

Jali Juhola

SECURITY TESTING PROCESS FOR
REACT NATIVE APPLICATIONS

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

April 2022

ABSTRACT

Jali Juhola: Security Testing Process for React Native Applications
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Software Development
Mar 2022

Nowadays many security-sensitive mobile applications do not create separate applications for

every targeted native environment but will use a hybrid mobile framework like React Native as an

alternative. These frameworks are nowadays used as alternatives for pure native applications,

created separately for every native environment. The problem with these hybrid frameworks is

that they create different unique environments, which will make new unique challenges for

security validating and testing applications built with hybrid frameworks.

 This thesis is limited to only one hybrid framework, React Native, and during the study, a

security testing model is created for React Natives security testing purposes. Similar studies have

not been previously conducted by using React Native or any other hybrid frameworks using

platform-specific native components similarly as React Native uses. Therefore, research was

started by defining parts that React Native applications are built with. Relevant parts of React

Native for security testing purposes are its three environments. These environments are platform-

specific Android and iOS environments, platform-agnostic JavaScript environment and the bridge

used to communicate between native and platform-agnostic environments. The model created

during the study has the goal of finding vulnerabilities from all of these three environments. This

created model improves the current stage of testing React Native applications as the current

model commonly used with React Native applications is created for testing only native

environments of React Native applications.

 At the end, this model is verified during the case study section by conducting the security testing

process to a mobile application built by using React Native and by using the created model.

Security testing was conducted by using two different groups of tools and methods. These groups

of tools and methods are used either with pure native or JavaScript applications.

As a result of the study, it was found that, React Native ecosystem has platform specifics

inside its platform-agnostic JavaScript parts. These specifics should be taken into consideration

during the security testing process. This also applies to other native component-based hybrid

frameworks, where also to gain sufficient security testing coverage, their respective platform

specifics should be taken into consideration.

Key words and terms: React Native, Security Testing, OWASP, Mobile, Information Security,

Hybrid applications.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

LIST OF TERMS AND ABBREVIATIONS

IDE Integrated development environment

XCode IDE for developing native iOS applications.

Android Studio IDE for developing native Android applications.

MSTG Mobile Security Testing Guide

MASVS Mobile Application Security Verification Standard

Threat Threat is event or damage which cyber-attack causes to asset or

organization. Some common threats could be the disclosure of

sensitive data and or assets becoming inaccessible to end customers.

[Helfrich, 2019]

Vulnerability Vulnerability refers to some specific technical security issue in the

system. Vulnerability allows an attacker to gain access to the system

and enables threat to actualize. Vulnerability could be for example,

insecure authentication method used in a development environment

that is unintentionally exposed to the production environment.

[Helfrich, 2019]

Exploit Exploit is a piece of code or application that takes advantage of

applications or systems vulnerability. [Helfrich, 2019]

Bug Bug is an error or mistake made by a developer. Bugs are commonly

allowing an attacker to create the exploit by taking advantage of the

vulnerability.

Black Hat Black hat is a person attempting to break the system's security

without legal permission [Helfrich, 2019].

Risk Risk in this study is defined as threat and vulnerability paired

together. If a vulnerability can be found in an asset and is

exploitable, it will allow a threat to be actualized in the asset. These

combined creates a risk to that asset. [Helfrich, 2019]

Contents

1. Introduction ... 1

2. Related work .. 4

2.1. Mobile Security testing by OWASP 4

2.2. Security testing hybrid applications 6

2.3. Mobile security testing methodologies and models 8

3. React Native ... 10

3.1. JavaScript 11

3.2. React.js 11

3.3. React.js vs React Native 13

3.4. Architecture 13

3.4.1 JavaScript environment and JavaScript thread 14

3.4.2 Native environments and thread 15

3.4.3 Bridge 15

3.5. Beyond mobile 16

3.6. Expo 17

4. Risk in React Native .. 18

4.1. Leaky abstractions 18

4.2. Bad JavaScript code quality 19

4.3. JavaScript code obfuscation 20

4.4. Using components with known vulnerabilities 20

4.4.1 Scanning components with known vulnerabilities 21

5 OWASP mobile Risks.. 22

5.1 Improper Platform Usage 23

5.1.1 Testing React Native improper platform usage 24

5.2 Insecure Data Storage 24

5.2.1 Testing React Native insecure data storage 25

5.3 Insecure Communication 26

5.3.1 Testing React Native insecure data storage 26

5.4 Insecure Authentication 27

5.4.1 Testing for insecure authentication 27

5.5 Insufficient Cryptography 28

5.5.1 Testing for insecure cryptography 29

5.6 Insecure Authorization 29

5.6.1 Scanning insecure authorization 29

5.7 Poor Code Quality 30

5.7.1 Finding Code Quality issues 30

5.7.1.1 JavaScript 30

5.7.1.2 Native environments 31

5.8 Code Tampering 31

5.8.1 Testing for Code tampering 32

5.9 Reverse Engineering 32

5.9.1 Testing for reverse engineering 33

5.10 Extraneous functionality 33

5.10.1 Testing for extraneous functionality 34

6 Mobile security testing tools ... 35

6.1 MobSF 35

6.2 Burp Suite 36

6.3 SonarQube 37

6.4 ApkTool 37

6.5 GitHub Security Advisories 38

6.6 Yarn Audit 39

6.7 Frida 39

6.8 QARK 40

6.9 Insiders 40

7 Vulnerability categorization ... 42

7.1 Common Vulnerability Scoring System 42

7.2 National vulnerability database 43

7.3 Common Vulnerabilities and exposures 44

8 React Native security testing process ... 45

8.1 Vulnerability assessment 47

8.1.1 Preparation phase 48

8.1.2 Information gathering 49

8.1.3 Scanning the application 50

8.1.4 Result analysis 51

8.2 Penetration testing 52

8.2.1 Exploitations 52

8.2.2 Result analysis 53

8.3 Reporting 54

8.4 Different platforms and model 54

9 Case study security testing React Native application ... 55

9.1 Preparation phase 55

9.2 Information gathering 56

9.2.1 Android 57

9.2.2 iOS 58

9.3 Scanning the application 59

9.3.1 JavaScript environment 60

9.3.2 Android 63

9.3.3 iOS 65

9.4 Result analysis 66

9.4.1 JavaScript 67

9.4.2 Android 68

9.4.3. iOS 69

9.5 Exploitations 69

9.5.1 JavaScript 70

9.5.1.1 Preparing the attacks 70

9.5.1.2 Exploiting the vulnerabilities 71

9.5.2 Android 72

9.5.2.1 Preparing the attacks 72

9.5.2.2 Exploiting the vulnerabilities 73

9.5.3 iOS 73

9.6 Result Analysis 74

10 Conclusions .. 76

10.2 Limitations 77

10.3 Future work 77

References .. 82

-1-

1. Introduction

The environment where multiple mobile operating systems should be taken into

consideration can be challenging when developing applications. Nowadays, multiple

platforms should be targeted to gain sufficient coverage among different devices. In

addition, code cannot be shared between these targeted platforms as those are

implemented by using different technologies. Therefore, nowadays, different teams are

required to create applications for each targeted platform. At the time of writing, most

companies will target only two platforms Android and iOS, which are holding the

majority of the market with a combined market share of 99 percent [Statista, 2021].

 The solution has been introduced to mitigate the issue of needing to create multiple

seemingly similar applications with distinct codebases that are used only to target

different platforms. This solution is hybrid frameworks like React Native, Flutter or Ionic.

These frameworks allow the creation of native-looking applications, which are executable

in multiple platforms simultaneously by using only a single codebase. Although these

frameworks are saving time during the upkeep and development phases, the question is

raised about how secure are these hybrid frameworks? When an application built with a

hybrid framework is compared to a pure native application, it becomes apparent that the

attack surface of hybrid applications is more extensive than natively built applications

one. That is because hybrid application includes in addition of attack-vectors of native

applications, the hybrid framework as itself. The hybrid framework is working as a

platform-agnostic part of the hybrid applications and will create another attack surface

for the application. That attack surface in React Native, as an example, includes the whole

JavaScript engine, which in Android’s case is packaged separately inside the application

package [Mueller, et al, 2020].

 The aim of this study is to create a comprehensive security testing model with a

suitable toolset for security testing React Native applications. According to Mueller and

others [2020] and Hale and Hansson [2015], the security testing process of React Native

applications includes two parts. These are the native parts of the applications and hybrid

framework-specific parts of the application. To test native parts of the applications ten

most common mobile risks by OWASP [2016] are used as a base. Each of these ten risks

are studied separately to determine the methodology and toolset for testing these risks.

There has not been yet a similar risk listing created for React Native-built applications.

Therefore, documentation and online sources like Facebook [2019] and CossacLabs

[2021], are used to create a React Native specific risk listing, which will be studied

similarly as Owasp Mobile Top Ten [2016], to create a methodology and toolset for these

React Native particular risks. At the end of the study, this model and toolset are validated

-2-

by testing real-world React Native application and documenting findings and issues

encountered.

 This study is divided into ten chapters. Starting with the related work section where a

literature review about security testing native and hybrid mobile applications is

conducted. In addition to these generic security testing searches, tools and methodologies

for testing mobile applications will be studied with the literature search later in that

chapter. Related work found in this stage works as background and is used in chapters

where React Native, native mobile applications, and security issues related to React

Native and native mobile applications are studied. After, tools for security testing these

previously mentioned issues and methodologies for categorizing vulnerabilities found are

studied. By using these previously described pieces of information, a comprehensive

security testing model for testing React Native applications is created. At the end of the

study, this model is validated by conducting security testing to production-level React

Native application consisting of sensitive data.

 There are different terms used to describe the security testing process of mobile

applications. These are mobile application security review, mobile application security

testing, and mobile application penetration testing. These all are terms referencing

according to Mueller and others [2020] the same process. This security testing process

can be divided at the higher level into three categories automatic, semi-automatic, and

manual testing. Usually, automatic analysis parts of the testing process are executed in

the vulnerability assessment phase. In the vulnerability assessment phase, source code

and a package of application are reviewed for vulnerabilities and risky behaviors by using

automated tools like MobSF and Drozer, which are introduced later in the thesis. Problem

with these automatic scanning tools is that they are lacking the sensitivity of testing more

subtle errors found in business logic and organization-specific assets [Boduch, et al.

2020]. Therefore, in the vulnerability assessment phase, parts of the application might be

beneficial also to review manually. This would include for example, a possible custom

authentication scheme used by the application [Mueller, et al, 2020]. Therefore due to

these manual steps, the vulnerability assessment process as a whole is usually a semi-

automatic process.

After the vulnerability assessment phase, a set of unvalidated vulnerabilities is

gathered. In this stage of the testing process, there is a high possibility that those

unvalidated vulnerabilities are false positive. This is why in the next phase, a tester will

validate this set of vulnerabilities by actively attacking the application like a real attacker

would. This makes it possible for security tester to gather valuable information about the

damage that these vulnerabilities would cause and the difficulty of exploiting these

vulnerabilities. This exploitation phase of testing can be a time-consuming and costly

process to execute, requiring a lot of time from a highly skilled tester with knowledge

-3-

about technologies used by the target system. On the other hand, vulnerability assessment

is at least partly automatically runnable, making it more easily executable as often as

needed [Umro, et al 2012]. This is why it is common that the penetration testing phases

of security testing processes are being neglected and only the vulnerability assessment

phase will be executed when application is tested [Mueller, et al, 2020]. However,

according to PTES [2021] carefully executed penetration testing is a crucial part of the

successful security testing process and if executed correctly, it will supply critical

information about the system's overall state of security.

In addition to the automation level of testing, the type of testing process also depends

on data that the tester is given about the target system. This data given is commonly

divided into three different groups which are:

Black box testing is the way of the testing system like a real malicious user would by

downloading the application from its official source and conducting attacks by using only

publicly available information about the application. In the context of mobile

applications, full black box testing would mean that application is tested obfuscation

activated without the source code.

Gray box testing Is a way to conduct testing with limited information about the

application. This would mean in the example, the application being un-obfuscated or a

tester having valid admin login credentials.

White box testing in many sources this process is referred also as internal security

auditioning. In this process, a tester has full access to the architecture and source code of

the application.

Black box testing resembles the situation with an actual external attacker and

therefore is the most realistic situation. On the other hand, black-box testing makes it

difficult for testers to verify possibly unintended behaviors and conduct penetration

testing [Mueller, et al, 2020]. Second problem with black box testing comes with the

difficulty of running time-saving automated security tools. Many of these tools will

require either unobfuscated binaries or source code as an input [MobSF, 2021;

SonarQube, 2021]. So overall black box testing can be challenging in situations where

testers have strict time constraints for the testing process. Therefore it is highly advisable

for testers, to ask the application to be de-obfuscated and a source code revealed during

the testing. This is because obfuscation of mobile applications by itself is not effective

security control [OWASP, 2016]. Access to source code and architecture can also be

important in situations where applications have previously not gone through security

testing processes before. This makes an initial testing process much more efficient and

sensitive to more subtle vulnerabilities and risks [Boduch, et al. 2020].

-4-

2. Related work

In this section, the literature review is conducted using scientific articles searched with

Google Scholar and Andor services. Andor is a service owned by Tampere University

which consists of access to articles from 420 databases when writing the thesis [Tuni,

2021].

2.1. Mobile Security testing by OWASP

The first search is related to work regarding Mobile Security testing and safe mobile

development at the generic level, without any technologies specified. As OWASP mobile

top ten risk listing and OWASP methodology are used by this study, this search is limited

to OWASP related methodologies. The first search is done by using two different queries

first is OWASP AND Mobile AND (Security testing OR Penetration testing), which is used

to search OWASP related literature about security testing and penetration testing mobile

applications. Second search is done by using the query OWASP AND Mobile AND

Development. In the literature review, literature about safe development methodologies

by using OWASP methodologies is searched.

 Literature regarding security testing and secure development of mobile applications

by using OWASP methodology was found. These studies are based on two different sets

of risks. OWASP published its first set of risks in 2014. Two years later, these risks

became somewhat obsolete when OWASP published a newer and currently latest set of

risks in 2016. Although the older group of risks can now be regarded as outdated, OWASP

included most of the earlier risks in the newer 2016 listing. Therefore, studies conducted

with an older 2014 set of risks are at least partially comparable with studies including

more recent 2016 risks. [Borja, et al 2021]

Rodríguez and others [2018] studied safe development methods of mobile applications

by using OWASP methodologies as a guideline by using a newer set of risks provided by

OWASP. In this study, these risks were introduced, and the importance of considering

these risks already at the development phase was emphasized. However, the study is

focusing more on the development phase of the mobile applications, and therefore, no

testing process or methodology is introduced during this study.

 There were also studies found where penetration testing, vulnerability assessment, or

both are conducted. A couple of examples of studies like that are Alanda and others

[2020] and Borja and others [2021]. However, these studies conducted their testing

process either to Android or an undisclosed operating system. An unspecified operating

system makes it harder to compare these studies to our results at the end of our study. The

second problem with these two studies from this thesis perspective is that they do not

disclose the tools or testing methodologies used.

 Two studies were found, which were conducted by using applications containing

medical data—however, an earlier 2014 set of OWASP Mobile Risks were used, which

-5-

makes the results of these studies only partially applicable to this thesis. In this study, two

Android medical applications were studied by using a full security testing methodology.

This methodology included vulnerability assessment and penetration testing phases.

Critical issues regarding sensitive data being leaked through unsafe storage were found

from both target applications. This study introduced partially how these issues were found

by including information about the methodology used. This study had a similar summary

as the first study, which states that OWASP risks should be used already during the

development phase of the applications, and development teams and security testers should

be better educated about these OWASP risks and their prevention methods [Acharay, et

al, 2015].

 A second study is using an older 2014 set of risks to test Android medical applications.

This study was conducted by Cifuentes and others [2015] and in this study, 60 medical

applications, including medical data, were analyzed. Analysis was done by using a

commercial IBM vulnerability assessment tool. The composed results of these 60

applications, which were tested can be seen in Figure 1. Results of the study were different

than in the study conducted by Acharya and others [2015]. In this study, most of the

found vulnerabilities were categorized as untrusted inputs, which are not prioritized as a

common risk according to OWASP [2016]. Statical analysis tools in the web and mobile

environments are known to report false positives when scanning untrusted inputs and

client-side injections [Wang and Alshboul, 2015]. These false positives can be avoided

by conducting manual penetration testing or validating found vulnerabilities by other

means. In the study by Cifuentes and others [2015], there was no mention of manual

validation of these vulnerabilities and the IBM tool used to carry out vulnerability

assessment is not free-to-use and therefore not accessible for this study.

Figure 1 Results of found vulnerabilities categorized to OWASP risk listing [Cifuentes,

et al, 2015].

 In a study by Bojjagani and others [2017], Five Android and three iOS mobile banking

applications were tested using vulnerability assessment and these results were validated

by penetration testing. Contrary to studies introduced earlier, this study provided a full

64 %

5 %

14 %

6 % 13 %
M2: Insecure Data
Storage

M3: Insufficient Transport
Layer Protection

M6: Broken Cryptography

M7: Client Side Injection

-6-

description of a toolset and methodology created in the study and used during the testing

process. Testing methodology of the study was overall very similar as provided by

OWASP [2020].

2.2. Security testing hybrid applications

Literature review conducted with the first set of keywords, all literature found was about

pure native applications mainly targeting the Android platform. In addition to the lack of

iOS-related literature, there are no studies about the security of hybrid applications found.

That is why new search by using a second set of keywords is conducted. In this search,

security testing and secure development are researched in situations where hybrid

frameworks like React Native or Flutter are used. Queries used to conduct this search are

OWASP AND Mobile AND Hybrid, Security AND Mobile AND Hybrid and Hybrid

SECURITY TESTING AND (React Native OR Flutter OR Ionic).

 Borja and others [2021] conducted a more generic Android Application security

analysis using the newer 2016 OWASP Top Ten Mobile Risks. This study differs from

other studies. Because it states that applications built with frameworks like React Native

and Flutter can be tested similarly like pure native applications without specifying the

hybrid framework used [Borja, et al, 2021]. This study can give the base for security

testing Android applications. However, in this thesis, the aim is to create a complete

approach for testing hybrid applications. That means in this study's context that hybrid

application specifics are taken into consideration. These known React Native framework

specifics stated in documentations are at least JavaScript obfuscation, network security,

and storing the sensitive information that should be considered when testing React Native

applications. [Facebook, 2019; OWASP, 2021]

 A thesis conducted by Wällstedts [2019] studied the security of JavaScript-based

hybrid applications. However, more restricted React Native’s version Expo was used. In

Expo developer of the application is prohibited from writing custom native code, making

the native environment entirely inaccessible to developers [Expo, 2021]. This study

conducted security verification of real-world application by using Expo and a generic

OWASP Mobile Application Security Verification Standards (MASVS) security

checklist. Illustration of the checklist used by Wällstedts can be seen in Figure 2.

Currently, this generic OWASP MASVS is outdated for security verification purposes of

React Native applications. This is due to that, in August 2019, OWASP released React

Native customized MASVS [2020]. So currently, at the time of writing this, it is advisable

to use this newly created document during security verification of React Native

applications.

-7-

Figure 2 OWASP MASVS Security checklist part about data storage and privacy

[Wällstedt, 2019]

 In a study conducted by Brucker and Others [2016] statical code analysis tool is created

for a hybrid framework Cordova. Before implementing the tool, Cordova's attack surface

was determined to contain three components, web-environment-related issues like XSS,

common mobile-environment-related issues like privacy leaks, and cross-language calls

[Brucker, et al, 2016]. Study conducted by Hale and Hansson [2015] on the other hand

created a process for analyzing vulnerabilities in hybrid applications created with

frameworks like Apache Cordova. This process is based on five steps, which are (1)

resource landscape, (2) Vulnerability assessment, (3) Creating attack vectors (4)

Exploiting attack vectors, and (5) Assessing the results.

 At the time of writing there is a lack of study in the area of React Native security

testing or any application, which is developed using a hybrid native interface-based

framework like React Native. According to Mueller and others [2020], testing hybrid

applications is a generally similar process to testing purely native mobile applications,

which is the case with React Native where all user interface components are the same

native ones used during pure native development. Therefore, MSTG methodologies can

be used when testing native parts of these hybrid applications. However, some differences

can also be found. One significant difference between React Native and native

applications is the JavaScript engine responsible for executing applications logic. This

engine is embedded inside React Native applications [React Native Documentation,

2021]. In addition to the JavaScript engine, React Native also has other unique risks and

vulnerabilities, some of which are defined in React Native Security Documentation

[2019] and React Native customized MASVS documentation [2019]. So, in this study

suitable penetration testing and vulnerability assessment models, including tools, are

examined. The goal of the study is to answer the question: Are only OWASP MSTG

methodologies enough to test React Native applications, or are there additional threats

that should be considered?

Description Expo RN

2.1 System credential storage facilities need to be used to store
sensitive data, such as PII, user credentials or cryptographic keys.

✓ ✓

2.2 No sensitive data should be stored outside of the app container or
system credential storage facilities.

✓ ✓

2.3 No sensitive data is written to application logs. ✓ ✓

2.4 No sensitive data is shared with third parties unless it is a
necessary part of the architecture.

✓ ✓

2.5 The keyboard cache is disabled on text inputs that process
sensitive data.

✓ ✓

2.6 No sensitive data is exposed via IPC mechanisms.

2.7 No sensitive data, such as passwords or pins, is exposed through
the user interface.

✓ ✓

-8-

2.3. Mobile security testing methodologies and models

In this chapter literature review with the third set of keywords is conducted in the area of

Mobile security testing methodologies and models with and without OWASP

methodologies and risks. The goal of this section is to find a base for the model that will

be used in the case study at the end, and for that reason, it is essential that the model

selected is compatible with OWASP testing methodologies and risks. This search was

conducted by using query (OWASP OR Mobile) AND Security AND (MODEL OR

METHODOLOGY).

 Mobile security testing can be challenging due to the large variety of devices,

uniqueness of these environments, and lack of global standards. Wang and Alshboul

[2015] proposed four different sets of methodologies for validating and testing the

security of mobile applications. These methodologies are mobile forensics, penetration

testing, static and dynamic analyses [Wang and Alshboul, 2015]. These methodologies

can be grouped further by combining mobile forensics with static and dynamic analysis.

Mobile forensics is excluded since it refers more to recovering mobile data from operating

systems or devices level. Protection of application data is studied more accurately when

application storage solutions are studied. Secondly, static and dynamic analysis can be

grouped under the same generally used term, vulnerability assessment [Mueller, et al

2020]. Vulnerability assessment is generally used as a term that refers to gathering

vulnerabilities from the application using automated or semi-automated tools [Haq and

Khan, 2021]. This study uses these two previously defined security testing methods to

create a model, which is applied at the end to React Native application. This study uses

OWASP Mobile Top Ten risks as a core for determining risky areas of applications

security. These ten risks can be tested with the methodology proposed by Palacios and

others [2019], which is OWASP MSTG. MSTG is used as a reference and step-by-step

guide to security testing native iOS and Android applications.

Figure 3: Different penetration testing methodologies reviewed [Haq and Khan, 2021]

Haq and Khan [2021] conducted a systematic literature review regarding penetration

testing methodologies of mobile and web applications. In this study, five different

-9-

penetration and security testing methodologies were selected and reviewed. Results of

this systematic literature review of models are displayed in Figure 3. These methods are

reviewed more precisely later during the study and one is chosen to create a base for the

security testing model.

-10-

3. React Native

React Native, according to its documentation, is a hybrid user interface building

framework that is created by Facebook [React Native Documentation, 2021]. The

framework was initially created to capitalize on Facebook's previously released web user

interface building librarys success [Facebook B, 2020]. React-Native was initially

released to the public in 2015. Before its public release, it worked for a while as

Facebook's internal tool for creating hybrid mobile applications by using JavaScript.

 There have already been hybrid mobile application building tools before the release

of React Native. These applications were created using HTML5 and WebView based

technologies. The idea behind these older frameworks is similar to React Native one,

which is that a team without any notable platform-specific knowledge should be able to

develop a native application-looking website displayable inside a native application

wrapper, which is similar to the React Native WebView component. This application is

then distributed through Google Play and Apple App store, like a typical pure native

application. A widely known example of WebView based hybrid application framework

is Apache Cordova, which also can use device-specific native APIs through plugins

[Apache, 2021]. Most notably, from customers' point of view, Cordova applications can

look like typical native applications with poorer performance due to an HTML rendering

engine directly manipulating DOM.

The important part about frameworks and libraries, when an application with a long

life cycle is created is long-term maintenance and active ownership of the framework or

library. A second important part is the overall trust and security of the framework. That

can be determined by examining the maintainers and current usage level of the library. It

can be determined whether the library is likely to have maintenance and has active bug

fixes far into the future, which should not be taken for granted as it is a problem in the

open-source world [Zimmermann, et al 2019]. Library or framework being unmaintained

can lead to even major security issues with bugs not worked on early enough stages or

never [Decan, et al 2018].

React Native is an open-source framework [Facebook A, 2021]. This can lead to

security risks as open-source projects are commonly left unmaintained [Zimmermann, et

al 2019]. That, however, does not seem to be a likely outcome for React Native as

Facebook created a framework with a track record of successful and well-maintained

JavaScript open-source projects under its ownership [Facebook E, 2021]. According to

its GitHub page React Native also has in addition to direct support from Facebook

substantial open-source community maintaining it with a community consisting of over

2000 unique contributors at the time of writing this [Facebook A, 2021]. According to

React natives home page, React native is also widely used across the different companies

representing different industries, including Facebook, Tesla, Instagram, Oculus,

-11-

Salesforce, and Skype [Facebook A, 2020]. So overall, it is likely and can be said

relatively confidently that React Native is well maintained and mature technology with

security problems being addressed in a timely manner.

3.1. JavaScript

JavaScript was first introduced in 1995 by Netscape as the scripting language for web

browsers. The idea behind JavaScript is to make websites interactive without reloading

the application from the server. While JavaScript is best known as a scripting language

for browsers, nowadays, its use cases have widened all the way to Node.js backends,

React Native mobile applications, and the CouchDB database engine. [Mozilla, 2021]

 JavaScript can be considered as one of the greatest strengths of React Native when

considering JavaScript’s popularity. When JavaScript is combined with its type-extended

version Typescript, the whole ecosystem consists of little under 40 percent of all pull

requests opened on GitHub [GitHub pull request statistic 2020]. This number is by far the

largest amount of pull requests by the programming language in GitHub. In contrast,

according to GitHub statistics most used native mobile development programming

language is Java which is used as a language in the Android environment and has around

9.2 percentages of popularity. Lastly rarest languages used in the mobile world are on

native iOS projects. The rarest language in iOS environment would be Swift which is

used with approximately 0.6 percentages of pull requests opened in GitHub [GitHub pull

request statistic 2020].

3.2. React.js

Before creation of libraries like React, web DOM was usually directly manipulated as

shown in Figure 4. Displayed code snippet uses jQuery, which describes how the user

interface works while the transition between states is happening. React.js on the other

hand has an approach where the developer creates components and components are

representing how data is displayed to the final user. When data inside the component is

changed runtime React will handle necessarily changes to the user interface. [Facebook

B, 2020]

-12-

Figure 4 Example about jQuery code

Figure 5 example about React code

-13-

 In the example, Figure 5 describes Reacts main functionality, which is displayed with

the class component. In the declaration of class component, the state is defined in line 7.

The state is part of the React component, which has functionality to store data runtime

inside the component. The state is initialized before first rendering and is mutable after

that with setState function [Facebook B, 2021]. When state data has been changed, React

will automatically reflect those changes to rendered output. When optimized and created

correctly according to documentation, re-render will only affect the parts affected by a

change of the state [Facebook B, 2021].

 Properties on the other hand, are similar to state values. The only two major differences

between state and the properties are that properties are immutable and are passed to the

component from outside. [Facebook B, 2021]. Due to these qualities’ properties are

immutable from the components point of view and can only be edited or replaced from

the outside. An example about the properties can be seen in line 28 of Figure 5,

 React does not have a lot of different APIs exposed to the developer. The most

common and essential functionality React.js offers is displayed in Figure 5. According to

Facebook [2020], the simplicity of React will make it easier for developers as time is not

spent used to learning continuously new things like in larger frameworks.

3.3. React.js vs React Native

If React.js would have to be explained to a person without prior programming experience

or who hasn’t heard about it before, I would define React like it was described in Reacts

own website as simply a library for building user interfaces [Facebook F, 2021]. All use

cases of React can get confusing when actual Facebook's documentation is used as

reference. An example of this is defined in the React.js documentation [2021]. It states

that: “Since component logic is written in JavaScript instead of templates, you can easily

pass rich data through your app and keep the state out of the DOM.” Like in many other

places in that documentation, Document Object Model (DOM) is referenced in the

previous quotation. The problem is that DOM is used as the structure of HTML web pages

and is not necessarily known for example, in the mobile world. So, in this study, React.js

is used to manipulate web DOM and create web interfaces. On the other hand, if other

than web user interfaces are studied, these are called in this study native interfaces and

therefore are developed using React Native.

3.4. Architecture

React Native codebase and final application package is composed of two main parts

Native code (Java, Swift, and Objective-C) and React.js like JavaScript code. The first

problem that Facebook engineers had to face when React.js was ported to different native

environments was that when there are multiple diverse native ecosystems there are

usually multiple different languages executed in different isolated environments. At the

-14-

beginning when development was started, those isolated environments did not have any

way of communicate between each other. This is the problem that was solved with React

Native’s component bridge. The bridge is the pathway of communicating between these

different environments. High-level architecture of React Native can be seen in Figure 6.

[Facebook F, 2021]

Figure 6 React Native architecture

3.4.1 JavaScript environment and JavaScript thread

At the lowest level, most of the React-Native’s applications and all JavaScript

environment’s code is written in JavaScript. JavaScript environment and code in React

Native project works as platform-agnostic parts of React Native application. Most of this

JavaScript code is displayed with React syntax, which as itself is not valid JavaScript,

interpretable by JavaScript engine and therefore, is not directly installed to the devices

[Facebook F, 2021]. In order to React code being executable by JavaScript engine, React

code is transformed to valid JavaScript code by using Metro bundler, which has similar

functionality as well-known web application alternative Webpack.

In React Native, business logic is defined to a platform-agnostic JavaScript

environment. This means in context of the device that business logic of the software is

-15-

located at JavaScript bundle [Facebook C, 2021]. This will cause dependency to all

installed React Native applications, which will mean that all React Native applications

should have the same JavaScript engine to execute the business logic of the application.

In the case of React Native, it was decided that that open-source JavaScriptCore is used.

This is due to fact that all iOS devices have JavaScriptCore already included inside the

Safari browser [Apple, 2021]. However, the engine was not included inside Android

operating system, and for that reason, Metro Bundler will bundle JavaScriptCore inside

android applications which will make even Hello World applications around 3 to 4

megabytes [Facebook B, 2021].

3.4.2 Native environments and thread

In React Native, the JavaScript environment’s code is written in JavaScript and should be

platform-agnostic, where a single line of code will be the same in iOS and Android

applications. The native environment, on the other hand, is in some sense opposite. In

different Native environments, code must be written separately to all different platforms.

That will mean using the native languages interpretable by targeted devices native

environment. React Natives native environment languages are including Objective C,

Swift, Java, and Kotlin. In this study’s context, these native environments are Android

and iOS. In React Native these different native environments are separated by creating

their own platform-specific directory to the root of the project to each targeted native

platform [Facebook D, 2021].

Although even if native-specific code is not written nor visible in source code and

everything is working with only JavaScript code, it should not be forgotten that native

environments for all targeted platforms will still exist as a base in React Native project.

That will be evident as soon as the application's start-up, where the opening application

will first execute a native environment like in entirely natively written applications

[Facebook B, 2021]. Also, in the lower level, everything users are seeing in their mobile

devices is still native. That means all view components of the application like React

Native’s view component which is at the device level either of these native components

UIView or Android.view depending on the environment project is executed [Facebook

D, 2021]. In that sense, JavaScript is only an abstraction of multiple different native

environment-specific properties that are implemented at the lowest level by using the

native code [Facebook B, 2021]. Also, in addition to native components, React native

uses platform-specific UI events like swipe and press.

3.4.3 Bridge

Now we have two separate and isolated environments wrapped inside a single application.

One environment commonly used as running browser used language JavaScript and other

-16-

commonly used to run native operating-system-specific mobile code. That is where

bridge is used in React NativeArchitecture of the bridge is illustrated in Figure 7.

 React Native Bridge is implemented using C++ and Java and the goal of the bridge is

to enable a two-way communication channel between JavaScript and native modules. For

example, when the application is launched, the native entry point of the application is the

initial point of that launch. This starts the JavaScript environment and sends native

application commands to start the actual JavaScript application. This bridge is

communicating between environments using JSON serialized data. According to

Facebook [2021], this communication channel between environments has goal of making

React Native applications faster than Native applications.

Figure 7: React Native bridge between JavaScript environment and Native environment

[Facebook F, 2021].

3.5. Beyond mobile

React Natives official documentation has two extensive platform-specific guides for iOS

and Android [Facebook D, 2021]. These same two platforms are also mentioned in most

pages when there are discussions about UI layouts. So, is React Native a purely hybrid

framework implemented to two native platforms, Android and iOS, or is there a bigger

plan for React Native as a whole?

 Inside React Native development teams blog posting [2021], React Native's plans for

the framework's future and moving beyond mobile have been discussed. It is revealed

that React Native is looking for new managers for React Native VR and React Native

desktop at the end of the blog post. According to the blogpost, this new direction for React

Native would make the framework a truly platform-agnostic solution. The idea is that

developers would be writing code for a user interface that React Native would

automatically port to all possible platforms from mobile to virtual reality [Facebook C,

2021].

 This study is reviewing security of React Native's Android and iOS ecosystems.

However, React Native already has community-maintained porting to smart television

which itself is not in scope of this study. These already existing community-maintained

projects and currently official developed and unpublished ports to React Native are

necessary to keep in mind. This is due to a possible whole new direction for React Native

-17-

where already existing JavaScript abstraction could possibly reach more different types

of platforms with entirely different requirements and widely different native APIs.

3.6. Expo

In the Expo documentation [2021] Expo is defined as a framework and a platform for

creating universal React applications using set of tools and services built around React

Native [Expo, 2021]. This sounds similar to React Native; however, one major difference

is managed workflow like an Expo documentation calls it. In Expos managed workflow,

developers are using only JavaScript environment, and handling of native environment is

left entirely to framework’s responsibility. Expo does this by prohibiting users from

downloading custom platform-specific libraries and writing custom platform-specific

code or configurations [Expo, 2021]. However, as a trade-off expo gives a large amount of

well-tested and self-developed libraries, which are built in top of React Native. This will

outsource most of your React Native applications' possible areas of bugs and attack

vectors and will significantly diminish the need for the development team’s platform-

specific knowledge; however, as a trade-off Expo restricts what developers can do with

the application.

-18-

4. Risk in React Native

In the end, a major part of React Native applications' functionality needed to be security

tested is the same as functionality in pure native applications [Mueller, et al 2020].

Therefore, the main part of security testing React Native applications is to test

applications according to platform-specific testing literature like provided by Mueller and

Others [2020]. Thus, the primary research of security and mobile risks is conducted in

chapter 5, where OWASP Mobile Top Ten risks for pure native applications are

introduced. The goal of this section is to find React Native-specific security issues. These

security issues are then combined with MSTG provided pure native security testing

methodologies to create a more comprehensive testing methodology for React Native.

These risks will be mapped to OWASP Top Ten Risks defined later at the end of chapter

8 to create a singular process and risk listing for testing React Native applications.

 The only related study found regarding React Native security testing was a master’s

thesis written by Wällstedt [2019]. In this study, React Native applications security was

verified using the generic OWAPS MASVS listing. However, this is not anymore the best

method for testing React Native applications. According to Mueller and others [2020],

MASVS methodology is partly applicable but not complete when testing hybrid

applications. Therefore in this section, React Native-specific security issues are studied

using documentation and React Native-related security-related popular literature. At the

end of this chapter, possible testing methods are proposed. Results of this section are

described and mapped to OWASP Top Ten Risks in Table 1.

React Native issue OWASP Top Ten

Leaky Abstraction Improper Platform Usage

JavaScript Code Quality Client Code Quality

JavaScript Code Obfuscation Reverse Engineering

Using Components with

Known Vulnerabilities
Client Code Quality

Table 1 Found React Native related issues

4.1. Leaky abstractions

In React Native single JavaScript function implemented at the native level has possibly

different implementations in different native platforms. This functionality can be different

depending on whether an application is built in a native iOS or Android environment. If

these inconsistencies between environments are found, they can have a high impact on

the application's security [OWASP, 2016]. A well-known example of this is when

-19-

sensitive data is stored on the device using SecureStorage implementation. According to

OWASP MASVS [2021], when the application uses an L2 security level, sensitive data

should be erased from the device after reinstallation of the application. However, in iOS,

data in the keychain will persist over reinstallations, and in Android data will be removed

during reinstallations. That makes the functionality of securely storing data in Android

and iOS different and causes a leaky abstraction-related risk to iOS applications. A

second major difference between platforms is with the same component SecureStorage

and its encryption implementations in iOS and Android platforms. In iOS devices,

keychain data is decrypted when a device is unlocked, by using a passcode or biometric

scanner [Apple Documentation, 2021]. Android on other hand, decrypts data only when

data is used by the application. This causes an issue according to security standards of

OWASP MASVS [2021], which states that when using the L2 security level, all sensitive

data should be encrypted before being placed on the iOS keychain. Different Safe and

unsafe storage solutions in native environments are displayed in Table 2 [CossacLabs,

2021].

Table 2 Differences between operating systems when using React Native SecureStorage

[CossacLabs, 2021]

For testing leaky abstraction risk, there are currently, at the time of writing, no tools or

solutions available to scan leaky abstraction-related issues either automatically or semi-

automatically. Therefore, as stated in many sources, when multiple native functionalities

are abstracted to a single function on JavaScript level, a team should have knowledge

about functionality implemented in both Android and iOS environments when using

React Native [Facebook, 2019].

4.2. Bad JavaScript code quality

When statically assessing pure native applications, code analyzed is either native code of

iOS or Android. In React Native applications, all business logic, when built correctly by

using React Native Documentation [2021], is written in JavaScript. Therefore when

assessing React Native applications, security analysis of JavaScript-specific

vulnerabilities like usage of eval function should be conducted. There are many tools for

-20-

statically analyzing JavaScript code. The most optimal tool would be analyzing a

JavaScript code from the perspective of React Native. However, such a tool was not

found, and therefore, a more generic tool, SonarQube is selected to conduct a statical

analysis of JavaScript code. SonarQube is presented more in detail in chapter 6.

4.3. JavaScript code obfuscation

According to OWASP [2021], binary protection is recommended for mobile applications

at least in situations when applications are storing or handling sensitive data. In popular

literature, there are multiple occasions where JavaScript obfuscation in React Native

project has been discussed [StackoverFlow A, 2019; Rguez-Sánchez, 2019]. Third-party

tools like JScrambler have been proposed as a solution to obfuscate JavaScript code in

React Native projects [JScrambler. 2021]. Zhang and Others [2021] proposed method for

obfuscating React Native Android applications by using the tool called ProGuard.

ProGuard is included in the Android development kit. ProGuard is commonly used when

obfuscating hybrid applications [Zhang, et al, 2021]. However, the article did not mention

if obfuscating hybrid applications with ProGuard will also obfuscate JavaScript code or

does it work only on a native code level.

In the case study section, when binary protection of application is tested, and

JavaScript bundle of the project is reviewed. Obfuscation of the JavaScript bundle will

also be inspected. However, implementing JavaScript obfuscation might be unnecessary

for applications where highly sensitive data is not stored or transmitted or no policy of

protecting the project's intellectual properties are not in place [OWASP, 2016]. Therefore

obfuscating JavaScript code of React Native applications is not a universal requirement

for secure React Native applications.

4.4. Using components with known vulnerabilities

Nowadays, around 80 percent of JavaScript applications code comes from different

libraries and frameworks. Around one-fourth of those libraries added to projects has

known to have publicly disclosed security vulnerabilities [Decan, et al 2018]. Nowadays,

javaScript environments package management systems have become very steep on

different trivial packages and transitional dependencies. The average JavaScript

package's transitional dependency quantity has increased steadily. Nowadays that amount

is 80, and a single project can have dozens of unique packages of its own, requiring these

transitional dependencies [Zimmermann, et al 2019].

 So, in JavaScript projects scanning dependencies for known security vulnerabilities

should be conducted. Adding a significant number of dependencies without good

knowledge about the group responsible for maintaining the project should be avoided.

-21-

Having dependency with known vulnerabilities in the application makes the application

easy to exploit.

4.4.1 Scanning components with known vulnerabilities

Vulnerabilities on these components can be divided into two categories zero-day

vulnerabilities and known vulnerabilities. Zero-day vulnerabilities are undisclosed

vulnerabilities, which are exploited less frequently and are much harder to detect

[Zimmermann, et al 2019]. Detection of these zero-day vulnerabilities would require

reviewing packages one by one. This zero-day vulnerability reviewing of packages will

be left outside this study’s scope. This part of testing is limited to only scanning

dependencies with known and disclosed vulnerabilities.

Scanning these disclosed vulnerabilities can be done using package version

information to fetch active vulnerabilities from that package with the selected version

number. This data is fetched from a community-maintained vulnerability registry. In this

study, two tools are used to conduct vulnerability scanning Yarn audit and GitHub

security advisors.

-22-

5 OWASP mobile Risks

OWASP (Open Web Application Security) is a non-profit foundation not controlled by

any single corporate entity. OWASP also publishes all of its research and code freely to

the community [OWASP, 2021]. The main reason for OWASPS's existence is to help

improve the security in the software industry and educate the community about security

risks and prevention methods of those risks in different areas of software development.

OWASP does this with the help of tens of thousands of members worldwide. [OWASP,

2020]

 This study's core is to research the security testing methodology of mobile

applications. This is done more precisely, from React Native client’s point of view. So

high-level risk categorization mainly used by this study is a list addressing risks in native

applications. This is because the main part of React Native applications attack surface is

composed of native threats. This study categorizes these native risks by using a list called

OWASP Mobile Top Ten. This list categorizes the ten most common risks manifested in

the natively running mobile applications life cycle. According to OWASP [2019], the List

is composed using publicly gathered information about the most common vulnerabilities

found in mobile applications. This was done by using the questionnaire to people who

had been subscribed to the OWASP Mobile Projects newsletter.

Figure 7 OWASP mobile risks with assigned severities [Borja, et al 2021]

 Risk listing created in 2016, is still at the time of writing, the newest mobile risk listing

published by OWASP. This listing is still nowadays being used and referenced in

-23-

scientific studies and popular literature regarding the security of mobile applications.

Examples of such studies are Alanda and others [2020] and Borja and others [2021].

Therefore this risk listing is chosen for the base of our current study and will be used to

help determine highly risky areas of React Native applications. More recent material and

studies like OWASP MSTG will be used when more precise risks or vulnerabilities are

studied.

 Risk listing is displayed as a whole in Figure 7 and it includes different areas of severity

for each risk. These areas are the difficulty level of exploiting the risk, detectability of the

risk, and technical risks severity on the scale of 1-3. In the last column overall score for

risk is represented, which is calculated by using scores in previous columns. This score

will imply the general risk that risk is causing to a mobile application, and it can be used

as a starting point when prioritizing, searching, and fixing found vulnerabilities.

5.1 Improper Platform Usage

When developing either native or hybrid mobile applications, it is necessary to consider

that different platforms have their own intended qualities, functionalities, and security

features [Facebook A, 2021]. That becomes even more prevalent when hybrid

applications are developed with hybrid frameworks like React Native. That is due to the

nature of hybrid development. There are now multiple targeted platforms with a single

codebase and possibly differently intended functionalities with similar features with

usually single team developing the application. That will give the team maintaining and

developing the application the responsibility to have knowledge about all targeted

platforms and hybrid framework in addition of the native environments themselves

[Facebook, 2019]. That would mean in this study’s context requirement for the team to

having knowledge about four distinct platforms iOS, Android, React-Native, and React.

 As stated in Figure 7, technical and business impacts of these vulnerabilities are

highly application specific and can vary greatly due to the vastness of Android and iOS

platforms, each with thousands of different APIs to exploit [OWASP Top Ten, 2016].

One common issue where the platform can be misused is React-Natives and its platform-

specific implementations of AsyncStorage. According to Facebook [2019] AsyncStorage

is meant to be used for persisting non-sensitive data in an unencrypted fashion over

application restarts [Facebook A, 2021]. However, this unencrypted nature of

AsyncStorage can easily be forgotten during development. That can be a problem for

example when Redux is used. This problem with Redux can occur because, Redux is used

to persist the state of the application to the device, and it can be extremely easy for

sensitive data to flow in Redux State [Facebook, 2019]. After sensitive data will flow to

persisted, Redux state, data is readily available in readable form even after deletion of

data by using iTunes backups. Above stated or many other improper platform usage-

-24-

related vulnerabilities can be executed by using malware, which causes the risk to

capitalize for a mass of devices that can have critical impacts on all stakeholders

[OWASP, 2016].

5.1.1 Testing React Native improper platform usage

As stated in the React Native specific security issues chapter, there is no automatic

solution for testing improper platform usage caused by leaky React Native abstraction

risk. Therefore, the recommendation of this study is to test leaky abstraction-related

improper platform usage by reviewing the use of native APIs by React Native and

comparing their respective Android and iOS implementations.

 There are statical and dynamical analysis tools for analyzing Improper platform usage

at the native level. These tools like MobFX are further presented in the tools section of

the study. However, there are currently no tools found which are made for scanning

JavaScript level improper platform usage of React Native.

5.2 Insecure Data Storage

The protection of sensitive data like passwords, medical information, and authentication

tokens should be prioritized in all software development projects where sensitive data is

stored or processed. Not persisting data at all on the client’s level would efficiently

mitigate this insecure data storage risk [Mueller, et al 2020]. However, this is not usually

possible due to practical reasons and would mean in some situations that where user

would be forced to enter the complex combination of email and password between every

app restart. So, in the mobile environment, most applications with authentication

functionality will cache at least some long-duration authentication token that needs to be

stored safely away from the possible attackers [Mueller, et al 2020].

 Insecure data storage risk to capitalize mobile device would have to be accessed

physically by a malicious user, accessed with malware or another malicious application

spying devices inter applications communication or watching devices clipboard actively.

If the phone is physically accessed by a malicious user phone would be connected to the

computer. After, connection to the computer, malicious user uses freely available

software to access phones file system, including users’ sensitive data exposed by insecure

data storage risk. Like in other risks phone doesn’t have to be physically accessible by

the attacker. The attack can be automatized to a larger group of users by using malware

and targeting a group of applications known to have issues with exposing sensitive data.

This issue is far more prevalent in the mobile environment than in example on web due

to the nature of mobile phones being constantly carried around, and lost phone is far more

common than in example desktop [OWASP, 2016]. So, during the development phase it

should be expected that malicious users are able to inspect unencrypted data storages and

will be actively viewing all unencrypted data persisted in device [OWASP, 2016].

-25-

 As stated in Figure 7 business and technical impacts of these attacks can be varying

depending on the data storage solution and type of data stored by the application. This

risk would be vastly different in a single-player mobile game where this risk can even be

bypassed due to application not storing sensitive data at all [OWASP, 2016]. The opposite

would be medical applications, where applications have a realistic possibility of storing

social security numbers, medical records, and customers credit card information. In the

higher level according to OWASP technical impacts could include identity theft, privacy

violation and fraud [OWASP, 2016].

5.2.1 Testing React Native insecure data storage

React Native itself does not make it easy to persist sensitive information to the device

securely. That is because there is no module included in React Native implementing safe

storage of sensitive information [Facebook, 2019]. Therefore all sensitive data stored in

the device should be stored by using a library implementing iOS Keychain, and Android

Secure shared storage or encrypted in other means. According to Facebook [2019], One

common pitfall is AsyncStorage which many applications are using as persisting Redux

state, and sensitive data can flow easily. A final unsafe storing method is React Natives

deep linking. Deep linking is used to access the specific application state through the link

opened in the mobile device. Information transmitted through deep linking is readable

by malicious users and other applications. [Facebook, 2019]

Safe storage method
Unsafe storage

method

iOS KeyChain Deep links

Android Keystore AsyncStorage

Android Secure Shared
Preferences

Android Shared preferences

Environment variables like

React-Native config

Table 3. Checklist for unsafe and safe React Native storage schemes

To test insecure data storage, there are automatic statical tools created like for

example MobFX. However, some manual verification with manual identification of

sensitive data should also be made [Mueller, et al 2020]. This testing can be done in native

level by using the steps provided by OWASP [2020]. Unencrypted and encrypted data

storage solutions are composed in Table 3.

-26-

5.3 Insecure Communication

In mobile applications, there is common practice that SSL or TLS may be used during the

authentication but not elsewhere [OWASP, 2016]. This irregular use of secure and

insecure communication methods will open different possibilities for attackers. When

secure SSL or TLS protocols are not used, attackers can freely intercept and edit the

communication between parties anywhere between communicating sides. So more

generally, insecure communication risk can be applied when data is transported from

point A to point B, and communications get intercepted or eavesdropped. This attack is

visualized in Figure 8. Most usual and easiest exploit of this risk would be when data is

transported between device and server using HTTP request without proper protection

[OWASP, 2016].

 Business and technical impacts are also in this case varying, when data is intercepted

while it’s traversing to the destination it can cause individual sensitive data to be leaked

with varying consequences or in worst case scenario admin account being compromised

and whole application and systems around it can be compromised. [OWASP, 2016]

Figure 8 Man-in-the-middle attack visualized [Vondráček, et al 2018].

In previous chapters, communication is mainly defined as HTTP traffic. However, a

possibility for insecure communication risk exists with all communication protocols and

layers where data is transmitted or received by the device [OWASP, 2016]. In this study’s

context, only HTTP traffic, including WebSocket connection, will be used and examined.

That will make additional protocols like Bluetooth, audio, and NFC out of this study’s

scope.

5.3.1 Testing React Native insecure data storage

The malicious user would use applications insecure communication vulnerabilities to

launch man in the middle attack. In man-in-the-middle-attack, a malicious user is located

between two intended participants of the communication. A malicious user would be

eavesdropping and possibly modifying the communication between these two intended

parties in an unauthorized fashion [Vondráček, et al 2018]. This malicious user can be

modeled by using a proxy interception proxy like Burp Suite.

 However, an interception proxy at the testing phase is not needed. There are automatic

analysis tools included on the tool MobSF that can detect usage of insecure

communication methods and SSL pinning vulnerabilities. Therefore primary analysis of

-27-

this risk is done by MobSF. Interception proxy like Burp Suite is used only if a

vulnerability is found, and penetration testing needs to be conducted.

5.4 Insecure Authentication

In order to Insecure authentication vulnerability to be exploitable at the application-level,

malicious user should be able to execute functionality or access data that is not intended

to be executed or accessed user without proper login credentials. This execution can

happen within the mobile client or directly in the backend service [OWASP, 2016].

 According to OWASP Top Ten listing [2016], there are two common scenarios for a

malicious user to bypass authentication. These bypassing methods are attacks against

offline and online authentication process of applications. In offline authentication

bypassing applications, local binaries are exploited by using binary attacks. Binary

attacks aim to force applications to skip the local authentication process and execute an

action as an anonymous user without proper login credentials [OWASP, 2016]. The

second part of the risk is bypassing the online authentication process. In online

authentication bypassing malicious user exploits authentication scheme to execute

unprivileged actions in backend systems. These can happen by sending forged POST or

GET HTTP requests to the backend without proper credentials.

 Insecure authentications impacts can be technically critical as the system cannot

identify the user performing the actions. That can add additional problems in top of

unprivileged actions executed. Not identifying the user executing these overprivileged

actions can delay detection and identifying exploited security vulnerabilities. That will

make it harder to prevent future attacks against the system [OWASP, 2016].

5.4.1 Testing for insecure authentication

General OWASP-based security scanning tools like MobSF will expose some

vulnerabilities in the applications authentication scheme. However, there are a lot of

different authentication methods, including custom ones; therefore, there is no one-catch-

all solution for testing the security of all authentication schemes [Mueller, et al 2020].

OWASP MSTG defines testing methodologies for different authentication schemes like

oAuth and 2-Factor Authentication. Therefore, an additional MASVS checklist, visible

in Figure 9 will be used during this study as additional help for testing the authentication

process.

-28-

Figure 9 OWASP MASVS checklist for authentication

5.5 Insufficient Cryptography

At the highest level, in order to insufficient cryptography risk to capitalize, a malicious

user would have to be able to have access encrypted data as plaintext in an unauthorized

fashion. This risk can be categorized into two main categories. First category of risk is

the situation where encryption and decryption functionality is fundamentally flawed, and

functionality can be exploited to gain access to the plaintext of sensitive data [OWASP,

2016]. In the first category, up to standard encryption algorithms are used, but the

application can store the private key of encryption in the readable form inside applications

storage. In this scenario, an attacker uses a binary attack against the application to gain

access to a private key which causes mobile operating-system-level cryptography to

become compromised. A completely flawed cryptographical system causes attackers to

gain access to application data without the need for brute-forcing and a large number of

computations.

The second category of this risk is the use of insecure and deprecated algorithms

which are not up to date for modern computational and security standards [OWASP,

2016]. Example about unmodern algorithm would-be situation where MD5 or SHA1

hashing functions are used. These one-way hashing functions have been previously used

as a way of storing user passwords. Previously it was thought to be computationally

infeasible to revert hashing functions like MD5, back to the original string. However,

nowadays, these hashing functions are perceived as unsafe methods for protecting

sensitive data [Bhandari, et al, 2017]. That is due to the way of converting globally same

strings to identical hashes. That creates a possible attack vector that is either brute-forcing

or using lookup tables openly published in the internet where millions of hashes and

plaintext pairs are stored and easily reversible. Outdated or insecure cryptography

methods are not only limited to obsolete hashing functions. The second example is

Apple's iOS application protection. Apple requires all iOS published in App Store to be

signed by a trusted source in order to the application to be executable in non-jailbroken

iOS devices. That should, in theory, prevent users from conducting the binary attacks

-29-

against the application however, according to OWASP [2016], freely available tools are

able to circumvent this encryption by taking snapshots of the decrypted app after iOS

launches application to devices memory [OWASP, 2016].

 Technical and business impacts of insufficient cryptography risks vary depending on

data that is protected by cryptography. Also, a way that the cryptosystem is flawed causes

very different risks. Where either single entry can be exposed when a single device is

compromised or in a situation of leakage of shared private key all customer data encrypted

using that private key. In the end, in business sense, retrieval of plain text form of

encrypted data will cause intellectual property theft, privacy violations, and exposure of

sensitive data [OWASP, 2016].

5.5.1 Testing for insecure cryptography

In the scope of this study first part of the cryptographic risk completely flawed

cryptographic system is researched in the stage where insecure storage is studied. That

would mean searching for private keys from application packages. The second part of

the insecure or deprecated algorithm is studied by using automatic statical and dynamic

analysis tools, mainly MobSF, which can detect usage of deprecated cryptographic

functions like MD5 or SHA.

5.6 Insecure Authorization

This risk is similar to insecure authentication risk, and the difference between these can

be confusing. In insecure authentication risk, malicious users were accessing APIs or

offline authentication using non-valid login credentials or as fully anonymous users. So

this causes the attacker to pass the whole authentication process. In this insecure

authorization risk, the malicious user passes the authentication process as intended. After

successful authentication, the user will forcefully browse to a vulnerable endpoint and

execute higher privileged functionality as authenticated user is meant to. These kinds of

attacks are usually made by using stolen accounts and mobile malware. The main

difference to insecure authentication is that auditioning of user and executed functionality

is generated. [OWASP, 2016]

Technical and business impacts of insecure authorization are similar to insecure

authentication when exploited. The difference is that in this risk, logging is usually

conducted properly, and therefore insecure authorization vulnerabilities are easier to

detect when exploited [OWASP, 2016].

5.6.1 Scanning insecure authorization

Methodology for testing insecure authorization and authentication vulnerabilities are

defined under the same generic authentication architecture section in Mobile Application

Security Testing Guide [2021] as Insecure authentication risk, and testing will happen

-30-

similarly as testing insecure authorization in 5.4. Therefore, testing authentication

architecture as a whole is explained more detail in the chapter where testing insecure

authentication is presented.

5.7 Poor Code Quality

Code quality risk refers to all bugs or vulnerabilities exposed by bad coding conventions

or mistakes in mobile projects that are done at the code level and therefore are easily

fixable. This risk includes typical vulnerabilities like buffer overflows, XSS, CSRF, and

SQL injection, which will cause foreign code execution [OWASP, 2016].

Code quality issues are common within mobile code. However, all code quality issues

are not actual problems because in many cases, code quality issues commonly cause

benign vulnerabilities that will not cause actual damage. In addition of that, code quality

issues are commonly hard to detect only by reviewing applications binaries. Therefore,

security testers are using automated statical source code analysis tools to detect code

quality issues by using either application's source code or package. [OWASP, 2016]

Like in other OWASP Mobile risks impacts of these code quality issues are

application, business, and exploit specific. This means that impacts can vary with

different severity levels technically and in businesswise ranging from performance

degradation by denial-of-service attack to sensitive data exposure by using SQL injection

[OWASP, 2016].

5.7.1 Finding Code Quality issues

Code quality issues should be studied and are prevalent in different code levels of React

Native applications. In addition to pure native risk, React Native-specific risks are

suggested in chapter 4, where bad JavaScript code quality and scanning components with

known vulnerabilities are reviewed more thoroughly. These all issues should be tested in

all levels of React Native applications code, including different Native environments.

 Finding code quality issues is done mainly automatically by using different static

scanners [OWASP, 2016]. One exception to that automation is build settings that are

beneficial to review at least semi-manually, at least in situations when applications

haven’t gone through previous thorough security testing [Boduch, et al. 2020]. This can

be done by using the platform-specific code quality checklist in OWASP MSTG.

5.7.1.1 JavaScript

The first platform which is reviewed is JavaScript and React Native specific code quality

scanning. There are two possible surface areas of attack using code quality-related

vulnerabilities in the JavaScript environment. React Native related hybrid configurations

and JavaScript code logic. There is a large market of widely used JavaScript static

-31-

analysis tools. Most of these are used for helping the team to keep coding conventions

consistent. Examples of tools with said functionality are Eslint and Prettier. One such tool

that has vulnerability scanning functionality included is SonarQube. According to its

documentation, it is an automatic code review tool to detect bugs, vulnerabilities, and

security hotspots in the JavaScript codebase [SonarQube, 2021]. SonarQube is used as

the tool for scanning the JavaScript parts of an application.

5.7.1.2 Native environments

Like in JavaScript environments, there are two possible surface areas to attack native iOS

and Android ecosystems. These are platform-specific build configurations and platform-

specific code itself. Starting from build configurations, automatic ways of validating the

security of these configurations are IDEs iOS IDE XCode and Android IDE Android

studio. [Boduch, et al, 2020].

React Native would not have any platform-specific code in a perfect world, and all

custom code is written using platform-agnostic JavaScript; therefore, this section would

not be needed. However, this is not usually the case, and therefore tools for validating

different native environments by code quality are selected. SonarQube is used for testing

JavaScript for code quality issues, but it also has support for native platform-specific

languages of React Native, therefore it is used for also scanning native environments. In

addition, our generic security reviewing tool MobSF will check code quality issues from

native environments. Therefore, no additional code quality-specific tools are needed for

this section.

5.8 Code Tampering

After reverse-engineering the application's source code, one possible direction of attack

is code tampering. In code tampering attack malicious user is modifying the applications

binaries or resources and running the modified package on device. Code tampering can

be divided into two main categories. First of these categories is binary patching where the

existing binary of application is modified. That happens when a malicious user opens the

application in a binary hex editor and decompiles the application. After the application

has been successfully decompiled, the application's binary is edited and that application

is repackaged and redistributed. This way of modification had been more common and

easier in the past and has become much harder nowadays due to application signing

requirements in the Android and iOS application stores. This Code signing functionality

can usually be circumvented easily. This circumvention requires the user user to disable

the verification of the applications package before the tampered application can be

executed in target device [Boduch, et al, 2020].

Second common method of code tampering is the tampering of applications process

memory during the execution of an application. These methods and tools to tamper

-32-

application process memory are widely and freely available, and the code injection

process is much harder to detect and prevent from the application's point of view [Boduch,

et al, 2020].

Business and technical impacts like in many other risks can vary depending on the

target application. However, according to OWASP [2016], there are two common types

of impacts on business when conducting binary tampering. The goal of the first attack

would be to steal the application's source code and repackage the application for

redistribution. Mobile games are particularly popular targets for this type of code

tampering where, paywalls of freemium games are removed. After removing the paywall,

game is redistributed to users with possibly inserted malware, which will most likely

impact the game creator’s revenue and reputation.

 Second type of tampering would target applications containing sensitive

information, in example application like a banking application would be targeted and a

counterfeit version of the application is created and redistributed like in the previous

mobile game example. This type of attack has a difference to the previous attack, which

is that new application is marketed to the user as a legitimate banking application and

when a user is logging in to the malicious clone application, login credentials will be

stolen and used to create fraud or identity theft. [OWASP, 2016]

5.8.1 Testing for Code tampering

Code tampering and reverse engineering requirements for applications are similar. Both

are based on the same set of methodologies under section Anti-RE of Android and iOS

applications in OWASP MASVS [2019]. Therefore, testing reverse engineering and code

tampering is defined more in detail in the next chapter, where these reverse engineering

testing methodologies are introduced.

5.9 Reverse Engineering

First step of attacking for attacker or security tester would be to gather more information

about the application exploited [Palacios, et al, 2019]. One of the best ways to gather

information about mobile application would be to find how the application functionally

works. That can be done best when source code of an application can be researched. That

is one of the reasons why many applications will have some level of binary protection

implemented to mobile applications. However, this binary protection can be relatively

easily circumvented by loading the target application to a freely available de-obfuscation

tool, which is why obfuscation should never be the only security control for mobile

applications [Mueller, et al 2020]. When the application is loaded to the de-obfuscation

tool and the program's source code is revealed successfully to the malicious user, the next

step would be to analyze the application’s source code for vulnerabilities by using

different statical and dynamical analysis tools. The absolute worst-case scenario with

-33-

reverse engineering would mean leakage of the database connection string, the private

key of encryption which would be commented in this scenario directly to applications

source code.

Application reverse engineer and binary protections have similar properties where

cryptography and reverse engineering is a constant race between attackers and

developers. According to OWASP [2016] mobile environment is particularly vulnerable

to reverse engineering attacks due to the nature of its code being dynamically inspectable.

So similarly, as in cryptography role of obfuscation of the code is to make the flow of the

application hard as possible to understand and inconvenient as possible to de-obfuscate.

 Business threats of reverse engineering can also vary greatly depending on the type

of application de-obfuscated. According to OWASP [2016], the most usual business risks

would be identity theft, intellectual property theft, and reputational damage. However,

technical impacts might be more unpredictable as an attacker could steal the application's

source code and deploy fake application versions. That would then allow the attacker to

gain access and steal unsuspecting user login credentials. In most cases, the attacker

would use reverse engineering to gain intelligence for starting follow-up attacks,

including code tampering, revealing cryptographic constants, and performing attacks

against backend systems [OWASP, 2016].

5.9.1 Testing for reverse engineering

Testing reverse engineering in this study consists of two parts. First part is to test

JavaScript obfuscation defined more precisely when React Native specific vulnerabilities

listing in chapter 4. This will happen by inspecting projects main bundle in iOS and

Android devices and checking whatever JavaScript bundle has been obfuscated correctly.

Second part of testing process is to test reverse engineering requirements like testing

would happen in any native application. MobSF has the module for testing reverse

engineering requirements [Joseph, et al, 2021]. Therefore, initial testing of reverse

engineering is left to MobSF. If the tool finds reverse engineering vulnerabilities from

application penetration testing tools like APKTool will be used in the penetration testing

phase.

5.10 Extraneous functionality

In extraneous functionality, a malicious user will download the application to their own

local environment and will examine log files, binaries, and configurations to find hidden

functionalities that are not meant to be executed or are left to the application by accident.

This risky hidden functionality commonly can be development bypasses or development

functionalities left to production application by accident [OWASP, 2016]

According to OWASP [2016], it is common practice in mobile development that

applications will have different authentication methods, admin control panels, or logging

-34-

systems used in production than in development and staging environments. Therefore,

extraneous functionality risk is so prevalent with mobile applications. More interestingly,

according to OWASP [2016], there is a high likelihood that any given application will

have some extraneous functionality not intentionally exposed to the user but is still

accessible with the right tools. However, this does not necessarily mean that most of the

applications are vulnerable to extraneous functionality risk. In many cases, these

extraneous functionalities are not harmful and can be benign in nature and in this sense,

unusable to a malicious user.

In the end, business threats of these harmful extraneous functionalities are business

and application-specific. These can differ from the worst-case scenario where malicious

users gain access to freely execute high-privileged actions or bypass authentication in a

banking application. The opposite situation would be with the offline Android mobile

application, which exposes logs in the production environment by adding debug=true flag

manually to the locally installed version of the application. [OWASP, 2016]

5.10.1 Testing for extraneous functionality

Detecting extraneous functionality automatically usually happens by using string table

analysis where applications code is searched for known harmful extraneous

functionalities commonly left in application [OWASP, 2016]. MobSF has functionality

for conducting string table analysis of extraneous functionality [MobSF, 2016]. The

framework includes the functionality of checking if an application allows adding

debug=true flag to production build and exposing extraneous functionality in that way.

-35-

6 Mobile security testing tools

Mobile environments penetration testing and vulnerability assessment tools can be

divided into two categories. First category is static analysis tools. These tools are used to

automatically scan the source code and package of the application without running the

application. Therefore static analysis of applications will find vulnerabilities primarily by

searching for the usage of insecure APIs, problems with applications configurations and

code quality issues like buffer overflow [Bojjagani, et al, 2017]. Static analysis is

considered a highly scalable solution with the possibility of including a static analysis

tool to the IDE or CI pipeline, which is making it a powerful tool for identifying possible

vulnerabilities already at the development phase [Dewhurst 2020]. As a tradeoff for being

highly scalable static analysis tools can generate a large number of false positives due to

tools' low understanding of applications' context. An example of this could be web-related

CSRF and XSS vulnerabilities, which are rarely issues in mobile applications. However,

web-based analysis tools can be used to detect them from mobile applications [Boduch,

et al. 2020].

 The second category of security testing tools is dynamic analysis tools. These tools are

used when applications are at a runtime state. Where static analysis was scanning

vulnerabilities from the source code, dynamic analysis is used to find issues from server

configurations, authentication, authorization, and overall data flow of the application by

making real requests to backend systems [Boduch, et al. 2020].

6.1 MobSF

MobSF is an open-source and free to use penetration testing, malware analysis, and

security assessment framework used for detecting OWASP Mobile Top risks from mobile

applications. According to MobSF [2021] framework is an all-in-one mobile application

testing solution targeting all popular mobile platforms, including Android, iOS, and

Windows. The tool is used by multiple recent studies as the primary tool for detecting

vulnerabilities [Kohli, Narmada and Mahsa, 2020] and [Hatamian, et al, 2021]. The result

of the static analysis, by using the MobSf and intentionally vulnerable application can be

seen in Figure 10.

MobSF has tools for analyzing mobile applications both statically and dynamically.

Statical analysis tool of MobSF uses lists of keywords known as string table. These

vulnerabilities included in this string table can be for example deprecated cryptographic

algorithms and usage of outdated native APIs. This method can cause the tool to report a

large amount of false positives when conducting statical analysis [Hatamian, et al, 2021].

Therefore, a manual review of tools statically detected vulnerabilities should be

conducted.

-36-

Figure 10 Result of MobSF statical scan using intentionally vulnerable allsafe.apk

https://github.com/t0thkr1s/allsafe

6.2 Burp Suite

Burp Suite is a security testing toolset created by PortSwigger. Burp Suite includes a wide

variety of different tools including interception proxy, intruder, and repeater [Burp,

2021]. In this study, Burp Suites interception proxy is used to conduct passive and active

MITM-Attacks. Where active attacks has the goal of editing data of communication

between the parties, passives is only used to observe the data. This functionality of the

tool in user interface level is illustrated in Figure 11, where the interception functionality

of Burp Suite is displayed [Burp, 2021].

Figure 11 Burp suite tool actively listening HTTP-traffic [Burp, 2021].

 Most interception proxies, including Burp Suite, supports only interception of HTTP

and HTTPS communication protocols, which includes WebSocket communications

[Boduch, et al. 2020]. However, that excludes some communications used commonly by

-37-

mobile applications like notifications, Bluetooth, and NFC which can be visualized and

intercepted using plugins developed to Burp Suite [Burp, 2021].

6.3 SonarQube

Security testing tool MobSF is used for analyzing Android APKs and iOS IPAs and their

native parts. However, this is not enough when testing an application created using React

Native. In React Native application, logic of the application is executed inside JavaScript

virtual machine. Therefore, tool like SonarQube is needed for statically analyzing

applications' JavaScript source code. The result of SonarQube’s statical scan targeting

unmaintained React Native application can be seen in Figure 12.

SonarQube is one of the most used statical code and vulnerability analysis tool

adopted by both academia and the software industry [Lenarduzzi, et al, 2019]. In the time

of writing, the tool supports 26 different programming languages [SonarQube, 2021].

Most importantly, for React Native applications the tool supports scanning of platform-

agnostic JavaScript and platform-specific languages like Java, Kotlin, Swift and

Objective-C.

Figure 12 Result of SonarQube scan using outdated React Native application

https://github.com/jalijuhola/tasks-around-tampere

6.4 ApkTool

There are multiple tools doing seemingly the same functionality of reversing Android

APKS to readable Java source code. However, only one such tool is needed for the study.

So Arnativichses and others' [2018] study where different Android reverse engineering

tools were compared was selected. Main metric of the study’s comparison was reverse

engineering transformation accuracy of different tools. At the end, tool called ApkTool

-38-

was by far the most accurate tool for reversing Android APKs. In addition of that

according to Arnativichses and others [2018], ApkTool has also the functionality of

conducting code tampering attacks and reassembling the tampered packages. Therefore,

ApkTool was selected as a tool for conducting reverse engineering and code tampering

attacks during the case study.

6.5 GitHub Security Advisories

GitHub security advisors is a tool used for scanning the security of dependencies on a

project published into repository hosting service GitHub. GitHub security advisors is not

mobile or JavaScript-specific tool, but it is designed to be a universal tool for supporting

all technologies, which have vulnerabilities added to cve.mitre.org vulnerability

identification system [GitHub, 2021]. Therefore, tool can be used for finding

vulnerabilities from React Native projects in all different environments including

JavaScript, Java, Objective-C, and Swift. Results of GitHub Security advisors targeting

outdated React Native project and its Python-based backend implementation can be seen

in Figure 13.

Figure 13 GitHub Security advisories of old and outdated react native project

https://github.com/JaliJuhola/tasks-around-tampere.

For package maintainers and admins, GitHub security advisors will show

vulnerabilities found by scanning the repository’s dependencies. That makes it possible

to keep vulnerabilities confidential until a patch is made. After the patch to fix the

vulnerability is made vulnerability can be revealed to the public, and users of the package

or project can be recommended to update the project or package [GitHub, 2021]. Project

maintainers and admins can also discuss and disclose vulnerabilities about the package

they are developing through GitHub security advisors. That, however, is meant more to

be used by maintainers of a project and therefore is out of the scope of this study’s context.

https://github.com/JaliJuhola/tasks-around-tampere

-39-

6.6 Yarn Audit

The GitHub security advisor’s scanner can be only used to scanning vulnerabilities in

GitHub repositories. Other standalone tool Yarn Audit is also presented in this study.

Yarn audit will be executed by running the command yarn audit in the JavaScript projects

root. It is used similarly to check for known security issues of installed JavaScript

dependencies, an example of the tools output can be seen in Figure 14.

Figure 14 Yarn audit used to old outdated react native project

https://github.com/JaliJuhola/tasks-around-tampere.

6.7 Frida

Frida is a command line-based multi-platform dynamic analysis toolkit created by Ole

André Vadla Ravnås. Frida is used to dynamically analyze Android and iOS Mobile

applications and JavaScript Web applications. In addition to these environments, Frida

supports the analysis of other platforms, outside of this study's scope [Mueller, 2020].

Frida has been an open-source project with free to use policy, which allows other tools

like Frida toolkit to include Frida's source code as a whole to their project. Frida does this

because it as an organization has a goal to enable creation of the next generation security

testing tools [Frida, 2021]. This free-to-use policy can be seen in example with MobSF,

which is basing on its dynamic analysis of Android applications purely on functionality

provided by Frida [MobSF, 2021].

Frida has very wide variety of functionality in it. This includes hundreds of methods

included in Frida API [Frida, 2021]. Main parts of tools functionality is tracing

applications networking and function calls with the option to intercept these. In addition

to this tracing, Frida has a functionality to read and manipulate applications local

https://github.com/JaliJuhola/tasks-around-tampere

-40-

filesystem and local databases. Final interesting functionality of Frida is a possibility to

read applications' runtime memory and tamper it at runtime. [Frida, 2021]

There is very little automation included in these functionalities provided by Frida.

This is why implementing these fully to the testing process would require lot of time and

in-depth knowledge about Frida and the different platforms tested. This generic and

flexible approach to the testing process would be time-consuming. However, this would

make React Native testing process more comprehensive by targeting more low-level

React Native APIs. In the future study this would be Having a possibility of building

automated React Native testing tools based on Frida. However, In this study multiple

tools are used and digging more a single tool like Frida is determined to be out of this

study’s scope. Therefore, only ready-made Frida snippets published to Frida’s CodeShare

service are used.

6.8 QARK

Quick Android Review Kit (QARK) is a command-line-based open-source Android

security testing tool created by LinkedIn [LinkedIn, 2018]. QARK has functionality for

automatically testing the most common platform-specific vulnerabilities of Android.

After vulnerability scanning, QARK determines if found vulnerabilities can be generated

and generates APK capable of exploiting the found vulnerabilities.

6.9 Insiders

Insiders is a similar multi-platform security testing tool like MobSF. It has functionality

of scanning OWASP Top Ten vulnerabilities from the Java, Kotlin, Swift and JavaScript

environments [InsiderSec, 2020]. This happens by analyzing the source code of the

application similarly as SonarQube analyses Java and Swift code. Insiders is included in

the study as SonarQube is not capable of analyzing Swift source code for vulnerabilities

and there was a need for a source code analysis tool for Swift.

6.10 OWASP Dependency Checker

OWASP Dependency Checker is a tool executed from the command line interface and it

is used for scanning dependencies of applications implemented by different technologies

for known vulnerabilities. OWASP Dependency Checker is according to its

documentation capable of scanning 14 different types of projects including React Natives

native mobile technologies like Maven, Gradle, CocoaPods, and Swift for known

vulnerabilities. [Long, 2016]

 In this study, JavaScript environment is scanned by using Github Security Advisors

and Yarn audit. These tools are lacking the capability for testing native environments like

Androids Gradle and iOS CocoaPods. Therefore, in this study, OWASP dependency

checker is used for scanning native environments of React Native for known

-41-

vulnerabilities. The example output of the tool can be seen in Figure 15 where an outdated

project has been scanned for known vulnerabilities.

Figure 15 Example of results of scanning JavaScript environment of outdated React

Native Project https://github.com/JaliJuhola/tasks-around-tampere.

https://github.com/JaliJuhola/tasks-around-tampere

-42-

7 Vulnerability categorization

In this thesis, all vulnerabilities scanned are already categorized under risk groups

according to OWASP Top Ten threats and React Native risk listing. So where is the need

for the second way of categorizing vulnerabilities differently? If vulnerabilities were only

categorized in the risk level, categorization would be really generic and it would be hard

to determine the risk and exploitability of a found vulnerability. Exploitability and overall

risk of certain disclosed vulnerabilities can be determined by using active discussion and

existing research of found vulnerabilities. This is where concepts introduced in this

chapter, universal vulnerability databases and identifiers of vulnerabilities are useful. This

vulnerability-related data is illustrated in Figure 16 [NIST, 2021].

Figure 16 Vulnerability Mitigation, CVSS score, and CVE identifier provided by GitHub

security advisors.

7.1 Common Vulnerability Scoring System

Common Vulnerability Scoring System (CVSS) is a framework created and maintained

by First.org. CVSS has the goal of informing characters and severity of found

vulnerabilities in different types of software [NIST, 2021]. CVSS scoring system is based

on calculating severity scores between zero and ten to vulnerabilities. This is done by

using the calculator provided in Figure 17. After the vulnerability score has been

calculated, the criticality of vulnerability can be determined using the list provided in

Figure 18. These calculated Scores are often used to prioritize the prevention and patching

of found vulnerabilities [NIST, 2021].

-43-

Figure 17 Vulnerability criticality by score [NIST CVSS, 2021].

Figure 18 CVSS base scoring system [First.org, 2021]

7.2 National vulnerability database

National Vulnerability Database (NVD) is an open and free-to-use vulnerability

management system created by NIST [NIST, 2021]. NVD works with CVE and does not

report or study vulnerabilities by itself, but it fetches publicly-listed CVE identifiers from

MITRE Corporation. After a new vulnerability has been disclosed by MITRE and

delivered to NVD. NVD displays data related to vulnerability like analysis of the

vulnerability, CVSS score and vulnerability description on its website. At the beginning,

CVE will be added to the public NVD database as an unpatched vulnerability and possible

fixes of vulnerability are published after, a fix is found. [NIST, 2021]

-44-

Figure 19 Description and CVSS information of React native vulnerability CVE-2020-

1896 [NIST, 2021].

7.3 Common Vulnerabilities and exposures

Common Vulnerabilities and exposures (CVE) is a publicly available vulnerability

identification database consisting identification information of publicly disclosed

vulnerabilities. It is created and maintained by MITRE Corporation, and it has aim for

making addressing vulnerabilities consistent across the software industry. [Mitre, 2021]

 According to Mitre [2021], CVE does not provide information about risks, impacts, or

ways to fixing the vulnerability by itself. Idea of CVE is to provide only standard

vulnerability identifier, and a brief introduction. This information is then used by different

vulnerability databases like National Vulnerability Database (NVD) to host information

about vulnerability’s risks and possible fixes. That allows consistent identification of

vulnerabilities between different vulnerability databases.

-45-

8 React Native security testing process

Previously in related work chapters Figure 3, different security testing models were

compared by using a systematic literature review conducted by Haq and Khan [2021].

This systematic literature review of security testing models is used as a reference for

selecting a base for the security testing process created during this study.

 The requirements of the security testing model for React Native applications are that

model should be compatible with OWASP mobile risks and MSTG methodologies

introduced previously. This gives the selected model a requirement that it cannot be too

strict or explicitly built for any specific native or hybrid technology. This will allow

customizing the model according to React Native specific testing needs defined in

previous chapters. The second requirement for the model is that it supports testing native

environment-specific risks in both Android and iOS environments.

 Models that were chosen for comparison from Haq's and Khan's [2021] systematic

literature review are OSS-TM3, NIST-ISAM, OWASP MASVSS, ISSAF, and PTES.

These models are briefly introduced and the most suitable model is selected according to

the requirements defined previously.

OWASP MASVS is security testing standards listing based on preventing OWASP

Mobile Top Ten Risks. This standard listing contains a step-by-step checklist to verify

OWASP Mobile risks with additional reverse engineering resiliency standards for mobile

applications as an appendix. MASVS listing is divided into two security levels where

first-level MASVS-L1 defines generic security requirements and the second level

MASVS-L2 includes in addition to L1 requirements additional standards for protecting

against more sophisticated attacks like SSL pinning [Willemsen, et al, 2021]. OWASP

MASVSS as itself does not have any detailed guidelines about the testing process nor

tools used for testing the mobile applications. Therefore OWASP MASVS and OWASP

MSTG are used as a technical references for the security testing process but not as a model

[Mueller, et al 2020]. According to MASVS [2020], it is not a security testing model and

does not include any information about running the security testing process. MASVS

listing includes a set of standards for secure mobile applications. Therefore, it is not

necessarily clear why OWASP MASVS has been included in this listing as security

testing model.

ISSAF has different suggestions and standards for a different types of software. These

standards are including realistic scenarios of attacking the different types of systems.

Steps to execute in ISSAF process are Planning, Assessment, Reporting and clean-up.

ISSAF methodology is not compatible with React Native security testing model as it does

not have any information about testing the mobile applications [Haq and Khan, 2021].

OSSTMM includes different penetration and vulnerability testing strategies for different

configurations of background systems grouped by different ways. OSSTMMs is built

-46-

according to Haq and Khan [2021] to help network developers and testers to verify and

improve systems as whole security. Therefore it also is determined to be not suitable with

our current study where security is tested mainly at client level and wide testing process

of backend systems are determined to be out of the study’s scope.

ISAM (Technology Information Security and Assurance metrics) is a set of metrics and

methodologies created by National Institute of Standards and Technology. ISAM project

is funded and owned by the US government and has the goal of testing and assuring the

security of different systems [NIST, 2021]. The penetration testing framework by NIST

consists of four phases, which are planning, discovery, attack, and reporting. However,

this methodology might be outdated nowadays as there are many newer and more specific

testing guides like NIST 800-163, which includes NIST organizations' current standards

for testing mobile applications and vulnerabilities according NIST [Ogata, et al, 2019].

PTES (Penetration Testing Execution Standard) is a security testing model containing

seven steps which are (1) Pre-engagement Interactions, (2) Intelligence Gathering, (3)

Threat Modelling, (4) Vulnerability Analysis, (5) Exploitation (6) Post Exploitation (7)

Reporting [PTES, 2021]. PTES is a generic penetration testing process attempting to

create standardization all across security with the process including even physical office-

level security. OWASP security testing processes are at the base level based on these

seven steps of PTES [Haq and Khan, 2021]. PTES has also technical testing

documentation available, based on these seven steps. This documentation is providing

information about all-around security all the way from backend systems to mobile

applications [PTES, 2021].

 From these 5 sets of methodologies, there were two possible models without crucial

shortages. These models were PTES and ISAM. In the end, PTES was selected as the

most usable for our purposes due to its compatibility with the OWASP methodologies

and its flexible nature [Haq and Khan, 2021]. Being compatible with an OWASPs model

and OWASP model being built around this PTES model, will make it easier to use

OWASP methodologies when testing the applications and creating the model. Parts like

testing physical facilities, however, are not applicable for this study and will be ignored

when model is being followed. Finally, PTES provided steps will be renamed to suit the

mobile testing scenario better. The base for this new naming scheme is taken from

OWASP MSTG [2020], which has a methodology for testing purely native mobile

applications. High level description of this model is introduced in Figure 20.

-47-

Figure 20 Mobile application security testing stages

8.1 Vulnerability assessment

The first part of the security testing process is vulnerability assessment. The main goal of

the vulnerability assessment stage is to find vulnerabilities from the application by using

manual, statical and dynamical tools. This scanning phase is supported by preparation

and information-gathering stages where information about the application is gathered by

using the information provided by the customer and by executing an independent

information-gathering process.

 In addition to executing the scanning process and reporting found vulnerabilities to the

customer, the vulnerability assessment phase is also part of the broader testing strategy

where information is gathered for the second phase of the security testing process, which

is the penetration testing phase. In penetration testing phase vulnerabilities and the

damage they would cause to the system are validated, by exploiting the found

vulnerabilities like a real world attacker would. [Shinde and Ardhapurkar, 2016]

-48-

8.1.1 Preparation phase

Vulnerability assessment starts from the preparation phase, summarized in table 4. In this

stage goals and rules of the testing are discussed with the owner of the application. Here

a security tester will meet up with the customer to decide on a more specific plan for the

testing process.

Task Description

Identify sensitive data What sensitive data application stores

Define scope of testing
What is tested, information gathering level and

how far to penetration test

Define timeline of testing When testing will start and end

Request information about the
application

Ask for architectural and possible other
information about application

Request different builds Gain access for different builds of application

Determine information gathering level
Discuss with the customer how much effort is used

in information gathering process

Table 4 Steps in Preparation phase of security testing

This plan includes scope, where it is decided what is going to be tested and how far testers

will go in terms of exploiting the application [Sugandh 2015]. This planning stage can

easily be overlooked. However, according to PTES [2021] defining the scope and

timeline as exactly as possible is important for a successful testing process. This is

important in situations where outside security testing is being conducted. This is since

usually the scope of testing will grow during the testing process if the scope is not strictly

defined. Another important part of supporting the actual testing process is to determine

what is and what isn’t sensitive data. This should be discussed with the customer as many

organizations might have data classification policies that determine what is sensitive data

from the organization's point of view. If there is no active data classification policy in

place, categorization can be done by using lists defined by MSTG. [Mueller, et al 2020]

 In addition, other possible information about the application should be requested from

the customer at this stage. This is unless full black-box testing where applications are

downloaded from the app store is being conducted. Boduch and others [2020] suggested

that already in the preparation stage both debug and production builds of the application

should be requested from the customer. Having these two builds allows testers to test the

application without tedious to break security controls. Also verifying the found

-49-

vulnerabilities is easier when applications logs and other debug information can be

accessed easily [Mueller, et al 2020].

8.1.2 Information gathering

After the scope and information about the application have been gathered from the

customer, it is time to conduct the first independent from the customer step of the testing

process. This process can be called information gathering or reconnaissance, which is

summarized in Table 5.

Task Description

Native reconnaissance
using applications

package and MobSF

Determine applications
architecture, included libraries,
components and installed files

Network

reconnaissance

Determine applications
Network security policy and
applications used services

Passive reconnaissance
Conduct passive reconnaissance

by using open source
intelligence

JavaScript environment

reconnaissance

Determine JavaScript packages,
JavaScript version and

JavaScript engine and possible
other services used by

application.

Table 5 Steps in information gathering phase.

 Reconnaissance according to PTES [2021] can be divided into three groups depending

on the effort used during the process. These effort levels are ranging from 1 to 3. Level-

one type of information gathering is conducted mainly using automated tools and in level

three heavy analysis is conducted and a large number of hours is used to gather an in-

depth understanding of the organization behind the tested application. This level of

information gathering should be determined in the preparation phase during discussions

with the customer.

 This process should be separated from the data received from the customer as data

gathered from the customer is already known. Therefore this stage should be executed

independently from the first step. This will make it possible for the tester to determine the

amount and type of information that is gatherable by a possible attacker when using only

an open-source intelligence and production package [Sugandh, 2015].

 The information-gathering process and its goals are different, depending on the source

that is used. For example, in OWASP [2020] information gathering is more of a technical

-50-

process, only consisting of automated reconnaissance parts of the intelligence gathering

process and the resources used are source code and the network that the application is

located in. On the other hand, studies conducted by PTES [2021] and Sugandh [2015]

defines information gathering as the process for gathering information about the target

organization and environments that software is located. That is added on top of

applications technical reconnaissance like defined in OWASP [2020].

 In this study, the focus is on the active reconnaissance process, which is closest to

PTES security level 1 and process defined in OWASP [2020]. In this active

reconnaissance process, the source code of the application and the application’s package

are used for gathering information. In addition to the applications package, different

business cases, possible organization-specific internal processes, and a picture of

applications architecture should be determined during this process.

 Overall this reconnaissance process includes a lot of business and scope specifics and

when conducting security testing, a process for testing these specific assets should be

determined case by case. Therefore, a more specific approach executed in the case study

section is determined during the case study section by using documentation provided by

PTES [2021] and OWASP [2020].

8.1.3 Scanning the application

In this stage, an initial set of flaws possibly exploitable by the attacker are searched from

the application [PTES, 2021].

Task Description
Running statical scanners for all

environments
Scan all targeted environments and JavaScript

environments statically by using tools selected.

Running dynamical runners for all
environments.

Scan all targeted environments and JavaScript
environments dynamically by using tools selected.

OWASP MASVS listings Fill authorization MASVS in JavaScript environment

Possible custom authentication process
If needed test custom authentication process by
reviewing source code of application and using

interception proxy

Test React Native storage solution
Check manually how storage solution is

implemented in React Native in source code and
dynamical analysis level and find possible issues.

Business logic specific testing
Test application specific business logic by using
interception proxy and source code.

Table 6 Actions performed in scanning the application phase.

More precisely this means that bulk amounts of vulnerabilities are gathered from the

application by using the data gathered in previous steps [Sugandh, 2015]. At the technical

-51-

level, vulnerability gathering process includes a process of running dynamic and static

tools with possible additional manual steps. These tools and steps executed should be

chosen according to availability of tools and according to application-specific needs.

Tools used in the study were visited in the earlier chapter.

 Steps conducted in scanning the application phase as a whole are introduced in Table

6. This table contains in some React Native-specific manual steps, these manual steps are

targeted to areas where automated tools are not necessarily catching all possible

vulnerabilities. Therefore, these steps are executed with steps described in OWASP

MSTG [2020]. The scanning process should be done with similar info as in the

information-gathering phase, and execution of these tools should be done with

applications security controls turned on. This simulates closest to a situation with an

external attacker [Mueller, et al, 2020]. If strong security controls like obfuscation are

found from the application, that is noted and testing is continued by using a package

without security controls.

8.1.4 Result analysis

Now in the previous section set of possible vulnerabilities were gathered from the

application. However, results of the vulnerability assessment process, when using mostly

automated tools can be problematic as there is a high possibility that results are containing

a large number of false positives [Sugandh, 2015]. That is why in this stage of the process

scanned results are categorized by using methodologies defined in table 7. This process

is summarized in table 7 and will start by assigning CVE or CWE identifiers to all

vulnerabilities found in previous steps.

Task Description

Vulnerability
categorization

Categorization of known
vulnerabilities to either CWE or

CVE

Remove false positives
Removing false positives from

the list of vulnerabilities

Reporting to customer
The report found vulnerabilities

to the customer

Table 7 Steps for Result analysis

At the beginning of this stage, CVE is attempted to be assigned to vulnerability as it gives

more accurate information about the severity and possible way of testing the specific

vulnerability. If CVE identifier cannot be found, CWE identifier will be assigned to

vulnerabilities instead. Where CVE identifier contains information about specific

vulnerability CWE includes information about more generic weakness in the system and

-52-

works as a higher-level grouping method of CVEs [Mitre, 2021]. Found Vulnerability or

weakness identifiers are then used to find information about the specific vulnerably or

weakness, from vulnerability databases like NVD. Another way of finding information

about vulnerabilities with open-source projects or libraries is open-source project-related

discussions. These discussions can be found inside GitHub’s issues tab. This found

information is then used to determine whether found vulnerability is a false positive or

actual security problem which is addressed further in the next steps.

 After results have been analyzed and vulnerabilities for further testing are selected, a

set of found vulnerabilities are reported to the customer and possible scope changes are

determined.

8.2 Penetration testing

Penetration testing is the second step of the security testing process. In the penetration

testing phase, the security tester systematically assesses the security of the system by

attempting to actively attack the target system [Shinde and Ardhapurkar, 2016]. This

attack is conducted by using information and set vulnerabilities found in the previous

vulnerability assessment phase. An example of the action executed in this stage would be

an attack where a security tester is attempting to execute admin functionality by using

credentials without proper admin privileges. Technically this exploitation could be done

for example by sending an HTTP request to API requiring admin privileges without

proper ones.

The goal of the penetration testing phase is to identify the validity of different risks

and vulnerabilities found in the previous sections. This information about exploitations

results gives a tester and a target organization a picture of the overall state of security

inside the target system than vulnerability assessment would be by itself. This information

can include, for example, information about technical and business impacts of the

vulnerability if actual exploitation would happen in a production environment

In the context of the security testing process, penetration testing will be executed after

the vulnerability assessment phase where the tester uses vulnerability assessment tools to

identify the possible vulnerabilities which will be exploited in this stage. [Palacios, et al,

2019]

8.2.1 Exploitations

On the process level, exploitations should be executed after a well-performed

vulnerability assessment phase, where a list of prioritized vulnerabilities inside highly

valuable assets is established [PTES, 2021]. This exploitation process is represented in

Table 8 and is started by gathering possible exploitations methods for all vulnerabilities

found in previous stages. When this is done to each vulnerability separately, an output is

the customized set of exploits for all vulnerabilities, taking into consideration both a use

-53-

case of the exploitable part of the system and the overall technical implementation of the

system. This tailored exploitation process is crucial for a successful penetration testing

process [PTES, 2021]. A three-step approach identifying, customizing, and executing the

exploitations is the reason why the penetration testing process is usually a far more

laborious process than vulnerability assessment, which can cause its execution to be often

neglected [Shinde and Ardhapurkar, 2016; Mueller, et al, 2020].

As the JavaScript environment is similar in iOS and Android environments,

JavaScript-related vulnerabilities have to be only exploited in a single environment. There

are no specific rules for selecting, which environment is used for exploiting JavaScript

vulnerabilities. Selection can be made by choosing an environment that has the least

amount of native vulnerabilities found in it or it can be done depending on the availability

of testing devices.

Now everything should be ready for the actual exploitation process. In the

exploitation phase, according to Mueller and Others [2020], flexibility is important and

if problems occur or exploitation did not succeed, it is usually advisable to change the

exploitation approach and adapt by modifying exploitations.

Task Description

Environment for
JavaScript

Select environment for
exploiting JavaScript

vulnerabilities.

Prepare attacks
Prepare and select exploits for

attacking against selected
vulnerabilities.

Remove vulnerabilities
without exploit

Remove vulnerabilities without
the exploit from the process.

Execute exploits and
gather information.

Execute selected exploits and
gather information about

exploits for result analysis.

Table 8 Steps for Exploitation phase of penetration testing

8.2.2 Result analysis

At this stage, the technical part of the testing process has been completed and the tester

has a list of exploited vulnerabilities and results of exploitations. In the beginning, a

security tester removes false-positive vulnerabilities detected in the exploitation phase. In

this stage, it is good to acknowledge that if exploitation cannot be found or it failed, that

does not necessarily mean that exploitation of that vulnerability is impossible. Steps

executed during the result analysis phase are introduced in table 9.

-54-

 After false positives are removed, the security tester will calculate CVSS scores for the

false-positive cleaned vulnerability set. For vulnerabilities that are already previously

disclosed, an established CVSS score is assigned according to the CVE identifier. This

scoring information can be used by the customer to prioritize the fixing process. More

information about the CVSS scoring system can be found in chapter 7 where vulnerability

categorization is introduced.

Task Description

Remove false positives
Remove false positives established in

the penetration testing phase.

Generate CVSS scores

Assign CVSS scores to all
vulnerabilities, by either calculating it

or using existing CVSS scores of
disclosed vulnerabilities.

Table 9 Steps for result analysis phase of penetration testing

8.3 Reporting

In this final phase of the process, findings and information about testing conducted will

be communicated to the customer. This information should include according to PTES

[2021] assets tested, the scope of testing, comprehensiveness of the testing process, and

methods used during the testing process.

8.4 Different platforms and model

At the technical level vulnerability analysis and penetration testing of mobile applications

should be conducted separately to all targeted platforms which in the context of this study

are Android and iOS [Ogata, et al, 2019; Mueller, et al 2020]. In this section general non-

technical model of security testing is formed. This model is used for the security testing

process executed in the next chapter. Therefore both platforms and the hybrid framework

are included in this model. All parts if not informed otherwise should be conducted to

each targeted platform with platform-specific tools, considering application specifics.

-55-

9 Case study security testing React Native application

In this chapter, tools and the security testing model defined in previous sections will be

used to conduct security testing of the real-world React Native application. This

application has a wide user base and it's being used by thousands of users every month.

The application targets both major mobile platforms iOS and Android and contains

platform-agnostic JavaScript parts. This hybrid application tested is in the category of

medical applications, which means that medical data is displayed to the end customer by

the application. In addition to sensitive data displayed, the application has functionality

for discussing with medical professionals. At the end of the discussion payment of the

service happens through the application. Due to these different categories of sensitive

datasets displayed and generated by the application, it is important for the application to

have a sufficient level of protection around its transmitted and stored data. This is the

reason why the application was found to be sufficient for the purposes of this study.

 The case study is started as defined in the testing model, by collecting a set of

vulnerabilities by vulnerability assessment. After the collection of vulnerabilities,

penetration testing described will be conducted to validate these found vulnerabilities. At

the end of the process, found vulnerabilities and issues are reported to the customer.

9.1 Preparation phase

In the preparation phase, communication with the customer is established, specifics about

testing are discussed, and possible information about the application is requested.

In the first phase of vulnerability assessment, sensitive data that the application stores

and uses is defined. The application tested consists of many different categories of data

that can be defined as sensitive. This sensitive data in the application includes personal

details about a user (Email, postal address, social security number, coarse location, etc),

medical records, and discussions history with the medical professionals. In addition to

this sensitive data about the user, the application consists of technically sensitive data for

example, long-term authentication tokens. This data as a whole will be searched from the

application during the study.

The second part of the preparation phase is to request information about the system

and the application. This system as a whole involves the mobile application, API service

exposed to a public network and backend services in the internal network consisting of

sensitive data. In addition to backend systems, there is also a user interface used by

medical professionals to discuss with the customer.

The third part of the preparation phase is to define the scope for the testing. Data

gathering is conducted without OISINT and by using minimal PTES L1-level data

gathering. The testing process will be done as white box testing, with full knowledge of

the target system, including full access to source code. It was stated in the previous

chapter that the system overall consists in addition of mobile application, multiple

-56-

backend services, and an additional user interface. However, as this study is based on

security testing methodologies of React Native mobile applications, the scope of the

testing is set strictly to include only application and the direct APIs that are usable through

the application. No network scanning nor backend service-related testing is conducted

during this study. However, as stated in studies conducted by PTES [2021] and Muller

and others [2020], it would be advisable to validate back-end systems as well if a

comprehensive security testing process of mobile application would be conducted.

In technical sense scope of the testing process will consist of executing vulnerability

assessment using tools described in chapter 6. In addition to executing these tools,

OWASP MASVS checklists described in chapter 5 and React Native specific

vulnerabilities introduced in chapter 4 will be tested. After the vulnerability assessment

process has been completed and false positives have been removed, the found

vulnerabilities will be moved to the penetration testing phase, where exploitations for

found vulnerabilities are studied, and vulnerabilities with found exploitations are

attempted to be exploited. In the end, false positives found in the penetration testing phase

are removed and exploited vulnerabilities will be categorized by CVSS scores. This

information at the end is reported to the customer. This first stage of testing is summarized

in Table 10.

Task Summary

Identify sensitive data Identified and described in chapter

Define the scope of
testing

Testing conducted in a Staging environment.
Strict scope is defined in the main body of

text.

Define timeline of
testing

Duration of testing process is three weeks.
One for penetration testing and one for

vulnerability assessments

Request information
about the application

Information requested—testing conducted
as Whitebox and process has free access to

application and backend systems.

Request different builds Different builds and source code accrued

Table 10 Summary of the preparation phase

9.2 Information gathering

In this stage, information will be gathered independently from the customer, marking a

start to the independent testing process. Results of this process are introduced in Table

11. The information-gathering process is executed to native environments and the

JavaScript environment of the application. A more comprehensive testing process should

-57-

contain its own stages for open-source intelligence and network scanning. Nevertheless,

as this study is based on the security testing React Native applications and conducting a

full OISINT process would be a tedious process. OISINT process is determined to be out

of this study’s scope. However, as stated in many sources including PTES [2020] and

Haq and Khan [2021] it would be advisable to conduct these OISINT steps when the

testing is targeting the system as a whole.

This information-gathering process will be conducted two times once with iOS and

once with Android application. In both platforms, testing is started with packages like

those published in the app stores, including all security controls. If security controls of

the package are strong, package without the security controls will be used to continue the

testing process. In the end, if all data cannot be gathered by using application packages,

source code will be used. This is done due to fact that according to Mueller and Others

[2020] security controls like obfuscation are not sufficient protection methods by itself

and should only be used only to make possible attacks more time-consuming and more

difficult to execute. Not as only a mean of protection against attacks.

Task Summary

Native reconnaissance
using applications

package and MobSF

Native environment-specific
architectures and services

determined. No binary
protection in Android, Apple
provided protection on iOS

Reconnaissance using
network

Out of decided scope. More
useful when testing system-

level security.

Passive reconnaissance
Out of decided scope.

Information gathering level
decided to be L1.

JavaScript environment

reconnaissance

JavaScript environment
architecture and services

determined. No binary
protection in JavaScript bundle.

Table 11 Summary for information gathering phase.

9.2.1 Android

Initially, testing Android environment is started with the APK similar that can be

downloaded from Play Store. In this APK, debug functionality is turned off, and the

building process is done similarly to production packages, with possible security controls

turned on. This APK is then reverse engineered by using APKTool. This APKTool

-58-

reversed package is then used to conduct JavaScript environment and native environment-

specific reconnaissance processes.

The testing process is initially conducted in the JavaScript environment and is started

by reviewing APK packages JavaScript files and resources. During this review, it was

found that files of the Android package are readable, and no obfuscation or any other

security controls are found. After the APKTool reversed package was reviewed, five

different categories of JavaScript environment-related files were identified. These files

are JavaScript Bundle file, I18n translations including key translation pairs, animation

files, icon files, and package.json files of external dependencies. The most interesting

part of the JavaScript environment is the JavaScript bundle, which contains applications

business logic that looks unreadable. However, bundled files can be prettified using a tool

like Js-Beautify [2021], making the applications JavaScript source code easily patchable

and readable like presented in Figure 23.

Figure 23 Part of prettified and reversed Android bundle.

Two interesting JavaScript environment-related services are found. These are CodePush

and Redux. The application uses the CodePush service to update JavaScript level changes

by fetching updated bundle files from CodePush servers. That makes it easier to deliver

JavaScript changes without a new play store release [Microsoft, 2021]. Redux, on the

other hand, is used for helping applications to keep data consistent around the application

by keeping applications' state as global [Redux, 2021].

 Next native environment reconnaissance of Android is conducted. That will be started

similarly as with the JavaScript, with APKTool reversed APK. Results of Androids native

reconnaissance were similar as in JavaScript environment. Source code files had been

minified but not obfuscated. Therefore source code of the application is freely accessible.

The rest of the native part of the Androids reconnaissance process uses MobSF statical

scanning, which is done with a package similar to that distributed in App Store. Results

of MobSF are introduced more in detail in the following chapter when results of security

scanning tools are presented.

9.2.2 iOS

There are two types of iOS applications built with newer Swift and built with older

Objective-C technology. This that is tested during this study is built by using newer iOS

-59-

language Swift. This makes reverse-engineering and dynamical testing process overall

harder [Mueller, et al, 2020]. Overall iOS applications reconnaissance process will be

conducted similarly as the Android applications one; however, the reverse-engineering

process provided by Mueller and Others [2020], our primary technical reference, cannot

be used as its iOS-based process is mainly based on reverse-engineering Objective-C

applications [OWASP, 2020].

 Native iOS applications built with the Swift are obfuscated by default as the

applications are shipped by using IPA packages. To circumvent this obfuscation, an

application would have to be snapshotted during dynamic analysis [OWASP, 2020]. This

will be skipped during this study, and the rest of the iOS reconnaissance process will be

done using an unobfuscated APP file.

 As intended in the case of the hybrid application, the overall architecture and used

services of the iOS applications are the same as with the native Android applications. So,

Therefore, the rest of the information gathering process will be conducted similarly as it

was done with the Android, by using MobSF. Results of this scan will be used in the

following chapters when the application is further assessed.

9.3 Scanning the application

After the background information about the application is gathered, the application is

analyzed for vulnerabilities.

Task Summary
Running statical scanners for all

environments
Statical scanners were executed, and possible issues

were found for all environments.

Running dynamical runners for all
environments.

JavaScript and Android environments dynamically
tested successfully—problems faced with iOS

emulator.

OWASP MASVS listings
Authorization MASVS done in JavaScript

environment.

The possible custom authentication
process

Authentication process tested with source code and
Burp Suite. Possible issues were found.

Test React Native storage solution
Redux state not persisted, issue found regarding

Keychain and MASVS standards.

Business logic specific testing
Applications JavaScript source code briefly
reviewed, and application tested using interception
proxy.

Table 12 Summary for scanning the application phase

This analysis of vulnerabilities is done by using mainly different static and dynamic

environment-specific security testing tools. These tools are defined in more detail in

chapter 6. In addition to the usage of automated tools, some MASVS checklists and

manual steps are defined during the security testing model. Those additional steps will be

-60-

used during this section to help validate areas of testing, which cannot be assessed reliably

automatically. Steps executed and overall results of this stage are introduced in Table 12.

9.3.1 JavaScript environment

In the beginning, before moving to platform-specific testing processes, platform-agnostic

JavaScript code will be tested. JavaScript parts of the applications are executed in both

Android and iOS environments by using the same JavaScript engine. Therefore, the

results of this part of testing are valid both in iOS and Android environments. The first

scanner used to JavaScript environment is a statical scanner called SonarQube.

SonarQube takes applications JavaScript source codes as input. Results of this scan are

described in Figure 24.

Figure 24 result of SonarQube Scan

As presented in Figure 24, four bugs, two security hotspots, and 74 code smells were

found by SonarQube. Analyzing these results will be started from the Code smells. Code

smells are more of an issue regarding maintenance of the project, contrary to active

security issues or vulnerabilities [SonarQube, 2021]. Therefore, these code smells can be

reported to the customer, but will be removed from the security testing process at this

stage. After the removal of the code smells, there are still six issues left to review. From

these six issues, issues with CWE or CVE tag assigned by SonarQube were selected to

the follow-up stages of testing. Rest of the issues was dropped as these did not have any

security issue-related information available. More detailed information about issues

chosen from follow-up stages can be found in Table 13.

Category Issue

Regex DoS Email validator /^[^\s@]+@[^\s@]+\.[^\s@]+$/

Usage of HTTP protocol
With webview origin whitelisting

originWhitelist={['https://*', 'http://localhost*',
'http://10.0.2.2*']}

Table 13 results of SonarQube Scanning.

-61-

 Now JavaScript source code has been scanned statically. The next step of the process

is to scan applications' JavaScript-level dependecies for known vulnerabilities. This

testing is conducted by using three different tools Yarn Audit, GitHub security advisors

and OWASP Dependency Checker. Like expected all three different tools had similar

results and where warning about the same three vulnerabilities. Methodologies for

Finding known vulnerabilities are similar with all three of these tools, like stated in

tooling section. The only difference found from outputs of these tools were that yarn audit

provides more information in situations where single dependency is sub dependency of

multiple libraries. In this situation Yarn audit gives multiple warnings with only single

unique vulnerability found. Overall results of this stage are presented in Table 14.

Category Issue

Possible sandbox escape vm2 sub dependency

Regex DoS ansi-regex sub dependency

Type confusion Set-value sub dependency

Table 14 combined results of GitHub Security advisors and Yarn Audit.

 Next first manual step of process is done. In this step authentication scheme of the

application is tested. As stated earlier, authentication schemes of the applications can be

highly customized, and therefore testing authentication schemes will have additional

manual step added in the model. This manual step uses OWASP MASVS provided by

Willemsen and others [2021].

 Half of the MASVS checklists entries are marked as N/A, which will mean that these

parts of the MASVS were not tested. These rows were eliminated either because the

system did not have that functionality implemented at all or the issue was regarding only

back-end systems and was deemed to be out of the scope. There was a total of three issues

found; row 4.1 is due to possible vulnerability, which will be introduced later where a

follow-up login process is enforced only at the application level. Two final issues, 4.4 and

4.10, are functionalities that have not been implemented in the application. These two

issues are more harmful due to possible issues introduced later where applications' long-

term authentication token is compromised on the device level. There is no way of ending

the compromised session nor any additional protection layers around sensitive

transactions, therefore if authentication token is compromised, user should be able to end

the session. Results of MASVS listing can be found in Figure 25.

-62-

4.1 MSTG-
AUTH-1

If the app provides users access to a remote service, some form
of authentication, such as username/password authentication,
is performed at the remote endpoint.

✓ ✓ Fail

4.2 MSTG-
AUTH-2

If stateful session management is used, the remote endpoint
uses randomly generated session identifiers to authenticate
client requests without sending the user's credentials.

✓ ✓ N/A

4.3 MSTG-
AUTH-3

If stateless token-based authentication is used, the server
provides a token that has been signed using a secure algorithm.

✓ ✓ N/A

4.4 MSTG-
AUTH-4

The remote endpoint terminates the existing session when the
user logs out.

 Fail

4.5 MSTG-
AUTH-5

A password policy exists and is enforced at the remote
endpoint.

✓ ✓ N/A

4.6 MSTG-
AUTH-6

The remote endpoint implements a mechanism to protect
against the submission of credentials an excessive number of
times.

✓ ✓ N/A

4.7 MSTG-
AUTH-7

Sessions are invalidated at the remote endpoint after a
predefined period of inactivity and access tokens expire.

✓ ✓ N/A

4.8 MSTG-
AUTH-8

Biometric authentication, if any, is not event-bound (i.e. using
an API that simply returns "true" or "false"). Instead, it is based
on unlocking the keychain/keystore.

✓ N/A

4.9 MSTG-
AUTH-9

A second factor of authentication exists at the remote endpoint
and the 2FA requirement is consistently enforced.

✓ Pass

4.10 MSTG-
AUTH-10

Sensitive transactions require step-up authentication.

✓ Fail

4.11 MSTG-
AUTH-11

The app informs the user of all sensitive activities with their
account. Users are able to view a list of devices, view contextual
information (IP address, location, etc.), and to block specific
devices.

✓ Fail

4.12 MSTG-
AUTH-12

Authorization models should be defined and enforced at the
remote endpoint.

✓ ✓ Fail

Figure 25 Authentication scheme MASVS

 The next step of the JavaScript level testing process is to review the way the storage

solution is implemented at React Native level. The review will be done using the

application's source code. The application uses AsyncStorage and react-native-keychain

(https://github.com/oblador/react-native-keychain) to persist data over applications restarts.

Starting with AsyncStorage. The application uses AsyncStorage for storing data globally

over application restarts in an unencrypted fashion. AsyncStorage is implemented

differently in different environments, on Android local database SQLite is used and in

iOS separate files [Facebook D, 2021]. AsyncStorage is used by the application to store

only insensitive data such as the language information of a user. Therefore, there are no

issues found regarding storing data to AsyncStorage. Next React-native-keychain is

reviewed. React-Native-Keychain is used by the application to store authentication

tokens. This usage of react-native-keychain by itself does not create any vulnerabilities

to the application. However, there is risk involved with usage of react-native-keychain,

which is introduced more in detail in chapter 4, where it is stated that according to

Willemsen and others [2021], storing sensitive data to an iOS keychain without initial

https://github.com/oblador/react-native-keychain

-63-

encryption breaks data storage standards. This will create a standard breach for the iOS

environment.

 The final storage technology to be reviewed is redux. Redux is used to persist

applications state globally in runtime, and in the application, this state contains sensitive

data, which, if persisted over application restart, would pose vulnerability. However, the

Redux state is not persisted over application restarts, making it a suitable solution

[Facebook, 2019].

 The next part of the JavaScript environment-specific testing process is to review the

business logic and functionalities of the application. This testing is conducted by using

the application in its runtime state and interception proxy Burp Suite. Process using the

interception proxy will allow us to see how the application interacts with backend

systems.

 After, the application's functionality was reviewed it was found that the application

uses safe communication methods all-around to interact with different backend services.

However, two issues were found regarding applications authentication scheme. Firstly

when a user initially logs in to the application, this happens securely. But during the

second time when a user logs in by using the same device, the application only verifies

login credentials in the front-end and decrypts the password before the user is

authenticated, making the application's authentication process vulnerable to code

tampering attacks. This attack can cause possible circumvention of the authentication

process or leakage of customers' device-level password. Vulnerability is possibly

exploitable by malware to target larger groups of users. Final issue found was possible

circumvention of the payment process. It was found that either by code tampering or by

sending a forged WebSocket message, a user is possibly able to circumvent the payment

process by sending a WebSocket message ending the chat before the invoice has been

made to a customer. Results of this review of the application’s business logic can be seen

in Table 16.

Category Issue

Insecure authentication Possible circumvention of the application's login process.

Insecure authorization Possible circumvention of the payment process.

Insecure data storage Possible leakage of user's application-level password

Table 16 Issues found from applications business logic

9.3.2 Android

In this chapter, the platform-specific testing will be conducted by searching

vulnerabilities from React Native-built Android application. This testing is executed

similarly as it was conducted to a JavaScript environment by using security testing tools,

-64-

MAVS checklists, and manual steps defined previously in the study. The environment

used for the testing process includes Genymotion emulator, Android debug bridge

command-line tools and emulated Android device with SDK version of 29.

 The testing process is started by statically and dynamically scanning the application by

using MobSF. Results of this scan can be found in Table 17. Overall, MobSF gave a lot

of info, warning, and vulnerability level information. However, almost all of the

information found by the tool was found either in native code of React Native’s core or

external dependencies. In this study, libraries are validated in Android environment by

scanning them for known vulnerabilities later in this chapter. Therefore, only a small part

of the most prevalent issues found by MobSF are included in Table 17. When initial false-

positive assessment was conducted after MobSf scan, it was found that there is a high

possibility of false positives to be present among these issues found by MobSf.

Category Issue

Cleartext Storage of Sensitive Information MobSF Specifies seven possible files

Use of Insufficiently Random Values Tool specifies three possible files

Reliance on Obfuscation or Encryption of
Security-Relevant Inputs without Integrity

Checking
Usage of encryption mode CBC

Use of a Broken or Risky Cryptographic
Algorithm

One file uses SHA1 and one MD5 hashing.

Exposed Dangerous Method or Function Insecure configuration of webview

Application Data can be Backed up
Data can be extracted when USB debugging is

enabled

Unprotected activities Possibly harmful unprotected activities

Cleartext Storage of Sensitive Information Possible WebView cookie information in Sqlite

Table 17 Result of statical and dynamical analysis by MobSF

Next Android application is tested with is QARK. Overall cleaned results of this scan can

be seen in Table 18. Similarly, as in the previous chapter with MobSf, this scan gave

hundreds of different warnings about possible vulnerabilities in logging, WebView

configurations, and unprotected activities. Similarly, as with MobSF majority of issues

referencing to external dependencies or React Native core files were dropped already at

this stage of testing.

 QARK found some of the issues that were found already by MobSF. These issues were

also left outside of Table 18. Also, many of the problems regarding the configuration of

the WebViews are only prevalent in very early Android versions, which are not targeted

by the application.

-65-

Category Issue

Logging in a production application Production application possibly emits logs

Insecure WebView configurations Multiple places with insecure webView configuration

Table 18 Results of QARK scan.

Next the Android application’s Java code is scanned using SonarQube, which will use

source code contrary to other Android environments tools. Results of the scan are

described in Table 19.

Category Issue

Bad qode Quality The method will be continued after a thread is interrupted

Unprotected component The component is exported and not protected

Table 19 SonarQube results for Android

 The final part of the native Android vulnerability assessment is to scan codebases

Android-related dependencies for the disclosed vulnerabilities. This scanning is done by

using OWASP Gradle dependency checker. Results of this scan were finding 30

vulnerabilities found from Androids' native dependencies. However, validating ten

external dependencies, including thirty known vulnerabilities, would take a considerable

amount of time without giving any actual benefit for our React Native-related study.

Therefore, these vulnerabilities are not validated in the penetration testing stage.

However, these thirty vulnerabilities are reported to the customer as they were found.

9.3.3 iOS

In previous sections, platform-agnostic JavaScript and Android environments were

vulnerability assessed. In this chapter, the last remaining environment, iOS, is

vulnerability assessed. The assessment process is started by analyzing the applications

package statically by using MobSF. This statical scan of the application did not reveal

any vulnerabilities from the application, as described in Figure 26.

Figure 26 MobSF result for iOS statical analysis

 Next, the application’s Swift source code is statically analyzed by using the tool

Insiders. Insiders' statical scan also gave similar results as MobSF, with a security score

of 100 without any vulnerabilities found. This result of Insiders is illustrated in Figure 27.

-66-

Figure 27 result of Insiders statical analysis of iOS application

 Next, OWASP dependency checker is used to assess iOS applications dependencies.

The tool found from the iOS environment’s dependencies 14 vulnerabilities included in

3 dependencies. However, the tool gave vulnerabilities a low confidence score, which

means that vulnerabilities will have a high probability of appearing to be false positives.

As decided in the Android environment, penetration testing this number of vulnerabilities

in the native environment was determined to be outside of the study’s scope. Therefore,

these vulnerabilities will be reported to the customer as they are found and will be dropped

from the iOS testing process.

 Finally, the iOS application was analyzed dynamically by using Frida and commonly

used snippets found in Frida A [2021]. However, like it was stated previously, statical

analysis of iOS will be conducted by using the iOS simulator. The study uses an iOS

simulator because there was no possibility of getting access to a rooted iOS device during

this study. In the Android environment, emulators are working similarly to real devices.

However, in a simulated environment of iOS, bytecodes are compiled to X86, which is a

different architecture than is used in real physical devices. This difference will cause the

testing environment to differ from the actual iOS environment. Testing will not have

similar functionality to an actual device; therefore, it is advised to use an actual device

[OWASP, 2020].

9.4 Result analysis

In this section, vulnerabilities gathered in the previous chapter are categorized according

to vulnerability categorization methodologies introduced in chapter 7. After the

categorization process, false positives are identified, and found false positives are

removed from the vulnerability tables. After false positives are removed, the remaining

vulnerabilities will be reported to the customer and are used as a base for a penetration

testing phase where these vulnerabilities are validated. Steps executed and descriptions

of results are presented in Table 20.

-67-

10 Task Summary

Vulnerability
categorization

All vulnerabilities categorized
where CWE or CVE identifier was
found

Remove false positives
False-positives removed by
researching found
vulnerabilities.

Reporting to customer
Initial platform-specific listings
without penetration testing were
reported to the customer.

Table 20 Summary for the result analysis phase

9.4.1 JavaScript

In Table 21, all JavaScript environments issues were mapped to CVE or CWE identifiers.

There are vulnerabilities where neither CWE nor CVE identifiers cannot be found for

vulnerability. These issues where any identifier cannot be found were specific to the

application's functionality.

Category Issue CVE/CWE
Severit

y

False-
positi

ve

Regex DoS
Email validator

/^[^\s@]+@[^\s@]+\.[^\s@]+$/
No CVE custom

regex
Medium-

high
No

Usage of the HTTP
protocol

With webview origin whitelisting
originWhitelist={['https://*',

'http://localhost*', 'http://10.0.2.2*']}
CVE-2019-6169 7,5 Yes

Possible sandbox
escape

vm2 sub dependency
CVE-2019-

10761
8,3 No

Regex DoS ansi-regex sub dependency CVE-2021-3807 7,5 Yes

Type confusion Set-value sub dependency
CVE-2021-

23440
8,55 No

Insecure
authentication

Possible circumvention of the
authentication process

Custom no
CWE

Custom No

Insecure storage
Usage of iOS keychain to store

sensitive data
Standard
breach

No
severity
found

No

Insecure
authentication

Possible circumvention of payment
process

Custom no
CWE

Custom No

Insecure Data
Storage

Possible leakage of user's application-
level password.

Custom no
CWE

Custom No

Table 21 false-positive cleared and categorized JavaScript vulnerabilities

 Now, this CWE and CVE information about vulnerabilities will be used to remove

false positives. There was a total of 2 false positives identified during the process. These

-68-

identified false positives are vulnerabilities CVE-2019-6169 and CVE-2021-3807. Firstly

vulnerability CVE 2019-6169 was identified as false-positive. That was because the tool,

which found the vulnerability, advised that if an insecure HTTP protocol was only used

with the local environment, it does not create risk for the production environment. The

second vulnerability CVE-2021-3807 was found inside the application's dependencies.

This dependency Ansi-regex is the transitive dependency located in-depth of four, the

overall transitional dependency tree of ansi-regex is eslint > table > string-width > strip-

ansi > ansi-regex. As it can be seen, the ansi-regex was initially included in the application

by eslint, and eslint is used only during the development to enforce coding conventions.

Therefore, this issue is not prevalent in the production environment.

9.4.2 Android

Now a similar process like was conducted to JavaScript vulnerabilities is conducted in

the Android environment. The final results of the mapping can be seen in Table 22.

Vulnerability listing in Android environment contained seven false positives, the first is

CWE-312 cleartext storage of sensitive information to files. These seven files are

including in the example CodePushDeploymentKey, which is meant to be embedded in

the source code [Microsoft, 2021]. The second type of data MobSF categorized as

possibly sensitive is the state key of connected headphones in Android device. This was

also determined to be a false positive.

The following three false positives CWE-330, CWE-649 and CWE-327 were all

regarding insecure cryptographic methodologies. However, when further reviewed, these

insecure cryptographic issues were all referencing to either a situation where the library

imported to the application did implement MD5 functionality, but the application was not

using it. In the second scenario applications, dependencies did use insecure means of

cryptography. Still, these were only used to generate keys for non-sensitive functionalities

such as generating an identifier for push notification tokens.

-69-

Category Issue
CVE/C

WE
Severi

ty

False-
positiv

e
Cleartext Storage of Sensitive

Information
MobSF Specifies seven

files
CWE-312 7,40 Yes

Use of Insufficiently Random
Values

Tool specifies three
possible files

CWE-330 7,50 Yes

Reliance on Obfuscation or
Encryption of Security-Relevant

Inputs without Integrity Checking

Usage of encryption
mode CBC

CWE-649 7,40 Yes

Use of a Broken or Risky
Cryptographic Algorithm

One file uses SHA1 and
one MD5 hashing.

CWE-327 5,90 Yes

Exposed Dangerous Method or
Function

Insecure configuration
of webview

CVE-2019-
10761

8,30 No

Application Data can be Backed up
Data can be extracted

when USB debugging is
enabled

CVE-2017-
16835

7,50 No

Unprotected components

Causes settings activity
and other activities

being shared with other
applications

CWE-926
No

severity
found

No

Cleartext Storage of Sensitive
Information

Possible WebView
cookie information in

Sqlite

CWE-315

No
severity
found

No

Logging in production application
Production application

possibly emits logs

CWE-532

No
severity
found

No

Bad code Quality
Method will be

continued after thread
is interrupted

CWE-215 Low Yes

Table 22 Possible Android vulnerabilities categorized

9.4.3. iOS

Only possible vulnerabilities found in the iOS testing phase were regarded as out of this

study’s scope. So, iOS result analysis will be skipped, and limitations of testing

established in previous sections will be reported to the customer.

9.5 Exploitations

As there were a lot of possible vulnerabilities found in scanning the application phase,

the exploitation phase is divided into two sections: Android and JavaScript. There is no

iOS section in the penetration testing phase as no vulnerabilities were found inside that

environment.

The first step of the process will be to define the environment that JavaScript is tested on.

This step will be executed only to the JavaScript environment. The rest of the steps will

be executed in both Android and JavaScript environments. Results and description of the

execution of the exploitation phase can be seen in Table 23.

-70-

Task Summary

Environment for
JavaScript environment

testing

iOS environment selected for
testing JavaSript vulnerabilities.

Prepare attacks

Attacks were prepared and
possible exploitations were
found for Android and iOS

environments

Remove vulnerabilities
without exploitations

from this stage

Some vulnerabilities like
transitional dependencies did
not have exploitation found.

Execute exploits and
gather information.

 All planned exploitations were
executed successfully.

Table 23 Summary of the exploitation phase

9.5.1 JavaScript

The Exploitation process is started from penetration testing JavaScript vulnerabilities.

These vulnerabilities are initially attempted to be exploited in the iOS platform, as there

were no exploits found in the iOS environment. This aims to make the penetration testing

process more comprehensive in terms of platforms used. In case of testing is not possible

due to iOS simulators limitations, described earlier. Android environment is used for

testing the vulnerability.

9.5.1.1 Preparing the attacks

The testing process will be started by preparing the attacks. This is conducted by

researching information about found vulnerability with either CVE or CWE identifier. If

this does not provide enough information, a general Google search about the exploitation

method is conducted. The first attack built is Regex Dos without an assigned CWE or

CVE identifier. ReDos is possible in situations where grouping is done with repetition

with additional repetition inside like (a+)+ or by having similar alternation inside

grouping, which is repeated, example being (a|aa)+ [Weidman, 2021]. In our case the

possible vulnerable regex is /^[^\s@]+@[^\s@]+\.[^\s@]+$/ and it is exploited by using

the strings with repeating @ and . characters.

Next two vulnerabilities CVE-2019-10761 and CVE-2021-23440 are found inside

dependencies of the project. These dependencies are sub-dependencies of React Native

framework itself and React-Native-Codepush, according to Yarn Audit scan. Usage of

these libraries was studied by finding where these libraries were used by using the

source code. There were no implications found that the application would be using

vulnerable functionalities of these sub dependencies. Therefore, there are no possible

penetration methods found and these will be dropped from the penetration testing

mailto:+@[%5e/s@%5d+/.%5b%5e/s@%5d+$/

-71-

process. However, as research of these vulnerabilities consisted in addition of

applications source code multiple open-source codebases, there is a possibility that

these vulnerabilities are still possibly exploitable and updating version numbers of these

dependencies is most likely a relatively short process, fixing these issues is

recommended to the customer.

The next possible vulnerability inside the JavaScript environment is the possible

circumvention of the follow-up authentication process. Exploitation of this vulnerability

is done by using code tampering. Code tampering is executed after initial safe login has

been successfully accomplished. After initial login, the application will be closed,

persisting the session inside the application's safe storage. After this initial login process,

the application is tampered with. This tampering process has the aim to allow the pin-

code screen to be bypassed. This second login process is only enforced on the

application level, and there is no credential validation inside the backend.

Next vulnerability exploited is the possible circumvention of the application's

payment process. This is attempted to be exploited by closing the chat before the

invoicing has been completed. This is done by sending a forged WebSocket message to

the backend service. Second possible way of bypassing the payment process would be

by using code tampering, which would reveal a button for closing the chat, that should

be invisible.

The final attack built for the JavaScript environment is the possible leakage of the

pin code that the user uses before the application successfully authenticates the user.

This vulnerability is attempted to be exploited with the application in a similar state as

in, bypassing the authentication process vulnerability. That is attempted to be exploited

by code-tampering the applications login process and attempting to view pincode inside

an alert dialog or by using the applications logs.

9.5.1.2 Exploiting the vulnerabilities

In this stage, all attack methods against these possible vulnerabilities are researched in

JavaScript environments. Next, attacking against these vulnerabilities will be started.

First vulnerability exploited is ReDos against email validation regex. This was attempted

to be exploited by using different valid and invalid emails with different repeating

characters, and exploitation failed. Therefore, this vulnerability is deemed to be false-

positive.

The next vulnerability exploited is the possible circumvention of the authentication

process by using code tampering. This was tested by tampering the JavaScript code of

application in runtime. The result of the tampering was that the login process was

successfully bypassed without the correct pin code. This was done by removing one

condition in the if-sentence inside the login process, which compared the original

password against the input.

-72-

 The following vulnerability exploited is the possible circumvention of the payment

process. This can be tested by either sending a fully forged WebSocket message to end

the current chat or by removing the conditional structure hiding the button, which has

functionality for ending the chat. Results of this exploitation were that vulnerability was

successfully exploited by using both of the methods.

The final vulnerability attempted to be exploited is the possible leakage of

applications device-level password, provided by a user. This is tested by tampering with

the application's login process to include a logging statement, which logs the actual

working password when it is compared to the user-entered password.

The final issue in the application, which is not a vulnerability but a standard breach.

This will not be tested by penetration testing, but as stated in chapter 4, customer is

recommended to encrypt data before inserting it into the iOS keychain to prevent other

applications from sniffing unlocked iOS keychain data.

9.5.2 Android

In this section the same process as with JavaScript environment will be done to Android

environment with an Android-specific listing of possible vulnerabilities found in it.

9.5.2.1 Preparing the attacks

Preparing attacks in Android environment is started with the possible vulnerability CVE-

2017-16835. This vulnerability possibly allows leakage of sensitive data through creating

Android Backup. Vulnerability is exploited by starting the application and going through

the application's functionalities to generate data for the application. After data has been

generated and the application is backed up, and those backups are decompressed, this data

will be read and analyzed by using steps defined by OWASP MSTG [2020].

The next vulnerability exploited is unprotected activities. This will be done by using

Drozer, which allows executing actions like malicious applications would. All activities

are attempted to be executed without the initial login process as an anonymous user. The

second step is to perform these activities with proper user credentials inserted into the

application with the application background.

The third vulnerability being exploited is the cleartext storage of sensitive

information. In this exploit application SQLite database is being reviewed, and a possible

long-term authentication token is attempted to be extracted. If extraction will succeed call

to backend service is attempted to be made with the token to verify it.

The fourth exploitation attempted to be exploited is CVE-2019-10761. In this

exploitation WebView possibly exposes insecure functionality. QARK reports multiple

similar possible vulnerabilities. All of these vulnerabilities have proof-of-concept

exploitations provided by QARK, which will be attempted to be executed.

-73-

The fifth exploitation attempted is to find what information is retrievable from the

applications logs. This is done by using the tool Android debug bridge to fetch device log

files. However, as stated by Mueller and others [2020], logging overall in a production

application is bad practice and gives attackers information about the target application.

Therefore, if the application is deemed to emit logs, it can be seen as a weakness

regardless of the sensitivity of these logs.

9.5.2.2 Exploiting the vulnerabilities

The Android exploitation process is started by attempting to exploit the vulnerability

CVE-2017-16835 and testing the application's backup process. This is done by using the

backup tool provided by ADB. Results were that the Application can be backed up

successfully and applications backup files by themselves do not contain any sensitive

information about the user. However, these backup files include long-duration cookie

which is leaked from WebView. This testing also confirmed vulnerability CWE-315

where the persistent token is readable in plaintext on the files. Next, this token found will

be verified by sending forged HTTP requests requiring authorization and using this token.

Sending this HTTP request succeeded, which validated that token is valid. Therefore, in

addition to vulnerability CVE-2017-16835 regarding backing up the applications,

vulnerability CWE-315 storing sensitive data as plaintext was also validated.

The next exploitation is attempting to execute activities exported by the Android

application by using the tool Drozer. The result of these activities attempted to be

executed the application in a background state with proper login credentials entered were

that activities exported did not break the application's authentication process nor leak

sensitive data. Therefore there are no vulnerabilities found regarding unprotected

activities. However, customer can be informed that according to OWASP [2020],

exporting activities without proper need is not recommended and is very sensitive for

vulnerabilities to arise.

The final exploitation to be attempted to exploited is CVE-2019-10761, where

WebView has according to QARK different possible vulnerabilities in its configurations.

These issues were attempted to be exploited, but these exploitation files, that were

referenced by the tool were not found inside QARK exploitation APK nor anywhere from

QARKs source codes. Unanswered Issues from 2019 were found from QARK [2019].

9.5.3 iOS

As stated in the result analysis phase of vulnerability assessment, there were no iOS-

specific vulnerabilities that needed to be penetration tested found. Therefore, this section

of penetration testing iOS will be skipped as well.

-74-

9.6 Result Analysis

In this stage of the testing, all vulnerabilities have been attempted to be exploited and

false positives have been removed from the vulnerability listing. So overall rest of the

vulnerabilities, weaknesses and other issues found will be reported to the customer.

Before reporting these issues to the customer, a final listing for all validated

vulnerabilities and weaknesses will be composed, and severity scores will be assigned to

all vulnerabilities. Final vulnerabilities with severity and CVE identifiers added to them

are introduced in tables 25, 26 and 27.

Category Issue
CVE/C

WE
Severi

ty
Possible sandbox

escape
vm2 sub dependency

CVE-2019-
10761

8,3 - High

Type confusion Set-value sub dependency
CVE-2021-

23440
8,55 -
High

Insecure
authentication

Possible circumvention of authentication process
Custom no

CWE
5.3 –

Medium

Insecure
authentication

Possible circumvention of payment process
Custom no

CWE
7.1 - High

Inseure
authentication

Removing active session by logging out is not possible
Standard
breach

-

Reverse
Enginerring

Application does not implement any protection
against Reverse-engineering

Standard
breach

-

Insecure storage Usage of iOS keychain to store sensitive data
Standard
breach

-

Table 25 Summary of final issues in JavaScript Environment

-75-

Category Issue
CVE/CW

E Severity

Exposed Dangerous Method or Function
Insecure

configuration of
webview

CVE-2019-
10761

8,30 - High

Application Data can be Backed up
Data can be

extracted when USB
debugging is enabled

CVE-2017-
16835

6.50 - Medium

Cleartext Storage of Sensitive Information
WebView cookie

information in Sqlite

CWE-315
7.5 - High

Insecure dependencies
30 vulnerabilities in

Native android
dependicies

Multiple
different

Low-High

Logging in production application
Production

application possibly
emits logs

Standard
breach

-

Reverse engineering

Application does not
implement any

protection against
reverse-engineering

Standard
breach

-

Table 26 Summary of final issues found in Android environment

Table 27 Summary of final issues found in iOS environment

Category Issue
CVE/CW

E Severity

Insecure dependencies
14 vulnerabilities in

Native iOS
dependicies

Multiple
different

Low-High

-76-

10 Conclusions

A security testing model for React Native applications was created during this thesis'. In

the end, this model was created by using OWASP methodologies and the PTES model as

a base. That model was built on top of a research of React Native’s security landscape,

and its platform specifics were assessed similarly as in a study conducted by Hale and

Hansson [2015].

 Mueller and Others [2020] have stated that there are some platform specifics involved

when testing hybrid applications. However, this thesis did not define what these platform-

specifics would be. On the other hand, Wällstedts [2019] and Borja and Others [2021]

executed testing processes similarly to both hybrid and pure native applications. Overall

there are no standards regarding testing hybrid mobile applications. This issue of lack of

standards was studied, and it was found that there are things like risks stated in chapter 4

that are prevalent in React Native environment, and some problems were found in the

case study section regarding all those issues. So overall, if conclusive security testing is

to be performed, methodologies provided by OWASP and security testing tools used to

analyze native applications should not be the only form of vulnerability assessment, when

hybrid mobile applications are security tested.

 It was found that OWASP methodology and pure native vulnerability assessment tools

provided by MSTG [2020] are enough for testing native parts of React Native

applications. However, the problem faced with these tools when applied to React Native

applications is that they are built and intended to be used with Pure Native applications.

Pure native applications have a different structure and intended functionality than React

Native applications. That is obvious for example in a situation where React Native

application is built in a way that only single Android Native Activity represents the whole

React Native application, and in Native Android applications, every screen is its own

activity [Google, 2021]. Therefore, when statical analysis tools like QARK and MobSF

were used to Android application built with React Native, it gave a total of hundreds of

possible vulnerabilities and warnings referencing React Native core files and external

dependencies. Therefore, at the current state, there are no at least open-source tools for

security testing React Native applications as intended, and therefore these OWASP-

provided methodologies are the best there are currently available.

 Dynamical analysis and manual testing were proven to be more accurate than statical

analysis. There are currently, at the time of writing, no React Native-specific testing tools

available. Therefore, when testing React Native, dynamic and manual analyses should be

used at least as a part of the testing process. This will allow React Native specifics to be

better considered. Therefore, the methodology provided by the master’s thesis of

Wällstedts [2019] would be sufficient to test React Native applications, as OWASP

MASVS [2021] is based mainly on manual steps.

-77-

10.2 Limitations

This study was made as a master’s thesis. Therefore, there was no budget for commercial

security testing tools. Therefore, this study is based on open-source security testing tools

and methodologies. However, it is important to acknowledge that multiple commercial

tools and automated testing services are available for testing different configurations of

mobile and JavaScript applications.

The second limitation of this study was related to the devices available for the study.

This is based on the same budget-related limitations as the issue stated earlier. There was

no rooted physical iOS device available for dynamically or manually testing iOS-related

security issues. This was noticed, when the iOS environment was analyzed by using Frida,

and the iOS simulator had to be used. The problem with the usage of the iOS simulator is

that it is not an emulator but a simulator, which means that the simulated iOS environment

does not fully match the actual iOS device [OWASP, 2020].

10.3 Future work

During this study, it was found that there is currently a general lack of scientific literature

regarding security testing modern hybrid mobile applications built with frameworks like

React Native. This issue exists, at least in academia. There are, however, some studies

conducted regarding security testing hybrid HTML5 based mobile applications by using

frameworks like Apache Cordova. These studies are introduced in more detail in the

related work section. However, the problem with these studies is that Cordova differs

greatly from React Native as it does not use mobile native components but the actual web

components [Apache, 2021]. However, this lack of React Native-related security testing

studies does not necessarily mean that there is no React Native-related security

knowledge in the industry nor academia.

 An interesting approach for further studying these issues regarding security testing

React Native applications would be to request a statement about suggested methodologies

and tools from different stakeholders working around the React Native security.

Interesting stakeholders, in my opinion, would be Facebook, the owner of React Native,

and different security testing firms conducting security validations of React Native

applications. By researching and composing methodologies provided by these

stakeholders, a better understanding of the current state of the React Natives security

testing and the tools used would be achieved.

 The final area of possible work for the future was introduced briefly during the tool

section. This is a Frida-based React Native-specific testing toolbox. Frida is a very

flexible open-source dynamical analysis tool that supports out-of-the-box all technologies

used by React Native [Frida, 2021]. In addition to supporting out-of-the-box all React

Natives tools, Frida has a wide variety of functionalities for testing, modifying, and

tracing mobile applications' runtime processes [Frida, 2021]. A similar tool was

-78-

developed to Cordova framework in the study conducted by Brucker and others [2016].

Like the study stated, Cordova has according to article, issues regarding cross-language

calls, in React Native’s case this would mean the bridge component. Currently, there is

no ready-made toolset for testing React Natives bridge, nor any problems disclosed

regarding that. Overall, Frida would make it possible to create this toolbox without

implementing low-level processes from the beginning [Frida, 2021].

-79-

References

[Acharay, et al, 2015] S. Acharya, B. Ehrenreich and J. Marciniak, "OWASP inspired

mobile security," 2015 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), 2015, pp. 782-784, doi: 10.1109/BIBM.2015.7359786.

[Alanda et al 2020] Alanda A, Satria D, Mooduto H., Kurniawan B. Mobile Application

Security Penetration Testing Based on OWASP. In: IOP conference series Materials

Science and Engineering. IOP Publishing; 2020. p. 12036–.

[Apache, 2021] Apache Cordova documentation Accessible electronically, 2021

https://cordova.apache.org/docs/en/latest/

[Apple 2021] Apple developer documentation Accessible electronically

https://developer.apple.com/documentation/ referenced 12.10.2021

[Arnativich, et al, 2018] Y. L. Arnatovich, L. Wang, N. M. Ngo and C. Soh, "A

Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

Based on Intermediate Languages Transformation," in IEEE Access, vol. 6, pp. 12382-

12394, 2018, doi: 10.1109/ACCESS.2018.2808340.

[Bhandari, et al, 2017] Bhandari A, Bhuiyan M, Prasad PW. Enhancement of MD5

Algorithm for Secured Web Development. J. Softw.. 2017 Apr 1;12(4):240-52.

[Boduch, et al. 2020] Boduch, Adam, and Roy Derks. 2020. React and React Native: A

Complete Hands-On Guide to Modern Web and Mobile Development with React. Js, 3rd

Edition. Birmingham: Packt Publishing, Limited.

[Bojjagani, et al, 2017] Bojjagani S, Sastry VN. VAPTAi: A Threat Model for

Vulnerability Assessment and Penetration Testing of Android and iOS Mobile Banking

Apps. In: 2017 IEEE 3rd International Conference on Collaboration and Internet

Computing (CIC). IEEE; 2017. p. 77–86.

 [Borja, et al 2021] Borja, Thomás, Marco E Benalcázar, Ángel Leonardo Valdivieso

Caraguay, and Lorena Isabel Barona López. “Risk Analysis and Android Application

Penetration Testing Based on OWASP 2016.” In Information Technology and Systems,

461–478. Cham: Springer International Publishing, 2021.

[Burp, 2021] Burp Suite Documentation Accessible electronically

https://portswigger.net/burp/documentation/desktop/tools referenced 21.09.2021

[Brucker, et al, 2016] Brucker AD, Herzberg M. On the Static Analysis of Hybrid

Mobile Apps: A Report on the State of Apache Cordova Nation. In: Engineering Secure

Software and Systems. (2016) Springer International Publishing; p. 72–88.

[Cifuentes, et al, 2015] Cifuentes, Y., L. Beltrán, and L. Ramírez. "Analysis of security

vulnerabilities for mobile health applications." International Journal of Health and

Medical Engineering 9.9 (2015): 1067-1072.

[CossacLabs, 2021] CossacLabs React Native Security Accessible electronically

https://www.cossacklabs.com/blog/react-native-app-security.html Referenced 18.10.2021

https://cordova.apache.org/docs/en/latest/
https://developer.apple.com/documentation/
https://portswigger.net/burp/documentation/desktop/tools%20referenced%2021.09.2021
https://www.cossacklabs.com/blog/react-native-app-security.html%20Referenced%2018.10.2021

-80-

[Decan, et al 2018] Decan, Alexandre, Tom Mens, and Eleni Constantinou. “On the

Impact of Security Vulnerabilities in the Npm Package Dependency Network.”

Proceedings of the 15th International Conference on Mining Software Repositories.

ACM, 2018. 181–191. Web.

[Dewhurst 2020] Ryan Dewhurst, OWASP static code analysis Accessible electronically

https://owasp.org/www-community/controls/Static_Code_Analysis referenced 14.09.2021

[Eslint, 2021] Eslint documentation Accessible electronically

https://eslint.org/docs/developer-guide/architecture Referenced 19.11.2021

[Expo, 2021] Expo documentation Accessible electronically https://docs.expo.dev/ referenced

07.09.2021

[Facebook A, 2021] React-native Github page 2021. Accessible electronically

https://github.com/facebook/react-native Referenced 07.09.2021.

[Facebook A, 2020] Who’s using React Native? 2020. Accessible electronically

https://facebook.github.io/react-native/showcase/ Checked 05.09.2021.

[Facebook, 2019] React-Native Security Documentation. Accessible electronically

https://reactnative.dev/docs/security/ Referenced 05.10.2021.

[Facebook B 2020] Thinking in React Accessible electronically

https://reactjs.org/docs/thinking-in-react.html referenced 07.09.2021.

[Facebook B, 2021]] React.Js Documentation 2021. Accessible electronically

https://reactjs.org/docs/ Referenced 05.09.2021.

[Facebook C, 2021] React Native Architecture Accessible electronically

https://tkssharma.gitbook.io/react-training/react-native/react-native-architecture referenced

07.09.2021

[Facebook D, 2021] React Native Documentation Accessible electronically

https://reactnative.dev/docs/getting-started referenced 07.09.2021

[Facebook E, 2021] Facebook Github Project Listing Accessible electronically

https://github.com/facebook referenced 07.09.2021

[Facebook F, 2021] React Native Internals Accessible electronically

https://www.reactnative.guide/3-react-native-internals/3.1-react-native-internals.html

referenced 07.09.2021.

[Frida, 2021] Frida documentation Accessible Electronically https://frida.re/docs

referenced 23.11.2021

[Frida A, 2021] Frida codeshare Accessible Electronically https://codeshare.frida.re/

referenced 11.12.2021

[GitHub pull request statistic 2020] React-Native GitHub 2020. Accessible electronically

https://madnight.github.io/githut/#/pushes/2020/4 Referenced 05.09.2021.

[Github, 2021] About GitHub security advisors Accessible electronically

https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories

referenced 21.09.2021

https://eslint.org/docs/developer-guide/architecture
https://docs.expo.dev/
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/
https://tkssharma.gitbook.io/react-training/react-native/react-native-architecture
https://reactnative.dev/docs/getting-started%20referenced%2007.09.2021
https://github.com/facebook%20referenced%2007.09.2021
https://frida.re/docs%20referenced%2023.11.2021
https://frida.re/docs%20referenced%2023.11.2021
https://codeshare.frida.re/
https://madnight.github.io/githut/#/pushes/2020/4
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories%20referenced%2021.09.2021
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories%20referenced%2021.09.2021

-81-

[Google, 2021] Android documentation Accessible Electronically

https://developer.android.com/ referenced 27.11.2021

[Hale and Hanson, 2015] M. L. Hale and S. Hanson, "A Testbed and Process for

Analyzing Attack Vectors and Vulnerabilities in Hybrid Mobile Apps Connected to

Restful Web Services," 2015 IEEE World Congress on Services, 2015, pp. 181-188, doi:

10.1109/SERVICES.2015.35.

[Hatamian, et al, 2021] Hatamian, M., Wairimu, S., Momen, N., & Fritsch, L. (2021).

A privacy and security analysis of early-deployed COVID-19 contact tracing Android

apps. Empirical Software Engineering, 26(3), 1-51.

[Haq and Khan, 2021] I. U. Haq and T. A. Khan, "Penetration Frameworks and

Development Issues in Secure Mobile Application Development: A Systematic Literature

Review," in IEEE Access, vol. 9, pp. 87806-87825, 2021, doi:

10.1109/ACCESS.2021.3088229.

[Helfrich 2019] Helfrich, James 2019 Security for Software Engineers 2019, Security for

Software Engineers

[Joseph, et al, 2021] Joseph, Ryan B.; ZIBRAN, Minhaz F.; EISHITA, Farjana Z.

Choosing the weapon: A comparative study of security analyzers for android applications.

In: 2021 IEEE/ACIS 19th International Conference on Software Engineering Research,

Management and Applications (SERA). IEEE, 2021. p. 51-57.

[Js-Beautify, 2021] Js-Beautify documentation Accessible electronically

https://github.com/beautify-web/js-beautify referenced 11.12.2021

[JScrambler. 2021] JScrambler homepage Accessible electronically

https://blog.jscrambler.com/how-to-protect-react-native-apps-with-jscrambler referenced

19.10.2021

[Kohli and Mahsa, 2020] Kohli, Narmada, and Mahsa Mohaghegh. "Security Testing Of

Android Based Covid Tracer Applications." 2020 IEEE Asia-Pacific Conference on

Computer Science and Data Engineering (CSDE). IEEE, 2020.

[Lenarduzzi, et al, 2019] Lenarduzzi V, Lomio F, Huttunen H, Taibi D. Are SonarQube

Rules Inducing Bugs? 2019 Accessible online: https://arxiv.org/abs/1907.00376 Referenced

7.10.2021

[Linkedin, 2018] Qark Github Page Accessible Electronically

https://github.com/linkedin/qark referenced 23.11.2021

[Long, 2016] OWASP Dependency Check presentation Accessible Electronically

https://jeremylong.github.io/DependencyCheck/general/dependency-check.pdf

referenced 23.11.2021

[Microsoft, 2021] CodePush Github page Accessible Electronically

https://github.com/microsoft/react-native-code-push referenced 2.11.2021

https://github.com/beautify-web/js-beautify%20referenced%2011.12.2021
https://blog.jscrambler.com/how-to-protect-react-native-apps-with-jscrambler%20referenced%2019.10.2021
https://blog.jscrambler.com/how-to-protect-react-native-apps-with-jscrambler%20referenced%2019.10.2021
https://arxiv.org/abs/1907.00376%20Referenced%207.10.2021
https://arxiv.org/abs/1907.00376%20Referenced%207.10.2021
https://github.com/linkedin/qark%20referenced%2023.11.2021
https://github.com/microsoft/react-native-code-push%20referenced%202.11.2021

-82-

[MITRE, 2021] Mitre vulnerabilities about Accessible electronically

https://cve.mitre.org/referenced 18.10.2021

[MobSf, 2021] MobSf documentation Accessible electronically

https://mobsf.github.io/docs/#/ referenced 5.10.2021

[Mozilla, 2021] Mozilla JavaScript about page Accessible electronically

https://developer.mozilla.org/en-US/docs/Web/JavaScript referenced 12.10.2021

[Mueller, et al 2020] Bernhard Mueller, Sven Scheleir, Jeroen Willemsen, Carlos

Holguera. OWASP Mobile Security Testing Guide 2020. Accessible electronically

https://owasp.org/www-project-mobile-security-testing-guide/ Referenced 07.09.2021.

[NIST, 2021] NIST CVSS documentation Accessible electronically

https://nvd.nist.gov/vuln-metrics/cvss referenced 18.10.2021

[Ogata, et al, 2019] Ogata, M. , Franklin, J. , Voas, J. , Sritapan, V. and Quirolgico, S.

(2019), Vetting the Security of Mobile Applications, Special Publication (NIST SP),

National Institute of Standards and Technology, Gaithersburg, MD, [online],

https://doi.org/10.6028/NIST.SP.800-163r1 (Accessed October 15, 2021)

[OWASP, 2016] OWASP Mobile Top Ten Documentation 2016. Accessible

electronically https://owasp.org/www-project-mobile-top-10/ Checked 05.09.2021.

[OWASP, 2019] OWASP methodology Accessible electronically https://owasp.org/www-

project-top-ten/2017/Methodology_and_Data.html Referenced 07.09.2021.

[OWASP, 2020] OWASP, About the OWASP Foundation Accessible electronically

https://owasp.org/about referenced 07.09.2021.

[Palacios, et al, 2019] Palacios, José, Gabriel López, and Franklin Sánchez. “Security

Analysis Protocol for Android-Based Mobile Applications.” RISTI : Revista Ibérica de

Sistemas e Tecnologias de Informação 2019, no. 19 (2019): 366–378

[PTES, 2021] Ptes Documentation Accessible electronically http://www.pentest-

standard.org/index.php/Main_Page referenced 15.10.2021

[Redux, 2021] Redux documentation Accessible Electronically

https://redux.js.org/introduction/getting-started Referenced 2.11.2021

[Qark, 2019] QARK issue Accessible electronically

https://github.com/linkedin/qark/issues/355 referenced 11.12.2021

[Rguez-Sánchez, 2019] Secure your React Native Apps before production! Accessible

electronically https://manuelrdsg.github.io/2019/06/secure-your-react-native-apps-before-

production/ referenced 19.10.2021

[Rodríguez, et al, 2018] Rodríguez, Jesús & Gil, Celio & Baquero Rey, Luis &

Hernandez Bejarano, Miguel. (2018). A Conceptual Exploration for the Safe

Development of Mobile Devices Software Based on OWASP. International Journal of

Applied Engineering Research. 13. 13603-13609.

https://cve.mitre.org/referenced%2018.10.2021
https://mobsf.github.io/docs/#/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://owasp.org/www-project-mobile-security-testing-guide/
https://nvd.nist.gov/vuln-metrics/cvss%20referenced%2018.10.2021
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-top-ten/2017/Methodology_and_Data.html
https://owasp.org/www-project-top-ten/2017/Methodology_and_Data.html
https://owasp.org/about%20referenced%2007.09.2021
http://www.pentest-standard.org/index.php/Main_Page%20referenced%2015.10.2021
http://www.pentest-standard.org/index.php/Main_Page%20referenced%2015.10.2021
https://redux.js.org/introduction/getting-started%20Referenced%202.11.2021
https://github.com/linkedin/qark/issues/355%20referenced%2011.12.2021
https://manuelrdsg.github.io/2019/06/secure-your-react-native-apps-before-production/
https://manuelrdsg.github.io/2019/06/secure-your-react-native-apps-before-production/

-83-

[Shinde and Ardhapurkar 2016] P. S. Shinde and S. B. Ardhapurkar, "Cyber security

analysis using vulnerability assessment and penetration testing," 2016 World Conference

on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave),

2016, pp. 1-5, doi: 10.1109/STARTUP.2016.7583912.

[SonarQube, 2021] SonarQube documentation Accessible electronically

https://docs.sonarqube.org/latest/ referenced 30.09.2021

 [Sugandh 2015] Shah, Sugandh, and B M Mehtre. “An Overview of Vulnerability

Assessment and Penetration Testing Techniques.” Journal of computer virology and

hacking techniques 11, no. 1 (2015): 27–49.

[StackoverFlow A, 2019] React Native obfuscation Accessible electronically

https://stackoverflow.com/questions/52696998/obfuscate-entire-react-native-app-including-

javascript-code referenced 19.10.2021

[Tuni, 2021] Andor databases, Accessible online: https://libguides.tuni.fi/az.php?

referenced 8.10.2021

[Umro, et al 2012] UMRAO, SACHIN; KAUR, MANDEEP; GUPTA, GOVIND

KUMAR. Vulnerability assessment and penetration testing. International Journal of

Computer & Communication Technology, 2012, 3.6-8: 71-74.

[Viljay Kumar 2016] Velu, Vijay Kumar (2016) Mobile application penetration testing:

explore real-world threat scenarios attacks on mobile applications, and ways to counter

them. 1st ed. PACKT Publishing.

[Vondráček, et al 2018] Vondráček, Martin, Jan Pluskal, and Ondřej Ryšavý. “Automated

Man-in-the-Middle Attack Against Wi-Fi Networks.” The journal of digital forensics,

security and law 13.1 (2018): 59–80. Web.

[Wang and Alshboul, 2015] Yong Wang & Alshboul, Y. (2015) ‘Mobile security testing

approaches and challenges’, in 2015 First Conference on Mobile and Secure Services

(MOBISECSERV). [Online]. 2015 IEEE. pp. 1–5.

[Weidman, 20021] Adam Weidman, Owasp ReDos documentation Accessible

electronically https://security.snyk.io/vuln/SNYK-JS-ANSIHTML-1296849 Referenced

19.11.2021

[Willemsen, et al, 2021] J Willemsen, B Mueller, R Atefinia, J Beckers, et al OWASP

Mobile Security Verification Standard Accessible electronically https://mobile-

security.gitbook.io/masvs/ Referenced 4.11.2021

[Wällstedt, 2019] Wällstedt V. Implementation and Security Evaluation of User-

Customized Content in a Mobile Application [Internet] [Dissertation]. 2019. Available

from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158495

[Zhang, et al, 2021] Zhang, X., Breitinger, F., Luechinger, E., O’Shaughnessy, S. (2021).

Android application forensics: A survey of obfuscation, obfuscation detection and

deobfuscation techniques and their impact on investigations. Forensic Science

International: Digital Investigation, 39, 301285.

https://docs.sonarqube.org/latest/
https://stackoverflow.com/questions/52696998/obfuscate-entire-react-native-app-including-javascript-code%20referenced%2019.10.2021
https://stackoverflow.com/questions/52696998/obfuscate-entire-react-native-app-including-javascript-code%20referenced%2019.10.2021
https://libguides.tuni.fi/az.php
file:///C:/Users/jali.juhola/Downloads/%20https:/security.snyk.io/vuln/SNYK-JS-ANSIHTML-1296849%20Referenced%2019.11.2021
file:///C:/Users/jali.juhola/Downloads/%20https:/security.snyk.io/vuln/SNYK-JS-ANSIHTML-1296849%20Referenced%2019.11.2021
https://mobile-security.gitbook.io/masvs/
https://mobile-security.gitbook.io/masvs/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158495

-84-

[Zimmermann, et al, 2019] Zimmermann, Markus et al. “Small World with High Risks: A

Study of Security Threats in the Npm Ecosystem.” (2019): n. pag

