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ABSTRACT
In this article we consider the partitioned linear model M12 ¼
fy, X1b1 þ X2b2, Vg and the corresponding small model M1 ¼
fy, X1b1, Vg: We focus on comparing the best linear unbiased esti-
mators, BLUEs, of X1b1 under M12 and M1: In other words, we are
interested in the effect of adding regressors on the BLUEs. Particular
attention is paid on the consistency of the model, that is, whether
the realized value of the response vector y belongs to the column
space of ðX1 : VÞ or ðX1 : X2 : VÞ:
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1. Introduction

In this article we consider the partitioned linear model y ¼ X1b1 þ X2b2 þ e and so-
called small model (submodel) y ¼ X1b1 þ e, or shortly

M12 ¼ fy, Xb, Vg ¼ fy, X1b1 þ X2b2, Vg, M1 ¼ fy, X1b1, Vg:
Here y is an n-dimensional observable response variable, and e is an unobservable ran-
dom error with a known covariance matrix covðeÞ ¼ V ¼ covðyÞ and expectation
EðeÞ ¼ 0: The matrix X is a known n� p matrix, that is, X 2 R

n�p, partitioned column-

wise as X ¼ ðX1 : X2Þ, Xi 2 R
n�pi , i ¼ 1, 2: Vector b ¼ ðb01, b02Þ0 2 R

p is a vector of
fixed (but unknown) parameters; symbol 0 stands for the transpose.

As for notation, rðAÞ, A�, Aþ, CðAÞ, NðAÞ, and CðAÞ?, denote, respectively, the
rank, a generalized inverse, the (unique) Moore–Penrose inverse, the column space, the
null space, and the orthogonal complement of the column space of the matrix A. By

A? we denote any matrix satisfying CðA?Þ ¼ CðAÞ?: Furthermore, we will write PA ¼
PCðAÞ ¼ AAþ ¼ AðA0AÞ�A0 to denote the orthogonal projector onto CðAÞ: The orthog-

onal projector onto CðAÞ? is denoted as QA ¼ Ia � PA, where Ia is the a� a identity
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matrix and a is the number of rows of A. We write shortly

M ¼ In � PX, Mi ¼ In � PXi , i ¼ 1, 2:

One obvious choice for X? is M.
When using generalized inverses it is essential to know whether the expressions are

independent of the choice of the generalized inverses involved. The following lemma
gives an important invariance condition; cf. Rao and Mitra (1971, Lemma 2.2.4)

Lemma 1.1. For nonnull matrices A and C the following holds:

AB�C ¼ ABþC for all B� () CðCÞ � CðBÞ & CðA0Þ � CðB0Þ:
For a given linear model M ¼ fy,Xb,Vg, let the set WðMÞ of nonnegative definite

matrices be defined as

WðMÞ ¼ fW 2 R
n�n : W ¼ Vþ XUU0X0, CðWÞ ¼ CðX : VÞg: (1.1)

In (1.1), U can be any matrix comprising p rows as long as CðWÞ ¼ CðX : VÞ is satis-
fied. Lemma 1.2 collects together some important properties of the class WðMÞ; see,
for example, Puntanen, Styan, and Isotalo (2011, Prop. 12.1 and 15.2).

Lemma 1.2. Consider the model M ¼ fy,Xb,Vg and let W ¼ Vþ XUU0X0 2 WðMÞ.
Then

G12 ¼ XðX0W�XÞ�X0Wþ ¼ PW � VMðMVMÞ�MPW

¼ PW � VMðMVMÞþ ¼ PW � VMðMVMÞþM:
(1.2)

Moreover, the following statements are equivalent:

(a) CðX : VÞ ¼ CðWÞ,
(b) CðXÞ � CðWÞ,
(c) X0W�X is invariant for any choice of W�,
(d) CðX0W�XÞ ¼ CðX0Þ for any choice of W�,
(e) XðX0W�XÞ�X0W�X ¼ X for any choices of W� and ðX0W�XÞ�:
It is noteworthy that the matrix G12 in (1.2) is invariant for the choice of the general-

ized inverses denoted as “�”, and it is independent of any choice of W 2 WðMÞ:
Notice also that the invariance properties in (d) and (e) in Lemma 1.2 are valid for all
choices of W 2 WðMÞ: It is clear that V 2 WðMÞ if and only if CðXÞ � CðVÞ:
In Lemma 1.2, the matrix W is nonnegative definite, denoted as W�L0: A corre-

sponding version of Lemma 1.2 can be presented for W ¼ Vþ XTX0 which may not be
symmetric but satisfies CðX : VÞ ¼ CðWÞ:
Corresponding to (1.1), we will say that Wi 2 WðMiÞ if there exist Ui such that

Wi ¼ Vþ XiUiU
0
iX

0
i, CðWiÞ ¼ CðXi : VÞ, i ¼ 1, 2: (1.3)

For the partitioned linear model M12 we will say that W 2 WðM12Þ if
W ¼ Vþ X1U1U

0
1X

0
1 þ X2U2U

0
2X

0
2,

where U1 and U2 are defined as in (1.3). For our considerations the actual choice of U1

and U2 does not matter as long as they satisfy (1.3).
By the consistency of the model M it is meant that y lies in CðX : VÞ with probabil-

ity 1. Hence we assume that under the consistent model M the observed numerical
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value of y satisfies

y 2 CðX : VÞ ¼ CðX : VMÞ ¼ CðXÞ � CðVMÞ ¼ CðXÞ⊞CðMVÞ,
where “�” refers to the direct sum and “⊞ ” refers to the direct sum of orthogonal sub-
spaces. For the equality CðX : VÞ ¼ CðX : VMÞ, see Rao (1974, Lemma 2.1).
For parts (a) and (b) of Lemma 1.3, see, for example, Puntanen, Styan, and Isotalo

(2011, Th. 8). and for part (c), see the rank rule of the matrix product of Marsaglia and
Styan (1974, Cor. 6.2). Claim (d) is straightforward to confirm.

Lemma 1.3. Consider X ¼ ðX1 : X2Þ and let M2 ¼ In � PX2 . Then

(a) CðX1 : X2Þ ¼ CðX1 : M1X2Þ,
(b) M ¼ In � PðX1:X2Þ ¼ In � ðPX2 þ PM2X1Þ ¼ M2QM2X1

¼ QM2X1
M2,

(c) rðM2X1Þ ¼ rðX1Þ � dimCðX1Þ \ CðX2Þ,
(d) CðX2Þ � CðX1 : VÞ () CðM1X2Þ � CðM1VÞ:

For Lemma 1.4, see, for example, Puntanen, Styan, and Isotalo (2011, p. 152).

Lemma 1.4. For conformable matrices A and B the following three statements are
equivalent:

ðaÞ PA � PB is an orth: projector, ðbÞ PA � PB�L0, ðcÞ CðBÞ � CðAÞ:
If any of the above conditions holds then

PA � PB ¼ PCðAÞ\CðBÞ? ¼ PðI�PBÞA:

Let A and B be arbitrary m� n matrices. Then, in the consistent linear model M,
the estimators Ay and By are said to be equal (with probability 1) if

Ay ¼ By for all y 2 CðX : VÞ ¼ CðX : VMÞ ¼ CðWÞ, (1.4)

where W 2 WðMÞ: Thus, if A and B satisfy (1.4), then A� B ¼ CQW for some matrix
C. It is crucial to notice that in (1.4) we are dealing with the “statistical” equality of the
estimators Ay and By: In (1.4) y refers to a vector in R

n: Thus we do not make any
notational difference between a random vector and its observed value.
According to the well-known fundamental BLUE-equation, see Lemma 2.1 in Section

2, Ay is the BLUE of Xb if and only if

AðX : VMÞ ¼ ðX : 0Þ:
Obviously ðAþ NQWÞy is another representation of BLUE for any n� n matrix N.
However, the equality

Ay ¼ ðAþNQWÞy for all y 2 CðWÞ
holds when the model is consistent in the sense that y 2 CðWÞ: The properties of the
BLUE deserve particular attention when CðX : VÞ ¼ R

n does not hold: then there is an
infinite number of multipliers B such that By is BLUE but for all such multipliers the
vector By itself is unique once the response y has been observed. The case of two linear
models, Bi ¼ fy,Xb,Vig, i ¼ 1, 2, is extensively studied by Mitra and Moore (1973).
They ask, for example, when is a specific linear representation of the BLUE of l ¼ Xb
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under B1 also a BLUE under B2, and when is the BLUE of l ¼ Xb under B1 irre-
spective of the linear representation used in its expression, also a BLUE under B2:

The purpose of this paper is to consider the models M1 and M12 in the spirit of
Mitra and Moore (1973). We pick up particular fixed representations for the BLUE s of
l1 ¼ X1b1 under these two models, say G1y and G1#y, and study the conditions under
which they are equal for all values of y 2 CðX1 : X2 : VÞ or y 2 CðX1 : VÞ, that is,

G1W1 ¼ G1#W1, or G1W ¼ G1#W: (1.5)

Moreover, we review the conditions under which (1.5) holds for all representations of
the BLUE s, not only for fixed G1 and G1#: Some related considerations were made by
Haslett, Markiewicz, and Puntanen (2020) when these models are supplemented with
the new unobservable random vector y�, coming from y� ¼ Kb1 þ e�, where the
covariance matrix of y� is known as well as the cross-covariance matrix between y�
and y.
The well-known (or pretty well-known) results are given as Lemmas, while the new

(or at least not so well-known) results are represented as Propositions.

2. The fundamental BLUE equations

A linear statistic By is said to be linear unbiased estimator, LUE, for the parametric
function Kb in M12 if its expectation is equal to Kb, which happens if and only if
K0 ¼ X0B0; in this case Kb is said to be estimable. The LUE By is the best linear
unbiased estimator, BLUE, of estimable Kb if By has the smallest covariance matrix in
the L€owner sense among all LUEs of Kb :

covðByÞ �L covðB#yÞ for all B# : B#X ¼ K:

It is well known that l1 ¼ X1b1 is estimable under M12 if and only if

CðX1Þ \ CðX2Þ ¼ f0g, i:e:, rðM2X1Þ ¼ rðX1Þ:
For Lemma 2.1, characterizing the BLUE, see, for example, Rao (1973, p. 282).

Lemma 2.1. Consider the model M12 where g ¼ Kb is estimable. Then

(a) Ay ¼ BLUEðXbÞ () AðX : VMÞ ¼ ðX : 0Þ, that is, A 2 fPljM12
g,

(b) By ¼ BLUEðKbÞ () BðX : VMÞ ¼ ðK : 0Þ, that is, B 2 fPgjM12
g:

In particular, if l1 ¼ X1b1 is estimable,
(c) Cy ¼ BLUEðl1Þ () CðX1 : X2 : VMÞ ¼ ðX1 : 0 : 0Þ, that is, C 2 fPl1jM12

g:

Of course, under the model M1 we have

Dy ¼ BLUEðl1Þ () DðX1 : VM1Þ ¼ ðX1 : 0Þ, i:e:, D 2 fPl1jM1
g:

To indicate that A 2 fPljM12
g we will also use notations

Ay ¼ ~lðM12Þ ¼ BLUEðXb j M12Þ, Ay 2 fBLUEðXb j M12Þg:
Using Lemma 1.2 we can obtain, for example, the following well-known solution to A
in Lemma 2.1:

XðX0W�XÞ�X0W� 2 fPljM12
g,
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where W 2 WðM12Þ and we can freely choose the generalized inverses involved.
Expression XðX0W�X0Þ�X0W� is not necessarily unique with respect to the choice of
W� but by Lemma 1.2, the matrix

G12 ¼ XðX0W�X0Þ�X0Wþ ¼ PW � VMðMVMÞ�MPW

is unique whatever choices of W� and ðX0W�X0Þ� we have and moreover, G12 does
not depend on the choice of W 2 WðM12Þ: The general solution for A in Lemma 2.1,
can be expressed, for example, as

G0 ¼ G12 þ NQW, where N 2 R
n�n is free to vary,

and QW ¼ In � PW: Thus the solution for A (as well as for B and C) in Lemma 2.1 is
unique if and only if CðX : VÞ ¼ R

n:

Consider then the estimation of l1 ¼ X1b1 under M12 assuming that l1 is estimable.
Premultiplying the model M12 by M2 yields the reduced model

M12	2 ¼ fM2y, M2X1b1, M2VM2g:
Now the well-known Frisch–Waugh–Lovell theorem, see, for example, Groß and
Puntanen (2000, Sec. 6), states that the BLUE s of l1 under M12 and M12	2 coincide.
To obtain an explicit expression for the BLUE of M2X1b1 under M12	2 we need a W-
matrix in M12	2: Now any matrix of the form

M2VM2 þM2X1T1T
0
1X

0
1M2 ¼ M2ðVþ X1T1T

0
1X

0
1ÞM2

satisfying

C M2ðV : X1T1Þ½ 
 ¼ C M2ðV : X1Þ½ 
 ¼ CðM2W1Þ, (2.1)

is a W-matrix in M12	2: Choosing T1 ¼ U1 as in (1.3) we have

M2WM2 ¼ M2W1M2 2 WðM12	2Þ:
Thus the BLUE of M2X1b1 under M12	2 can be expressed as

BLUEðM2X1b1 j M12	2Þ ¼ M2X1ðX0
1
_M2X1Þ�X0

1
_M2y,

where _M2 ¼ M2ðM2W1M2Þ�M2:

We observe that (2.1) holds for T1 ¼ 0 if and only if CðM2X1Þ � CðM2VÞ, that is,
see part (d) of Lemma 1.3,

CðX1Þ � CðX2 : VÞ: (2.2)

Our conclusion: If (2.2) holds, then the BLUE of M2X1b1 under M12	2 can be expressed
as

BLUEðM2X1b1 j M12	2Þ ¼ M2X1ðX0
1
_M2VX1Þ�X0

1
_M2Vy, (2.3)

where _M2V ¼ M2ðM2VM2Þ�M2: Actually, it can be shown that (2.2) is also a necessary
condition for (2.3). It is obvious that under the estimability of l1 we have

BLUEðl1 j M12	2Þ ¼ BLUEðl1 j M12Þ ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2y, (2.4a)

BLUEðl2 j M12	1Þ ¼ BLUEðl2 j M12Þ ¼ X2ðX0
2
_M1X2Þ�X0

2
_M1y, (2.4b)

where _Mi ¼ MiðMiWMiÞ�Mi, i ¼ 1, 2:
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An alternative expression for the BLUE of l1 can be obtained by premultiplying the
fundamental BLUE-equation

XðX0W�XÞ�X0W�ðX1 : X2 : VMÞ ¼ ðX1 : X2 : 0Þ
by M2, yielding

ðM2X1 : 0ÞðX0W�XÞ�X0W�ðX1 : X2 : VMÞ ¼ ðM2X1 : 0 : 0Þ: (2.5)

Because rðM2X1Þ ¼ rðX1Þ, we can, by the rank cancelation rule of Marsaglia and Styan
(1974), cancel M2 in (2.5) and thus an alternative expression for (2.4a) is

~l1ðM12Þ ¼ ðX1 : 0ÞðX0W�XÞ�X0W�y:

Now we should pay attention to numerous generalized inverses appearing in the rep-
resentations of the BLUEs. Namely, when the observable response y belongs to a
“correct” subspace of Rn, then there is no problem with the generalized inverses. In the
next section we will consider particular unique representations of the multipliers of y
and study the equality of the relevant estimators taking the space where y belongs
into account.

3. Some useful matrix results

Let us denote

G1# ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2, D1# ¼ ðX1 : 0ÞðX0W�XÞ�X0Wþ,

G2# ¼ X2ðX0
2
_M1X2Þ�X0

2
_M1, D2# ¼ ð0 : X2ÞðX0W�XÞ�X0Wþ,

where _M1 and _M2 are now unique (once W is given) matrices defined as

_M1 ¼ M1ðM1WM1ÞþM1 ¼ M1ðM1W2M1ÞþM1,

_M2 ¼ M2ðM2WM2ÞþM2 ¼ M2ðM2W1M2ÞþM2:

It is noteworthy that the following types of equalities hold:

M1ðM1WM1ÞþM1 ¼ M1ðM1WM1Þþ ¼ ðM1WM1Þþ:
Now under the estimability of l1 ¼ X1b1 we have

~l1ðM12Þ ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2y ¼ ðX1 : 0ÞðX0W�XÞ�X0Wþy,

~l2ðM12Þ ¼ X2ðX0
2
_M1X2Þ�X0

2
_M1y ¼ ð0 : X2ÞðX0W�XÞ�X0Wþy,

and

~lðM12Þ ¼ ðG1# þG2#Þy ¼ ðD1# þD2#Þy for all y 2 CðWÞ:
Because G1# and D1# belong to fPl1jM12

g, they satisfy the equation

G1#W ¼ D1#W: (3.3)

Next we show that we also have

G1#QW ¼ D1#QW: (3.4)

We immediately observe that D1#QW ¼ 0 and what remains is to show that G1#QW ¼
0: Now the equation
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G1#QW ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2QW ¼ 0

holds if and only if

X0
1
_M2QW ¼ 0, i:e:, Cð _M2X1Þ � CðWÞ: (3.5)

Clearly (3.5) holds because

Cð _M2X1Þ � Cð _M2Þ ¼ C ðM2W1M2Þþ
� �

¼ CðM2W1Þ � CðWÞ,
where the last inclusion follows from

CðX1 : X2 : VÞ ¼ C X2 : M2ðX1 : VÞ½ 
 ¼ CðX2 : M2W1Þ:
Combining (3.3) and (3.4) gives the following result.

Proposition 3.1. Assume that l1 is estimable under M12. Then

G1# ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2 ¼ ðX1 : 0ÞðX0W�XÞ�X0Wþ ¼ D1#, (3.6)

where _M2 ¼ M2ðM2W1M2ÞþM2: Moreover, the expressions in (3.6) are invariant for any
choices of generalized inverses ðX0

1
_M2X1Þ�, W�, and ðX0W�XÞ� as well as for the choice

of W 2 WðM12Þ: Corresponding equality holds between G2# and D2#: Moreover,

G12 ¼ XðX0W�X0Þ�X0Wþ ¼ G1# þ G2# ¼ D1# þD2#:

We will also need the following proposition.

Proposition 3.2. Denote

G1# ¼ X1ðX0
1
_M2X1Þ�X0

1
_M2,

where _M2 ¼ M2ðM2W1M2ÞþM2: Then

(a) CðX0
1
_M2WÞ ¼ CðX0

1
_M2X1Þ ¼ CðX0

1M2Þ,
(b) rðW1 _M2X1Þ ¼ rðW _M2X1Þ ¼ rðX0

1
_M2X1Þ ¼ rðM2X1Þ,

(c) CðWG0
1#Þ ¼ C½W _M2X1ðX0

1
_M2X1Þ�X0

1
 ¼ CðW _M2X1Þ,
(d) CðG1#WÞ ¼ CðX1

0M2Þ:
In particular, when l1 is estimable under M12, we have

(e) CðX0
1
_M2WÞ ¼ CðX0

1
_M2X1Þ ¼ CðG1#WÞ ¼ CðX0

1Þ:

Proof. Property (b) comes from the following:

rðM2X1Þ � rðW1 _M2X1Þ ¼ r W1M2ðM2W1M2Þ�M2X1½ 

� r M2W1M2ðM2W1M2Þ�M2X1½ 

¼ rðM2X1Þ:

(3.7)

The last equality in (3.7) follows from the fact that CðM2X1Þ � CðM2W1Þ: The other
statements can be confirmed in the corresponding way. w

Proposition 3.3 appears to be useful for our BLUE-considerations and it also

provides some interesting linear algebraic matrix results. By A1=2 we refer to the non-

negative definite square root of a nonnegative definite matrix A and Aþ1=2 ¼ ðA1=2Þþ so

that A1=2Aþ1=2 ¼ PA:

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



Proposition 3.3. The following five statements hold:

(a) CðWþXÞ? ¼ CðWM : QWÞ ¼ CðVM : QWÞ,
(b) CðWþ

1 X1Þ? ¼ CðW1M1 : QW1
Þ ¼ CðVM1 : QW1

Þ,
(c) PW1=2M2

¼ PW � PWþ1=2X2
,

(d) PW _M2PW ¼ Wþ �WþX2ðX0
2W

þX2Þ�X0
2W

þ,

(e) W _M2X1 ¼ W1 _M2X1 ¼ ½In � X2ðX0
2W

þX2Þ�X0
2W

þ
X1:

The following three statements are equivalent:

(f) rðX2Þ ¼ dimCðW1Þ \ CðX2Þ þ dimCðW1Þ? \ CðX2Þ,
(g) rðW1Þ ¼ rðW1M2Þ þ rðW1X2Þ,
(h) P

W1=2
1 M2

¼ PW1 � P
Wþ1=2

1 X2
:

If any of the conditions (f)–(h) holds, then

(i) PW1
_M2PW1 ¼ Wþ

1 �Wþ
1 X2ðX0

2W
þ
1 X2Þ�X0

2W
þ
1 ,

(j) W _M2X1 ¼ W1 _M2X1 ¼ ½PW1 � PW1X2ðX0
2W

þ
1 X2Þ�X0

2W
þ
1 
X1:

If CðX2Þ � CðW1Þ, then
(k) W _M2X1 ¼ W1 _M2X1 ¼ ½In � X2ðX0

2W
þ
1 X2Þ�X0

2W
þ
1 
X1:

Proof. The first five statements (a)–(e) appear in Markiewicz and Puntanen (2019, Sec.
4). The claim (h), that is,

PW1=2
1 M2

¼ PW1 � PWþ1=2
1 X2

,

holds if and only if, see Lemma 1.4,

CðW1=2
1 M2Þ ¼ CðWþ1=2

1 X2 : QW1
Þ? ¼ CðWþ1=2

1 X2Þ? \ CðW1Þ: (3.8)

Now (3.8) holds if and only if

rðW1=2
1 M2Þ ¼ n� rðWþ1=2

1 X2 : QW1
Þ,

that is,

rðW1Þ ¼ rðW1M2Þ þ rðW1X2Þ,
which further is equivalent to (f). Clearly (f) holds, for example, when CðX2Þ � CðW1Þ:
Assuming that (f) holds we can write

PW1
_M2PW1 ¼ PW1M2ðM2W1M2ÞþM2PW1

¼ Wþ1=2
1 PW1=2

1 M2
Wþ1=2

1

¼ Wþ1=2
1 ðPW1 � PWþ1=2

1 X2
ÞWþ1=2

1

¼ Wþ
1 �Wþ

1 X2ðX0
2W

þ
1 X2Þ�X0

2W
þ
1 :

(3.9)

From (3.9) it follows that

W1 _M2X1 ¼ W1 Wþ
1 �Wþ

1 X2ðX0
2W

þ
1 X2Þ�X0

2W
þ
1

� �
X1

¼ PW1 � PW1X2ðX0
2W

þ
1 X2Þ�X0

2W
þ
1

� �
X1,

and hence, supposing that CðX2Þ � CðW1Þ, we obtain (k):
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W1 _M2X1 ¼ In � X2ðX0
2W

þ
1 X2Þ�X0

2W
þ
1

� �
X1:

Thus the proof is completed. w

4. Difference of the BLUEs under the full and small model

Next we introduce a particular expression for the difference ðG1 �G1#Þy which is valid
for all y 2 CðWÞ:
Proposition 4.1. Consider the models M12 and M1 and suppose that l1 ¼ X1b1 is estim-
able under M12. Using the earlier notation, we have for all y 2 CðWÞ:

ðG1 � G1#Þy ¼ G1G2#y

¼ X1ðX0
1W

þ
1 X1Þ�X0

1W
þ
1 	 X2ðX0

2
_M1X2Þ�X0

2
_M1y:

(4.1)

Proof. It is clear that G1G1# ¼ G1#: Premultiplying

G12 ¼ PW � VMðMVMÞ�MPW

by G1 we observe that G1G12 ¼ G1 as G1VM ¼ 0: Thus we have

G1 � G1# ¼ G1ðG12 �G1#Þ ¼ G1G2#: (4.2)

The claim (4.1) follows from (4.2). w

Proposition 4.1 was proved by Haslett and Puntanen (2010, Lemma 3.1) in the situ-
ation when

CðX2Þ � CðX1 : VÞ ¼ CðW1Þ:
Using different formulation and proof, it appears also in Werner and Yapar (1996,
Th. 2.3). See also Sengupta and Jammalamadaka (2003, Ch. 9) and G€uler, Puntanen,
and €Ozdemir (2014). In the full rank model, that is, when X has full column rank and
V is positive definite, it appears, for example, in Haslett (1996).

Remark 4.1. We might be tempted to express the equality G1y ¼ G1#y as

~l1ðM1Þ ¼ ~l1ðM12Þ, i:e:, BLUEðl1jM1Þ ¼ BLUEðl1jM12Þ: (4.3)

However, the notation used in (4.3) can be problematic when the possible values of the
response vector y are taken into account. It is clear that G1y is the BLUE of l1 under
M1 and we may write shortly G1y ¼ ~l1ðM1Þ: Now, there might be another estimator
Ay for which we can also write Ay ¼ ~l1ðM1Þ but, however, Ay and G1y may have dif-
ferent numerical observed values. The numerical value of the BLUE under M1 is unique
if and only if y lies in CðW1Þ: w

Notice that in above considerations all the matrices G1, G12 and so on. are fixed. Let
us check whether (4.1) holds for arbitrary H1 2 fPl1jM1

g, H12 2 fPljM12
g and so on.

Corollary 4.1. Let us denote

H1 ¼ G1 þN1QW1
, H12 ¼ G12 þN2QW,

H1# ¼ G1# þN3QW, H2# ¼ G2# þN4QW,

where the matrices N1, :::,N4 are free to vary. Then
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(a) ðH1 �H1#Þy ¼ G1G2#y þ N1QW1
y for all y 2 CðWÞ,

(b) ðH1 �H1#Þy ¼ H1H2#y for all y 2 CðWÞ:
Moreover, the following two statements are equivalent:

(c) CðX2Þ � CðW1Þ,
(d) ðH1 �H1#Þy ¼ G1G2#y for all y 2 CðWÞ:

Proof. In view of

ðH1 �H1#ÞW ¼ ðG1 þN1QW1
�G1# � N3QWÞW

¼ ðG1 þN1QW1
�G1#ÞW

¼ ðG1 �G1#ÞWþN1QW1
W

¼ G1G2#Wþ N1QW1
W,

the statement (a) holds. We observe that

H1H2#W ¼ ðG1 þ N1QW1
ÞG2#W

¼ G1G2#WþN1QW1
G2#W:

Thus the statement (b), that is, the equality ðH1 �H1#ÞW ¼ H1H2#W holds if and only if

QW1
W ¼ QW1

G2#W: (4.5)

Replacing W with ðX1 : X2 : VMÞ in (4.5) we observe that (4.5) indeed holds. The
equivalence of (c) and (d) is obvious. w

Proposition 4.2. Consider the models M12 and M1 and suppose that l1 ¼ X1b1 is estim-
able under M12. Then the following statements are equivalent:

(a) G1y ¼ G1#y for all y 2 CðWÞ, that is, G1W ¼ G1#W,
(b) G1y ¼ G1#y for all y 2 CðX1 : X2Þ,
(c) G1y ¼ G1#y for all y 2 R

n, that is, G1 ¼ G1#,
(d) G1 2 fPl1jM12

g, that is, G1y 2 fBLUEðl1jM12Þg,
(e) X0

1W
þ
1 X2 ¼ 0,

(f) G1X2 ¼ 0,
(g) CðX2Þ � CðWþ

1 X1Þ? ¼ CðW1M1 : QW1
Þ ¼ CðVM1 : QW1

Þ:

Proof. Consider the statement (a) which is obviously equivalent to (d):

G1ðX1 : X2 : VMÞ ¼ G1#ðX1 : X2 : VMÞ: (4.6)

Now G1VM ¼ G1VM1QM1X2
¼ 0 and hence (4.6) holds if and only if

ðX1 : G1X2 : 0Þ ¼ ðX1 : 0 : 0Þ, (4.7)

that is,

G1X2 ¼ X1ðX0
1W

�
1 X1Þ�X0

1W
þ
1 X2 ¼ 0,

which is equivalent to X0
1W

þ
1 X2 ¼ 0: The equivalence between (a) and (b) follows from

the equivalence between (4.6) and (4.7).
To prove that (a) and (c) are equivalent we need to show that

G1QW ¼ G1#QW:
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It is clear that G1QW ¼ 0: Similarly, G1#QW ¼ D1#QW ¼ 0: Thus (a) is equivalent to
(c). The claim (g) follows from part (b) of Proposition 3.3. w
Remark 4.2. Clearly (a) in Proposition 4.2 is equivalent to

ðiÞ G1ðX1 : X2Þ ¼ G1#ðX1 : X2Þ ¼ ðX1 : 0Þ and ðiiÞ G1V ¼ G1#V,

that is, (i) G1X2 ¼ 0 and (ii) G1V ¼ G1#V: Here is a question: where does the condi-
tion (ii) vanish in Proposition 4.2?
In view of Proposition 4.2, the condition (i) implies that G1 ¼ G1#, and hence trivially

(ii) holds, that is, G1V ¼ G1#V: However, (ii) does not imply (i). Moreover, the condition
(ii) implies that covðG1yÞ ¼ covðG1#yÞ which by Proposition 4.3 (see below) is equivalent
to X0

1W
þX2 ¼ 0: Thus we can conclude that X0

1W
þ
1 X2 ¼ 0 ) X0

1W
þX2 ¼ 0: w

In Propositions 4.3–4.5 we assume that l1 ¼ X1b1 is estimable under M12:

Proposition 4.3. The following statements are equivalent:

(a) G1y ¼ G1#y for all y 2 CðW1Þ, that is, G1W1 ¼ G1#W1,
(b) G1# 2 fPl1jM1

g, that is, G1#y 2 fBLUEðl1jM1Þg,
(c) fBLUEðl1 j M12Þg � fBLUEðl1 j M1Þg, that is, fPl1jM12

g � fPl1jM1
g,

(d) ðH1 �H1#ÞW1 ¼ 0 for all H1 2 fPl1jM1
g, H1# 2 fPl1jM12

g,
(e) G1#VM1 ¼ 0,
(f) CðW _M2X1Þ ¼ CðW1 _M2X1Þ ¼ CðX1Þ,
(g) W _M2X1 ¼ W1 _M2X1 ¼ X1,
(h) X0

1W
þX2 ¼ 0,

(i) G1V ¼ G1#V,
(j) covðG1#y � G1yÞ ¼ 0,
(k) covðG1yÞ ¼ covðG1#yÞ:

Moreover, we always have
(l) covðG1#y � G1yÞ ¼ covðG1#yÞ � covðG1yÞ,

(m) covðG1yÞ�LcovðG1#yÞ,
(n) X0

1W
þ
1 X2 ¼ 0 ) X0

1W
þX2 ¼ 0:

Proof. It is clear that (b) is simply an alternative expression for (a) and similarly (d) for
(c). The claim (a) holds if and only if

G1ðX1 : VM1Þ ¼ G1#ðX1 : VM1Þ ¼ ðX1 : 0Þ,
which gives (e): G1# VM1 ¼ 0, that is,

X1ðX0
1
_M2X1Þ�X0

1
_M2VM1 ¼ 0: (4.8)

Premultiplying (4.8) by X0
1
_M2 yields

X0
1
_M2VM1 ¼ X0

1
_M2WM1 ¼ X0

1
_M2W1M1 ¼ 0,

that is, CðW _M2X1Þ � CðX1Þ: In view of Proposition 3.2, we have rðW _M2X1Þ ¼ rðX1Þ
and hence CðW _M2X1Þ � CðX1Þ becomes

CðW _M2X1Þ ¼ CðW1 _M2X1Þ ¼ CðX1Þ: (4.9)

Thus we have shown that (e) and (f) are equivalent. Equality (4.9) implies
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X0
1W

þX2 ¼ 0, (4.10)

that is, (f) implies (h). In view of part (e) of Proposition 3.3 we have

W _M2X1 ¼ In � X2ðX0
2W

þX2Þ�X0
2W

þ� �
X1: (4.11)

Substituting (4.10) into (4.11) we observe that (h) implies (g), and so far we have con-
firmed the equivalence between (a) and any of (e)–(h).
The statement (c) holds if and only if

ðG1# þ N2QWÞðX1 : VM1Þ ¼ ðX1 : 0Þ for all N2 2 R
n�n,

that is,

ðG1# þ N2QWÞVM1 ¼ 0 for all N2 2 R
n�n,

which holds if and only if G1# VM1 ¼ 0: Thus (c) and (e) are equivalent.
The claim (a) holds if and only if G1ðX1 : VÞ ¼ G1#ðX1 : VÞ, which is precisely (l):

G1V ¼ G1#V: It is clear that (i) is equivalent to (j). Consider then

covðG1# �G1Þy ¼ G1#VG
0
1# þ G1VG

0
1 �G1#VG

0
1 � G1VG

0
1#:

Notice that G1T1 ¼ G1#T1 ¼ T1, where T1 ¼ X1U1U0
1X

0
1 and hence

G1VG
0
1 ¼ G1ðW1 � T1ÞG0

1 ¼ X1ðX0
1W

þ
1 X1Þ�X0

1G
0
1 � T1

¼ X1ðX0
1W

þ
1 X1Þ�X0

1 � T1,

and

G1VG
0
1# ¼ G1ðW1 � T1ÞG0

1# ¼ G1W1G
0
1# � T1

¼ X1ðX0
1W

�
1 X1Þ�X0

1G
0
1# � T1

¼ X1ðX0
1W

þ
1 X1Þ�X0

1 � T1 ¼ G1VG
0
1:

Thus covðG1#y � G1yÞ ¼ covðG1#yÞ � covðG1yÞ, and so (l) and (m) hold. Statement (l)
obviously confirms the equivalence between (j) and (k). Property (n) is obvious. See
also Remark 4.1. w

Next we consider the condition under which an arbitrary matrix from the set
fPl1jM1

g provides the BLUE for l1 under M12:

Proposition 4.4. The following statements are equivalent:

(a) fBLUEðl1 j M1Þg � fBLUEðl1 j M12Þg, that is, fPl1jM1
g � fPl1jM12

g,
(b) ðH1 �H1#ÞW ¼ 0 for all H1 2 fPl1jM1

g, H1# 2 fPl1jM12
g,

(c) CðX2Þ � CðX1 : VM1Þ, that is, CðW1Þ ¼ CðWÞ, and X0
1W

þ
1 X2 ¼ 0,

(d) CðX2Þ � CðVM1Þ,
(e) CðX2 : VMÞ � CðVM1Þ,
(f) fBLUEðl1 j M1Þg ¼ fBLUEðl1 j M12Þg, that is, fPl1jM1

g ¼ fPl1jM12
g,

(g) CðX2 : VMÞ ¼ CðVM1Þ:

Proof. Notice first that (b) is simply an alternative way to express (a). The statement (a)
holds if and only if

ðG1 þ N1QW1
ÞðX1 : X2 : VMÞ ¼ ðX1 : 0 : 0Þ for all N1 2 R

n�n,
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that is,

ðG1 þ N1QW1
ÞX2 ¼ 0 for all N1 2 R

n�n,

which holds if and only if QW1
X2 ¼ 0 and G1X2 ¼ 0, which is precisely (c). Moreover,

(c) implies that

X2 ¼ X1Aþ VM1B (4.12)

for some A and B and

X0
1W

þ
1 ðX1Aþ VM1BÞ ¼ X0

1W
þ
1 X1A ¼ 0: (4.13)

Now (4.13) implies that Wþ
1 X1A ¼ 0, which further implies that X1A ¼ 0, so that by

(4.12) we get (d). The claim (d) obviously implies (c). The equivalence between (d) and
(e) is obvious because CðVMÞ � CðVM1Þ:
It is clear that (f) implies (b). Thus to confirm the equivalence of (b) and (f) we have

to show that

ðbÞ ) fBLUEðl1 j M12Þg � fBLUEðl1 j M1Þg: (4.14)

This follows at once from Proposition 4.3 by noting that the right-hand side of (4.14)
means that ðH1 �H1#ÞW1 ¼ 0: The equivalence between (f) and (g) follows by combin-
ing part (d) of Proposition 4.4 and (k) of Proposition 4.3. w

Our next task is to find necessary and sufficient conditions for

G1y ¼ G1#y for all y 2 CðWÞ
when the inclusion CðX2Þ � CðX1 : VÞ holds.
Proposition 4.5. Consider the models M12 and M1 and suppose that

CðX2Þ � CðX1 : VÞ ¼ CðW1Þ, i:e:, CðW1Þ ¼ CðWÞ: (4.15)

Then the following statements are equivalent:

(a) G1W1 ¼ G1#W1,
(b) H1W1 ¼ H1#W1 for all H1 and H1#,
(c) fBLUEðl1jM12Þg � fBLUEðl1jM1Þg, that is, fPl1jM12

g � fPl1jM1
g,

(d) fBLUEðl1jM1Þg � fBLUEðl1jM12Þg, that is, fPl1jM1
g � fPl1jM12

g,
(e) BLUEðl1jM1Þ ¼ BLUEðl1jM12Þ with probability 1,
(f) X0

1W
þ
1 X2 ¼ 0,

(g) CðX2Þ � CðVM1Þ,
(h) X1C12X0

2 ¼ 0, where C12 is defined as

ðX0Wþ
1 XÞþ ¼ X0

1W
þ
1 X1 X0

1W
þ
1 X2

X0
2W

þ
1 X1 X0

2W
þ
1 X2

 !þ
¼ C11 C12

C21 C22

 !
: (4.16)

Proof. The equivalence between (a)–(g) is obvious. Consider then part (h). Now we
have

D1# ¼ ðX1 : 0ÞðX0W�XÞ�X0Wþ ¼ ðX1 : 0ÞðX0W�
1 XÞ�X0Wþ

1 : (4.17)

Hence (a) holds, under (4.15), if and only if G1W1 ¼ D1#W1, that is,
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G1ðX1 : VM1Þ ¼ D1#ðX1 : VM1Þ ¼ ðX1 : 0Þ,
that is,

D1#VM1 ¼ D1#W1M1 ¼ 0: (4.18)

Using (4.17) the equality (4.18) becomes

D1#VM1 ¼ ðX1 : 0ÞðX0W�
1 XÞ�X0Wþ

1 W1M1

¼ ðX1 : 0ÞðX0W�
1 XÞ�X0PW1M1

¼ ðX1 : 0ÞðX0W�
1 XÞ�X0M1

¼ ðX1 : 0ÞðX0W�
1 XÞ�ð0 : M1X2Þ0

¼ X1C
12X0

2M1 ¼ 0,

(4.19)

where C12 is defined in (4.16). In light of rðX0
2M1Þ ¼ rðX2Þ, we can cancel M1 in the

last expression in (4.19). This proves the equivalence between (a) and (h). w

5. Conclusions

In this article we consider the partitioned linear model M12 ¼ fy, X1b1 þ X2b2, Vg
and the corresponding small model M1 ¼ fy, X1b1, Vg: We focus on comparing the
BLUEs of l1 ¼ X1b1 under M12 and M1: The observed numerical value of the BLUE is
unique under the model M1 if the M1 is consistent in the sense that y 2 CðX1 : VÞ
and the same uniqueness concerns the full model in the respective way. But now there
may be some problems if we write

BLUEðX1b1 j M1Þ ¼ BLUEðX1b1 j M12Þ: (5.1)

What is the meaning of the above equality? It is not fully clear because we know that
under M1 the values of y vary over CðX1 : VÞ but under M12 the values of y vary over
CðX1 : X2 : VÞ and these column spaces may be different. However, if CðX1 : VÞ ¼
CðX1 : X2 : VÞ there is no difficulties to interpret the equality (5.1), which means that

Ay ¼ By for all y 2 CðX1 : VÞ,
where Ay 2 fBLUEðl1 j M1Þg and By 2 fBLUEðl1 j M12Þg:
We consider the resulting problems by picking up particular fixed expressions for the

BLUE s of l1 ¼ X1b1 under these two models, and study the conditions under which
they are equal for all values of y 2 CðX1 : X2 : VÞ or y 2 CðX1 : VÞ: Moreover, we
review the conditions under which all representations of the BLUE s in one model con-
tinue to be valid in the other model. Some related considerations, using different
approach, have been made by Lu et al. (2015), Tian (2013), and Tian and Zhang (2016).
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Bȩdlewo, Poland, in November 2019 and February 2020. Thanks go to the anonymous referee for
constructive remarks.

14 S. J. HASLETT ET AL.



References

Groß, J., and S. Puntanen. 2000. Estimation under a general partitioned linear model. Linear
Algebra and Its Applications 321, 131–44. doi:10.1016/S0024-3795(00)00028-8.

G€uler, N., S. Puntanen, and H. €Ozdemir. 2014. On the BLUEs in two linear models via C.R.
Rao’s Pandora’s Box. Communications in Statistics - Theory and Methods, 5, 43, 921–31. doi:
10.1080/03610926.2013.826366.

Haslett, S. J. 1996. Updating linear models with dependent errors to include additional data and/
or parameters. Linear Algebra and Its Applications 237(238):329–49.

Haslett, S. J., A. Markiewicz, and S. Puntanen. 2020. Properties of BLUEs and BLUPs in full vs.
small linear models with new observations. In Recent developments in multivariate and random
matrix analysis: Festschrift in honour of Dietrich von Rosen, eds. T. Holgersson and M. Singull,
123–46. Cham: Springer.

Haslett, S. J., and S. Puntanen. 2010. Effect of adding regressors on the equality of the BLUEs
under two linear models. Journal of Statistical Planning and Inference 140, 104–10. doi:10.
1016/j.jspi.2009.06.010.

Lu, C., S. Gan, and Y. Tian. 2015. Some remarks on general linear model with new regressors.
Statistics & Probability Letters, 97, 16–24. doi:10.1016/j.spl.2014.10.015.

Markiewicz, A, and S. Puntanen. 2019. Further properties of the linear sufficiency in the parti-
tioned linear model. In Matrices, statistics and big data, eds. S. E. Ahmed, F. Carvalho and S.
Puntanen, 1–22. Cham: Springer.

Marsaglia, G, and G. P. H. Styan. 1974. Equalities and inequalities for ranks of matrices. Linear
Multilinear Algebra 2:269–92.

Mitra, S. K, and B. J. Moore. 1973. Gauss–Markov estimation with an incorrect dispersion
matrix. Sankhy�a Series A 35:139–52.

Puntanen, S., G. P. H. Styan, and J. Isotalo. 2011. Matrix tricks for linear statistical models: our
personal top twenty. Heidelberg: Springer.

Rao, C. R. 1973. Representations of best linear estimators in the Gauss–Markoff model with a
singular dispersion matrix. Journal of Multivariate Analysis 3, 276–92. doi:10.1016/0047-
259X(73)90042-0.

Rao, C. R. 1974. Projectors, generalized inverses and the BLUE’s. Journal of the Royal Statistical
Society: Series B 36:442–8.

Rao, C. R, and S. K. Mitra. 1971. Generalized inverse of matrices and its applications. New York:
Wiley.

Sengupta, D, and S. R. Jammalamadaka. 2003. Linear models: An integrated approach. River
Edge: World Scientific.

Tian, Y. 2013. On properties of BLUEs under general linear regression models. Journal of
Statistical Planning and Inference 43, 771–82. doi:10.1016/j.jspi.2012.10.005.

Tian, Y., and X. Zhang. 2016. On connections among OLSEs and BLUEs of whole and partial
parameters under a general linear model. Statistics & Probability Letters 112, 105–12. doi:10.
1016/j.spl.2016.01.019.

Werner, H.J., and C. Yapar. 1996. A BLUE decomposition in the general linear regression model.
Linear Algebra and its Applications 237-238, 395–404. doi:10.1016/0024-3795(95)00542-0.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 15

https://doi.org/10.1016/S0024-3795(00)00028-8
https://doi.org/10.1080/03610926.2013.826366
https://doi.org/10.1016/j.jspi.2009.06.010
https://doi.org/10.1016/j.jspi.2009.06.010
https://doi.org/10.1016/j.spl.2014.10.015
https://doi.org/10.1016/0047-259X(73)90042-0
https://doi.org/10.1016/0047-259X(73)90042-0
https://doi.org/10.1016/j.jspi.2012.10.005
https://doi.org/10.1016/j.spl.2016.01.019
https://doi.org/10.1016/j.spl.2016.01.019
https://doi.org/10.1016/0024-3795(95)00542-0

	Abstract
	Introduction
	The fundamental BLUE equations
	Some useful matrix results
	Difference of the BLUEs under the full and small model
	Conclusions
	Acknowledgements
	References


