
1
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Abstract—This paper proposes a computationally efficient
algorithm for estimating the non-negative weights of linear
combinations of the atoms of large-scale audio dictionaries, so
that the generalized Kullback-Leibler divergence between an
audio observation and the model is minimized. This linear model
has been found useful in many audio signal processing tasks,
but the existing algorithms are computationally slow when a
large number of atoms is used. The proposed algorithm is based
on iteratively updating a set of active atoms, with the weights
updated using the Newton method and the step size estimated
such that the weights remain non-negative.

Algorithm convergence evaluations on representing audio spec-
tra that are mixtures of two speakers show that with all the
tested dictionary sizes the proposed method reaches a much lower
value of the divergence than can be obtained by conventional
algorithms, and is up to 8 times faster. A source separation
separation evaluation revealed that when using large dictionaries,
the proposed method produces a better separation separation
quality in less time.

Index Terms—acoustic signal analysis, audio source separation,
supervised source separation, non-negative matrix factorization,
Newton algorithm, convex optimization, sparse coding, sparse
representation

EDICS Category: AUD-ANSY, AUD-SSEN

I. INTRODUCTION

W ith the rapid increase in the amount of audio data
made available to public, there has been increasing

need for techniques to analyze or modify the contents of
these audio. In this context, compositional models, which
characterize acoustic events through dictionaries of spectral
patterns, and attempt to explain the audio as non-negative
linear combinations of the dictionary atoms, are becoming
increasingly popular. These models have been successfully
used in many problems, such as signal analysis and recognition
[1]–[3], manipulation and enhancement [3]–[7], and coding
[8], [9].

The biggest advantage of the compositional model is its
ability to model sound mixtures, which is important because
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real-life audio recordings typically consist of mixtures of
sounds. Sounds usually mix in a constructive manner — when
two sounds occur simultaneously their energies add in the
resulting signal. The compositional model naturally captures
this phenomenon by characterizing mixed signals as non-
negative compositions of their component sounds.

The model characterizes the power (or magnitude) spectral
vectors from each individual sound source as constructive,
i.e., a non-negative linear combinations of component spectra,
which are represented as atomic entries from a dictionary.
The spectrum of a mixed signal is therefore also constructive,
i.e., a non-negative weighted combination of the dictionary
atoms from all potentially active sound sources. If properly
decomposed, both the constituent sounds and their levels in
the mixed signal can be determined – these are the sources
underlying the dictionary atoms that have been assigned non-
zero weights, and the weights themselves.

The decomposition typically attempts to minimize a diver-
gence measure defined between the weighted combination of
dictionary atoms and the power spectrum of the mixed signal.
Both in non-negative matrix factorization (NMF) [10], [11]
and sparse representations [12]–[14], a number of algorithms
have been proposed to obtain non-negative decompositions.
The choice of divergence measure affects the solution ob-
tained. A variety of divergence measures based on the family
of Bregman divergences or Csiszár divergences [11, Chapter
2], including the L2 error [15], the Kullback-Leibler (KL) di-
vergence [4] and the Itakura-Saito divergence [16], have been
considered for optimization in the context of audio processing.
For the analysis of audio data represented using magnitude
or power spectra, NMF algorithms that minimize the KL
divergence have been found to be particularly effective [4],
[17], [18], because these spectra exhibit a large dynamic range
and the KL divergence better captures the resulting non-linear
relevance of the magnitudes.

The application of dictionary-based NMF solutions to
generic, real-world audio has remained limited so far, because
the dictionary quickly becomes extremely large as it needs to
represent all the sound types that may reasonably be expected
in a recording. Not only does the computational complexity
increase with the size of the dictionary, conventional NMF
decomposition algorithms [10], [11, pp. 267-268] require more
iterations to converge as dictionary sizes increase. In this
paper we propose a new active-set algorithm to minimize
Kullback-Leibler divergences for non-negative decomposition
of sound recordings using large dictionaries. The algorithm
incrementally adds dictionary atoms to an active set, until a
sound recording is adequately explained. The weights of the
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atoms in the active set are estimated using Newton’s method,
with the step size estimated so that the resulting weights obey
the non-negativity constraints. The method is dubbed ASNA,
short for Active-Set Newton Algorithm.

In contrast to previous second-order optimization algorithms
[19]–[21], ASNA allows the use of overcomplete dictionaries,
and in contrast to previous second-order optimization algo-
rithms for overcomplete dictionaries [22], [23], ASNA uses
a full Hessian matrix and takes advantage of the sparsity of
the solution. Also, unlike previous active-set methods [24]
for NMF, ASNA minimizes the KL-divergence rather than
L2 error. A good review of available algorithms from the
point of view of non-overcomplete dictionaries and L2 error is
given in [25], and from the point of view of other divergences
in [11]. As will be shown in this paper, overcomplete non-
negative representations are sparse, which means ASNA can
also be related to sparse optimization [13], [26]–[29], espe-
cially “greedy” active-set methods such as Matching Pursuit
(MP) [30], Orthogonal Matching Pursuit (OMP) [31] and
Compressive Sampling Matching Pursuit (CoSaMP) [32]. Still,
such a relation is mainly conceptual: rather than requiring
sparsity as goal or constraint to obtain feasible solutions,
sparse solutions emerge naturally in ASNA as a property of
the data, and we do not require any specified or minimal level
of sparsity in the solution. Neither do we explicitly project our
solution into sparse subspaces, although our algorithm may be
viewed as a projected gradient algorithm since the step size is
chosen so that weights are in the non-negative orthant.

Experimental evaluations show that ASNA is more efficient
than conventional NMF solutions, particularly as the dictionary
size increases. Not only does ASNA converge much faster,
the experiments indicate that the conventional NMF solution
does not converge within a finite number of iterations while
ASNA converges in a relatively small number of iterations.
As a result, the proposed algorithm may significantly enhance
our ability to analyze large corpora of audio to obtain content-
based descriptions.

One of the most common applications of non-negative rep-
resentations is source separation, i.e., the process of estimating
individual sources from a mixture [33]. We investigate the
capability of ASNA to speed up source separation algorithms
and find out that it results to better source separation quality
vs. computation time in comparison to the baseline method.

The rest of the paper is organized as follows. In Section II
we introduce the linear model, the KL-divergence and the use
of non-negative, overcomplete dictionaries. In Section III we
describe the proposed algorithm in detail. In Section IV we
analyze properties such as sparsity, uniqueness, and computa-
tional complexity. In Section V we outline our experimental
setup and in Section VI we evaluate the performance of
the algorithm on representing spectra of mixtures of speech.
Section VI-C evaluates the capability of ASNA to speed up
existing source separation algorithms. Finally, in Section VII
we present our conclusions and plans for future work.

II. OVERCOMPLETE NON-NEGATIVE REPRESENTATION OF
AUDIO

A. The linear model

We operate on non-negative observation vectors x of length
F that are for example magnitude (square root of the power)
spectra of audio calculated in short frames. The observation
vector x is modeled as a weighted linear combination of atom
vectors bn from a dictionary as follows

x ≈ x̂ =
N∑
n=1

wnbn, subject to wn ≥ 0 ∀n (1)

where wn, n = 1, . . . , N are the non-negative weights, n is
the index of each atom, and N is the number of atoms in the
dictionary. In an overcomplete representation, the number of
atoms N is larger than the dimensionality F of the observa-
tions. The magnitude spectral representation of x permits us
to interpret the atoms bn as magnitude spectra of constituent
sounds that superimpose to compose x, since in a time-domain
signal that is a superposition of multiple sources the magnitude
spectra of the sources add approximately linearly.

By denoting the dictionary as an F × N matrix B =[
b1, . . . ,bN

]
and the weights as an N × 1 weight vector

w =
[
w1, . . . , wN

]T
, the model is rewritten as

x̂ = Bw, subject to w ≥ 0. (2)

The atoms in the dictionary can be obtained e.g. by sparse
NMF [34], K-SVD [35], clustering [36], [37], sampling [3],
[38], or by a parametric representation [39]. The proposed
method does not place any restrictions on how the atoms are
obtained. We only assume that the atoms are entry-wise non-
negative, given in advance, and remain fixed. Even though we
use magnitude spectra as examples, the algorithm also does
not assume any particular way how the observation vectors
are acquired, just that they are entry-wise non-negative.

B. Quantifying the modeling error

The weights are estimated by minimizing a divergence
measure between an observed vector x and the model x̂
in (1). It has been observed [17], [18] that measures such
as the generalized Kullback-Leibler (KL) divergence [4] or
Itakura-Saito (IS) [16] divergence are more appropriate for
quantifying the modeling error of magnitude spectra of audio,
in comparison to the Euclidean distance that is used in many
other fields of science. In this work we restrict ourselves to
the KL divergence, which is defined as

KL(x||x̂) =
∑
i

d(xi, x̂i), (3)

where function d is defined as

d(p, q) =


p log(p/q)− p+ q p > 0 and q > 0

q p = 0

∞ p > 0 and q = 0

(4)
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C. EM estimation

The standard method for minimizing the KL divergence
under the linear model is based on initializing the weights
to positive values and iteratively applying the following mul-
tiplicative update proposed by Lee and Seung in [10]:

w w ⊗
BT ( x

Bw )

BT1
, (5)

where ⊗ denotes entry-wise multiplication, divisions are done
entry wise, and 1 is an all-ones vector of length F . In the
rest of the paper we refer to this method as “EM”, since the
update rule can be derived from the expectation-maximization
(EM) algorithm [40]. There exist variants of the EM algorithm
that aim to improve its speed of convergence. For example
the method [41] updates only one weight at the time; this
is particularly effective when the dictionary is small, but is
inefficient in the overcomplete case since it requires a separate
update for each atom.

III. ACTIVE-SET NEWTON ALGORITHM FOR MINIMIZING
THE KL DIVERGENCE

The main principle of the proposed optimization method is
that it estimates and updates a set of “active” atoms that have
non-zero weights. The active set is initialized with a single
atom in it. We then iteratively perform the following steps. We
find the most promising atom not in the active set, and add it to
the active set. We run several iterations of Newton’s method to
estimate weights for the active atoms, ensuring that all weights
remain non-negative. Atoms whose weights go to zero are
removed from the active set. The procedure is iterated until
a convergence criterion is achieved. Each of the processing
steps is explained in more detail below.

Let us denote the active set A as the set of indices of
dictionary atoms with non-zero weights. The model x̂ for the
observation vector at each iteration of the algorithm is written
as

x̂ =
∑
n∈A

wnbn (6)

In the case that all the atoms contain exact zeros, a small offset
ε is added to x in order to avoid divisions by zero or taking
the logarithm of zero in the further processing steps.

A. Initialization

Before any further processing, each dictionary atom is
normalized to Euclidean unit length. The normalization was
found to speed up the convergence of the algorithm, since
otherwise the addition of new atoms to the active set would
be dependent on their scale.

After the normalization, the set of active atoms is initialized
with a single index n that alone minimizes the KL divergence
as

A = {argmin
n

KL(x||wnbn)}, (7)

where the weight of each atom that minimizes the divergence
separately is given as [17]

wn =
1Tx

1Tbn
. (8)
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Fig. 1. The set of active atoms per each iteration for an example observation
vector that is the magnitude spectrum of a mixture of two speakers. Black
color indicates active atoms, and white indicates non-active atoms. The
dictionary consists of 10 000 exemplars from individual speakers, but only
the weights of those atoms are illustrated which were active at some point in
the execution of the algorithm. New bases are added every second iteration,
i.e., K = 2.

Here 1 is a all-one vector of length F .
We found that convergence of the proposed method was

faster with the above initialization than using the gradient-
based method that is used to add the other atoms.

B. Adding bases to the active set
Every K-th iteration starting from the first one, one atom

is added to the set of active bases. As will be explained in
the next section, the weights are estimated using the Newton
algorithm, which is guaranteed to converge, if the function to
be minimized is locally close to quadratic. It was found out
that adding active atoms every iteration made the algorithm
oscillate, and therefore having K > 1 is required.

The atom whose weight derivative is the lowest among the
atoms not already in the active set, i.e., the atom which will
decrease the KL divergence the most, is added. If the smallest
derivative is negative, the index set is updated as

A A ∪
{
argmin
n/∈A

δ

δwn
KL(w)

}
, (9)

with KL(w) defined as the KL-divergence as a function of
the weight vector

KL(w) ≡ KL(x||Bw) (10)

and its derivative with respect to wn is given as
d

dwn
KL(w) = bTn (1−

x

x̂
) (11)

Here the division of vectors is calculated entry wise, and x̂
is computed according to (6). The weight of the added atom is
initialized to a small positive value ε0. If the lowest derivative
in (9) is positive, no new atoms are added.

As explained in the next section, the proposed method also
allows removing atoms from the active set. Figure 1 illustrates
the active atoms as the function of the iteration count for the
data that is used in the evaluations in Section VI. Only two
of the ten atoms that were selected in the first 20 iterations
appear in the final, optimal set of active atoms.
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Fig. 2. The value of the KL divergence (higher intensity meaning a smaller
value) as the function of two weights w1 and w2, with the two dictionary
atoms b1 = [1 1]T and b2 = [1 3]T , and the observation vector x = [1 2]T .
The diagonal structure in the figure shows that w.r.t the KL divergence, w1

and w2 are strongly negatively correlated. The figure also shows estimates
of w1 and w2 given by the EM algorithm (circles) and the Newton method
(crosses) for multiple iterations, with both algorithms are initialized at the
point w1 = 0.1, w2 = 0.7.

C. Updating weights

The weights of the atoms in the active set A are updated
by the Newton method, where the step size is chosen so that
the resulting weights are non-negative. The motivation for the
use of the Newton method stems from the observation that
in the overcomplete case, the dictionary atoms are inevitably
correlated with each other. Therefore, the values of the KL
divergence (3) as the function of weights (10) of different
atoms are also correlated. Even in a non-overcomplete case
the KL divergence as the function of the weights is correlated,
as shown by a simple example in Fig. 2.

Existing methods for estimating the weights based on first-
order optimization do not take into account linear dependen-
cies of variables, and therefore require several iterations to
reach the global optimum. On the other hand, the Newton
algorithm is able to reach the optimum fast, provided that
the surface of the function is approximately quadratic near
the optimum. The convergence of a first-order optimization
method (the EM algorithm) and the Newton method is also
illustrated in Fig. 2. Unlike our method, the existing second-
order methods [19]–[21] calculate Hessian matrices for all the
atoms, which becomes infeasible when overcomplete dictio-
naries are used, or calculate the second derivative of only a
single weight [22], [23], which does not allow modeling cross-
correlations between atoms.

The update of the weights proceeds as follows. Let us denote
a dictionary matrix whose columns consists of atoms in the
active set A as BA, and a weight vector which consists of
weights of the active atoms as wA, so that the model (6) can
be written as x̂ = BAwA. The gradient of the KL divergence

(3) with respect to the weight vector wA of active atoms,
computed at wA is given as

∇wA = BT
A(1−

x

x̂
), (12)

and the Hessian matrix with respect to wA, computed at wA
is given by

HwA = BT
A diag(

x

x̂2
) BA. (13)

Here, “diag” denotes a diagonal matrix whose diagonal entries
consists of its argument vector, and x̂2 denotes entry-wise
squaring of vector x̂. The weights are updated as

wA wA − αp, (14)

where α is the step size, and p is the search direction given
as

p = (HwA + εI)−1∇wA (15)

An identity matrix I multiplied by a small constant ε = 10−10

is added to the Hessian matrix before calculating its inverse
to ensure the numerical stability of the inversion.

We calculate the ratio vector r = wA/p by element-wise
division, and obtain the step size parameter α as

α = min
ri>0

ri. (16)

If α is larger than 1, step size α = 1 is used, which corresponds
to the standard Newton algorithm. Estimating the step size as
in (16) ensures that the weights resulting from (14) are non-
negative. If a weight becomes zero as the result of (14), the
corresponding index will be removed from the set of active
bases.

D. Termination

As we will shown in Section IV-A, KL(w) is convex, and
therefore the global optimum satisfies [42, p. 142][

δ

δwi
KL(w)

]
wi = 0 (17)

δ

δwi
KL(w) ≥ 0 (18)

wi ≥ 0. (19)

The algorithm is terminated when all the derivatives in
(11) are larger than predefined threshold εδ , and when the
norm of the gradient in (12) is smaller than threshold ε∇.
As a result, the derivative of the weights in the active set is
zero, and the derivatives of weights not in the active set are
positive. Together these conditions make the algorithm fulfill
the optimality conditions in Eqs. (17) - (19).

E. Summary of the proposed algorithm

The proposed estimation algorithm is iterative, and is sum-
marized as follows.

1: Initialize
2: iteration count = 0
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3: Normalize each dictionary atom to unity norm.
4: Calculate all the weights using (8).
5: Select the first active atom using (7).
6: repeat
7: Update x̂ according to (6)
8: if iteration count mod K = 0 then
9: Calculate the gradient of the KL w.r.t weights that

are not in the active set using (11).
10: If the weight with the smallest derivative is nega-

tive, add the corresponding atom to the active set and set
its weight to ε0.

11: end if
12: Calculate the gradient of the KL divergence w.r.t the

weights of the active set using (12).
13: Calculate the Hessian matrix using (13), the search

direction using (15), and the step size using (16).
14: Update the weights using (14). If a weight becomes

zero, remove the corresponding atom from the active set.
15: Set iteration count = iteration count+ 1
16: until the stopping criteria given in Section III-D are

fulfilled.

IV. ANALYSIS

In this section we show that the weight vector of a non-
negative overcomplete representation is sparse, and that there
is a unique representation x̂ which minimizes the KL diver-
gence between an observation and the model. Additionally,
we analyze the computational complexity of the proposed
algorithm and its ability to process multiple observations.
The conclusions about the sparsity and uniqueness of the
non-negative overcomplete representation also apply to other
divergences that are convex, and the principle of the proposed
algorithm can be applied with other convex divergences.

A. Convexity and Uniqueness

Let us first consider the KL divergence as a function of
x̂ = Bw. It is rather trivial to show that KL(x||x̂) is strictly
convex in x̂, and that the feasible set {x̂ = Bw|w ≥ 0} is
convex. We can now state the following lemma.

Lemma 1. The KL divergence KL(w) ≡ KL(x||Bw) is
convex in w. Moreover, if the columns of B are linearly
independent, KL(w) is strictly convex in w.

The proof of Lemma 1 is presented in Appendix A. As
a consequence of the Lemma, KL(x||x̂) has a unique global
minimum in x̂. Also, for x̂ = BAwA, the divergence, as a
function of wA, has a unique minimum value for any BA. In
addition, if the columns of BA are linearly independent, the
value of wA that reaches this minimum is also unique.

B. Sparsity

In the proposed algorithm we do not constrain the number
of active atoms in any way. However, it turns out that non-
negative overcomplete representations are sparse even without
additional constraints. This is important, as sparsity enables

applications such as sparse coding [8], [9] and has been shown
beneficial in applications such as source separation [3].

Lemma 2. Let w∗ be a weight vector that reaches the global
minimum of KL with L non-zero entries, i.e. ||w∗||0 = L.
Let BA be a matrix whose columns are the atoms which
correspond to the L non-zero entries of w∗, and let w∗A be
the corresponding weight vector which consists of non-zero
entries of w∗. If the columns of BA are linearly dependent,
there always exists a non-negative weight vector w such that
||w||0 < ||w∗A||0 that also achieves the globally optimal error
over BA.

The proof of the lemma is straightforward and given in
Appendix B.

Lemma 3. If the algorithm is allowed to converge for each
A, the active dictionary atoms in A are always linearly
independent.

The proof of the lemma is given in Appendix C. In practice
we only perform K iterations of the Newton update for any
A, rather than letting it run to convergence. Nevertheless, the
set of active atoms generally remains linearly independent.

As a consequence of the above lemmas, the active set
selected by the algorithm will naturally be non-redundant
and therefore sparse even though no active sparsity constraint
is employed (although it may not necessarily arrive at the
optimally sparse active set for a given error). The maximum
number of linearly independent atoms in a dictionary is the
dimensionality F . As a result, it is possible to minimize the
KL divergence with a weight vector having at most F non-zero
weights. The evaluations in Section VI show that in practical
situations the number of non-zero entries is much fewer than
F , demonstrating that this upper bound for the number of
active atoms is rather loose. Explicit sparseness constraints
[43] could be used to find sparser representations that have
either the same or maybe slightly higher divergence.

C. Rate of convergence of algorithms

Active set selection algorithms such as the proposed algo-
rithm can be shown to have linear convergence rates under
explicit conditions of sparsity when the objective functions
have bounded Hessians, i.e. they satisfy quadratic-like condi-
tions of smoothness and convexity [28], [29]. Unfortunately,
the KL divergence does not fall in this category of objective
functions, since its convexity approaches that of first-order
linear functions on the one end and is exponential on the other,
and its second derivatives cannot be bounded. In practice,
however, for any finite dictionary, and for bounded inputs,
the diagonal entries of the Hessian are bounded from above.
Moreover, we add a diagonal term to the Hessian, effectively
applying an additional `2 regularization term to the objective
function. Consequently, the convergence rate can be expected
to be linear as well, although rigorous demonstration of this
is outside the scope of this paper. As will be shown later in
the paper, experimental results confirm this expectation.
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D. Asymptotic complexity of algorithms

The convergence rate of the proposed algorithm is analyzed
using computational simulations in Sections V and VI. In this
section we briefly study the asymptotic complexity of the
proposed method and compare it to the EM algorithm as a
function the number of features F and the size of dictionary
N . Let us first study the computational complexity of each
iteration, and denote the number of atoms in the active set
by A. Computationally the most complex operations of the
proposed algorithm are:
• updating the model in (6): complexity O(FA)
• calculation of the derivative in (11): complexity O(FN)
• calculation of the Hessian matrix in (13): O(AF 2)
• calculation of the inverse of the Hessian matrix in (15):

complexity O(A3)

In the overcomplete case we will have F < N . We have also
shown that A ≤ F , so that the sum of the above operations is
O(FN + A3), which is the complexity of the algorithm per
iteration.

In an experimental evaluation the calculation of the gra-
dient was found to be the most time-consuming operation.
Its asymptotic complexity is fixed per iteration. For a fixed
number of iterations I , we can therefore approximate the
asymptotic complexity of the proposed method as O(IFN).

The reference EM algorithm is composed of matrix-vector
products and element-wise products and divisions of vectors,
and it is easy to see that its most time-consuming operation
is O(FN). Assuming a fixed number of iterations I , its total
complexity is therefore also O(IFN). Since the evaluations
in Section VI show that the proposed method requires much
fewer iterations to converge than the EM algorithm (which,
in fact, does not seem to converge in a finite number of
iterations), the proposed method is much faster. Values of the
above parameters found in previous studies have the following
ranges: F = 5...1000, N = 3...100000, and I = 50...600 (for
the EM algorithm).

E. Processing multiple observations

The algorithm description in Section III was derived for
a single observation vector. In practical usage situations, we
are often interested in deriving the representation for multiple
observation vectors. For example in audio signal processing
applications, an observation vector is calculated from short-
time frames of the signal, and the representation needs to be
calculated for each frame.

The representation is independent for each observation,
meaning that the parameters of one observation are not af-
fected by other observations. If the same dictionary is used for
multiple observations, calculating the representation for all of
them at once is more efficient, since some of the operations
that are matrix-vector products for a single observation can
then be expressed as a matrix-matrix products. These opera-
tions include at least the calculation of the model (6) and the
gradient (12). For example, in the MATLAB implementation
that we used, the use of matrix-matrix products was between
three to ten times faster than repeated matrix-vector products,
depending on the sizes of the matrices. Also the EM algorithm

benefits significantly from parallel processing, since all its
operations can be expressed as matrix products or divisions.

It should be noted that not all the operations of the proposed
method can be easily parallelized. The set of active basis is
separate for each observation, and therefore the Hessian matrix
is different for each frame.

V. EVALUATION SETUP

The proposed method was compared to conventional NMF
algorithms in representing mixtures of speech magnitude spec-
trograms.

A. Acoustic data

As the acoustic data we use the subset of the GRID
corpus [44] that was used as the training set in the Speech
Separation Challenge [45]. The corpus consists of speech from
34 different speakers. There are 500 sentences from each
speaker, and each sentence consists of simple sequences of
six words. The sampling frequency of the signals is 25 kHz.

For evaluation, we generated a test set of 100 signals, each
of which is a mixture of signals from two speakers. Each test
signal is generated by picking two random speakers and a
random sentence from both speakers. The shorter of the two
signals is zero-padded to make their lengths equal. The signals
are scaled to equal root-mean-square levels and summed.

All the data is represented as the short-time magnitude
spectra of the signals, which is the standard representation
for audio content analysis and spectrogram factorization based
source separation. As in [5], we window the signals using
a 60 ms Hanning window with a 15 ms window shift. The
magnitude spectrum of each frame is calculated by taking the
discrete Fourier transform (DFT) and calculating the absolute
value of each entry. The resulting non-negative DFT feature
vector is of length F = 751 for each frame.

B. Dictionaries

In addition to evaluating the convergence of the algorithm,
we evaluated the capability of the representation to separate
sources. Therefore we construct dictionaries so that there is
a separate set of atoms for each speaker. The atoms were
generated for each speaker by clustering the training data
of the speaker, which consists of all the sentences from the
speaker, excluding those sentences that were used to generate
the mixture signals.

For dictionary generation, the magnitude spectra were nor-
malized to sum to unity, since want the dictionaries to be
gain-independent. The spectra were clustered into N clusters
by k-means clustering. In order to make the clustering match
the divergence used in the representation, each spectrum was
assigned to the cluster center that minimizes the divergence
(3) between the spectrum and the cluster center. New cluster
centers were obtained iteratively as the mean of the spectra
assigned to each cluster. A random subset of 30 000 frames
per speaker of the training data was used.

Dictionaries have been previously obtained by clustering
e.g. in [36], [37]. We tested also randomly sampled dic-
tionaries [3], but their source separation performance was
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Fig. 3. The average normalized KL divergence per sentence as the function of the cumulative CPU time.
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Fig. 4. The average normalized KL divergence per sentence as the function of the iteration count.

slightly lower and therefore the evaluation is done with the
clustered dictionaries. Parts-based dictionaries [46] that can
be obtained e.g. with the NMF were not used, since learning
overcomplete parts-based dictionaries would require careful
tuning of additional constraints such as sparsity.

Three different dictionary sizes were evaluated: 50, 500, and
5 000 atoms per speaker. For each of the dictionary sizes, the
clustering of the spectra was done separately. For representing
a test signal, we combine the dictionaries of the speakers in
the test signal to form a single dictionary. This results in
dictionary sizes of 100, 1 000, and 10 000 atoms. Note that
the smallest dictionary is only included for comparison as it
is not overcomplete.

C. Evaluated methods

The proposed ASNA method is compared to two methods
that are available for minimizing the KL divergence with
the non-negativity constraints: EM algorithm and projected
gradient [11, pp. 267-268]. The EM algorithm was briefly
explained in Section II-C. It is initialized with an all-one
weight vector, and consists of repeated use of update equation
(5). As with ASNA, the atoms were normalized to unity

norm for the EM algorithm, which was found to speed up
its convergence.

The projected gradient (PG) method consists of updating
the weight vector towards its negative gradient, and setting
negative weights to zero after each update. The step size was
updated with a variant of the bold driver algorithm [47], so that
the step size was halved until the divergence was decreased,
and after each decrease of the divergence the step size was
increased by 5%. The step size was updated separately for each
frame of the test sentences. The weights of the PG method
were initialized to wi = (xTbi)/(1

Tbi), which was found
to produce faster convergence in comparison to e.g. using the
single-atom initialization of the proposed method.

The evaluation was run on a desktop computer with an
Intel 2-core Duo E8500 3.16GHz processor. Both the tested
methods were implemented using MATLAB version R2010b,
with multi-core processing enabled. A double-precision accu-
racy was used to represent all the variables. The set of active
atoms in the proposed method was implemented using the
sparse matrix datatype, which does not allocates memory for
the whole weight matrix, but only for its non-zero weights
and their indices. A reference implementation of the proposed
method is available at http://www.cs.tut.fi/∼tuomasv.
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For ASNA we used K = 2, meaning that new entries
were added to the set of active atoms every second iteration.
Different values of K were briefly tested on a development
data that was not part of the test material. With K = 1
the proposed method did not converge, but started oscillating.
The reason for this is that after adding a new atom to the
active set, a single weight update is not enough to make the
function to be minimized close enough to quadratic for the
next iterations. With K = 3 the proposed method converged,
but slower than with K = 2 because new atoms were added
to the active set less often. The initial weights of added atoms
were set to ε0 = 10−15 The stopping criteria for ASNA, i.e.,
the threshold of the weight derive for adding new atoms was
set to εδ = −10−15 and the norm of the gradient was set
to ε∇ = 10−15. The above values were chosen based on
experiments with observations and dictionaries not used in the
final experiments. The proposed method was executed until it
converged (according to the criteria in Section III-D). For the
EM and PG algorithms, the maximum number of iterations
was set to 1 000.

VI. EVALUATION METRICS AND RESULTS

We evaluate three different aspects of the algorithms: their
ability to minimize the KL divergence and the used CPU time,
the sparseness of the resulting representation, and the source
separation capability of the representation derived with the
algorithms. The metrics and results are given in the following
subsections.

A. Convergence and CPU time usage

As an evaluation metric for the convergence of the algo-
rithms we use the cumulative KL divergence over all the
frames of each signal, averaged over all the signals in the
test set. All the tested algorithms are deterministic and were
therefore executed only once for each combination of a test
signal and a dictionary size. The total number of frames
(i.e., observation vectors) in all the test signals was 12 973.
Since there were multiple dictionaries involved (a separate
dictionary for each speaker) and the divergence is calculated
over a large number of frames, only a single random draw of
the dictionaries was used instead of repeating the experiment
multiple times.

The minimum KL divergence achievable is different for
each dictionary. In order to make the results with different
dictionary sizes comparable with each other, we normalize
the results by subtracting the globally minimal KL divergence
for each particular dictionary that was used — which is the
KL divergence for the proposed method after it has converged.
This is dubbed the “normalized KL divergence”.

The average normalized KL divergence as the function
of cumulative CPU time for different dictionary sizes is
illustrated in Fig. 3. The projected gradient method is in all
the cases worse than the other two methods, so we focus
on comparing the proposed ASNA method with the EM
algorithm. When a large enough CPU time is used, ASNA
is able to reach significantly lower values of the normalized
KL divergence in comparison to the EM algorithm for all
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Fig. 5. The average number iterations required for the proposed algorithm
to converge (upper panel), the average CPU time per sentence required to
converge (middle panel), and the average number of non-zero weights in the
optimal solution (bottom panel) as the function of the dictionary size. The
vertical bars denote 95% confidence intervals of the averages.

dictionary sizes. For dictionary sizes 1 000 and 10 000, ASNA
always achieves lower divergences for the same cumulative
CPU times. Only for dictionary size 100 and a CPU time
less than 1.5 seconds, the EM algorithm performs better than
ASNA. The 100-atom dictionary is non-overcomplete and
therefore not a target of this paper, but in this case the good
relative performance of the EM algorithm in comparison to
ASNA can be attributed to the ratio of active atoms and
the dictionary size being higher, which is higher for smaller
dictionaries (as will be shown later).

Even though the convergence of the EM algorithm is fast
in the beginning, for all the dictionary sizes its asymptotic
performance is much slower than that of the proposed method.
In the case of the 10 000-atom dictionary, ASNA is able
to reach the lowest value of the normalized KL divergence
obtained with the EM algorithm approximately eight times
faster than the EM algorithm. All the tested methods decrease
the value of the normalized KL divergence monotonically. It
can be observed that the ASNA decreases the KL-divergence
step-wise (visible at least for dictionary size 100). This is
caused by the addition of new atoms to the active set every
second iteration, after which the first Newton update decreases
the divergence more than those iterations where new atoms are
not added to the active set.
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Fig. 6. The average number of non-zero atoms per each frame as the function of the iteration count.

Figure 4 shows the average normalized KL divergence
as the function of the iteration count. We can observe that
the rate of convergence of ASNA is approximately linear.
In general, Newton methods converge quadratically, if the
function to be minimized is approximately quadratic near
the global minimum. In the proposed method, however, the
convergence is not quadratic since new atoms are added to the
active set every second iteration. Once the dictionary is fixed,
the algorithm finds the global optimum in a few iterations. This
final convergence behavior is not properly visible in Figure 4,
since the iteration where the optimum is reached is different
for each test frame.

The two top panels of Fig. 5 illustrate the average number of
iterations required for ASNA to converge and the average CPU
time required to converge. Even though the number of different
combinations of active atom vectors increases exponentially
with the dictionary size, the upper panel of the figure shows
that ASNA is able to find the optimal set of active bases in
a rather small number of iterations. Moreover, the number
of iterations increases only sublinearly as the function of the
dictionary size. While the number of samples may be too
limited to draw definite conclusions, these results indicate that
the number of iterations required to converge is approximately
linearly dependent on the logarithm of the dictionary size.

The relationship between the CPU time and the dictionary
size is approximately linear on a logarithmic scale. The slope
of the line, however, is smaller than one, which shows that
the computation time grows sublinearly as the function of
the dictionary size. Based on the analysis in Section IV-D
the calculation of the weight derivative is linearly dependent
on the dictionary size. Therefore the sublinearity originates
from the number of iterations, which grows sublinearly as the
function of the dictionary size. The average amount of CPU
time required for the ASNA to converge was 16, 67, and 563
milliseconds per frame for dictionary sizes 100, 1 000, and 10
000, respectively.

B. Sparseness

The bottom panel of Fig. 5 illustrates the average number
of non-zero weights in the optimal solution as the function

of the dictionary size. Since the dictionary atoms are linearly
independent (B is full rank) and the dimensionality of the
atoms F = 751, the theoretical limits for the number of non-
zero weights derived in Section IV-B in the case of 100, 1
000, and 10 000 atom dictionaries are 100, 751, and 751,
respectively. We can observe that the average number of non-
zero weights for each dictionary size is approximately linear
as a function of the logarithm of the dictionary size, and that
the obtained number of non-zero weights is much smaller than
the derived theoretical limits: 9, 18 and 41 atoms for the 100,
1 000, and 10 000 atom dictionaries, respectively.

Figure 6 illustrated the average number of non-zero weights
as the function of the iteration count for the tested methods. In
the case of the EM algorithm the weights do not necessarily
become exactly zero, and therefore values below 10−15 were
considered to be zero. All the methods converge towards
the same value. For ASNA this happens by increasing the
number of active atoms, whereas for EM and PG it happens
by decreasing the number of atoms. The figure shows that EM
is very inefficient in producing exact zeros, even when a large
number of iterations is used.

In order to test how the complexity of the acoustic material
affects the sparseness of the representation, we created also
random mixtures of one to ten speakers. The mixture signals
and the dictionaries were generated in the same manner as
the mixtures described in Section V for two speakers. 100
mixtures per each number of speakers were used. Two different
types of dictionaries were tested: 1) dictionaries with 500
atoms per speaker, and 2) dictionaries where the total number
of atoms was 500, i.e., the atoms per each speaker was 500
divided by the number of speakers.

Figure 7 illustrates the average number of active atoms as
the function of the number of speakers for the two different
dictionary types. In the case of the 500-atom dictionary, the
number of active atoms increases slightly as the number of
speakers increases. However, increases is less than 50% when
switching from one-speaker signals to ten-speaker mixtures.
When 500 atoms per speaker are used, the number of atoms
increases sublinearly as the function of the number of speakers.
However, most of this increase can be attributed to the increase
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Fig. 7. The average number of active atoms as the function of the number
of speakers.

of the dictionary size, and actually the relative amount of active
atoms increases as the number of speakers increases.

C. Source separation performance

We are also interested how the non-negative representations
obtained by the proposed algorithm affect the performance on
real applications. Source separation [33], [48], the process of
estimating the individual source signals that make up a mix-
ture, is one of the most commonly used applications of non-
negative representations. The majority of the existing source
separation algorithms based on non-negative representations
use the EM algorithm for estimating the model parameters
[2]–[7], [15], [17], [18], [34], [38], and only the way the
dictionaries are constructed or the atoms are represented differ.
ASNA gives solutions identical to the EM algorithm (provided
that they are run for enough iterations), and can therefore
replace the EM algorithm in source separation systems that
use a fixed dictionary, to give a faster convergence.

The source separation performance was evaluated using the
two-speaker mixtures described above. Since the dictionaries
used to represent the mixture signal consists of two sets of
speaker-specific atoms, we can use the representations derived
in the previous section to do source separation. By denoting the
sets of atoms for speaker 1 and 2 by A1 and A2, respectively,
we design frequency-domain filter vectors hi for source i ∈
1, 2 as

hi =

∑
n∈Ai

wnbn∑
n∈(A1∪A2)

wnbn

The complex spectrogram of source i is then obtained by
point-wise multiplying the magnitude DFT spectrum of the
mixture signal and the above filter, and copying the phases
from the mixture spectrum. A time-domain signal in the
frame is obtained by inverse discrete Fourier transform, and
the frames are combined by the weighted overlap add [49,
Chapter: Overlap-Add STFT Processing].

We evaluate the quality of the separated signals by calculat-
ing the signal-to-distortion ratio (SDR) between the separated
signal ŝ(t) and the original source signal s(t) before mixing.
The SDR in dB is obtained as

SDRdB = 10 log 10

∑
t s(t)

2∑
t(s(t)− ŝ(t))2

.
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Fig. 8. The average signal-to-distortion ratio for separated sources as
the function of cumulative CPU time per sentence. The results are shown
separately for each dictionary size.E

The SDRs over both the mixed speakers and all the test cases
are averaged.

The average SDRs for the proposed ASNA method and the
EM algorithm for different dictionary sizes as the function of
the used CPU time are illustrated in Fig. 8. PG reached high
SDRs slower than the other two methods, and is not included
in the figure in order to retain its clarity. Since the SDRs of the
mixtures are 0 dB, it is clear that both the tested algorithms are
able to significantly improve the SDR, and that increasing the
dictionary size increases the source separation performance.
For a specific dictionary size, both the methods saturate to
equal SDRs. While for the smaller dictionaries, ASNA does
not perform significantly better than the EM algorithm, for the
largest dictionary (10 000 atoms) ASNA reaches the highest
SDR much faster than the EM algorithm. Since ASNA requires
a few iterations to add a sufficient number of atoms to the
active set, it gives poor performance if less than 2 seconds of
processing time is used with the largest dictionary.

Even though ASNA converges to lower KL-divergences,
this does not seem to translate to higher SDRs. This is
most likely because the separation problem here is rather
simple; there are only two sources, and finding the exact
optimum is not needed. However, being able to reach lower KL
divergences has been found beneficial in other applications of
non-negative overcomplete representations where the problem
to be solved involves estimating more than two factors. For
example, when the weights are used to estimate likelihoods
for a large number of states, achieving lower KL-divergences
by increasing the number of EM algorithm iterations from 200
to 600 was found to give a significant improvement [50].

VII. CONCLUSIONS

This paper has proposed an efficient algorithm, ASNA, for
estimating the weights of a non-negative overcomplete repre-



11

sentation, where an observation is modeled as the weighted
sum of atoms in a dictionary. The criterion for estimating
the weights is the minimization of the Kullback-Leibler di-
vergence, which is more appropriate for audio than e.g. the
Euclidean distance. ASNA is based on updating an active set
of atoms iteratively, and estimating the weights of atoms in
the active set by the Newton method, where the step size is
estimated to retain the non-negativity of the weights.

The performance of ASNA was compared to the state-of-
the-art EM algorithm and projected gradient. We show that in
representing magnitude spectra of audio signals, ASNA is able
to reach lower values of the KL divergence in comparison to
the reference methods. On large dictionaries the atom weights
produced by ASNA always lead to lower KL divergences than
the other methods. Moreover, on large dictionaries, ASNA is
able to reach the lowest KL divergence values attainable by
the EM algorithm approximately eight times faster. We show
that the non-negative overcomplete representations are sparse,
meaning that only a minority of the weights are non-zero. We
also show that ASNA is able to find the optimal set of non-
zeros atoms in a relatively small number of iterations.

The evaluation on audio source separation shows that larger
dictionaries lead to better separation, and ASNA reaches the
highest attainable separation quality with the least computation
time.

Regarding future work it should be noted that the most time-
consuming part of the proposed algorithm is the calculation
of the derivative of the KL divergence with respect to all the
weights, which is required to find a new atom to add to the
active set. Future work therefore includes the development of
methods which calculate these derivatives only for a subset of
the atoms at each iteration, for example by first clustering the
dictionary as in [37].

The proposed method uses the basic Newton method, which
explicitly calculates the inverse of the Hessian matrix. Another
way to speed up the algorithm would be to use quasi-Newton
methods, which avoid the calculation of the Hessian or its
inverse.

The tested method uses a fixed value K = 2. The first
iterations where the cost function is locally less quadratic are
likely to require two Newton steps to update the weight, but
it may be possible to develop strategies where K is adapted
depending on the shape of the cost function, or even where
multiple new atoms are added at once.

Finally, even though we showed that the non-negativity
constraints alone lead to sparse representations, including ex-
plicit sparseness constraints may provide advantages in some
applications. If the constraints are differentiable, it will be
possible to include them by simply changing the gradients
and Hessian matrices used in ASNA.

APPENDIX A
CONVEXITY OF THE KL DIVERGENCE

We will employ the following definition of convexity: a
function f(x) is convex in x if f(x)−f(x1) ≥ ∇xf(x)

T (x−
x1) for any x and x1. If the left hand side of this inequality is
strictly greater than the right hand side, the function is strictly
convex and has a unique minimum in x.

We have x̂ = Bw. We can write the KL divergence
KL(w) ≡ KL(x|Bw) as follows:

KL(w) = xT log
x

Bw
− 1Tx+ 1TBw

where the division and the logarithm of vectors is component
wise. We also note that

∇wKL(w) = BT (1− x

Bw
) (20)

Let us now consider KL(w)−KL(w1).

KL(w)−KL(w1) = xT log
Bw1

Bw
+ 1TB(w −w1)

≥ xT (1− Bw

Bw1
) + 1TB(w −w1)

= ∇wKL(w1)
T (w −w1) (21)

giving us the desired relation for convexity.
In the above proof, we have invoked the relation − log(x) ≥

1− x, with equality occurring at x = 1. Correspondingly, the
only condition under which the left hand side of Equation
(21) equals the right hand side is when there exist w and w1

such that Bw = Bw1 ⇒ B(w − w1) = 0, implying that
the columns of B are linearly dependent. Conversely too, if
the columns of B are linearly dependent, the two sides of
the equation are equal for every pair of w and w1 whose
difference lies in the null-space of B.

Thus, the KL divergence is convex in w, and, further, is
strictly convex if the columns of B are linearly independent.

APPENDIX B
DENSITY OF OPTIMAL WEIGHT VECTOR OVER LINEARLY

DEPENDENT SETS OF ATOMS

BA ∈ RF×L+ is a matrix composed of L (F -dimensional)
atoms, and w∗A is non-negative vector such that ||w∗A||0 = L
which achieves minimum divergence in composing an obser-
vation vector x with BA. In other words, if we define

x̂∗ = BAw
∗
A (22)

then
x̂∗ = min

x̂=Bw|w≥0
KL(x||x̂).

If the columns of BA are linearly dependent, there exists
a non-zero vector z so that BAz = 0. Let vector r = BA/z,
where the division is entry-wise. Without affecting our discus-
sion, we will assume that division by 0 results in ∞. Let ri
be the ith component of r.

We can define a variable α as:

α = min
ri>0

ri

We can now construct a vector w = w∗A−αz such that w ≥ 0,
and x̂∗ = BAw. By construction, w has at most L− 1 non-
zero entries, i.e. |w|0 ≤ L − 1. In other words, w is a non-
negative vector that also results in the optimal estimate (since
BAw = x̂∗) and has fewer non-zero entries than w∗A. Also,
by recursively applying the same construction, we can see that
if the rank of BA is R, the sparsest optimal weight vector
that we can obtain has no more than R non-zero entries, i.e.
|w|0 ≤ R.
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APPENDIX C
LINEAR INDEPENDENCE OF EXPANDED ACTIVE SET

Let BA be a matrix composed from the current active set of
atoms drawn from B. Further, let all the columns of BA be
linearly independent. Let w∗A be the unique optimal weight
vector wA that minimizes KL(x||BAwA), and let x̂∗A =
BAw

∗
A. Since the columns of BA are linearly independent

and the solution w∗A is unique, the gradient ∇wA = 0 at x̂∗A.
Let bj be any atom from B that is not in BA and which can

be expressed as a linear combination of the atoms in BA, i.e.
bj = BAz for some some non-zero vector z. Let wj be the
weight assigned to bj in the composition of x. The derivative
of KL(w) with respect to wj at x̂∗A is given by zT∇wA = 0.
Consequently, bj will not be chosen in the update step of the
solution.

The rest of the proof follows by construction: at the ini-
tialization of the algorithm BA consists of only one atom.
Subsequent increments of the active set only add newer
atoms that are linearly independent of the current set, thereby
maintaining linear independence of the atoms in the set.
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