

PETRI TIKKA

CONTROL POLICY TRAINING FOR A
SIMULATION-TO-REAL TRANSFER

Simulation-to-real case study

Master of Science Thesis
Faculty of Information Technology

and Communication Sciences
Examiner: prof. Joni Kämäräinen

December 2021

ABSTRACT

Petri Tikka: Control policy training for a Simulation-to-Real transfer

Master of Science Thesis

Tampere University

Computing Sciences

December 2021

Robots have been deployed in various fields of the industry, with the expectation of managing
more tasks for humans. Simulation-to-real is a relatively new discipline within robotics that offers
an alternative approach to the traditional programming methods by training a model of the robot
in a simulator and afterwards transferring the knowledge to control the physical counterpart. The
knowledge is located in a deep reinforcement learning policy that is carefully selected and tuned
for the intended task.

The thesis studied tools and steps that are required to implement a physical system that is
trained using the sim-to-real transfer learning. The chosen use case is a Universal Robots UR10e
manipulator that is to locate and reach a stationary target in the physical world. Because the
scope is to provide a proof-of-concept pipeline for the simulation-to-real process, the only part in
the use case requiring adaption is the changing location of the target. However, target reaching
is a fundamental task in robotics for which more complex tasks are based upon.

The simulation environment was constructed from a CAD-model of the physical robot cell that
was later updated within the chosen simulator CoppeliaSim. For the convenience of having the
kinematic chain premade, the manipulator was changed in the simulator to an older version UR10.
Also, the gripper was changed to an older version. The control in the simulation environment
followed the Markov Decision Process having a manipulator as an agent interacting with the en-
vironment. As the agent performed actions in available states, it tried to maximize the total cumu-
lative reward and learned accordingly. The goal was to reach a simulated target that position was
randomized along a specified line segment. In practice, the algorithms learned trajectory paths in
joint space under given environment constraints while the agent controlled the manipulator with
velocity based forward kinematics. The overall process was scripted as Python modules with an
interface to the simulator. The considered deep reinforcement learning algorithms were Deep
Deterministic Policy Gradient and Soft Actor-Critic.

The algorithms were validated in the simulation and Deep Deterministic Policy Gradient was
chosen for the simulation-to-real transfer owing to its better performance. The transfer was based
on a zero-shot method where the policy controlled the physical manipulator from the simulation.
Control included the joint positions of the simulated manipulator that were forwarded to the phys-
ical counterpart via Robot Operating System network. Therefore, the knowledge transfer only
considers kinematics. The network conjoined the simulator, the manipulator and the machine vi-
sion system, which was responsible of tracking the target, an ArUco marker. The marker position
replaced the random position of the simulated target.

The simulation-to-real transfer process demonstrates a working step-by-step pipeline, which
at the time of writing this thesis was not publicly provided. The resulted policy learned a redundant
kinematics trajectory with geometrical limitations. The manipulator reaches the target within the
given precision threshold with a collision free path. At the same time the reality gap between
simulation and reality is explained and managed. Although the task related results are not gener-
alizable, the concept of simulation-to-real transfer is applicable to more complex tasks.

Keywords: Simulation-to-Real, Kinematics, Deep Reinforcement Learning, Manipulator

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Petri Tikka: Simulaatiosta-todellisuuteen tiedonsiirto robotin ohjaukselle

Diplomityö

Tampereen yliopisto

Tietotekniikka

Joulukuu 2021

Robottien määrä on yleistynyt teollisuuden eri aloilla sillä oletuksella, että ne kykenisivät

toteuttamaan entistä enemmän ihmisille tarkoitettuja tehtäviä. Perinteisten menetelmien lisäsi
robottien ohjelmointia voidaan lähestyä ’simulaatiosta todellisuuteen’ tieteenalan keinoin, joka on
suhteellisen uusi robotiikan haara. ’Simulaatiosta todellisuuteen’ perustuu robotin kouluttamiseen
simulaatiossa ja koulutetun tiedon siirtämiseen fyysiselle vastinparille. Tieto sijoittuu syvään
vahvistelun oppimisen menettelytapaan, joka on huolellisesti valittu ja viritetty aiottua tehtävää
varten.

Diplomityössä tutkittiin työkaluja ja vaiheita, joita tarvitaan ’simulaatiosta-todellisuuteen’ siirto-
oppimisen avulla koulutetun fyysisen järjestelmän toteuttamiseen. Valittu ympäristö on Universal
Robots UR10e-manipulaattori, jonka tehtävänä on paikantaa ja saavuttaa paikallaan oleva kohde
fyysisessä maailmassa. Koska työn tarkoituksena on tarjota konsepti ’simulaatiosta
todellisuuteen’ prosessille, ainoa mukautumista vaativa osa käyttötapauksessa on kohteen
muuttuva sijainti. Huomioitavaa on, että kohteen saavuttaminen on kuitenkin robotiikan
perustehtäviä, johon monimutkaisemmat tehtävät perustuvat.

Simulaatioympäristö rakennettiin fyysisen robottisolun CAD-mallista, jota päivitettiin
myöhemmin valitussa CoppeliaSim-simulaattorissa. Työn helpottamiseksi, simulaatiossa
hyödynnetään vanhempaa manipulaattorimallia UR10:ä, joka sisälsi nativisti kinemaattisen
ketjun. Myös tarttuja vaihdettiin vanhempaan malliin simulaattorissa. Simulaatioympäristön
ohjaus seurasi Markovin päätösprosessia, jossa agentti eli manipulaattori on vuorovaikutuksessa
ympäristön kanssa. Kun agentti suoritti toimintoja mahdollisissa tiloissa, se pyrki maksimoimaan
kumulatiivisen kokonaispalkkion ja oppi sen mukaisesti. Simuloidun robotin kohteen paikka
vaihteli satunnaisesti työalueella olevalla janalla, ja robotin ohjaus toteutettiin nopeuteen
perustuvalla suoralla kinematiikalla. Prosessi toteutettiin Python moduuleilla ja valitut oppivat
algoritmit olivat Deep Deterministic Policy Gradient sekä Soft Actor-Critic.

Algoritmit validoitiin simulaatiossa ja Deep Deterministic Policy Gradient valittiin ’simulaatiosta
todellisuuteen’ siirtoa varten sen tuottamien vakaampien ja turvallisempien liikeratojen johdosta.
Tiedon siirto perustui zero-shot menetelmään, jossa menettelytapa ohjasi fyysistä manipulaattoria
simulaation välityksellä. Nivelten paikkatiedot välitettiin simulaatiosta fyysiselle robotille Robot
Operating System-verkon kautta. Koska ainoa välitetty tieto simulaatiosta fyysiselle robotille on
paikkaperusteista, on kehitetty menetelmä käytännössä vain kinemaattinen. Käytetty tietoverkko
yhdisti simulaattorin, manipulaattorin sekä konenäköjärjestelmän, joka vastasi ArUco
merkkitunnisteen paikantamisesta. Kyseisen tunnisteen sijainti korvasi simulaatiossa olevan
satunnaisesti vaihtelevan kohteen sijainnin.

Esitetty ’simulaatiosta-todellisuuteen’ tiedonsiirtoprosessi osoittaa toimivan vaiheittaisen
toteutusketjun, jollaista ei ollut julkisesti saatavilla tätä diplomityötä kirjoitettaessa. Koulutettu
algoritmi kykenee vastaamaan geometrisin rajoituksin ja redundanttisten vapausasteiden
mukaisen liikkeen suunnittelun ongelmaan. Fyysinen manipulaattori saavuttaa kohteen
törmäysvapaalla liikerajalla annetun tarkkuuskynnyksen rajoissa. Samalla simulaation ja
todellisuuden välillä olevan todellisuuseron vaikutukset pystytään selittämään ja vaikutukset
esittämään. Vaikka kohteen saavuttamistehtävään liittyvät tulokset eivät ole yleistettävissä muihin
tehtäviin, on esitetty ’simulaatiosta todellisuuteen’ konsepti sovellettavissa vaativampikin
tehtäviin.

Avainsanat: Simulaatiosta-Todellisuuteen, Kinematiikka, Syvä Vahvistettuoppiminen,

Manipulaattori

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

This thesis was done for the Faculty of Information Technology and Communication Sci-

ences at Hervanta campus of Tampere University (TUNI). The thesis addresses simula-

tion-to-real transfer supporting deep reinforcement learning for a real-world control pol-

icy. The work was commissioned by VTT Oy Technical Research Centre of Finland.

I would like to thank VTT for the opportunity to produce a study on the given subject.

Atakan Dağ of TUNI I would like to thank for his invaluable advices concerning the sim-

ulation environment. Senior Scientist Hannu Saarinen of VTT is to thank for the guidance

on manipulator kinematics both theory and practice. Thesis supervisors Professor Joni

Kämäräinen of TUNI and Professor Tapio Heikkilä of VTT I thank for their professional

inputs on robotics, machine learning, scientific writing, and overall guidance over the

course of the project.

Tampere, 3 December 2021

Petri Tikka

CONTENTS

1 INTRODUCTION .. 1

1.1 Structure and Milestones of the Thesis .. 2

1.2 Identification of the Problem and Objectives .. 4

2 THE MECHANICS AND CONTROL OF MANIPULATORS 5

2.1 The Mechanics of a manipulator .. 6

2.2 Kinematics for mechanical manipulation .. 7

2.2.1 Forward kinematics ... 8
2.2.2 Inverse kinematics .. 9

3 LEARNING-BASED CONTROL PARADIGMS .. 10

3.1 Machine learning paradigms .. 10

3.2 Reinforcement Learning ... 12

3.3 The Markov Decision Process .. 13

3.3.1 The reward function and the goal .. 15
3.3.2 Formal definition of the MDP ... 17
3.3.3 Temporal difference learning .. 20

3.4 Model-based and model-free methods ... 22

3.5 Actor-critic framework .. 24

3.6 Reinforcement algorithms for continuous action spaces 26

3.6.1 Deep Deterministic Policy Gradient ... 28
3.6.2 Soft Actor-Critic ... 31

4 SIMULATION-TO-REAL LEARNING .. 35

4.1 Simulators for Sim2Real transfer.. 35

4.2 Sim2Real transfer .. 36

4.2.1 Relevant Examples ... 36
4.2.2 Transfer techniques .. 37

4.3 Reality gap ... 38

5 SIMULATION-TO-REAL CASE STUDY .. 40

5.1 Task description ... 40

5.2 Simulation environment .. 41

5.3 Known reality gap factors ... 43

5.4 DRL software architecture .. 45

5.4.1 MDP in practice .. 46
5.4.2 Software modules ... 49

5.5 Training and validation ... 51

5.5.1 Training DDPG policy ... 53
5.5.2 Training SAC policy .. 57
5.5.3 Validating results in simulated environment 60
5.5.4 Modifying initial parameters and revalidation 62

5.6 Sim2Real transfer process ... 67

5.6.1 Machine vision system .. 68

5.6.2 System architecture for Sim2Real transfer 72
5.7 Validating results in physical environment .. 75

6 RECOMMENDATIONS FOR FUTURE WORK ... 79

7 SUMMARY AND CONCLUSIONS .. 80

REFERENCES... 82

APPENDIX A: INSTANTIABLE DDPG REVALIDATION PARAMETERS 91

APPENDIX B: INSTANTIABLE SAC REVALIDATION PARAMETERS 92

APPENDIX C: SIM2REAL TRANSFER RESULTS ... 93

LIST OF FIGURES

Figure 1.1. Conceptual view of a Sim2Real transfer process. Orange and green
indicate work done in the physical (orange) and simulated (green)
environments. .. 2

Figure 2.1. Classification of robots by application. The red line represents the
scope of this thesis. Modified from [10], [11]. ... 5

Figure 2.2. Kinematic terms describing tool frame relative to the base frame as a
function of the joint variables (right), modified from [9]. Workspace
volume of an anthropomorphic manipulator (left), modified from
[11]. .. 6

Figure 2.3. A schematic view of forward and inverse kinematics between joint and
cartesian space. Modified from [12]. ... 7

Figure 2.4. Compatible configurations (left skeleton, right graphical) of an
anthropomorphic manipulator with given end-effector pose.
Modified from [9], [11]. ... 9

Figure 3.1. Overview of main machine learning paradigms and methods, modified
from [19]. .. 11

Figure 3.2. The basic structure of reinforcement learning paradigm as the agent-
environment interaction process. Modified from [4]. 14

Figure 3.3. The taxonomy of reinforcement learning methods. Modified from [1]. 23
Figure 3.4. Actor-critic framework with on-policy (left) and off-policy (right),

modified from [4], [35]. ... 25
Figure 4.1. Sim2Real transfers for complex motor control with manipulator control

(peg-in-the-hole) (left), dexterous hand control (middle) and
locomotion (right). Modified from [7], [65] and [66]. 37

Figure 4.2. Markov Decision Processes in a simulation and reality depicting state
capture, policy inference and action execution processes on a
timeline. Modified from [1]. ... 39

Figure 5.1 Case specific robotic cell in simulation (left) and in real-life (right). 40
Figure 5.2. Simulation environment for the reach target task in CoppeliaSim

(middle, right) with the kinematic chain of the UR10 from the base
to the gripper represented with red line (left). Target is represented
with a red dot, which position is randomized during the training
along the dotted blue line (right). .. 42

Figure 5.3. DH-parameters of UR10 and UR10e (left) and a parameterized
diagram of a UR manipulator (right). Modified from [82]. 44

Figure 5.4. Base of UR10e in the physical environment (left) and base of UR10 in
the CoppeliaSim simulation (right). Pictures are not in scale, and
distances are in mm. .. 44

Figure 5.5. Robotiq 2F-85 gripper newer version (left) and older version (right).
Distances are in mm. Modified from [83], [84]. 45

Figure 5.6. RL policy training as a MDP in simulation. .. 47
Figure 5.7. Simplified representation of the software architecture for the DRL

study. Function and parameter names have been modified for the
sake of intelligibility. Arrows depict the direction of inheritance. 50

Figure 5.8 DDPG episode rewards for Run 1-6 (a-f) as presented in Table 5.3.
Red line represents the moving average of 10, and blue line the
actual value. ... 54

Figure 5.9 Effect of random seeds to convergence of five DDPG policies with
same parameters (Run 1 of Table 5.3). Light shaded regions
depict actual values and solid lines moving average of 100
episodes. ... 55

Figure 5.10 Effect of random seeds to convergence of five DDPG policies with
same parameters (Run 3 of Table 5.3). Light shaded regions
depict actual values and solid lines moving average of 100
episodes. ... 55

Figure 5.11 DDPG success rates for Run 1-6 (a-f) as presented in Table 5.3. Red
line represents the moving average of 10, and blue line the actual
value. ... 57

Figure 5.12 SAC episode rewards for Run 1-6 (a-f) as presented in Table 5.4.
Red line represents the moving average of 10, and blue line the
actual value. ... 58

Figure 5.13 SAC success rates for Run 1-6 (a-f) as presented in Table 5.4. Red
line represents the moving average of 10, and blue line the actual
value. ... 60

Figure 5.14 Validation of SAC (left) and DDPG (right) with dense and augmented
reward function while demonstrating hyperextension of the joints.
Red line indicates the direct trajectory for the TCP starting from the
zero-position. ... 62

Figure 5.15. Favourable direction of motion for joint 5 (left) and for joint 2 (right) in
regards the zero-position. Red arrow indicates the favourable
direction of motion. ... 63

Figure 5.16 DDPG per episode reward and success rate for policies trained
according to Table 5.7. Shaded region depicts standard deviation
of performance and solid line moving average of 100 episodes. 65

Figure 5.17 SAC per episode reward and success rate for policies trained
according to Table 5.8. Shaded region depicts standard deviation
of performance and solid line moving average of 100 episodes. 65

Figure 5.18 DDPG success rate according to Table 5.7 and Run 6 of Table 5.3
over the course of training. Success rates are given as moving
average of 100 episodes. ... 66

Figure 5.19 SAC success rate according to Table 5.8 and Run 6 of Table 5.4
over the course of training. Success rates are given as moving
average of 100 episodes. ... 66

Figure 5.20 Cyber-Physical system representation for the concept to formulate
Sim2Real transfer. ... 68

Figure 5.21. ArUco marker id 582 (left) and the marker seen from the camera
(right). .. 69

Figure 5.22. Standard frames and distance (red) between tool frame and goal
frame represented in an illustration (left), modified from [9]. Frame
representation in real case environment (right). 70

Figure 5.23. ArUco marker localized on the table and the pose is given in
accordance to origin in the base of UR10e. Control is managed
with inverse kinematics. ... 71

Figure 5.24. The TCP position of X-, Y- and Z-axis compared to the target
(marker) position during a 50 second execution on UR10e. Target
position is changed three (3) times (illustrated with dotted red
lines). Yellow background indicates a period where the
manipulator is approaching the target from the initial state. Red
background indicates the TCP is at the target and green
background indicates a period where the manipulator is
withdrawing back to initial state. The three positions of the target
are numbered from 1-3 and they are matched with the TCP at the
red areas of similar numbering. .. 72

Figure 5.25. The developed ROS communication network for the Sim2Real
transfer... 73

Figure 5.26. The position of the target dot in the simulation is subscribed from the
machine vision system that is tracking the physical ArUco marker.
Tracked position is the centre of the ArUco marker. Images 1 and
4, 2 and 5, and 3 and 6 represent the positions of the target in the
simulated and physical setup counterparts. .. 74

Figure 5.27. Sim2Real performed on UR10e controlled by DDPG policy from
CoppeliaSim simulator via ROS network. ArUco marker is at
position 1 of Table 5.10. Process follows routine depicted in Figure
5.20. Green boxes implicate actions performed in cyber domain
and orange boxes actions in the physical domain. 76

Figure 5.28 Five consecutive reaching tasks performed with physical and
simulated setup by DDPG policyl. Target stays at the same
position during all episodes (position 1 of Table 5.10). Target is
illustrated with dotted red line. Lighter colours depict the simulated
and darker the real manipulator trajectory. Yellow background
indicates a period where the manipulator is approaching the target
from the initial state. Red background indicates the TCP is at the
target and green background indicates a period where the
manipulator is withdrawing from the target back to the initial state. 77

Figure 5.29 Distance to target measured from simulated and physical manipulator
TCP. Black line indicates the precision threshold of 5cm (50mm). 78

LIST OF TABLES

Table 5.1. Joint torque [Nm] and angular velocity [rad/s] limits of UR10/UR10e
[81], [3]. .. 43

Table 5.2 Reach task environment dimensions for UR10/UR10e. 46
Table 5.3 DDPG policy training hyperparameters of two scenarios for sparse,

dense, and augmented reward functions.. 53
Table 5.4 SAC policy training hyperparameters of two scenarios for sparse,

dense, and augmented reward functions.. 58
Table 5.5 Validation success rates [%] of scenarios in Table 5.3 and Table 5.4

over 1000 episodes. ... 61
Table 5.6 Final orientations of the manipulator either at the target or at the end of

the episode. ... 61
Table 5.7 Parameter settings for most prominent DDPG policy. 64
Table 5.8 Parameter settings for most prominent SAC policy. 64
Table 5.9 Validation success rates [%] over 1000 episodes and manipulator

orientations at the target. ... 67
Table 5.10 Validation success rates [%] of scenarios (1-6) from Figure 5.26 for

the simulated and physical setup over five episodes/repetitions. 75
Table 5.11 Distances [mm] between target, and simulated and physical TCP as

target has been reached in five reaching tasks of Figure 5.29. 78

LIST OF SYMBOLS AND ABBREVIATIONS

ArUco Augmented reality University of Cordoba
DDPG Deep Deterministic Policy Gradient
DH Denavit-Hartenberg
DNN Deep-Neural Network
DoF Degree-of-Freedom
DRL Deep-Reinforcement Learning
MDP Markov Decision Process
ML Machine Learning
MSE Mean Square Error
POC Proof-Of-Concept
Real2Real Real-to-Real
RL Reinforcement Learning
ROS Robot Operating System
SAC Soft Actor-Critic
Sim2Real Simulation-to-Real
TCP Tool-Center-Point

At / at an action
B base frame
DKL Kullback-Leibler function
Ep episode consisting of a sequence of states, action and rewards
Et error equation
ee pose of the end-effector
G goal frame
Gt total discounted reward/return
J expected return of a specific measure
ji joint angular position

 episodes
N batch size
P a state transition probability function
pp target goal
qi vector of joint variables

q an action-value function under a policy (Q-function)
Rt / rt a reward at time step t
St / st a state at time step t
T Tool frame
Ƭ steps per episodes
𝑇𝑦
𝑥 transformation operations from x-frame to y-frame

t time
vi joint velocity
Wo world frame
Wr wrist frame

 learning rate

 discount factor
𝑇 precision factor

t noise vector
θ stochastic parameter vector (policy parameters), network parameter

(Soft Actor-Critic)

θjoint joint angle
θQ actor network weight

θ critic network weight

 step size

(s) a deterministic policy function

 a state-value function under a policy

(a|s) a stochastic policy function

 a distribution
σt exploration noise at time step t

 rate of copying weights (hyperparameter)

 value function parameter, network parameter (Soft Actor-Critic)

 network parameter (Soft Actor-Critic)
Ɗ replay buffer (distribution of previously sampled states and actions)
ℋ entropy term
* optimal outcome

1

1 INTRODUCTION

Simulation-to-real (Sim2Real) is a concept for transferring knowledge from simulation to

reality. Simulation generates data for robotics that can be utilized for machine learning

(ML) models to train robots to see and manipulate objects within a given environment;

the training is in simulation, but the deployment is on a real robot [1]. Sim2Real suggests

reducing or even removing the need for collecting large quantities of real-world data,

which can be not only difficult and dangerous to collect but also expensive in terms of

resources [2].

The thesis explores a Sim2real transfer process in the context of a Universal Robots

UR10e robotic manipulator [3]. Utilized control policy is based on reinforcement learning

(RL), a machine learning paradigm which has gained acknowledgement among robotics

domain with the advancement achieved by the ML community [4], [5]. The policy learns

in simulation through trial-and-error to perform a fundamental robotic manipulation task

- target-reaching.

The task involves kinematics and trajectory learning with redundant degree of freedom

(DoF); only position is considered leaving orientation out of the scope. The focus is on

generating a proof-of-concept (PoC) including a successful control policy that can be

validated not only in simulation, but also on the physical manipulator, thus providing a

simulation-to-real transfer. Goal is to provide a policy that has a success rate of 100% in

achieving the target given the precision threshold and trajectory heuristics.

A problematic aspect of Sim2Real is the reality gap between the simulated and the real-

world environment. The developed pipeline brings forward this challenge while the com-

patibility of two RL algorithms is benchmarked against the presented robotic task. Tools

and steps to build a pipeline from the simulation to the real-world are explored with the

focus being on training and validating the RL policy.

2

1.1 Structure and Milestones of the Thesis

The work was accomplished at VTT (Technical research centre of Finland) with a gov-

ernment grant. The work was inspired by the industrial renewal concept of the future of

robotics concerning adapting robotic manipulators to unforeseen scenarios. Most of the

traditional robot programming methods expect that environments are known and struc-

tured, which often is not the case [6]. The dilemma raised the question if a robotic ma-

nipulator can learn to accomplish a given task independently without operator inserting

or teaching the intended trajectories. In this thesis the question is being explored as

constructive research with aim to produce an academic Sim2Real workflow that supports

reinforcement learning training on a simulated robot to obtain a control policy applicable

to a real-world environment. Structure and usability of chosen RL algorithms are studied

in practice and through related scientific literature. The study concentrates on the transfer

process; hence the environment is known in advance.

Figure 1.1 depicts the Sim2Real workflow on a conceptual level indicating the prime

milestones to be achieved in the physical environment with orange colour and milestones

to be achieved in the simulated environment with green colour.

Figure 1.1. Conceptual view of a Sim2Real transfer process. Orange and green indi-
cate work done in the physical (orange) and simulated (green) environments.

3

The workflow provides a base for the thesis structure, and it can be divided into three

main phases.

Phase one consists of setting up the environment in accordance with the specified task

description. The task in question is a reach-target, which is presented in Section 5.1 for

the task apprehension in the physical and the simulated environment. As the task is

identified, proper camera and auxiliary hardware is implemented to the robotic environ-

ment. The simulated and physical environment are presented in Figure 5.1 and dis-

cussed in Sections 5.1 and 5.2. As the physical setup is validated, a digital representa-

tion is generated, and a relevant simulation environment is chosen including digital coun-

terparts of the physical environment. An exception is the camera, which was not digital-

ized, but the results of the physical camera are imported to the simulation for the

Sim2Real transfer.

Phase two consists of describing machine learning (ML) paradigm RL and relevant al-

gorithms that are applicable to produce control according to the defined task in the de-

veloped environment. Relevant hyperparameters and reward function structures are

searched to optimize the behaviour of the chosen method. The RL control algorithm is

implemented within the software architecture, and the internal application programming

interfaces (API) between the task management script, environment management and

the RL algorithm are verified. The control algorithm is trained, and the consistency is

validated in the simulation. The process of selecting a proper RL algorithm is discussed

in Section 3.6 while the implementation, training and validation is presented in Section

5.5.

Finally, in phase three the simulated control is extended to the physical world. Control

from simulation to the physical setup is enabled by a network between the hardware.

The network includes the physical manipulator, network server machine, simulator ma-

chine and a machine for upholding the machine vision system. Machine vision system is

implemented to the network to provide feedback for the control while executing localiza-

tion tasks of the target. Eventually, the physical task validation confirms the transfer of

simulation trained control policy within the real-world environment. The structure of the

communication network, physical domain feedback implementation and the results of the

knowledge transfer validation are presented in Sections 5.6 and 5.7.

The first phase considers settings up the unity of countering environments, whereas the

second phase is an iterative process where RL algorithms are benchmarked against

each other to clarify the best hyperparameters, reward functions, and eventually policy

4

for the given study. Success is to be measured in simulation after forking the optimal

solution that is validated also in the final phase.

1.2 Identification of the Problem and Objectives

Task of Sim2Real transfer is challenging. This is especially true in the domain of robotics

where the expectation is for robots to complete more control tasks for industry personnel.

Consequences of a simulation trained ML algorithm are not only difficult to predict in a

real-world scenario, but also their propagation to the real world is as well. Selecting

proper hyperparameters for the right RL algorithm can be laborious since they depend

on the used algorithm as well as the application area [6]. Similarly, the construction of

the simulated environment to be identical to the real-world counterpart with high fidelity

and dynamics is a non-trivial task for which a single simulator of today cannot unambig-

uously answer [2], [7]. However, with the right abstraction level and application area,

simulator selection and environment development is possible [8].

The aim of this thesis is to produce control policy training for a Sim2Real transfer. The

process includes describing a pipeline from simulation trained algorithm to a real-world

environment while performing a reach target task. RL algorithms are trained and verified

in simulation before continuing to a Sim2Real transfer. The main objectives for motivation

can be expressed as:

 Verify the applicability of a RL algorithm for a robotic task by training a policy in

a case study specific simulation.

 Benchmark chosen RL algorithms against the performed task in simulation by

optimizing reward functions and hyperparameters.

 Evaluate the feasibility and practicality of the Sim2Real transfer process for the

trained policy on a real UR10e.

The first objective includes selecting and preparing simulation environment with sufficient

APIs to support a control algorithm for training and validating the RL policy. Simulator

should provide internal APIs for the software architecture based on the training of the

control policy, but also provide external APIs to formulate a network for hardware com-

munication. The second objective depends on finding the optimal policy for the presented

task. This relates to the state-of-the-art literature review made during the thesis. The third

objective is about studying Sim2Real transfer methodologies and evaluating chosen pro-

cess against the reality gap between the simulation and the physical setup. The level of

the achievable adaptation is related to the reality gap, how much it affects the results

and is the gap possible to be crossed over.

5

2 THE MECHANICS AND CONTROL OF MANIPU-
LATORS

The scientific discipline of robotics involves simulating human functions with a combina-

tion of sensors, actuators and computational power. Combining hardware with software

requires a variety of different fields of expertise, but at a high level of abstraction, robotics

can be regarded as a combination of mechanical manipulation, locomotion, computer

vision and computer science [9]. Together these disciplines have spawned a variety of

robotic interpretations that can be classified according to the intended application as de-

picted in Figure 2.1.

Figure 2.1. Classification of robots by application. The red line represents the scope of
this thesis. Modified from [10], [11].

This thesis is focused on robotic manipulators and more specifically a fixed serial manip-

ulator UR10e by Universal Robots. Serial manipulators are the most common type of

manipulator with a structure that comprises of a serial chain of rigid segments connected

by joints. The basic mechanics of the used manipulator structure are presented to em-

phasize the complexity of the kinematic chain the control has to manage.

6

2.1 The Mechanics of a manipulator

The mechanical structure of a manipulator includes rigid links interconnected by articu-

lative joints. These joints usually include position sensors, which allow the relative motion

of neighbouring links to be measured. In general, all articulation between joints can be

realized as revolute or prismatic motion, depending on the orientation of the axis. The

joint angles are represented by θjoint, and the relative positions between the links is rep-

resented by distance D as depicted in Figure 2.2.

Figure 2.2. Kinematic terms describing tool frame relative to the base frame as a func-
tion of the joint variables (right), modified from [9]. Workspace volume of an anthropo-

morphic manipulator (left), modified from [11].

The joint configurations define the mobility of a manipulator. The chain of links begins

with an arm that ensures general mobility, and with a wrist that enables dexterity. The

arm enables position while the wrist typically consists of three revolute joints and orien-

tation. One end of the arm is fixed to a non-moving base with a base frame or fixed

frame. At the free end of the chain is the tool-end or end-effector with a tool frame.

Generally, the position of the manipulator is described by the tool frame relative to the

base frame. A task consisting of arbitrarily positioning and orienteering an object in three-

dimensional space requires six degrees of freedom. The first three degrees of freedom

describe the position of a point on the object (X-, Y-, Z-axis) and the other three deter-

mine the orientation of the object with respect to a reference frame (pitch, yaw and roll).

The term ‘pose’ is used to describe both the position and orientation of an object [10].

7

The shape and volume of a manipulator workspace depends on the aforementioned lim-

itations of the joint configurations and hence the structure of the manipulator. Utilized

Ur10e manipulator represents an anthropomorphic manipulator depicted in Figure 2.2.

Manipulator control strategy depends on whether the target is concerned with control a

single joint independently, or to note the effects of the dynamic interactions between all

the joints in order to control their movement. To generalize, joint actuators produce forces

and torques, which can be viewed on a timeline as the control of motion while satisfying

given transient and steady-state requirements [11]. The control of motion is related to

the problem of how to choose a set of control variables to position the manipulator at a

desired location with position and orientation. Although, the relative positioning does not

concern the motion effects of the manipulator, the kinematics does.

2.2 Kinematics for mechanical manipulation

Kinematics is the study of the motion of an object regardless of the forces that cause the

motion. Hence, the targets are position, velocity, acceleration, and other higher order

derivatives of position variables. More specifically, manipulator kinematics aims to ex-

plain a joint space leading to the positioning of the end-effector at a target location on a

cartesian space, also called as a workspace, by taking into consideration all the geomet-

rical and time-based properties of the motion. The relationship between joint space and

cartesian space is depicted in Figure 2.3. joint n represents the Nth joint of a manipulator

and 𝑇𝑁
0 describes the position and orientation of the Nth joint with respect to the 0 joint

(base) [12].

Figure 2.3. A schematic view of forward and inverse kinematics between joint and car-
tesian space. Modified from [12].

In manipulator centric robotics, kinematics involves the relationship between the joint

variables of a manipulator and the position and orientation of the end effector. To reach

a specific point in the workspace, one can map the point from the joint space to the end-

effector location in the workspace with known joint variables via forward kinematics (di-

rect kinematics). The alternative is to calculate the unknown joint variables for each joint

8

to place the end-effector at the specific point with inverse kinematics. In other words, for

forward kinematics the inputs are the joint angles, and the outputs are the coordinates

of the end-effector whereas it is vice versa for inverse kinematics. For a manipulator with

multiple degrees-of-freedom, the forward kinematics calculus is straightforward. How-

ever, it is more complicated for inverse kinematics since there may be more than one

unique configuration for the same end-effector coordinates. This is the case if, for exam-

ple, the final configuration would pose the manipulator to be redundant from a kinematic

viewpoint, i.e., some degrees of freedom are unused.

Section 2.1 explained how the body of a manipulator is thought of as a set of connected

links joined by a chain of joints. To solve the kinematic equations of the manipulator

mechanism, robotic links are considered as rigid bodies that define the relationship be-

tween two connected joint axes of a manipulator. Each degree of freedom is associated

with a joint articulation, which constitutes to a joint variable.

2.2.1 Forward kinematics

Forward kinematics utilizes kinematic equations of the manipulator to calculate the pose

of the end-effector from the joint parameters of the actuators. Process is essential to

detect if the manipulator can collide with the environment. For serial manipulators the

process consists of directly substituting the given joint parameters into the kinematics

equations for the serial chain. Forward kinematics solves a static geometrical problem

for computing the pose of the tool frame relative to the base frame. The process is oc-

casionally considered as changing the representation of a manipulator position from the

joint space into a cartesian space description.

For open chain kinematics the equations are obtained from a rigid transformation of the

relative movement at each joint and rigid transformation of each link dimensions as a

sequence from the base of the chain to the end link. This specifies the position for the

end-effector. The joint and separate link matrices are associated with coordinate frames

for spatial linkages. These are formulated into a homogeneous transformation matrix.

[11], [13]

Homogeneous transformation means reducing the composition of rigid motions to matrix

multiplication. Therefore, the overall description of manipulator kinematics is obtained

through a recursive process. The final matrix convention provides forward kinematics

calculation through composition of individual link transformations into one homogeneous

transformation matrix.

9

2.2.2 Inverse kinematics

The reverse process for computing the joint parameters is called inverse kinematics. The

process consists of calculating all possible sets of joint angles that could be substituted

to attain the given position and orientation of the end-effector at the operational space.

Most of the methods are categorized into complete analytical, also called closed-form,

solutions or numerical solutions [12].

The closed-form solutions are faster than numerical, but they are dependent on the struc-

ture of the manipulator and the solutions must be developed separately for each manip-

ulator. Yet, for real-time applications closed-form solutions are a necessity as the kine-

matic equations need to be solved at a rapid rate. If the computation of closed-form so-

lutions, algebraic or geometric method, cannot find a solution or it is difficult to generate

equations containing the unknowns, one can resort to numerical solution methods in-

stead. A prime example of numerical solutions and iterative methods is the utilization of

a Jacobian matrix, which exploits forward kinematic problem [12]. However, the equa-

tions to be solved are nonlinear, and closed-form solutions cannot always be found unlike

with forward kinematics where equations could provide a unique solution if the joint var-

iables were known. With inverse kinematics, there might exist multiple to infinite solutions

for the pose of the end-effector, especially if the manipulator is kinematically redundant.

Figure 2.4 depicts the problem field with an anthropomorphic manipulator like UR10e,

that can have multiple compatible configurations with the given end-effector pose.

Figure 2.4. Compatible configurations (left skeleton, right graphical) of an anthropo-
morphic manipulator with given end-effector pose. Modified from [9], [11].

Deriving the inverse equations for a six DoF manipulator is arduous and especially for

UR10e owing to its uncommon non-spherical wrist configuration. A note to be made, that

there are no general algorithms to be employed to solve a set of nonlinear equations and

a solution depends on the given schematic of the manipulator. Exemplary solutions for

the inverse kinematics problem can be examined from [14], [11] or [9].

10

3 LEARNING-BASED CONTROL PARADIGMS

Learning accumulates from the fundamental idea of interacting with the surrounding en-

vironment, developing conception of the consequences of actions, and how to minimize

or maximize the achievable goals [4]. Human way of learning follows these steps. In a

similar manner, a robot can be instructed to approach goal-directed learning, but instead

of doing this instinctively a machine has to rely on computational methods.

Learning-based paradigms are often related to machine learning domain, where learning

refers to a model making predictions on new, unseen data based on either available

training data or from data gained from the environment during training. The model itself

is fitted to a problem and it is based on some abstract principle of the data related to the

problem domain. Learning-based methods can be also found from robotics domain,

where processes comparable to learning are traditionally based on feedback control and

control methods. As an example, couple of known learning based control methods are

repetitive control [15], model predictive control [16] and iterative learning control [17].

Although, these methods utilize tracking error minimization, it is nontrivial to incorporate

this kind of optimization for any generic nonlinear system [18]. However, machine learn-

ing approach can be used to overcome mentioned issues. This thesis concentrates on

demonstrating learning from the point of view of machine learning, hence future refences

to learning-based paradigms are referring to machine learning paradigms. Machine

learning is approached as a unifying discipline of data science fields with a focus on

presenting the paradigms especially from the point of view of robotics.

3.1 Machine learning paradigms

Machine learning depends on data to perform results. In addition, the expectations of the

results depend on the correct selection of algorithms. Therefore, the quality of the results

is affected by the available and collected data, used algorithm, but also the used para-

digm. Generally, machine learning and its functionalities have been divided into three

paradigms as depicted in Figure 3.1.

11

Figure 3.1. Overview of main machine learning paradigms and methods, modified from
[19].

The machine learning paradigms consist of supervisor learning with labelled data either

with classification or regression method, unsupervised learning with unlabelled data ei-

ther with clustering or dimensionality reduction method, and finally of reinforcement

learning where algorithm processes unlabelled data and learns either with value or

model-based method. All the presented methods and paradigms have in common that

they learn from data and produce predictions. This commonality propagates from numer-

ous scientific disciplines such as pattern recognition, data mining, computer vision and

statistical signal processing that have come to comprise the term machine learning. What

machine learning is used for is to develop a predictive model that tries to discover un-

derlying structures and regularity patterns from the data. Basically, the process is to learn

from the data with the created model [20].

A more modern approach to traditional fitting model to describe observable data, is to

utilize algorithmic modelling where no explicit model is necessarily specified, but the ma-

chine identifies associations in the observed data and creates the model independently.

The approach is called deep learning (DL), which is a subfield of machine learning ca-

pable of managing higher number of free parameters and complex model architectures

with neural networks. Used datasets are often large and incomprehensible to human.

The approach has led to many breakthroughs in a variety of applications where describ-

ing models was unattainable in the past, because of lack of sufficient computing power.

Although, the complexity of the generated model may pose interpretation problems, mod-

els being sometimes called a “black box”, owing to the algorithmic transparency, and the

amount and correlations of free parameters, significant progress have been made over

the recent years to understand the processes of the generated model structures [19],

[21]. In robotics domain, DL has been utilized in many fields: natural language pro-

cessing, perception and motion control, to name a few [22].

12

From Sim2Real perspective the most utilized machine learning paradigm is reinforce-

ment learning. Where reinforcement learning methods have shown success in the do-

main of robot control with low dimensional state-action spaces with limitations in contin-

uous cases [23], deep reinforcement learning (DRL) methods with deep neural networks

have been shown potential in high-dimensional and continuous action-state spaces [24].

Occasionally in the literature DRL is referenced just as reinforcement learning.

3.2 Reinforcement Learning

In reinforcement learning the object is to develop a model that can learn to take optimal

actions in a specified environment. The optimal action is defined as an action that max-

imizes the expected reward over a specific time period. Reinforcement learning may uti-

lize software agents that produce actions while interacting with the environment. In prin-

ciple, reinforcement learning separates the learning environment or the real-world envi-

ronment into two main components: an environment and an agent. Agents are tasked to

try different strategies to discover the best approach for the given task, which is achieved

by maximizing the cumulative reward through interactions with the environment through

mapping of states to actions. While conducting interactions with the environment during

numerous steps, the algorithm learns from the feedback from the environment. Feedback

is not the ground truth, but a measure of how well the performed action was conducted

by a reward function in the environment. [4]

The agent learns to perform more in line with the targeted outcome by trying to achieve

more positive rewards from the environment. Reinforcement learning algorithms differ

from one another according to the decision-making processes, policies, and used reward

functions. Yet, the principle of exploratory trial-and-error planning approach is the same

within the paradigm. The overall outcome to learn for a reinforcement learning is the

dividing factor that branches algorithms into their own sub-classes. Usually learning in-

cludes stochastic or deterministic policies, state-value functions, action-value functions

and/or environment models. [4]

Compared to supervised and unsupervised machine learning paradigms, reinforcement

learning is more focused on goal-directed learning from interaction. Difference between

reinforcement learning and supervised learning is that the objective of supervised learn-

ing is for the system to generalize or extrapolate generated responses to act correctly in

situations not present in the training dataset. This kind of a process is not proficient for

learning from interaction, since most of the time it is impractical to collect a labelled train-

ing dataset of desired behaviour that is applicable to all situations in which the agent is

acting. Instead, in reinforcement learning the agent learns from its own experience and

13

generally without labelled datasets. This practice is similar to unsupervised learning

which did not rely on previously known examples of correct behaviour as its data source.

However, unsupervised learning, which aims to discover hidden structures within the

data, does not address the reinforcement learning problem of maximizing a reward sig-

nal. Yet, both supervised and unsupervised learning can be utilized as part of reinforce-

ment learning if seen fit to address the given problem [25], [26].

Depending on the research domain and the approach on the topic, there are different

ways to express the taxonomy and categories of reinforcement learning [27], [1]. This

thesis takes the approach specified in Figure 3.1 by making the distinction between

model-based and model free methods. To understand the structure and difference of the

aforementioned methods, first the general idea of learning within reinforcement learning

is specified.

3.3 The Markov Decision Process

Markov Decision Process (MDP) involves sequential decision-making optimization,

which is one of the key challenges in developing machine learning based algorithms.

The MDP is a mathematical framework based on goal-directed learning from interaction,

where the agent and environment are the basic components. The agent has explicit

goals to achieve via choosing actions to influence in the environments. As the agent

performs actions At it is learning a policy π, which defines how agent behaves at a given

time. In general terms, a policy is a set of rules or network weights which are used for

mapping specific actions to perceived discrete states as the agent confronts those states.

A state St refers to the current status of the agent within the environment. One could

indicate, a state is at the core of reinforcement learning paradigm as it is the input to the

state-value and action-value functions. The environment reacts to the taken action, which

changes the state of the environment and produces a reward Rt. Therefore, a state as

an input to the agent and as an output from the environment refer to the changing status

of the environment model as the agent performs actions. Change of the state causes the

environment to return to the agent an observation of the updated state, St+1, and the

reward, Rt+1, determined according to the quality of the performed action.

Each state is associated with a positive or negative reward. Reward type incorporates

how the agent has managed from the perspective of the overall goal. However, even

though the optimal action in the current state might result in a negative immediate re-

ward, the action would result to significant positive rewards afterwards in the coming

states. Or vice versa, if the action is not optimal, it could lead to a significant immediate

reward, but low rewards in the later steps. Hence, the problem of achieving the goal of

14

learning a policy that maximizes the received rewards over all the steps of an episode,

is captured in choosing the correct action in any given step. An episode is a sequence

of states, actions, and rewards over all the steps:

𝐸𝑝 = (𝑆0, 𝐴0, 𝑅0, 𝑆1, 𝐴1, 𝑅1, …) (3.1)

Updated state and reward guide the agent to perform the next action. The process of

learning a policy is thereby a feedback loop between the agent and the environment,

which guides the improvement of the agent [1]. The agent-environment interaction pro-

cess is depicted in Figure 3.2.

Figure 3.2. The basic structure of reinforcement learning paradigm as the agent-envi-
ronment interaction process. Modified from [4].

The learning process continues until the expected return of rewards is maximized, which

happens either after a specific threshold value or a terminal state is reached. The time

between start and terminal step defines a time period that can be described as sub-

sequences within the learning process, or more commonly as episodes. Each episode

is followed by a reset to a specified starting state, which is usually a standard for the

environment or a sample from a standard set of starting states. Also, each episode be-

gins independently from others and is unaffected by how the previous episodes ended.

Hence, each episode has the possibility to get different rewards as they may have differ-

ent outcomes. For instance, in robotic domain the episode could end if the manipulator

has reached a target and the indicative cumulative reward of states is higher than a

threshold value. On the other hand, episode could end as an arbitrary limit for the maxi-

mum number of time steps have been reached, since the simulated or real manipulator

has not managed to accomplish the given task and cumulate high enough reward. It is

also possible that episode does not have a pre-planned fixed ending, but the episode

ends as the time steps run out.

The MDP promotes that any goal-directed behaviour can be expressed with the afore-

mentioned action, state and reward signals influencing between agent and its environ-

ment. However, as a framework, the MDP only defines the status of these components.

To solve the MDP for an optimal policy that maximizes the received reward over the

15

episode, reward and state transition functions in addition to state-value and action-value

functions need to be explored.

3.3.1 The reward function and the goal

A reward function is typically associated with the environment, which is for the MDP a

function that maps the current state and action, and future state to a real value. Thereby,

a reward function can be defined as R : S  A  S  ℝ. However, in some cases the

reward function depends only on the current state and is defined as R : S  A  ℝ. How

the reward function is defined, depends on the problem and modelling choice [4]. The

first one mentions each component explicitly, while the latter implicitly denotes the sum

of regards weighted by a specific probability. The reward function is tied to the aforemen-

tioned state transition of the environment, so that if the transition is deterministic or sto-

chastic by nature so is the reward function. This means for a given state, action and

future state tuple, the reward function can output always the same deterministic value,

or a random stochastic value.

A well designed reward function is crucial to successfully implement reinforcement learn-

ing [1]. A reward function provides feedback from the environment to the agent, accord-

ing to the environment status at every time step in the form of an immediate reward Rt.

The reward is the observed numerical value at each time step Rt  ℝ, when the environ-

ment performs a state transition given an action. However, as mentioned in the previous

Section 3.3, choosing a ‘correct’ action is balancing between immediate and future re-

wards.

A solution for estimating future expected rewards in the current state, is the utilization of

discount factor . With discounting, the agent is guided to select actions that will produce

maximized sum of the discounted future rewards. The expected discounted return can

be defined as:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 2𝑅𝑡+3 +⋯+ 𝑇−1𝑅𝑇 = ∑𝑅𝑡+1
𝑡

𝑇−1

𝑡=0

(3.2)

where   [0,1] is the discount parameter and Rt is the immediate reward at time t. The

discount parameter depends of the problem and is tuned accordingly for optimal results

[1]. The discounted return is a weighted sum of the return, meaning the further away the

reward is in the future, the lower its value is in the current state. Therefore, a reward

received at a time step t in the future is now only worth t-1 times what it would if received

in the current step. Rewards from closer time steps are given more appreciation. Though,

16

as the discount parameter approaches value 1, future rewards are being considered

more effectively.

The context of a goal and a reward are bridged together by the reward function, which

can be seen as a quantitative form of the goal. The goal is the target for which reinforce-

ment learning is being utilized, and the reward function is manually designed to align with

the goal in order for the agent to learn from reward feedbacks. Therefore, the goal and

the reward function are to be seen as different entities. If the final learned policy provides

different results that were expected after achieving the final goal, it is possible the agent

has overfitted to the reward function. A plausible reason for this is the divergence of the

reward function and the final goal. To avoid the divergence, the reward function should

be designed to be consistent with the goal and cover all corner cases as well. [1]

The reward function is often unknown to the agent, which forces the agent to learn

through trial-and-error by observing the environment while performing actions. The re-

ceived reward feedback enforces the agent to learn the ideal behaviour. The reward

function can be sparse or dense in regards of producing reward feedbacks. A sparse

reward function is occasionally defined as a binary value being zero in most of its domain,

and providing positive values, such as 1, only in a few state transitions. In an environment

with a sparse reward function, the agent needs to take many actions before achieving

reward feedback on its actions. This may slow down the learning, because without feed-

back the agent cannot qualify its actions to be good or bad. Regarding the reaching task

in this thesis, a sparse reward function for a manipulator could be zero if the Euclidean

distance between the end effector and the goal position is greater than the required pre-

cision 𝑇. A successful action is rewarded by 1 if the distance of the end effector is less

than the required precision. This can be defined as:

𝑅 = {
 0, 𝑇 < 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

1, 𝑇 ≥ 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙),
(3.3)

where ee refers to the pose of the end-effector and goal to the pose of the reachable

target in cartesian space.

A dense reward function refers to a function that provides rewards in most of the state

transitions. In an environment with a dense reward function, the agent receives feedback

at almost every time step, making the learning process graduate faster. The agent starts

to learn to distinguish good and bad actions from the beginning. For a robotic reach target

task an example of a dense reward function could be similar to the example of the afore-

mentioned sparse reward being a Euclidean distance between the end-effector and the

goal pose that is evaluated. If the pose of the end-effector is smaller than the required

17

precision 𝑇 then the action is considered as success and the set reward is 1. Otherwise,

the set reward penalizes the distance. This can be defined as:

𝑅 = {
−𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙), 𝑇 < 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

1, 𝑇 ≥ 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙).
(3.4)

The learning process can be further accelerated by augmenting the reward function with

heuristics. These are for guiding the agent to perform actions in a specific way that are

inline with the targeted goal. For a robotic reaching task, heuristics could include that the

end-effector is approaching the target in a specific angle, the pose of the end-effector is

specific and/or the joint angles of the manipulator are within specific thresholds.

The presented expected return Gt and the reward function R are important for the learn-

ing of the agent and for it to get feedback on its actions. However, the actual evaluation

of actions is implemented with the state-value and action-value functions that follow spe-

cific policies.

3.3.2 Formal definition of the MDP

The formal definition of the MDP can be modelled as a tuple {S, A, P, R, }. S represents

a finite set of states, and A is a finite set of actions. At each time step the agent observes

a state st  S and performs a specific action at  A, hence S and A denote the state

space and action space of the environment. P represents a (state) transition probability

function, which is the system dynamics by stating the transition probability of the envi-

ronment from state 𝑠 to 𝑠′ when the agent performs an action 𝑎:

𝑃 = 𝑃𝑠𝑠′𝑎 = 𝑝(𝑠
′|𝑠, 𝑎) = Pr[𝑆𝑡+1 = 𝑠

′| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. (3.5)

When the action is performed, the environment returns the next state st+1 according to

the transition function, and an associated immediate reward is produced by the reward

function 𝑅𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1), which was presented in the previous Section 3.3.1. The final

parameter of the tuple is the discount parameter . If all the MDP tuple parameters are

known, it is possible to train the agent without interaction with the environment i.e. policy

iteration or value iteration [1]. However, usually the reward function and transition prob-

ability function are left unknown to the agent. The way how the agent decides to perform

specific actions to receive maximized cumulative rewards in return, is defined according

to a policy 𝜋 ∶ 𝑆 𝑝(𝐴) that directs state-value and action-value functions.

The state-value and action-value functions are a common aspect of each RL algorithm

and how they are estimated. Estimation of the functions involve exploring whether spe-

cific actions are worthy to be performed in the given state or how benefactory for the

agent is to be in the given state. The comparison of states is defined in terms of expected

18

future rewards. More precisely, the state-value function describes the value of being in

a state St, where the value is the expected sum of discounted future rewards if the agent

starts performing actions from that state. What actions the agent starts to perform affect

the rewards the agent can expect to receive in the future. Performed actions that lead to

specific future rewards follow policies, which define value functions. A policy π imple-

ments mapping the probabilities of selecting specific actions to perceived states of the

environment when being in those states. A policy is at the core of the agent and hence

the learning process, since policy determines behaviour which guides agent to evaluate

actions. Accordingly, as policy comprises of suggested actions the agent should take at

possible states it is also linked to the reward function. A state-value function of a state s

under a policy π at a time step t that represents the expected return of Rt+1 is denoted as

v(𝑠) ≐ 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼 [∑𝑅𝑡+1
𝑡 | 𝑆𝑡

𝑇−1

𝑡=0

= 𝑠] , for all sS (3.6)

Eπ explains the expected value of the sum of discounted future rewards Gt starting from

the current state. Basically, the episodes are sampled according to the policy, so that

produced actions are conditioned on past states. While the value function is under a

policy and there would be two different next states, S1 and S2, to proceed from the

current state, both of the next states would be estimated separately and usually the policy

selects the state with the higher expected return. In principle, the state-value function

determines the goodness of any given state for an agent who is following a policy π. The

expected return calculation depends on the used reinforcement learning method, but the

terminal state is always denoted as zero. A simple way to estimate the value function is

to utilize Monte Carlo method [4],[1].

In a similar manner, the action-value function comprises of as being in a state s and

taking an action a at a time step t and thereafter following a policy π. The action value

function denotes an expected return under a state and an action as

q(𝑠, 𝑎) ≐ 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝔼 [∑𝑅𝑡+1 | 𝑆𝑡

𝑇−1

𝑡=0

= 𝑠, 𝐴𝑡 = 𝑎] . (3.7)

In principle, the action value function determines the goodness of the action taken by the

agent from the given state for a policy π. The action-value function is also often referred

to as the Q-function and the output of the action-value function is referred to as Q-value

standing for quality. In reinforcement learning literature [27], [4], the core results are ex-

pressed with the Bellman equations that can be derived from the expressed action value

function by rewriting it in a recursive form

19

q(𝑠, 𝑎) = 𝔼𝑠′~𝜏(.|𝑠, 𝑎) [𝑅(𝑠, 𝑎, 𝑠
′) + 𝔼

𝑎′~(.|𝑠′)[𝑄
(𝑠′, 𝑎′)]] . (3.8)

For instance, optimal policy and value functions can be derived through the Bellman

equations. Usually, the Bellman equations are solved with Monte Carlo method, dynamic

programming or by temporal difference.

Both state-value and action-value functions are critical for the reinforcement learning al-

gorithm to manage learning as they offer a way to compare actions and states in the

evaluation of best results. An important aspect to note is that the selection of future ac-

tions in a state are solely based on the information the state can provide on the past

agent-environment interactions. If the state does provide all the relevant information to

find the optimal action, then the state is said to fulfil the Markov property [4]. In a case

the state does not contain enough information, the learning process of the agent is likely

to be compromised and the agent fails to learn the optimal policy. The general presen-

tation of the optimal policy, which is the central optimization problem in reinforcement

learning is defined as

𝜋∗ =
argmax 𝐽()


, (3.9)

where ‘*’ refers to ‘optimal’ and J() to the expected return of a specific measure. The

optimal policy can be defined as a policy that maximizes the expected return of the action

value function 𝑞𝜋(𝑠, 𝑎) as:

𝜋∗ = argmax𝑄
(𝑠, 𝑎)


. (3.10)

There is at least one optimal policy, which is better or equal than other policies [4].

In reinforcement learning, the learning process is considered to be based on trial-and-

error. The agent observes the environment and learns through multiple trials-and-errors

to maximize reward feedback. However, the optimal policy cannot be learned, and there-

fore the optimal reward achieved, if not all states have been explored. Agent cannot

know which actions would produce better rewards than already explored actions, unless

the agent tries to discover new unexplored actions from the actions space. Yet, in order

to obtain a high cumulative reward, the agent prefers actions that it knows to be effective

in producing high rewards. The trade-off of exploiting an action what is already known to

be effective and exploring the unknown in an effort to come up with better actions and

increasing existing knowledge is called exploration-exploitation dilemma. Neither explo-

ration nor exploitation can be enthroned above the other without failing to achieve the

maximum cumulative reward. The trade-off can lead the agent to fall into local value

maximums if it only favours found actions. In contrast, if the agent only randomly explores

20

actions, it most likely does not achieve the best maximized reward. Because the explo-

ration-exploitation trade-off is a well-known problem in reinforcement learning, numerous

exploration policies have been developed and there are a variety of policies depending

on whether the action space is discrete or continuous.

Discrete and continuous actions define the two types of actions in RL. Discrete action

space includes a finite set of discrete actions for agent to perform [1]. As for continuous

actions space, actions are expressed with known limits as a real-valued vector. Hence,

the agent can perform any action between the known limits [28]. Common solution for

discrete action spaces is the utilization of ϵ-greedy policy, where the hyper parameter

value ϵ is chosen randomly and decayed over time to find a balance between exploration

and exploitation [4]. Similarly, an example of exploration policy for continuous action

space is the policy parameterization where a trained policy produces a mean and stand-

ard deviation as an output from which a value is sampled with Gaussian distribution to

define an action [4]. Other worthy exploration policies are entropy cost term based policy

[29] and adding noise to the greedy policy [30], to name a few. Since robot control is

implemented in continuous action space, the scope of this thesis concentrates on those

solutions and they are investigated more thoroughly in Section 3.6.

As the agent takes actions in the action space of the environment, the interaction pro-

duces information to the agent in the form of rewards. Exploring the environment is a

challenging task for the agent if the environment is non-stationary, the action space is

large or if the rewards are sparsely available. As mentioned above, learning in the envi-

ronment is based on the Bellman equations consisting of state-value and action-value

functions. These equations can be solved with dynamic programming, Monte Carlo

method, or temporal difference method [4]. The reason why these functions need to be

solved, is to be able to estimate mentioned functions for a particular policy. Estimation

enables the agent to choose an action that will produce the best reward, after being in

the given state. Although these methods can be combined in a variety of ways, and be-

cause of this interlinked relationship they all are meaningful for reinforcement learning,

this thesis concentrates on temporal difference owing to the continuous actions space in

robotics domain and the derived algorithms that come from it.

3.3.3 Temporal difference learning

The concept of temporal difference learning is one of the central developments to indi-

cate progress in reinforcement learning based algorithms [4]. Temporal difference is an

intermediate form between dynamic programming and Monte Carlo Methods combining

21

ideas from both parties. Similar to the Monte Carlo method, temporal difference provides

a solution for the prediction problem of future rewards, states and actions to be taken by

not requiring full knowledge of the environment. The prediction problem is extended to

the control problem of estimating a policy by introducing generalized policy iteration de-

rived from the dynamic programming method. [31]

The estimation process in temporal difference utilizes a process called bootstrapping.

Estimates of state and action value functions are being updated according to estimates

of future rewards. If the state-value and action-value functions were to be solved without

estimation, the state-action pair values could be updated not until the final reward would

been received. After the final reward would be received, the path to the final state would

be traced back to the initial state and each state-action value would be updated accord-

ingly. Hence, the update process is done without waiting for the final reward.

In principle, the target value for the temporal difference update is formed from the ob-

served reward and an estimated state value for the next state, expressed as 𝑅𝑡+1 +

𝑉(𝑆𝑡+1). This update can be calculated at each step. The difference or error between

the target value and the estimated value can be defined in terms of error equation as

𝐸𝑡 = 𝑉(𝑆𝑡)
∗ − 𝑉(𝑆𝑡), where 𝑉(𝑆𝑡)

∗ is the bootstrapped true value. The generalized error

equation is then expressed as

𝐸𝑡 = 𝑉(𝑆𝑡)
∗ − 𝑉(𝑆𝑡) = (𝑅𝑡+1 + 𝑉(𝑆𝑡+1)) − 𝑉(𝑆𝑡). (3.11)

This difference at different time steps depicts learning what is achieved through temporal

difference. If this difference is multiplied by a learning rate , which is a constant variable

at each step, the update rule can be defined for a state value function as

𝑉(𝑆𝑡)  𝑉(𝑆𝑡) + [𝑅𝑡+1 + 𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]. (3.12)

The presented method makes the update immediately as it receives the reward and the

next state. It also only looks one-step ahead but can be extended to N-steps by extending

the target value with discounted rewards. In principle, above equation presents a

weighted average across different episodes Yet, the principle stays the same as tem-

poral difference methods learn directly from the interaction with the environment by uti-

lizing bootstrapping.

The action selection in each step is accomplished according to a policy. The general idea

of policies is to balance the trade-off between exploration and exploitation, as discussed

in previous Section 3.3.2. This is managed by not always exploiting what has been al-

ready learned, which eases the agent to avoid local optima. Policy structures are divided

into on-policy and off-policy evaluation. With on-policy algorithms, the agent evaluates

22

the same policy that is used to explore the environment, whereas off-policy algorithms

have a separate sampling behaviour policy in addition to the target policy which is being

learned and evaluated. Thereby off-policy algorithms can use the experience of other

agents interacting with the environment as well to improve the policy. The general idea

of off-line policy is that the agent can freely explore without its actions necessarily corre-

sponding to the best learned policy. The behaviour policy operates by sampling all the

actions, while the target policy is deterministic on its action choices. Hence, the target

policy evaluates and improves its policy through the exploration of the behaviour policy.

These policy evaluation algorithms can be based on other methods such as Monte Carlo.

However, temporal difference based algorithms are often favoured owing to their lack of

a environment model to learn, their capability to evaluate and learn a policy at every step

with online learning, and their lower variance [1], [32].

One of the most common on-policy algorithms is Sarsa, which selects an action based

on the current policy. After executing the action, generated data is used to update the

current policy. From the off-policy side comes one of the most notable breakthroughs in

reinforcement learning, an off-policy temporal difference control algorithm known as Q-

learning [33]. Q-learning uses ϵ-greedy policy, which was discussed in previous ex-

plained Section 3.3.2, for selecting actions and a behavioural policy for yielding maxi-

mum Q-value. Therefore, the policy that interacts with the environment and the updated

policy are not the same policy as Q-learning updates Q-values without making predic-

tions about the actual target policy.

Decision to use a specific policy depends on the context and the quality of data and the

available model. The same applies to choosing a reinforcement learning algorithm in

general. Yet, with temporal difference the Bellman equations can be solved by estimating

the state-value function of the MDP. However, the MDP itself can be expressed either

with model-based or model-free methods.

3.4 Model-based and model-free methods

The taxonomy in reinforcement learning can be expressed by separating the concept of

a model into model-based and model-free methods. In reinforcement learning, the model

refers to either a pre-trained model with initialized parameters or a model such as a neu-

ral network that has learned specific parameters. However, depending on the academic

source a model does not necessarily mean a neural network or other statistical learning

model integrated with the agent, but whether the agent uses predictions of the environ-

ment during learning. Predictions can be provided for the agent by an outside source

23

such as an external algorithm that is designed to understand and uphold the environ-

ment, or the agent can learn these predictions making them into approximations. In this

thesis, a model is referred to as a function which predicts state transitions and rewards.

In addition, the difference between the model-based and model-free method is high-

lighted by whether the agent has access to or must learn a model of the environment

such as the reward and transition functions. Despite reinforcement learning algorithms

are occasionally modular, and the terminology and notation may differ between aca-

demic sources, the taxonomy of reinforcement learning models can be presented as

depicted in Figure 3.3.

Figure 3.3. The taxonomy of reinforcement learning methods. Modified from [1].

In model-based method the learning process is achieved by predicting the elements of

the environment, although the reward and state transition functions are not known by the

agent. Yet, if the agent can collect data samples of the state, action, next state and re-

wards {St, At, St+1, Rt} while performing actions in the environment, it is possible to predict

the values of the reward R and state transition functions P. These samples are collected

by constantly interacting with the environment. After all the elements are known, the

agent can plan its actions and locate optimal cumulative reward. The model can be either

given or learned. Therefore, the agent either tries to learn the model or tries to refine the

given one. In the aforementioned case where the agent has to learn the model, the en-

vironment is too complex to form a model that could be given. On the other hand, if the

model is given, then the agent has direct access to the models of the reward function

and transition function. These are then used by the agent to evaluate and improve its

policy and make cognitive predictions of the future returns. [5]

Another solution to approach learning, is to use model-free method by not concentrating

on developing the model of the environment, but to directly try to discover the optimal

policy. The model of the environment here refers to the dynamics of the environment i.e.,

reward and state transition functions. The procedure is similar to model-based learning

with learning the model as the agent interacts with the environment, but progressively

24

acquires cached estimates of the long-turn rewards and actions built upon past experi-

ence. Value-based method chooses actions with the highest value from the action-value

function and converges the result, hence optimizing the action-value function. This ena-

bles deriving the optimal policy. Another way is the policy-based method, which itera-

tively updates the policy until the accumulated return of rewards is maximized. In princi-

ple, model-free method either estimates the action-value function or the policy from pre-

vious experience on interactions between the agent and the environment, without con-

sidering reward or state transition functions. For instance, the previously presented tem-

poral difference forms a category of model-free methods. [4], [5]

The decision on which method to use depends on the model of the environment, whether

the agent has access to the dynamics of the environment and whether the action space

is continuous or discrete. In model-based methods the agent can execute better planning

since future rewards and states can be anticipated owing to the model of the environ-

ment. The agent can explicitly decide between options and see beforehand the outcomes

of possible choices. The results of planned choices are then conjoined into a learned

policy. The downside of the model-based methods is that the ground-truth model of the

environment is not usually available, or the dynamics of the environment are too complex

to be represented explicitly. In this case, the agent has to learn the model from experi-

ence, which may induce bias in the estimation process. The agent exploits this bias re-

sulting in results that perform well according to the learned model, but inaccurately in a

real environment. On the other hand, model-free methods are easy to implement, tune

and handle dynamical systems with minimal bias since they do not consider the model

of the environment [6]. This comes at the price of potential gains in sample efficiency,

meaning model-free methods have to explore more intensively to gain experience upon

which to develop the policy. Also, the resources required for the exploring in a real-world

environment can be high and the exploration can cause safety risks. [4]

In addition to aforementioned methods, there are methods that combine the character-

istics of different learning processes. This thesis considers one of the most popular meth-

ods, which is the interpolation of the value-based and policy-based methods from model-

free method: the actor-critic framework. Algorithms based on this framework are later

implemented in the empirical part of the thesis.

3.5 Actor-critic framework

The Actor-critic method is a combination of value-based and policy-based method by

separating the policy and the evaluation of actions into two separate entities. Merits of

value-based methods are used to learn the state value function for the sake of sample

25

efficiency, and policy-based methods are used for learning the policy either for discrete

or continuous action space. Basically, actor-critic methods are inherently temporal differ-

ence methods with a separate memory structure which enables representing the policy

independent of the state-value function. Policy iteration is taken care of with online ap-

proximations where state-value parameters are estimated using temporal difference

methodology. The policy parameters are updated by a stochastic gradient descent [34].

This framework of the actor-critic method is of special interest in cases which involve

large or infinite state spaces in addition of being continuous.

Actor-critic algorithms manage updating estimation and policy parameters in different

ways, but the basic structure of the actor-critic framework is based on simultaneous

online estimation of the actor and critic parameters [34]. The actor is responsible of learn-

ing a conventional action-selection policy by mapping states to actions according to prob-

abilities. In principle, actor is used for selecting actions. The critic represents a conven-

tional state-value function and is responsible of evaluating the policy by mapping states

to expected future rewards. The evaluation is accomplished by criticizing the actions

made by the actor in order to evaluate the new state and determine the quality of pro-

gress. If the critic is estimating the action-value function Q(St, At), it also requires the

output of the actor. In other words, the actor is concerned with the control and the critic

is addressing the prediction. The optimal policy is discovered by solving the control and

prediction problems by the critic giving feedback to the actor, which updates its policy

accordingly. Then the critic updates its estimates according to the estimation error of

temporal difference learning, Equation 3.11, in which estimates are updated with boot-

strapping, discussed in Section 3.3.3. Hence, the output of the critic is responsible of

learning in both the actor and the critic. Conventional actor-critic frameworks for on-policy

and off-policy are depicted in Figure 3.4.

Figure 3.4. Actor-critic framework with on-policy (left) and off-policy (right), modified
from [4], [35].

26

The critic, that is extended from the temporal difference, utilizes bootstrapping with Equa-

tion 3.12 on estimates of future state-values to estimate the Q-value, see Equation 3.8.

The output of the critic is the update to the policy, which can be approached depending

whether the actor-critic method is on-policy or off-policy based as was introduced with

temporal difference in Section 3.3.3. On-policy algorithms update the policy and state-

value estimates according to the current policy, whereas off-policy algorithms are not

dependable on the current policy but use the optimal learned policy by the target policy.

Here optimal policy refers to a policy or policies different from the one the agent is exe-

cuting, which could be a random exploration product by the behavioural policy [35]. Ad-

ditionally, off-policy algorithms can utilize experience replay buffer to store the experi-

ence of the agent. This memory includes the basic MDP interaction parameters as a

tuple {St, At, St+1, Rt}, which can be utilized in future iterations to improve sample effi-

ciency in state-value function estimations by the critic. On-policy algorithms do not re-

quire a replay buffer, since they do not reuse experience sampled from an old policy to

estimate the policy gradient.

Although actor-critic methods have the advantages of the value-based and policy-based

methods, they inherit the disadvantages as well. The actor is inclined to suffer from in-

sufficient exploration, and the critic suffers from overestimation. These obstacles have

been confronted with a variety of algorithms both on on-policy and off-policy based [29],

[36], [4]. This thesis is interested on algorithms based on actor-critic framework that can

work on continuous action space. This also brings forward the way how policy gradients

are dealt with, meaning the scope of the thesis is extended to cover gradient-based op-

timization.

3.6 Reinforcement algorithms for continuous action spaces

Continuous action spaces were for a long time an unsolved problem for the reinforce-

ment learning community. After the advantages made among deep neural networks,

namely deep Q-networks (DQN) [37], the research started to concentrate on solving

high-dimensional problems with DRL. DQN works with low-dimensional problems in a

discrete space, so the next step was to look towards the continuous space. The problem

of continuous action spaces is especially relevant considering this thesis, since a variety

of characteristics in robotics domain, such as control, are continuous.

27

Stochastic policy gradient

The challenge of training a policy in a continuous action space is traditionally cornered

with a stochastic policy gradient by representing the policy with a parametric probability

distribution

(𝑎𝑡|𝑠𝑡) = ℙ[𝑎𝑡|𝑠𝑡;], (3.13)

where action a in a state s is selected stochastically with parameter vector . The sto-

chastic policy  is then sampled, and the policy parameters adjusted in order to achieve

the best cumulative reward. In principle, with stochastic policy for each state in order to

take an action a sample of possible actions is taken, and the decision is based on the

distribution. Because stochastic policy gradient assumes the policy is a distribution, the

algorithm integrates over both action and state spaces to get the gradient of the cumu-

lative reward.

The aforementioned policy gradients are performing under the idea that policy parame-

ters  are adjusted by solving the performance gradient of the policy gradient theorem

[4]. The theorem defines the gradient over the cumulative reward (reward function [4])

as

𝐽()=𝔼𝑠~𝜌,𝑎~[ log (𝑎|𝑠)𝑄
(𝑠,𝑎)]

=∫ 𝜌(𝑠)
𝑆 ∫ (𝑎|𝑠)𝑄(𝑠,𝑎)𝑑𝑎𝑑𝑠𝐴 . (3.14)

The theorem states how the policy optimization is carried out on a policy  with respect

to a goal or policy performance metric J() through a gradient in continuous space. The

theorem is applicable for both stochastic  and deterministic policies , and they both

maximize the cumulative reward through estimating repeatably the gradient. When the

stochastic gradient of J() is calculated with respect to the policy parameters , these

parameters can be updated accordingly

 =  +  𝐽() (3.15)

where  represents the learning rate. Above Equation 3.15 is known as gradient ascent

and results in a policy that will provide higher rewards after each episode finally resulting

in a maximized reward.

Deterministic policy gradient

However, after the introduction of Deterministic Policy Gradient (DPG) [38], it was shown

that sample efficiency can be increased by only integrating over the state space. DPG

models the policy according to a deterministic decision. Mapping is done deterministically

28

from state to action, and the result is an action instead of probability. This action selection

is defined as

𝑎𝑡 = (𝑠𝑡|
) + σ𝑡, (3.16)

where (𝑠𝑡) refers to the deterministic policy similar to Equation 3.13 with stochastic pol-

icy function.  represents the deterministic policy parameter. Distinction is made to re-

move the ambiguity between the policies. Because deterministic policies do not cover

exploration over the action space, noise σ is added to the exploration [38].

For deterministic policies the gradient over the reward function is defined through deter-

ministic policy gradient theorem [38]. The theorem defines the gradient over the reward

function as

𝐽()=𝔼𝑠~𝜌[(s)𝑎 𝑄
(𝑠,𝑎)|𝑎=(𝑠)

]

=∫ 𝜌(𝑠)
𝑆

(𝑠)𝑎 𝑄
(𝑠,𝑎)|𝑎=(𝑠)

𝑑𝑠
, (3.17)

where the discounted state distribution 𝜌(𝑠) is defined analogously to the stochastic

policy gradient in Equation 3.14. The defined deterministic gradient enables to update

policy parameters to the direction of the gradient.

The policy gradient methods are advantageous in a variety of real world applications,

namely robotics domain [39], [40]. The robotics domain has traditionally used determin-

istic model-based methods for acquiring the policy gradient, though for a complex envi-

ronment it is extremely difficult to produce a detailed model that includes the simplest

details. The case is emphasized with an autonomous system to work adaptively in a

changing environment. Hence, the policy gradient is to be estimated with a model-free

method by generating the estimation from data collected during the task execution. This

thesis concentrates on two specific algorithms that are build off the deterministic policy

gradient, and which are commonly utilized within the robotic domain owing to being off-

policy and model-free: Deep Deterministic Policy Gradient and Soft Actor-Critic.

3.6.1 Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) is one of the most known deterministic gradi-

ent policy-based algorithms having a stochastic behaviour policy, but a deterministic tar-

get policy [28]. Stochastic policy is used for enhanced exploration and deterministic pol-

icy is easier for the agent to learn. With two different policies the DDPG utilizes in its core

an off-policy method, that formulates action predictions for the current state and gener-

ates a temporal-difference error signal at each time step. Hence, the DDPG utilizes also

an actor-critic framework.

29

The actor network depicted as  takes the current state as its input and outputs a real-

valued action chosen from a continuous action space by establishing a policy function

as (𝑠𝑡|
). Here actor network is a deterministic policy network. The critic network de-

picted as 𝑄 utilizes the Q-function, which is updated with the temporal difference error,

and also takes the current state as an input. As an output the critic produces an estimated

Q-value with 𝑄(𝑠, 𝑎|𝑄). Both actor  and critic 𝑄 networks have target networks ’ and

𝑄’ respectively that are updated according to the original networks. Hence, DDPG utilizes

altogether four networks. [28]

In principle, DDPG is an extension of DQN algorithm in continuous action space with a

combination of actor-critic framework while concurrently learning a deterministic policy

and a Q-function [1]. Both DDPG and DQN have the same Q-function as a critic, and the

temporal difference is utilized to update the function. In both, the Q-function is learned

using the Bellman equation, see Section 3.3.2 and Equation 3.8. The critic is updated

with gradient descent by minimizing the loss between the current estimates and target

values defined as

𝐿 =
1

𝑁
∑(𝑌𝑖 − 𝑄(𝑆𝑖, 𝐴𝑖|

𝑄))
2
.

𝑖

(3.18)

This loss function represents the Mean Square Error (MSE), where Yi is the desired out-

put and an estimate of the Q-value as 𝑌𝑖 = 𝑅𝑖 + 𝑄
′(𝑆𝑡+1,′(𝑆𝑡+1|

′)|𝑄′) produced with

target actor ’ and critic 𝑄’ networks. Q(s, a|Q) is the learned Q-function as a predicted

output. The target is to minimize the outcome of loss function by updating the policy

weights towards the direction where the loss decreases.

N represents the batch size, which is drawn from the experience replay buffer, see Sec-

tion 3.5. Use of replay buffer is derived from the off-policy nature of the DDPG, as it

stores in memory the learned policy by the actor. This learned policy is then used as

samples by the behaviour policy. The use of replay buffer eases the instability issues of

the actor and critic networks. In addition, by using stochastic policy, such as ϵ-greedy

policy, as a behaviour policy, the DDPG enforces exploration and tries to confront the

exploration-exploitation dilemma. Generally, exploration causes notable challenges for

learning in the continuous action space, but DDPG can handle exploration separate from

the learning algorithm. The pseudocode of The DDPG is presented in Algorithm 1.

30

Algorithm 1: Deep Deterministic Policy Gradient (DDPG) [28]

Randomly initialize actor (𝑠|) and critic 𝑄(𝑠, 𝑎|𝑄) networks with parameters 
𝑄
 and 


;

Initialize target actor 𝑄′ and target critic ′ networks with parameters 
𝑄′ ← 𝑄, 

′ ← ;
Initialize experience replay buffer Ɗ;
for episode = 1, M do

 Initialize Gaussian noise for action selection;

 Receive initial observation state 𝑠1;
 for time increment t = 1, T do

 Select action 𝑎𝑡 according to Equation 3.16;

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1;
 Store the transition experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in experience replay buffer Ɗ;

 Sample a batch of N transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from replay buffer Ɗ;

 Update critic by minimizing the loss according to Equation 3.18;

 Update actor policy with sampled policy gradient of Equation 3.17:

 𝐽 ≈
1

𝑁
∑ (s|

)|𝑠𝑡𝑎𝑄(𝑠, 𝑎|
𝑄)|𝑠=𝑠𝑡,𝑎=(𝑠𝑡)𝑡 ;

 Update parameters of the target network according to Equation 3.20;
 end

end

At each time step T, the current action 𝑎𝑡 is calculated with sampled noise σ to boost

exploration during training process. In some implementations, such as in the Rllab frame-

work [41], the additive noise is addressed with an independent noise model, such as OU

noise [28]. After the critic is updated by minimizing the loss between the target and pre-

cited Q-value with Equation 3.18, the policy function in the actor is updated by utilizing

sampled policy gradient theorem defined in the Equation 3.17 with the critic output. Fi-

nally, similar to the DQN algorithm, DDPG uses target networks, but with a Polyak aver-

aging [42]

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + (1 − )𝑡𝑎𝑟𝑔𝑒𝑡 . (3.19)

Instead of replacing the full target network parameters or weights at every step, the

weights are updated with exponential smoothing, so that the target network (old) slowly

updates towards the main training network (new) which is under the evaluation. Both

target networks are weighted with hyperparameter soft replacement factor   [0,1],

which is the rate of copying weights. A small  value indicates slow and smooth transition

for network weights, which also improves the stability of the learning process [1]. In

DDPG the Equation 3.19 of updating target network parameters is presented with critic

target 𝑄′, critic 𝑄 and actor target ′, actor  networks as


𝑄′ ← 𝑄 + (1 − )𝑄

′


′ ←  + (1 − )

′ . (3.20)

After the network and parameter updates, the process starts again for the next time in-

crement or next episode.

31

Even though DDPG is popular among continuous action space problems, it has its is-

sues. The actor-critic framework may introduce bias because of replacing the actual ac-

tor-critic function with the estimated one. In addition, DDPG suffers from brittle conver-

gence properties, which makes the algorithm sensitive towards hyperparameters [41],

[43]. Hyperparameters like exploration constants and learning rates have to be set sep-

arately for different problem domains to achieve expected results. To combat these

shortcomings, an algorithm was developed that incorporates aspects of DDPG, but with

a stochastic policy optimization. However, a notification to be made to highlight that al-

gorithm selection depends on the application, data available and the environment.

3.6.2 Soft Actor-Critic

Soft Actor-Critic (SAC) is a model-free off-policy stochastic actor-critic RL algorithm de-

signed to be applicable in real-world domains. SAC incorporates a maximum entropy

framework, where the optimal policy aims to maximize its entropy augmented reward.

Therefore, the policy is trained to maximize the trade-off between expected return and

entropy, meaning SAC aims to maximize both cumulative returns and the entropy of the

policy. By regularizing the standard maximum reward with an entropy maximization term,

the process encourages exploration of the policy and substantially improves robustness

[44].

Increasing entropy causes the agent to explore more, which can result in accelerating

learning and preventing the policy to converge to a local optimum, because of an action

that exploits inconsistencies in the approximated Q-function. Therefore, the policy is en-

couraged to consider equally actions that have similar Q-values, and thus to avoid as-

signing high probabilities to marginal range of actions. In principle, introduction of entropy

implements randomness in the policy, which is then expected to act more randomly, but

still succeed in the given task. Hence, the exploration-exploitation dilemma can be con-

fronted. [44]

The relationship between the reward and the entropy modifies the RL problem of ex-

pected return, Equation 3.2, to include an additional reward at each timestep proportional

to the entropy of the policy at that specific timestep. Hence, the expected return is defined

as

𝐽() =∑𝔼(𝑠𝑖,𝑎𝑖)~𝜌,[𝑟(𝑠𝑡, 𝑎𝑡) + ℋ(( | 𝑠𝑡))],

𝑇

𝑡=0

(3.21)

32

where entropy term ℋ is weighted by a regularization coefficient  > 1 called tempera-

ture. The coefficient determines the stochasticity of the policy by being a trade-off be-

tween the entropy term and the reward. Instead of expressing the optimal policy as in

Equation 3.10, with entropy augmented reinforcement learning the policy is defined as

𝜋∗ =
arg𝑚𝑎𝑥


𝐸
𝜏~

[∑ 𝑡 (R(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1) + ℋ(( | 𝑠𝑡)))

 ∞

𝑡=0

] , (3.22)

where  is the discount term. SAC approaches optimization with soft policy iteration,

which is a general algorithm for learning the optimal maximum entropy policies [45]. The

algorithm consists of policy evaluation and policy improvement in the maximum entropy

framework [44].

With soft policy iteration, SAC parameterizes a soft Q-function (action-value) 𝑄 by  as

𝑄(𝑠𝑡, 𝑎𝑡), and a policy function  by  as 𝜋(𝑎𝑡|𝑠𝑡). A separate function approximator for

the value function 𝑉 is seen unnecessary [45]. In practice, SAC concurrently learns a

policy function and two Q-functions, 1 and 2, that utilize two target functions, ̅1 and

̅2, to mitigate biasness of the networks [45]. The function approximators assist in the

convergence of optimal values i.e. policy, where alternative optimization of both 𝑄 and 

networks is performed with stochastic gradient descent [44].

The soft Q-function is trained by minimizing the error between the target function and the

approximation with MSE similar to Equation 3.18

𝐽𝑄() = 𝔼(𝑠𝑡,𝑎𝑡)~Ɗ [
1

2
(𝑄(𝑠𝑡, 𝑎𝑡) − 𝑄̂(𝑠𝑡, 𝑎𝑡))

2
] , (3.23)

where Ɗ is a replay buffer having the distribution of previously sampled states and ac-

tions, and the approximation is

𝑄̂(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝔼𝑠𝑡+1~𝑝[𝑉̅(𝑠𝑡+1)]. (3.24)

The value function 𝑉̅ is implicitly parameterized by the soft Q-function parameters and

is defined as

𝑉̅(𝑠𝑡) = 𝔼𝑎𝑡~[𝑄̅(𝑠𝑡, 𝑎𝑡) − log (𝑎𝑡|𝑠𝑡)] (3.25)

for a policy . Here entropy is represented by the negative log of the policy function.

Equation 3.23 states that the loss between the prediction of the Q-function and the im-

mediate reward added the discounted expected state-value of the next state is minimized

across all the state action pairs from the replay buffer. By further optimizing Equation

3.23 with stochastic gradients, the update tule for the  parameter vector is defined as

33

̂𝐽𝑄() = 𝑄(𝑎𝑡|𝑠𝑡)(𝑄(𝑎𝑡|𝑠𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) + (𝑄̅(𝑠𝑡+1|𝑎𝑡+1)

− log 𝜋 (𝑎𝑡+1|𝑠𝑡+1))). (3.26)

The update makes use of target network 𝑄̅ where parameter ̅ represents exponentially

moving average of  [44].

For the policy function , the parameters are learned by minimizing the expected Kull-

back-Leibler (KL) divergence [46]

𝐽() = 𝔼𝑠𝑡~Ɗ [𝐷𝐾𝐿 ((| 𝑠𝑡) ||
exp(𝑄(𝑠𝑡, ))

𝑍(𝑠𝑡)
)] (3.27)

where DKL is a KL function and 𝑍(𝑠) = 𝑎exp (
1


𝑄(𝑠, 𝑎)) is the normalizing factor. The

policy function distribution is made to look more like the distribution of the exponentiation

of the state value function normalized by the normalization factor. By ignoring the log-

partition and instead noting the temperature coefficient , the policy parameters are de-

fined as

𝐽() = 𝔼𝑠𝑡~Ɗ [𝔼𝑎𝑡~[ log  (𝑎𝑡|𝑠𝑡) − 𝑄̅(𝑠𝑡, 𝑎𝑡)]] (3.28)

The minimization of the object function J() can be approached with a variety of ways,

but with SAC this is done with a reparameterization trick to make the action sampling

from the policy a differentiable process

𝑎𝑡 = 𝑓(𝑡; 𝑠𝑡), (3.29)

where t is a noise vector sampled from a gaussian distribution. After reparametrizing

the policy, optimizing with stochastic gradients, and noting how normalization factor does

not depend on the parameter  the policy function update for the  parameter vector can

be expressed as

̂𝐽() =  log  (𝑎𝑡|𝑠𝑡) + (𝑎𝑡 log  (𝑎𝑡|𝑠𝑡) − 𝑎𝑡𝑄(𝑠𝑡|𝑎𝑡))𝑓(𝜖𝑡; 𝑠𝑡) (3.30)

Finally, after updating the Q-functions and the policy function, SAC enforces the entropy

term by automatically updating the regularization coefficient  with

𝐽() = 𝔼𝑎𝑡~[− log (𝑎𝑡|𝑠𝑡) − ℋ]. (3.31)

Above Equation 3.31 is to constitute in finding the optimal entropy-constrained expected

return. The pseudocode of the SAC algorithm is presented in Algorithm 2.

34

Algorithm 2: Soft Actor-Critic (SAC) [45], [1]

Randomly initialize two soft Q-function 𝑄

(𝑠𝑡 , 𝑎𝑡) and a policy function 𝜋(𝑎𝑡|𝑠𝑡) networks with

parameters 1, 2 and ;

Initialize target Q-function networks ̅1 and ̅2 with parameters ̅1 ← 1, ̅2 ← 2;
Initialize experience replay buffer Ɗ;
for episode = 1, M do

 Receive initial observation state 𝑠1;
 for time increment t = 1, T do

 Observe state 𝑠𝑡 and sample action 𝑎𝑡~ 𝜋(𝑎𝑡|𝑠𝑡) from the policy;

 Execute action 𝑎𝑡 , observe reward 𝑟𝑡 and sample transition 𝑠𝑡+1~𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡);
 Store the transition experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in experience replay buffer Ɗ;

 Sample a batch of transitions from Ɗ to be used to update function approximators;

 Update Q-function parameters 𝑖 ← 𝑖 − 𝜆𝑄 ∗ Equation 3.26 for 𝑖 ∈ {1, 2};

 Update policy parameters  ←  − 𝜆𝜋 ∗ 𝐸quation 3.30;

 Update regularization coefficient (temperature)  ←  − 𝜆̂ ∗ 𝐸quation 3.31;

 Update target Q-function parameters ̅𝑖 ← ̅̅ ̅𝑖 + (1 − )̅𝑖 for 𝑖 ∈ {1, 2};
 end

end

 represents a step size for the function approximators. SAC does not only collect expe-

rience from the environment with the current policy, but also updates the function ap-

proximators with the stochastic gradients from the samples saved into the replay buffer.

Each step taken in the environment is followed by one gradient step. Because the update

iteration is kept as one for the gradient step, update cycle for the function approximators

is presented within the time increment (step) loop.

35

4 SIMULATION-TO-REAL LEARNING

Sim2Real refers to techniques to transfer knowledge from simulation to the real world.

Although simulation has been widely utilized in testing and prototyping, it is only recently

that simulation learned behaviours have been tried to transfer to the real world.

Knowledge acquired during simulation is used to solve a real-world problem in a real-

world environment. Similar paradigms simulation-to-simulation (Sim2Sim), real-to-simu-

lation (Real2Sim) and real-to-real (Real2Real) describe techniques how knowledge can

be transferred between simulations, from real-world to simulation and between real-

world problem scenarios [47], [48], [2], [49], [50]. All the mentioned paradigms revolve

around knowledge transfer and utilize learning-based methods.

However, translation of progress from simulation to a real-world physical robot is not

trivial, as the number of details in the real world may overwhelm the learned capabilities

of the simulated model. This is a noted factor in kinematics, where traditional control

theory schemes such as adaptive [51] and robust control [52] have been used success-

fully for robotics since the late 1970s to accomplish manipulation tasks that machine

learning based algorithms have, by comparison, only recently managed to accomplish.

4.1 Simulators for Sim2Real transfer

Robotic simulation and environment creation can be approached with a variety of simu-

lation tools. Regardless of the utilized methods for transferring knowledge to physical

robots, a realistic simulation can help to mitigate the reality gap and increase the quality

of the results. Although realistic simulation alone does not mean the learned policy can

be directly applied to the real environment, the choice of a relevant simulation for the

task is a key aspect in Sim2Real.

Commonly mentioned and used simulators for robotics in the literature include Coppeli-

aSim (V-Rep) [53], MuJoCo [54], Gazebo [55], Unity 3D [56], OpenAI Gym [57] and Py-

Bullet [58]. Aforementioned tools or platforms are designed for different applications with

inherently different characteristics. CoppeliaSim and Unity 3D are physics simulators

with rendering effects, whereas Gazebo, owing to the open-source status, offers modu-

larity in addition to being integrated with the Robot Operating System (ROS) and thus

having direct access to a variety of robotic stacks of real robots. MuJoCo and PyBullet

manage realistic and accurate physics engines with relatively wide integration with ML

36

libraries. On the other hand, OpenAI Gym is specifically developed for RL and ML algo-

rithms with simple environments.

Since RL and ML development is usually associated with Python, it is convenient that

the chosen simulator has the support and relevant interfaces for the development work.

Consequently, most of the simulators have Python counterparts [1], [59], [8].

4.2 Sim2Real transfer

Sim2Real can be seen as a sub-discipline within the robotics domain where simulators

close the loop from simulation to real, having possibility to control and interact with phys-

ical robots. It is a tool to confront prediction problems in robotics while bridging the gaps

between simulated and real-world environments. This reality gap can be considered as

a confluence of robotics and simulation via machine learning. Hence, the importance of

Sim2Real is the relationship of simulation models and the underlying real-world environ-

ments. Policies are trained in these simulations and learned policies are transferred to

real-world scenarios. In principle, the policy is trained in a source domain within simula-

tion and transferred to a new target domain in the real-world environment assuming dif-

ferent domains share common characteristics so that learned aspects in one domain

prove to be useful in the other. Therefore, Sim2Real transfer is an alternative approach

to the direct training of algorithms in real world with Real2Real. Though arguable,

Sim2Real is taking place in order for simulation to coalesce into new domains. [2]

4.2.1 Relevant Examples

The rise of DRL techniques has benefitted robotics field not only on real-world experi-

ments with real2real, but also on robotic tasks otherwise difficult to model explicitly. For

instance, incorporating reinforcement learning with simulation has yielded interesting re-

sults on manipulation from visual inputs [60], control of complex motor systems [61] and

locomotion on complex terrains [62]. However, transferring these control policies learned

in simulation to the real-world is a challenging task. Therefore, while there has been

accomplishments in attaining precise control of complex tasks, many of the demonstra-

tions have been intentionally limited to simulation [63], [64]. Exemplary implementations

of Sim2Real are depicted below in Figure 4.1.

37

Figure 4.1. Sim2Real transfers for complex motor control with manipulator control
(peg-in-the-hole) (left), dexterous hand control (middle) and locomotion (right). Modified

from [7], [65] and [66].

In the context of target-reaching tasks varying DRL algorithms have been used such as

hierarchical reinforcement learning [67] and curriculum learning based hindsight experi-

ence replay (HER) [68]. HER-style algorithms provide a form of implicit curriculum im-

proving efficiency by learning from fatal experiences. HER has reached notable results

when combined with DDPG [69]. Another conventional method includes combining RL

with demonstrations thus accelerating the control policy learning process. Coupled with

DDPG, demonstrations have managed to reduce training time and also showcase po-

tential results [70]. Other concepts have utilized specifically developed frameworks such

as operational space control framework (OSC) [7] and constrained optimization layer

[71] or methods like precision-based continuous curriculum learning (PCCL) [39].

4.2.2 Transfer techniques

Modelling a diverse environment for a complex scenario such as a robotic task can be

resource-demanding process, requiring considerations for the level of abstractions, gen-

eralization, and accuracy. Transfer learning such as progressive nets [72] have show-

cased a flexible way of using experience collected from simulation in tuning a robotic

control system. In other projects, simulator parameters have been optimized via system

identification or then differences between the simulation and the real-world scenario have

been studied and taught to an identification model to augment the simulation to be closer

to the real-world robotic scenario [73]. Other known techniques for Sim2Real transfer

38

within robotics domain are explicit transferable abstractions, combining analytical mod-

elling with system identification, imitation learning, meta-learning and curriculum learning

and knowledge distillation [59]. One of the most common methods used in Sim2Real

transfer are the randomization of dynamics [47] or overall domain with domain randomi-

zation [74] to augment the training set. A notification to be made here, that some of the

mentioned methods and concepts have been in use before the term Sim2Real, but be-

cause Sim2Real is a comprehensive concept it intersects the aim of many of the men-

tioned methods and concepts.

This thesis utilizes one of the most straightforward ways to transfer knowledge from sim-

ulation to reality with the zero-shot transfer method [75], [76]. Zero-shot transfers the

control of the chosen DRL policy from simulation to the physical domain. The method is

built on a realistic simulator, which provides direct implementation of the trained policy

into a real-world setup. Owing to its direct approach the method is also called direct

transfer. The general idea is that the simulation accounts all the necessary details of the

performed task, and the transfer to the physical domain should not introduce any new

parameters that could affect the performance. This is managed by setting the abstraction

level correctly in regards the performed task. As a contrast to zero-shot transfer, system

identification with precise models of the physical world and domain randomization can

be regarded as one-shot transfers. It is not uncommon to use a mixture of the aforemen-

tioned methods.

4.3 Reality gap

When transferring simulation trained DRL policies into a physical setup, the process has

to consider the reality gap. The existing reality gap caused, for instance, by the variability

between simulated and real observations, model uncertainties and the level of abstrac-

tion in regards of physics is a factor for any level of sophistication of simulations. Before

highly accurate simulations becomes reality for robotics, reality gap will be an issue af-

fecting the final task performance, requiring fine-tuning as well as, in some cases, learn-

ing on the real system. Yet, if the policy works in a simulation, it has the potential to also

work in a real-world scenario if the abstraction level is set correctly to mitigate the reality

gap.

Reality gap is known to cause limitations due to inaccurate models of deformation, multi-

point contact, friction, impact, cutting, and indeterminism in general. Surface friction has

inherent indeterminacy, meaning it is undecidable to predict how objects are affected in

specific situations [59]. The physical domain gap includes many aspects of physics such

as contact dynamics and soft bodies that underly the vast complexity scoped within the

39

reality gap. The variety of factors to note depends on the specific system, since the reality

gap is usually task dependent. A rough example of differences between the system dy-

namics of simulation and the real-world is depicted in Figure 4.2.

Figure 4.2. Markov Decision Processes in a simulation and reality depicting state cap-
ture, policy inference and action execution processes on a timeline. Modified from [1].

In the simulation the state capture and the policy inference of MDP are considered to

behave instantaneously, while in the real world both cases can actually take considera-

ble amount of time. This simplification is not taking into consideration the richness of the

real world, which causes the agent to make action choices based on delayed observation

from previous states during the previous action execution. Time delays affecting state

capture and policy inference processes can affect applications like manipulator trajectory

planning. If object reaching task is considered, in reality the target object is captured and

localized with a camera, which consumes time, but in a simulation the process of cap-

turing the state might have been considered to have zero-time consumption. This will

induce delay during the observation, and it will create difference between the simulated

and the real-world trajectories [1]. Generally, in robotics it is unrealistic to assume the

true state is completely observable and free of noise [6].

To bridge the gap between simulation and reality requires methods able to confront mis-

matches in both sensing and actuation. Where actuation can be minimized with more

realistic simulation and variability in agent dynamics, sensing can be confronted, for in-

stance, with adversarial attacks of image perturbation on computer vision based algo-

rithms [77]. Both aforementioned cases have been also approached with methods and

concepts mentioned in previous section, such as domain randomization in order to gen-

erate a policy able to generalize at least on some level to the real-world scenario. Hence,

the Sim2Real can be seen to provide a methodology of learning a policy with respect to

the reality gap regardless of the accuracy of the simulator. [1], [59]

40

5 SIMULATION-TO-REAL CASE STUDY

The case study implements the presented theory of Chapters 2-4 in practice by demon-

strating a pipeline for a Sim2Real transfer. Special interest is put on developing architec-

ture between the RL algorithms and the chosen simulation environment, which follows

the structure of an MDP. RL algorithms are first trained with specific reward function and

hyperparameter setups to distinguish a baseline to minimize the Euclidean distance be-

tween the TCP and the target. Afterwards, more heuristics are included to train the policy

to be safer for a Sim2Real transfer.

5.1 Task description

The case study is based on an environment defined by UR10e manipulator on a Vention

table. The manipulator is a 6-DoF robotic arm that has a Robotiq wrist camera, Buind

tool-changer and a Robotiq 2F-85 gripper attached to the wrist. Wrist attachments are

not utilized in the project as the scope is not to perform object manipulation. However,

they are utilized in other projects by VTT, and it was requested to implement them to the

simulation model and keep them as part of the physical manipulator. The robot cell is

depicted in Figure 5.1.

Figure 5.1 Case specific robotic cell in simulation (left) and in real-life (right).

41

The task is to provide a pipeline for controlling the manipulator with a RL policy while

performing a reach-target task, which in this thesis is based on position-only reaching

[71]. Target reaching is one of the most common problems in robotics. More complex

tasks such as object interaction and grasping are associated with reaching before the

actual main task can be performed.

The reaching task is defined as controlling the end-effector (ee) to reach a position at

the given target goal (pp). The origin of the Cartesian coordinate system is located at the

base of the manipulator. The manipulator would start from a fixed initial pose and follows

the trained policy accordingly to reach the goal. The position of the target goal is desired

to be reached from the top-vertical direction. Although this approach is a simplification

leaving orientation constraints outside of the study, the scope is not to generate a fully

generalizable policy able to interact with poses, but to demonstrate a workflow for imple-

menting a Sim2Real process. At first, during the training the target is defined as a ran-

domized dot (left target in Figure 5.1) in simulation, but eventually in Sim2Real transfer

the target is localized with a machine vision system tracking a ArUco (Augmented reality

University of Cordoba) marker [78] (right target in Figure 5.1). ArUco marker tracking is

discussed in more detail in Section 5.6.1.

5.2 Simulation environment

At the time of writing this thesis, OpenAI Gym and MuJoCo did not offer straightforward

ways to be utilized with a custom use-case scenario as in this thesis. Unity 3D was also

considered, but at the time ML-agents toolkit [56] did not give access to the structure of

the utilized RL algorithms, although the interfaces to work with the algorithms were easily

accessible. Eventually, the physical system was simulated using CoppeliaSim with Py-

thon wrapper PyRep [79] forming a bridge to the RL. Additionally, PyRep enables faster

communication with the separate RL scripts than the remote API of CoppeliaSim. The

combination proved to be relatively easy to learn and use offering simple conventions to

import task-relevant abstractions of the real-world scene into the simulation.

Simulation components

CoppeliaSim is similar to Gazebo in sense that it is a rigid-body simulator able to control

multiple robots in real time. The most convenient aspect of CoppeliaSim and PyRep was

the supplied robotics library, which included Universal Robots Ur10 with implemented

forward and inverse kinematics support. Since Ur10 and UR10e have almost the same

specifications including kinematics, UR10 model from CoppeliaSim library was utilized

instead of creating a custom model of UR10e. This decision sped up the overall process

42

of developing the pipeline, since it was not necessary to create UR10e as a new robot

within CoppeliaSim and to solve the kinematic equations for it.

To make the simulation environment similar as possible to the physical counterpart, a

CAD model of a Vention table is imported to CoppeliaSim on top of which UR10 is situ-

ated in same manner as in the physical environment. Same is done to the tool-changer

and wrist camera located at the wrist of UR10e. Supplied CoppeliaSim library does not

include exact replica of the physical gripper Robotiq 2F-85, ergo the next best choice of

older version of Robotiq 85 is chosen. The gripper model was used in hopes for VTT to

utilize the created simulation model for grasping tasks in coming projects. Gripper has

the same length actuation, but the structure is bulkier and shorter. The final simulated

environment with the kinematic chain of the manipulator joints is depicted in Figure 5.2.

Figure 5.2. Simulation environment for the reach target task in CoppeliaSim (middle,
right) with the kinematic chain of the UR10 from the base to the gripper represented
with red line (left). Target is represented with a red dot, which position is randomized

during the training along the dotted blue line (right).

Environment specifications

For the policy training phase, a red dot corresponding to the goal target is included in the

environment. At the beginning of each episode, the manipulator is initialized to the ‘zero’-

position (depicted middle in Figure 5.2) and the position of the dot is randomized along

the dotted blue line (depicted left in Figure 5.2). The target dot is approached from top

vertical direction and the Euclidean distance between the target and the TCP is continu-

ously measured. The minimum distance vector is depicted by a black line and a distance

value in the middle of above Figure 5.2. The dot is set 6cm above the table working face,

having a total offset of 1m from the ground surface. The table has a hitbox set around it

43

with a 4cm offset. Hence, the hitbox is 2cm below the target. The invisible hitbox func-

tions as a safety measure to protect hardware in case the reality gap causes surprising

accidents during validation with physical equipment. Hitbox is utilized as a collision

measurement with the augmented reward function discussed in the coming Section

5.5.4.

The simulated manipulator can be controlled either with forward or inverse kinematics

as discussed in Section 2.2. In this thesis, the manipulator is controlled with forward

kinematics mode having numerical states as observations. The MDP process within the

simulation is discussed in more detail in Section 5.4.1. This approach requires manipu-

lator joints to be in ‘Torque or force mode’ meaning the joint is simulated by the dynamics

module Bullet physics [58]. This physics engine manages interactions within the environ-

ment scene that is controlled by a main script consisting of simulation specific and nec-

essary codes.

Actions are executed on the simulated manipulator with joint velocities acquired from a

state. Therefore, performed action includes velocity commands for each joint of the ma-

nipulator. Consequently, performed actions produce the next numerical state. The joint

tries to reach the desired target velocity given the maximum torque it is capable to deliver

[80]. Table 5.1 depicts the maximum joint torque and velocity limits of the physical UR10e

that are referenced in the simulation. For safety reasons the maximum joint velocity limit

for each joint in the simulation is set at 2.09 rad/s.

Table 5.1. Joint torque [Nm] and angular velocity [rad/s] limits of UR10/UR10e [81],
[3].

The object bodies are respondable meaning the geometrical shapes will produce a col-

lision reaction. The simulation is a discrete time simulation, which is ran at default time

interval of 50ms. This makes the CoppeliaSim simulation time to run at a faster rate than

real-time, thus speeding the training phase. Finally, no additional light sources or sensors

are implemented within the scene.

5.3 Known reality gap factors

Differences between the virtual and the physical counterparts causes the expansion of

the reality gap. Due to decisions made in constructing the simulation environment, di-

mensional differences occurred that are manifested within this gap.

Dimension Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Max. Torque (Nm) 330 330 150 56 56 56
Max. Velocity

(rad/s)
3.33

(2.09)
3.33

(2.09)
3.33

(2.09)
2.29

(2.09)
2.29

(2.09)
2.29

(2.09)

44

Simulated UR10 model has different DH-parameters compared to UR10e in the physical

environment. These parameters include the necessary information for the kinematics

discussed in Section 2.2. DH-parameters for both models are presented in Figure 5.3.

Figure 5.3. DH-parameters of UR10 and UR10e (left) and a parameterized diagram of
a UR manipulator (right). Modified from [82].

Although, joints 2, 3 and 5 are almost identical, the dimensional difference in joint 1

causes UR10e to be about 5cm taller than UR10. The height difference, depicted in Fig-

ure 5.4, is roughly noticeable from the different base structures the models have.

Figure 5.4. Base of UR10e in the physical environment (left) and base of UR10 in the
CoppeliaSim simulation (right). Pictures are not in scale, and distances are in mm.

In addition to height, differences between joints 4 and 6 results in the TCP to be about

3,5cm further away from the base along the Z6-axis for UR10e. The Z6-axis is depicted

in Figure 5.3 and it is located at the tool-end. In a similar manner, the Robotiq 2F-85

gripper is in the simulation the older version of the actual physical gripper, which most

noticeably causes the TCP to be additional 1,4cm further away from the base along the

45

Z6-axis for UR10e. The difference in length between the gripper versions is depicted in

Figure 5.5.

Figure 5.5. Robotiq 2F-85 gripper newer version (left) and older version (right). Dis-
tances are in mm. Modified from [83], [84].

In the end, the total cumulated dimensional difference between the simulation and the

real-world scenario is approximately 5,3cm in height along the Zbase-axis and 4,9cm along

the Z6-axis for UR10e. Reference axis are from the Figure 5.3. Calculated dimensional

differences are approximations, but they offer a guideline for understanding the reality

gap during the validation phase of Sim2Real transfer.

The presented dynamic DH-parameters in Figure 5.3 are roughly the same for both ma-

nipulator versions. However, dynamics are not a major factor in this thesis, since in the

end the main target for the trained policy is to perform a trajectory path from the zero-

position [3] to the target goal. These paths are made by learned joint angular velocities

included within the states, that are executed by the forward kinematics. Ultimately each

learned joint value can be seen as a static value, since the dynamics of the simulation

are not varied during this project. One could argue that this makes the relevance of the

dynamic parameters close to nothing.

5.4 DRL software architecture

The control of the simulated UR10 is managed by implementing DDPG and SAC DRL

algorithms alongside the simulated environment. The reach task is formulated as an

MDP process with definitions of state, action, goal, and reward. The software modules

and the structure follow the MDP process which is implemented as separate Python

scripts on an Ubuntu 18.04 laptop. DRL processes are running on an Intel® Core™ i7-

46

6600U @ 2.6GHz CPU instead of AMD Opal XT [Radeon R7 M265/M365X/M465] GPU.

CPU was utilized, because the available GPU did not provide direct support for Compute

Unified Device Architecture (CUDA) platform, which was considered as alternative ap-

proach. This limits the computation power and increases training time. Additionally, used

CPU cannot provide sufficient multi-processing, which could have speed up computa-

tion.

5.4.1 MDP in practice

MDP of Section 3.3 is the basis of training the DRL algorithms. Relevant dimensions

regarding environment, state, action, goal, and reward components are presented in Ta-

ble 5.2.

Table 5.2 Reach task environment dimensions for UR10/UR10e.

Dimension Symbol Value

State dimension SD 15
Action dimension AD 6
Action boundary AB [-1, 1]

State

A discrete step considers what the agent/manipulator does as an action, thus indicating

the next state of the agent. Additionally, as an action is taken to alter the state of the

environment, the physics simulation of CoppeliaSim is proceeded with a step. Performed

action alters the state of the environment with trial-and-error to update the knowledge of

the algorithm instead of a transition probability distribution or transition model, which is

common for model-based algorithms. Here state includes the current status of the ma-

nipulator intrinsic joint positions (angular) ji and velocities vi with ith-joints i{1,…,6} , and

the distance to the target position as a target vector [𝑒𝑒𝑥, 𝑒𝑒𝑦, 𝑒𝑒𝑧]

𝑠 = [𝑗𝑖, 𝑣𝑖, [𝑒𝑒𝑥, 𝑒𝑒𝑦, 𝑒𝑒𝑧]] . (5.1)

The distance between the centre of the target goal and the manipulator TCP is calculated

in each step as it is the main factor for considering a success in the reach task. The total

length of the state vector represents the state dimension (SD), which is 6 for 𝑗𝑖, 6 for 𝑣𝑖,

and 3 for 𝑒𝑒𝑥 , 𝑒𝑒𝑦, 𝑒𝑒𝑧 totalling to 15. The RL policy takes the aforementioned state vector

as input and outputs an action consisting of joint velocities, which are used to control the

manipulator reach the target goal. The training process of a policy is depicted in Figure

5.6.

47

Figure 5.6. RL policy training as a MDP in simulation.

Action

Actions specify the desired manipulator TCP movement in Cartesian coordinates with

joint velocities. The action range or boundary in continuous action space depends on the

used activation function, which is hyperbolic tangent (tanh) for DDPG and SAC. Hence,

action boundary (AB) is between [-1,1] meaning the output of predicted values is scaled

to a desired range. In this thesis, the action boundary represents normalized joint velocity

change of a specific joint. The actual computed actions for specific joints are bounded

by the joint limitations and velocity limitations of the manipulator. These are included in

the model of the manipulator. In this thesis, ai represents normalized joint velocity change

of the ith-joint. Therefore, in this thesis actions are considered to be joint increments of

velocities, that are represented as a one-hot vector with the size of 6. 6 comes from the

aforementioned joint count of the manipulator, representing the degrees-of-freedom. The

DoFs also represent the size of the action space dimension (AD). Actions can be pre-

sented as

𝑎 = [𝑎𝑖]; 𝑎𝑖 [−1,1], 𝑖 {1, … ,6}, (5.2)

where the joint velocities are represented in radians per second (rad/s) and normalized

between [-1,1]. Normalizing the action space especially in RL enables the training pro-

cess to be more stable as it increases the convergence speed, prevents divergence of

parameters and provides for easier hyperparameter tuning [1], [85]. Furthermore, as

mentioned above, by limiting the predicted velocities to a desired range, the target goal

is reached safely within the limitations of the physical manipulator.

48

Goal

The target goal is based on the position of the simulated dot in the Cartesian space.

Later, with the physical environment the target position is captured from the AruCo

marker. The target goal can be represented as

𝑔𝑜𝑎𝑙 = [𝑝𝑝𝑥 , 𝑝𝑝𝑦 , 𝑝𝑝𝑧], (5.3)

The target goal is reached by sampling joint angles within the limitations of the joints.

According to these joint angles, the manipulator joints are controlled with forward kine-

matics. A more detailed overview of the forward kinematics setting is provided in Section

2.2.1. As the agent/manipulator interacts with the environment in accordance with the

target goal, the environment class not only returns the next state, but also a reward.

Reward

Reward system is approached with sparse and dense reward functions as they are com-

mon for reaching tasks [39]. Additionally, augmented reward function is utilized with en-

hanced heuristics. The success of the trained policy depends heavily on the selection

and heuristics of a reward function. The reward function is also engineered according to

the performed task meaning the reward system is usually environment specific. The the-

sis considers each reward function separately to find the best solution for the given reach

task. Reward functions are based on the Euclidean distance between the target goal and

the manipulator TCP. If the position distance is smaller than the required precision 𝑇 =

5𝑐𝑚 (50𝑚𝑚), the action is considered successful.

The sparse reward function gives little information of the transitions in the environment

thus the agent does not get proper feedback at every time step. Feedback is considered

static. A successful move is rewarded by 1, otherwise a -0.02 punishment is passed. The

sparse reward function is presented as

𝑟𝑠𝑝𝑎𝑟𝑠𝑒 = {
−0.02, 𝑇 < 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

1, 𝑇 ≥ 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)
, (5.4)

The dense reward function produces feedback at every step according to the distance

to the target. The distance is measured in meters and the positive reward is defined as

1. Otherwise, the reward is set to penalize the distance. The dense reward function is

presented as

𝑟𝑑𝑒𝑛𝑠𝑒 = {
−𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙), 𝑇 < 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

1, 𝑇 ≥ 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)
, (5.5)

where ee represents the TCP and goal the target position in Cartesian coordinates.

49

Following only the distance to the target may create situations where the manipulator

trajectory could cause eventually problems for the physical manipulator or put personnel

in dangerous positions. Therefore, the dense reward function is augmented with heuris-

tics to optimize the trajectory of the manipulator by avoiding collisions with the table and

approaching the target goal with a vertical orientation. Additional heuristics include pe-

nalizing for going beneath the table level and searching outside of the table area. The

penalty offset in the aforementioned cases is -0.02. The augmented reward function is

presented as

𝑟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 =

{

−𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙), 𝑇 < 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

1, 𝑇 ≥ 𝑑𝑖𝑠𝑡(𝑒𝑒, 𝑔𝑜𝑎𝑙)

−(rotation_penalty ∗ rotation_norm), orientation diff. (ee, goalz)
−0.02, collision
−0.02, off_limit search

, (5.6)

where ‘rotation penalty’ is calculated as the orientation difference between the TCP and

the z-axis of the target goal normalized with a ‘rotation norm’ of 0.05. Utilized values as

well as the considered heuristic formulas are gathered through empirical simulation tests.

5.4.2 Software modules

The developed software modules include the basic outline of the presented MDP pro-

cess. The environment and the state selection are in one module and the control of the

agent is in another module. In principle, the environment module separates the architec-

ture according to the used DRL. The DRL modules consist of classes and functions hav-

ing a variety of parameters and subroutines that follow the structures of DDPG and SAC

presented in Sections 3.6.1 and 3.6.2. Developed script for DDPG is based on algorithm

1 and [86], [87], [88], whereas the script for SAC is based on algorithm 2 and [1]. The

main components and parameters of the high-level architecture with interactions are de-

picted in Figure 5.7.

The SAC module consists of the DRL algorithm and the main-function being within the

same module while the DDPG consists of the DRL algorithm and the main-function being

in different modules. DDPG has one class while SAC is divided into four classes. These

classes consist of storing transitions into the replay buffer, training networks and their

target networks as well as training the target policy. In SAC entropy regularization is

implemented when calculating target Q-value. Reason for the separate architecture ap-

proaches comes from the desire to study the structures of the algorithms, and in the SAC

case the complexity of the algorithm. The DDPG module can be controlled via a wrapper,

which enables running multiple different setup-runs in consecutive order. Regardless of

the DRL structure, both approaches inherit routines from the environment class.

50

Figure 5.7. Simplified representation of the software architecture for the DRL study.
Function and parameter names have been modified for the sake of intelligibility. Arrows

depict the direction of inheritance.

The environment class includes initialization of the Reacher-environment with the Cop-

peliaSim scene-file and relevant objects such as manipulator and specifications for the

51

target dot and the table as well as PyRep functions that form a Python wrapper to Cop-

peliaSim. In addition to spawning and setting up the visual scenery with objects, the

environment class considers resetting, closing, obtaining the state of the environment

and most of all managing what occurs during a step in the environment.

The DRL algorithm receives its hyperparameters from the main function, which addition-

ally serves as the starting point for the agent training. The main function inherits methods

from the environment and the DRL module initializing either training or validation of the

policy within the CoppeliaSim scenario.

5.5 Training and validation

The DDPG and SAC are trained and validated separately. In training the agent performs

exploration and exploitation during definite number of episodes and steps while calling

routines from the DRL module to perform learning and storing of parameters. In valida-

tion these learned parameters are restored. For both DRL cases the main function per-

forms executing arguments for training or validation after providing hyperparameters.

Policy training is initialized in both DRLs in the main function, but whereas DDPG con-

tains the training loop execution within the main, SAC contains this in a separate worker

class. Both training routines are similar, and their general structure is presented in Algo-

rithm 3.

Algorithm 3: Training function for DDPG (training() in Main) and SAC (trainingLoop() in
Worker class) from Figure 5.7.

Initialize networks (DDPG/SAC);
Launch CoppeliaSim scene and initialize UR10 and target dot with PyRep;
for episode = 1, M do
 Reset scene by setting UR10 to initial zero-position and randomizing the position of the

target dot via PyRep;
 Receive initial observation state 𝑠1 through PyRep from CoppeliaSim;

 for time increment t = 1, T do

 Select action 𝑎𝑡 with actor network (according to policy);

 Execute a step in CoppeliaSim scene by executing an action 𝑎𝑡 of joint velocities

on UR10 through PyRep;
 Receive reward 𝑟𝑡 and next state 𝑠𝑡+1 from the scene through PyRep after a step

is executed;
 Store transition experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in experience replay buffer;

 if experience replay buffer is full then

 Update networks (DDPG/SAC);
end
Set 𝑠𝑡 = 𝑠𝑡+1;
Save metrics data;

 end
end
Save network parameters;
Produce figures of the training;

52

The Python script for DDPG initializes the actor-critic framework and the replay buffer for

memory storage. SAC performs similarly, except it additionally initializes the regulariza-

tion coefficient (temperature). Both algorithms predict joint velocities as actions for the

agent based on the current state vector, Equation 5.1. PyRep functions forward the joint

velocities to CoppeliaSim and progress the simulation scene a step forward. Afterwards,

PyRep receives the next state vector and the generated reward from the performed ac-

tion. The transition is stored to the replay buffer. The process continuous through all the

steps until finally PyRep resets the environment for the next episode by setting UR10 to

initial configuration and randomizing the position of the target dot. If the experience re-

play buffer is full, the collected experience is utilized to update the DRL networks. During

the training process if the distance between the TCP and the target dot is within the

precision before the maximum step count is reached, the step is regarded as successful.

During validation, the learned behaviour of the policy is restored for examination. The

process is similar to training, except the policy makes predictions according to learned

parameters for the observed state. Algorithm 4 depicts the validation process of DDPG

and SAC. Success is measured same way in both training and validation being that per-

formed action leads to reaching the target. In validation, 30 successful actions are re-

quired to be produced to qualify that the policy stays on the target given the precision

threshold.

Algorithm 4: Validation function for DDPG (validation() in Main) and SAC (validation() in
Main) from Figure 5.7.

Restore network (DDPG/SAC);
Launch CoppeliaSim scene and initialize UR10 and target dot with PyRep;
for episode = 1, M do
 Reset scene by setting UR10 to initial zero-position and randomizing the position of the

target dot via PyRep;
 Receive initial observation state 𝑠1 through PyRep from CoppeliaSim;

 for time increment t = 1, T do

 Select action 𝑎𝑡 with actor network (according to policy);

 Execute a step in CoppeliaSim scene by executing an action 𝑎𝑡 of joint velocities

on UR10 through PyRep;
 Receive next state 𝑠𝑡+1 and information of successful action from the scene

through PyRep after a step is executed;

 if 30 consecutive steps t produce successful action then

 End current episode with success;
end
Set 𝑠𝑡 = 𝑠𝑡+1;
Save metrics data;

 end
end
Produce figures of the validation;

DDPG is trained with 2000 episodes and 300 steps. Chosen values enable easier follow-

up of the learning process. For SAC 800 episodes with 200 steps seemed to be sufficient

53

to highlight the learning process. In general, hyperparameters are task and algorithm

dependant [89]. Deeper insight of the hyperparameters and speculation of their correla-

tion is out of the scope of this thesis.

Different reward functions produce different scales of rewards, meaning it may not be

practical to compare learning curves purely on cumulated rewards. Hence, in addition to

the total reward per episode, the success rate is also displayed. In principle success rate

depicts how many times in each episode agent has managed to accumulate a successful

action. The total reward metric depicts the cumulative reward the agent has gained dur-

ing an episode.

5.5.1 Training DDPG policy

The initial training process is divided into six cases. Hyperparameters are presented in

Table 5.3 as two different setups, which are utilized for the policy training with the sparse,

dense, and augmented reward function settings presented in Section 5.4.1. Hyperpa-

rameters are derived from the literature and modified to fit the reach task [28], [90].

Episodes are executed until the maximum step count regardless if a success has oc-

curred. Alternative approach would be to terminate episode after the first successful step.

Difference between the approaches is that, if the episode is not immediately terminated,

the agent may learn to stay in the vicinity of the target or even correct its approach in

accordance with the set precision. In this case, it is not required to reinitialize the simu-

lation immediately after the target is reached. Since the results of these two settings do

not deviate much from each other, episode termination is not considered as an option in

this thesis.

Table 5.3 DDPG policy training hyperparameters of two scenarios for sparse,
dense, and augmented reward functions.

Hyperparameters Symbol Run 1. Run 2. Run 3. Run 4. Run 5. Run 6.

Actor learning rate μQ 0.001 0.0001 0.001 0.0001 0.001 0.0001
Critic learning rate μπ 0.001 0.0001 0.001 0.0001 0.001 0.0001

Discount factor  0.9 0.99 0.9 0.99 0.9 0.99

Target update ratio  0.01 0.001 0.01 0.001 0.01 0.001

Replay buffer size Ɗ 30000 50000 30000 50000 30000 50000
Batch size  32 64 32 64 32 64

Gaussian noise σ 2 2 2 2 2 2
Episodes  2000 2000 2000 2000 2000 2000

Steps per episode Ƭ 300 300 300 300 300 300
Reward function R Sparse Sparse Dense Dense Aug. Aug.

54

Figure 5.8 DDPG episode rewards for Run 1-6 (a-f) as presented in Table 5.3. Red
line represents the moving average of 10, and blue line the actual value.

Figure 5.8 depicts training process of selected best DDPG policy for sparse (Run 1-2),

dense (Run 3-4) and augmented (Run 5-6) reward functions when observing the accu-

mulated episode rewards. Blue line represents the actual value of each episode and red

line the moving average of 10 consecutive episode values. Because of the scaling, if

there are many rewards close to each other, the colour scheme darkens.

The results of Run 1, which stand out most of Figure 5.8, demonstrate how randomness

in initializing the network parameters and in action selection can produce different solu-

tions. Run 2 is performed with different initial parameters, but the difference to Run 1 is

vast even when comparing dense and augmented rewards of Run 3 and 5 to Run 4 and

55

6. The effects of random seeds to convergence of five different policy solutions are de-

picted in Figure 5.9. All policies are trained with the same parameters as Run 1.

Figure 5.9 Effect of random seeds to convergence of five DDPG policies with same
parameters (Run 1 of Table 5.3). Light shaded regions depict actual values and solid

lines moving average of 100 episodes.

Even though sparse reward gives little feedback of the environment, one of the policies

of Run 1 of Table 5.3 has managed to find the target early on during the exploration

phase before the experience replay is full, so that these positive rewards have been

exploited for the rest of the training. On the other hand, four other policies have learned

to exploit the static negative feedback and never or rarely gains positive feedback. As

the level of feedback increases, the effects of extreme randomness can dilute as can be

seen from Figure 5.10 with five policies of dense reward function trained with the same

parameters as Run 3 of Table 5.3.

Figure 5.10 Effect of random seeds to convergence of five DDPG policies with
same parameters (Run 3 of Table 5.3). Light shaded regions depict actual values and

solid lines moving average of 100 episodes.

56

Although, Figure 5.10 depicts how all five policies have converged to more similar solu-

tions, randomness in initializing parameters and in action selection of the actor network

still can be seen affecting to the speed at which the policy achieves an optimal solution.

The difference between the policies is especially visible at the beginning of the training

before the experience replay buffer is full. The episode at which this occurs can be esti-

mated as a relation between the experience replay buffer capacity and the step count

per episode. Hence the average episode should be 100 for Run 1, 3 and 5 and 167 for

Run 2, 4, and 6 in Figure 5.8. After this, the policy starts to update the network parame-

ters from the experience replay buffer, which is visible in Figure 5.8. Even with sparse

reward in Run 1 the rewards eventually start to rise after episode 250 as more steps

begin to exploit the positive feedback.

As the network parameters are being updated the cumulated rewards per episode start

to rise. The maximum total reward per episode is at best the product of available positive

feedback and step count per episode. Therefore, for all scenarios in Figure 5.8 the max-

imum reward is 300. However, since the simulated manipulator starts from a position

where it already gets negative feedback per step, the total cumulative reward cannot

reach the aforementioned maximum. If the unique result of Run 1 is excluded, then the

rewards seem to converge around 220 for a successful episode.

Corresponding success rates for scenarios in Table 5.3 are depicted in Figure 5.11. In

principle, the success rate during the training describes how fast the policy learns to

exploit positive feedback and thus how quickly the agent begins to move towards reach-

ing the target. Success rate also depicts the stability of the policy between episodes as

the policy learns to reach the target more frequently.

From Figure 5.11 one can see how policies begin to learn after transition experience

from the experience replay buffer is utilized for updating the network parameters as all

policies produce no success before episodes 100 and 167 for related hyperparameter

setups. Blue line represents the actual value of each episode and red line the moving

average of 10 consecutive episode values.

Afterwards, policies quickly begin to exploit positive feedback as the success rates start

to rise. This behaviour is coherent with total episode rewards of Figure 5.8. Most promi-

nent results seem to be produced by dense and augmented reward functions for Run 4

and Run 6 respectively. Reason for the more stable success rates and rewards could be

explained by the larger experience replay buffer, which states that larger size should

indicate less likelihood for sampling correlated elements.

57

Figure 5.11 DDPG success rates for Run 1-6 (a-f) as presented in Table 5.3. Red
line represents the moving average of 10, and blue line the actual value.

5.5.2 Training SAC policy

SAC training follows the same arrangement as it was presented for DDPG. Hyperparam-

eters are presented in Table 5.4 as two different setups, which are utilized for the policy

training with the sparse, dense, and augmented reward function settings presented in

Section 5.4.1. Hyperparameters include entropy, which is explained in Section 3.6.2. The

target entropy is equal to the negative number of action dimensions AD, see Table 5.2.

In this thesis 𝑇 is -6. Hyperparameters are derived from the literature and modified to

fit the reach task [45], [44], [1].

58

Table 5.4 SAC policy training hyperparameters of two scenarios for sparse, dense,
and augmented reward functions.

Figure 5.12 SAC episode rewards for Run 1-6 (a-f) as presented in Table 5.4. Red
line represents the moving average of 10, and blue line the actual value.

Hyperparameters Symbol Run 1. Run 2. Run 3. Run 4. Run 5. Run 6.

Actor learning rate μQ 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001
Critic learning rate μπ 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001

Entropy learning rate μa 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001
Entropy target 𝑇 -dim(AD) -dim(AD) -dim(AD) -dim(AD) -dim(AD) -dim(AD)

Discount factor  0.99 0.9 0.99 0.9 0.99 0.9

Target update ratio  0.01 0.001 0.01 0.001 0.01 0.001

Replay buffer size Ɗ 100000 1000000 100000 1000000 100000 1000000
Batch size  64 128 64 128 64 128

Episodes  800 800 800 800 800 800

Steps per episode Ƭ 200 200 200 200 200 200
Reward function R Sparse Sparse Dense Dense Aug. Aug.

59

Figure 5.12 depicts training process of selected best SAC policy for sparse (Run 1-2),

dense (Run 3-4) and augmented (Run 5-6) reward functions when observing the accu-

mulated episode rewards. Blue line represents the actual value of each episode and red

line the moving average of 10 consecutive episode values. Episodes are also executed

until the maximum step count regardless if a success has occurred.

The results of the training are comparative to the results of the DDPG algorithm. The

sparse reward does not seem to receive enough feedback from the environment to lo-

calize the target, which results in an exploration failure. Although Run 1. showcases that

towards the end of the run the agent has managed to receive some positive feedback

with the entropy boosted exploration. The dense and augmented rewards are also in-

creasingly similar to the runs of DDPG. Albeit the graph trends are similar, the total cu-

mulated reward per episode is almost 100 units lower on SAC. This could be caused by

the entropy-based exploration, when the agent reaches the target, it still explored around

the target to see if it could achieve even better results.

The total episode reward indicates SAC starts to learn with an increasing upward trend

from an early phase and reaches the reward average of 100 around 200 episodes in Run

3 and 5, and around 250 in Run 4 and 6. As contrast to DDPG where network parameters

are being updated after the experience replay buffer is full, SAC beings to update pa-

rameters after the experience replay buffer contains more transitions than a set batch

size. Hence, for Run 1, 3 and 5 network parameters are being updated after there are

64 transitions in the replay buffer and Run 2, 4 and 6 after 128 transitions. In practice,

this means SAC starts to immediately update parameters, which is visible in Runs 4-6 in

Figure 5.12.

Corresponding success rates for scenarios in Table 5.4 are depicted in Figure 5.13. The

success rates start to increase roughly after the 200- and 250-episode marks for Runs

3, 4 and 5, 6 accordingly. This is coherent with the total episode rewards in Figure 5.12.

By visually inspecting both episode rewards and success rates, it can be indicated that

augmented reward function produces the best results.

60

Figure 5.13 SAC success rates for Run 1-6 (a-f) as presented in Table 5.4. Red line
represents the moving average of 10, and blue line the actual value.

5.5.3 Validating results in simulated environment

Validation is realized in the simulation by allowing the trained policy to demonstrate its

capabilities during a validation set size of 1000 episodes. Similar to the training process,

the position of the target is randomized in the beginning of each episode, but this time

the agent restores the learned policy and performs according to what it has learned dur-

ing the training. Validation success rates for both DDPG and SAC policies in each sce-

nario of Table 5.3 and Table 5.4 are depicted in Table 5.5.

61

Table 5.5 Validation success rates [%] of scenarios in Table 5.3 and Table 5.4 over
1000 episodes.

 Sparse reward Dense reward Augmented reward

 Run 1. Run 2. Run 3. Run 4. Run 5. Run 6.

DDPG 95.12 0.00 98.96 90.50 96.40 100.0

SAC 99.57 1.03 99.50 90.57 99.94 100.0

Surprisingly both algorithms have managed to produce a comparable policy with the

sparse reward function although the initial position of the manipulator is not favourable

to scarce feedback. Especially Run 1. results on SAC are interesting considering both

metrics during the training on Figure 5.12 and Figure 5.13. Generally, the success rate

seems to be aligned with the amount of feedback reaching 100% rate with the aug-

mented reward function. Although the target is reached straightforwardly for both DDPG

and SAC without unnecessary deviation from the optimal, shortest, trajectory path, such

as revolving a specific joint in reciprocating motion, the final orientation of the joints is

often not optimal. Table 5.6 depicts the final orientation of the manipulator either at the

target or at the end of the episode for chosen episodes of each scenario of Table 5.5.

Table 5.6 Final orientations of the manipulator either at the target or at the end of
the episode.

 Sparse reward Dense reward Augmented reward

 Run 1. Run 2. Run 3. Run 4. Run 5. Run 6.

DDPG

SAC

In most cases DDPG reaches the target with the second and third joint almost extended

to a horizontal inclination. SAC demonstrates same behaviour, and this is demonstrated

on both dense and augmented reward type. Figure 5.14 depicts the hyperextension is-

sue presenting SAC on the left and DDPG on the right with dense and augmented reward

type.

62

Figure 5.14 Validation of SAC (left) and DDPG (right) with dense and augmented
reward function while demonstrating hyperextension of the joints. Red line indicates the

direct trajectory for the TCP starting from the zero-position.

The augmented reward type does not present as extreme results as the dense reward

because it has been implemented with the orientation check of the TCP. Though, the

results showcase a success for both the DDPG and the SAC in completing the reach-

target task, the initial parameters should be refined, and additional heuristics added to

accumulate a safer policy for Sim2Real transfer. The manipulator should never reach an

orientation where the operator or the equipment would be in danger.

5.5.4 Modifying initial parameters and revalidation

The goal for the manipulator is not to hit the table, not to overextend any of its joints,

approach from top vertical direction, avoid heavy oscillation and provide safe reasonable

trajectory paths while approaching the target. Reaching the target is still the primary task,

but the safety aspects are heavily regarded during the revalidation. Therefore, only aug-

mented reward function in considered henceforward.

Parameter and reward function modifications

DDPG was re-trained with ~250 and SAC with ~150 different variations where alterations

mainly included modifying hyperparameters and the reward function, but also experi-

menting with the height of the target. Primarily the target height is set at 1.0m, but to

generate a policy that does not accidentally hit the table, the height was also experi-

mented with. Selected instantiable revalidation parameters of 10 chosen scenarios for

DDPG and SAC are presented in Appendix A and Appendix B to illustrate the variability

of training parameters.

Reward offset for all the runs is set at 1, whereas the penalty offset is increased from -

0.02 to -0.2. Modifications for these values were also carried out, but because of legibility,

the base values are kept static. Therefore, in Appendix A and Appendix B some rewards

63

and penalties are presented with division or multiplication signs to indicate difference to

the base offset value. For instance, the gripper was observed to occasionally hit the table

during training, which was indicated as a highly negative aspect and hence the collision

penalty was increased to -5 thus having a 25 modifier.

Reward function parameters include previously presented off-limit search, collision with

the table, the vertical orientation difference between z-axis of the target and the manip-

ulator TCP, and the distance to the target. To enhance the vertical orientation to the

target, the rotation norm was experimented with varying values. Additional experiments

are carried out by studying parameters for unnecessary joint direction of motion. Direc-

tion of motion is especially relevant for the 5th joint, which occasionally causes unneces-

sarily complex motions by not rotating directly towards the target when applicable. Fa-

vourable direction of motion for the Joint 5 is depicted in Figure 5.15. From the zero-

position [3], where the 5th joint is 0 degrees, the favourable angle is at -90 degrees.

Figure 5.15. Favourable direction of motion for joint 5 (left) and for joint 2 (right) in re-
gards the zero-position. Red arrow indicates the favourable direction of motion.

Similarly, the 2nd joint is observed to produce best trajectories when it is rotating between

0-45 degrees. Both joint motions are either regarded with a reward or with a penalty

depending on whether the favourable motion is reached. As a note, all reward function

parameters can be set either as a penalty or a reward. The procedure of when, what,

and how much to reward depends on the application and the modeller [91]. For instance,

the 5th joint motion can be penalized if it is not at the favourable -90-degree angle or it

can be rewarded if it is. With penalty option, the agent would receive most of the time

64

negative feedback whereas with a reward option agent would not receive any feedback

unless it does reach the favourable angle.

Training and revalidation

Table 5.7 and Table 5.8 depict the most prominent parameter and incentive settings.

Table 5.7 Parameter settings for most prominent DDPG policy.

Hyperparameters Symbol Run

Actor learning rate μQ 0.001
Critic learning rate μπ 0.001

Discount factor  0.99

Target update ratio  0.001

Replay buffer size Ɗ 50000
Batch size  64

Gaussian noise σ 2
Episodes  2000

Steps per episode Ƭ 300
Reward function R Augmented

Collision with the table Penalty*25
Off-limit search Penalty

Search beneath table Penalty
Vertical orientation to target Rotational penalty

Rotation norm 0.4
2nd joint not between 0-45deg Penalty

5th joint not between –(85-95)deg Penalty
Distance to target < Precision threshold Reward
Distance to target > Precision threshold Penalty

Precision threshold 𝑇 5cm

Hight of target (from floor) in Z-axis 100cm

Table 5.8 Parameter settings for most prominent SAC policy.

Hyperparameters Symbol Run

Actor learning rate μQ 0.0003
Critic learning rate μπ 0.0003

Entropy learning rate μa 0.0003
Entropy target 𝑇 -dim(AD)
Discount factor  0.99

Target update ratio  0.01

Replay buffer size Ɗ 100000
Batch size  64

Episodes  800

Steps per episode Ƭ 200
Reward function R Augmented

Collision with the table Penalty*25
Off-limit search -

Search beneath table -
Vertical orientation to target Rotational penalty

Rotation norm 0.4
2nd joint not between 0-45 deg -

5th joint not between – (85-95) deg Penalty
Distance to target < Precision threshold Reward
Distance to target > Precision threshold Penalty

Precision threshold 𝑇 5cm

Hight of target (from floor) in Z-axis 100cm

65

Both DDPG and SAC are trained multiple times with the corresponding settings of Table

5.7 and Table 5.8 and the best policies were chosen to reduce the effects of randomness.

The precision threshold 𝑇 is kept constant 5cm for all trained policies. Figure 5.16 and

Figure 5.17 depicts the training results as a standard deviation of performance and a

moving average of 100 episodes

Figure 5.16 DDPG per episode reward and success rate for policies trained accord-
ing to Table 5.7. Shaded region depicts standard deviation of performance and solid

line moving average of 100 episodes.

Figure 5.17 SAC per episode reward and success rate for policies trained according
to Table 5.8. Shaded region depicts standard deviation of performance and solid line

moving average of 100 episodes.

The per episode reward is not comparable between DDPG and SAC, because the re-

ward heuristics differ. However, similarly to the success rate, the per episode reward

demonstrates progressive learning which is visible for both algorithms.

The average success rate of DDPG is slightly better than SAC with 74.38% to 65.43%

(read from Figure 5.16 and Figure 5.17). To indicate progress between the training re-

sults of previous Sections, average success rates are compared to multiple selected

best-trained policies of Run 6 of Table 5.7 and Table 5.8 over the course of training.

Figure 5.18 and Figure 5.19 depict the success rate comparison and additionally include

the best-performed policy of Table 5.7 and Table 5.8.

66

Figure 5.18 DDPG success rate according to Table 5.7 and Run 6 of Table 5.3 over
the course of training. Success rates are given as moving average of 100 episodes.

Figure 5.19 SAC success rate according to Table 5.8 and Run 6 of Table 5.4 over
the course of training. Success rates are given as moving average of 100 episodes.

Comparison graphs illustrate how the policies of Table 5.7 and Table 5.8 outperform the

average best policies of Table 5.3 and Table 5.4. Revalidation in a 1000-episode envi-

ronment testing, as in Section 5.5.3, demonstrate a 100.0% success rate for both DDPG

and SAC policy. The success rate is the same as it was with DDPG and SAC policies of

Run 6 in Table 5.5. However, the retrained policies manage more naturally within the

vicinity of the target and do not overextend any joints as depicted in Table 5.9.

67

Table 5.9 Validation success rates [%] over 1000 episodes and manipulator orienta-
tions at the target.

 Augmented reward (according to Table 5.7 and Table 5.8)

 DDPG SAC

[%] 100.0 100.0

Both DDPG and SAC policies indicate some orientation differences at the target as the

target location changes over the course of validation. However, for the Sim2Real transfer

DDPG is chosen due to better performance indicated by the standard deviation and mov-

ing average of success rate in Figure 5.16 and Figure 5.17 (74.38% vs. 65.43%). Chosen

policy is validated in Figure 5.18 with the performance comparison to average of previous

policies.

5.6 Sim2Real transfer process

Policy control is transferred from the simulation to the physical setup with a direct ap-

proach where the simulation is kept as part of the control process. Chosen method is

similar to the zero-shot transfer where the scope is to build a realistic simulator and di-

rectly apply the policy to a real-world setup [59]. Figure 5.20 depicts the thesis approach

as a Cyber-Physical System where the simulated cyber domain is interlinked with the

physical domain.

ArUco marker is detected with the machine vision system and the localized results are

supplied to the DRL system. The DRL system includes the simulator and the trained

DDPG policy controller. The policy produces joint velocity values that are given to the

forward kinematics of the robotic manipulator. The manipulator starts to move towards

the target.

68

Figure 5.20 Cyber-Physical system representation for the concept to formulate
Sim2Real transfer.

When the target has been reached the results are verified with the machine vision system

by checking if ArUco marker is covered. In success and failure, the operator is informed

with a notification and the system is initialized to the initial zero-position state [3].

The ensemble comprises of three laptops in addition to the control box of the UR10e.

The third laptop communicates with the manipulator through its control box, and it up-

holds the multimachine communication network. Communication is approached with

ROS and network sockets to conjoin hardware APIs.

ROS is a framework for robotic software including a collection of tools and libraries to

ease collaboration of different software modules and hardware interfaces. In its core,

ROS is an open-source system that enables services including hardware abstraction,

low-level device control, messaging between processes and package management [92].

ROS provides packages not only for controlling UR10e, but also for interlinking machine

vision system with ArUco markers to the Sim2Real process.

5.6.1 Machine vision system

Machine vision system is used to detect and localize the target on the robot work surface.

The thesis utilized a Logitech C615 HD webcam, which was set up above the worksur-

face of the physical UR10e. Target to be detected is a ArUco marker [78]. which is a

69

square marker consisting of a wide black boarder with an inner binary matrix determining

its identifier. The detection process utilizes ArUco library [78] for estimating the pose of

the marker. Used ArUco marker and the detected pose of the marker as seen from the

camera are depicted in Figure 5.21.

Figure 5.21. ArUco marker id 582 (left) and the marker seen from the camera (right).

The pose is illustrated in a cartesian coordinate system that has its origin stationed ac-

cording to the calibration of the camera. The camera is calibrated to recognize the marker

on the surface of the table.

Camera calibration

For the manipulator to know the location of the marker within its own cartesian coordinate

system, the marker frame is to be brought to coincidence with the tool frame by calculat-

ing the value of the tool frame relative to the world frame. In other words, the camera is

calibrated to bring the ArUco marker to a coordinate system where the origin is at the

base of UR10e by first calibrating camera to recognise the surface of the table with com-

monly used checkerboard. In manipulator centric robotics these relative frames are base

frame, world frame, wrist frame, tool frame and goal frame. These frames are depicted

in Figure 5.22. The centre of the marker represents the goal frame, and the tool frame is

specified with respect to the wrist frame, and it defines the TCP. This is defined with its

origin between the jaws of the gripper. The world frame is defined with respect to the

base frame with its origin at the corner of the table.

For the manipulator to accomplish motion between different frames, geometric transfor-

mations are required. The position and orientation of the tool frame with respect to the

70

world frame places the end-effector to the same area from where the goal frame should

be found according to the information from the camera.

Figure 5.22. Standard frames and distance (red) between tool frame and goal frame
represented in an illustration (left), modified from [9]. Frame representation in real case

environment (right).

Representing the marker in the manipulator coordinate system is accomplished by im-

plementing cartesian transforms to the matrix representations of the frames. Frames are

connected by vectors that reveal the offset between frames. From Figure 5.22 one can

notice that the matrix transform operations are presented in the following order

{𝐺}−1 ∗ {𝑊𝑜}−1 ∗ {𝐵}−1 ∗ {𝑊𝑟} ∗ {𝑇} = 0. (5.7)

The outcome produces a closed loop, that illustrates transforms from the goal frame to

the tool frame in a situation where the process ends back to the starting point - the goal

frame. The order of transform equations to match the Equation 5.1 can be presented as:

𝑇𝑤𝑜
𝐵 ∗ 𝑇𝐺

𝑤𝑜 = 𝑇𝑤𝑟
𝐵 ∗ 𝑇𝑇

𝑤𝑟. (5.8)

The Equation 5.8 describes how transformations from base frame to goal frame through

world frame are the same as transformations from base frame to tool frame through wrist

frame. In this thesis the goal frame is gained from the camera. To simplify the transfor-

mation process, both the camera and the manipulator base can be positioned on the

world frame by specifying three points from the world frame, separately with manipulator

and with camera, to create a homogenous transformation matrix representation for each

of them. These matrix representations define the pose for each of them with respect to

the world frame. If the matrix representation of the calibrated camera frame is presented

71

as Tcam0 and the marker pose detected by the camera as Tcam, then the pose of the goal

frame relative to the world frame can be represented as

𝑇𝐺
𝑤𝑜 = 𝑇𝑐𝑎𝑚0

−1 ∗ 𝑇𝑐𝑎𝑚, (5.9)

where Tcam0 is taken as inverse to get from world frame to the camera frame. Also, if the

base frame with respect to the world frame is still presented as TB
wo, then with Equations

5.7-5.9 the transform process can be presented as

𝑇𝑇
𝐵 = 𝑇𝑤𝑟

𝐵 ∗ 𝑇𝑇
𝑤𝑟 = 𝑇𝑤𝑜

𝐵 ∗ 𝑇𝑐𝑎𝑚0
−1 ∗ 𝑇𝑐𝑎𝑚. (5.10)

TB
T =TB

wr * T
wr

T represents cartesian transformation from base frame to the tool frame,

which is computed by the kinematic equations to enable motion of the end-effector in

relation to the base of the manipulator. Because the pose of the marker, Tcam0
-1

 * Tcam,,

and the base frame, TB
wo, are now also known within the world frame, the end-effector

can be controlled with respect to the marker and the tool frame can be matched with the

goal frame [9]. Thus, the controller of UR10e can implement kinematic calculations to

operate the TCP to reach the ArUco marker as depicted in Figure 5.23.

Figure 5.23. ArUco marker localized on the table and the pose is given in accordance
to origin in the base of UR10e. Control is managed with inverse kinematics.

The camera precision is verified by checking the distance change from the origin to the

ArUco marker by following the TCP of UR10e. In Figure 5.24 the marker position is

changed (num. 1-3) and UR10e is automatically controlled to the target by inverse kine-

matics. Positions are given as a function of time. In Figure 5.24 yellow colour indicates

72

approach, red being at target, and green withdrawal to initial zero-position. UR10e is not

located at the centreline of the table and the marker is on top of a 10cm foam cylinder.

Figure 5.24. The TCP position of X-, Y- and Z-axis compared to the target (marker) po-
sition during a 50 second execution on UR10e. Target position is changed three (3)

times (illustrated with dotted red lines). Yellow background indicates a period where the
manipulator is approaching the target from the initial state. Red background indicates
the TCP is at the target and green background indicates a period where the manipula-
tor is withdrawing back to initial state. The three positions of the target are numbered
from 1-3 and they are matched with the TCP at the red areas of similar numbering.

5.6.2 System architecture for Sim2Real transfer

The developed ROS communication network incorporates structure according to Figure

5.20. Proposed ROS multimachine network is presented in following Figure 5.25.

73

Figure 5.25. The developed ROS communication network for the Sim2Real transfer.

The ROS master laptop upholds the communication of the system. For communicating

with UR10e, a UR robot ROS driver package is initialized. The package requires helper

packages for the calibration, state control and controllers that provide functionalities for

the actual driver package. Additionally, the package includes the action server for the

scaled position joint trajectory control, which forwards the given joint states to the actu-

ators of the physical joints. The ROS master laptop initializes the action client node,

which subscribes to the simulated UR10 joints topic, “sim_UR10_joints”. When the action

server receives the “/joint_states” applicable to the UR10e, the server publishes them for

the physical UR10e hardware interface. The UR control box is running the Polyscope

operating system, where an external control application “externalcontrol.urcap” is run-

ning to enable a bridge between the Polyscope and ROS.

The machine vision laptop controls the camera to locate the ArUco marker. Camera is

initialized with “/usb-cam” node while the calculation for the AruCo marker localization is

done at “/aruco_ros” node. Camera checks the location of the marker when the operator

starts the Sim2Real application and publishes the results to a “/aruco_single” topic. Sim-

ilarly, when the simulated manipulator claims to have reached the target, the application

verifies this from the “/aruco_single” topic, which should indicate there is no marker data

published because the marker is covered by the physical manipulator. Otherwise, the

74

application produces an error message of a contradiction between the simulated and the

physical environment

Finally, the simulator laptop runs CoppeliaSim simulator with DDPG control policy. The

architecture is same as in Figure 5.7, except the policy is in evaluation mode thus utilizing

what it has learned of the environment. CoppeliaSim provides external APIs to communi-

cate with ROS via Lua interface. The simulation environment module subscribes to the

aforementioned ArUco marker topic, which embeds the data of the target position. Thus,

the random position of the target dot in the simulation is replaced with the calculated

position of the physical ArUco marker. The origin of the simulated environment is scaled

to be same as in the physical setup being the base of the manipulator. The coalition of

simulated and physical target is depicted in Figure 5.26.

Figure 5.26. The position of the target dot in the simulation is subscribed from the ma-
chine vision system that is tracking the physical ArUco marker. Tracked position is the
centre of the ArUco marker. Images 1 and 4, 2 and 5, and 3 and 6 represent the posi-

tions of the target in the simulated and physical setup counterparts.

When the position has arrived and the environment is ready, the simulated UR10 is con-

trolled by DDPG policy to reach the target. As the simulated UR10 moves its joints ac-

cording to target position as distance, joint velocities, and joint angular positions, UR10

75

publishes new joint states as “/sim_UR10_joints” topic via “/sim_ros_interface”. This is

the package providing ROS to communicate with the simulation. The physical UR10e

controller reads the joint positions of the published joint states and moves accordingly.

Note, that physical UR10e reads joint positions not velocities. Published joint states also

include velocity so this could be used, but at the time the used /ur_robot_driver did not

seem to provide sufficient results with joint velocities.

5.7 Validating results in physical environment

Chosen DDPG policy was validated in Section 5.5.4 in a simulated environment. Visual

inspection and the success metrics demonstrated that it would be safe to proceed with

the policy in a real-world scenario. Unlike in simulation, it is not practical to validate the

control policy with a 1000-episode scenario in the physical environment. The process

would be time-consuming and would require personnel to overwatch each episode. In-

stead, the comparison of simulated and physical setups is carried out by performing the

reaching task with placing the ArUco marker five times to each of the three positions

specified in Figure 5.26. Success is measured same as in Algorithm 4 with 30 consecu-

tive steps producing an action that leads to keeping the TCP within the precision thresh-

old vicinity of the target. This way it is possible to follow the orientation of the gripper at

the target. The results are summarized in Table 5.10. Figure 5.27 depicts one execution

of the validation scenario indicating how Cyber-Physical setup of Figure 5.20 is impli-

cated in practice and how the validation test was displayed.

Table 5.10 Validation success rates [%] of scenarios (1-6) from Figure 5.26 for the
simulated and physical setup over five episodes/repetitions.

 Simulation Real

Position 1 (place 1&4 in Figure 5.26) 100.0 100.0

Position 2 (place 2&5 in Figure 5.26) 100.0 100.0

Position 3 (place 3&6 in Figure 5.26) 100.0 100.0

The results are as expected considering how well DDPG policy managed during previous

validations of Section 5.5. Among RL, reaching is considered a relatively simple task [69]

having no multi-objective aspects such as picking and placing that would possibly trans-

late differently to the physical world owing to contact forces etc. Although, the physical

environment managed equally well as the simulated when considering the success met-

ric, there seemed to be difference between the trajectory paths of simulated and physical

setup. This reality gap is validated by observing the distance variation between the TCP

and the target over consecutive approaches.

76

Figure 5.27. Sim2Real performed on UR10e controlled by DDPG policy from Coppeli-
aSim simulator via ROS network. ArUco marker is at position 1 of Table 5.10. Process

follows routine depicted in Figure 5.20. Green boxes implicate actions performed in
cyber domain and orange boxes actions in the physical domain.

Figure 5.28 depicts five approaches to position 1 of Table 5.10 in Cartesian space for

both simulated and physical setup. Dimensions are represented in meters because of

convenience and a larger scaled image is presented in Appendix C: Sim2Real transfer

results. Simulation setup produces data at 20Hz while physical setup at 170Hz, which is

77

why simulation graph has more rough appearance. After 30 successful steps the manip-

ulator is paused at the target for 5s before returning to the initial zero-position. In simu-

lation the return phase occurs as a sudden movement because the environment is re-

started. This gives the simulation graph its sharp edges. On the other hand, because of

the restart, the physical manipulator reaches the initial zero-position with a sudden move

causing small spikes in the physical graph, since DDPG policy controls the physical

UR10e through the simulator.

Figure 5.28 Five consecutive reaching tasks performed with physical and simulated
setup by DDPG policyl. Target stays at the same position during all episodes (position

1 of Table 5.10). Target is illustrated with dotted red line. Lighter colours depict the sim-
ulated and darker the real manipulator trajectory. Yellow background indicates a period
where the manipulator is approaching the target from the initial state. Red background
indicates the TCP is at the target and green background indicates a period where the

manipulator is withdrawing from the target back to the initial state.

Differences between the simulated (light) and the real (dark) manipulator trajectory

graphs demonstrate the width of the reality gap. Known reality gap factors, which were

discussed in Section 5.3, are visible in the Y- and Z-axis, where the differences between

the graphs are the known 4.9cm and 5.3cm at the initial state of the manipulator. The 3-

4cm difference of the TCP among the X-axis is also explainable by the different DH-

parameters of UR10 and UR10e [82], as the physical UR10e tries to compensate this

difference by including 2.23deg to all joints. The angular difference is visible at the initial

state of the manipulators, and it mainly affects the X-axis having only max. 2mm differ-

ence on Y-axis.

78

From the targets point-of-view, the positional difference at the initial zero-position seems

to mitigate considerably as both the simulated and the physical manipulator reach the

target within the given 5cm (50mm) precision threshold. Figure 5.29 describes Figure

5.28 as point-to-point distance between the target and the manipulator TCP in both sim-

ulated and physical setup during the five reaching tasks.

Figure 5.29 Distance to target measured from simulated and physical manipulator
TCP. Black line indicates the precision threshold of 5cm (50mm).

At the target, the distance variations between the setups are explained by the precision

threshold parameter, which can be imagined as a sphere around the target. Table 5.11

summarizes distances from the target to the simulated and the physical TCP, while the

target has been reached in Figure 5.29.

Table 5.11 Distances [mm] between target, and simulated and physical TCP as tar-
get has been reached in five reaching tasks of Figure 5.29.

 Reach 1 Reach 2 Reach 3 Reach 4 Reach 5

Simulation 22.38 30.09 22.16 15.13 24.70

Real 20.05 22.77 9.41 19.67 19.17

Difference 2.33 7.32 12.75 4.54 5.53

The difference in Table 5.11 describes roughly about the accuracy of the Sim2Real trans-

fer. In optimal situation the difference would be close to zero but considering the average

difference at the target is only ~6.5mm at a 1700mm distance with a 50mm precision

threshold, the overall results are satisfactory. Since DDPG policy can reach the target

with safe trajectories in both simulation and reality, the Sim2Real transfer is a success.

79

6 RECOMMENDATIONS FOR FUTURE WORK

The performed robotic task brought forward the comparison between the traditional con-

trol techniques and the DRL based Sim2Real transfer approach. For a simple position

control task, that the reach target represents, traditional techniques involving inverse

kinematics are generally the easiest solution. If the pose of the target is known, it is

relatively simple to forward this information directly to a manipulator and perform a posi-

tion-based task. However, if the task involves an environment with picking and placing

of objects, contact dynamics and adjusting contact forces, a DRL based algorithm with

Sim2Real transfer becomes more applicable. Therefore, outside of the presented reach-

ing task, the task specification should include operations where the adaptive nature of

DRL and Sim2Real could be showcased more clearly. Similarly, the setup should show-

case the generalizability that is expected from the policy and from the Sim2Real process.

The level of dynamics depends on the expected input-output behaviour of a simulator on

a specific level of abstraction. Although, simulators like CoppeliaSim can offer an ab-

straction of the physical world, in this thesis only kinematics were considered. This was

the decided level of abstraction. With the right abstraction level, the simulation can train

a robot to perform as it is desired in the real world. This would also diminish the reality

gap, which was inherently present in the thesis because the simulation model included

different models than the real-world setup. With a correct setup and level of abstraction,

the reality gap can be managed even though the physical domain gap is vast and contact

dynamics modelling is not yet at an optimal level. Common practices among Sim2Real

transfer are domain or dynamics randomization for preparing the simulation trained pol-

icy to the real world.

Though simplicities in simulators can lead to policies, which will fail to generalize, the

structure and depth of the algorithms themselves can affect this as well. Hence, a key

aspect of the Sim2Real process is the selection of DRL algorithms, correct hyperparam-

eters and reward functions. Git repositories like OpenAI Gym [93] and RL Baselines Zoo

[94] offer verified RL and DRL algorithms with Python APIs that could be utilized in a

Sim2Real process. In this thesis the DRL algorithms were scripted by hand to understand

the underlying structure, and the hyperparameters were manually tuned. However, im-

plementing algorithms directly from a verified library reduces the possibility of a human-

mistake when constructing the agent and the environment. Also, a more stable practice

for hyperparameter tuning is to do automatic hyperparameter optimization [94] and per-

form manual tuning afterwards if seen necessary.

80

7 SUMMARY AND CONCLUSIONS

The thesis studied the tools and steps required to implement a physical system that is

trained using Sim2Real robot learning. In robotics, Sim2Real can be seen as a conven-

tion to confront the prediction problem and as a way of bridging the reality gap with tech-

niques concerning knowledge transfer. The theory basis of the thesis unravelled the DRL

and control terminology, problem field around Sim2Real and concentrated on describing

the physical robotic system and the simulated counterpart first as separate ensembles

and finally as a unite process within the Sim2Real context.

The physical environment consisted of a Universal Robots manipulator UR10e, which

was located on a table from which it was to locate and reach a target AruCo marker. To

manage control, the goal in the background was to study how to choose, train and vali-

date a DRL algorithm. DRL is used for sequential decision-making problems, which can

be estimated with an MDP. The scope was on two model-free algorithms: DDPG and

SAC. Model-free implies the algorithm does not require an accurate environment model

and does not use generated predictions of the state transitions and rewards to update

its behaviour. This is aligned with the complex environments related to robotics domain.

At the core of the study was a set of heterogeneous tools consisting of CoppeliaSim

simulator and open-source Python packages.

Algorithms were trained in a simulated counterpart of the physical environment. At first,

the training consisted of sparse, dense, and augmented reward functions with two sets

of hyperparameters to highlight their influence on the exploration and exploitation of the

agent. Augmented reward function demonstrated best results on both algorithms, but the

orientation of the manipulator was horizontally inclined posing safety issues if manifested

on a physical manipulator. Tuning the parameters with additional heuristics required con-

siderable effort and time. After training the policies multiple times, because individual

results do not necessarily converge similarly owing to randomness in the action selection

and network initialization, DDPG demonstrated better performance and was chosen as

control policy for the Sim2Real transfer.

The solution was based on a zero-shot transfer methodology where DDPG policy con-

trolled the physical manipulator from the simulation via ROS multimachine network. The

system included a machine vision system to track the position of the target marker. For

the physical UR10e to locate the target it was necessary to calculate the target frame in

relation to the base of the manipulator. The position of the target must be same in the

81

physical setup and in the simulation to minimize the reality gap. The reality gap was

demonstrated during the study, which was explainable through dimensional differences

of the simulated and physical setup. Additionally, the Sim2Real process was simplified

to concentrate on only kinematics meaning the policy does not capture the real dynamic

processes of the physical setup. However, the decision was supported by the chosen

classical position-control target-reaching task. The trained policy is capable to control

UR10e and perform a collision free trajectory path with redundant DoF, meaning no ori-

entation is considered at the target, and with geometrical limitations. Limitations pertain

to the location of the target being at the end of the table.

The result and the resources put to develop the Sim2Real approach demonstrated that

basic position control tasks such as the chosen target-reaching are more convenient to

perform with traditional control approaches. However, if the task involves more require-

ments for adaptation such as picking and placing then Sim2Real approach becomes

more applicable solution. Nevertheless, most of the robotic tasks involve reaching for

which the thesis provided a verified functionality of an algorithmic approach for robot

control, which performs equally well in simulation as in reality. Videos of the exploration

and exploitation phase as well as the final Sim2Real transfer are available at [95].

82

REFERENCES

[1] H. Dong, Z. Ding, and S. Zhang, Deep reinforcement learning: Fundamentals,

research and applications. Springer Singapore, 2020.

[2] S. Höfer et al., “Perspectives on Sim2Real Transfer for Robotics: A Summary of

the R:SS 2020 Workshop,” Dec. 2020.

[3] “Universal Robots - Service manual - e-Series - English.” https://www.universal-

robots.com/download/manuals-e-series/service/service-manual-e-series-english/

(accessed Nov. 08, 2021).

[4] A. G. SUTTON, R. S., & BARTO, Reinforcement learning: an introduction., 2nd

ed. tchester Publishing Services, 2018.

[5] H. Dong, Z. Ding, and S. Zhang, Deep reinforcement learning: Fundamentals,

research and applications. Springer Singapore, 2020.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1238–1274, Sep. 2013, doi:

10.1177/0278364913495721.

[7] M. Kaspar, J. D. Munoz Osorio, and J. Bock, “Sim2Real transfer for reinforcement

learning without dynamics randomization,” in IEEE International Conference on

Intelligent Robots and Systems, Oct. 2020, pp. 4383–4388, doi:

10.1109/IROS45743.2020.9341260.

[8] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics

simulators for robotic applications,” IEEE Access, vol. 9. Institute of Electrical and

Electronics Engineers Inc., pp. 51416–51431, 2021, doi:

10.1109/ACCESS.2021.3068769.

[9] C. J. J., Introduction to robotics : mechanics & control, 3rd ed. Addison-Wesley

Pub. Co., , Reading, Mass.

[10] M. Mihelj et al., Robotics: Second edition. Springer International Publishing, 2018.

[11] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics. London: Springer

London, 2009.

[12] S. Küc̈ük and Z. Bingül, “The inverse kinematics solutions of industrial robot

manipulators,” in Proceedings of the IEEE International Conference on

Mechatronics 2004, ICM’04, 2004, pp. 274–279, doi:

83

10.1109/icmech.2004.1364451.

[13] S. Baglioni, F. Cianetti, C. Braccesi, and L. Landi, “Parametric multibody modeling

of anthropomorphic robot to predict joint compliance influence on end effector

positioning,” in ASME International Mechanical Engineering Congress and

Exposition, Proceedings (IMECE), 2013, vol. 4 A, doi: 10.1115/IMECE2013-

64815.

[14] K. P. Hawkins, “Analytic Inverse Kinematics for the Universal Robots UR-5/UR-

10 Arms,” Georgia Institute of Technology, Dec. 2013.

[15] L. Cuiyan, Z. Dongchun, and Z. Xianyi, “A survey of repetitive control,” in 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2004, vol. 2, pp. 1160–1166, doi: 10.1109/iros.2004.1389553.

[16] M. Krämer, C. Rösmann, F. Hoffmann, and T. Bertram, “Model predictive control

of a collaborative manipulator considering dynamic obstacles,” Optim. Control

Appl. Methods, vol. 41, no. 4, pp. 1211–1232, Jul. 2020, doi: 10.1002/oca.2599.

[17] J. Hätönen, T. J. Harte, D. H. Owens, J. Ratcliffe, P. Lewin, and E. Rogers,

“Iterative learning control - What is it all about?,” in IFAC Proceedings Volumes

(IFAC-PapersOnline), Aug. 2004, vol. 37, no. 12, pp. 547–553, doi:

10.1016/S1474-6670(17)31526-4.

[18] Y. P. Pane, S. P. Nageshrao, J. Kober, and R. Babuška, “Reinforcement learning

based compensation methods for robot manipulators,” Eng. Appl. Artif. Intell., vol.

78, pp. 236–247, Feb. 2019, doi: 10.1016/j.engappai.2018.11.006.

[19] S. Badillo et al., “An Introduction to Machine Learning,” Clin. Pharmacol. Ther.,

vol. 107, no. 4, pp. 871–885, Apr. 2020, doi: 10.1002/cpt.1796.

[20] S. Theodoridis, Machine Learning : A Bayesian and Optimization Perspective,.

Elsevier Science & Technology, 2015.

[21] Z. C. Lipton, “The mythos of model interpretability: In machine learning, the

concept of interpretability is both important and slippery.,” Queue, vol. 16, no. 3,

pp. 31–57, May 2018, doi: 10.1145/3236386.3241340.

[22] V. M. Aparanji, U. V. Wali, and R. Aparna, “Robotic motion control using machine

learning techniques,” in Proceedings of the 2017 IEEE International Conference

on Communication and Signal Processing, ICCSP 2017, Feb. 2018, vol. 2018-

Janua, pp. 1241–1245, doi: 10.1109/ICCSP.2017.8286579.

[23] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in

84

robotics: Applications and real-world challenges,” Robotics, vol. 2, no. 3, pp. 122–

148, Sep. 2013, doi: 10.3390/robotics2030122.

[24] N. Liu, Y. Cai, T. Lu, R. Wang, and S. Wang, “Real–Sim–Real Transfer for Real-

World Robot Control Policy Learning with Deep Reinforcement Learning,” Appl.

Sci., vol. 10, no. 5, p. 1555, Feb. 2020, doi: 10.3390/app10051555.

[25] T. Hester et al., “Deep Q-learning from Demonstrations,” 32nd AAAI Conf. Artif.

Intell. AAAI 2018, pp. 3223–3230, Apr. 2017.

[26] X. Zhou, T. Bai, Y. Gao, and Y. Han, “Vision-based robot navigation through

combining unsupervised learning and hierarchical reinforcement learning,”

Sensors (Switzerland), vol. 19, no. 7, p. 1576, Apr. 2019, doi: 10.3390/s19071576.

[27] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based Reinforcement

Learning: A Survey,” Proc. Int. Conf. Electron. Bus., vol. 2018-December, pp.

421–429, Jun. 2020, Accessed: Apr. 29, 2021. [Online]. Available:

http://arxiv.org/abs/2006.16712.

[28] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” in 4th

International Conference on Learning Representations, ICLR 2016 - Conference

Track Proceedings, Sep. 2016.

[29] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” 33rd

Int. Conf. Mach. Learn. ICML 2016, vol. 4, pp. 2850–2869, Feb. 2016, Accessed:

Apr. 26, 2021. [Online]. Available: http://arxiv.org/abs/1602.01783.

[30] M. Plappert et al., “Parameter Space Noise for Exploration,” arXiv, Jun. 2017,

Accessed: Apr. 26, 2021. [Online]. Available: http://arxiv.org/abs/1706.01905.

[31] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.

Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988, doi: 10.1007/bf00115009.

[32] A. Givchi and M. Palhang, “Off-policy temporal difference learning with distribution

adaptation in fast mixing chains,” Soft Comput., vol. 22, no. 3, pp. 737–750, Feb.

2018, doi: 10.1007/s00500-017-2490-1.

[33] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Cambridge, UK, 1989.

[34] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-critic

algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, Nov. 2009, doi:

10.1016/j.automatica.2009.07.008.

[35] T. Degris, M. White, and R. S. Sutton, “Off-Policy Actor-Critic,” Proc. 29th Int.

Conf. Mach. Learn. ICML 2012, vol. 1, pp. 457–464, May 2012, Accessed: May

85

19, 2021. [Online]. Available: http://arxiv.org/abs/1205.4839.

[36] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation

Error in Actor-Critic Methods,” 35th Int. Conf. Mach. Learn. ICML 2018, vol. 4, pp.

2587–2601, Feb. 2018, Accessed: May 19, 2021. [Online]. Available:

http://arxiv.org/abs/1802.09477.

[37] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,

“Deterministic Policy Gradient Algorithms,” in Proceedings of the 31st

International Conference on Machine Learning, 2014, vol. 32, no. 1, pp. 387–395,

[Online]. Available: https://proceedings.mlr.press/v32/silver14.html.

[39] S. Luo, H. Kasaei, and L. Schomaker, “Accelerating Reinforcement Learning for

Reaching using Continuous Curriculum Learning,” Feb. 2020, doi:

10.1109/IJCNN48605.2020.9207427.

[40] V. Gullapalli, J. A. Franklin, and H. Benbrahim, “Acquiring Robot Skills via

Reinforcement Learning,” IEEE Control Syst., vol. 14, no. 1, pp. 13–24, 1994, doi:

10.1109/37.257890.

[41] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking

Deep Reinforcement Learning for Continuous Control,” 33rd Int. Conf. Mach.

Learn. ICML 2016, vol. 3, pp. 2001–2014, Apr. 2016, Accessed: May 27, 2021.

[Online]. Available: http://arxiv.org/abs/1604.06778.

[42] B. T. Polyak, “Some methods of speeding up the convergence of iteration

methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, 1964, doi:

10.1016/0041-5553(64)90137-5.

[43] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep

Reinforcement Learning that Matters,” 32nd AAAI Conf. Artif. Intell. AAAI 2018,

pp. 3207–3214, Sep. 2017, Accessed: Jun. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1709.06560.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” in 35th

International Conference on Machine Learning, ICML 2018, Jan. 2018, vol. 5, pp.

2976–2989.

[45] T. Haarnoja et al., “Soft Actor-Critic Algorithms and Applications,” Dec. 2018,

Accessed: Jul. 26, 2021. [Online]. Available: http://arxiv.org/abs/1812.05905.

86

[46] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Ann. Math. Stat.,

vol. 22, no. 1, pp. 79–86, Mar. 1951, doi: 10.1214/aoms/1177729694.

[47] X. Bin Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer

of Robotic Control with Dynamics Randomization,” Proc. - IEEE Int. Conf. Robot.

Autom., pp. 3803–3810, Oct. 2017, doi: 10.1109/ICRA.2018.8460528.

[48] S. James et al., “Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via

Randomized-to-Canonical Adaptation Networks,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 12619–12629, Dec. 2018.

[49] D. F. Gomes, P. Paoletti, and S. Luo, “Generation of GelSight Tactile Images for

Sim2Real Learning,” Jan. 2021.

[50] L. Pinto and A. Gupta, “Supersizing Self-supervision: Learning to Grasp from 50K

Tries and 700 Robot Hours,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-

June, pp. 3406–3413, Sep. 2015.

[51] J. E. Gaudio, T. E. Gibson, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky,

“Connections Between Adaptive Control and Optimization in Machine Learning,”

Proc. IEEE Conf. Decis. Control, vol. 2019-Decem, pp. 4563–4568, Apr. 2019,

doi: 10.1109/CDC40024.2019.9029197.

[52] “(PDF) A synthesis of reinforcement learning and robust control theory.” .

[53] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable robot

simulation framework,” in IEEE International Conference on Intelligent Robots and

Systems, Jan. 2013, pp. 1321–1326, doi: 10.1109/IROS.2013.6696520.

[54] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based

control,” in IEEE International Conference on Intelligent Robots and Systems,

2012, pp. 5026–5033, doi: 10.1109/IROS.2012.6386109.

[55] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-

source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2004, vol. 3, pp. 2149–2154, doi:

10.1109/iros.2004.1389727.

[56] A. Juliani et al., “Unity: A General Platform for Intelligent Agents,” Sep. 2018,

Accessed: Jul. 13, 2021. [Online]. Available: http://arxiv.org/abs/1809.02627.

[57] G. Brockman et al., “OpenAI Gym,” Jun. 2016, Accessed: Jul. 13, 2021. [Online].

Available: http://arxiv.org/abs/1606.01540.

[58] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for

87

games, robotics and machine learning.” 2016, [Online]. Available:

http://pybullet.org.

[59] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep

Reinforcement Learning for Robotics: a Survey,” 2020 IEEE Symp. Ser. Comput.

Intell. SSCI 2020, pp. 737–744, Sep. 2020, Accessed: Jul. 07, 2021. [Online].

Available: http://arxiv.org/abs/2009.13303.

[60] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of Deep

Visuomotor Policies,” J. Mach. Learn. Res., vol. 17, Apr. 2015, Accessed: Jul. 02,

2021. [Online]. Available: http://arxiv.org/abs/1504.00702.

[61] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor skills in

high dimensions: A path integral approach,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2010, pp. 2397–2403, doi:

10.1109/ROBOT.2010.5509336.

[62] N. Heess et al., “Emergence of Locomotion Behaviours in Rich Environments,”

Jul. 2017, Accessed: Jul. 02, 2021. [Online]. Available:

http://arxiv.org/abs/1707.02286.

[63] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” in 4th International

Conference on Learning Representations, ICLR 2016 - Conference Track

Proceedings, Jun. 2016.

[64] N. Heess et al., “Learning Continuous Control Policies by Stochastic Value

Gradients,” 2015.

[65] OpenAI et al., “Learning Dexterous In-Hand Manipulation,” Int. J. Rob. Res., vol.

39, no. 1, pp. 3–20, Aug. 2018, Accessed: Jul. 06, 2021. [Online]. Available:

http://arxiv.org/abs/1808.00177.

[66] J. Tan et al., “Sim-to-Real: Learning Agile Locomotion For Quadruped Robots,”

Apr. 2018, Accessed: Jul. 06, 2021. [Online]. Available:

http://arxiv.org/abs/1804.10332.

[67] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-Efficient Hierarchical

Reinforcement Learning,” Adv. Neural Inf. Process. Syst., vol. 2018-December,

pp. 3303–3313, May 2018, Accessed: Jul. 08, 2021. [Online]. Available:

http://arxiv.org/abs/1805.08296.

[68] M. Andrychowicz et al., “Hindsight Experience Replay,” Adv. Neural Inf. Process.

Syst., vol. 2017-December, pp. 5049–5059, Jul. 2017, Accessed: Jul. 08, 2021.

88

[Online]. Available: http://arxiv.org/abs/1707.01495.

[69] M. Plappert et al., “Multi-Goal Reinforcement Learning: Challenging Robotics

Environments and Request for Research,” Feb. 2018, Accessed: Jul. 09, 2021.

[Online]. Available: http://arxiv.org/abs/1802.09464.

[70] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming

Exploration in Reinforcement Learning with Demonstrations,” Proc. - IEEE Int.

Conf. Robot. Autom., pp. 6292–6299, Sep. 2017, Accessed: Jul. 09, 2021.

[Online]. Available: http://arxiv.org/abs/1709.10089.

[71] T.-H. Pham, G. De Magistris, and R. Tachibana, “OptLayer - Practical Constrained

Optimization for Deep Reinforcement Learning in the Real World,” Proc. - IEEE

Int. Conf. Robot. Autom., pp. 6236–6243, Sep. 2017, Accessed: Jul. 01, 2021.

[Online]. Available: http://arxiv.org/abs/1709.07643.

[72] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell, “Sim-

to-Real Robot Learning from Pixels with Progressive Nets,” Oct. 2016, Accessed:

Jul. 06, 2021. [Online]. Available: http://arxiv.org/abs/1610.04286.

[73] F. Golemo, A. Taïga, P.-Y. Oudeyer, A. Courville, A. C. Sim, and A. A. Taïga,

“Sim-to-Real Transfer with Neural-Augmented Robot Simulation,” Oct. 2018.

Accessed: Jul. 06, 2021. [Online]. Available: https://hal.inria.fr/hal-01911978.

[74] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

Randomization for Transferring Deep Neural Networks from Simulation to the

Real World,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-September, pp. 23–30,

Mar. 2017, Accessed: Jul. 12, 2021. [Online]. Available:

http://arxiv.org/abs/1703.06907.

[75] S. Genc, S. Mallya, S. Bodapati, T. Sun, and Y. Tao, “Zero-Shot Reinforcement

Learning with Deep Attention Convolutional Neural Networks,” Jan. 2020,

Accessed: Nov. 19, 2021. [Online]. Available: http://arxiv.org/abs/2001.00605.

[76] I. Higgins et al., “DARLA: Improving Zero-Shot Transfer in Reinforcement

Learning,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, pp. 2335–2350, Jul.

2017, Accessed: Nov. 19, 2021. [Online]. Available:

http://arxiv.org/abs/1707.08475.

[77] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in

Computer Vision: A Survey,” IEEE Access, vol. 6. Institute of Electrical and

Electronics Engineers Inc., pp. 14410–14430, Feb. 16, 2018, doi:

10.1109/ACCESS.2018.2807385.

89

[78] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-

Jiménez, “Automatic generation and detection of highly reliable fiducial markers

under occlusion,” Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, Jun. 2014, doi:

10.1016/j.patcog.2014.01.005.

[79] S. James, M. Freese, and A. J. Davison, “PyRep: Bringing V-REP to Deep Robot

Learning,” Jun. 2019, Accessed: Jul. 13, 2021. [Online]. Available:

http://arxiv.org/abs/1906.11176.

[80] Coppeliarobotics, “Joint Types and Operations.”

https://www.coppeliarobotics.com/helpFiles/en/jointDescription.htm (accessed

Oct. 24, 2021).

[81] “Universal Robots - Max. joint torques.” https://www.universal-

robots.com/articles/ur/robot-care-maintenance/max-joint-torques/ (accessed Mar.

09, 2022).

[82] UniversalRobots, “DH Parameters for calculations of kinematics and dynamics,”

Denavit Hartenberg Parameters - DH Parameters, 2021. https://www.universal-

robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-

kinematics-and-dynamics/.

[83] Robotiq Inc, “Robotiq 2-Finger Adaptive Robot Gripper - 85 Instruction Manual,”

2014. [Online]. Available: support.robotiq.com.

[84] Robotic inc., “Robotiq 2F-85 & 2F-140 for e-Series Universal Robots Instruction

Manual,” 2018. [Online]. Available: support.robotiq.com.

[85] “Stable Baselines: Reinforcement Learning Tips and Tricks,” Stable Baselines

Revision f877c85b, 2021. https://stable-

baselines.readthedocs.io/en/master/guide/rl_tips.html#tips-and-tricks-when-

creating-a-custom-environment.

[86] P. Dhariwal et al., “OpenAI Baselines.” Github, 2017, [Online]. Available:

https://github.com/openai/baselines.

[87] N. Raffin, Antonin and Hill, Ashley and Ernestus, Maximilian and Gleave, Adam

and Kanervisto, Anssi and Dormann, “Stable Baselines3.” Github, 2019, [Online].

Available: https://github.com/DLR-RM/stable-baselines3.

[88] Z. Morvan, “train-robot-arm-from-scratch.” GitHub, 2019, [Online]. Available:

https://github.com/MorvanZhou/train-robot-arm-from-scratch.

[89] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train

90

your robot with deep reinforcement learning: lessons we have learned,” Int. J. Rob.

Res., vol. 40, no. 4–5, pp. 698–721, Apr. 2021, doi: 10.1177/0278364920987859.

[90] A. Sehgal, H. M. La, S. J. Louis, and H. Nguyen, “Deep Reinforcement Learning

using Genetic Algorithm for Parameter Optimization,” Proc. - 3rd IEEE Int. Conf.

Robot. Comput. IRC 2019, pp. 596–601, Feb. 2019, Accessed: Jul. 27, 2021.

[Online]. Available: http://arxiv.org/abs/1905.04100.

[91] C. P. Janssen and W. D. Gray, “When, What, and How Much to Reward in

Reinforcement Learning-Based Models of Cognition,” Cogn. Sci., vol. 36, no. 2,

pp. 333–358, Mar. 2012, doi: 10.1111/j.1551-6709.2011.01222.x.

[92] “ROS/Introduction - ROS Wiki.” http://wiki.ros.org/ROS/Introduction (accessed

Mar. 17, 2021).

[93] “GitHub - openai/gym: A toolkit for developing and comparing reinforcement

learning algorithms.” https://github.com/openai/gym (accessed Nov. 12, 2021).

[94] “GitHub - DLR-RM/rl-baselines3-zoo: A training framework for Stable Baselines3

reinforcement learning agents, with hyperparameter optimization and pre-trained

agents included.” https://github.com/DLR-RM/rl-baselines3-zoo (accessed Nov.

12, 2021).

[95] “Petri Tikka - YouTube.” https://www.youtube.com/channel/UCdK32Xz9VGR

2bNfXLPX1Y7A (accessed Dec. 17, 2021).

91

APPENDIX A: INSTANTIABLE DDPG REVALIDATION PARAMETERS

92

APPENDIX B: INSTANTIABLE SAC REVALIDATION PARAMETERS

93

APPENDIX C: SIM2REAL TRANSFER RESULTS

	1 Introduction
	1.1 Structure and Milestones of the Thesis
	1.2 Identification of the Problem and Objectives

	2 The mechanics and Control of manipulators
	2.1 The Mechanics of a manipulator
	2.2 Kinematics for mechanical manipulation
	2.2.1 Forward kinematics
	2.2.2 Inverse kinematics

	3 Learning-based control paradigms
	3.1 Machine learning paradigms
	3.2 Reinforcement Learning
	3.3 The Markov Decision Process
	3.3.1 The reward function and the goal
	3.3.2 Formal definition of the MDP
	3.3.3 Temporal difference learning

	3.4 Model-based and model-free methods
	3.5 Actor-critic framework
	3.6 Reinforcement algorithms for continuous action spaces
	3.6.1 Deep Deterministic Policy Gradient
	3.6.2 Soft Actor-Critic

	4 Simulation-to-real learning
	4.1 Simulators for Sim2Real transfer
	4.2 Sim2Real transfer
	4.2.1 Relevant Examples
	4.2.2 Transfer techniques

	4.3 Reality gap

	5 Simulation-to-Real case study
	5.1 Task description
	5.2 Simulation environment
	5.3 Known reality gap factors
	5.4 DRL software architecture
	5.4.1 MDP in practice
	5.4.2 Software modules

	5.5 Training and validation
	5.5.1 Training DDPG policy
	5.5.2 Training SAC policy
	5.5.3 Validating results in simulated environment
	5.5.4 Modifying initial parameters and revalidation

	5.6 Sim2Real transfer process
	5.6.1 Machine vision system
	5.6.2 System architecture for Sim2Real transfer

	5.7 Validating results in physical environment

	6 Recommendations for future work
	7 Summary and Conclusions
	REFERENCES

