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ABSTRACT

Mikko Impiö: Semi-supervised learning in habitat classification from remotely-sensed imagery
Master of Science Thesis
Tampere University
Master’s Programme in Computing Sciences
April 2022

Remote sensing helps monitor and evaluate the state of ecosystems, covering also wilderness
areas that can be hard to access for field observations. Wilderness areas, such as the ones in
northern Lapland, are home to endangered species and habitat types. Automatic detection and
classification of habitats is a difficult task, as target class distributions are long-tailed, fine-grained,
and have semantic properties that can be difficult to distinguish even for humans and especially
from limited remotely sensed imagery. Training data for building models is often sparse, point-like,
and limited to areas accessible by foot. This thesis presents methods for habitat classification
from limited data using supervised, unsupervised, and semi-supervised methods. The presented
approaches take advantage of the large amounts of unannotated and weakly annotated source
data that is available. Convolutional neural networks and random forests are compared and an
ensemble model combining both approaches is shown to increase classification performance.
Convolutional neural networks are also used to produce fully unsupervised segmentation maps.
The classification and segmentation maps are produced for the entire northern Lapland area.

Keywords: semi-supervised learning, deep learning, land cover classification, remote sensing,
clustering

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Mikko Impiö: Puoliohjattu koneoppiminen kaukokartoitusaineistoista tehtävässä luontotyyppien
tulkinnassa
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Huhtikuu 2022

Ekosysteemien tilaa voidaan seurata ja arvioida kaukokartoituksen avulla kenttähavaintoja te-
hokkaammin, etenkin laajoilla ja vaikeasti saavutettavilla erämaa-alueilla. Esimerkiksi Pohjois-
Lapissa elää uhanalaisia lajeja ja luontotyyppejä, joiden suojelu on tärkeää. Luontotyyppien au-
tomaattinen tulkinta on hankala tehtävä, sillä luokkia on yleensä paljon, ne ovat hyvin saman-
laisia keskenään ja niiden erottaminen toisistaan voi olla vaikeaa jopa asiantuntijalle maastossa.
Kaukokartoitusaineistojen, eli satelliiteista ja ilmasta tehtyjen havaintojen avulla, luokittelu muut-
tuu vielä hankalammaksi. Luokittelumallien muodostamiseen kerättävä kenttäaineisto on yleensä
pistemäistä ja rajoittuu yleensä ihmisen saavutettavissa oleviin alueisiin. Tässä opinnäytetyös-
sä tutkitaan koneoppimismenetelmiä kaukokartoitusaineistosta tehtävään luontotyyppien luokit-
teluun, hyödyntäen valvottuja, valvomattomia ja puolivalvottuja koneoppimismenetelmiä. Työssä
hyödynnetään saatavilla olevia suuria määriä annotoitua ja rajoitetusti annotoitua kaukokartoitus-
materiaalia. Työssä verrataan etenkin konvolutiivisia neuroverkkoja (convolutional neural network,
CNN) ja satunnaismetsiä (random forests), sekä esitellään molempia lähestymistapoja yhdistä-
vä uusi menetelmä, jonka näytetään myös tuottavan aiempaa luotettavampia luokittelutuloksia.
Konvolutiivisia neuroverkkoja käytetään myös täysin ohjaamattoman segmentointikartan tuottami-
seen. Työssä tuotetaan luokitus- ja segmentointikartat koko Pohjois-Lapin alueelle, joka on uutta
tämänkaltaisella aineistolla ja mallilla.

Avainsanat: puoliohjattu koneoppiminen, syväoppiminen, maanpeitetulkinta, kaukokartoitus, klus-
terointi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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PREFACE

Tämä diplomityö on tehty Suomen ympäristökeskus SYKElle osana Metsähallituksen ko-

ordinoimaa Ylä-Lapin kaukokartoitushanketta, jonka tavoite on päivittää tietoa Ylä-Lapin

biotoopeista hyödyntäen satelliitti- ja laserkeilausaineistoja. Valtava määrä luontotyyppejä

on katoamisuhan alla, ja toivon että tämä työ on pieni pisara siinä tutkimusten virrassa,

josta on apua tämän kehityskulun kääntämisessä.

Haluan kiittää etenkin työn ohjaajaa, Jenni Raitoharjua, jonka asiantuntemuksen ansiosta

olen oppinut uutta ja kehittynyt tutkijana projektin aikana. Kiitän myös projektin toista oh-

jaajaa Saku Anttilaa, joka antoi tämän mahdollisuuden astua kaukokartoituksen kiehto-

vaan maailmaan.

Kiitän avusta Pekka Härmää ja muita kaukokartoitusprojektin asiantuntijoita. Työn tekemisessä

auttoivat erinomaiset lähtödatat, joiden tuottamiseen en olisi itse kyennyt. Kiitokset ku-

uluvat myös Kristian Meissnerille sekä SYKEn kollegoilleni Uudistuvan ympäristötiedon

strategisessa ohjelmassa. Ammatilliseen kehitykseeni ovat vaikuttaneet suunnattomasti

myös kollegat edellisissä työpaikoissani. Kiitokset siis myös heille.

Tämän työn myötä päättyvät myös opintoni Tampereen (teknillisessä) yliopistossa. Opiskelu-

aikani ovat olleet elämäni parasta aikaa ja olen siitä kiitollinen ystävilleni, joiden kanssa

olen saanut jakaa nämä vuodet. Kiitokset niin sanotulle BFI:lle unohtumattomista seikkailuista

ja vertaistuesta. Sähkökillan opintonurkkauksessa vietetyt tunnit lasketaan luultavasti

tuhansissa. Niiden muistot ovat kullanneet ystävät killassa, jonka toiminnassa olen saanut

tiiviisti olla mukana.

Lopuksi haluan kiittää vielä perhettäni, ja rakasta puolisoani Nooraa: viisainta, hauskinta

ja lämminsydämisintä ihmistä jonka tunnen. Ilman sinua tämä työ ei olisi valmistunut

koskaan.

Helsingissä, 27th April 2022

Mikko Impiö
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1. INTRODUCTION

Observations of our natural environment show that global biodiversity is in decline. Short-

term extinction rates are among the highest in our planets history, with global biodiversity

loss projections ranging from 10%-75% for the next century [1, 2, 3]. There is evidence

that most of the loss of species is due to human action [2, 4, 5], making conservation of

the environment a top priority for the humankind.

The biodiversity crisis we are facing is not only visible in species loss, but also in biotope

and habitat loss. Habitats, referring to local communities of species and the environment

they inhabit, are also being destroyed and degraded due to human actions and climate

change [4, 6]. In addition to their intrinsic value, these complex communities of species

provide important ecological services: they produce oxygen and food, capture carbon

dioxide, filter water, and retain it locally, for example. Other species, including humans,

benefit from these services, entangling all species into a complex web of interdependen-

cies where the loss of diversity can have chaotic effects on the whole system. [3, 5,

7]

Habitat monitoring is important to better understand the impacts and causes of biodiver-

sity loss. The main methods for habitat monitoring are on-site field surveys and remote

sensing [8]. Field surveys provide high quality local information, but they are expensive

and time-consuming, especially in remote areas [9]. Remote sensing can collect a lot of

data over a large area at low cost, but the nature of the data collected is very different

from the field survey data. Some information that is only available in-situ is always lost. A

study by Rhodes et al. [10] compared remote sensed data to field surveys in classification

for bird abundances and habitats, measuring a relative explanatory power of 73% for re-

mote sensed data compared to field measurements. Due to these different strengths, field

surveys and remote sensing are complementary to each other, where field surveys are

commonly used to produce ground truth data for large-scale modeling done from remote

sensed data [11, 12, 13, 14, 15].

Vast amounts of remote sensing imagery data are available, thanks to Earth observation

satellites, such as the Sentinel and Landsat series. These satellites produce daily obser-

vations of the Earth using different instruments, such as multispectral cameras and syn-

thetic aperture radars (SAR) [16]. These instruments produce large image rasters, often
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(a) Red-Green-Blue (b) NIR-Red-Green

(c) SWIR-NIR-Green (d) Vegetation height

Figure 1.1. False color rasters (a-c) from the multispectral camera aboard the Sentinel-2
satellite and vegetation height (d) calculated from a laser scanning flight over the same
area. The false-color images are generated by selecting specific wavelengths from a
multispectral camera for the different channels of the RGB image. The subfigure captions
specify which spectral bands were used for the RGB channels.

with a spatial resolution of over 10m, meaning that each pixel corresponds to a 10m×10m

area in nature. Aerial missions can provide additional higher resolution data, for example

laser scanned point clouds that can be processed into height maps and canopy cover

rasters. Examples of multispectral and laser scanned data rasters can be seen in Figure

1.1.

Fell habitats endemic to northern Europe have a high priority in conservation interest. Cli-

mate change has the greatest effect near the poles, and the changes caused by the cur-

rent mean temperature rise can already be seen in Lapland’s ecosystems [17]. Mires with

permafrost are melting and southern species are pushing northwards. A large amount of

fell habitats are already endangered and on the Red List of habitats [17], making monitor-

ing their changes urgent and important. The study area of this thesis is delimited to the

most northern Lapland, as shown in Figure 1.2.
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Figure 1.2. The study area in northern Lapland.

This thesis uses remote sensed imagery data and habitat information collected on field

to automatically classify land cover to discrete categories. These categories are different

biotopes or habitat types, describing the assemblage of vegetation and species in the

area. The main focus is on different machine learning methods that can be used to

produce a model f : X → Y that maps input X to a target class Y . In this case, the

input is remote sensing imagery and the target class is a biotope or habitat class. These

models are usually trained using only pairs of training data (x, y) ∈ X × Y , without prior

assumptions of the system, contrary to Bayesian approaches.

Most of the research done in this thesis concerns methods applied to neural networks,

which are usually characterized as over-parameterized non-linear models that are trained

by iteratively optimizing a loss-function in the parameter space. Deep learning methods

usually need a large amount of data to train models. In the problem of using remote

sensed data for habitat classification, an interesting disparity arises where the amount

of input data is abundant, but target ground truth annotations are scarce and difficult to

collect. In addition, vast amounts of out-of-domain annotations are available, for exam-

ple for land-cover classification of different taxonomies. Transfer learning, unsupervised

learning, and semi-supervised learning can utilize these larger datasets for training the

models.

Semi-supervised methods combine the target of approximating a function to categorize

input data and learning additional information from input data without a target annota-

tion. In this thesis, recent research on semi- and unsupervised learning is applied on

the habitat classification problem, with the main approaches being noisy student train-

ing proposed by Xie et al. [18], and invariant information clustering (IIC) proposed by

Ji et al. [19]. In contrast to supervised learning models, where the target set is known,
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the goal in unsupervised learning is to find a mapping from input space to N different

output classes, or clusters. It is often desired to produce clusters that have large dif-

ferences between clusters, but small differences among the samples inside a cluster.

Semi-supervised methods attempt to produce a similar mapping as supervised methods,

but with methods that make use of data that is unlabeled, i.e samples from the input set

X without the pair from Y .

The semi- and unsupervised methods are compared to more common transfer learning

approaches, where a neural network is first trained with annotated data not necessarily

in the domain of the final classification. The pre-trained model learns general repre-

sentation mappings, which can be used when training a final classification model in the

target labeling domain. The vast availability of out-of-domain annotations from land cover

datasets makes transfer-learning an ideal approach to the problem of fine-grained habitat

classification.

When habitats are classified in the field, the classification usually applies to a small area

around a sampling point. Remote sensing imagery has a low spatial resolution, making

field observations essentially point annotations for single pixels in the raster. Land cover

classification methods are often split to two main approaches: object-based and pixel-

based classification [20, 21]. Pixel-based classification classifies each pixel separately,

while object-based image analysis (commonly referred to as OBIA) categorizes a larger

area spanning over several pixels. Due to the low spatial resolution of remote sensed

imagery, pixel-based methods are common [11, 12, 14, 22], as it is reasonable to consider

each pixel as a separate object to be classified. Object-based approach considers a larger

area around the pixel, with common approaches being using unsupervised segmentation

to find homogeneous areas and classifying them based on their contents [21, 23], or

classifying areas on a coarse level, separating the "objects", and then classifying them to

a finer taxonomy [24, 25]. Modern approaches with convolutional neural networks (CNNs)

performing semantic segmentation on remote sensed imagery [13, 15, 26, 27] can be

considered object-based, since the methods use the local information around each pixel

that is to be semantically classified to a specific class.

This thesis proposes a method combining the two approaches to one by ensembling two

separate models to classify each pixel. Each pixel is classified using both a random

forest (RF) model and a CNN, the former using only the pixel values for classification

while the latter also uses the surrounding area to support classification. It is shown that

this ensemble approach performs better than the classifiers on their own. This thesis

also proposes using a special random cropping augmentation for a problem like this,

where only the center pixel of an image is classified. Figure 1.3 summarises the different

approaches to classification and segmentation and how the proposed method compares

to them.
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Source data

N-channel image

N-channel image

N-channel image and 
N-dimensional vector
representing center 
pixel channel values

Image 
classification

Image 
segmentation

Single-pixel
classification

N-dimensional vector
representing channel
values

Proposed
method

Ground truth label

Image-level label”River”

Segmentation map

”Birch forest” Pixel-level label

”Birch forest” Pixel-level label

Method

Figure 1.3. The proposed approach of combining pixel-based classification with image-
level classification

The main contributions of this thesis are:

• Fine-grained classification of fell habitat types from remote-sensed imagery for two

different class taxonomies

• Presenting a classification approach using an ensemble of CNNs and random

forests, combining pixel-based and object-based classification approaches

• Using sparse pixel annotations with a large unannotated dataset for semi-supervised

learning

• Proposing a crop augmentation method for surrounding-area-aware center pixel

classification

• Applying fully unsupervised segmentation using CNNs for land cover segmentation

This thesis is divided to eight chapters. This introduction chapter introduces the problem

and outlines the main contributions of this thesis. Necessary background for supervised

learning, algorithms, training approaches, and remote sensing is discussed in Chapter 2.

Chapter 3 ties this thesis to the prior research on land cover classification, habitat map-

ping, and machine learning. The proposed approaches are discussed in depth in Chapter

4. Chapters 5 and 6 describe the data sources used in the study and the technical details

of the experiments. Chapter 7 shows and analyzes the results. The results are divided to

cross-validated classification results, sensitivity studies, and qualitative results illustrating

the final classification maps produced. Finally, 8 concludes the thesis. The appendix con-

tains additional figures and references that are omitted from the main text for simplicity

and legibility.
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2. BACKGROUND

This chapter discusses the necessary background for this thesis. The proposed method

focuses on machine learning methods, thus supervised learning and different training

approaches and algorithms are discussed the most. Supervised learning in general is

discussed along with the semantic problems that arise from classifying complex objects to

discrete classes. Convolutional neural networks and random forests are also introduced.

The unsupervised and semi-supervised learning approaches are based on optimiza-

tion approaches that rely on different loss functions. These loss functions, categorical

cross-entropy and mutual information are introduced, and the unsupervised and semi-

supervised approaches used in this thesis are discussed. Finally, background on the

remote sensing data used in this work is discussed.

2.1 Supervised learning

Supervised learning methods attempt to learn a function f : X → Y from an input set X
to a target set Y using input-output pairs (x, y) ∈ X × Y as training data. In theory, the

input and target pairs can be any objects that can be combined so that each element in

the input set corresponds to a single element in the target set. In the case of a discrete

target set, the problem is called classification and with a continuous target it is called

regression. [28]

For example, the input set could be the set of all 64× 64 grayscale images with values in

the range [0, 255], and the target set could be Y = {"Forest", "Not forest"}. The resulting

function f(x) would be a classifier that classifies images to two categories based on

the images’ semantic content. With a binary classification problem like this, the function

output could be 1 in the case of a forest image and 0 in the case of a non-forest image.

Now, if a grayscale image is denoted in vector form as x the function would be

f(x) =

⎧⎨⎩1, if x semantically contains a "forest".

0, otherwise.
(2.1)

In this thesis, the target set Y with discrete and categorical values will be called a tax-

onomy. This differs slightly from the traditional use of the word since a taxonomy usually
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assumes that the set is hierarchical. The set {"Forest", "Not forest"} is not hierarchical,

but most other classification taxonomies presented in this thesis will be. The cardinality

of Y , or the number of classes, will be marked as C. In the above example, C = 2.

The number of features in the input vector x is the number of dimensions D in the input

space X ⊆ RD. Each pixel of a 64 × 64 grayscale image is a separate feature. In this

case, when the grayscale values are discrete, the input space X ⊆ {0, 1, ..., 255}64×64 is

a non-infinite but extremely large space of all possible grayscale images of this size and

bit depth. A high-dimensional input space is difficult to map to a smaller target space.

Methods like convolutional neural networks (CNNs), that reduce the dimensionality in

different stages by convolving local features and pooling them together, are extremely

efficient in mapping high-dimensional data structured in a lattice, such as an image. On

the opposite side of input space dimensions is single pixel classification. If each pixel is

classified separately, the number of input features is D = 1, producing a function from

255 possible pixel values to C class values. If the image has multiple channels, the input

space dimension D increases. This thesis approaches both types of input spaces, full

image classification by classifying an entire view to a single class with CNNs, and single

pixel classification by handling each pixel separately with random forests.

2.1.1 Semantics

The forest taxonomy specified above can be seen as collectively exhaustive, since it

contains all possible semantic contents for a grayscale image. If we ignore the possible

vagueness of the concept "forest", every image x ∈ X represents either a "forest" or

"not forest". In practice, classification taxonomies are rarely collectively exhaustive. It is

possible to build a reliable classifier with a target set taxonomy of {"Forest", "Lake"} that

will work whenever the image x represents either a forest or a lake, but will output "Forest"

or "Lake" also when the semantic meaning of the image is something completely different.

For this reason, classifiers dealing with semantic categories are rarely mathematically

perfect functions, mapping each element from the input set into an output set, at least

without explicit boundaries on the input set.

It is easy to see that setting a threshold between the elements in the set {"Forest", "Not forest"}
resembles the "sorites paradox" [29], in the form of the question: "How many trees does

make a forest?". Where is the line where a bunch of trees turns into a forest? This

vagueness problem has been studied in philosophy [30] and is often ignored in machine

learning and classification problems, although it is present almost always when classes

do not have explicitly defined boundaries. As machine learning models attempt to learn

these boundaries from limited data, the resulting classification boundary can be inter-

preted as incorrect by some observers, even though it would reflect the best possible

boundary that can be learned.
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The problem of semantics and vagueness is well present in habitat classification. Ecosys-

tems and habitats are complex systems composed of different species and gradually

change from one to another. Attempts to produce categorical differences between habi-

tats is done mainly from human perspective and has large cultural differences. For exam-

ple, the general classification system for Finland’s biotopes used in this thesis contains

categorizations for wetlands that are mostly used only in Finland. These wetlands can

change classes depending on the amount of water they contain, making the classification

between classes vague for even experts.

2.1.2 Random forests

Decision tree -based methods are commonly used in supervised statistical learning.

These methods recursively partition the feature space into binary regions, resulting in

a rectangular partition with decision boundaries perpendicular to the basis vectors of the

feature space. Traditional linear models often fail in scenarios where the relationship be-

tween inputs and targets are non-linear, and decision trees can model these complex

nonlinear relationships in the data. [31]

With an input set X ⊆ RD and a target set Y , the feature space is split recursively using

a binary threshold on one of the D features, where the split produces a model with the

best explanatory response on the target Y . The resulting two splits of the feature space

are then split recursively until the partition of the feature space is able to predict the target

response from the training set. [31]

A decision tree is grown by recursively choosing the best feature and a value for that

feature to produce splits of the feature space into M regions R1, R2, . . . , RM . For exam-

ple, at first the training dataset of N samples of input-target pairs (xi, yi) ∈ X × Y is

used to produce two regions, R1 and R2. For each region value m = 1, 2 and class c, a

proportion of class observations pmc in the split is calculated as

pmc =
1

Nm

∑︂
xi∈Rm

I(yi = c), (2.2)

where the summation is over samples assigned to split Rm, Nm is the number of such

samples, and I(yi = c) gets a value of 1 if the target value of xi is a certain class. All

observations are classified into the majority class in the split, argmaxc pmc. Each region

then gets a measure of node impurity Qm, which is commonly calculated using entropy

as

Qm = −
C∑︂
c=1

pmclog(pmc) (2.3)
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or the Gini index as

Qm =
C∑︂
c=1

pmc(1− pmc), (2.4)

corresponding to the variance across classes. The feature and the splitting point is cho-

sen so that the node impurity in both splits is minimized. [31] For each split, a subsplit can

be calculated, the node impurity is minimized across all new splits. To prevent overfitting,

a pruning approach is used. First, a full tree that explains the full dataset without error is

built. The most recent splits where increase in error is the smallest are removed. [28]

A decision tree produces an easily interpretable model and is fast to train. However, a

single tree is very unstable and slight changes in the input data can change large areas

of the resulting model. A solution for this problem is "bagging", where several decision

trees are trained with subsets of the full dataset. During inference, a majority vote of the

classification is performed on this ensemble of decision trees. Training decision trees on

the same dataset can produce highly correlated models, reducing the effect of bagging.

Therefore, random forest attempts to decorrelate the decision trees by choosing also

subsets of features that are used for training. The resulting models are fairly robust and

produce good results also on small and imbalanced datasets. [28]

2.1.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a family of neural networks that are based

on using the convolution operation. Convolution is a very common operation in signal

processing and has many applications, such as different filtering operations. If we have a

signal x(t), for every t we can calculate the convolution output s(t) using a kernel w:

s(t) =

∫︂
x(a)w(t− a)da, (2.5)

making the convolution in essence a weighted sum of all input values for each point in t.

[32]

For a two-dimensional discrete image, the kernel function w is often finite with a height

and width of M and N . Convolution for discrete and multi-dimensional functions, such as

an image I , is essentially a sliding window that calculates the weighted sum of the input

pixel I(i, j) and its surroundings:

S(i, j) =
M∑︂
m

N∑︂
n

I(i−m, j − n)w(m,n), (2.6)

where I(i, j) is the pixel value in position (i, j) and w(m,n) is the kernel weight [32].

Often the ranges of m and n are symmetrically around zero, e.g. -2,-1,0,1,2, centering
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the kernel window on the image pixel. In practice, convolutions use other tricks such

as kernel flipping, border handling and other computational operations for optimizing the

calculations [32].

CNNs work well for images because using the convolutional kernel approach leads to pa-

rameter sharing and representation equivariance. Parameter sharing, or using the same

kernel functions for all image pixels, means that much less parameters are needed to

learn. The learned kernels activate on similar features everywhere in the image. To-

gether with pooling, decimating the input based on choosing for example the maximum

value in a neighborhood, the outputs of CNNs are invariant to location changes of fea-

tures in images. A image of a cat will produce the same output regardless of its position

in the image, resulting in representation equivariance.

A common CNN architecture is the ResNet [33] family. In addition to convolutional and

pooling layers, the ResNet networks apply batch normalization layers and connection

skipping. This allows reducing internal covariance shift and problems with vanishing gra-

dients during optimization [33]. CNNs can have a varying amount of layers, for example,

ResNet18 contains 18 layers and ResNet50 50 layers. The useful amount of layers often

correlates with the amount of training data available, but is often chosen with empirical

tests. Smaller networks have less parameters, making them faster to train and perform

classifications. Like other neural networks, CNNs have nonlinear functions between lay-

ers and are usually optimized using gradient-based optimization methods.

The output of the convolutional and pooling layers is usually a single-dimensional vector.

Commonly this vector is referred to as the representation vector, as it represents the

visual content of an image. The final layers of a CNN are usually fully connected layers,

or a multilayer perceptron (MLP), that produce a nonlinear function of this representation

vector into a desired output format. This could be for example a class distribution vector

or a single value. Sometimes it is useful to conceptually separate the convolutional layers

and the MLP into a CNN backbone that maps images to a representation vector, and a

classification head that does the final output mapping.

2.2 Information theory

Most machine learning methods depend on concepts formalized in information theory.

CNNs are usually trained by optimizing a loss function, that often is categorical cross-

entropy or a derivation of it. The methods used in this thesis uses cross-entropy and well

as mutual information as loss functions. The necessary background for these concepts is

explained in this section.

If we have a discrete random variable X with a probability distribution p = P (X), the

entropy of X is
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H(p) = −
∑︂
i

pilog(pi) (2.7)

where pi is the probability of outcome xi [28]. The unit of base-2 entropy is bits and is

often referred to as Shannon entropy, and is the average amount of information needed

in order to encode a message consisting of the outcomes of the random variable X [34].

Entropy can be seen as the amount of "disorder" in a distribution, as a uniform distribution

maximizes the entropy function.

The entropy of a message, for example an 8-bit, N ×M grayscale image, can be found

by calculating a probability distribution across the possible values each message "letter"

or a pixel can have. The possible pixel values are a set Ω = {0, 1, .., 255}. Each pixel

value is sampled from this set and placed to the grid to form an image. The probability

of a pixel getting a value pi is defined by the distribution p. In what we consider natural

images, some grayscale values are more probable than others, as images contain for

example uniformly colored surfaces and high contrast edges. Thus the distribution p for a

natural images is usually not uniform and has a lower entropy than what a image sampled

from a uniform distribution would have. It can be said that the pixel value distribution that

characterizes an image contains information, if the entropy is lower than for an image

consisting of pure noise. It is important to note that this image can be considered as plain

noise for humans, as information and meaning are truly separate concepts.

Optimization of a classifier output is performed often by comparing output probability dis-

tributions. The relative entropy, or Kullback-Leibler divergence (KL divergence) of two

probability distributions is defined as

KL(p, q) =
∑︂
i

pilog2(
pi
qi
) =

∑︂
i

pilog(pi)−
∑︂
i

pilog(qi), (2.8)

where the latter term is called the cross-entropy between two distributions. The cross-

entropy

H(p, q) = −
∑︂
i

pilog(qi) (2.9)

is a commonly used objective to be minimized in deep learning. [28] The KL divergence

and cross-entropy are not symmetric metrics for distribution difference, as the measure

tells how much additional information is needed for a proposed distribution q to encode

data from the true distribution p. [28]

The mutual information between distributions measures the difference between the joint

distribution P (X, Y ) and the distribution with assumed independence P (X)P (Y ):

I(X, Y ) =
∑︂
x∈X

∑︂
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
, (2.10)
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where p(x) and p(y) are the probabilities for an event x or y independently, and the

probability p(x, y) is the joint probability of events x and y. The mutual information is

equivalent to the difference between the entropy of a variable and the conditional entropy

with the other variable: [28]

I(X, Y ) = H(p)−H(p|q)) = H(q)−H(q|p), (2.11)

where in this case p = P (X) and q = P (Y ). In essence, the mutual information is the

reduction of uncertainty about variable X when some information is gained about Y. [28]

2.3 Unsupervised and semi-supervised learning

Unsupervised learning attempts to learn underlying structure in a dataset, using only

unlabeled data during training. Unsupervised learning is not as well-defined study area

as supervised learning, as the methods differ a lot and have different goals. The goal

of unsupervised learning can vary from discovering new knowledge, to finding anomalies

in data, or to clustering data into discrete groups. [35] Principal component analysis

and knowledge mining are important subfields in unsupervised learning, but the area

of interest in this thesis is clustering problems, since they relate closely to supervised

learning and classification problems.

In clustering, the target is to find subgroups within a dataset so that the data points inside

the groups are similar to each other while being different to the ones in other groups. As

there are no labels, it can be fairly subjective to define the similarity or differences between

data points. [35] Clustering is similar to classification in the way that data points are

assigned to discrete groups, however semantic guidance for this grouping is lost with the

labels. Sometimes if labels are available, it is possible to compare the clustering results

to classification results by assigning semantic classes to each cluster and comparing the

clustering groupings to the label taxonomy. [35]

If clustering is based on a measurement of distance between items in the input set, the

items must be in a metric space. A metric space is a set where a distance can be calcu-

lated between the items of the set. For a set X and a distance function d(·), the following

properties must hold:

• ∀x, y ∈ X, d(x, y) ≥ 0,

• ∀x, y ∈ X we have that d(x, y) = 0 if and only if x = y,

• ∀x, y ∈ X, d(x, y) = d(y, x),

• ∀x, y, z ∈ X we have that d(x, z) ≤ d(x, y) + d(y, z).

Any function that satisfies the above conditions is a metric on X . [36]
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The use of metrics in the input space of images could be possible, for example by calcu-

lating the aggregated distance between pixel values. However, it is unlikely that this metric

would give any information on the "true distance" between images. The perceived dis-

tance between images is usually between the semantic content of the images, not the raw

pixel values themselves. A possible approach to calculating distances between images

could be to learn a mapping corresponding to the semantic meaning of the image. The

vector space formed by these mappings would consist of representation vectors, and the

distance between these vectors would correspond to the semantic differences between

the images. If an image of an object is augmented in some way that keeps its contents the

same, the mapping to a representation vector should also stay the same. It can be said

that the representation vector should be augmentation invariant. The unsupervised and

semi-supervised methods used in this thesis use these ideas of representation vectors

and augmentation invariance.

2.3.1 Invariant information clustering

Invariant information clustering (IIC) was proposed by Ji et al. [19] as a method for se-

mantic clustering of images. IIC is based on a simple objective of maximizing mutual

information between the probability vectors of an image and its transformation. Due to

the conditions on metric spaces, the KL divergence equation in Equation 2.9 cannot be

used as a metric between two probability vectors. Mutual information in Equation 2.10

produces a symmetric metric between two distributions, making clustering possible. The

properties of mutual information, such as maximizing intra-class entropy make it a desir-

able distance metric for clustering. [19]

Invariant information clustering provides a conceptually simple method for clustering nat-

ural images. It is based on training a CNN that extracts features to a feature vector and

then transforms this vector to C classes using a multilayer perceptron (MLP) classifica-

tion head. An image x and an augmented version of the same image x′ are fed to the

CNN+MLP function Φ and a softmax function producing a vector p ∈ [0, 1]C that can be

interpreted as a probability vector for the image to belong to each of the C clusters and

summing to one,
∑︁C

c=1 pc = 1. Because the images’ contents are known to be the same,

the mutual information between these distributions is the objective to be maximized [19]:

max
Φ

I(Φ(x),Φ(x′)). (2.12)

The schematic for the process is also illustrated in Figure 2.1:

The optimization for mutual information maximization turns out to be useful since it avoids

collapsing the clustering to a single cluster or other degenerate solutions. Due to the

properties of mutual information seen in Equation 2.11 maximizing mutual information
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Figure 2.1. Invariant information clustering [19]

both maximizes the self-entropy of the clustering probability vector and minimizes the

conditional entropy between the cluster probabilities of similar objects. The maximum

value of the self-entropy of the cluster probability distribution is achieved when the dis-

tribution is uniform. This balances the assignment of images to C clusters, preventing

degenerate solutions. [19]

2.3.2 Noisy student training

"Noisy student" (NS) training was proposed by Xie et al. [18] as a semi-supervised

training procedure shown to improve ImageNet classification accuracy using an additional

unlabeled dataset. The method is based on knowledge distillation, where a teacher model

is used to train a student model from scratch. The overall process can be seen in Figure

2.2.

The NS training procedure is based on the noise that is added to the images during

student model training. In practice this means random perturbation in the form of aug-

menting the images. Two datasets are used: a small dataset containing image-label pairs

T = {(x1, y1), (x2, y2), . . . , (xN , yN)} and an large dataset U = {x̂1, x̂2, . . . , x̂M} with-

out labels. First, a teacher model θt is trained by minimizing the cross-entropy loss for

labeled images

minimize
1

N

N∑︂
i=1

L(yi, f(g(xi), θ
t)). (2.13)

Here g(·) is the noising function augmenting the training images, and L(·) is the cross-

entropy loss function. This model is then used to generate soft pseudo-labels for the

unlabeled dataset without augmentation:

ŷi = f(x̂i, θ
t),∀x̂i ∈ U. (2.14)
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Figure 2.2. Noisy student training [18]

Finally, the student model θs is trained minimizing the combined loss for labeled and

pseudo-labeled images:

minimize
1

N

N∑︂
i

L(yi, f(g(xi), θ
s)) +

1

M

M∑︂
i

L(ŷi, f(g(x̂i), θ
s)). (2.15)

Xie et al. show good results on the ImageNet dataset using a large additional dataset

of 300M unlabeled images. An important part of the training is finding augmentation

invariant representations for the data by adding noise during the distillation process [18].

The use of augmentations during training is similar to the fully unsupervised IIC approach

in Section 2.3.1.

2.4 Remote sensing

Remote sensing refers to technologies that sense the earth remotely, using for example

aerial imaging or satellites. Data is often collected using higher-fidelity instruments than

basic RGB-cameras. Hyperspectral [37, 38], multispectral [16], and Synthetic Aperture
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Radar (SAR) [16, 39] imagery are commonly used, as they provide a larger amount of

information on the earth surface than plain RGB images. A common problem in remote

sensing is that clouds can cover a large area of the Earth’s surface making regular, dense

time series impossible. SAR fixes this problem to some extent, but the radar data is very

different compared to imaging devices capturing different frequencies on the electromag-

netic spectrum.

Light Detection And Ranging (LiDAR) provides additional information other imaging meth-

ods are not able to produce. Flying over the environment and scanning it with a laser

beam produces 3D point clouds that show the distance to the imaging device. Com-

bined with information on terrain height, several derivative data sources can be calculated.

Canopy cover, vegetation height, and above-ground biomass are some of the values that

have been collected in the forestry sciences and can be useful also in habitat mapping.

[38, 40]

Probably the most common imagery source for remote sensing is multispectral satellite

imagery. Satellites, such as the Sentinels by ESA and Landsats by NASA, collect daily

imagery of the Earth, and the organizations operating them make the data freely and

easily available. The raw data from the Sentinel satellites is processed to different levels.

ESA processing can, for example, make radiometric corrections, geometric and interpo-

lation corrections, and produce cloud masks. [41] Often these corrections are not enough

for some applications and further processing is needed. Time series of data need to be

collected, cloudy areas affecting analysis need to be removed, and the data needs to be

stored somewhere for analysis. Geographical corrections might be needed, especially

near the poles like in northern Lapland. Depending on the application, a lot of remote

sensing expertise can be needed to produce usable imagery.

The Sentinel-2 satellites consist of two satellites, Sentinel-2A and Sentinel-2B, which both

carry a multispectral imaging instrument with 13 spectral channels producing imagery

with a 10m - 60m spatial resolution [41]. Table 2.1 shows all the spectral frequency bands

where the satellites collect data and their spatial resolutions.

Remote sensing is a broad subject area with many issues to consider, such as data

fusion, atmospheric physics, and different characteristics of sensors. This thesis uses

highly processed and analysis-ready data, so issues that are specific to remote sensing

are discussed less. The work focuses on the applications of the data and its use as input

data for machine learning models.
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S2A S2B

Band number and name Central
wavelength
(nm)

Bandwidth
(nm)

Central
wavelength
(nm)

Bandwidth
(nm)

Spatial res-
olution (m)

1 - Coastal aerosol 442.7 21 442.3 21 60

2 - Blue 492.4 66 492.1 66 10

3 - Green 559.8 36 559.0 36 10

4 - Red 664.6 31 665.0 31 10

5 - VRE 1 704.1 15 703.8 16 20

6 -VRE 2 740.5 15 739.1 15 20

7 - VRE 3 782.8 20 779.7 20 20

8 - NIR 832.8 106 833.0 106 10

8a - Narrow NIR 864.7 21 864.0 22 20

9 - Water vapour 945.1 20 943.2 21 60

10 - SWIR -Cirrus 1373.5 31 1376.9 30 60

11 - SWIR 2 1613.7 91 1610.4 94 20

12 - SWIR 3 2202.4 175 2185.7 185 20

Table 2.1. The Sentinel-2 bands, spectral frequencies and spatial resolutions. VRE
stands for vegetation red edge, NIR for near-infrared, and SWIR for short-wave infrared.
[42]
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3. PRIOR WORK

Remote sensing and earth observation (EO) imagery has been used extensively for dif-

ferent classification tasks [12, 13, 22, 27, 43, 44, 45]. Most classification problems are

related to land cover classification and segmentation, often focusing on buildings [45],

farmlands [46], and roads [47]. The studies can be broadly divided to three different

groups:

1. Studies focusing on remote sensing, discussing sensors, instruments, or land cover

classification in general. Recently, machine learning has been widely applied to

these problems.

2. Studies focusing on environment and habitat monitoring, using remote sensing as

a tool for habitat mapping, classification, and monitoring.

3. Studies focusing on machine learning, where methods can be applied to remote

sensing problems such as classification and segmentation.

This thesis falls jointly into the first and last groups, applying methods from machine learn-

ing literature to a general land cover classification problem, with additional contributions

in sparsely annotated supervised learning. The methods are applied to habitat classi-

fication, but this work does not address the more in-depth ecological analysis beyond

classification.

General land cover classification is a common problem in remote sensing [27, 44, 45, 47,

48, 49, 50, 51]. These studies apply different methods for classifying land cover to broad

classes, such as built environment, agricultural areas, roads, and forests. The focus can

be annotation approaches [47, 48], instrument-specific approaches [50, 51], or general

classification methods [44, 45].

Earlier studies combining general land cover classification and machine learning focused

on the effectiveness of different algorithms. These studies focus on per-pixel classifi-

cation, where each pixel is considered as the unit of classification. Classical machine

learning methods such as SVMs and random forests are common algorithms for this

task. Liu et al. [44] tested support vector machines (SVMs) for land cover classification.

Special focus in the paper by Liu et al. is on semi-supervised learning using SVMs. The

authors use a small labeled dataset combined with a larger unlabeled one, showing a

performance gain from this. Although SVMs are effective in some remote sensing tasks,
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other studies have shown that random forests or CNNs can either computationally more

effective, or perform better [14, 26, 52].

Random forests have shown to be highly effective in per-pixel classification problems in

remote sensing. An early study by Gisalson et al. [43] uses four-channel multispectral

data combined with elevation and slope information as input features to a random forest

and classifies different tree species with a fairly high accuracy. Later studies have shown

that random forests are still effective when training data is scarce and resolution is low,

and they have become very popular in land cover classification studies [14, 26, 52, 53,

54, 55, 56].

Per-pixel classification approach is often used when the resolution of the available im-

agery is so low, that each pixel can be considered a single object to be classified. Object-

based approaches are needed when the resolution is higher. An example of this is tree

detection, where high-resolution data is used [13, 26]. The imagery used in this thesis

has fairly low resolution, and each pixel can be considered a single object. However, deep

learning methods can help taking the surrounding area into account.

Recently deep learning methods, such as CNNs for image or patch classification [13,

51] and fully convolutional networks (FCNs) for image segmentation [45, 47, 49, 50],

have gained attention in remote sensing applications. FCNs such as the popular U-Net

architecture [57] are popular in semantic segmentation, where a image or a patch is

given as an input for the model and each pixel is classified to discrete classes. Kentch el

al. [13] use both approaches for classifying forest types from drone-acquired imagery. The

drawback of segmentation with FCNs is that the model needs a dense segmentation map

(illustrated in Figure 1.3) as a ground truth annotation for training. These annotation maps

are laborious to produce, and often only sparse pixel-sized annotations are available,

especially in habitat classification. Another approach for modeling class distributions over

larger areas is maximum entropy (Maxent) modeling. Maxent is very common in species

distribution modeling [58], but is less used in habitat-related land cover classification [52,

59].

If only a minority of the pixels of an object are annotated, this can be considered weak

supervision with sparse annotations. Sparse annotations could be points [27, 49, 60,

61], or scribbles [47, 48], for example. The approach proposed in this thesis can be

considered weak supervision, as instead of a picture-level label the label corresponds

only to the center pixel of a patch, as seen in Figure 1.3. Similar approaches can be

seen in Wang et al. [27] and Laban et al. [49], where sparse point annotations are used

in semantic segmentation. Wang et al. use auxiliary segmentation maps during training,

which are not available in the use case of this thesis. The approach by Laban et al. uses a

synthetic dataset created from the training pixel points. Because the dataset is synthetic,

a segmentation map is obtained. This synthetic dataset is used as training data for a FCN
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which does the classification.

Several studies have been conducted on remote sensing for environmental classification

problems and applications [11, 14, 26, 52, 54, 55, 59, 62]. Petrou and Petrou [11] discuss

the high-level possibilities of remote sensing in biodiversity assessment and bioindicator

extraction. The authors review different areas where remote sensing has been applied

to, including land cover classification for biome, ecosystem and habitat extent mapping,

species distribution mapping, and detection of invasive species.

McDermid et al. [52] studied the use of remote sensing for habitat mapping, discussing

different methods and strategies for gaining habitat insight from remote sensing tech-

niques. The benefits of both unsupervised and supervised learning methods were com-

pared, and random forests were presented as an easily interpretable machine learning

technique. The challenges presented by McDermid et al. are still relevant in recent stud-

ies, for example the trade-off between per-pixel models and more spatially aware models.

This thesis combines a per-pixel random forest model and a spatial CNN model to ad-

dress some of these challenges.

Mäyrä et al. [26] use convolutional neural networks to detect and classify tree species

from aerial hyperspectral and LiDAR data. The study shows the potential of high quality

data in monitoring. Tree species classification needs high resolution aerial imagery, and

additional data dimensions such as LiDAR and hyperspectral imagery provide to be useful

in classification tasks. CNNs prove to be especially useful over random forests or SVMs.

Mahdavi et al. [14] review different classification methods for wetlands, a habitat class

that is of high interest also in this thesis. The authors discuss different wetland classi-

fication taxonomies, but focus on remote sensing. The usefulness of multispectral data

is highlighted, as infrared bands can detect moisture differences crucial in differentiating

between wetland types. Elevation and LiDAR data is also brought up for detecting topo-

graphic and structural information. All these data types are also used in this thesis due

to their advantages in differentiating several habitats. Wetlands are also discussed in a

recent study by Magnússon et al. [55], where random forests are used to classify more

fine-grained wetland vegetation types. The study focuses on temporal changes between

classes and uses spatial and temporal smoothing between pixel classifications to produce

more probable and accurate results.

The Natura2000 habitat types are of special interest in Europe due to the taxonomy’s

relation to legislation. It is thus a common target in habitat classification in several studies

[53, 59, 63, 64]. Stenzel et al. [59] use maximum entropy modeling to detect Natura2000

grassland and wetland classes from 5m resolution EO imagery. Alkaline fens, another

Natura2000 wetland class, is studied by Kopel et al. [53] in a study where random forests

are used for this single-class classification task.
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Studies focusing on machine learning and deep learning tend to deal with fairly general

concepts that can be applied to almost any classification or segmentation task. Unsu-

pervised and semi-supervised learning has gained lots of attention lately, with several

papers published only in the year 2020 proposing approaches to the problem [65, 66,

67, 68, 69, 70]. The common denominator in these papers is using data augmentation to

produce several versions of the same image and using the knowledge that the derivations

represent the same object as the key for learning. The actual implementations are very

different and rely on different loss function choices and architectural tricks.
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4. PROPOSED METHOD

This thesis compares different machine learning models for the classification of finely-

grained habitat classes using remotely sensed imagery as input data. The focus is on

testing different training approaches related to training a CNN classifier on data that has

the following characteristics:

1. Annotated ground truth data is scarce

2. There are large amounts of unannotated data available

3. Annotations are available for single pixels only

4. Target taxonomy is fine-grained and the distribution among classes is highly imbal-

anced

One of the objectives was to evaluate the feasibility of using CNNs compared to tradi-

tional pixel-based methods. The hypothesis was that the pixel surroundings might con-

tain some information that is useful in classification, making a CNN suitable for this kind

of problem. The CNN should be evaluated against common machine learning methods

used in remote sensing, such as random forest classifiers. Random forest input is usually

the channel values of a single pixel and the output is the class for this pixel. The CNN

approach would similarly classify only a single pixel, but use the whole neighborhood of

that pixel as the input. Usually image classification gives an output label on the whole

image level, so the semantic content can be anywhere in the image. Here, the semantic

content is only in the center pixel, but the neighborhood can contain useful information for

determining the class for that pixel. Figure 1.3 illustrates this difference.

The CNN approach differs also from image segmentation, which classifies all of the pixels

in the image that is given as an input. The third characteristic of the above listing prevents

using a traditional image segmentation approach, since annotations are very sparsely

available. Some experiments were done by training a classifier with single-pixel labels,

classifying all unannotated pixels and using these maps as ground truth data, but the

approach did not perform as well as by just classifying each pixel separately.

The first and second characteristic make the case for testing unsupervised and semi-

supervised learning approaches. Since there are large amounts of unannotated data

available, maybe it can be utilized somehow? The recent advances in unsupervised and
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semi-supervised learning on benchmark datasets makes it possible to apply the findings

to a new dataset like this. The hypothesis for using semi-supervised learning is that a

model trained initially with only a smaller dataset can learn more general features and

perform better if training is continued in a semi-supervised fashion. The methods chosen

to be tested in this thesis are Invariant Information Clustering (IIC) proposed by Ji et al.

[19] and Noisy Student training proposed by Xie et al. [18] due to their conceptual sim-

plicity and promising results on benchmark datasets. These approaches are discussed

in Section 2.3.

Another way of tackling the problem of a small dataset could be using transfer learning.

This is a common practice in machine learning, where a model is pretrained with a larger

dataset and fine-tuned to a specific task. The benefits of transfer learning compared to

random initialization of weights are well-known [71]. Pretraining the model is often done

with large RGB datasets of natural images, such as the ImageNet or COCO datasets.

In a remote sensing setting pretrained models are harder to find. Sentinel-2 datasets

are available, but in the case of this thesis the data is unique due to the used laser

and phenology rasters. However, because the source rasters are large and land cover

annotations can be found in the form of CORINE land cover classifications, we show that

these out-of-domain classes can be used successfully for pretraining followed by transfer

learning to a finer class taxonomy.

Pretraining with a larger dataset is common procedure in applied deep learning. Often

remote sensing applications can have a very specific classification taxonomy, where data

collection could be expensive, leading to a small dataset to train a model on. A larger

dataset of the same domain might be available, such as the CORINE land-cover labels

that cover most of Europe. Although the CORINE-classes are quite different from the

final classes, pretraining a CNN with a large CORINE-dataset improves classification

performance significantly. Details of the CORINE dataset are discussed in Chapter 5.

The proposed workflow for training a model can be seen in Figure 4.1. The model is first

trained with a large dataset with CORINE land cover class labels or alternatively in a fully

unsupervised manner using IIC training. Then, the small dataset is used to fine-tune the

model to either the Natura2000 or GCS target classes. Finally, training of the fine-tuned

model is continued by applying Noisy Student semi-supervised learning and training a

new model with the help of a larger dataset. Because the Noisy Student is essentially a

distillation training method, all layers of the new model are trained.

CORINE-
pretraining Transfer learning Semi-supervised

learning

Figure 4.1. The proposed training outline for classification
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A special characteristic of the dataset is that the target taxonomies are finely-grained

and highly imbalanced. To address this, data augmentation and ensembling with other

approaches is needed to produce more generalized and robust models. This thesis pro-

poses using a special kind of augmentation, center-fixed cropping, to make the model

focus more on the center pixel that is the one being classified. Pixels nearer the center

should have higher importance on the classification results than ones further away. This

could be achieved with different ways. However, approaches by weighting the pixel val-

ues differently did not work as well as just randomly cropping the image by keeping the

center pixel in the same position. The cropping size is chosen randomly for each batch of

images separately and all the images in a single batch have the same dimensions. These

augmentations are used also during inference, when test-time augmentation (TTA) is ap-

plied. A pixel is classified several times with different augmentations applied. The final

classification is the average of several augmented classifications.

A novel approach in this thesis is addressing all of the special properties by adding a

random forest classifier to the center pixel only and ensembling it with the CNN model.

The CNN model is trained in a semi-supervised manner, using large amounts of data

and tackling the small dataset problem. Because annotations are available only for single

pixels, the focus should be on them. Classifying single pixels both with a CNN and the

random forest, shown to be effective in remote sensing [43, 54, 59], combines the best

sides of both models. CNNs are great with spatial awareness and random forests excel on

imbalanced data [72, 73]. An ensemble model performs better than either model alone,

as is shown later in Chapter 7. The overview of the inference process on an image, using

the ensemble model is shown in Figure 4.2.

Sometimes inducing biases for classification by choosing a taxonomy is not desired.

Field-collected ground truth classes could be impossible to distinguish from the remote

sensing data, making a classification problem with a taxonomy like this an ill-posed one.

An alternative approach is to produce fully unsupervised segmentations and use them

for analysing the environment and the available data. This approach is tested by training

some models fully unsupervised with the IIC approach. The validity of these models is

evaluated qualitatively, but they provide good insights on how a fully unsupervised method

can be used when training data is abundant but annotations are scarce. These segmen-

tation maps find a pre-defined number of C maximally different clusters from the training

dataset, making it easier to understand what kind of features can be distinguished from

each other from the source data. Deep learning and CNN based approach make it pos-

sible to learn complex pattern features instead of relying to pixel-based unsupervised

methods.
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with test-time augmentation



26

5. DATA

The georeferenced point annotation dataset used in this work is not currently publicly

available, so the details are discussed in this chapter. The differences between classifica-

tion taxonomies are discussed, and the Finnish habitat names used throughout this thesis

are translated for reference. The final remote sensing data is also defined in this chapter.

The technical details of processing the data used in the experiments is discussed later in

Chapter 6.

5.1 Annotations

The point annotations used in this thesis were collected by Metsähallitus during summer

2020. The dataset consists of 2558 georeferenced points representing the habitat infor-

mation within a 10m radius of the annotated point. The dataset contains rich information

about the sample site, including plant species information, vegetation height and cover

approximations, and degradation information, for example. Most of these attributes could

be used as a target for machine learning purposes, but this thesis focuses on the two

classification taxonomies present in the dataset: the Natura2000 classes [74] and the

General Classification System for Finland’s biotopes (GCS) [75] classes.

The Natura2000 classification taxonomy defines different European natural habitat types

and is widely used across Europe in habitat conservation. The taxonomy lists 233 dif-

ferent habitat types, including 71 priority classes, which are in danger of disappearance.

The Natura2000 classification system has been designed for nature conservation, with

recognition of endangered habitats in mind. [74] The General Classification System for

Finland’s biotopes is similarly a classification taxonomy for biotypes, produced by the

Finnish Environment Institute and Metsähallitus, a state-owned environment services

provider. The General Classification System is used as a tool for categorizing biotopes

in a way that is suitable for recognition from aerial photographs and mapping data. The

GCS classes are chosen so that they produce large, over 2500 m2 areas, making it easier

to distinguish them from remote sensed data.

The two classification taxonomies both represent biotope and habitat classes, but the

focus differs between them. The Natura2000 classes in this dataset are more high-level

and represent larger entities, while the GCS classes are fairly detailed down to different



27

Natura
code

Finnish name English name [74] Count

3110 Karut kirkasvetiset järvet Oligotrophic waters containing very few minerals of
sandy plains (Littorelletalia uniflorae)

28

3160 Humuspitoiset järvet ja
lammet

Natural dystrophic lakes and ponds 1

3220 Tunturijoet ja purot Alpine rivers and the herbaceous vegetation along
their banks

4

4060 Tunturikankaat Alpine and Boreal heaths 472

4080 Tunturipajukot Sub-Arctic Salix spp. scrub 9

6150 Karut tunturiniityt Siliceous alpine and boreal grasslands 121

6270 Runsaslajiset kuivat ja
tuoreet niityt

Fennoscandian lowland species-rich dry to mesic
grasslands

1

6430 Kosteat suurruohoniityt Hydrophilous tall herb fringe communities of plains
and of the montane to alpine levels

13

6450 Tulvaniityt Northern boreal alluvial meadows 46

7140 Vaihettumissuot ja ranta-
suot

Transition mires and quaking bogs 165

7160 Lähteet ja lähdesuot Fennoscandian mineral-rich springs and springfens 104

7220 Huurresammallähteet Petrifying springs with tufa formation (Cratoneurion) 8

7230 Letot Alkaline fens 26

7240 Tuntureiden rehevät
puronvarsisuot

Alpine pioneer formations of the Caricion bicoloris-
atrofuscae

2

7310 Aapasuot Aapa mires 27

7320 Palsasuot Palsa mires 17

8110 Tuntureiden vyörysoraikot
ja -lohkareiko

Siliceous scree of the montane to snow levels (An-
drosacetalia alpinae and Galeopsietalia ladani)

7

8210 Kalkkikalliot Calcareous rocky slopes with chasmophytic vegeta-
tion

2

8220 Silikaattikalliot Siliceous rocky slopes with chasmophytic vegetation 64

9010 Luonnonmetsät Western Taïga 271

9040 Tunturikoivikot Nordic subalpine/subarctic forests with Betula
pubescens ssp. czerepanovii

453

9050 Lehdot Fennoscandian herb-rich forests with Picea abies 58

9080 Metsäluhdat Fennoscandian deciduous swamp woods 12

91D0 Puustoiset suot Bog woodland 19

91E0 Tulvametsät Alluvial forests with Alnus glutinosa and Fraxinus ex-
celsior (Alno-Padion, Alnion incanae, Salicion albae)

106

Total 2036

Table 5.1. Natura2000 classes with their Finnish names used in this thesis, along with
their English name according to [74], and the number of samples in the full dataset

dryness levels of the environment. Both taxonomies are hierarchical and have an unique

identifier for each class. For example the Natura2000 ’7310 Aapa mires’ class belongs

to the ’73XX Boreal mires’ group, which belongs to the highest ’7XXX Raised bogs and

mires and fens’ group. The GCS classes have a similar hierarchy on three levels.

The annotated dataset of 2558 points does not contain Natura2000 or GCS information

for each point. The full dataset contains 25 unique Natura2000 classes and 36 unique

GCS classes. The amount of samples from these classes is highly imbalanced, with the

smallest classes containing only one sample, but the largest ones containing 472 and

396. The classes present in the dataset are listed in Tables 5.1 and 5.2. The tables also

list the number of samples in each class.

The field work for collecting accurate, georeferenced information in a remote location is
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GCS
code

Finnish name English translation Count

101 Kalliolaet, -rinteet ja -
terassit

Rocky summits, slopes, and terraces 26

102 Kalliojyrkänteet ja -
seinämät

Rocky cliffs and cliff faces 16

103 Kalliorotkot Rocky gorges 2

104 Louhikot ja kivikot Block fields 66

105 Vyörylouhikot ja -kivikot Siliceous scree of the montane 6

220 Kasviton kivennäismaa Vegetation-free mineral soil 39

231 Jäkälä (karukkokangas) Lichen (oligotrophic) 5

232 Jäkälä-varpu (kuiva) Lichen-dwarf-shurb (dry) 115

241 Jäkälä-sammal-varpu
(kuivahko)

Lichen-moss-dwarf-shrub (dryish) 306

242 Sammal-varpu (tuore) Moss-dwarf-shrub (mesic) 396

251 Sammal-varpu-ruoho
(lehtomainen)

Moss-dwarf-shrub-grass (herb-rich forest-like) 145

252 Ruoho (lehto) Grass (herb-rich forest) 63

261 Jäkäläinen heinä-sara Poaceae and Carex with lichen 3

262 Sammaleinen heinä-sara Poaceae and Carex with moss 93

263 Ruohoinen heinä-sara Pocaeae and Carex with grass 136

271 Tuntureiden sammalpinnat Moss covered fells 120

311 Varsinaiset korpisuot Actual wooded minerotrophic mires 9

312 Korpi-välipintasuot Wooded minerotrophic - lawn mires 14

313 Korpi-rimpipintasuot Wooded minerotrophic wet mires 20

321 Varsinaiset rämesuot Actual dwarf-shrub mires 63

322 Räme-välipintasuot Dwarf-shrub lawn mires 14

323 Räme-rimpipintasuot Dwarf-shrub wet mires 48

324 Räme-vesipintasuot Dwarf-shrub flooded mires 1

331 Välipintasuot Lawn mires 13

332 Väli-rimpipintasuot Wet lawn mires 26

333 Rimpipintasuot Wet mires 33

334 Vesipintasuot Flooded mires 1

335 Arokosteikot Grassy wetlands 5

336 Tihkupinta Seepage wetlands 37

410 Avolähde Open spring 31

422 Puro (leveys <2 m) Stream (width <2 m) 4

424 Leveä joki (>5 m) Wide river (width >5 m) 1

430 Järvi tai lampi Lake or pond 38

522 Tuore niitty Fresh meadow 0

523 Kostea niitty Wet meadow 1

645 Poroerotuspaikat Reindeer herding site 5

Total 1901

Table 5.2. General Classification System classes with their Finnish names used in this
thesis, along with an English translation by the author, and the number of samples in the
full dataset

demanding and expensive. Because of this, the 2558 point dataset is fairly large in this

domain, but still remains small for deep learning purposes. To combat this challenge, an

additional dataset was collected using the CORINE land cover classification of Finland

[76, 77]. 35 600 points were randomly sampled from northern Lapland with minimum

distance of 500m between points. The sampling was bounded by the area shown in

Figure 1.2. The class value of the CORINE land cover raster pixel under the chosen point

was set as the annotation for each point. The CORINE land cover includes 44 classes
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in five major groups: artificial surfaces, agricultural areas, forests and semi-natural areas,

wetlands, and water bodies. The class taxonomy is very broad, covering most general

land-cover classes. The General Classification System and Natura taxonomies are more

finely grained, with large number of very similar classes, for example in the wetlands.

5.2 Remote sensing data

Producing useful data products from raw remote sensing data requires a lot of expertise.

This work uses several high-quality data products produced by the Finnish Environment

Institute remote sensing experts:

• Processed laser scanning data for canopy cover and vegetation height,

• Processed Sentinel-2 imagery for 9 selected bands (2,3,4,5,6,7,8,11,12),

• Sentinel-2 NDVI phenology data.

The first dataset contains laser point clouds processed to 8m spatial resolution rasters.

Two rasters are used, first containing the mean height of the vegetation in the pixel area,

and the second containing the percentage of canopy cover in the pixel area. The Sentinel-

2 imagery dataset contains a selection of 9 of the available bands, mosaiced from imagery

collected in summer 2020. The 60m spatial resolution bands are left out, as well as the

8A band highly correlating with band 8. The laser scanning and NDVI phenology data is

not currently publicly available.

The normalized difference vegetation index (NDVI) is a well-known index in remote sens-

ing that indicates the amount of green vegetation in an area. The index is calculated as

the ratio between the difference and sum of the NIR and red channels of a multispectral

instrument:

NDV I =
NIR−RED

NIR +RED
. (5.1)

The NDVI is a good indication of the vegetation in the area. This information can be

used to calculate phenological information or the yearly change in the environment. The

phenology rasters contain the sum, maximum and amplitude of the NDVI index for the

year 2020.

A part of this thesis was to make the rasters usable for machine learning purposes. This

means unifying the spatial resolutions and combining the bands together to produce a

separate dataset raster. All rasters not in the 10m spatial resolution were resampled to

match the 10m resolution using nearest-neighbor sampling. Because the range of the

values between rasters changes depending on the source, the rasters need to be stan-

dardized before model training. For this purpose, the mean and standard deviations for

each raster were calculated and used during training to standardize each channel/band
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of the training image.

The source rasters provide a good overview of the environment and highlight different

features from it. Good data sources are in a way "orthogonal" to each other, i.e., each

channel tells something about the observed environment that the other channels do not.

Figures A.1 and A.2 in the appendix illustrate all of the source data rasters from the

areas used to illustrate classification results in Chapter 7. It can be seen that some

of the Sentinel-2 channels are highly correlated, giving less additional information, but

the phenology channels, for example, provide aggregated time-series information that is

highly useful in vegetation classification.
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6. EXPERIMENTAL SETUP

This chapter deals with the technical details of the experiments. The deep learning ar-

chitectures, hyperparameters, and training details are specified, along with the random

forest parameters. Used tools, frameworks, and software packages are specified. Tech-

nical details about producing the training data is also discussed.

6.1 Data

The annotation data and the source imagery described in Chapter 5 could not be used

by themselves. After resampling the rasters to the same spatial resolution of 10m, a

combination raster was created, consisting of 14 bands: Canopy cover, vegetation height,

NDVI amplitude, NDVI sum, NDVI maximum, and Sentinel-2 channels 2, 3, 4, 5, 6, 7, 8,

11, and 12.

This full raster spanning the entire northern Lapland area in 10m resolution is over 70Gb

in size. It cannot be used directly as an input for machine learning models, and load-

ing this raster and accessing it during training would be unfeasible. Because of this, a

separate dataset was sampled from this raster. 100m radius areas around the annotation

points were collected, producing in essence an image dataset consisting of 19x19 images

with 14 channels, with an corresponding annotation. Similar dataset was collected for the

35 600 randomly sampled images. CORINE labels from the CORINE land cover dataset

[77] were added as annotations for each image.

A problem with these 19x19 pixel images is that they overlap each other, making split-

ting the data for training and testing challenging. The datasets were further processed

by choosing a test set of about 20% of available annotations for each taxonomy, in a

stratified manner, and removing all the other images that geographically overlap or touch

this test set. The remaining non-overlapping images were used as the training data. This

was done five times to produce five cross-validation folds, with test sets not containing

common images. Figure 6.1 illustrates this train-test-split.

Some problems and data leakage can arise due to the close proximity of train and test

samples. A way to prevent this would be to geographically choose the training and testing

areas. However, some sample classes are bound to a small area, and a geographical
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Figure 6.1. Example of the first cross-validation fold train-test-split. The data is split
so that training and test sets do not overlap. Close geographical proximity can however
produce some data leakage due to distinct features like rivers and fells.

split between train and test sets would rule a lot of classes out from the analysis.

6.2 Machine learning setup

For the CNN, a ResNet18 architecture [33] was used as a backbone. The first convolu-

tional layer was changed to match the amount of channels in the image and the final fully

connected layer was changed to match the number of classes. Experiments were done

also with ResNet50 but they yielded similar results as the ResNet18, so ResNet18 was

chosen as the final model due to less parameters and faster training. A fully connected

classification head is used for projecting the 512-dimensional feature vector into C class

predictions.

All of the models are trained with same hyperparameters and optimizers to ensure com-

parability. Optimization is done using the Adam algorithm [78] with a learning rate of 1e-4.

Batch size of 128 was chosen for all tests. Series of test were conducted to choose train-

ing time of 500 epochs for the transfer learning and semi-supervised learning tasks, with

pretraining of 50 epochs for the CORINE pretrained models.

Tests on different augmentations were also conducted. The results presented in this the-

sis used simple random horizontal flip augmentations and a Gaussian blur augmentation

which is applied to all channels. The random cropping augmentation described in Chapter

4 was used for part of the experiments.

The unsupervised IIC models were trained for 15 epochs, for both classification heads,

totalling 30 epochs for each model. The 19x19 IIC model was used as the feature extrac-
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tor for transfer learning models using unsupervised pretraining as the feature extractor.

For fully unsupervised segmentation, different window sizes and cluster amounts were

used. Models were trained with window sizes of 3x3, 9x9, and 19x19 and with 10, 30,

and 70 clusters.

The random forest classifier was used both for comparison and as part of the ensemble

classifier. A decision forest consisting of 100 decision trees trained with Gini impurity

splitting and no restriction on tree depth was used. Grid parameter search was conducted

for different forest sizes, maximum tree depths, and node impurity measures. The best

parameters of this search indicated that a forest size of 900 trees would be the best one by

absolute measures, but the speed-accuracy trade-off was better with the 100 tree forest.

All programming was done using Python as a programming language, the Pytorch li-

brary [79] for deep learning and scikit-learn library [80] for general machine learning and

preprocessing. Processing the geospatial data and rasters were done with the open

source QGIS application [81]. Final classification of the full Lapland area was parallelized

using the Dask library [82]. Experiments were tracked using the Weights and Biases -

experiment tracking service [83]. Computation was done on CSC (IT Center for Science,

Finland) computing clusters.

6.3 Evaluation metrics

The results are evaluated using commonly used evaluation metrics for classification. Top

1,3, and 5 accuracies, f1-score, precision and recall are calculated using their standard

definitions. Threshold metrics such as average precision (AP) and area under the return-

on-characteristics curve (ROC-AUC) are also calculated.

When dealing with imbalanced data in multiclass classification, the averaging method

across classes is important. In order to get the most comprehensive picture of the clas-

sifier’s performance, both macro-average and weighted average across classes is cal-

culated for each metric. Macro-average calculates a metric (f1, precision, recall, AP,

AUC) for each class and outputs a unweighted mean across classes. Its counterpart, the

micro-average, aggregates the predictions of all categories and calculates the metric as if

the classification were binary. Weighted average is similar to macro-averaging, but each

class is weighted by the amount of samples in it. Micro-averaging is generally not use-

ful in multi-class classification since precision, recall, and accuracy get the same values

[84]. The macro-average is biased towards smaller classes, making weighted average

a good compromise. The downside of weighted averaging is that the averaged f1-score

is not necessarily the harmonic mean of precision and recall. A special characteristic of

weighted recall is that it is the same value as accuracy.

When performing cross-validation, metrics are calculated for each fold separately. These
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need to be averaged. A common approach in machine learning is to just (macro) average

the results across folds. It has been noted that this can produce slight bias to the results

if the folds are not stratified [85], making micro-averaging across cross-validation folds a

better, yet more complex option. The folds in this thesis are stratified and similarly sized,

so the more traditional arithmetic mean across folds is used.

A classifier outputs a probability value between 0 and 1 for each class. In binary clas-

sification, the choice of a classification threshold leads to a tradeoff between sensitivity

(true positive rate, TPR) and specificity (false positive rate, FPR). Similar tradeoff happens

between precision and recall: when recall increases, precision usually decreases. The

relationships between these metrics can be calculated for each threshold using return-

on-characteristics (ROC) and precision-recall curves. The former plots classifier sensi-

tivity against specificity, and the latter plots precision against recall for each threshold

value. For multiclass classifiers, the thresholding is done by considering each class sep-

arately against all other classes. For each threshold, averaging can be performed by

micro or macro-averaging. Again, micro-averaging is biased towards the most common

classes, while macro-averaging gives more weight to smaller classes. The results show

both curves to illustrate the performance across classifiers better.



35

7. RESULTS

This chapter shows the final results of the experiments. The results are roughly divided to

classification results and classification maps. The models were evaluated using several

metrics and cross-validation. Selected metrics are displayed in this chapter for brevity,

while the full results with standard deviations can be found from the appendix. The results

are assessed with ROC-AUC curves, precision-recall curves and confusion matrices. Re-

sults for higher hierarchies are also discussed

Sensitivity studies display the effects of different training choices on the models. The

effects of these choices are compared for the best performing model as well as for aggre-

gates of several models. All metrics and sensitivity studies are calculated for both class

taxonomies, Natura2000 and GCS.

The classification maps show the final classification maps produced by the models. Dif-

ferent models and their results are compared for both class taxonomies. Model outputs,

or confidence maps, are also displayed and discussed. Finally, fully unsupervised seg-

mentation maps are reviewed.

7.1 Classification

For classification, in total 11 different CNN models, shown in Table 7.1, were trained with

five-fold cross-validation. The effect of pretraining and semi-supervised learning on clas-

sification performance was tested. In addition, the effect of three alternative training ap-

proaches were tested: random crop augmentation proposed in Chapter 4, convolutional

layer freezing, and test-time augmentation (TTA). Test-time augmentation consistently im-

proves results and all tables in this chapter are presented with TTA applied, unless stated

otherwise.

An overview of the 11 different CNN models can be seen in Figure 7.1. Pretrained (PT)

models use a pretrained CORINE-model, either fine-tuning also the convolutional layers

or freezing them. Base model without any pretraining (PT) was trained as a baseline, and

a model pretrained in a fully unsupervised manner model (UPT) was also tested. The

pretrained models are then used as a teacher model for Noisy Student semi-supervised

learning.
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Base Base crop

PT

CORINE

PT crop

PT no freeze PT crop no
freeze

NS NS crop

NS no freeze NS crop no
freeze

Conv. layers
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Random center
crop augmentation
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Training with target
dataset 
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with CORINE
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UPT  
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Figure 7.1. Relationships between different trained models. The Base models are trained
only on the small target dataset. PT models are transfer learned from a model trained
on a large CORINE-labeled dataset. NS models are a continuation of the PT models,
using the PT models as a teacher model during training. The UPT model is pretrained
unsupervised using the CORINE dataset without labels and fine-tuned using the target
dataset

The appendix contains full results for both classification taxonomies in Tables B.2 for GCS

classes and B.7 for Natura2000. The tables show the cross-validated results for several

metrics, as well as the metrics’ standard deviations. The same metrics for the random

forest model are shown in Tables B.1 for GCS classes and B.6 for Natura2000 classes.

The full results for the ensemble model are similarly in Tables B.3 for GCS and B.8 for

Natura2000.

An overview of the full results is given in Tables 7.1 and 7.2 for Natura2000 classes and

in Tables B.4 and B.5 in the appendix for the GCS classes. The tables show the results

for ResNet models by themselves and ensembled with the random forest model. Overall

observations from the results are:

• Natura2000 classes are significantly easier to classify than GCS classes,

• Random forest beats all plain ResNet models,

• Ensemble models perform better than both random forests and ResNets,

• Models that train only the classification head perform better than non-freezed or

semi-supervised models,

• Random center cropping improves performance in some cases.

• Test-time augmentation consistently improves evaluation results.
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metric F1 weighted Prec. weighted Rec. weighted/Acc Top3 acc

model

Base 0.481 0.469 0.509 0.751

Base crop 0.491 0.479 0.536 0.791

NS 0.502 0.500 0.541 0.795

NS crop 0.507 0.505 0.554 0.800

NS crop no freeze 0.453 0.456 0.515 0.748

NS no freeze 0.493 0.478 0.526 0.780

PT 0.514 0.517 0.550 0.794

PT crop 0.493 0.495 0.554 0.810

PT crop no freeze 0.504 0.498 0.537 0.784

PT no freeze 0.486 0.475 0.508 0.775

UPT 0.366 0.321 0.439 0.713

Random forest 0.539 0.533 0.579 0.813

Table 7.1. ResNet results for Natura2000 classes: Selected metrics for Natura2000
classification for different ResNet models and the random forest baseline, with test-time
augmentation. Trained models include a baseline model (Base) trained only with the final
small dataset, a CORINE-pretrained model (PT), model pretrained in an unsupervised
manner (UPT), and the PT model continued with semi-supervised Noisy Student learning
(NS). Some models have alternative models with cropping or convolutional layer freezing
applied.

Overall best performance for both taxonomies were achieved with a plain transfer learn-

ing approach from the CORINE-pretrained model (PT in the tables), without cropping

augmentations or further semi-supervised learning. The overall performance of the base-

line random forest model is better than any of the ResNet models alone, but ensembling

these models together boosts performance significantly. All of the CNN approaches are

very close to each other, so the possibility of noise should be taken to account, especially

since the variance between cross-validation folds is high. Test-time augmentation (TTA)

produces consistently better results, and these tables illustrate only the TTA results with 5

augmentations. The appendix contains full comparison between TTA and non-augmented

results and the difference is further illustrated in section 7.1.1.

The performance across different classes can be seen in the precision-recall and ROC

curves in Figures 7.2 and 7.3. The performance difference between classes is substantial,

with more populous classes being more reliably classified. This can be seen also in the

difference between the macro- and micro-averages of the classifiers over classes, drawn

in bold. Due to the larger classes containing most examples, and them being classified

mostly correctly, the micro-average performance is higher. Because the dataset contains
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metric F1 weighted Prec. weighted Rec. weighted/Acc Top3 acc

model

Base 0.494 0.478 0.527 0.805

Base crop 0.504 0.494 0.553 0.823

NS 0.519 0.512 0.565 0.820

NS crop 0.534 0.525 0.586 0.822

NS crop no freeze 0.522 0.521 0.585 0.812

NS no freeze 0.517 0.504 0.555 0.816

PT 0.543 0.550 0.590 0.820

PT crop 0.532 0.545 0.589 0.831

PT crop no freeze 0.512 0.511 0.551 0.823

PT no freeze 0.499 0.485 0.526 0.823

UPT 0.484 0.484 0.563 0.794

Random forest 0.539 0.533 0.579 0.813

Table 7.2. Ensemble results for Natura2000 classes: The models of Table 7.1 ensem-
bled with the random forest model. Refer to Table 7.1 for abbreviations

several classes with only few examples and the classifier performing poorly on these, the

macro-averaged classification performance is considerably lower.

Figure 7.4 illustrates the differences between different models and the effect of test-time

augmentation (Similar figure for GCS classes in Appendix C.2. As Figures 7.4a and 7.4b

show, the ensemble model performance gain is higher for the macro-averaged models,

indicating better performance in smaller classes. The ensemble model gain is smaller

in the micro-averaged models, due to better random forest performance in the larger

classes.
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(a) Random forest
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(b) ResNet
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(c) Ensemble model

macro avg
micro avg
7230 - Letot
7160 - Lähteet ja lähdesuot
8220 - Silikaattikalliot
4060 - Tunturikankaat
7140 - Vaihettumissuot ja rantasuot
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Figure 7.2. Class-wise precision-recall curves for Natura2000 classifications using the
CORINE-pretrained model and test-time augmentation
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Figure 7.3. Class-wise ROC curves for Natura2000 classifications using the CORINE-
pretrained model and test-time augmentation
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Figure 7.4. Natura2000 classes precision-recall and ROC curve comparisons between
CORINE-pretrained ResNet, random forest, and ensemble models with test-time aug-
metation applied five times (TTA5)
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The confusion matrices in Figures 7.5, 7.6 and C.1 are very similar to each other, con-

centrating classifications to a few classes. For Natura2000 classes, most different wet-

land types are classified to the class "7140 - Vaihettumissuot ja rantasuot", and smaller

classes are often falsely classified to the largest class "9040 - Tunturikoivikot". Most aapa

mires (7310) are classified as transition mires (7140). Interestingly, only small portions of

classes are classified as palsa mires (7320), in the qualitative review of the classification

maps a large portion of wetlands are classified to this class. This can be seen in Fig-

ure 7.17f. As the comparison between Figures 7.5 and 7.6 shows, the ensemble model

performs better than the models separated.

The GCS classes cause even more confusion in the smaller classes. A significant por-

tion of all classes is classified to the class mesic moss-dwarf-shrub class 242, probably

because it is by far the most common class in the dataset. A real problem in this is that a

large amount of wetlands are also classified in this class. The easiest classes to classify

are the mossy fells (271) and the dryish lichen-moss-dwarf-shrub cover (241).
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(b) ResNet

Figure 7.5. Normalized confusion matrices for Natura2000 classes using random forest
and a CORINE-pretrained ResNet model with test-time augmentation applied
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Figure 7.6. Normalized confusion matrix for the ensemble of models seen in Figure 7.5.
The ensemble performs better than the models separately
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Higher hierarchies

Due to the hierarchical nature of the taxonomies, the models trained on the finest hier-

archy level can be also used to evaluate the models on higher levels. Classification is

still performed on the finest level, but higher level evaluations illustrate the scale of pos-

sible mistakes. Misclassifications of similar classes, for example between mire types, are

not as serious than for example mistaking forests as grasslands. Similar figures to the

previous ones were calculated on a higher classification hierarchy for both Natura2000

and GCS classes. To conserve space, the GCS class results for the higher hierarchy are

displayed in the Appendix. The numbers for the Natura2000 classes correspond to the

first values in their classification identifier: 3 - Freshwater habitats, 4 - Temperate heath

and scrub, 6 - Natural and semi-natural grassland formations, 7 - Raised bogs and mires

and fens, 8 - Rocky habitats and caves and 9 - Forests.

Figure 7.7 shows the precision-recall and ROC curves for each superclass. Forests and

freshwaters are by far the most reliable classes to classify, while performance on the

grasslands is very poor. The confusion matrices in Figure 7.9 (GCS in C.3) show that

many classes are classified to the Temperate heath and scrub superclass that hosts the

most populous class 4060 - Alpine and Boreal heaths. The comparison curves in Figure

7.8 indicate similar results as lower hierarchy counterparts - the ensemble model with

test-time augmentation performs significantly better than other models, but the random

forest is not far behind.
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Figure 7.7. Highest hierarchy level class-wise precision-recall and ROC curves for
Natura2000 classes. The numbers correspond to the Natura2000 class number’s first
values: 3 - Freshwater habitats, 4 - Temperate heath and scrub, 6 - Natural and semi-
natural grassland formations, 7 - Raised bogs and mires and fens, 8 - Rocky habitats and
caves, 9 - Forests
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(a) Macro average precision-recall curves

Figure 7.8. Highest hierarchy level Natura2000 classes precision-recall curve compar-
isons between CORINE-pretrained ResNet, random forest and augmentation models with
and without test-time augmentation applied
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Figure 7.9. Highest Natura2000 hierarchy level normalized confusion matrices. The num-
bers correspond to the Natura2000 class number’s first values: 3 - Freshwater habitats,
4 - Temperate heath and scrub, 6 - Natural and semi-natural grassland formations, 7 -
Raised bogs and mires and fens, 8 - Rocky habitats and caves, 9 - Forests
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7.1.1 Sensitivity studies

Different training methods can have a large effect on the final outcome of the classifier.

Four different hypotheses were tested:

1. Pretraining using a large dataset with a coarse class taxonomy improves classifica-

tion with fine-grained labels.

2. Semi-supervised learning with the larger dataset (without labels) improves perfor-

mance from the pre-trained classifier

3. Training only the classification head with the fine-grained labels leads to a more

generalized model

4. Augmentation by random center cropping improves performance in this specific

scenario.

Figures 7.10 and 7.11 illustrate the effect of different model ablations and additions on the

best performing model, which is the plain transfer-learned model with CORINE pretrain-

ing, without crop augmentations and with convolutional layers freezed after pretraining.

Freezing refers to the practice where convolutional layer weights are not calculated during

training, and only the fully connected classification head weights are learned during the

transfer learning phase. The figure shows the weighted and macro F1 scores of each

cross-validation fold, with the mean and single standard deviation range highlighted in

bold. The effect of adding a certain attribute to the best performing model is shown under

the best model performance. Test-time augmentation can be applied for each model at

test time and is plotted separately for each attribute.

It can be seen that both crop augmentation and semi-supervised learning lead to a worse

performing model, compared to this single model. The differences in macro-averaged

F1 score are larger due to the nature of macro-averaging, where the score is biased

towards smaller classes with few examples. Contrary to the original hypothesis, that

semi-supervised learning and cropping would lead to the best performance, the best per-

forming model applies neither of these. Layer freezing and pretraining however improve

the model, as the model does not overfit the convolutional layers to the small dataset, and

learns better representations from the CORINE-dataset.

The effect of pretraining can be also seen in Figures 7.13 and 7.12, where the effect of

each attribute is plotted separately against all of the other models. Mean and standard de-

viation over the cross-validation folds of all models where an attribute is used, are plotted

as well as the differences between having the attribute and not having it. If all models with

a certain attribute are taken into account, all four methods (pretraining, convolutional layer

freezing, semi-supervised learning, and cropping) improve the performance slightly. The

relationships between the attributes and their effect on models are complex and would

need more extensive modeling and testing, since as seen from previous figures, for a
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Figure 7.10. Sensitivity study for attributes affecting the best Natura2000 CORINE-
pretrained model, with test-time augmentation effect plotted separately. Each scatterplot
point is a result of a cross-validation fold. Large points are mean of all cross-validation
folds, with the standard deviation as a bold line.

single model pipeline the semi-supervised training can also hurt performance. Only in

the big picture the models with semi-supervised training perform slightly better than ones

without it.

The main takeaway from the sensitivity studies is that pretraining the model with a larger

dataset, even though with different domain labels, has a huge improvement on the model

performance. Pretraining the model with CORINE labels has a far larger effect than other

training tricks. Also, test-time-augmentation should be used during inference if the com-

puting resources allow that.
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Figure 7.11. Sensitivity study for attributes affecting the best GCS CORINE-pretrained
model, with test-time augmentation effect plotted separately. Each scatterplot point is a
result of a cross-validation fold. Large points are mean of all cross-validation folds, with
the standard deviation as a bold line. Note that in this case, with GCS classes and macro
F1 score, semi-supervised training improves the classification accuracy.
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Figure 7.12. Natura2000 training attribute comparison for each attribute separately, with
the improvement between attribute being applied or not. Each scatterplot point is a result
of a cross-validation fold. Large points are mean of all cross-validation folds, with the
standard deviation as bold line.
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Figure 7.13. GCS training attribute comparison for each attribute separately, with the
improvement between attribute being applied or not. Each scatterplot point is a result of a
cross-validation fold. Large points are mean of all cross-validation folds, with the standard
deviation as a bold line.
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7.1.2 Classification maps

The quantitative analysis of the results can give absolute information on the dataset avail-

able, but does not give a full picture of the classifier performance. In addition to building

and evaluating the machine learning models presented in this thesis, a classification map

of the entire northern Lapland area was produced. The final classification maps were

done using three models: the CORINE pretrained ResNet model (PT in the tables), the

random forest model, and the ensemble model by averaging the outputs of these two

models. Both Natura2000 and GCS classification maps were produced. Examples of the

classification maps can be seen in Figure 7.14. The color legends for these maps can be

found in the Appendix in Figures A.3 and A.4. Two sites are used in the visualizations in

this chapter. First area is east of the Lätäseno river, with diverse characteristics of wet-

lands, fell habitats in the north, and forests in the south. The second sample area is the

Saana fell, with high altitude changes and rare herb-rich forest and fell grassland habitats.

(a) GCS classes (b) Natura2000 classes

Figure 7.14. Classification maps for an area east of Lätäseno river, using the ensemble
model. Color legends can be found from the Appendix.

Figure 7.15 shows the differences between the three model approaches for both tax-

onomies. The differences between the models are quite large, the main difference being

the more uniform classification map of the ResNet model compared to the fragmentation

in the random forest’s map. Ensembling these models combines these features with some

tradeoff.

In general, ResNet detects larger and more mosaicked areas, such as wetlands, better,

while losing some accuracy in finer-grained areas with rapid land-cover changes. Some

rarer classes are found only in small areas and may not be detected by the ResNet model.

The windowed nature of the ResNet classifier leads to misclassifications in transitional
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areas, such as in rivers and surrounding wetlands. Often, when the center pixel to be

classified hits a river, it is classified into a class surrounding the river, as seen around

the river area in Figure 7.15b. The ResNet model is also more eager to classify areas

containing hay species as Poaceae and Carex (GCS classes 26X).

In a high-altitude habitat near the Saana fell, the differences between models are also

large. Figure 7.16 shows well the differences between two taxonomies. The GCS classes

focus on land cover and show how eutrophic the terrain is, while the Natura2000 classes

are on a higher abstraction level, just describing habitat types as a whole. Most of the

area north of the fell is classified as 4060 - Alpine and Boreal heaths, with some grass-

land areas appearing. The GCS classifications separate dwarf-shrub, mossy and lichen-

dominated areas, which can be hard to distinguish from space. The classifications in this

area also show the resolution differences between a CNN approach and a pixel-based

approach. The ResNet classification areas are more uniform due to the 19x19 window,

and fast changes in the environment can be lost. The ResNet, however, is good at detect-

ing areas with complex textures, such as the rocky slopes and landslide areas northeast

of the fell, seen as black in the image.

In the Natura2000 classes, a peculiar and large difference is seen between ResNet and

random forest models, where most uniform wetland areas are classified as palsa mires

by the ResNet model. This is especially present in the wetland close-up in Figure 7.17.

Palsa mires are rare mire types with permafrost mounds and are of high interest for con-

servation. The ResNet model however tries to classify almost all large wetland areas, that

most likely should be aapa mires, into palsa mires. This bias could be assessed by giving

less weight to these classifications in the ensemble model. Overall, the ResNet model

again performs well in the mosaicy and textured multi-pixel features that wetlands form,

producing uniform classifications compared to the random forest model.
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(a) RandomForest GCS (b) ResNet GCS (c) Ensemble model GCS

(d) Random forest
Natura2000

(e) ResNet Natura2000
(f) Ensemble model
Natura2000

Figure 7.15. Classification maps of an area near Lätäseno river for all model types and
class taxonomies.



57

(a) Random forest GCS (b) Random forest Natura2000

(c) ResNet GCS (d) ResNet Natura2000

(e) Ensemble model GCS (f) Ensemble model Natura2000

Figure 7.16. Classification maps of the Saana fell area for all model types and class
taxonomies.
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(a) Random forest GCS (b) ResNet GCS (c) Ensemble model GCS

(d) Random forest
Natura2000

(e) Random forest
Natura2000

(f) Ensemble model
Natura2000

Figure 7.17. Close-up classification maps of an wetland area near Lätäseno river for all
model types and class taxonomies.
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Confidence maps

The models can output not just classification class, but a probability distribution over

all classes in the taxonomy. Using this probability distribution, it is possible to map a

single class’ classification confidence over the whole study area. This information can

be valuable when researchers are trying to find rare nature types from new areas. Even

lower confidences of a class might indicate presence in the area. Figure 7.18 shows an

example of the three most common Natura2000 classes in the Lätäseno area. Alpine and

Boreal heaths (4060) are shown in red, fell birch forests (9040) in blue, and Taiga forests

(9010) in green.

Figure 7.19 shows the classification confidence heatmaps for the GCS class "252 Grass

(herb-rich forest)" south of Saana fell. It is known that the southern slope of the fell

has a high amount of herb-rich forest vegetation, while other areas nearby are more

oligotrophic. Although the confidence is fairly low, the environmentally interesting herb-

rich fores concentrations are visible in the class maps.

Figure 7.20 shows how the classification confidence for wetland areas is higher using the

ResNet model. Only a small portion of the wetlands is classified as aapa mires, since

most large areas are thought to be palsa mires by the ResNet model. Random forest is

not a good classifier for the wetlands, classifying most as transition mires or grass/hay-

dominated areas. The aapa mire classification probability is very low for the entire area.



60

Figure 7.18. Class confidence scores for three Natura2000 classes, 4060 in red, 9010 in
green, and 9040 in blue.
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(a) Random forest (b) ResNet

(c) Ensemble model (d) Reference final GCS classification

Figure 7.19. Classification heatmaps for the GCS class "252 Grass (herb-rich forest)" at
Saana fell, with the ensemble classification map as reference.
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(a) ResNet (b) Random forest

(c) Ensemble model (d) Reference Natura2000 classification

Figure 7.20. Classification heatmaps for the Natura2000 class "7310 Aapa mires" at
wetland area east of Lätäseno river, with the ensemble classification map as reference.
Brighter values indicate higher confidence for the classification.
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The class with the maximum confidence is chosen as the final classification for each pixel.

In pixels that are harder to classify, the confidence is more distributed among classes, and

the maximum class gets a lower confidence score. Mapping the maximum confidence for

each pixel, like in Figure 7.21, it is possible to compare areas where the model is more

confident with areas where confidence is low.

The outputs of the random forest and CNN are very different due to the nature of the mod-

els. Random forest’s bagging approach produces robust and general models also with

imbalanced data, making the classification confidences more distributed among classes

than the ResNet models. The CNN model has very high confidences in strange areas,

making some of the classifications unstable. The ensemble model balances the charac-

teristics of both models.

In practice, the final models are usable for habitat classification with some limitations.

Easy and abundant classes, such as Alpine and Boreal heaths (4060 Natura2000) or taiga

forests (9010 Natura2000) are easy to detect and the mapping results are reliable. With

smaller classes detection accuracy falls and the amount of false positives and negatives

makes classification of these classes unreliable. An suitable practical approach could

be to remove unreliable classes from the classification, or map them to a single class

and focus only on distinguishing the easy classes. Unfortunately the small classes are

usually the most important ones that scientists are most interested in detecting from the

wilderness areas. Finding more training data for smaller classes with a classifier that

is tuned for a high recall rate (leading to a lot of false positives), could be used to find

suitable field-collection sites.
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(a) Random forest GCS (b) ResNet GCS

(c) Random forest Natura2000 (d) ResNet Natura2000

Figure 7.21. Maximum class confidence maps of the Saana fell area. Brighter values
indicate higher confidence for the most confident class, while darker values indicate that
even the maximum confidence is very low.
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7.2 Unsupervised segmentation

Fully unsupervised segmentation was proposed as an approach to land cover mapping

in Chapter 4. This method does not need any ground truth data and cannot be biased to

the chosen taxonomy. A pixel is clustered based on a NxN window around it. Because

of this, the chosen window size has a large effect on the results. Figure 7.22 shows the

difference between a 10 group clustering between 3x3 and 9x9 window sizes in a large

scale, and Figure 7.23 in detail.

A characteristic of the approach of clustering the entire window area is that different "tran-

sitional areas" are clustered as their own clusters. For example the areas where the entire

3x3 window is inside a river is a separate cluster, but the riverbank, where half of the win-

dow is river and half is something else, is a separate cluster. This is especially visible in

the larger 9x9 window.

The IIC clustering, however, is able to learn surprisingly good clusters that correspond

to semantic meanings humans give to areas. Wetlands, with their mosaic characteristics

are usually in their own cluster, and oligotrophic areas in the fells, seen in Figure 7.24 are

separated as well. The outputs of the 30 cluster 3x3 IIC model in Figure 7.24e and the

GCS supervised random forest model in Figure 7.16a are surprisingly similar, although

the IIC has zero guidance other than the source data.
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(a) 3x3 10c

(b) 9x9 10c

Figure 7.22. Clustering for 3x3 and 9x9 windows east of Lätäseno river, with 10 clusters.
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(a) 3x3 10c wetlands (b) 9x9 10c wetlands

(c) 3x3 10c river (d) 9x9 10c river

Figure 7.23. Clustering close-ups for 3x3 and 9x9 windows for 10 clusters.
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(a) 3x3 10c (b) 9x9 10c

(c) 3x3 70c (d) 9x9 70c

(e) 3x3 30c (f) 9x9 30c

Figure 7.24. Clustering comparison for 3 different cluster amounts, 10, 30 and 70, with
3x3 and 9x9 window sizes at the Saana fell.
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8. CONCLUSION

This thesis presented a habitat classification approach using an ensemble of CNNs and

random forests, with remote sensed raster data as input. Methods for tackling the problem

of sparse annotation were presented, and a combination of pixel-based and object-based

classification was proposed. As a result, a classification map of the entire northern Lap-

land area was produced for two different classification taxonomies.

The results were assessed by comparing the plain CNN and random forest models to

the ensemble model. Several different combinations of training approaches were tested,

including transfer learning, semi-supervised learning, and unsupervised pretraining. The

ensemble model outperformed single models in almost all cases. The best performing

model turned out to be a model with convolutional layers trained with a large CORINE

dataset, and the classification head fine-tuned with the final dataset. Class-wise com-

parison shows that the performance difference across classes is significant, with some

classes performing very poorly and some classes being easy to classify.

Two different augmentation approaches were proposed: a random center cropping aug-

mentation, that uses the knowledge that the unit of classification is the center pixel of a

patch and using test-time augmentation during inference. Overall, across all tested mod-

els, random cropping produced slight improvement to the results. Test-time augmentation

turned out to be very useful, with significant improvement on all classes.

Unsupervised and semi-supervised approaches were also tested. Semi-supervised train-

ing with a teacher-student distillation approach performed on par with a plain transfer

learning model, but by analysing the overall improvement across different training ap-

proaches, it can be seen that semi-supervised learning usually improves the performance

of a model. Unsupervised pretraining and fully unsupervised segmentation were tested

both quantitatively and qualitatively. Unsupervised pretraining and fine-tuning the classi-

fier with a small dataset turned out to perform poorly. However, fully unsupervised training

and segmentation provided good results, by learning and detecting complex areas such

as wetlands.

The methods presented in this thesis can be applied in further field work. Confidence

maps produced by the models can be used as a heuristic in choosing future sampling

sites. Remote sensing technologies and automatic habitat mapping provide tools for ex-
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perts. Automatic models provide a good starting point in classifying and mapping the

vast wilderness of northern Lapland, a task that would be extremely time-consuming by

field-surveying.

As for machine learning research, this thesis shows the difficulty of a fine-grained classifi-

cation problem, where the semantic meaning is inferred from a different input (field-work)

than the final prediction (remote sensed imagery). Semantic differences in taxonomies

produce very different results, as classes in some taxonomies can be easier to distin-

guish from each other. Current machine learning research focuses often on fairly easy

taxonomies, such as the ImageNet 1000 classes [86], where the classes are everyday

objects and common animals. A positive trend is that fine-grained datasets, such as the

iNaturalist dataset [87], are gaining attention. The methods presented in this thesis that

are applied to sparse, point-like data in remote sensed imagery datasets can also be

applied to other similar problems, where training data is scarce but data itself is abun-

dant. Model explainability remains a challenge, and further research would be needed to

produce models where the reasoning behind a classification can be reliably explained.
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APPENDIX A: SOURCE DATA
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(a) 01 Canopy cover (b) 02 Vegetation height (c) 03 NDVI Amplitude

(d) 04 NDVI Sum (e) 05 NDVI Maximum (f) 06 S2 Band 2 Blue

(g) 07 S2 Band 3 Green (h) 08 S2 Band 4 Red (i) 09 S2 Band 5 VRE

(j) 10 S2 Band 6 VRE (k) 11 S2 Band 7 VRE (l) 12 S2 Band 8 NIR

(m) 13 S2 Band 11 SWIR (n) 14 S2 Band 12 SWIR

Figure A.1. Source raster channels separated for Saana fell area
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(a) 01 Canopy cover (b) 02 Vegetation height (c) 03 NDVI Amplitude

(d) 04 NDVI Sum (e) 05 NDVI Maximum (f) 06 S2 Band 2 Blue

(g) 07 S2 Band 3 Green (h) 08 S2 Band 4 Red (i) 09 S2 Band 5 VRE

(j) 10 S2 Band 6 VRE (k) 11 S2 Band 7 VRE (l) 12 S2 Band 8 NIR

(m) 13 S2 Band 11 SWIR (n) 14 S2 Band 12 SWIR

Figure A.2. Source raster channels separated for Lätäseno river area
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Figure A.3. GCS legends



82

Figure A.4. Natura2000 legends
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APPENDIX B: FULL RESULT TABLES
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name RandomForest

metric

AP macro 0.2477

AP micro 0.4140

AUC macro 0.7998

AUC micro 0.9051

F1 macro 0.2033

F1 weighted 0.3871

Prec. macro 0.2231

Prec. weighted 0.3775

Rec. macro 0.2094

Rec. weighted 0.4299

Top1 acc 0.4299

Top3 acc 0.7126

Top5 acc 0.8085

Table B.1. 5-fold cross-validated Random Forest results for GCS classes
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metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base ResNet 0.1896 0.2608 0.7348 0.8358 0.1742 0.3090 0.1846 0.3108 0.1868 0.3244 0.3244 0.5928 0.7148

ResNet TTA 0.2016 0.2854 0.7598 0.8512 0.1890 0.3220 0.2028 0.3210 0.1984 0.3424 0.3424 0.6250 0.7356

Base crop ResNet 0.1890 0.2762 0.7368 0.8630 0.1720 0.3156 0.1814 0.3116 0.1776 0.3344 0.3344 0.6138 0.7372

ResNet TTA 0.2232 0.3304 0.7906 0.8890 0.1828 0.3382 0.2014 0.3348 0.1866 0.3686 0.3686 0.6622 0.7764

NS ResNet 0.2032 0.2988 0.7732 0.8728 0.1838 0.3232 0.2104 0.3254 0.1882 0.3592 0.3592 0.6546 0.7690

ResNet TTA 0.2126 0.3112 0.7822 0.8802 0.1804 0.3202 0.2004 0.3152 0.1856 0.3602 0.3602 0.6686 0.7796

NS crop ResNet 0.1978 0.3056 0.7608 0.8748 0.1672 0.3232 0.1876 0.3178 0.1712 0.3576 0.3576 0.6518 0.7722

ResNet TTA 0.2312 0.3478 0.7950 0.8946 0.1892 0.3492 0.2356 0.3572 0.1844 0.3934 0.3934 0.6860 0.7906

NS crop no freeze ResNet 0.2172 0.2916 0.7712 0.8766 0.1914 0.3206 0.2094 0.3200 0.1978 0.3416 0.3416 0.6392 0.7598

ResNet TTA 0.2298 0.3384 0.8014 0.8944 0.2016 0.3470 0.2384 0.3502 0.1984 0.3846 0.3846 0.6660 0.7852

NS no freeze ResNet 0.1972 0.2914 0.7606 0.8630 0.1756 0.3196 0.1866 0.3116 0.1804 0.3428 0.3428 0.6160 0.7410

ResNet TTA 0.2084 0.3038 0.7738 0.8722 0.1808 0.3244 0.1912 0.3152 0.1838 0.3484 0.3484 0.6390 0.7540

PT ResNet 0.2048 0.3172 0.7822 0.8902 0.1710 0.3126 0.1838 0.3028 0.1766 0.3496 0.3496 0.6682 0.7730

ResNet TTA 0.2144 0.3330 0.7850 0.8940 0.1810 0.3326 0.2046 0.3338 0.1842 0.3708 0.3708 0.6768 0.7882

PT crop ResNet 0.2198 0.3276 0.8004 0.8962 0.1558 0.3012 0.1752 0.2932 0.1616 0.3474 0.3474 0.6754 0.7896

ResNet TTA 0.2632 0.3612 0.8320 0.9064 0.1638 0.3144 0.2336 0.3552 0.1616 0.3784 0.3784 0.6936 0.8104

PT crop no freeze ResNet 0.2102 0.2776 0.7702 0.8630 0.1860 0.3220 0.2044 0.3260 0.1886 0.3336 0.3336 0.6314 0.7576

ResNet TTA 0.2424 0.3360 0.8006 0.8900 0.2058 0.3542 0.2310 0.3546 0.2024 0.3804 0.3804 0.6676 0.7880

PT no freeze ResNet 0.1980 0.2796 0.7404 0.8470 0.1864 0.3344 0.1964 0.3294 0.1932 0.3494 0.3494 0.6192 0.7366

ResNet TTA 0.1996 0.2912 0.7450 0.8538 0.1904 0.3358 0.2052 0.3310 0.1986 0.3538 0.3538 0.6278 0.7406

UPT ResNet 0.1077 0.1960 0.6466 0.8334 0.0708 0.1814 0.0837 0.1714 0.0801 0.2456 0.2456 0.5116 0.6824

ResNet TTA 0.1096 0.1966 0.6486 0.8342 0.0755 0.1880 0.0990 0.1942 0.0839 0.2504 0.2504 0.5170 0.6848

metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base ResNet 0.0292 0.0258 0.0245 0.0200 0.0283 0.0243 0.0269 0.0211 0.0402 0.0270 0.0270 0.0175 0.0251

ResNet TTA 0.0293 0.0196 0.0131 0.0154 0.0372 0.0270 0.0321 0.0232 0.0527 0.0247 0.0247 0.0110 0.0114

Base crop ResNet 0.0135 0.0192 0.0242 0.0061 0.0244 0.0180 0.0283 0.0194 0.0301 0.0205 0.0205 0.0116 0.0078

ResNet TTA 0.0129 0.0180 0.0068 0.0055 0.0183 0.0182 0.0221 0.0204 0.0231 0.0183 0.0183 0.0138 0.0201

NS ResNet 0.0191 0.0275 0.0250 0.0093 0.0276 0.0168 0.0507 0.0282 0.0233 0.0118 0.0118 0.0136 0.0121

ResNet TTA 0.0247 0.0291 0.0138 0.0091 0.0165 0.0104 0.0347 0.0207 0.0146 0.0123 0.0123 0.0140 0.0171

NS crop ResNet 0.0049 0.0136 0.0129 0.0065 0.0228 0.0248 0.0403 0.0333 0.0223 0.0250 0.0250 0.0202 0.0181

ResNet TTA 0.0219 0.0316 0.0208 0.0062 0.0242 0.0146 0.0479 0.0290 0.0217 0.0104 0.0104 0.0159 0.0136

NS crop no freeze ResNet 0.0265 0.0335 0.0190 0.0088 0.0184 0.0214 0.0131 0.0172 0.0262 0.0197 0.0197 0.0166 0.0121

ResNet TTA 0.0134 0.0245 0.0157 0.0072 0.0140 0.0061 0.0274 0.0064 0.0159 0.0067 0.0067 0.0163 0.0169

NS no freeze ResNet 0.0213 0.0218 0.0215 0.0089 0.0230 0.0109 0.0345 0.0136 0.0197 0.0166 0.0166 0.0238 0.0220

ResNet TTA 0.0199 0.0223 0.0161 0.0085 0.0260 0.0126 0.0410 0.0133 0.0199 0.0154 0.0154 0.0222 0.0232

PT ResNet 0.0218 0.0299 0.0221 0.0083 0.0190 0.0102 0.0309 0.0183 0.0180 0.0115 0.0115 0.0261 0.0184

ResNet TTA 0.0197 0.0269 0.0190 0.0070 0.0154 0.0171 0.0348 0.0419 0.0134 0.0211 0.0211 0.0166 0.0231

PT crop ResNet 0.0083 0.0107 0.0252 0.0083 0.0203 0.0209 0.0162 0.0177 0.0189 0.0186 0.0186 0.0175 0.0176

ResNet TTA 0.0090 0.0143 0.0175 0.0049 0.0206 0.0211 0.0356 0.0323 0.0194 0.0153 0.0153 0.0098 0.0139

PT crop no freeze ResNet 0.0108 0.0176 0.0286 0.0107 0.0083 0.0178 0.0175 0.0183 0.0130 0.0143 0.0143 0.0257 0.0276

ResNet TTA 0.0109 0.0202 0.0289 0.0089 0.0127 0.0232 0.0214 0.0203 0.0124 0.0200 0.0200 0.0193 0.0126

PT no freeze ResNet 0.0203 0.0166 0.0214 0.0142 0.0150 0.0240 0.0198 0.0290 0.0158 0.0213 0.0213 0.0285 0.0267

ResNet TTA 0.0133 0.0165 0.0159 0.0109 0.0150 0.0258 0.0201 0.0276 0.0131 0.0247 0.0247 0.0153 0.0170

UPT ResNet 0.0116 0.0095 0.0285 0.0083 0.0122 0.0096 0.0161 0.0178 0.0084 0.0079 0.0079 0.0267 0.0160

ResNet TTA 0.0113 0.0084 0.0270 0.0079 0.0104 0.0112 0.0202 0.0371 0.0085 0.0102 0.0102 0.0263 0.0189

Table B.2. 5-fold cross-validated ResNet18 results and standard deviations for GCS classes
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metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base Ens. 0.2564 0.3852 0.8364 0.9120 0.1810 0.3240 0.1936 0.3236 0.1932 0.3450 0.3450 0.7060 0.8054

Ens. TTA 0.2640 0.3976 0.8314 0.9122 0.1874 0.3358 0.2076 0.3348 0.1948 0.3616 0.3616 0.7114 0.8142

Base crop Ens. 0.2504 0.3896 0.8288 0.9110 0.1840 0.3376 0.1948 0.3302 0.1892 0.3630 0.3630 0.7076 0.8046

Ens. TTA 0.2734 0.4184 0.8374 0.9158 0.2048 0.3690 0.2222 0.3620 0.2064 0.4058 0.4058 0.7158 0.8118

NS Ens. 0.2600 0.4064 0.8392 0.9146 0.1974 0.3600 0.2182 0.3526 0.2022 0.4052 0.4052 0.7096 0.8164

Ens. TTA 0.2746 0.4120 0.8360 0.9134 0.1998 0.3638 0.2214 0.3564 0.2068 0.4106 0.4106 0.7264 0.8128

NS crop Ens. 0.2564 0.4142 0.8286 0.9128 0.1988 0.3710 0.2254 0.3668 0.2016 0.4136 0.4136 0.7190 0.8108

Ens. TTA 0.2732 0.4292 0.8406 0.9170 0.2030 0.3792 0.2502 0.3818 0.2012 0.4302 0.4302 0.7234 0.8204

NS crop no freeze Ens. 0.2668 0.3996 0.8396 0.9152 0.2108 0.3536 0.2342 0.3504 0.2130 0.3858 0.3858 0.7168 0.8206

Ens. TTA 0.2808 0.4262 0.8418 0.9168 0.2076 0.3790 0.2354 0.3790 0.2062 0.4222 0.4222 0.7326 0.8176

NS no freeze Ens. 0.2532 0.3992 0.8240 0.9120 0.1842 0.3498 0.2042 0.3412 0.1880 0.3812 0.3812 0.7066 0.8088

Ens. TTA 0.2580 0.3980 0.8236 0.9120 0.1956 0.3500 0.2110 0.3368 0.2014 0.3848 0.3848 0.7036 0.8108

PT Ens. 0.2608 0.4172 0.8340 0.9154 0.1956 0.3698 0.2168 0.3618 0.2028 0.4206 0.4206 0.7302 0.8210

Ens. TTA 0.2732 0.4220 0.8244 0.9160 0.2010 0.3766 0.2316 0.3742 0.2060 0.4266 0.4266 0.7288 0.8136

PT crop Ens. 0.2700 0.4216 0.8380 0.9172 0.1902 0.3674 0.2132 0.3648 0.1966 0.4196 0.4196 0.7326 0.8224

Ens. TTA 0.2922 0.4342 0.8530 0.9202 0.1968 0.3704 0.2444 0.3846 0.1974 0.4260 0.4260 0.7282 0.8224

PT crop no freeze Ens. 0.2646 0.3918 0.8296 0.9134 0.1982 0.3388 0.2210 0.3408 0.1980 0.3560 0.3560 0.7152 0.8150

Ens. TTA 0.2782 0.4212 0.8368 0.9168 0.2110 0.3700 0.2378 0.3698 0.2096 0.4036 0.4036 0.7242 0.8196

PT no freeze Ens. 0.2590 0.3968 0.8270 0.9136 0.1854 0.3398 0.1954 0.3320 0.1934 0.3598 0.3598 0.7158 0.8122

Ens. TTA 0.2530 0.4006 0.8240 0.9136 0.1966 0.3528 0.2090 0.3444 0.2042 0.3756 0.3756 0.7190 0.8154

UPT Ens. 0.2414 0.3908 0.7882 0.8974 0.1788 0.3486 0.2120 0.3510 0.1822 0.4102 0.4102 0.6768 0.7806

Ens. TTA 0.2436 0.3886 0.7844 0.8982 0.1746 0.3428 0.2054 0.3472 0.1782 0.4036 0.4036 0.6768 0.7880

metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base Ens. 0.0179 0.0216 0.0187 0.0057 0.0221 0.0205 0.0149 0.0183 0.0348 0.0230 0.0230 0.0212 0.0202

Ens. TTA 0.0216 0.0212 0.0204 0.0055 0.0256 0.0154 0.0307 0.0136 0.0355 0.0141 0.0141 0.0171 0.0158

Base crop Ens. 0.0232 0.0292 0.0050 0.0032 0.0277 0.0319 0.0330 0.0310 0.0328 0.0394 0.0394 0.0130 0.0162

Ens. TTA 0.0152 0.0251 0.0147 0.0039 0.0192 0.0194 0.0277 0.0191 0.0200 0.0218 0.0218 0.0088 0.0132

NS Ens. 0.0283 0.0246 0.0098 0.0046 0.0214 0.0159 0.0303 0.0227 0.0210 0.0136 0.0136 0.0280 0.0136

Ens. TTA 0.0351 0.0248 0.0103 0.0048 0.0160 0.0105 0.0207 0.0169 0.0133 0.0109 0.0109 0.0155 0.0167

NS crop Ens. 0.0157 0.0187 0.0110 0.0034 0.0190 0.0223 0.0410 0.0340 0.0150 0.0250 0.0250 0.0176 0.0208

Ens. TTA 0.0289 0.0225 0.0194 0.0051 0.0097 0.0075 0.0409 0.0210 0.0070 0.0067 0.0067 0.0196 0.0215

NS crop no freeze Ens. 0.0168 0.0278 0.0093 0.0036 0.0192 0.0131 0.0264 0.0123 0.0236 0.0182 0.0182 0.0156 0.0239

Ens. TTA 0.0262 0.0202 0.0211 0.0031 0.0166 0.0081 0.0125 0.0060 0.0189 0.0059 0.0059 0.0175 0.0182

NS no freeze Ens. 0.0252 0.0173 0.0110 0.0045 0.0125 0.0202 0.0281 0.0228 0.0117 0.0194 0.0194 0.0294 0.0329

Ens. TTA 0.0119 0.0172 0.0190 0.0032 0.0243 0.0128 0.0346 0.0105 0.0221 0.0186 0.0186 0.0270 0.0252

PT Ens. 0.0150 0.0220 0.0283 0.0052 0.0100 0.0131 0.0292 0.0236 0.0080 0.0123 0.0123 0.0121 0.0211

Ens. TTA 0.0196 0.0205 0.0281 0.0040 0.0054 0.0113 0.0258 0.0144 0.0041 0.0156 0.0156 0.0173 0.0179

PT crop Ens. 0.0188 0.0191 0.0205 0.0043 0.0100 0.0097 0.0174 0.0141 0.0078 0.0084 0.0084 0.0091 0.0175

Ens. TTA 0.0200 0.0158 0.0149 0.0031 0.0112 0.0099 0.0222 0.0120 0.0073 0.0070 0.0070 0.0144 0.0214

PT crop no freeze Ens. 0.0120 0.0211 0.0181 0.0042 0.0128 0.0191 0.0172 0.0205 0.0146 0.0151 0.0151 0.0172 0.0209

Ens. TTA 0.0133 0.0244 0.0241 0.0047 0.0133 0.0250 0.0138 0.0226 0.0134 0.0208 0.0208 0.0145 0.0227

PT no freeze Ens. 0.0108 0.0185 0.0132 0.0057 0.0092 0.0226 0.0131 0.0253 0.0129 0.0197 0.0197 0.0245 0.0218

Ens. TTA 0.0138 0.0203 0.0147 0.0045 0.0180 0.0282 0.0256 0.0305 0.0187 0.0264 0.0264 0.0265 0.0188

UPT Ens. 0.0147 0.0120 0.0252 0.0027 0.0072 0.0147 0.0137 0.0201 0.0048 0.0178 0.0178 0.0218 0.0178

Ens. TTA 0.0155 0.0121 0.0238 0.0037 0.0137 0.0122 0.0286 0.0253 0.0091 0.0128 0.0128 0.0202 0.0206

Table B.3. 5-fold cross-validated ResNet18+RandomForest ensemble model results and standard deviations for GCS classes
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metric F1 weighted Prec. weighted Rec. weighted/Acc Top3 acc

model

Base 0.322 0.321 0.342 0.625

Base crop 0.338 0.335 0.369 0.662

NS 0.320 0.315 0.360 0.669

NS crop 0.349 0.357 0.393 0.686

NS crop no freeze 0.347 0.350 0.385 0.666

NS no freeze 0.324 0.315 0.348 0.639

PT 0.333 0.334 0.371 0.677

PT crop 0.314 0.355 0.378 0.694

PT crop no freeze 0.354 0.355 0.380 0.668

PT no freeze 0.336 0.331 0.354 0.628

UPT 0.188 0.194 0.250 0.517

RandomForest 0.387 0.378 0.430 0.713

Table B.4. ResNet results for GCS classes: Selected metrics for GCS classification
for different ResNet models and the random forest baseline, with test-time augmentation.
The results in this table are a subset of Table B.2. Refer to Table 7.1 for abbreviations.

metric F1 weighted Prec. weighted Rec. weighted/Acc Top3 acc

model

Base 0.336 0.335 0.362 0.711

Base crop 0.369 0.362 0.406 0.716

NS 0.364 0.356 0.411 0.726

NS crop 0.379 0.382 0.430 0.723

NS crop no freeze 0.379 0.379 0.422 0.733

NS no freeze 0.350 0.337 0.385 0.704

PT 0.377 0.374 0.427 0.729

PT crop 0.370 0.385 0.426 0.728

PT crop no freeze 0.370 0.370 0.404 0.724

PT no freeze 0.353 0.344 0.376 0.719

UPT 0.343 0.347 0.404 0.677

RandomForest 0.387 0.378 0.430 0.713

Table B.5. Ensemble results for GCS classes: Selected metrics for GCS classification
for different ensemble models and the random forest baseline, with test-time augmenta-
tion. The results in this table are a subset of Table B.3. Refer to Table 7.1 for abbreviations.
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name RandomForest

metric

AP macro 0.3242

AP micro 0.6319

AUC macro 0.8228

AUC micro 0.9336

F1 macro 0.2688

F1 weighted 0.5389

Prec. macro 0.3107

Prec. weighted 0.5331

Rec. macro 0.2653

Rec. weighted 0.5791

Top1 acc 0.5791

Top3 acc 0.8133

Top5 acc 0.8938

Table B.6. 5-fold cross-validated Random Forest results for Natura2000 classes
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metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base ResNet 0.2876 0.4990 0.7900 0.8840 0.2564 0.4734 0.2650 0.4658 0.2638 0.4930 0.4930 0.7284 0.8212

ResNet TTA 0.2934 0.5166 0.8022 0.8956 0.2522 0.4806 0.2636 0.4690 0.2598 0.5092 0.5092 0.7508 0.8420

Base crop ResNet 0.2786 0.4852 0.8012 0.9000 0.2472 0.4712 0.2692 0.4652 0.2484 0.4956 0.4956 0.7540 0.8522

ResNet TTA 0.3098 0.5486 0.8352 0.9228 0.2610 0.4908 0.2990 0.4788 0.2552 0.5356 0.5356 0.7910 0.8850

NS ResNet 0.3110 0.4984 0.7962 0.9056 0.2604 0.4860 0.3096 0.4898 0.2562 0.5216 0.5216 0.7800 0.8774

ResNet TTA 0.3236 0.5210 0.7990 0.9116 0.2688 0.5024 0.3240 0.5004 0.2618 0.5412 0.5412 0.7952 0.8792

NS crop ResNet 0.3096 0.5078 0.7774 0.9058 0.2684 0.4878 0.3216 0.4884 0.2630 0.5190 0.5190 0.7788 0.8676

ResNet TTA 0.3222 0.5560 0.8020 0.9222 0.2648 0.5070 0.3286 0.5052 0.2572 0.5538 0.5538 0.8004 0.8848

NS crop no freeze ResNet 0.3012 0.5138 0.7836 0.9078 0.2650 0.4846 0.2986 0.4814 0.2622 0.5070 0.5070 0.7654 0.8596

ResNet TTA 0.3136 0.4996 0.8200 0.9104 0.1654 0.4532 0.2124 0.4564 0.1740 0.5154 0.5154 0.7476 0.8528

NS no freeze ResNet 0.3008 0.5292 0.8040 0.9130 0.2720 0.4900 0.3020 0.4778 0.2672 0.5182 0.5182 0.7662 0.8784

ResNet TTA 0.3092 0.5492 0.8210 0.9198 0.2656 0.4934 0.2842 0.4780 0.2702 0.5256 0.5256 0.7802 0.8844

PT ResNet 0.3140 0.5626 0.8156 0.9248 0.2734 0.5048 0.3116 0.4998 0.2722 0.5400 0.5400 0.7894 0.8780

ResNet TTA 0.3210 0.5794 0.8226 0.9270 0.2890 0.5144 0.3370 0.5168 0.2864 0.5500 0.5500 0.7944 0.8836

PT crop ResNet 0.3292 0.5566 0.8106 0.9254 0.2354 0.4788 0.2858 0.4770 0.2318 0.5232 0.5232 0.7822 0.8858

ResNet TTA 0.3502 0.5954 0.8366 0.9338 0.2224 0.4928 0.2764 0.4946 0.2224 0.5538 0.5538 0.8098 0.9030

PT crop no freeze ResNet 0.2818 0.4914 0.7864 0.8960 0.2514 0.4704 0.2616 0.4662 0.2534 0.4856 0.4856 0.7562 0.8552

ResNet TTA 0.3066 0.5544 0.8092 0.9180 0.2742 0.5040 0.3144 0.4982 0.2660 0.5370 0.5370 0.7844 0.8780

PT no freeze ResNet 0.2916 0.4936 0.8040 0.8946 0.2672 0.4696 0.2872 0.4606 0.2676 0.4876 0.4876 0.7576 0.8568

ResNet TTA 0.3128 0.5144 0.8174 0.9014 0.2798 0.4856 0.2954 0.4748 0.2804 0.5078 0.5078 0.7754 0.8642

UPT ResNet 0.1794 0.3998 0.7246 0.8872 0.1338 0.3636 0.1274 0.3184 0.1500 0.4350 0.4350 0.7142 0.8196

ResNet TTA 0.1764 0.3992 0.7164 0.8868 0.1350 0.3658 0.1299 0.3210 0.1508 0.4386 0.4386 0.7134 0.8206

metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base ResNet 0.0289 0.0142 0.0218 0.0117 0.0247 0.0127 0.0287 0.0108 0.0315 0.0116 0.0116 0.0158 0.0253

ResNet TTA 0.0286 0.0124 0.0275 0.0133 0.0224 0.0133 0.0259 0.0146 0.0343 0.0127 0.0127 0.0152 0.0150

Base crop ResNet 0.0223 0.0237 0.0322 0.0120 0.0314 0.0167 0.0391 0.0160 0.0312 0.0188 0.0188 0.0185 0.0148

ResNet TTA 0.0156 0.0232 0.0277 0.0108 0.0351 0.0243 0.0448 0.0299 0.0319 0.0209 0.0209 0.0121 0.0171

NS ResNet 0.0388 0.0277 0.0334 0.0121 0.0325 0.0314 0.0374 0.0449 0.0309 0.0303 0.0303 0.0270 0.0163

ResNet TTA 0.0318 0.0356 0.0315 0.0130 0.0193 0.0256 0.0275 0.0303 0.0193 0.0291 0.0291 0.0166 0.0119

NS crop ResNet 0.0165 0.0325 0.0351 0.0098 0.0198 0.0176 0.0490 0.0251 0.0111 0.0255 0.0255 0.0169 0.0074

ResNet TTA 0.0190 0.0366 0.0328 0.0095 0.0129 0.0132 0.0440 0.0194 0.0143 0.0141 0.0141 0.0115 0.0083

NS crop no freeze ResNet 0.0329 0.0349 0.0307 0.0093 0.0369 0.0171 0.0531 0.0218 0.0360 0.0173 0.0173 0.0086 0.0070

ResNet TTA 0.0284 0.0510 0.0230 0.0087 0.0132 0.0193 0.0085 0.0129 0.0142 0.0235 0.0235 0.0141 0.0091

NS no freeze ResNet 0.0284 0.0259 0.0265 0.0070 0.0178 0.0171 0.0289 0.0202 0.0174 0.0191 0.0191 0.0161 0.0122

ResNet TTA 0.0345 0.0326 0.0204 0.0081 0.0264 0.0163 0.0334 0.0171 0.0325 0.0186 0.0186 0.0165 0.0160

PT ResNet 0.0324 0.0350 0.0336 0.0078 0.0311 0.0136 0.0238 0.0099 0.0319 0.0172 0.0172 0.0128 0.0092

ResNet TTA 0.0342 0.0302 0.0241 0.0060 0.0354 0.0144 0.0256 0.0224 0.0397 0.0201 0.0201 0.0155 0.0105

PT crop ResNet 0.0261 0.0204 0.0171 0.0040 0.0101 0.0067 0.0345 0.0166 0.0108 0.0076 0.0076 0.0132 0.0102

ResNet TTA 0.0106 0.0153 0.0321 0.0045 0.0224 0.0198 0.0286 0.0256 0.0268 0.0161 0.0161 0.0100 0.0082

PT crop no freeze ResNet 0.0239 0.0278 0.0269 0.0112 0.0118 0.0142 0.0139 0.0129 0.0152 0.0159 0.0159 0.0213 0.0150

ResNet TTA 0.0228 0.0302 0.0239 0.0121 0.0299 0.0053 0.0447 0.0054 0.0314 0.0052 0.0052 0.0140 0.0191

PT no freeze ResNet 0.0276 0.0388 0.0324 0.0121 0.0319 0.0286 0.0434 0.0327 0.0309 0.0259 0.0259 0.0118 0.0287

ResNet TTA 0.0412 0.0320 0.0324 0.0118 0.0342 0.0225 0.0418 0.0289 0.0355 0.0191 0.0191 0.0226 0.0170

UPT ResNet 0.0224 0.0098 0.0270 0.0061 0.0218 0.0143 0.0238 0.0162 0.0201 0.0155 0.0155 0.0177 0.0110

ResNet TTA 0.0194 0.0101 0.0198 0.0061 0.0210 0.0134 0.0213 0.0137 0.0197 0.0144 0.0144 0.0226 0.0110

Table B.7. 5-fold cross-validated ResNet18 results and standard deviations for Natura2000 classes
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metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base Ens. 0.3398 0.6160 0.8450 0.9356 0.2684 0.4922 0.2794 0.4820 0.2772 0.5178 0.5178 0.8104 0.8936

Ens. TTA 0.3330 0.6200 0.8486 0.9366 0.2626 0.4944 0.2716 0.4784 0.2688 0.5272 0.5272 0.8052 0.8914

Base crop Ens. 0.3304 0.6176 0.8490 0.9356 0.2666 0.4970 0.2952 0.4904 0.2654 0.5270 0.5270 0.8122 0.8952

Ens. TTA 0.3444 0.6340 0.8670 0.9410 0.2632 0.5036 0.3046 0.4936 0.2586 0.5534 0.5534 0.8226 0.9036

NS Ens. 0.3516 0.6298 0.8602 0.9398 0.2704 0.5122 0.3286 0.5142 0.2666 0.5542 0.5542 0.8204 0.9032

Ens. TTA 0.3642 0.6346 0.8562 0.9402 0.2714 0.5192 0.3302 0.5122 0.2650 0.5652 0.5652 0.8200 0.8966

NS crop Ens. 0.3546 0.6344 0.8392 0.9382 0.2858 0.5308 0.3366 0.5260 0.2818 0.5732 0.5732 0.8248 0.9054

Ens. TTA 0.3532 0.6452 0.8620 0.9422 0.2672 0.5336 0.3208 0.5248 0.2632 0.5860 0.5860 0.8224 0.9076

NS crop no freeze Ens. 0.3370 0.6242 0.8434 0.9376 0.2858 0.5208 0.3276 0.5150 0.2812 0.5540 0.5540 0.8138 0.8944

Ens. TTA 0.3406 0.6312 0.8520 0.9372 0.2386 0.5216 0.2866 0.5206 0.2428 0.5850 0.5850 0.8116 0.8956

NS no freeze Ens. 0.3412 0.6308 0.8484 0.9394 0.2720 0.5116 0.3068 0.4994 0.2700 0.5486 0.5486 0.8146 0.9016

Ens. TTA 0.3408 0.6328 0.8528 0.9408 0.2758 0.5172 0.3036 0.5036 0.2772 0.5548 0.5548 0.8160 0.9028

PT Ens. 0.3562 0.6490 0.8490 0.9416 0.2898 0.5488 0.3512 0.5580 0.2842 0.5964 0.5964 0.8218 0.9042

Ens. TTA 0.3504 0.6524 0.8588 0.9430 0.2870 0.5434 0.3506 0.5504 0.2814 0.5904 0.5904 0.8196 0.9020

PT crop Ens. 0.3608 0.6454 0.8556 0.9424 0.2664 0.5332 0.3470 0.5508 0.2604 0.5806 0.5806 0.8272 0.9046

Ens. TTA 0.3662 0.6550 0.8656 0.9434 0.2564 0.5324 0.3404 0.5452 0.2516 0.5890 0.5890 0.8306 0.9048

PT crop no freeze Ens. 0.3258 0.6096 0.8348 0.9358 0.2708 0.4946 0.2842 0.4848 0.2724 0.5176 0.5176 0.8192 0.8988

Ens. TTA 0.3422 0.6340 0.8524 0.9392 0.2804 0.5120 0.3246 0.5112 0.2750 0.5508 0.5508 0.8230 0.9042

PT no freeze Ens. 0.3382 0.6098 0.8616 0.9392 0.2694 0.4832 0.2914 0.4714 0.2714 0.5080 0.5080 0.8166 0.9010

Ens. TTA 0.3434 0.6174 0.8644 0.9402 0.2796 0.4986 0.3010 0.4852 0.2782 0.5256 0.5256 0.8232 0.9026

UPT Ens. 0.3136 0.6000 0.8398 0.9298 0.2064 0.4780 0.2466 0.4578 0.2182 0.5588 0.5588 0.7806 0.8784

Ens. TTA 0.3174 0.5990 0.8322 0.9296 0.2106 0.4844 0.2622 0.4844 0.2208 0.5628 0.5628 0.7942 0.8810

metric AP macro AP micro AUC macro AUC micro F1 macro F1 weighted Prec. macro Prec. weighted Rec. macro Rec. weighted Top1 acc Top3 acc Top5 acc

model name

Base Ens. 0.0193 0.0137 0.0152 0.0061 0.0267 0.0138 0.0285 0.0143 0.0315 0.0114 0.0114 0.0176 0.0095

Ens. TTA 0.0206 0.0123 0.0248 0.0073 0.0281 0.0086 0.0246 0.0063 0.0306 0.0104 0.0104 0.0034 0.0088

Base crop Ens. 0.0214 0.0184 0.0210 0.0089 0.0279 0.0178 0.0344 0.0155 0.0266 0.0203 0.0203 0.0101 0.0105

Ens. TTA 0.0190 0.0180 0.0217 0.0078 0.0277 0.0139 0.0350 0.0128 0.0243 0.0102 0.0102 0.0126 0.0212

NS Ens. 0.0253 0.0203 0.0280 0.0055 0.0217 0.0100 0.0226 0.0215 0.0163 0.0149 0.0149 0.0180 0.0113

Ens. TTA 0.0297 0.0223 0.0214 0.0064 0.0289 0.0168 0.0498 0.0264 0.0210 0.0184 0.0184 0.0195 0.0089

NS crop Ens. 0.0142 0.0205 0.0399 0.0082 0.0206 0.0073 0.0536 0.0177 0.0083 0.0157 0.0157 0.0078 0.0149

Ens. TTA 0.0127 0.0204 0.0193 0.0061 0.0159 0.0135 0.0242 0.0209 0.0164 0.0160 0.0160 0.0098 0.0080

NS crop no freeze Ens. 0.0249 0.0181 0.0208 0.0081 0.0271 0.0126 0.0408 0.0145 0.0264 0.0109 0.0109 0.0108 0.0151

Ens. TTA 0.0170 0.0206 0.0093 0.0032 0.0271 0.0264 0.0355 0.0282 0.0239 0.0185 0.0185 0.0073 0.0053

NS no freeze Ens. 0.0234 0.0149 0.0135 0.0061 0.0172 0.0126 0.0174 0.0185 0.0170 0.0129 0.0129 0.0025 0.0132

Ens. TTA 0.0198 0.0192 0.0325 0.0072 0.0269 0.0075 0.0316 0.0127 0.0252 0.0109 0.0109 0.0092 0.0078

PT Ens. 0.0275 0.0201 0.0304 0.0058 0.0318 0.0107 0.0436 0.0395 0.0262 0.0077 0.0077 0.0101 0.0123

Ens. TTA 0.0174 0.0209 0.0190 0.0060 0.0194 0.0127 0.0427 0.0442 0.0197 0.0130 0.0130 0.0110 0.0150

PT crop Ens. 0.0172 0.0141 0.0197 0.0042 0.0116 0.0070 0.0400 0.0128 0.0074 0.0056 0.0056 0.0090 0.0099

Ens. TTA 0.0178 0.0130 0.0173 0.0044 0.0124 0.0139 0.0437 0.0193 0.0128 0.0097 0.0097 0.0083 0.0080

PT crop no freeze Ens. 0.0124 0.0173 0.0254 0.0073 0.0165 0.0143 0.0221 0.0143 0.0171 0.0133 0.0133 0.0173 0.0129

Ens. TTA 0.0176 0.0154 0.0216 0.0081 0.0296 0.0113 0.0508 0.0165 0.0283 0.0104 0.0104 0.0063 0.0102

PT no freeze Ens. 0.0272 0.0273 0.0210 0.0078 0.0304 0.0255 0.0337 0.0286 0.0304 0.0211 0.0211 0.0075 0.0130

Ens. TTA 0.0279 0.0203 0.0162 0.0065 0.0304 0.0180 0.0469 0.0237 0.0254 0.0123 0.0123 0.0067 0.0108

UPT Ens. 0.0166 0.0103 0.0101 0.0036 0.0168 0.0171 0.0660 0.0533 0.0122 0.0107 0.0107 0.0098 0.0096

Ens. TTA 0.0188 0.0106 0.0178 0.0049 0.0084 0.0116 0.0315 0.0223 0.0079 0.0112 0.0112 0.0051 0.0072

Table B.8. 5-fold cross-validated ResNet18+RandomForest ensemble model results and standard deviations for Natura2000 classes
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Predicted label

101 Kalliolaet, -rinteet ja -terassit
102 Kalliojyrkänteet ja -seinämät

104 Louhikot ja kivikot
105 Vyörylouhikot ja -kivikot
220 Kasviton kivennäismaa
231 Jäkälä (karukkokangas)

232 Jäkälä-varpu (kuiva)
241 Jäkälä-sammal-varpu (kuivahko)

242 Sammal-varpu (tuore)
251 Sammal-varpu-ruoho (lehtomainen)

252 Ruoho (lehto)
262 Sammaleinen heinä-sara

263 Ruohoinen heinä-sara
271 Tuntureiden sammalpinnat

311 Varsinaiset korpisuot
312 Korpi-välipintasuot

313 Korpi-rimpipintasuot
321 Varsinaiset rämesuot

322 Räme-välipintasuot
323 Räme-rimpipintasuot

331 Välipintasuot
332 Väli-rimpipintasuot

333 Rimpipintasuot
335 Arokosteikot

336 Tihkupinta
410 Avolähde

430 Järvi tai lampi
645 Poroerotuspaikat

T
ru

e
 la

b
e
l

0.000.000.120.000.000.000.120.270.400.000.000.000.000.090.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.200.530.000.000.050.050.050.000.000.000.000.000.000.000.120.000.000.000.000.000.00

0.000.000.460.000.020.000.080.110.010.010.000.010.010.200.000.000.000.000.000.000.000.000.040.000.000.000.040.00

0.000.000.300.000.000.000.000.000.000.000.000.100.000.400.000.000.000.000.000.000.000.000.000.000.000.000.200.00

0.000.000.110.020.220.000.180.270.100.000.000.000.000.060.000.000.000.000.000.020.000.020.000.000.000.000.000.00

0.000.000.000.000.200.200.200.400.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.010.000.020.000.010.000.370.550.020.000.000.000.000.010.000.000.000.010.000.010.000.000.000.000.000.000.000.00

0.000.000.020.000.010.000.080.610.230.010.000.010.000.020.000.000.000.010.000.000.000.000.000.000.000.000.010.00

0.000.000.000.000.000.000.020.140.720.040.010.000.020.010.000.000.000.010.000.010.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.070.370.340.090.000.120.010.000.000.000.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.010.240.350.160.000.230.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.030.000.010.000.030.220.200.030.000.110.120.150.000.000.000.010.000.030.010.010.020.000.000.010.000.00

0.000.000.000.000.000.000.000.030.250.160.110.040.280.050.010.000.000.020.000.020.000.010.020.000.000.000.000.00

0.010.000.170.000.010.000.010.070.030.000.000.030.040.620.000.000.010.000.000.000.000.000.000.000.000.010.000.00

0.000.000.000.000.000.000.000.070.270.200.100.000.370.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.320.320.000.000.170.000.000.050.000.100.000.000.000.050.000.000.000.000.000.00

0.000.000.000.000.000.000.000.040.280.120.080.040.280.000.000.000.000.040.000.080.000.000.040.000.000.000.000.00

0.000.000.000.000.000.000.010.150.420.000.000.000.050.000.000.000.000.210.010.130.000.000.010.000.000.000.000.00

0.000.000.000.000.000.000.000.070.370.000.000.000.170.000.000.000.000.120.000.170.000.000.050.000.000.070.000.00

0.000.000.020.000.000.000.020.000.220.000.000.020.030.020.000.000.000.180.000.300.000.020.170.000.000.020.000.00

0.000.000.000.000.000.000.000.000.180.000.000.070.430.070.000.000.000.130.000.120.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.030.110.000.000.090.210.070.000.000.000.060.000.090.060.030.210.000.000.000.030.00

0.000.000.030.000.000.000.000.050.030.000.000.040.030.030.000.000.000.030.020.190.000.120.410.020.000.000.020.00

0.000.000.000.000.000.000.200.200.000.000.000.000.000.400.000.000.000.000.000.000.000.000.100.000.000.000.100.00

0.000.000.000.000.000.000.000.040.480.090.040.000.110.040.000.000.000.100.000.020.000.020.020.000.020.000.000.00

0.000.000.000.000.000.000.000.000.570.070.030.000.050.030.000.050.000.080.000.100.000.000.030.000.000.000.000.00

0.000.000.000.000.000.000.020.080.060.020.000.000.020.020.000.000.000.000.000.020.000.020.020.000.000.000.710.00

0.000.000.000.000.000.000.000.000.000.000.000.000.400.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

(a) Random forest
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Predicted label

101 Kalliolaet, -rinteet ja -terassit
102 Kalliojyrkänteet ja -seinämät

104 Louhikot ja kivikot
105 Vyörylouhikot ja -kivikot
220 Kasviton kivennäismaa
231 Jäkälä (karukkokangas)

232 Jäkälä-varpu (kuiva)
241 Jäkälä-sammal-varpu (kuivahko)

242 Sammal-varpu (tuore)
251 Sammal-varpu-ruoho (lehtomainen)

252 Ruoho (lehto)
262 Sammaleinen heinä-sara

263 Ruohoinen heinä-sara
271 Tuntureiden sammalpinnat

311 Varsinaiset korpisuot
312 Korpi-välipintasuot

313 Korpi-rimpipintasuot
321 Varsinaiset rämesuot

322 Räme-välipintasuot
323 Räme-rimpipintasuot

331 Välipintasuot
332 Väli-rimpipintasuot

333 Rimpipintasuot
335 Arokosteikot

336 Tihkupinta
410 Avolähde

430 Järvi tai lampi
645 Poroerotuspaikat

T
ru

e
 la

b
e
l

0.060.000.150.000.030.000.100.090.400.090.000.000.000.090.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.070.000.000.000.000.000.000.350.270.000.050.170.050.000.000.000.000.000.000.000.000.000.000.050.000.000.00

0.040.000.440.020.040.000.050.130.040.000.000.000.000.230.000.000.000.000.000.000.000.000.000.000.000.000.020.00

0.000.000.200.000.000.000.000.000.100.000.000.000.000.500.000.000.000.200.000.000.000.000.000.000.000.000.000.00

0.000.000.020.000.220.000.040.180.350.000.000.020.000.100.000.000.000.000.000.020.000.000.000.000.000.000.040.00

0.000.000.000.000.000.000.100.900.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.030.000.020.000.300.500.070.010.000.000.000.060.000.000.000.000.000.000.000.000.000.000.000.000.010.00

0.000.000.030.000.010.000.090.540.290.010.000.000.000.010.000.000.000.020.000.000.000.000.000.000.000.000.000.00

0.000.010.000.000.010.000.020.150.660.050.000.000.030.020.000.000.010.010.000.010.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.020.030.430.290.070.000.140.000.010.000.010.000.000.000.000.000.010.000.010.000.010.00

0.000.000.000.000.000.000.000.000.350.180.150.010.290.000.000.000.000.010.000.000.000.000.000.000.000.000.000.00

0.000.010.100.000.000.000.030.210.300.030.000.050.070.130.000.000.000.030.000.000.010.010.020.000.000.010.010.00

0.000.000.010.000.010.000.010.050.370.150.100.010.140.050.000.010.010.040.010.020.000.000.010.000.010.010.020.00

0.010.000.150.030.040.000.040.070.140.000.000.040.010.450.000.000.000.000.000.000.000.000.000.000.000.020.010.00

0.000.000.000.000.000.000.000.130.270.000.100.000.400.000.000.000.000.100.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.070.350.120.070.000.000.000.000.000.070.050.000.230.000.000.050.000.000.000.000.00

0.000.000.000.000.000.000.000.040.280.160.080.000.200.000.000.000.040.120.000.040.000.000.040.000.000.000.000.00

0.000.000.000.000.010.000.010.120.370.010.000.010.040.000.000.000.000.240.000.110.000.010.050.000.000.000.010.00

0.000.000.000.000.000.000.000.000.350.000.070.000.220.000.000.000.050.070.000.130.000.070.050.000.000.000.000.00

0.000.000.000.000.000.000.000.030.220.000.000.000.030.000.000.000.000.150.000.280.020.030.220.000.020.000.000.00

0.000.000.000.000.000.000.000.000.520.070.000.000.050.000.000.000.000.070.050.070.000.000.180.000.000.000.000.00

0.000.000.030.000.000.000.000.030.190.060.000.060.060.000.000.000.000.030.030.240.000.130.150.000.000.000.000.00

0.000.000.000.000.000.000.000.050.170.000.000.000.040.000.000.000.000.050.050.170.000.120.360.000.000.000.000.00

0.000.000.000.000.000.000.000.400.100.000.000.000.200.200.000.000.000.000.000.000.000.000.100.000.000.000.000.00

0.000.020.020.000.000.000.000.040.430.170.070.020.160.020.000.020.000.020.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.100.590.000.030.000.050.030.000.000.000.070.000.080.000.030.000.000.000.030.000.00

0.000.000.040.000.040.000.000.090.080.020.000.000.020.040.000.000.000.020.000.000.000.000.040.000.000.000.610.00

0.000.000.000.000.000.000.000.000.400.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

(b) ResNet
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Predicted label

101 Kalliolaet, -rinteet ja -terassit
102 Kalliojyrkänteet ja -seinämät

104 Louhikot ja kivikot
105 Vyörylouhikot ja -kivikot
220 Kasviton kivennäismaa
231 Jäkälä (karukkokangas)

232 Jäkälä-varpu (kuiva)
241 Jäkälä-sammal-varpu (kuivahko)

242 Sammal-varpu (tuore)
251 Sammal-varpu-ruoho (lehtomainen)

252 Ruoho (lehto)
262 Sammaleinen heinä-sara

263 Ruohoinen heinä-sara
271 Tuntureiden sammalpinnat

311 Varsinaiset korpisuot
312 Korpi-välipintasuot

313 Korpi-rimpipintasuot
321 Varsinaiset rämesuot

322 Räme-välipintasuot
323 Räme-rimpipintasuot

331 Välipintasuot
332 Väli-rimpipintasuot

333 Rimpipintasuot
335 Arokosteikot

336 Tihkupinta
410 Avolähde

430 Järvi tai lampi
645 Poroerotuspaikat

T
ru

e
 la

b
e
l

0.060.000.180.000.000.000.100.210.370.030.000.000.000.060.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.050.620.230.000.000.050.050.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.510.000.010.000.060.110.010.010.000.010.000.200.000.000.000.000.000.000.000.000.010.000.000.000.060.00

0.000.000.400.000.000.000.000.000.100.000.000.000.000.300.000.000.000.000.000.000.000.000.000.000.000.000.200.00

0.000.000.040.000.240.000.100.220.270.000.000.000.000.060.000.000.000.000.000.040.000.000.000.000.000.000.020.00

0.000.000.000.000.000.000.500.500.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.030.000.010.000.300.560.050.000.000.000.000.040.000.000.000.010.000.000.000.000.000.000.000.000.010.00

0.000.000.030.000.000.000.080.600.260.000.000.010.000.010.000.000.000.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.010.000.010.130.770.030.010.000.010.020.000.000.000.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.010.030.430.330.070.000.130.000.000.000.000.010.000.000.000.000.000.000.000.000.010.00

0.000.000.000.000.000.000.000.000.270.280.160.010.270.000.000.000.000.010.000.000.000.000.000.000.000.000.000.00

0.000.010.060.000.000.000.020.220.290.030.000.070.070.180.000.000.000.020.000.010.010.010.010.000.000.000.000.00

0.000.000.010.000.000.000.000.040.370.150.110.020.180.050.000.000.000.020.000.010.000.010.020.000.000.010.020.00

0.000.000.160.010.010.000.020.100.070.000.000.020.000.610.000.000.000.000.000.000.000.000.000.000.000.010.000.00

0.000.000.000.000.000.000.000.070.330.230.000.000.370.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.070.380.200.000.000.180.000.000.000.000.000.000.050.000.050.000.000.000.070.000.00

0.000.000.000.000.000.000.000.040.320.120.080.040.280.000.000.000.000.040.000.080.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.130.480.000.000.010.030.000.000.000.000.210.000.130.000.000.010.000.000.000.000.00

0.000.000.000.000.000.000.000.000.300.000.000.000.230.000.000.000.000.100.000.320.000.000.050.000.000.000.000.00

0.000.000.000.000.000.000.000.000.250.000.000.000.030.000.000.000.000.180.000.350.020.050.120.000.000.000.000.00

0.000.000.000.000.000.000.000.000.330.000.000.070.350.000.000.000.000.000.000.070.000.000.180.000.000.000.000.00

0.000.000.000.000.000.000.000.090.240.000.000.060.090.000.000.000.000.000.030.240.000.070.180.000.000.000.000.00

0.000.000.000.000.000.000.000.030.140.000.000.000.020.000.000.000.000.000.000.210.000.120.480.000.000.000.000.00

0.000.000.000.000.000.000.000.400.100.000.000.000.000.400.000.000.000.000.000.000.000.000.000.000.000.000.100.00

0.000.000.000.000.000.000.000.040.520.060.070.000.130.040.000.000.000.080.000.020.000.020.000.000.000.000.000.00

0.000.000.000.000.000.000.000.070.670.030.030.000.050.030.000.000.000.030.000.100.000.000.000.000.000.000.000.00

0.000.000.040.000.000.000.020.060.100.000.000.000.000.040.000.000.000.020.000.000.000.000.000.000.000.000.710.00

0.000.000.000.000.000.000.000.000.000.000.000.000.400.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

(c) Ensemble

Figure C.1. Normalized confusion matrices for GCS classes using CORINE-pretrained
models with test-time augmentation applied
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(a) Macro average precision-recall curves

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

RandomForest, AUC: 0.80
ResNet_TTA5, AUC: 0.79
Average_TTA5, AUC: 0.82
ResNet, AUC: 0.78
Average, AUC: 0.83

(b) Macro average ROC curves

Figure C.2. GCS classes precision-recall and ROC curve comparisons between
CORINE-pretrained ResNet, random forest, and ensemble models with test-time aug-
metation applied five times (TTA5)
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(a) Random forest
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(b) ResNet

Figure C.3. Highest hierarchy level normalized confusion matrices for GCS classes
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