
Anh Huy Bui

DEVELOPMENT PROCESS FOR SOFTWARE

GENERATED FROM MATLAB

Master of Science

Faculty of Information Technology and Communication Sciences

Examiners: Asst. Prof. David Hästbacka

M.Sc.(Tech.) Olli Suominen

May 2022

i

ABSTRACT

Anh Huy Bui: Development process for software generated from MATLAB
Master of Science
Tampere University
Embedded Systems
May 2022

Nowadays, modern devices are becoming extremely smart by embedded with advanced soft-
ware. However, defects are more likely to occur when the software complexity increases. As
a result, there is a need for a proper development and testing procedure to ensure defect-free
software. Multiple software development process models were studied to achieve that goal.

To fulfill the demand for developing new technology, MATLAB (Matrix Laboratory) has become
a powerful tool widely used among developers. MATLAB provides a coding environment, interac-
tive user interface, and a vast number of libraries in every field of science. However, a limitation
is that the software developed using MATLAB cannot operate on general platforms. Fortunately, it
is possible to generate C/C++ software from a given MATLAB code. The problem is ensuring the
dependability and quality of generated software.

This thesis analyzes MATLAB characteristics in terms of developing software. Then a software
development process model based on other research is proposed. The model studies all phases,
from planning to coding and testing, emphasizing the difference in generating process to coding.
Finally, the model is evaluated for effectiveness when developing software from MATLAB and the
functionality and dependability of generated software are also under investigation. The conclusion
of the thesis will justify if developing software by generating from MATLAB is a good approach in
general.

Keywords: Software development process model, Software Quality Assurance, MATLAB, MATLAB
Coder

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

The research work in this thesis is a part of a project from F4E (Fusion for Energy) coop-

erated with Tampere University of Technology.

Firstly, I would like to express my sincere appreciation for my supervisor, David Häst-

backa, for all of his guidance. Mr. Hästbacka has been very supportive to me of not

just the thesis work but the whole study process. I was overwhelmed but thankful for his

generosity.

Secondly, I would like to thank my team member in the research project, Mr. Olli Suomi-

nen and professor Atanas Gotchev for giving me this chance to work on this research.

It was the greatest opportunity given to me when I needed it the most. Moreover, Mr.

Suominen was not only a co-worker, but he was a good friend that made my work at

Tampere University much easier.

Finally, my gratitude is to F4E members Mr. Ruiz Morales Emilio, Ms. Pintos Cabrera

Nicole Alejandra, and Mr. Kolokotronis Efstathios. They all were contributory throughout

the project time. In addition, my knowledge has been enriched by working with excellent

people.

This thesis would be given to my family as my greatest gift.

Tampere, 7th May 2022

Anh Huy Bui

iii

CONTENTS

1. Introduction . 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Methodology . 3

1.3.1 Objectives . 3

1.3.2 Work Description . 3

2. Related study on the software development process models 4

2.1 Definition of quality software 4

2.2 Software quality assurance and different concepts. 5

2.3 The software development process. 6

2.3.1 Plan . 6

2.3.2 Design . 7

2.3.3 Implementation . 7

2.3.4 Testing . 7

2.3.5 Deploy and maintenance 8

2.4 Software development model 8

2.4.1 Waterfall model . 8

2.4.2 V-model. 9

2.4.3 Incremental and Iterative models 10

2.4.4 Spiral model . 12

2.4.5 Extreme programming 13

2.5 Software testing . 14

2.5.1 Software static testing 15

2.5.2 Software dynamic testing 18

2.5.3 Common testing tools 22

2.6 Model based testing . 23

2.7 Quality assurance in Computer Vision 25

3. MATLAB and MATLAB Coder requirements for usage 28

3.1 MATLAB . 28

3.2 MATLAB programming language in comparison with C/C++ 28

3.3 MATLAB Coder - features and prerequisite for usage 31

3.4 MATLAB Coder - code generation process. 32

3.4.1 Modification to arrays for code generation 32

3.4.2 Modification to MATLAB built-in function 36

iv

3.4.3 Code generation process 37

4. Design and implementation of code generated from MATLAB 40

4.1 Planning . 40

4.1.1 Software description and requirement analysis 40

4.1.2 Planning of development and testing process 41

4.1.3 Software development process model 45

4.1.4 Introduction and Planning of demo project 46

4.2 Design . 49

4.2.1 Data flow charts . 49

4.2.2 Design of error handling mechanism and testing. 51

4.2.3 Data flow chart of C/C++ software 55

4.2.4 Tools for developing and testing 58

4.3 Deployment of generated code 58

5. Evaluation of generated software and the development process 60

5.1 Evaluation of non-functional characteristics 60

5.2 Evaluation of software functionality 63

5.3 Software development process model - Advantages and challenges . . . 64

6. Conclusion . 66

6.1 Thesis conclusion . 66

6.2 Recommendation for future work 67

References . 68

v

LIST OF FIGURES

2.1 Sofware development life cycle (SDLC). [13] 6

2.2 Waterfall Model. [21] . 9

2.3 V-Model. [21] . 10

2.4 Incremental model. [21] . 11

2.5 Iterative model. [21] . 12

2.6 Spiral model. [21] . 13

2.7 Extreme programming. [21] . 14

2.8 Software Testing types. 15

2.9 Dynamic Testing types. 19

2.10 Dynamic Testing in detail. 21

2.11 Some of testing frameworks. 22

2.12 Model based testing (figure based on [47]). 23

2.13 Online model based testing. 24

2.14 Offline model based testing. 24

2.15 An example of computer vision application with different input parame-

ters.[50] . 26

3.1 A package of generated code. 38

3.2 Redundancy of generated code. 39

4.1 Coding phases from MATLAB model code to C++ generated code. 42

4.2 Planning two testing stages. 43

4.3 Two levels of testing. 44

4.4 Software development process for code generation. 46

4.5 calibrateCamera data flow chart. 50

4.6 calibrateHandeye data flow chart. 51

4.7 The cycle of the implementation and testing phases 52

4.8 Implementation of testing block diagram. 54

4.9 Complete implementation of C/C++ calibrateCamera. 56

4.10 Complete implementation of C/C++ calibrateHandeye. 57

vi

LIST OF TABLES

2.1 Examples of industrial coding standards 16

2.2 Example of MISRA C++ 2008. [36] . 17

2.3 Some tools for software static tests. 18

2.4 Functional testing levels. [43] . 20

2.5 Non-functional testing types.[43] . 20

3.1 MATLAB primitive types in comparison to C/C++ [53]. 29

3.2 Difference in generated C and C++ from MATLAB code 31

3.3 Properties of generated code . 31

4.1 Some suggestion on possible requirements 41

4.2 Some testing types that can be applied. 45

4.3 calibrateCamera specification. 47

4.4 calibrateHandeye specification. 48

4.5 Additional requirements for demo project. 49

4.6 Tools used for development of demo code. 58

4.7 Some suggest flags that can be helpful during development. 59

5.1 MISRA C++ Rules that are violated. 61

5.2 Execution time of MATLAB and generated calibrateCamera code. 62

5.3 Execution time of MATLAB and generated calibrateHandeye code. . . . 62

5.4 Example of error tolerance during testing 63

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API(s) Application Program Interface(s)

CERT Computer Emergency Response Team

GPU Graphics Processing Unit

IEC International Electrotechnical Commission

MATLAB Matrix Laboratory

MISRA Motor Industry Software Reliability Association

OWASP Open Web Application Security Project

SDLC Software Development Life Cycle

SQA Software Quality Assurance

XP Extreme programming - a software development process model

1

1. INTRODUCTION

1.1 Background

Over the past decade, there has been a dramatic increase in the number of new tech-

nologies, including AI, Cloud Computing, the Internet of Things, and Blockchains. It may

sound unfamiliar, yet the innovation presents itself in everyday devices, among which a

modern smartphone, a transport control system, and an autopilot feature on cars are

prime examples. As the size and complexity of these systems increase, there may be

more possibilities for severe problems to occur. Therefore, improving software depend-

ability is considered a critical factor in the software development process.

The term software is extremely common in various fields of science. In simple words,

most forms of software act as a middle man between the users and the devices, receiving

commands from the users and giving orders to the devices for execution.

It is also important that the term software quality be clearly defined in the context of this

thesis. Multiple definitions of software quality are found. In general, software quality

can be understood as a measure of how well software is structured or designed. The

measurement is based on sets of standards such as ISO 9001/9000-3, ISO/IEC 9126,

and ISO 26262:2018, which define different rules to be applied in their corresponding

science field. The act of evaluating the quality of software is called Software Quality

Assurance (SQA). The main purpose of the SQA process is to propose a procedure

for assuring software dependability. Software dependability indicates how reliable, safe

and durable software is. In other words, regardless of whether the software fulfills the

user’s expectations or not, it must not behave unpredictably or uncontrollably. It can be

observed that ensuring users’ safety in technologically innovative industries has always

been considered a decisive factor.

Lacking a reliable procedure to assure software quality could result in severe conse-

quences. For example, therac-25, a radiation therapy machine, accidentally killed four

people and left two with lifelong injuries (from 1986 to 1987) [1]. Therac-25 was an up-

graded design of Therac-6 and -20 when many manual controls were removed, leaving

the computer to handle sensitive cases. The action that caused the machine to malfunc-

tion was when the user switched between X-ray mode and Electron mode within setting

2

up time (about 8 seconds). As a result, an x-ray beam was fired at maximum power. Al-

though many tests were conducted, tragedies had already occurred before the software

issue was identified. A more recent example is when Tesla recalled 158 000 cars over a

defect that increased the risk of crashes. Several different reasons have been proposed

for this problem. One cause was the failure of a media console unit, which resulted in the

loss of rear-view camera images, i.e., a failure of the computer vision system. Fortunately,

there has not been any reported accident caused by these errors.

Among diverse types of software, computer vision is one of the most popular technology.

Computer vision is a scientific field in which computers are trained to identify collected

samples of images, and they then process this information to recognize real-life objects.

Some notable applications of this field are facial data being used as a smartphone security

method, autonomous cars having the ability to sense their surroundings and operate with

little to no human involvement, cameras in lecture theatres being capable of tracking and

following the presenter’s movements, and so on.

Within complex systems using computer vision, pre-programmed libraries are widely used

to program the software to save time and effort. MATLAB is a common programming plat-

form and an interactive environment widely used in computing science and visualization.

One important feature of MATLAB is the built-in libraries, especially those used in com-

puter vision. In comparison with OpenCV, another open-source library, the advantages

of MATLAB include data presentation, user-friendly interfaces, the ability to optimize soft-

ware on hardware (NVIDIA GPUs), and easiness in error debugging. [2]. MATLAB Coder

is also a MATLAB feature that provides the ability to translate MATLAB code into different

programming languages (C/C++), enabling it to be run on different platforms.

1.2 Problem Definition

As MATLAB is a powerful tool to help reduce programming effort, many applications are

written using it. However, some devices can not execute that type of program. To de-

sign software in a general platform based on a given MATLAB program, the programmer

should generate the required code rather than re-programming the software from scratch.

In that case, generated code using MATLAB Coder is also considered a complete type of

software itself. Even though the original MATLAB code may be fully tested, there is no

proof of the correctness and behaviour of the code generated from it. There has been

some research about software quality assurance, but the difficulties and advantages when

applying to codes generated from MATLAB are currently unknown.

The software discussed in this thesis is a robot-world and hand-eye calibration. It is an

application of computer vision which is already written in MATLAB programming language

to make use of multiple CV APIs. After that, MATLAB Coder is used to translate this

software into C++. Then a thorough software quality assurance procedure is required to

3

be applied to the translated program.

To conclude, this thesis attempts to answer the question: How can one properly generate

C++ software from MATLAB code and ensure its quality and dependability?.

1.3 Methodology

1.3.1 Objectives

The main focus of this work is to propose a process of MATLAB code generation, design

efficient testing phases to assure the software quality, and evaluate the effectiveness of

MATLAB Coder in terms of effort saving and its output’s performance. Besides, this thesis

will introduce different standards of software quality, along with a few testing tools.

1.3.2 Work Description

In order to achieve the objectives, this thesis includes the following parts:

• Research on related study about software development processes.

• Introduction to MATLAB Coder’s most important features for playing the center role

in the software development process model proposed in this thesis.

• Explanation in details of design, implementation and testing phases.

• Evaluation of generated software and the process.

This document is structured as follows. Chapter 2 investigates the related research on

the process of developing software. Before starting implementing a model of software

development in chapter 4, chapter 3 explores the MATLAB Coder features. Chapter 5

analyzes the limitations and effectiveness of the software and the development process

model.

4

2. RELATED STUDY ON THE SOFTWARE

DEVELOPMENT PROCESS MODELS

2.1 Definition of quality software

In the modern world, people’s lives are improved with many advanced technologies, and

software can be considered the heart of innovation. There are multiple technical defini-

tions of software. Strictly speaking, the term software can be defined as a set of instruc-

tions, commands, or programs that control the hardware or devices [3]. Applications in

computers or smartphones are examples of this. The first design principle is the soft-

ware’s capability to complete the designed tasks. Nevertheless, with an increasing num-

ber of users’ demands and non-stop innovation, big software companies such as Google,

Apple, or Microsoft are developing what they call an ecosystem, in which all devices are

connected and become a more complex system.

When the software systems become more complex, there is a higher probability of de-

fects. User experience may be worsened by faulty video games or flight booking apps,

but the flaws in human safety applications, such as an aircraft flight control system, are

considered dangerous. In fact, there hardly be software with no defect, which may be

called quality software. As books or novels can be found with errors made by the writers,

software, a product of programmers, may have hidden defects. While a book may have

hundreds of pages, a program with 1 million lines of code can fill up to 40000 pages [4].

It is impractical to trace for defects in each line of code. Nonetheless, a program with

defects can still work. Because software does not get aged, it should always operate with

what it is programmed to do. Therefore, software quality over time is not the problem to

be solved.

The problem is software use cases. When there are multiple ways to operate a program,

more mistakes are likely to be made during development. Thus, it is challenging for

programmers to simulate and test all the cases. As an example, the accident of MV-22

Osprey killed four marines in 2001 [5]. Upon landing the aircraft, there was a failure in

the hydraulic line. However, the problem did not go badly until the pilot pressed the reset

button 8-10 times as instructed. The final investigation blamed the poor software test

procedures.

5

It is a fact that software failures affect both end-users and many companies’ reputations

and brand value. For instance, in 2017, UK-based loan company Provident Financial was

reported with 2.4 billion US dollars in financial loss [6]. According to IBIS World [7], the

market size of Software Testing Services in the US has risen from 1.8 billion to 6.3 billion

dollars over the last ten years (since 2011). It is proof that business people are aware

of the importance of reliable software. Hence, in science, the concept software quality

assurance or SQA is proposed.

2.2 Software quality assurance and different concepts

Software quality assurance was defined in much research. Agarwal [8] proposed SQA

as an approach to the evaluation of software based on product standards, processes,

and procedures. In "Software Quality Assurance: From theory to implementation" book,

Galin [9] described SQA as "umbrella activities" which comprise design disciplines of

quality assurance applied to all software development processes. Khazanchi and Sutton

[10] gave the idea of "assurance services" to be a chain of activities performed by a

trusted partner to validate business transactions with the objectives of lowering the risk

and improve quality.

In summary, software quality assurance can be described by some points:

• SQA is a series of activities implemented in every stage of the software develop-

ment life cycle.

• SQA is performed based on design requirements, agreement on software stan-

dards.

• SQA objective is to ensure software safety during operation, prevent unexpected

behaviours and software failures.

• in terms of business, SQA should be integrated with the project cycle and suit the

budgets.

There are other concepts that often be misconceived, such as quality control and soft-

ware testing. Although there can be various explanations for these terms, quality control

can generally be seen as a part of quality assurance. While quality assurance involves

product design procedures that minimize potential risk, even before the product is man-

ufactured, quality control is a process of detecting and handling issues or bugs after a

product sample is manufactured. Software testing is the major activity of quality control,

in which any potential defects should be identified and fixed. [11]

6

Figure 2.1. Sofware development life cycle (SDLC). [13]

2.3 The software development process

To go further, the implementation of SQA has its own life cycle. However, SQA can be

integrated into the process of software development. This process, called the software

development life cycle (SDLC), usually involves five stages: planning, designing, imple-

mentation, testing, deployment, and maintenance. [12]

2.3.1 Plan

Planning and analysis can either be separated or combined into the first stage of SDLC.

In this stage, business partners agree on the ideas of the product, setting the cost, project

objectives, and planning schedule. During this phase, the development team also plans

the next activities or duties in the lifecycle. [14]

The function of SQA is to assess the quality processes and define what procedures to

follow. In addition, within the software scope, SQA will specify general design standards,

programming requirements, and rules. The activities are conducted by meeting and re-

viewing documents. [15]

It is worth mentioning that planning/analysis should be considered the most crucial SDLC

phase. Some risks at this phase may be inadequate software requirements, incorrect

7

expense estimation, or misplanning project schedules. Unfortunately, not many of these

issues are detectable until reaching the later phases. Consequently, a massive amount

of money is lost, and the product fails to meet the deadlines.

2.3.2 Design

The design phase can also be called the prototyping phase. It is the stage of a project

in which the development team determines the detailed design of the software, including

system components, their functional responsibilities, and the connection between them

[16]. In addition, some significant factors are decided: design tools, approach to prob-

lems and possible solutions, which platform that software will operate on, some security

protocols and user interfaces. In some projects, an early version of software or prototype

product can also be built.

The role of SQA is to evaluate the feasibility and efficiency of the method used in later

stages and the quality of the prototype, whether it satisfies the requirements and stan-

dards defined in the planning phase. For example, the SQA team creates an assessment

of different working designs to utilize a design plan for some criteria such as reliability,

scalability, and maintainability. Subsequently, the effectiveness of the later testing phase

is increased. [17]

2.3.3 Implementation

Implementation is one major phase of SDLC. Programming and coding are the main

activities in which designs are translated into code [18]. In addition, other tasks such as

reporting on code changes, design issues, and coding manual are also important. These

documents will help the testers to trace potential defects if they exist. In case of any

design issues or requirements are incapable of fulfilling, it may be necessary to start a

discussion to prevent further problems.

It is noted that, unlike in previous stages, SQA may not play a separate role. Some SQA

requirements done by the development team are following coding rules such as naming,

organizing the code, and planning the unit test cases. The SQA team should evaluate the

quality of the code and unit test plan to ensure all possible cases are covered.

2.3.4 Testing

Testing is the major activity of the SQA process. The priority of this phase is to ensure

the software is developed to satisfy all design requirements. The second purpose is to

test all possible cases, including ones not in the requirements. After this phase, software

must not have any unpredicted behavior. [18]

8

There usually are different activities during testing: static testing, automated testing, re-

gression testing, and performance testing. As testing is conducted, the test results and

possible causes in case of failures should be documented and reviewed. It is crucial that

any decision made after the review may affect the whole SDLC.

2.3.5 Deploy and maintenance

Deployment and maintenance is the last phase after the user-acceptance test is per-

formed. The product should be ready for launch. However, when users detect possible

errors, resolving the issues is one crucial duty. In addition, to improve the quality of the

product, an update or a future release should also be considered. [18]

2.4 Software development model

Now that the five phases of SDLC are defined, the next step is to analyze the process

order. Different types of models determine the sequence of the stages called software

process model [19]. The five most popular software process models are waterfall, V-

model, incremental/iterative, extreme programming, and spiral. These models show dif-

ferent benefits and shortcomings. Therefore, each of them is suitable for different kinds

of projects.

2.4.1 Waterfall model

The waterfall model was first introduced in 1970 by Winston Royce [20]. Although water-

fall has slightly changed since then, the structure of this process model is still similar to its

name, with all production phases ordered in a linear sequence. As can be seen in figure

2.2, the arrow describes the flow of this process model. The arrows are one-way in figure

2.2. Therefore, a waterfall-model project, all the preceding phases must be completed

before going to the later phases. In other words, information related to software require-

ments, designs, and testing methods must be agreed upon and documented during the

first phases of the project.

9

Figure 2.2. Waterfall Model. [21]

It can be agreed that the waterfall model is one of the simplest to implement. Therefore, it

is suitable for small projects or projects that strictly follow some specific standards, budget,

and schedule [19]. Nevertheless, the benefit of simplicity has a trade-off. Seemingly, this

model cannot adapt to changes easily. It is incapable of foreseeing the end product until

it reaches the deployment phase. For example, when the SQA team finds some defects

at the testing phase, it could be needed to trace back to the implementation, design, or

even planning phase to find the solution. Thus, in some charts, the arrows can be drawn

in two directions.

2.4.2 V-model

V-model, also known as the verification and validation model, was created by Kevin Fors-

berg and Harold Mooz in 1991 following NASA’s "Vee" chart [22]. First glance at figure

2.3 reveals that V-model is also a sequential process model, starting from the left branch

of the V letter to the right. Specifically, the left describes earlier phases concerning anal-

ysis/planning and designing, while the testing phases are shown on the right branch. The

significant difference between the waterfall and V-model is the testing phases. That is, for

every design phase is planned on the left branch, there is a corresponding testing phase

for that design on the right of the V shape. It means that it test procedures must be ready

along with the implementation of design phases. An extension of the V-model is the W-

model, proposed by Kung-Kiu Lau [23], which consists of two V-models for component

development and system development.

10

Figure 2.3. V-Model. [21]

With all characteristics mentioned, V-model is widely used in large companies. Because

emphasizing testing, it provides remarkable quality control processes. However, although

defects in requirements or design can be detected in the early phases of the project,

the engineers must have in-depth knowledge and experience working with this type of

model. As a result, despite giving very effective processes, the V shape is also the most

expensive and time-consuming model.

2.4.3 Incremental and Iterative models

Incremental and Iterative models (IID) are said to appear even before 1970, although the

name was not officially used. Some research believes that in the article "Managing the

Development of Large Software Systems" (1970), the idea stated by Winston Royce was,

in fact, "Incremental and Iterative models", not the waterfall. Also, in the 1970s, Harlan

Mills promoted the iterative process model [24]. The history of the development of the

models is a long story.

The IID and waterfall models are usually compared as they share the same principle

of a linear sequence of processes. In other words, IID can be considered an extended

version of the waterfall model. Looking at figure 2.4, in the incremental model, after all the

requirements are examined in the planning/analysis phase, the software design is divided

11

into small parts or modules. These modules are then handled separately, independently,

and possibly simultaneously. [25]

Figure 2.4. Incremental model. [21]

The iterative model, as shown in figure 2.5, shares many common characteristics with the

incremental model. The difference is that software is developed in cycles in the iterative

model, and new features and additions can be implemented in each iteration. Thus,

software developed with this model is very flexible with changes. [21]

The IID has an advantage in quickly adapting to new software requirements or features,

and testing and fixing bugs in smaller parts of the software. As a result, it is suitable

for time-constrained projects or frequently updated software. To successfully apply this

model, however, good project management skills are required.

12

Figure 2.5. Iterative model. [21]

2.4.4 Spiral model

The spiral model was first described by Barry W. Boehm in 1986, although his thesis

was not published until 1988. In that article, he claimed that the significant feature of the

spiral model, in comparison with other types of models, was "that it creates a risk-driven

approach to the software process rather than a primarily document-driven or code-driven

process" [26]. Since then, it has evolved through the years based on the refinement of

the waterfall model. In 2014, the originator published an enhanced version of the spiral

model providing guidelines and principles for using the model. [27]

Seemingly, from figure 2.6, the spiral model is easier to be defined when it is put in

correlation with the incremental or iterative model. The main activities, including plan,

design, implementation and test, or identification, design, construction, and evaluation

in some other research, are conducted in cycles. However, as described by Barry W.

Boehm, the spiral model concentrates on risk management. Specifically, during phase 2

or the design phase, the software design is built, but the engineers are also required to

analyze all possible uncertainty areas and alternative approaches. This step may include

building and evaluating prototypes. After that, there is no changes or addition during the

development phase. The next cycle then narrows down the risk, and new features can be

added.

13

Figure 2.6. Spiral model. [21]

The spiral type may outweigh other software process models in some aspects. Firstly, it

provides very low-risk processes as requirements are well analyzed at the beginning of

the project. Secondly, it also has the ability to change the requirements in later software

cycles. Thirdly, while the design can be divided into smaller parts, it helps developers with

risk management. Yet, project management using the spiral model can be challenging as

it can lead to never-ending loops [19]. Therefore, the spiral model is suitable for the

cases such as when customers are uncertain about software requirements or projects

with long-term commitment as there are possible changes in requirement.

2.4.5 Extreme programming

Of many software process models, extreme programming (XP) is unique. It was created

by Ken Beck in the 1990s. He described it as "a lightweight, efficient, low-risk, flexible,

predictable, scientific, and fun way to develop software" [28]. XP strongly emphasizes the

process of coding, programming, and testing software. The word extreme in the name

means pushing every activity to an extreme level.

14

The feature that makes XP unique is that XP does not focus on the order of the SDLC.

On the other hand, it analyzes the design and implementation phases and simplifies

them into four basic activities: coding, testing, listening, and designing. It means that

along with designing, coding, and testing the software, developers need to listen and

understand feedback and desires from customers. These activities are conducted in loops

until the software is completed. Furthermore, XP is a discipline of software development

[28] with 28 rules defined for engineers to comply with during the process. These rules

include minor releases (frequently released an updated version of the software), coding

standards (coding style and format), simple design (design must not be complicated and

implemented as robust as possible), etc.

Figure 2.7. Extreme programming. [21]

XP is an efficient and reliable software development process. The continual cycle of

developing, testing, and receiving feedback gives the software the flexibility in changes

and updates. Furthermore, the defined rules guarantee reliable software with various

types of tests. Nonetheless, XP has difficulty planning the schedule or budget. It is also

not suitable to be implemented in a large team. Besides, [29] criticizes XP’s weakness for

being lack of documentation, requirements, and putting the stress on developers.

2.5 Software testing

While the implementation can vary between projects, there are some general principles in

software testing. The first objective of software testing is to ensure software operates as

expected or stated in the requirements. The next crucial target can be to ensure a defect-

15

free software that is capable of operating in undesirable situations without any unexpected

behavior [30].

For testing technique, white-box testing and black-box testing was well explained with

advantages and disadvantages in [31]. An additional technique, namely grey-box test-

ing, together with the two was studied in [32]. The three testing technique were again

discussed to improve for a better quality assurance in [33] by Jamil. These common

techniques are then can be classified as static testing and dynamic testing.

Figure 2.8. Software Testing types.

2.5.1 Software static testing

Static testing is a white-box testing that performs an inspection on the program code

without executing the software. Static testing checks coding syntax, optimization, etc. to

prevent defects even before the software is operated. [34] In addition, static testing can

be used to ensure software against some coding standards, as below examples.

16

Table 2.1. Examples of industrial coding standards

Standards Overview

MISRA C/C++

Motor Industry Software Reliability Association (MISRA) - a set

of coding rules applied to C and C++ languages, widely used in

embedded industries to ensure their safety, reliability and

secureness.

CERT C/C++
Coding standards for C and C++ languages that are used to

prevent security vulnerabilities in embedded system.

IEC 61508

Functional safety standards that depict requirements to the

process of designing, implementing and operating of a safety

related system.

ISO 26262

An adaptation of IEC 61508 for automotive industry - standards

applied to functional safety in electronic/electrical systems on

vehicles.

OWASP Top Ten
An standards of Open Web Application Security Project

with information on security risks on web application.

These standards are essential as they may determine the implementation method of the

design model for the target system. Firstly, there are explicit requirements of a safety

system, which affect the process of developing and testing the system [35] [36]. Secondly,

the coding standards define some particular rules or principles of how developers should

write their code, which ensure the reusability of the code [37]. These rules are also

divided into classifications. These classifications indicate that not all of the rules must be

followed, but some can be ignored in exceptional cases.

Below is an example from MISRA C++ 2008 to give clear idea about coding guidelines.

17

Table 2.2. Example of MISRA C++ 2008. [36]

Rule Classification Rationale Equivalence

MISRA C++

Rule 2-7-1
Required

C++ does not support the nesting

of C-style comments even though

some compilers support this as a

non-portable language extension.

A comment beginning with /*

continues until the first */ is

encountered. Any /* occurring

inside a comment is a violation

of this rule.[36]

CERT C

Rule MSC04-C

Rule 2-7-1 from MISRA C++:2008 puts a restriction on the commenting part of C++ code,

which uses /* and */ as its opening and closing that it cannot contain any /* symbol in

between. Although the issue described does not concern the functionality of the software,

and it may not even be detected as an error during the development process, the rule

is classified as Required so to be fully compliant with MISRA C++, the coding of the

software must meet this requirement. The rule is equivalent to rule MSC04-C from CERT

C. Therefore, applying many coding standards to one project is not necessary.

It is apparent that the number of rules in these standards is overwhelming for program-

mers to perform manual checks. Therefore, it is needed some testing tools for this pur-

pose. Some of the example tools that can be considered are in the below table.

18

Table 2.3. Some tools for software static tests.

Tools Features

SonarQube

A powerful static code analysis tool that catches bugs and

vulnerabilities with up to 29 programming languages supported, such

as coverage features of 10 common web application security risks

for Java, Javascript, and Python, MISRA C++ 2008 for C++.[38]

Helix QAC

Helix QAC is advertised as the best static code analyzer for

Functional Safety and Standards Compliance.It is designed to focus

on C and C++ with many supported standards including MISRA,

AUTOSAR, IEC 61508, ISO 26262, EN 50128, IEC 60880, and

IEC 62304.[39]

PC-lint

A C/C++ static analysis solution from Gimpel Software with the

strength of simplicity, yet still has the ability to identify defects,

potential bugs and supports necessary industrial safety

standards. [40]

Parasoft

C/C++ Testing

Parasoft C/C++ Testing is described as "a unified, fully integrated

testing solution". It provides not only static code analysis, but

also automated software testing capabilities. Besides, it can be

integrated into CI/CD pipeline to speed up the software development

process.[41]

2.5.2 Software dynamic testing

Software dynamic testing aims to identify software behaviors and trace bugs or defects in

all possible cases. Therefore, unlike static code tests, dynamic tests must be performed

on software in its operating state [30]. The targets of this type of testing must be described

in software design requirements.

Dynamic testing can be divided into different sub-types depending on each project. How-

ever, in general, they can be seen in the graph below.

19

Figure 2.9. Dynamic Testing types.

The two types mentioned are white-box testing and black-box testing. White-box testing

is the type of testing when programmers have insight into software architecture or code.

These test results are an evaluation of the code in terms of complexity and coverage

quality. Therefore, it is considered low-level testing. Black-box testing, on the other hand,

is a higher level of testing as the program’s internal structure is hidden, so testing can be

performed from the users’ perspective.

Though the testing types are acknowledged, to implement a systematic test suite, it is

needed to detail what each test suite does.

• BLACK BOX TESTING

Black-box testing can be classified into two different types: functional testing and

non-functional testing [30]. As the name implies, functional testing validates all

implemented features if they are well and correctly developed. It also ensures that

all defined requirements are met and that the product is free of defects. [42] Thus,

functional testing is the most important testing type. There are also different levels

of functional testing.

20

Table 2.4. Functional testing levels. [43]

Level Definition

Unit testing

Test cases are executed on the smallest testable units of the

code, usually library functions. These units are

independent from one another. Therefore, testing is performed

in an isolated environment.

Integration testing

Test cases are executed on the integration of some units of

the code or a module. These modules may not be independent

. Thus, there can be involvement of other modules during testing.

System testing
Testing is performed when a complete system is ready. This

level may or may not be required depending on project size.

User-Acceptance

Testing

This testing level treats the testing targets as complete

products under the user’s perspective to verify if it is ready for

business. Similar to system testing, this level may not be

required in a small project.

Non-functional testing focuses on other aspects of the software: software run time/

performance and how many resources it costs when operating in different condi-

tions. These features do not play such crucial roles as software functionality, yet,

it has an impact on the user’s experience [42]. The choice of non-functional test

types varies between projects. Some of them are listed in the below table.

Table 2.5. Non-functional testing types.[43]

Level Definition

Performance testing

Measurement of program run-time or response time to ensure

it meets the desired requirements. Furthermore, this type of

testing can check how many resources the

program uses during its operating states.

Compatibility testing
Testing type ensures software behaviors when running in

different platforms or environments.

Security testing
Testing checks whether parts of the software are user-accessible

or protected as described in the requirements.

21

• WHITE BOX TESTING

Regardings white-box testing, there usually is a type called code coverage testing

or data flow testing. This type of test assesses the code quality in terms of how

many code lines are executed during software operations or if there is an unreach-

able branch, data path, or control path in the code [30]. Moreover, it can help reduce

the software size as it points out which parts of the code or libraries are not nec-

essary for the current release then the programmer can leave them out. Although

it will not affect the program’s functionality, it may help improve the maintainability

and scalability of the software in the future as programmers may want to update or

upgrade their software.

To sum up, the software testing model can be organized as in below graph.

Figure 2.10. Dynamic Testing in detail.

22

2.5.3 Common testing tools

While programmers can do the tests by themselves, it is less time-consuming to use a

third-party testing framework to perform the automated tests.

One of the most common tools to be named is Microsoft Unit Testing Framework for

C/C++. This tool is an add-on of a well-known Microsoft IDE, Visual Studio. It has the

advantages of performing various types of testing, including "behavior of the code in re-

sponse to standard, boundary, and incorrect cases of input data"[44]. It also allows the

generation of test cases even before the code is written. However, being a part of Visual

Studio is a limitation for any programs not using MSVC compiler or designed to run on

Windows environment.

The second C++ testing framework to be introduced is GoogleTest. It is developed by

the Google Testing Technology team. It supports all three common OS, including Win-

dows, Linux, Mac, and compilers such as GCC, MSVC, and clang. Regardings features,

GoogleTest can perform all kinds of C++ software tests with emphasis on independency,

reusability and organizability. The test results are informative and help with debugging

the errors. It is currently used in multiple open-source projects [45].

Other testing tools are provided by either large companies or small groups of developers.

Some worth mentioning are CppUTest, UnitTest++, QtTest, etc. These tools are also

potent and featureful. While there are very lightweight and packed ones, the heavier

others provide extra abilities. The choice of testing tools may depend on the size of the

project.

Figure 2.11. Some of testing frameworks.

23

2.6 Model based testing

Model-based testing or model-driven testing is not a testing type but a testing technique

that answers the question: what the software is tested against?. As investigated above,

a software test suite is often generated or built based on agreement and explicitly stated

in software requirements in the planning phase. Model-based testing is introduced as

a testing method that constructs the model for testing and does not purely depend on

requirements [46]. MATLAB [47] also suggests 3-step model-based testing, including

creating the model, generating test cases, and validating the design with generated test

cases.

In this thesis, with the assumption that the model is given, the two later steps will be

analyzed. Like all software development models, requirements play the most critical role.

In this type of testing, requirements are not only a pre-defined agreement but also come

from the model’s characteristics. These characteristics can be state transition, calculation

results, and error handling mechanisms.

Figure 2.12. Model based testing (figure based on [47]).

In figure 2.12, model-driven testing is described with test suites generated by both re-

quirements and the models. Then they are used for simulation of both the models and

the designed software and whether their behaviors match is the result of this testing ac-

tivity.

Commonly, two types of model-based testing are online and offline. They describe when

or how the test suites are generated and executed. In the online testing, also known

as on-the-fly testing, test suites are generated during test execution. It means that the

designed software and models are operated simultaneously, and comparisons are set

between their outputs or behaviors. On the other hand, offline testing is simpler with test

suites generated by separately putting the model in operation; then the test is executed

on the target. [48]

24

Figure 2.13. Online model based testing.

Figure 2.14. Offline model based testing.

It can be deduced that the online testing model should be more automated than the

offline one as there is no need to create a test suite, but only the inputs of the tests are

required. On the other hand, the offline testing model may require manual work to collect

the test data. Nevertheless, it has the advantage that it can overcome the most significant

limitation of the online testing model, that is, the requirement of designed software and its

models can operate in the same platform or environment.

25

2.7 Quality assurance in Computer Vision

It is essential that computer-vision-based technology, considered a type of software, re-

quires a process to ensure its quality when applied to safety-critical systems. Although

computer vision (CV) technology is used in many scientific fields, there is little research

about computer vision testing. Alternatively, in this field of CV, it is more common to use

the term performance evaluation or bench-marking rather than testing. The reason for

that is the design of CV software and the difference between it and other software types.

The two most crucial elements that make up a computer vision software are algorithm

and sample of images called data-set acted as algorithm input. The most common test-

ing method that is currently performed on computer-vision-based systems is to carry out

the tests on pre-collected samples [49]. To be specific, verification and validation are

two main steps of a typical quality assurance process applied in this field of science.

Verification ensures no presence of software malfunction and unexpected behaviors. Val-

idation performs a comparison of practical software output against desired ones. It can

be predictable that injecting specific data-set as inputs into software during the validation

process may give biased results. Therefore, although a CV software may perform well

during tests, it might not function effectively with other sets of images. This means that

there is a slight chance that validation does not reflect the true correctness of computer-

vision-based software.

26

Figure 2.15. An example of computer vision application with different input parame-
ters.[50]

The above photos are an example to describe the CV software behavior. The program

is designed to give information about the pixels where there is a corner of the checker-

board. It is the fact that there is nothing called correct pixels to be expected, yet, any

pixels near the corner can be accepted. Sometimes, one corner gets detected multi-

ple times, but there are others that the program does not recognize. Now they are only

two images. The results can vary significantly for the images that may be noisy, in low

contrast, or get distorted. However, it can not be concluded that the program is wrongly

designed or coded. On the other hand, it can be said that the program’s performance is

not good. Thus, the output of some CV software is greatly dependent on the input data

and parameters.

Regarding testing, it is difficult to ensure if the CV software gives correct results in partic-

ular cases. While in ordinary software, programmers or users can verify the result with a

reference number, for example, the result of 1 + 1 is always 2, in CV software, as in the

above example, there is no factual data to test it against or it can pass this test but fail

the others. A CV programmer may need to perform the test at the system level in those

specific cases. The software and hardware are integrated and operate as a complete

system and evaluate the software performance manually.

27

With all that said, trying to find a more effective computer vision test suite to overcome

the difficulty is not within the scope of this thesis. Instead, the limitation is acknowledged

and considered during this study.

28

3. MATLAB AND MATLAB CODER REQUIREMENTS FOR

USAGE

MATLAB is the center of the development process discussed in this thesis, so the features

of MATLAB coding language should be analyzed. In addition, there are some specific

requirements of the MATLAB code so it can be generated into C/C++ using MATLAB

Coder.

3.1 MATLAB

MATLAB, an abbreviation for Matrix Laboratory, was first written by Cleve Moler in the

early 1980s. That version was built on the mathematics research papers by J. H. Wilkin-

son and 18 of his colleagues [51]. As the name implies, MATLAB’s only function was a

matrix calculator. Nevertheless, matrices are the key to many scientific fields. Over a

few decades, MATLAB has now evolved into a powerful development tool. It has been

integrated with a variety of scientific libraries and toolboxes.

Computer Vision and Image Processing are the two important toolboxes used in this the-

sis. It provides a basic format for images. For example, an RGB image is represented

by a three-dimensional matrix of h x w x 3, with h as the height, w as the image’s width

while 3 for R, G, and B color channels. In addition to many well-made algorithms imple-

mented, which involve color manipulation, and geometric transformation, users also can

develop own functions with the help of mathematical tools from MATLAB. As good as it is,

MATLAB still has some drawbacks. Firstly, its performance is not as good as traditional

C programming language [52]. Secondly, it cannot be used on some devices with no ca-

pability of installing MATLAB. It is better to have a traditional C program than a MATLAB

program in those cases. Therefore, MATLAB Coder is brought into play with the ability to

translate MATLAB programming language into C/C++.

3.2 MATLAB programming language in comparison with C/C++

Before using MATLAB Coder to generate C code, it is important to understand what MAT-

LAB language is and how it differs from C.

29

The first and most crucial feature of MATLAB language is that being a scripting language.

A scripting language can be described as a more dynamic programming language. It

does not compile the whole program; instead, it can execute every command as long as

it is meaningful. Compared to C, which may detect logical errors during compilation, MAT-

LAB can always execute the program and only stop when it runs into an error. MATLAB

language, therefore, is more dynamic in terms of interacting with different users’ input with

a wide variety of power tools.

One key feature of a programming language is its data types. Fortunately, regarding the

numeric types, MATLAB provides very similar types to C, which simplify their usage. It

is noted that MATLAB also constructs single-precision and double-precision floating-point

according to IEEE® Standard 754, in which a float number has 32 bits with 1 bit for sign,

8 for exponent, 23 for fraction, and a double, 64-bit number, has 1 for the sign, 11 for the

exponent and 52 for the fraction.

Table 3.1. MATLAB primitive types in comparison to C/C++ [53].

MATLAB data types Equivalent C data types Storage size

int8 char, byte 1 byte

uint8 unsigned char, byte 1 byte unsigned

int16 short 2 bytes signed integer

uint16 unsigned short 2 bytes unsigned integer

int32 int 4 bytes signed integer

int32, long long (Windows®) 4 bytes signed integer

int64, long long (Linux®) 8 bytes signed integer

uint32 unsigned int 4 bytes unsigned integer

uint32, long unsigned long (Windows) 4 bytes unsigned integer

uint64, long unsigned long (Linux) 8 bytes unsigned integer

single float
single-precision

floating point

double double
double-precision

floating point

char array (1xn) single char *

cell array of character vectors *char[]

In addition, MATLAB also shares some methods that can be seen in C in regards to

manipulating different-data-type numbers, such as isnan, to check for Not-a-number,

30

isinf, to determine if infinite number, and typecast for conversion between data types.

However, although both MATLAB and C++ support complex numbers, the way they han-

dle them are distinctively different. While MATLAB, from the users’ perspective, defines

complex numbers as a particular case of regular real number, with some methods to get

the real/imaginary unit, C++ uses a predefined class in std::complex library.

It is worth mentioning that there are differences in the C/C++ storage size of these types

when used in Windows and Linux. To be specific, signed and unsigned long determines

8-byte storage for the number in Linux; meanwhile, in Windows, the storage size is only 4

bytes. For being a scripting language, MATLAB data types do not depend on the operat-

ing system. MATLAB provides additional methods for retrieving minimum and maximum

values of a number with the defined data type. For example, realmax and realmin re-

turn range of a double-precision floating-point number, the same for integer with intmax
and intmax.

Therefore, it can be concluded that MATLAB and C/C++ may share a major similarity in

data types.

The following key point of being a scripting language is the data-type assignment. The

scripting language is highly flexible in choosing data types for variables. It is commonly

known that in C or C++, declaration of the variables with suitable data types is a must

and occurs before the variables are taken into use. MATLAB, however, implicitly assigns

a suitable data type depending on the value assigned to the variables. In simple words,

variables in MATLAB can be used without any declaration, and their data types are as-

signed automatically by the software. Nonetheless, if not explicitly stated, MATLAB will

assume all numerical variables as double-precision floating-point numbers as they are

the widest-range real numbers.

Another critical factor that is needed to be investigated during the code generation pro-

cess is the difference in the data structures. While the most basic data containers are

arrays in C and C++ or more special ones such as vectors, lists, stacks, sets, etc., can

be found in C++, MATLAB treats all of its numerical objects as arrays. For example, a

scalar in C/C++ can be defined with integer or char type, MATLAB defines it as a 1x1

array of integer or char . Users may find the words vector or matrix used in MATLAB

documents; however, they are some specific cases of an array in which vector is a 1xN

or Nx1 sized array (N > 1) and matrix is an array with at least three dimensions.

MATLAB does have some unique data structures of its own. Some of them are objects

and cells. Cells, in fact, are arrays. However, it has an exceptional characteristic, that

is, it can contain any kind of data, including text, objects, or numerical arrays. Cells are

flexible for data arrays that does not have the same size. Objects are data structures to

be used for specific purposes; for example, a camera object contains parameters of a

camera, including radial distortion, tangential distortion, intrinsic matrix, etc. Objects act

31

similarly to C/C++ struct , therefore, they can be converted forward and backward.

3.3 MATLAB Coder - features and prerequisite for usage

MATLAB Coder is a tool to generate C and C++ code from MATLAB code for embed-

ded hardware. MATLAB Coder supports a wide variety of toolboxes. It can also handle

dynamically allocated arrays, namespaces and classes in C++. To begin using MATLAB

coder, users should analyze the software requirements in term of what programming lan-

guage to be used and which settings can be applied.

Table 3.2. Difference in generated C and C++ from MATLAB code

Generated C++ Generated C

Support overloaded functions No support overloading of functions

Share the same identifiers in different

namespaces
No ability to use namespace

Explicit type cast ("static_cast") Cast operator

Standards supported:

ISO/IEC 14882:2003 (C++03),

ISO/IEC 14882:2011(E) (C++11)

Standards supported:

ISO®/IEC 9899:1990 (C89/C90 (ANSI)),

ISO/IEC 9899:1999 (C99 (ISO))

The following step would be to determine the compilers. Fortunately, MATLAB Coder sup-

ports a wide range of C/C++ compilers with three common operating systems: Windows,

Linux and Mac. Along with it, there are a few properties of generated code that users may

be required to choose before starting generation:

Table 3.3. Properties of generated code

Properties Possible choices

Build-types Source code, static library, dynamic library, or even executable

Interface type Functions or methods

Hardware type/

device

Computer/microcontroller: Atmel, RISC, ASIC, Intel or AMD

Environment: x86 , x64, ARM 11,... etc (based on the hardware)

Toolchain Microsoft Visual Studio, Mingw compiler

Other features Dynamic memory allocation, parallelization,... etc

There are still plenty of options to customize generated code. However, due to the size

32

of this thesis, only ones that play an important role in developing the software will be

analyzed.

3.4 MATLAB Coder - code generation process

Unlike humans, MATLAB Coder, an application, is programmed to understand the code’s

functionality in a limited number of syntaxes. Thus, programmers may be required to

modify the MATLAB code before it can be generated. The significant modifications con-

cern arrays/matrices (including variable-sized arrays and array operations) and MATLAB

built-in functions.

3.4.1 Modification to arrays for code generation

From the above sections, one difference between C/C++ and MATLAB regarding variable

definition is that C/C++ always requires the variables to be defined with data type and

size (when the variables are arrays). Thus, to generate C++ code, arrays and variables in

MATLAB also require some modification.

• Arrays that have a fixed-size

It is simple to use one of the below functions to handle these arrays. It is noted

that if dynamic memory allocation is not used, it is required to set an upper bound

for the largest possible size of the array as the program will allocate only a fixed

amount of memory for it.

MATLAB code 3.1. Example of defining arrays with known size for generation.

1 function [x1 , x2 , y1 , y2 , y3] = defining_arrays (d1 , d2)

2 % array w i th s ize 4x3 can be def ined as these 2 examples

3 x1 = zeros (4 , 3) ;

4 x2 = ones (4 , 3) ;

5 % array w i th s ize given by a v a r i a b l e can be def ined as

6 % l i n e 12 and l i n e 13.

7 % i n case dynamic memory a l l o c a t i o n turned o f f , i t i s

8 % requ i red to check f o r upper bound of ar ray dimension .

9 % Example upper bounds are 10.

10 assert (d1 < 10) ;

11 assert (d2 < 10) ;

12 y1 = zeros (d1 , d2) ;

13 y2 = ones (d1 , d2) ;

14 % i t i s noted t h a t ar ray s ize can also be 0 , which i s

15 % then understood as an empty ar ray and can be checked

16 % f o r emptiness .

33

17 y3 = zeros (0 , 3) ;

18 S = isempty (y3) ; %t rue

19 end

Defining arrays using zeros and ones function does not only help to determine the

size of arrays but also initializes the arrays with all 0 or all 1. Therefore, the choice

of using which function depends on the situation.

• Arrays that have a variable-size

Arrays mentioned at this point are the ones whose sizes are possibly changed

during calculation. It is important to tell the application the possible upper bounds of

the changeable sizes, or the generated code will be forced to use dynamic memory

allocation, which can reduce the execution speed. Symbol coder.varsize gives

the application information about a possible change of array size.

MATLAB code 3.2. Example of defining arrays with variable-size for generation.

1 function [x1 , x2] = defining_arrays ()

2 % y i s def ined as a f i xed −s ize ar ray

3 % x1 i s def ined as a var iab le −s ize ar ray as i t s s ize

4 % changes on l i n e 8 a f t e r concatenat ion

5 y = ones (4 , 4) ;

6 x1 = zeros (0 , 4) ;

7 coder . varsize (’ x1 ’) ;

8 x1 = [x1 y] ;

9

10 % x2 i s def ined as a var iab le −s ize ar ray w i th upper bounds

11 % are 4 and 12 f o r dimension 1 and 2 r e s p e c t i v e l y

12 x2 = zeros (0 , 4) ;

13 coder . varsize (’ x2 ’ , [4 , 1 2]) ;

14 end

Although MATLAB provides probably all possible ways to interact with arrays in

terms of sizes, operations that concern the array dimensions are a bit tricky. It is

the fact that coder.varsize allows the code to change the size of the array but not

its dimension. For example, a 3-D array can not be assigned to a 2-D array. It could

seem that this does not occur a lot, yet, the situation may occur in a straightforward

array operator: concatenation. Example 3.3 may explicitly describe the situation.

MATLAB code 3.3. Example of concatenating arrays with dimension expansion.

1 function [x] = concatenating_arrays (images)

2 % assume " images " i s width x he igh t x number_images ar ray

3 numImages = size (image , 3) ;

34

4

5 %%%%%%%%%%% F i r s t approach %%%%%%%%%%%%

6 % def ine " x " as a f i xed −sized 3−D ar ray

7 x = zeros (4 , 4) ;

8

9 for i =1:numImages

10 % get each image from image set .

11 currentImage = image (: , : , i) ;

12

13 % get some in fo rma t i on from image

14 y = process (currentImage) ;

15

16 % Assume " y " i s 4 x 4 ar ray and

17 % " y " i s concatenated i n t o " x " along 3rd dimension

18 x = cat (3 , x , y) ;

19 end

20

21 % remove i n i t i a l i z e d element (1 s t element) from " x "

22 % " x " i s a set o f processed data from image set

23 % s ize o f " x " would be 4 x 4 x number_images

24 x = x (: , : , 2 : end) ;

25 end

One approach to solve this problem is defining the array as 3-D at the time of initial-

ization, and the array is then assigned with desired data instead of concatenated.

This approach has a drawback that the size of the array, which is 4 x 4 based on y
in line 14, must be known when it is defined. Adding the use of cell arrays would

help in this case. A cell array is a powerful object because it can store any type of

data. Although there is still one requirement using cell arrays: every element of the

cell array must be assigned a value, it is still manageable.

MATLAB code 3.4. Example of concatenating arrays with dimension expansion.

1 function [x] = concatenating_arrays (images)

2 % assume " images " i s width x he igh t x number_images ar ray

3 numImages = size (image , 3) ;

4

5 %%%%%%%%%%% F i r s t approach %%%%%%%%%%%%

6 % def ine " x " as a f i xed −sized 3−D ar ray

7 x = zeros (4 ,4 , numImages) ;

8

9 for i =1:numImages

35

10 % get each image from image set .

11 currentImage = image (: , : , i) ;

12

13 % get some in fo rma t i on from image

14 y = process (currentImage) ;

15

16 % y i s 4 x 4 ar ray and i s assigned to pa r t o f x

17 x (: , : , i) = y ;

18 end

19 end

MATLAB code 3.5. MATLAB Code example 3.4 with cell arrays.

1 function [x] = concatenating_arrays (images)

2 % assume " images " i s width x he igh t x number_images ar ray

3 numImages = size (image , 3) ;

4

5 % when using c e l l a r rays the above code would become :

6 % " c " i s 1 x numImages c e l l a r ray

7 c = c e l l (1 , numImages) ;

8 for i =1:numImages

9 % get each image from image set .

10 currentImage = image (: , : , i) ;

11

12 % get some in fo rma t i on from image

13 y = process (current Image) ;

14

15 % y i s 4 x 4 ar ray and i s assigned to pa r t o f x

16 c (i) = y ;

17 end

18 % get the s ize o f r e s u l t a r ray

19 row = size (c (1) , 1) ;

20 co l = size (c (1) , 2) ;

21

22 % def ine " x " w i th the s ize

23 x = zeros (row , col , numImages) ;

24 for i =1:numImages

25 x (: , : , i) = c (i) ;

26 end

27 end

36

3.4.2 Modification to MATLAB built-in function

It is important to be aware that not all of MATLAB build-in functions can be generated

into C++ code. Some may require changing their form or syntax, and others may support

only a few options. In general, there are three cases regarding build-in functions that may

happen while generating the code:

1. The functions are fully generatable. The code generation process can be done

without modifications to the original MATLAB code. Most functions are supported

to generate into C++.

2. The functions are not generatable. It is a MATLAB Coder limitation, and currently,

the only solution is to change the algorithm behind the MATLAB code, then the way

the code is written changes.

3. The functions are partly generatable, meaning they can be generated in some, but

not all, of their syntaxes. The code should be re-written into different syntaxes to

be converted. Let’s analyze below example:

MATLAB code 3.6. Example of modifying MATLAB built-in function.

1 function [imagePoints] = example_generating_function (images)

2 % assume " images " i s a W x H x N array :

3 % + W, H: image width and he igh t

4 % + N: number o f images

5 [imagePoints , ~] = detectCheckerboardPoints (images) ;

6 % normal ly , t h i s f u n c t i o n re tu rns a set o f image po in t s

7 % wi th s ize M x 2 x N:

8 % + M: number o f po in t s detected i n the checkerboard

9 % + 2: coord ina tes o f po i n t i n image along x and y ax is

10 % + N: number o f images

11 % Unfor tuna te ly , above syntax i s not generatable .

12

13 end

The function needs discussing in this example is detectCheckerboardPoints.

As declared in MATLAB tutorial document, detectCheckerboardPoints can be

written in several forms. Line 5 in MATLAB code 3.7 is the shortest and the most

common syntax of the function to detect the checkerboard points in the image set

and stack them up along the 3rd axis. Nonetheless, this syntax is not supported by

MATLAB Coder for a generation. The generatable syntax is that the function can

only detect the points in one image at a time. The modification made may seem

fairly simple, as can be seen from line 13 to line 24: putting it in a loop to perform

detection on each image and manually stack them up as in line 23.

37

MATLAB code 3.7. Example of modifying MATLAB built-in function.

1 function [imagePoints] = example_generating_function (images)

2

3 numImages = s ize (image , 3) ;

4 % Assuming the checkerboard i n the given image has 450

5 % po in t s

6 imagePoints = zeros (450 ,2 ,numImages) ;

7 for i =1:numImages

8 % get each image from image set .

9 % currentImage i s an W x H mat r i x .

10 currentImage = image (: , : , i) ;

11 [imagePoints (: , : , i) , ~] = . . .

12 detectCheckerboardPoints (current Image) ;

13 end

14 end

Nonetheless, that is still not the end of the story. The modification raises one prob-

lem: the number of points in the checkerboard must be known when the imagePoints
array is defined in line 6, which is unlikely to happen because the image quality is

not always sufficiently good for the algorithm to detect all the points in the checker-

board. This comes back to MATLAB code 3.4. In the end, combining MATLAB code

3.4 and the above modification should be enough to generate the function.

3.4.3 Code generation process

There are three features of code generation using MATLAB that should be taken into

account.

1. Feature 1:

The form of code used in the generation process must be a MATLAB function. To

be specific, it packaged inside function and end, then stored in an .m file. It is

worth mentioning that generated code using MATLAB coder defines and uses its

libraries, including mathematics library and data structure. For instance, generated

code of a function that calculates the square root of a real number does not use the

standard math.h library from C++. As a result, the product of the code generation

process is not only a single .cpp file (C++ source file), but consists of many others

which act as MATLAB’s mathematics library and data structure such as sqrt.cpp
(square root), cat.cpp (array concatenation), det.cpp (array determination).

38

Figure 3.1. A package of generated code.

2. Feature 2:

Another reason for which the .cpp files are called libraries in this thesis is how

generation processes in case of multiple functions selected at once. As mentioned,

the code generation tool takes .m files as input. If two .m files are generated sepa-

rately, the products may contain some similar .cpp files. In contrast, when multiple

.m files are selected in one generation time, the generated products do not show

any redundancy of the library code. It means the library code is used and shared

between the selected functions in the input .m files. This feature plays a decisive

role in the project development process.

39

Figure 3.2. Redundancy of generated code.

3. Feature 3:

Moreover, although certain generated functions may be considered functionally

equivalent, the actual writing of the code generated is not consistent. In other

words, the result of the generation process can be different between times of code

generation. The difference, even though as minor as a change in variables’ names

or code writing style, may affect the development process of the whole project.

40

4. DESIGN AND IMPLEMENTATION OF CODE

GENERATED FROM MATLAB

With all the essential features of MATLAB Coder studied, it is also important to use MAT-

LAB Coder in a proper way. In other words, there is a need for a good software develop-

ment process model with MATLAB Coder. All the phases should be included: Planning,

Design, Implementation, and Testing.

4.1 Planning

Planning in the iterative model is the most critical phase. In this phase, software descrip-

tions and requirements need to be thoroughly investigated.

4.1.1 Software description and requirement analysis

It can be considered that the process of developing software generated from a MATLAB

code is a type of model-driven development in which the original MATLAB code plays the

role of the model program. The first important step is to investigate software requirements.

Unlike other types of software development, in this process, it is easily understandable

that MATLAB model code itself should be the first and foremost requirement for the gen-

erated software. The generated code must be ensured to have the exact functionality and

behaviors inherited from the MATLAB model software. The other requirements occasion-

ally concern software behaviors or may be considered as some additional features.

41

Table 4.1. Some suggestion on possible requirements

Requirements

User interaction
- Inputs and outputs should be user friendly.

- Progress message must be sufficiently informative.

Operating system

- Operating system should be clearly defined (Linux, Windows).

- Platforms/Tool-chains (MSVC, GNU) are used to build/ compile

software code.

Functional

- Software operates in different states.

- There must be control of failures/ exception handling.

- Compliance with software safety standards.

Non-functional
- Software is designed into module (Modular design).

- Software performance (resource cost, processing time).

4.1.2 Planning of development and testing process

As can be seen in chapter 3, the MATLAB model code is not always ready for code

generation. Therefore, an intermediate step of modifying the MATLAB code is required

before generating it into C++. This step is crucial as it affects the process of development

and the testing procedure. Changes are made to the original MATLAB code, which is the

model and should not be changed. Therefore, the testing process must be carried out

carefully to ensure the fulfillment of the requirements.

In this type of development model, it is essential to point out some characteristics of the

testing phase by answering the following questions.

• The purpose of testing?

The testing process ensures software functionality and dependability, meeting users’

requirements and safety standards.

• What is software tested against?

The software developed based on a model must behave like the model in terms

of significant functionality. The first test principle is to ensure that generated soft-

ware and the original MATLAB code share similar behaviors in standard cases and

possibly in error cases.

The second principle is to follow the design requirements if they are defined dif-

ferently than how the original MATLAB software behaves and additional features

described in software requirements.

42

In summary, the generated software is tested against its original MATLAB code and

design requirements.

• Where/In which phase can the defects occur? It is required to analyze coding

phases that have a high probability for defects to occur to create a good test plan.

Figure 4.1. Coding phases from MATLAB model code to C++ generated code.

From the 4.1 chart, the first possible occurrence of defects or faults is in the MAT-

LAB model program. As it is the model, it should be assumed to be tested and com-

pletely error-free. However, the model software may require some changes when

its behaviors in particular cases are stated differently in the design requirements. In

other words, the user’s requirements may try to modify the model software behav-

iors in those cases. Therefore, it should not be considered a software defect, and

there is no need for a testing suite for this.

The modification process, which is done to get the MATLAB code ready for gener-

ation, may cause software errors. Therefore, there should be a testing process to

ensure the modification process make no change to the main functionality unless

stated otherwise in the design requirements.

The last coding phase, generating C++ from MATLAB code, has the potential to

cause unexpected defects. Therefore, this can be considered the most complicated

phase that requires thorough testing.

With all three questions answered, it is suggested that there should be at least two stages

of testing: testing after the modification process and testing after code generation. The

objective of testing after MATLAB code modification is to ensure that modifying the MAT-

LAB model code does not affect its functionality and behaviors. Because the modification

is done in MATLAB environment, testing for modified code is, in fact, an online model-

driven test. In contrast, testing C++-generated code is the offline version. The same test

suites can be used in both stages as MATLAB code, and C++-generated code share the

major functionality.

43

Figure 4.2. Planning two testing stages.

The first testing stage is simple, considering MATLAB modified code is tested against

its original version, which is also a MATLAB code. On the other hand, the second stage

should be divided into two levels: unit testing and integration testing. There can be system

testing in some large projects, but the two lower levels should be sufficient within the

scope of testing MATLAB code generation.

• Unit testing

Theoretically, from section 2.5.2, unit testing is defined as testing performed on a

unit function or the smallest testable code. Looking back at section 3.4.3, unit func-

tions means every generated function with all .cpp files. This raises the question:

one MATLAB function is generated into multiple C++ .cpp files act as libraries. Is it

indispensable to test for all of them? From the author’s perspective, it is not needed

to do testing on them. Two reasons can give justification for this idea.

1. The functions such as det, sqrt, cat and even more complex ones, for

example, computeFiniteDifferences are MATLAB built-in functions, which

means that there is no involvement of human in developing them, or it can be

said that they was designed and fully tested by MathWorks team.

2. The functions are then generated automatically with no modifications as a

MATLAB Coder feature.

So all automatically generated .cpp files are one feature of MATLAB using its built-

in code. Assuming there is no error or defects during that process, a test suite for

44

them is not necessary. To be specific, the code that can be tested at the unit level

is each function written in the .m files. Even if the assumption is wrong and there

are faults in the MATLAB Coder, unit testing should fail due to that errors. The only

challenge is tracing that defects. In summary, in this type of project, unit testing is

testing performed on a unit function or on the smallest testable code that is not a

MATLAB built-in.

• Integration testing

Integration testing is executed on the integration of unit functions. Suppose the

MATLAB model software comprises multiple functions within multiple .m files, test-

ing on the combination of C++ generated functions against its MATLAB version is a

must.

Figure 4.3. Two levels of testing.

Now that the overall testing plan is done, test suite or test cases are next to be defined.

There is a significant number of testing types to be used. The most common and nec-

essary ones are functional tests and boundary tests. In this type of project, the error

injection tests should also be considered one crucial testing type.

45

Table 4.2. Some testing types that can be applied.

Testing types Definition

Functional test

Functional test is a general term of all kind of testings

regarding functionality of software. It validates application

features against functional requirements.

Boundary test

Boundary test shares similar attributes with functional test. The

difference is, in boundary test, the software is tested with its inputs

changes within their valid range (from minimum to maximum

as stated in design requirement).

Fault injection

test

Software is injected with specific faults to validate its behaviors

and error handling mechanism.

In terms of non-functional testing, code coverage and performance evaluation are consid-

ered beneficial. In addition, a static test with coding standards is an option depending on

project requirements. MISRA compliance is advertised as supported by MATLAB Coder.

Therefore, it will be used as a coding requirement in this thesis.

4.1.3 Software development process model

] Choosing the software process model (SPM) is important to optimize the time and effort

and maximize the maintainability and scalability of the product. In the type of project that

heavily depends on MATLAB as the primary tool to develop the code, the characteristics

of MATLAB and MATLAB Coder should be considered when choosing the SPM. The most

common and straightforward is the waterfall model. This model may suit small and one-

time projects but shows challenges when updates or upgrades are implemented. A better

SDLC to be suggested is the iterative model.

From the illustration 3.2 in Feature 2 in section 3.4.3, if the MATLAB functions are gen-

erated separately, the generated product may contain redundant code. Thus, in imple-

menting a new feature or new function, the previous ones should also be re-generated.

The generated code of previous functions is then overwritten; testing for it should also be

re-executed.

46

Figure 4.4. Software development process for code generation.

4.1.4 Introduction and Planning of demo project

To evaluate the effectiveness of MATLAB Coder, this thesis will apply discussed knowl-

edge to a generation of computer-vision-based MATLAB software. The deliverables shall

be the source code of C++ functions but shall be called Application Program Interface(s)

(APIs) this thesis so as not to cause confusion with the term functions.

As the first requirement, two APIs’ specification is described in table 4.3 and 4.4.

1. calibrateCamera

47

Table 4.3. calibrateCamera specification.

Inputs

• std::vector<imageWrap> calibrationImages

images of the calibration target

• calibrationPatternParameters calibPatternParam

calibration pattern parameters

Outputs
• intrinsicParameters camParam

the computed calibration results based on the input images

Functionality

Analyzes the set of input images, detects the presence of the

chessboard calibration pattern and computes the intrinsic camera

parameters. Internally, validates the inputs, calls the MATLAB Vision

library implementation of calibration pattern finding and camera

calibration and formats the calibration data according to the API

specification.

2. calibrateHandeye

48

Table 4.4. calibrateHandeye specification.

Inputs

• std::vector<imageWrap> calibrationImages

images of the calibration target

• std::vector<double4x4> robotPoses

The HTM of robot poses in the robot coordinate system corresponding

to calibrationImages

• calibrationPatternParameters calibPatternParam

calibration pattern parameters

• intrinsicParameters camParam

the computed calibration results based on the input images

Outputs

• double4x4 handEyeCalibration

the computed hand eye calibration as a HTM based on the

input images and the robot poses

• double reprojectionError

Error metric as computed by the algorithm

• double rotationError

Error metric as computed by the algorithm

• double translationError

Error metric as computed by the algorithm

Functionality
Computes the Hand-eye calibration using MilliShah’s

algorithm.

Additional requirements are listed in the below table. There can be other requirements

regarding user interaction with the software. However, within this thesis’s scope, only

requirements related to developing code generated from MATLAB are listed.

49

Table 4.5. Additional requirements for demo project.

Requirements Details

Platform Intel Processors

Device type x64

Toolchain mingw64 (GNU)

Coding Standard MISRA C++

Error tolerance
Software must ensure the accuracy of calculation results. The

error tolerance rate must be discussed and agreed for testing.

Error handling

All possible errors should be explicitly documented. In case of

running into an error, software must terminate with an informative

message with the stop code.

4.2 Design

In the design phase, requirements are processed into detailed specifications, including

software flow charts and a detailed plan for testing and implementation of the error han-

dling mechanism.

4.2.1 Data flow charts

Data flow charts depict information about the connection between MATLAB functions.

The functions are then generated into C++. It is suggested that there should not be any

calculation or processing in the transition between the functions because that piece of

code will not be generated.

Regarding two APIs, calibrateCamera API consists of two functions:

• preprocessImages

• calibrateOneCamera

It is worth mentioning that there are other internal functions which are called by

calibrateOneCamera.

50

unserializeCalib.m

preprocessImages.m

calibrationImages calibPatternParam

calibrateOneCamera.m

serializeCalib.m

CalculateCost.m

cameraParams

unserializeCalib.m

Figure 4.5. calibrateCamera data flow chart.

calibrateHandeye API consists of five functions:

• preprocessImages

• readRobotPoses

• ComputeCamExtrinsics

• HandeyeShah

• computeErrors

51

preprocessImages.m readRobotPoses.m

ComputeCamExtrinsics.m

HandeyeShah.m

computeErrors.m

hand_eye_HTerrors[3]

imagePoints, worldPoints

cam_extrinsics

base2grid

gray_images
extrinsics

errors[3]

calibrationImages robotPosescalibPatternParamcamParam

hand_eye_HT

Figure 4.6. calibrateHandeye data flow chart.

Regarding code generation, it is possible to combine all of the internal functions into one

.m file and then generate it. By doing that, the APIs are treated as black boxes. However,

this approach may cause extreme difficulty organizing and testing the code. Instead, each

function should be independently generated. That way, it does not only allows performing

tests on each function, but also help in implementing the error handling mechanism.

4.2.2 Design of error handling mechanism and testing

1. Design of test suite

Designing the error handling mechanism and testing can be considered the most

challenging throughout the development process. Although all the error cases are

well defined and handled by MATLAB code, the C++-generated code may not inherit

52

that ability. The programmer must adapt all the possible error cases and behaviors

from the original MATLAB code to C++-generated one. These errors, however,

hardly ever occur during regular use. So, the quickest method to trace all of them

is to put the software through all designed test cases, which must represent all

possible use cases of software.

By doing that, the testing phase happens before implementation is complete. In

other words, for every new feature and error handling case implemented, the code

must be put to the regression test until no failed cases are left. In summary, the

testing phase and implementation phase are performed cyclically.

Figure 4.7. The cycle of the implementation and testing phases

The testing phase does not just play the role of validating software, but it also

involves developing the software. Therefore, the test suite must be designed with

extreme thoroughness. For each testing type, there should be test cases as defined

below

• Functionality test

The functionality test is to put the software in a practical working condition.

So, there is a need for sufficient data set to validate all implemented features.

• Boundary test

The boundary test is to put the software in a simulation of severe cases, which

may only occur by mistake. When all inputs are defined with a valid range,

there must be at least 3 test cases for each software input including input at

lower bound, upper bound, and in the middle of that range.

• Error injection test

53

To effectively design the error injection test cases, programmers must have

knowledge on their MATLAB code. There should also be a plan for specific

cases corresponding to each input argument. For example, in some cases,

such as a poor quality image as the input, the software outcome may be un-

predictable. The error injection must cover all those cases to prevent the

unexpected behaviors of software.

It is crucial to acknowledge that it is barely possible to have sufficient sets of images

to simulate all real-life cases in computer-vision-based software. Furthermore, the

performance of computer-vision-based software, in general, depends heavily on the

quality of input images. Therefore, the main focus of testing a generated computer-

vision-based software is to evaluate the generated code’s performance compared

to the original code.

After the test cases are decided, the next step is to design an implementation of test

code. As in the test plan, there are two testing phases: testing after modification

process and testing after code generation. It is also crucial to develop a strategy

for fixing the defects.

(a) Testing after MATLAB code modification

Testing in this phase is an online version of model-based testing. The inputs

of both MATLAB model code and modified code are set with designed values,

and the outputs are compared. If this testing phase detects any issues, they

should be solved directly in MATLAB code.

(b) Testing after MATLAB code modification

As opposed to the first stage, the second one is the offline version of model-

driven testing. The problem to be solved is to use a test case format that can

be read by both MATLAB and C++. Most MATLAB variables are arrays, which

may contain thousands of elements. It is unlikely to write down all the data

manually. Two possible file types that can be read and written by MATLAB and

C++ are MATLAB .mat file and .json format.

54

Figure 4.8. Implementation of testing block diagram.

Because both testing phases use the same test suite, if an error exists during

this phase but passes the first one, it must occur during code generation. In

other words, MATLAB code could function properly, but MATLAB Coder fails

to understand the code correctly. Regarding feature 3 in section 3.4.3 and the

process model in section 4.1.3, it is a waste of effort resolving the problems

by fixing generated code, considering the code will be overwritten when being

re-generated in the next development phase. As a result, it is most efficient

to modify the original MATLAB code so that MATLAB Coder can correctly

generate it into C/C++.

2. Performing static test

Static testing is performed by an automated tool. As there are not any test cases

in this type of testing, static testing should be done at last, when all the dynamic

testing phases are completed.

3. Design of error handling mechanism

After the code is ready for generation, MATLAB Coder will handle most work. The

important objective of this section is to implement the code for error handling cor-

rectly. Assume that MATLAB code runs into an error when executing the test, espe-

cially a simulation of a severe case; it always gets terminated. As a result, there is

no output to form a complete test case. It depends on the situation to find a suitable

development process.

55

(a) The condition that triggers the error can be specified.

It is suggested to add an if statement in the original MATLAB code to catch

each error and re-generate the code. The first reason for this approach is

that users and programmers can track what issues occur during operating

software. The second reason is the re-generation of MATLAB code in the

next development cycle. Regarding the development process in section 4.1.3,

when the code is re-generated, the implementation of the if blocks for catch-

ing the errors are kept in the generated code.

The generated code now has a flag to give information about the status of the

API. For example, it can tell if the code operates without any issue or gets

terminated because of an error.

(b) The condition that triggers the error is not explicitly exposed to developers.

When MATLAB software runs into an error and gets terminated, occasionally,

the error is detected within a built-in MATLAB function, whose code should not

be modified. Thus, it is unlikely to know precisely at what point of the code the

error is triggered. It is then hardly able to implement an if block to catch the

error. Because the original MATLAB code and generated code may behave

differently, the suggested approach is to keep generating the code and directly

apply the test case, which causes the error to generated code.

i. The generated software operates without interruption, but the outputs

may contain unidentified objects or unusable values.

The code can be kept the unchanged but a check block can be imple-

mented at the end after executing the generated code. To be specific,

looking at the below graphs 4.9 and 4.10, an if block in validateOutputs

can be informative to the users about the error.

ii. The generated software is interrupted by an unknown issue such as

segmentation fault or getting stuck in an infinite loop

In these cases, the only option is to code if block at the beginning of

the function to prevent one specific error case to be injected in generated

software. This piece of code should be in validateInputs .

4.2.3 Data flow chart of C/C++ software

The data flow of C/C++ software is illustrated in the graphs: 4.9 and 4.10. While all the

blue boxes are generated codes from MATLAB which has an addition err output as the

error flag, the yellow boxes are handwritten in C/C++ for converting C/C++ data types into

MATLAB data types, validating the function inputs to prevent the error before executing

56

generated functions, and validating outputs to check if there is any unusable value after

executing generated functions.

preprocessImages

images calibPa�ernParam

calibrateOneCamera

cameraParams err

validateInputs

calibPa�ernParam

images

gray_images

convertDatatype4Inputs

err?
yes

no
continue

err? yes

no

continue

validateOutputs

yes
err?

yes
err?

continue

no
yes

err?

continue

Figure 4.9. Complete implementation of C/C++ calibrateCamera.

57

preprocessImages readRobotPoses

ComputeCamExtrinsics

err?

continue

yes

no

HandeyeShah

erryes
no

continue

computeErrors

hand_eye_HT

yes

hand_eye_HTreprojectionError

imagePoints, worldPoints
cam_extrinsics

base2grid

gray_images
extrinsics

errors[3]

error message

validateInputs

err?

continue

yes

no

convertDatatype4Images generateCameraParameters convertDatatype4RobotPoses

images
cameraParams

robotPoses
squareSize

calibrationImages robotPoses calibPatternParam camParam

images camParam calibPatternParam robotPosesVec

rotationError translationError

err
no

continue

validateOutputs

err?

continue

yes

no

Figure 4.10. Complete implementation of C/C++ calibrateHandeye.

58

4.2.4 Tools for developing and testing

In this phase, it is also required to document which tools are used during the process.

Table 4.6. Tools used for development of demo code.

Tool Explanation

MATLAB R2021b MATLAB is the center of the development process.

Eclipse 4.22.0

Eclipse is an IDE for coding that is lightweight and provides

good support for C/C++. This IDE will be used to program,

compile and test the generated code

CUTE-framework 5.10.0

CUTE-framework is a simple testing framework which

provides numerous types of ASSERTION. The framework

would be implemented into the generated software as a test

code.

PC-lint 1.4.1
PC-lint is a static test tool that support MISRA C++. This

tool is used for static test of generated code.

4.3 Deployment of generated code

Code generated from MATLAB is fairly easy to use. It can be compiled as ordinary C/C++

code with multiple options. Some suggested flags are listed in table 4.7

59

Table 4.7. Some suggest flags that can be helpful during development.

Tool Option Explanation

C++ Compiler

-c Compile the source files without linking

-m64
Generate code for a 64-bit environment.

This option affects int-type variables.

-O3 -O1, -O2 and -O3 are different levels of optimization.

-g3

-g1, -g2 and -g3 request different levels of debugging

information. This flag is useful to trace code defects

during the development process.

-fopenmp Enable OpenMP to multi-threading the software.

C++ Linker

-static Prevents linking with the shared libraries.

-m64
Generate code for a 64-bit environment.

This option affects int-type variables.

-fopenmp Enable OpenMP to multi-threading the software.

60

5. EVALUATION OF GENERATED SOFTWARE AND THE

DEVELOPMENT PROCESS

After the implementation and testing have been done, this chapter evaluates the soft-

ware’s overall aspects, thus resolving whether the proposed software development pro-

cess model is a practical design model capable of ensuring output software quality and

dependability.

5.1 Evaluation of non-functional characteristics

There are three non-functional features worth discussing:

1. Code writing style and structure

The structure of generated code can be arguably good. The class methods of built-

in libraries are very well restricted to prevent accidental user changes. Generated

function has a void type with all inputs and outputs as C++ references. The

input arguments are secured with const so that their values remain unchanged

after calling the generated functions.

C++ code 5.1. Example of a generated function from MATLAB.

1 / / Funct ion D e f i n i t i o n s

2 / /

3 / / I n i t i a l i z e ar rays o f poses and e x t r i n s i c s

4 / /

5 / / Arguments :

6 / / const coder : : array <double , 3U> &robotPosesVec

7 / / coder : : array <double , 3U> &poses

8 / / coder : : array <double , 3U> &e x t r i n s i c s

9 / / Return Type : vo id

10 / /

11 void readRobotPoses (

12 const coder : : array <double , 3U> &robotPosesVec ,

13 coder : : array <double , 3U> &poses ,

14 coder : : array <double , 3U> &e x t r i n s i c s)

61

In term of coding style, generated libraries implements some own data types, one

of which can be seen in C++ code 5.1 - the coder::array. There is no usage of

C++ standard template libraries found in the code. In addition, commenting is only

at the beginning of a function.

Concerning coverage quality, most generated functions may reach 90 percent,

which can be acceptable. On the other hand, the percentage among the library

files can be deficient, but this is understandable as some libraries are always gen-

erated independently of the primary function and not always taken into use.

In general, code generated from MATLAB is considerably packed because when

being used, it can be treated as a black box regardless of what code is inside.

However, the code is challenging to read and understand due to a lack of comments

between code lines. As a result, generated code is mediocre in maintainability and

scalability.

2. Static test result with software standards

By performing static testing using PC-lint, the report indicates that generated code

can be considered to pass the test. Among thousands of lines of code, there are

only two issues.

Table 5.1. MISRA C++ Rules that are violated.

MISRA C++ Rule Output Occurrence

Rule 0-1-7

The value returned by a function having

a non-void return type that is not an

overloaded operator shall always be used.

coder_array.h

Rule 5-0-16

TA pointer operand and any pointer

resulting from pointer arithmetic using that

operand shall both address elements of

the same array.

BFGSUpdate.cpp

The violation of Rule 0-1-7 can be simply resolved by adding (void) to make the

code become similar to (void) func (para2);. For the rule 5-0-16, the static

check tool detects a potential out-of-bound array access when using a variable to

index an array, for example, a[i] = 0; with i is the array index. The issue may not

be resolved in the static test, but the array-access issue can be prevented during

run-time by adding a boundary check for the indexing variable.

In general, code generated from MATLAB can be seen as MISRA compliant after

some minor issues are resolved.

62

3. Software performance

Software performance is measured by operating time, and evaluated in a compari-

son with the original MATLAB software. With functions that does small calculation,

the difference can be minor. Therefore, some sets of high resolution images are

used to evaluate the software performance.Data set 1 comprises simulating photos

which are easier to process than ones in Data set 2 and Data set 3

Table 5.2. Execution time of MATLAB and generated calibrateCamera code.

Compiler Software CPU Utilization Data set 1 Data set 2 Data set 3

MATLAB MATLAB 20% - 30% 18.52s 198.34s 189.44s

GCC
Single-threaded 20% - 30% 68.24s 107.81s 60.01s

Multi-threaded 40% - 60% 79.34s 1623.10s 1624.34s

MSVC
Single-threaded 10% - 20% 139.41s 286.32s 305.18s

Multi-threaded 90% - 100% 82.17s 373.65s 454.08s

Table 5.3. Execution time of MATLAB and generated calibrateHandeye code.

Compiler Software CPU Utilization Data set 1 Data set 2

MATLAB MATLAB 20% - 30% 12.74s 170.23s

GCC
Single-threaded 20% - 30% 71.18s 112.05s

Multi-threaded 40% - 60% 91.01s 1543.27s

MSVC
Single-threaded 10% - 20% 313.30s 426.57s

Multi-threaded 80% - 100% 104.07s 398.83s

It is a fact that MATLAB has built-in optimizing libraries, which help to reduce a huge

amount of executing time. Looking at Data set 1, the C/C++ code always shows 4

to 6 times slower than its original MATLAB code. However, when the data becomes

more complex, C/C++ code, a programming language, surpasses the performance

of the MATLAB code, a scripting language. The software performance after being

generated could increase by 60 percent (in table 5.3) to 200 percent (in Data set 3

of table 5.2).

With regard to multi-threaded C/C++ software, both table 5.2 and 5.3 indicates a

significant drop in performance when multi-threading is activated. Although the

software uses more system resources, the execution time is up to 14 times slower.

That is a result of the generated code being not well-coded for multi-threading. An-

63

other aspect that can be observed is the performance consistency when compiling

the code with MSVC with minimal difference between run time.

In summary, generated code demonstrates a significant jump in performance com-

pared to MATLAB code. If programmers spend time optimizing the code, it could

even improve with multi-threading activated. These factors could prove that the

generated code is suitable for time-constrained applications.

5.2 Evaluation of software functionality

The testing code using CUTE-testing framework is simple to be integrated into the main

functions. The test report then gives information about the software’s functionality. Al-

though MATLAB code and the generated one receive the inputs from the same source,

there is a slight but noticeable difference between their outputs. Nevertheless, in the

demo project, the error tolerance percentage shown in the table 5.4 can be accepted.

Table 5.4. Example of error tolerance during testing

Function Output Error tolerance

ComputeCamExtrinsics

imagePoints 2.5%

worldPoints 1%

cam_extrinsics 5%

Error handling is a significant drawback of generated code. Compared with the original

MATLAB code, the generated one shows misbehaviors when an error occurs. Further-

more, the error, which can be truly simple, may put immense pressure on developing

the error handling mechanism. Those simple errors are usually ignored during coding

in MATLAB. For example, while concatenating arrays is relatively simple in MATLAB, in

C++, concatenated elements must be checked for the same size before the operation is

executed.

In summary, generated code demonstrated a remarkably good in ensuring software func-

tionality. However, the testing is hardly sufficient to simulate all working cases of computer-

vision software. MATLAB built-in error handling mechanisms are beneficial when they can

be adapted to C/C++. Though, programmers must still be extremely careful in testing and

developing the capability to handle error cases to ensure software safety.

64

5.3 Software development process model - Advantages and

challenges

The software development process model proposed in this thesis, a type of the iterative

model, shows some major advantages

1. Time and effort saving

By using MATLAB Coder, programmers can save a tremendous amount of time

developing the software when starting from scratch. Moreover, it takes advantage

of the already-written MATLAB code as a model.

2. Suitable for the time-constrained projects

Because the development process model is based on the iterative model, the prod-

ucts of every iterator phase can be taken into use as a complete and stable software

without any dependency on the unfinished parts.

3. Software dependability can be ensured

Because the software uses MATLAB code as its model, the process also take ad-

vantage of the MATLAB error handling mechanisms. It means that in lieu of trying

to design a set of error cases and how to handle them, programmers can develop

them based on MATLAB code.

4. Software quality is also ensured

As MATLAB Coder provides the ability to make the code comply with software

safety standards, it helps to reduce the time and effort of modifying the code to

secure compliance. Moreover, the generated code is considerably fast compared

to the original MATLAB code, which indicates the ability to apply to software that

requires quick system response.

Nonetheless, to successfully use this development process model, there are some chal-

lenges or requirements.

1. MATLAB Coder limitations

It should be noted that MATLAB Coder has limitations. For example, it cannot

generate all MATLAB code and built-in functions. Therefore, before deciding to use

MATLAB Coder, programmers must check for the ability to generate code of the

built-in functions in the original MATLAB code.

2. Knowledge in MATLAB code is required.

Programmers must have some knowledge of their original MATLAB code. Firstly,

that code may require some modifications before it can be generated into C/C++.

65

Secondly, it would help design test cases and error handling mechanisms if pro-

grammers understand the potential issues of the software.

66

6. CONCLUSION

6.1 Thesis conclusion

It can be agreed that MATLAB is a common platform for software development, thanks to a

wide range of applications supported by MATLAB, such as embedded projects, computer

vision, and signal processing technologies. Programmers are suggested to use MATLAB

Coder to save time and effort re-developing a software whose code is already written in

MATLAB. MATLAB Coder is a powerful tool that provides the ability to generate the written

MATLAB code into C/C++ code, which can operate in various environments. Unlike the

developing process of ordinary C/C++ software, the MATLAB Coder approach possesses

some unique features. Therefore, it is important to put this approach under investigation

to figure out an effective process to develop quality and dependable software.

This thesis proposed a software development process model based on the iterative model

associated with model-driven testing. The process strongly emphasizes developing in-

depth software requirements and a complete test suite for each development phase. Be-

cause of some exclusive features of the process and heavy dependence on MATLAB

Coder, there are a few challenges to consider, including MATLAB Coder’s limitation and

programmers’ experience in MATLAB code and software testing. Despite the difficulties,

the process has proven itself to be an efficient method that accomplishes the objective of

developing dependable software in a short time.

Regarding the generated software, most testing reports indicated an acceptable preci-

sion in the generated software’s outputs compared to the original MATLAB code. Thus, it

can be said that software generated from MATLAB can ensure functionality correctness.

Although the MATLAB code to handle error cases is not generated along with the func-

tionality code, C/C++ software can still be dependable and compliant with MISRA C++

thanks to proper design and testing phases.

In conclusion, using MATLAB Coder gives exceptional advantages in short time devel-

opment but still ensures software quality. However, there is immense potential for future

improvement and development.

67

6.2 Recommendation for future work

The process for software development proposed in this thesis is applied to software that

is already programmed with MATLAB language. It can be considered a standalone pro-

cess model for future work for developing new software. It means that software can be

developed from scratch by coding it in MATLAB and then generate it into C/C++. All

developing phases, including MATLAB programming and C/C++ coding, share common

requirements. This development model would allow maximum flexibility in coding soft-

ware behaviors, whether they can be implemented in MATLAB or C/C++ after generation.

Furthermore, the final product may greatly benefit from MATLAB and C/C++ strength, in-

cluding error handling mechanisms and performance efficiency. An extra feature that can

also be integrated is GPU Coder. It provides code optimization by taking advantage of

thousands of cores in the graphic card, which is especially helpful for applications that

involve signal processing or deep learning technologies.

68

REFERENCES

[1] Fabio, A. KILLED BY A MACHINE: THE THERAC-25. HACKADAY. Oct. 2015. URL:

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-
25/.

[2] Srivastava, S. OpenCV vs MATLAB: Which is best for successful computer vision

project? URL:

https://www.analyticsinsight.net/opencv- vs- matlab- which- is-
best-for-successful-computer-vision-project/. Analytics Insight. Hy-

derabad, 2020.

[3] Encyclopaedia Britannica, T. E. of. Automatic checkerboard detection for camera

calibration using self-correlation. software (Jan. 2021). URL:

https://www.britannica.com/technology/software.

[4] Humphrey, W. S. The Software Quality Challenge. The Software Engineering Insti-

tute. US, June 2008.

[5] cnn.com. Software, hydraulics blamed in Osprey crash. CNN. Apr. 2001. URL: http:
//edition.cnn.com/2001/US/04/05/arms.osprey.02/.

[6] Matteson, S. Report: Software failure caused 1.7 trillion USD in financial losses

in 2017. Tech Republic. Jan. 2018. URL: https://www.techrepublic.com/
article/report-software-failure-caused-1-7-trillion-in-financial-
losses-in-2017/.

[7] IBISWorld. Software Testing Services in the US - Market Size 2003–2026. URL:

https : / / www . ibisworld . com / industry - statistics / market - size /
software-testing-services-united-states/. ibisworld.com. Dec. 2020.

[8] Rajesh Agarwal Pinakpani Nayak, M. M. Virtual Quality Assurance Facilitation Model.

International Conference on Global Software Engineering. Aug. 2007.

[9] Galin, D. Software Quality Assurance: From theory to implementation. Vol. 1. 2004.

[10] Deepak Khazanchi, S. S. Assurance Services for Business-to-Business Electronic

Commerce: A Framework and Implications. Journal of the Association for Informa-

tion Systems (Jan. 2001).

[11] SoftwaretestingHelp.com. Difference Between Quality Assurance And Quality Con-

trol (QA Vs QC). Apr. 2022. URL: https://www.softwaretestinghelp.com/
quality-assurance-vs-quality-control/.

[12] JEVTIC, G. What is SDLC? Phases of Software Development, Models, & Best Prac-

tices. phoenixNAP. May 2019.

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/
https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/
https://www.analyticsinsight.net/opencv-vs-matlab-which-is-best-for-successful-computer-vision-project/
https://www.analyticsinsight.net/opencv-vs-matlab-which-is-best-for-successful-computer-vision-project/
https://www.britannica.com/technology/software
http://edition.cnn.com/2001/US/04/05/arms.osprey.02/
http://edition.cnn.com/2001/US/04/05/arms.osprey.02/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.ibisworld.com/industry-statistics/market-size/software-testing-services-united-states/
https://www.ibisworld.com/industry-statistics/market-size/software-testing-services-united-states/
https://www.softwaretestinghelp.com/quality-assurance-vs-quality-control/
https://www.softwaretestinghelp.com/quality-assurance-vs-quality-control/

69

[13] Harvey, S. What is a Secure Software Development Life Cycle. KirkpatrickPrice.

2020. URL: https://kirkpatrickprice.com/blog/what-is-a-secure-
software-development-life-cycle/.

[14] Martyniuk, J. Software Development Lifecycle: Stages, Methodologies & Tools.

Dec. 2020. URL: https://devoxsoftware.com/blog/software-development-
lifecycle/.

[15] SoftwaretestingHelp.com. What Is Software Quality Assurance (SQA): A Guide

For Beginners. Apr. 2022. URL: https://www.softwaretestinghelp.com/
software-quality-assurance/.

[16] Geekforgeeks. Software Engineering | Software Design Process. Dec. 2021. URL:

https://www.geeksforgeeks.org/software- engineering- software-
design-process.

[17] Wenzel, D. Benefits Of Adopting Software Quality Assurance Early In Product De-

velopment. SIGMADESIGN. Apr. 2019. URL: https: / /www .sigmadzn .com /
2019/04/22/benefits- of- adopting- software- quality- assurance-
early-in-product-development/.

[18] Martin, M. SDLC (Software Development Life Cycle): What is, Phases & Models.

Guru99. Apr. 2022. URL: https://www.guru99.com/software-development-
life-cycle-tutorial.html.

[19] Haraty, R. A. and Hu, G. Software process models: a review and analysis. 2018.

[20] Royce, W. Managing The Development of Large Software Systems. IEEE WESCON.

Aug. 1970.

[21] Shiklo, B. 8 Software Development Models: Sliced, Diced and Organized in Charts.

ScienceSoft. Aug. 2019. URL: https://www.scnsoft.com/blog/software-
development-models.

[22] Forsberg, K. and Mooz, H. The Relationship of System Engineering to the Project

Cycle. Engineering Management Journal 4 (Apr. 2015).

[23] Lau, K. K., Taweel, F. M. and Tran, C. M. The W model for component-based soft-

ware development. (2011).

[24] Gosling, J. and Bollella, G. The Real-Time Specification for Java. Computer 36.06

(June 2000), pp. 47–54. ISSN: 1558-0814. DOI: 10.1109/2.846318.

[25] Ibrahim, I. M., Nonyelum, O. F. and Saidu, I. R. Iterative And Incremental Develop-

ment Analysis Study Of Vocational Career Information Systems. (Sept. 2020).

[26] Boehm, B. W. A spiral model of software development and enhancement. Computer

21.5 (1988).

[27] Boehm, B. The Incremental Commitment Spiral Model. Vol. 1. 2014.

[28] Beck, K. Extreme Programming Explained. Vol. 1. 1999.

[29] Shrivastava, A., Jaggi, I., Katoch, N., Deepali, G. and Gupta, S. A Systematic Re-

view on Extreme Programming. Journal of Physics: Conference Series 1969 (July

2021).

https://kirkpatrickprice.com/blog/what-is-a-secure-software-development-life-cycle/
https://kirkpatrickprice.com/blog/what-is-a-secure-software-development-life-cycle/
https://devoxsoftware.com/blog/software-development-lifecycle/
https://devoxsoftware.com/blog/software-development-lifecycle/
https://www.softwaretestinghelp.com/software-quality-assurance/
https://www.softwaretestinghelp.com/software-quality-assurance/
https://www.geeksforgeeks.org/software-engineering-software-design-process
https://www.geeksforgeeks.org/software-engineering-software-design-process
https://www.sigmadzn.com/2019/04/22/benefits-of-adopting-software-quality-assurance-early-in-product-development/
https://www.sigmadzn.com/2019/04/22/benefits-of-adopting-software-quality-assurance-early-in-product-development/
https://www.sigmadzn.com/2019/04/22/benefits-of-adopting-software-quality-assurance-early-in-product-development/
https://www.guru99.com/software-development-life-cycle-tutorial.html
https://www.guru99.com/software-development-life-cycle-tutorial.html
https://www.scnsoft.com/blog/software-development-models
https://www.scnsoft.com/blog/software-development-models
https://doi.org/10.1109/2.846318

70

[30] Umar, M. A. and Chen, Z. A Comparative Study Of Dynamic Software Testing Tech-

niques. 12 (Jan. 2021).

[31] Nidhra, S. Black Box and White Box Testing Techniques - A Literature Review.

International Journal of Embedded Systems and Applications 2 (June 2012).

[32] Ehmer, M. and Khan, F. A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques. International Journal of Advanced Computer Science and

Applications 3 (June 2012).

[33] Jamil, A., Arif, M., Abubakar, N. and Ahmad, A. Software Testing Techniques: A

Literature Review. (Nov. 2016).

[34] Fairley, R. Tutorial: Static Analysis and Dynamic Testing of Computer Software.

(1978).

[35] Standardization, I. O. for. ISO 26262: Functional Safety Standard for Modern Road

Vehicles. 2018.

[36] Limited, M. MISRA C++::2008 - Guidelines for the use of the C++ language in

critical systems. Vol. 1. 2008.

[37] Bose, S. Coding Standards and Best Practices To Follow. BrowserStack. Feb. 2021.

URL: https://www.browserstack.com/guide/coding-standards-best-
practices.

[38] SonarQube. Code Quality and Code Security. SonarQube. 2022. URL: https :
//www.sonarqube.org/.

[39] Software, P. Static Code Analysis for C and C++. Perforce Software. 2022. URL:

https://www.perforce.com/products/helix-qac.

[40] LLC, G. S. PC-lint Plus is a comprehensive static analysis solution for C and C++.

Gimpel Software LLC. 2022. URL: https://www.gimpel.com/.

[41] Parasoft. A Unified, Fully Integrated Testing Solution for C/C++ Software Develop-

ment. Parasoft. 2022. URL: https://www.parasoft.com/products/parasoft-
c-ctest/.

[42] Sharma, L. Functional and Non Functional Testing. Toolsqa. July 2021. URL: https:
//www.toolsqa.com/software-testing/functional-and-non-functional-
testing/.

[43] Hamilton, T. What is Dynamic Testing? Types, Techniques & Example. Guru99.

Feb. 2022. URL: https://www.guru99.com/dynamic-testing.html.

[44] Haytham Amairah Mike Jones, G. H. Unit test basics. Microsoft. Feb. 2022. URL:

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-
basics?view=vs-2022.

[45] Google. GoogleTest. June 2021. URL: https://google.github.io/googletest/.

[46] Lindholm, J. Model-based testing. (Nov. 2006).

[47] MathWorks. Model-Based Testing. MathWorks. URL: https://se.mathworks.
com/discovery/model-based-testing.html.

https://www.browserstack.com/guide/coding-standards-best-practices
https://www.browserstack.com/guide/coding-standards-best-practices
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.perforce.com/products/helix-qac
https://www.gimpel.com/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.parasoft.com/products/parasoft-c-ctest/
https://www.toolsqa.com/software-testing/functional-and-non-functional-testing/
https://www.toolsqa.com/software-testing/functional-and-non-functional-testing/
https://www.toolsqa.com/software-testing/functional-and-non-functional-testing/
https://www.guru99.com/dynamic-testing.html
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2022
https://google.github.io/googletest/
https://se.mathworks.com/discovery/model-based-testing.html
https://se.mathworks.com/discovery/model-based-testing.html

71

[48] Hamilton, T. Model Based Testing Tutorial: What is, Tools & Example. Guru99. Mar.

2022. URL: https://www.guru99.com/model-based-testing-tutorial.
html.

[49] Zendel, O., Murschitz, M., Humenberger, M. and Herzner, W. How Good Is My

Test Data? Introducing Safety Analysis for Computer Vision. International Journal

of Computer Vision 125 (Dec. 2017).

[50] Yan, Y., Yang, P. and Yan, L. Automatic checkerboard detection for camera calibra-

tion using self-correlation. Computer (May 2018).

[51] Moler, C. A Brief History of MATLAB. MathWorks. 2018. URL: https : / / se .
mathworks.com/company/newsletters/articles/a-brief-history-of-
matlab.html.

[52] Elsayed, A. and Yousef, W. Matlab vs. OpenCV: A Comparative Study of Different

Machine Learning Algorithms. May 2019.

[53] MathWorks. Pass Arguments to Shared C Library Functions. MathWorks. 2021.

URL: https : / / se . mathworks . com / help / matlab / matlab _ external /
passing-arguments-to-shared-library-functions.html.

https://www.guru99.com/model-based-testing-tutorial.html
https://www.guru99.com/model-based-testing-tutorial.html
https://se.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://se.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://se.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://se.mathworks.com/help/matlab/matlab_external/passing-arguments-to-shared-library-functions.html
https://se.mathworks.com/help/matlab/matlab_external/passing-arguments-to-shared-library-functions.html

	Introduction
	Background
	Problem Definition
	Methodology
	Objectives
	Work Description

	Related study on the software development process models
	Definition of quality software
	Software quality assurance and different concepts
	The software development process
	Plan
	Design
	Implementation
	Testing
	Deploy and maintenance

	Software development model
	Waterfall model
	V-model
	Incremental and Iterative models
	Spiral model
	Extreme programming

	Software testing
	Software static testing
	Software dynamic testing
	Common testing tools

	Model based testing
	Quality assurance in Computer Vision

	MATLAB and MATLAB Coder requirements for usage
	MATLAB
	MATLAB programming language in comparison with C/C++
	MATLAB Coder - features and prerequisite for usage
	MATLAB Coder - code generation process
	Modification to arrays for code generation
	Modification to MATLAB built-in function
	Code generation process

	Design and implementation of code generated from MATLAB
	Planning
	Software description and requirement analysis
	Planning of development and testing process
	Software development process model
	Introduction and Planning of demo project

	Design
	Data flow charts
	Design of error handling mechanism and testing
	Data flow chart of C/C++ software
	Tools for developing and testing

	Deployment of generated code

	Evaluation of generated software and the development process
	Evaluation of non-functional characteristics
	Evaluation of software functionality
	Software development process model - Advantages and challenges

	Conclusion
	Thesis conclusion
	Recommendation for future work

	References

