again, this is because
𝐁𝟑𝐣𝐑𝐁𝟒𝐣

= 𝐈3×3:

𝐁𝟑𝐣𝐔𝐁𝟒𝐣
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −𝑥𝑗 − 𝑥𝑗0 + 𝑙𝑐𝑗 0 1 0
0 𝑥𝑗 + 𝑥𝑗0 − 𝑙𝑐𝑗 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.9)

The forces/moments with neglected friction in the 𝑞𝑗1-joint per Eq. (59) are:

𝐁𝟑𝐣𝑭 =
(𝐵3𝑗𝑓x

𝐵3𝑗𝑓y 0 0 0 0
)𝑇 . (A.10)

Using Eqs. (A.9) and (A.10), separate EOMs from Eq. (64) are:

𝐵3𝑗𝑓x = 𝐱𝑇𝑓
(

𝐁𝟑𝐣𝑭 ∗
)

+ 𝐵4𝑗𝑓x, (A.11)

𝐵3𝑗𝑓y = 𝐲𝑇𝑓
(

𝐁𝟑𝐣𝑭 ∗
)

+ 𝐵4𝑗𝑓y , (A.12)

nd

0 = 𝐳𝑇𝜏
(

𝐁𝟑𝐣𝑭 ∗
)

+ 𝐵4𝑗𝑚z +
𝐵4𝑗𝑓y

(

𝑥𝑗 + 𝑥𝑗0 − 𝑙𝑐𝑗
)

. (A.13)

Combining Eqs. (A.7) and (A.8) and Eq. (A.13), the solution for 𝐵4𝑗𝑓y is:

𝐵4𝑗𝑓y = −
𝐳𝑇𝜏

(

𝐁𝟑𝐣𝑭 ∗
)

+ 𝐳𝑇𝜏
(

𝐁𝟒𝐣𝑭 ∗
)

𝑥𝑗 + 𝑥𝑗0
+

𝐲𝑇𝑓
(

𝐁𝟒𝐣𝑭 ∗
)

𝑙𝑐𝑗
𝑥𝑗 + 𝑥𝑗0

. (A.14)

Further, combining equations Eq. (A.3), Eqs. (A.6) and (A.7), and Eq. (A.14), the final expression for the actuator force in the
evolute segment can be obtained as:

𝐵4𝑗𝑓x = −
𝐳𝑇𝜏

(

𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭

)

𝐿𝑗1 sin 𝑞𝑗2
+ 𝐱𝑇𝑓

(

𝐁𝟒𝐣𝑭 ∗
)

+
(

𝐵4𝑗𝑓y − 𝐲𝑇𝑓
(

𝐁𝟒𝐣𝑭 ∗
))

cot 𝑞𝑗2. (A.15)

which is in the expanded form given with Eq. (68), and this finishes the proof.

Appendix B. Proof of Theorem 4

Proof. Consider the revolute segment from Fig. 5a. Eqs. (63) and (64) can be combined into the following relation:

𝐁𝟑𝐣𝑭 = 𝐁𝟑𝐣𝑭 ∗ + 𝐁𝟑𝐣𝐔𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑭 ∗ + 𝐁𝟒𝐣𝐔𝐏𝟏𝐣
𝐏𝟏𝐣𝑭

)

. (B.1)

urther, Eqs. (64) and (B.1) can be combined into:

𝐁𝟐𝐣𝑭 = 𝐁𝟐𝐣𝐔𝐁𝟑𝐣
𝐁𝟑𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣

𝐁𝟑𝐣𝐔𝐁𝟒𝐣
𝐁𝟒𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔𝐁𝟑𝐣

𝐁𝟑𝐣𝐔𝐁𝟒𝐣
𝐁𝟒𝐣𝐔𝐏𝟏𝐣

𝐏𝟏𝐣𝑭 . (B.2)

On the other hand, combining Eqs. (61) and (62) gives:

𝐁𝟎𝐣𝑭 = 𝐁𝟎𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣
𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔𝐁𝟏𝐣

𝐁𝟏𝐣𝐔𝐄𝟏𝐣
𝐄𝟏𝐣𝑭 − 𝐁𝟎𝐣𝐔𝐁𝟏𝐣

𝐁𝟏𝐣𝐔𝐏𝟏𝐣
𝐏𝟏𝐣𝑭 . (B.3)

Combining Eqs. (B.2) and (B.3) per Eq. (66) gives a final expression for the force at the driven point, free of internal forces:

𝐁𝐜𝐣𝑭 = 𝐁𝟎𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔 𝐁𝟏𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔 𝐁𝟑𝐣𝑭 ∗ + 𝐁𝟐𝐣𝐔 𝐁𝟑𝐣𝐔 𝐁𝟒𝐣𝑭 ∗ + 𝐁𝟎𝐣𝐔 𝐁𝟏𝐣𝐔 𝐄𝟏𝐣𝑭 . (B.4)
22
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Appendix C. Proof of virtual stability

Stability analysis is carried out for the general case of a manipulator structure, including both revolute and prismatic segments.
f the prismatic segment does not exist in the 𝑗th manipulator structure, only specific terms drop from the analysis, and all the
onclusions remain the same.

roof. Time derivatives of accompanying non-negative functions given by Eq. (96), where {𝐀} ∈ 𝐒𝐣 and the set 𝐒𝐣 is given
ith Eq. (94), are the first to be found and combined. Using Eq. (8) and (49) along with kinematic relations Eqs. (24)–(34) and
ynamics relations given with Eqs. (51)–(56) and Eqs. (61)–(66), the following expressions are obtained for each subsystem-related
on-negative accompanying function:

�̇�𝐵0𝑗
=

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇 (

𝐁𝟎𝐣𝑭 ∗
𝑟 − 𝐁𝟎𝐣𝑭 ∗

)

=
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇 (

𝐁𝟎𝐣𝑭𝑟 −
𝐁𝟎𝐣𝑭

)

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇 𝐁𝟎𝐣𝐔𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑭𝑟 −
𝐁𝟏𝐣𝑭

)

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇
𝐊𝐁𝟎𝐣

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)

=
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇 (

𝐁𝟎𝐣𝑭𝑟 −
𝐁𝟎𝐣𝑭

)

−
(

𝐁𝟏𝐣𝐔𝑇
𝐁𝟎𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

))𝑇 𝐁𝟎𝐣𝐔𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑭𝑟 −
𝐁𝟏𝐣𝑭

)

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇
𝐊𝐁𝟎𝐣

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)

=

𝑝𝐁𝟎𝐣
− 𝑝𝐁𝟏𝐣

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇
𝐊𝐁𝟎𝐣

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)

,

(C.1)

�̇�𝐵1𝑗
=

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 (

𝐁𝟏𝐣𝑭 ∗
𝑟 − 𝐁𝟏𝐣𝑭 ∗

)

=
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 (

𝐁𝟏𝐣𝑭𝑟 −
𝐁𝟏𝐣𝑭

)

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 𝐁𝟏𝐣𝐔𝐄𝟏𝐣

(

𝐄𝟏𝐣𝑭𝑟 −
𝐄𝟏𝐣𝑭

)

+
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 𝐁𝟏𝐣𝐔𝐏𝟏𝐣

(

𝐏𝟏𝐣𝑭𝑟 −
𝐏𝟏𝐣𝑭

)

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

=
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 (

𝐁𝟏𝐣𝑭𝑟 −
𝐁𝟏𝐣𝑭

)

−
(

𝐄𝟏𝐣𝐔𝑇
𝐁𝟏𝐣

(

𝐄𝟏𝐣𝑽𝑟 −
𝐄𝟏𝐣𝑽

))𝑇 𝐁𝟏𝐣𝐔𝐄𝟏𝐣

(

𝐄𝟏𝐣𝑭𝑟 −
𝐄𝟏𝐣𝑭

)

+
(

𝐏𝟏𝐣𝐔𝑇
𝐁𝟏𝐣

(

𝐏𝟏𝐣𝑽𝑟 −
𝐏𝟏𝐣𝑽

))𝑇 𝐁𝟏𝐣𝐔𝐏𝟏𝐣

(

𝐏𝟏𝐣𝑭𝑟 −
𝐏𝟏𝐣𝑭

)

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁11

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

=
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇 (

𝐁𝟏𝐣𝑭𝑟 −
𝐁𝟏𝐣𝑭

)

+
(

𝐏𝟏𝐣𝑽𝑟 −
𝐏𝟏𝐣𝑽

)𝑇 (

𝐏𝟏𝐣𝑭𝑟 −
𝐏𝟏𝐣𝑭

)

−
(

𝐄𝟏𝐣𝑽𝑟 −
𝐄𝟏𝐣𝑽

)𝑇 (

𝐄𝟏𝐣𝑭𝑟 −
𝐄𝟏𝐣𝑭

)

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

=

𝑝𝐁𝟏𝐣
− 𝑝𝐄𝟏𝐣

+ 𝑝𝐏𝟏𝐣 −
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

,

(C.2)

�̇�𝐵4𝑗
=

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇 (

𝐁𝟒𝐣𝑭 ∗
𝑟 − 𝐁𝟒𝐣𝑭 ∗

)

=
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇 (

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇 𝐁𝟒𝐣𝐔𝐏𝟏𝐣

(

𝐏𝟏𝐣𝑭𝑟 −
𝐏𝟏𝐣𝑭

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇
𝐊𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)

=
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇 (

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

−
(

𝐏𝟏𝐣𝐔𝑇
𝐁𝟒𝐣

(

𝐏𝟏𝐣𝑽𝑟 −
𝐏𝟏𝐣𝑽

))𝑇 𝐁𝟒𝐣𝐔𝐏𝟏𝐣

(

𝐏𝟏𝐣𝑭𝑟 −
𝐏𝟏𝐣𝑭

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇
𝐊𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)

=

𝑝𝐁𝟒𝐣
− 𝑝𝐏𝟏𝐣 −

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇
𝐊𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)

,

(C.3)

�̇�𝐵3𝑗
=

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇 (

𝐁𝟑𝐣𝑭 ∗
𝑟 − 𝐁𝟑𝐣𝑭 ∗

)

=
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇 (

𝐁𝟑𝐣𝑭𝑟 −
𝐁𝟑𝐣𝑭

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇 𝐁𝟑𝐣𝐔𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇
𝐊𝐁𝟑𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)

=
(

�̇�𝑗1𝑟 − �̇�𝑗1
)

𝐳𝑇𝜏
(

𝐁𝟑𝐣𝑭𝑟 −
𝐁𝟑𝐣𝑭

)

+
(

𝐁𝟐𝐣𝐔𝑇
𝐁𝟑𝐣

(

𝐁𝟐𝐣𝑽𝑟 −
𝐁𝟐𝐣𝑽

))𝑇 (

𝐁𝟑𝐣𝑭𝑟 −
𝐁𝟑𝐣𝑭

)

−
(

𝐁𝟑𝐣𝐔𝑇
𝐁𝟒𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

))𝑇 (

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇
𝐊𝐁𝟑𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)

=
(

�̇�𝑗1𝑟 − �̇�𝑗1
)

𝐳𝑇𝜏
(

𝐁𝟑𝐣𝑭𝑟 −
𝐁𝟑𝐣𝑭

)

+
(

𝐁𝟐𝐣𝑽𝑟 −
𝐁𝟐𝐣𝑽

)𝑇 (

𝐁𝟐𝐣𝑭𝑟 −
𝐁𝟐𝐣𝑭

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇 (

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

+
(

�̇�𝑗𝑟 − �̇�𝑗
)

𝐱𝑇𝑓
(

𝐁𝟒𝐣𝑭𝑟 −
𝐁𝟒𝐣𝑭

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇
𝐊𝐁𝟑𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)

=

𝑝 − 𝑝 +
(

�̇� − �̇�
) (

𝑓 − 𝑓
)

−
(

𝐁𝟑𝐣𝑽 − 𝐁𝟑𝐣𝑽
)𝑇

𝐊
(

𝐁𝟑𝐣𝑽 − 𝐁𝟑𝐣𝑽
)

,

(C.4)
23
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�̇�𝑃2𝑗 =
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇 (

𝐏𝟐𝐣𝑭 ∗
𝑟 − 𝐏𝟐𝐣𝑭 ∗

)

=
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇 (

𝐏𝟐𝐣𝑭𝑟 −
𝐏𝟐𝐣𝑭

)

−
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇 𝐏𝟐𝐣𝐔𝐁𝟓𝐣

(

𝐁𝟓𝐣𝑭𝑟 −
𝐁𝟓𝐣𝑭

)

−
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇
𝐊𝐏𝟐𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)

=
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇 (

𝐏𝟐𝐣𝑭𝑟 −
𝐏𝟐𝐣𝑭

)

−
(

𝐏𝟐𝐣𝐔𝑇
𝐁𝟓𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

))𝑇 (

𝐁𝟓𝐣𝑭𝑟 −
𝐁𝟓𝐣𝑭

)

−
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇
𝐊𝐏𝟐𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)

=

𝑝𝐏𝟐𝐣 − 𝑝𝐁𝟓𝐣
−
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇
𝐊𝐏𝟐𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)

,

(C.5)

�̇�𝐵5𝑗
=

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇 (

𝐁𝟓𝐣𝑭 ∗
𝑟 − 𝐁𝟓𝐣𝑭 ∗

)

=
(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇 (

𝐁𝟓𝐣𝑭𝑟 −
𝐁𝟓𝐣𝑭

)

−
(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇 𝐁𝟓𝐣𝐔𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑭𝑟 −
𝐏𝟑𝐣𝑭

)

−
(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇
𝐊𝐁𝟓𝐣

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)

=
(

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
) (

𝑓𝑐𝑡𝑗𝑟 − 𝑓𝑐𝑡𝑗
)

+
(

𝐏𝟐𝐣𝐔𝑇
𝐁𝟓𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

))𝑇 (

𝐁𝟓𝐣𝑭𝑟 −
𝐁𝟓𝐣𝑭

)

−
(

𝐏𝟑𝐣𝐔𝑇
𝐁𝟓𝐣

(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

))𝑇 𝐁𝟓𝐣𝐔𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑭𝑟 −
𝐏𝟑𝐣𝑭

)

−
(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇
𝐊𝐁𝟓𝐣

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)

=
(

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
) (

𝑓𝑐𝑡𝑗𝑟 − 𝑓𝑐𝑡𝑗
)

+ 𝑝𝐁𝟓𝐣
− 𝑝𝐏𝟑𝐣 −

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇
𝐊𝐁𝟓𝐣

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)

,

(C.6)

�̇�𝑃3𝑗 =
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇 (

𝐏𝟑𝐣𝑭 ∗
𝑟 − 𝐏𝟑𝐣𝑭 ∗

)

=
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇 (

𝐏𝟑𝐣𝑭𝑟 −
𝐏𝟑𝐣𝑭

)

−
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇 𝐏𝟑𝐣𝐔𝐄𝟐𝐣

(

𝐄𝟐𝐣𝑭𝑟 −
𝐄𝟐𝐣𝑭

)

−
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇
𝐊𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)

=
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇 (

𝐏𝟑𝐣𝑭𝑟 −
𝐏𝟑𝐣𝑭

)

−
(

𝐄𝟐𝐣𝐔𝑇
𝐏𝟑𝐣

(

𝐄𝟐𝐣𝑽𝑟 −
𝐄𝟐𝐣𝑽

))𝑇 𝐏𝟑𝐣𝐔𝐄𝟐𝐣

(

𝐄𝟐𝐣𝑭𝑟 −
𝐄𝟐𝐣𝑭

)

−
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇
𝐊𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)

=

𝑝𝐏𝟑𝐣 − 𝑝𝐄𝟐𝐣
−
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇
𝐊𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)

.

(C.7)

In the case when the prismatic segment does not exist, the accompanying function for the 𝑗th manipulator structure is:

�̇�𝑐𝑙 = �̇�𝐵1𝑗
+ �̇�𝐵0𝑗

+ �̇�𝐵4𝑗
+ �̇�𝐵3𝑗

=
(

�̇�𝑗𝑟 − �̇�𝑗
) (

𝑓𝑐𝑗𝑟 − 𝑓𝑐𝑗
)

− 𝑝𝐄𝟏𝐣
+ 𝑝𝐁𝐜𝐣

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇
𝐊𝐁𝟎𝐣

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇
𝐊𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇
𝐊𝐁𝟑𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)

.

(C.8)

In the case when a prismatic segment does exist, the accompanying function for the 𝑗th manipulator structure becomes:

�̇�𝑗𝑐 = �̇�𝐵5𝑗
+ �̇�𝑃2𝑗 + �̇�𝑃3𝑗 + �̇�𝐵1𝑗

+ �̇�𝐵0𝑗
+ �̇�𝐵4𝑗

+ �̇�𝐵3𝑗
=

(

�̇�𝑗𝑟 − �̇�𝑗
) (

𝑓𝑐𝑗𝑟 − 𝑓𝑐𝑗
)

+
(

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
) (

𝑓𝑐𝑡𝑗𝑟 − 𝑓𝑐𝑡𝑗
)

+ 𝑝𝐁𝐜𝐣
− 𝑝𝐄𝟐𝐣

−
(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)𝑇
𝐊𝐁𝟏𝐣

(

𝐁𝟏𝐣𝑽𝑟 −
𝐁𝟏𝐣𝑽

)

−
(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)𝑇
𝐊𝐁𝟎𝐣

(

𝐁𝟎𝐣𝑽𝑟 −
𝐁𝟎𝐣𝑽

)

−
(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)𝑇
𝐊𝐁𝟒𝐣

(

𝐁𝟒𝐣𝑽𝑟 −
𝐁𝟒𝐣𝑽

)

−
(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)𝑇
𝐊𝐁𝟑𝐣

(

𝐁𝟑𝐣𝑽𝑟 −
𝐁𝟑𝐣𝑽

)

−
(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)𝑇
𝐊𝐁𝟓𝐣

(

𝐁𝟓𝐣𝑽𝑟 −
𝐁𝟓𝐣𝑽

)

−
(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)𝑇
𝐊𝐏𝟐𝐣

(

𝐏𝟐𝐣𝑽𝑟 −
𝐏𝟐𝐣𝑽

)

−
(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)𝑇
𝐊𝐏𝟑𝐣

(

𝐏𝟑𝐣𝑽𝑟 −
𝐏𝟑𝐣𝑽

)

.

(C.9)

Time derivatives of the proposed non-negative accompanying functions Eqs. (97) and (98) are:

�̇�𝑝𝑗 =
1
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)

̇𝑓𝑝𝑗𝑟 − ̇𝑓𝑝𝑗
𝛽

=

1
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
) (

𝑢𝑓𝑗𝑟 − 𝑢𝑓𝑗
)

−
(

𝑓𝑐𝑗𝑟 − 𝑓𝑐𝑗
) (

�̇�𝑗𝑟 − �̇�𝑗
)

−
(

𝑓𝑓𝑗𝑟 − 𝑓𝑓𝑗
) (

�̇�𝑗𝑟 − �̇�𝑗
)

−
𝑘𝑓𝑗
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)2 ,

(C.10)

and

�̇�𝑝𝑡𝑗 =
1

𝑘𝑥𝑡𝑗

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)

̇𝑓𝑝𝑡𝑗𝑟 − ̇𝑓𝑝𝑡𝑗
𝛽

=

1 (

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
) (

𝑢𝑓𝑡𝑗𝑟 − 𝑢𝑓𝑡𝑗
)

−
(

𝑓𝑐𝑡𝑗𝑟 − 𝑓𝑐𝑡𝑗
) (

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

−
(

𝑓𝑓𝑡𝑗𝑟 − 𝑓𝑓𝑡𝑗
) (

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

−
𝑘𝑓𝑡𝑗 (

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)2 .

(C.11)
24

𝑘𝑥𝑡𝑗 𝑘𝑥𝑡𝑗
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The time derivative of the proposed accompanying function Eq. (95) for the manipulator structure is obtained by summing
qs. (C.2)–(C.7) and Eqs. (C.10) and (C.11) as:

�̇�𝑗 = �̇�𝐵5𝑗
+ �̇�𝑃2𝑗 + �̇�𝑃3𝑗 + �̇�𝐵1𝑗

+ �̇�𝐵0𝑗
+ �̇�𝐵4𝑗

+ �̇�𝐵3𝑗
+ �̇�𝑝𝑗 + �̇�𝑝𝑡𝑗 =

−
∑

𝐀∈𝐒𝐣

(𝐀𝑽𝑟 − 𝐀𝑽
)𝑇 𝐊𝐀

(𝐀𝑽𝑟 − 𝐀𝑽
)

+ 𝑝𝐁𝐜𝐣
− 𝑝𝐄𝟐𝐣

+

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
) (

𝑢𝑓𝑗𝑟 − 𝑢𝑓𝑗
)

𝑘𝑥𝑗
+

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
) (

𝑢𝑓𝑡𝑗𝑟 − 𝑢𝑓𝑡𝑗
)

𝑘𝑥𝑡𝑗
−

−
(

𝑓𝑓𝑗𝑟 − 𝑓𝑓𝑗
) (

�̇�𝑗𝑟 − �̇�𝑗
)

−
(

𝑓𝑓𝑡𝑗𝑟 − 𝑓𝑓𝑡𝑗
) (

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

−
𝑘𝑓𝑗
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)2 −

𝑘𝑓𝑡𝑗
𝑘𝑥𝑡𝑗

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)2 .

(C.12)

The stability-preventing terms
(

�̇�𝑗𝑟 − �̇�𝑗
) (

𝑓𝑐𝑗𝑟 − 𝑓𝑐𝑗
)

and
(

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

(𝑓𝑐𝑡𝑗𝑟 − 𝑓𝑐𝑡𝑗 ) from Eq. (C.9) are replaced with terms
(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
) (

𝑢𝑓𝑗𝑟 − 𝑢𝑓𝑗
)

,
(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
) (

𝑢𝑓𝑡𝑗𝑟 − 𝑢𝑓𝑡𝑗
)

,
(

𝑓𝑓𝑗𝑟 − 𝑓𝑓𝑗
) (

�̇�𝑗𝑟 − �̇�𝑗
)

and
(

𝑓𝑓𝑡𝑗𝑟 − 𝑓𝑓𝑡𝑗
) (

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

in the expression Eq. (C.12)
for the whole 𝑗th manipulator structure.

Simply choosing 𝑢𝑓𝑗𝑟 = 𝑢𝑓𝑗 and 𝑢𝑓𝑡𝑗𝑟 = 𝑢𝑓𝑡𝑗 , two out of four stability-preventing terms in Eq. (C.12) disappear.
The friction model is already assumed to be increasing, continuous and antisymmetric, so using this property, it follows that:

−
(

𝑓𝑓𝑗𝑟 − 𝑓𝑓𝑗
) (

�̇�𝑗𝑟 − �̇�𝑗
)

⩽ 0, (C.13)

and

−
(

𝑓𝑓𝑡𝑗𝑟 − 𝑓𝑓𝑡𝑗
) (

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗
)

⩽ 0. (C.14)

This makes it possible to write the time derivative Eq. (C.12) in its final form:

�̇�𝑗 = �̇�𝐵5𝑗
+ �̇�𝑃2𝑗 + �̇�𝑃3𝑗 + �̇�𝐵1𝑗

+ �̇�𝐵0𝑗
+ �̇�𝐵4𝑗

+ �̇�𝐵3𝑗
+ �̇�𝑝𝑗 + �̇�𝑝𝑡𝑗 ⩽

−
∑

𝐀∈𝐒𝐣

(𝐀𝑽𝑟 − 𝐀𝑽
)𝑇 𝐊𝐀

(𝐀𝑽𝑟 − 𝐀𝑽
)

+ 𝑝𝐁𝐜𝐣
− 𝑝𝐄𝟐𝐣

−
𝑘𝑓𝑗
𝑘𝑥𝑗

(

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗
)2 −

𝑘𝑓𝑡𝑗
𝑘𝑥𝑡𝑗

(

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗
)2 , (C.15)

which qualifies the 𝑗th hydraulic manipulator structure from Fig. 4 as virtually stable in the sense of Definition 4.
Consequently, from Theorem 2, it follows that:

𝑓𝑝𝑗𝑟 − 𝑓𝑝𝑗 ∈ 𝐿2 ∩ 𝐿∞, (C.16)

𝑓𝑝𝑡𝑗𝑟 − 𝑓𝑝𝑡𝑗 ∈ 𝐿2 ∩ 𝐿∞, (C.17)

nd
𝐀𝑽𝑟 − 𝐀𝑽 ∈ 𝐿2 ∩ 𝐿∞. (C.18)

In addition, Eqs. (C.18) imply that:

�̇�𝑗𝑟 − �̇�𝑗 ∈ 𝐿2 ∩ 𝐿∞, (C.19)

nd

�̇�𝑡𝑗𝑟 − �̇�𝑡𝑗 ∈ 𝐿2 ∩ 𝐿∞. (C.20)

Given a bounded �̇�𝑗𝑟 and �̇�𝑡𝑗𝑟, the boundedness of �̇�𝑗 and �̇�𝑡𝑗 is ensured from Eqs. (C.19) and (C.20), respectively. This guarantees
he boundedness of friction forces 𝑓𝑓𝑗 and 𝑓𝑓𝑡𝑗 . Having bounded required accelerations 𝑞𝑗𝑟 ∈ 𝐿∞ and �̈�𝑡𝑗𝑟 ∈ 𝐿∞ implies bounded 𝑓𝑐𝑗𝑟
nd 𝑓𝑐𝑡𝑗𝑟 and consequently 𝑓𝑝𝑗𝑟 ∈ 𝐿∞ and 𝑓𝑝𝑡𝑗𝑟 ∈ 𝐿∞. In turn, Eqs. (C.16) and (C.17) imply 𝑓𝑝𝑗 ∈ 𝐿∞ and 𝑓𝑝𝑡𝑗 ∈ 𝐿∞. The boundedness

of 𝑓𝑝𝑗 , 𝑓𝑝𝑡𝑗 , �̇�𝑗 and �̇�𝑡𝑗 implies the boundedness of 𝑓𝑐𝑗 and 𝑓𝑐𝑡𝑗 . Boundedness of all actuation forces implies bounded accelerations
̈𝑗 and �̈�𝑡𝑗 . Moreover, asymptotic convergence of all 𝐿2 signals with bounded time derivatives are ensured from Lemma 1.

That is, from 𝑞𝑗𝑟−𝑞𝑗 ∈ 𝐿∞ and Eq. (C.19). it follows that �̇�𝑗𝑟− �̇�𝑗 → 0, and this in turn guarantees �̇�𝑗𝑑− �̇�𝑗 → 0 and 𝑞𝑗𝑑−𝑞𝑗 → 0 from
q. (36). As a consequence, �̇�𝑗𝑑 − �̇�𝑗 → 0 and 𝑥𝑗𝑑 − 𝑥𝑗 → 0 are guaranteed, per Eq. (18) and (21). On the other hand, �̈�𝑡𝑗𝑑 − �̈�𝑡𝑗 ∈ 𝐿∞
nd Eq. (C.20) imply �̇�𝑡𝑗𝑟 − �̇�𝑡𝑗 → 0, so �̇�𝑡𝑗𝑑 − �̇�𝑡𝑗 → 0 and 𝑥𝑡𝑗𝑑 − 𝑥𝑡𝑗 → 0.
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