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ABSTRACT

Arttu Nieminen: Exciton dynamics in transition metal dichalcogenides excited by cylindrically po-
larised light beams
Master’s thesis
Tampere University
Master’s Programme in Science and Engineering
April 2022

In this thesis, we investigate the exciton dynamics in monolayer transition metal dichalco-
genides (TMDs) when excited by cylindrically polarised light. We observe how the complex polar-
isation structure will excite transitions in the fine structure of exciton states in TMDs, also when an
external magnetic field is present. Finally, we discuss how the tightly cylindrically polarised modes
themselves could be used to create strong enough magnetic field needed to couple these dark
excitons with light.

Our results indicate, that the co-rotating cylindrically polarised modes selectively excite the
bright exciton bands, namely radially polarised beam only excites transitions rates into the lin-
ear light-like band and azimuthally polarised beam into the parabolic particle-like band, giving the
possibility to control the exciton states with the choice of a polarisation mode. In the case when
out-of-plane magnetic field is present, the spectrum of the parabolic band is broadened signifi-
cantly, and, moreover, both co-rotating modes can excite both bands, contrary to the case when
there is not an out-of-plane magnetic field.

When the in-plane magnetic field is present, we can excite transitions into the dark exciton
states. The results lead to small amount of excitation of dark excitons, about 0.2% of the bright
exciton amount, a similar result to other works done on brightening of dark excitons. The counter-
rotating azimuthally polarised field has smaller total transition rate of the dark excitons compared
to the co-rotating ones, whereas counter-rotating radially polarised field has a larger transition rate,
but these differences are small. When the out-of-plane magnetic field is also taken into account,
we disregard, for simplicity, the valley exchange interactions, and only look at the single valley
optical response, which leads to all cylindrical polarisations having the same optical transitions,
whose magnitude is about the same as when the out-of-plane magnetic field is not present.

Last, we discuss how the tightly focused cylindrically polarised modes can be used in creating
the strong magnetic fields, which then could be used to brighten the dark exciton states and cause
change in the optical transitions by the out-of-plane field. This, however, might be a challenging
task, as the peak power needed for the optical pulse to create the strong enough magnetic fields
could damage the TMD sample upon impact. The magnetic fields for these modes are larger than
for uniformly polarised beams, though, and using them to brighten the dark excitons would be
desirable.

This analysis is purely done in the paraxial approximation of optical fields. Future work would
include doing the same analysis for nonparaxial fields, where we would need to redefine the vector
potential, to account for the nonparaxiality of the field, and redo the calculations with that potential,
which could lead to different results compared to the paraxial case.

Keywords: 2D materials, transition metal dichalcogenides, cylindrically polarised light, excitons,
light-matter interaction

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Arttu Nieminen: Eksitonien dynamiikka sylinterisymmetrisesti polarisoituneen valonsäteen virittä-
missä siirtymämetallidikalkogenideissa
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen DI-ohjelma
Huhtikuu 2022

Tässä työssä tutkimme eksitonien dynamiikkaa monokerroksisten sylinterisymmetrisesti po-
larisoituneitten valonsäteiden virittämissä siirtymämetallidikalkogenideissa (transition metal dic-
halcogenide, TMD), myös kun ulkoinen magneettikenttä on läsnä. Me myös katsomme mahdolli-
suutta käyttää voimakkaasti kohdennetun sylinterisymmetrisesti polarisoituneen valon magneetti-
kentää tähän tarkoitukseen.

Tuloksemme näyttävät, että myötäpyörivät sylinterisymmetrisesti polarisoituneet valonsäteet
valikoivat kumman eksitonin tilaa virittävät: Radiaalisesti polarisoitunut valo virittää vain lineaaris-
ta eksitonitilaa ja azimutaalisesti polarisoitunutta vain parabolista vastaavaa, antaen mahdollisuu-
den kontroilloida näiden tilojen populaatiota. Kun tason normaalinsuuntainen magneettikenttä on
läsnä, silloin tämän parabolisen tilan optisen transition spektri levenee huomattavasti, sekä tässä
tilanteessa molemmat myötäpyörivät polarisaatiot pystyvät virittämään tiloja siitä eksitoni tilasta,
joihin eivät pystyneet ilman magneettikenttää. Zeeman-vuorovaikutus myös aiheuttaa näiden kah-
den eksitonitilan erkaantumisen, kun muuten nämä tilojen reunat olisivat samalla kohdalla.

Kun TMD-kerroksen määräämän tason suuntainen magneettikenttä on läsnä, pystymme vi-
rittämään myös pimeitä eksitonitiloja. Tämä johtaa pieneen viritysmäärään, noin 0.2% valkeiden
tilojen vastaavasta, mikä on samanlainen tulos kuin muissakin vastaavissa julkaistuissa tutkimuk-
sissa. Vastapyörivä azimutaalisesti polarisoitunut valo virittää himeman vähemmän ja radiaali-
sesti polarisoitunut hieman enemmän kuin myötäpyörivät vastaavat, mutta erot ovat pieniä. Sil-
loin kun tason normaalisuuntainen magneettikenttä on myös läsnä, jätämme ottamatta laaksojen
vaihtovuorovaikutukset huomioon, ja tarkastelemme vain yhdessä laaksossa tapahtuvia optisia vi-
rityksiä, jolloin kaikilla sylinterisymmersisillä polarisaatioilla on sama optinen transitiospektri, jonka
suuruus on samaa luokkaa kuin ilman normaalisuuntaista magneettikenttää.

Lopuksi myös tutkimme kuinka voimakkaasti kohdennettua sylinterisymmetrisesti polarisoitu-
nutta valoa voisi käyttää magneettikentän luonnissa. Tämän saavuttamiseen pitäisi käyttää lyhyt-
tä valopulssia, jonka huipputeho tulisi olla todella korkea saavuttaakseen muutaman Teslan mag-
neettikentän. Tämä saattaisi tuhota TMD-näytteen. Magneettikenttä on kuitenkin korkeampi näillä
valonsäteillä kuin tasaisesti polarisoituneissa vastaavissa, joten tämän magneettikentän mahdol-
linen hyödyntäminen on kiinnostava tutkimuksen kohde.

Tässä työssä oletamme toimivamme paraksiaalisella valolla. Tulevaisuuden työssä voitaisiin
käyttää epäparaksiaalista, fokusoitua valoa, jolloin vektoripotentiaali pitäisi määrittää uudelleen, ja
laskut tehdä sillä, joka voisi johtaa erilaisiin tuloksiin paraksiaaliseen tilanteeseen verrattuna.

Avainsanat: 2D-materiaalit, siirtymämetallidikalkogenidit, sylinterisymmetrisesti polarisoitunut va-
lo, eksitonit, valon ja aineen vuorovaikutus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The discovery of atomically thin, two dimensional (2D) materials, prompted by the discov-

ery of graphene in 2004 [1, 2], has raised massive interest in the academic research com-

munity, as their electronical, optoelectronical and optical properties cover a broad range

of applications. Graphene alone exhibits extraordinary mechanical, thermal and optical

qualities [3–5], and there also has already been discovered tens of another promising

class of 2D materials, known as the transition metal dichalcogenides (TMDs) [6, 7], with

varying electrical properties [8–11], and usually band gap situated in the optical or near

infrared range. Group VI semiconducting TMDs, i.e., tungsten- and molybdenum-based

compounds, are among the most studied compounds in the 2D class of materials, due to

them sharing intriguing optical and electronic properties, especially in the valley and spin

dynamics [12, 13]. TMDs have been known and researched for decades in their bulk and

many layer form [8, 10], but the discovery of monolayer (ML) MoS2 in 2010 [14], which

was confirmed to be a direct band gap semiconductor, sparked renewal of interest in this

class of materials, due to the physical properties of monolayer TMD differing so much

from its bulk form, such as the aforementioned transition from indirect- to direct band gap,

combined with the breaking of the inversion symmetry of the material [15, 16].

Light-matter interaction (LMI) has served a crucial part in understanding the optical and

optoelectronical behaviour of TMDs. Moreover, the discovery of monolayer TMDs and

their extraordinary properties, such as emerging of photoluminescence (PL) [17] and

strong light-matter coupling [18–20] has given more reason to explore the possibilities

of excitations with light in TMDs, to test the properties of TMDs predicted by theory and

also discover new peculiar behaviours which could be used in optical applications. The

PL spectra of various TMDs have been investigated under a magnetic field to optically

otherwise inaccessible exciton states [21–27], as well as using phonons to assist indirect

transitions [21, 28], revealing otherwise unseen states in TMD structure. Interaction with

structured light has also been investigated in TMDs, like revealing the theoretically pre-

dicted light-like exciton band dispersion of the bright excitons in monolayer TMDs [29], and

investigating the PL spectra of TMD heterostructures via cylindrically polarised beams

[30], and also using the dark exciton states as source for the radially polarised beams

[31]. To the author’s knowledge, though, no works have yet done a theoretical investiga-

tion on how the cylindrically polarised vector beams interact with the fine structure of the
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exciton states, which have been shown to be quite complex [32]. The complex polarisa-

tion structure of these beams could lead to interesting behaviour on the exciton dynamics,

and the aim of this thesis is to explore this possibility.

The beams with nonuniform polarisation pattern across the transverse profile of the beam

are under particular interest in the field of structured light research. The complex field

configuration has been proven to give rise to many applications in various fields, one of

few is their ability to generate strong axial electric [33] and magnetic [34] fields when fo-

cused. The research of these kind of beams are mainly concentrated on the cylindrically

polarised modes (CPM), which in the paraxial approximation are given as a superposi-

tion of Hermite-Gaussian (HG) beams with linear polarisations which are orthogonal to

each other [35], or, equivalently, Laguerre-Gaussian (LG) beams with orthogonal circular

polarisation vectors, which can be either parallel or antiparallel to the topological charge

of the orbital angular momentum (OAM) of an LG-beam, leading to different polarisation

structures [36].

In this thesis, we investigate the light-matter interaction of cylindrically polarised light with

TMDs, via looking at the excitations of the lowest-energy exciton states. The results

show that the complex, nonuniform polarisation pattern leads to selective excitations of

different exciton states, depending on which polarisation mode is employed. We also

show, that when an external magnetic field is applied on the TMD monolayer, we have the

possibility to excite otherwise optically inaccessible exciton states, thus leading to more

complex transition rate spectrum, as the cylindrically polarised modes interact with the

fine structure of TMD excitons. We also discuss the possibility of using tightly focused

cylindrically polarised beam to provide the external magnetic field, as they have been

shown to have such in their optical focus [36].

This thesis is organised as follows: In Chapter 2, we give an introduction to TMDs and all

the relevant theoretical framework of their crystal structure, and describe their electronic

and optical properties by the presence of stable excitons. Chapter 3 introduces the the-

ory of paraxial light and the formation of cylindrically polarised fields via paraxial optical

beams. Chapter 4 combines the last two chapters, and investigates fully how cylindrically

polarised beams control the dynamics of excitons in TMDs, and how introducing a mag-

netic field can lead to more complex interactions and optical spectra. In Chapter 5, we

discuss going beyond the paraxial beams and using tightly focused cylindrically polarised

beams in the light-matter interaction of TMDs, particularly using the strong magnetic field

it produces at its optical focus. Finally, in Chapter 6, we provide the conclusions and out-

look based on the results given in this thesis, and discuss the possible future research on

this topic.
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2. TRANSITION METAL DICHALCOGENIDES

While graphene alone has attracted massive interest in the scientific community, its lack of

a band gap and weak spin-orbit coupling (SOC) [37] limits its use in electronic and digital

applications. However, the TMD family of materials provide more favourable electronic

and optical properties, and they can be used to produce atomically thin electronic and

photonic devices, such as field-effect transistors, light emitting diodes and photo detectors

[6, 13, 38–40], to name a few.

In this chapter, we will first introduce the general crystal structure of TMDs, then we will

discuss the excitons in TMDs and calculate both optically accessible and inaccessible

exciton states and discuss how TMDs are characterised by their eigenenergies. Finally,

we will show how the initially optically inaccessible states, namely the dark exciton states,

can be coupled with light via external magnetic field, by mixing the eigenstates of bright

and dark excitons.

2.1 Crystal structure of TMDs

TMD molecules are presented with a general chemical composition MX2 , where M is a

transition metal (e.g., Mo or W ), and X is a chalcogen element (S,Se or Te) [41]. The tran-

sition metal layer is sandwiched between two planes of chalcogen atoms, where M atom

is bonded by covalent forces to six X atoms [20]. Adjacent layers are vertically stacked

together with weak van der Waals bonds [8]. A single layer of TMD forms a honeycomb

lattice similar to graphene [42], leading to hexagonal Brillouin zone, with inequivalent K

and K ′ valleys. A schematic view of the crystal structure of monolayer TMDs are shown

in Fig. 2.1.

Monolayer TMDs are among the most intensively researched 2D materials. A technique

to produce monolayers is to thin down a bulk- or multilayer TMD via chemical vapor depo-

sition (CVD) [43]. In their bulk form, TMDs are indirect-gap semiconductors [44, 45], but

when thinned down to a monolayer (ML), TMDs transform into a direct band gap material,

situated in optical/near-infrared range [38, 46, 47], with conduction (valence) band min-

ima (maxima) at the K and K ′ valleys, leading to massive rise in the optical absorption

of the material [48], emerging of strong photoluminescence (PL) [17], and efficient light-

matter coupling [18–20]. In contrast to graphene, monolayer TMDs have broken inversion
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Figure 2.1. Schematic view of the crystal structure of a monolayer TMD, with side view in panel (a)
and top view in panel (b), which shows the hexagonal structure of the monolayer. Black atoms represent
transition metals and yellow atoms chalcogens.

symmetry and strong spin-orbit interaction (SOI) [15, 16], which lead to nontrivial, valley

dependent optical selection rules, where electron only couples with left (right)-circularly

polarised light at the K (K ′) valley, as well as lifting the spin degeneracy of the bands in

these valleys, leading to fully spin-resolved conduction- and valence bands in both val-

leys, giving the possibility to access both the spin degree of freedom and the pseudospin

of valley degree of freedom [49–52]. This gives the possibility to design spintronic [53,

54] and valleytronic [55, 56] devices, which exploit and control the spin- and valley- index

of excitons. The valleys K and K ′ are related together via time-reversal symmetry, which

leads to the bands having reversed order of spin splitting in the inequivalent valleys, called

the spin-valley coupling [56]. When TMDs are in their 2D limit, the vertical confinement

induces a strong coulomb interaction, which gives rise to possibility to excite quasiparti-

cles, which are composed of bound states of a electron and a hole, called excitons [57],

which will be discussed more detail in the next section.

2.2 Excitons in TMDs

An exciton is a quasiparticle composed of electrons and holes, which are strongly bound

together by Coulomb interaction in hydrogen-like states [58–62]. These states can be

thought of as intermediate states between the valence- and conduction band, where

electron is excited into states where it is not free from the coulomb interaction coming

from the vacancy of the electron, namely the hole. The same applies for the hole, as

it cannot escape from the coulomb potential of the electron. This system resembles the

aforementioned hydrogen-atom problem, which in the semiconductor physics is called the

Wannier equation, whose solutions are the series of Rydberg-like excitonic quasiparticle

states. With large enough excitation energy, the electron and hole become unbound, free

particles, in the continuum of states in the conduction band. When the electron is excited

into the exciton states, the electron and hole and bound together, and thus the com-

posed quasiparticle itself is neutral, i.e., not a charge carrier. However, the electron-hole

pair can also capture another electron or hole, which then forms a charged quasiparticle
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called trion [61], which can act as an charge carrier, and also biexcitons can be formed,

which are bound states of two neutral excitons [12]. These higher-order excitons are out

of the scope of this thesis, and only single neutral excitons are considered from now on.

The optical bandgap of a semiconductor is the energy needed to excite the lowest energy

exciton state, namely the 1s-states [63], and the energy needed to excite electron in to the

free and continuum of states in the conduction band is called the free particle bandgap,

and the difference between the optical bandgap and the free particle bandgap is the ex-

citon binding energy, indicating the strength of the bound state between the electron and

hole. [12]

In three dimensional (3D) bulk semiconductors, exciton dynamics are not generally ob-

served, because the exciton binding energy in them is of the order of meVs, which means

that these states are unstable at room temperature. In the monolayer TMDs, the exciton

binding energies are two orders of magnitude larger, several hundred meVs, leading to

really stable excitons, even at room temperature [62, 64, 65]. Thus, for bulk semicon-

ductors, the continuum of states are really close to the excitation energy of the exciton,

whereas there is a huge gap between the continuum states and the first exciton states

for monolayer TMDs, and this can be seen in the optical absorption spectra [12, 62].

Thus, the optical and optoelectronic properties of monolayer TMDs are dominated by the

excitons. The reasons for much higher exciton binding energies are due to the spatial

confinement, leading to strong Coulombic electron-electron and electron-hole interaction

caused by the reduced dielectric screening [57]. The formulation of exciton states as

Rydberg states, the reduced dielectric screening of a monolayer TMD and the optical

absorption spectrum are illustrated in Fig. 2.2.

The complex electronic band strucure of TMDs gives rise to variety of exciton states, some

of which are shown in Fig. 2.3: Intervalley excitons, where the electron and hole reside

in the different valleys (K,K ′,Λ). These excitons are not optically active, as a photon

does not carry enough momentum to excite these states, to preserve the conservation of

momentum. These are called optically momentum-dark excitons, and one way to access

these states is with assistance of phonons [21, 28]. In this thesis, we are not investigating

phonon-assisted excitations, thus we will not consider momentum-dark excitons, but are

described here for completeness. Other class of excitons are the intra-valley excitons,

where the electron and hole reside in the same valley (K or K ′). In this case, we can

have the electron and hole with different spins (spin-unlike excitons), which corresponds

to spin-dark exciton, because a spin flip is needed to induce this transition, which cannot

be induced by photons [63]. Finally, when the electron and the hole are in the same valley,

and have the same spin (spin-like excitons), the states are called bright exciton states, as

they can be directly accessed by light, and are seen in optical spectra without any need of

external fields [12]. The TMDs are characterised by the ordering of the conduction bands

at the K and K ′ valleys, where the spin-up and spin-down sub-bands are separated by
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Figure 2.2. (a) Schematic illustration of representing excitons as bound electrons and holes in the con-
duction and valence bands in left, and then changing the basis into Rydberg-like exciton states, with exciton
effective mass M and center-of-mass momentum Q. (b) Illustration of the reduced dielectric screening in
monolayer TMD, compared to the one in bulk material, due to the electric field lines being completely in
the TMD with high refractive index, significantly weakening the Coulomb force between the electron and
hole. In monolayer TMDs, however, the field lines are mostly outside the TMD, in material with lower refrac-
tive index (e.g., air), thus the dielectric screening is much lower, and Coulomb interaction is stronger. (c)
Schematic representation of the optical absorption in monolayer TMD. The absorption spectrum shows the
excitation of the lowest energy bright exciton state "1s", which gives the optical band gap of the TMD. After
that there are the rest of the Rydberg states, until reaching the free-particle bandgap, after which there
is mostly constant absorption. The absorption in the continuum states is higher compared to the ones in
3D semiconductors due to the stronger Coulomb interaction, indicated in Ref. [12]. The binding energy of
exciton is defined as the difference between the optical bandgap and the free-particle bandgap.

a small SOI splitting term of the order of tens of meV. If the bottom conduction band has

the same spin as the top valence band, the lowest-energy exciton is bright, otherwise it is

dark. The former is the case in TMDs such as MoSe2 [66] and MoTe2 [67]. However, in

some TMDs, e.g, WSe2 [25, 68] and MoS2 [22], the lowest energy exciton states are the

spin-dark excitons, making them have a significant impact on the optical response, and

the efficiency of light emission, thus accessing them is essential for TMD research. For

the valence bands, the SOI splitting is order of magnitude larger, hundreds of meV [12,

63], thus we only consider the higher one of the valence bands, namely the spin-up(down)

band in the K (K ′) valley.
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Figure 2.3. Electronic band structure of a monolayer TMD in the points of high symmetry (K,K ′,Λ),
and the optical selection rules for exciton transition, and formation of bright (yellow) excitons, spin-dark
(red) excitons and momentum-dark (brown) excitons. The intravalley transitions between the bands with
the same spin (like-spin transitions) are only excited by photons with in-plane circular polarisations ĥ±,
whereas the transitions between different spins (unlike-spin transitions) are only excited by out-of-plane
ẑ-polarised photons. The spin-resolved bands are split by ∆V B in the valence band, and ∆CB in the
conduction band, and ∆V B is usually larger than ∆CB by two orders of magnitude.

As the bands in the K (K ′) valleys couple with circularly polarised light, accordingly, the

dipole moments of the bright excitons are also circularly polarised, in the plane of the

TMD layer, thus these excitons couple to light in the out-of-plane direction. The dark

excitons have a transition dipole moment that causes spin-flips, which is polarised in the

direction perpendicular to the TMD layer [23, 24]. Thus, there is radiative decay for these

dark excitons along the TMD plane, but still, they are not optically active for light coming

in with normal incidence, and, moreover, this out-of-plane dipole moment of dark excitons

d⊥ is weak, when compared to the strong in-plane dipole moments of bright excitons

d∥, indicated by their ratio d⊥/d∥ = 0.0035 [24]. However, if the dark exciton is the

lowest energy state, then, in low temperatures, even this low coupling of light can lead

to considerable light emission due to much higher dark exciton population compared to

bright ones, explained by Boltzmann statistics, assuming we are at the thermal equilibrium

[25]. Fig. 2.3 gives the schematic picture of the electronic band structure of a monolayer

TMD, and the possible formation of excitons in the bands. There are ways to couple spin-

dark excitons with in-plane polarised light, by introducing mixing between the bright and

dark exciton states via external fields, giving the possibility to observe them in PL spectra.

This is discussed in more detail in Section 2.3.

The natural basis for describing exciton wavefunctions with center-of-mass momentum

Q are written as coupled configurations of electron-hole pairs, in the language of second
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quantisation, as follows [29, 69, 70]:

|ΨS
Q⟩ =

1√
Ω

∑︂
vc

∑︂
k

ΛS
vc,Q(k)ĉ

†
c,k+Qĉv,k|GS⟩, (2.1)

where c and v denote the conduction and valence band, respectively, ĉ and ĉ† are the

electron annihilation and creator operators, acting on the valence and conduction bands,

respectively. ΛS
vc,Q(k) is the amplitude of the electron-hole pair with a electron in the

conduction band with wavevector k+Q and a missing electron in the valence band with

wavevector k. |GS⟩ is the ground state of the semiconductor, and Ω is the area of TMD

material. These exciton states are interpreted as linear combination of free electron-

hole pairs, where we remove an electron (i.e., create a hole) with wavevector k from the

valence band via the annihilation operator ĉ, and then add an electron in the conduction

band with wavevector k + Q via creation operator ĉ†. The probability of creating an

electron-hole pair for given wavevector k and center-of-mass momentum Q is determined

by the amplitude term ΛS
vc,Q(k).

The dipole moments of states in the same formalism are explicitly given as [29, 70]:

im0Eg

eℏ
DS

Q ≈ 1√
Ω

∑︂
vc

∑︂
k

ΛS
vc,Q(k)⟨ψv,k|p̂|ψc,k⟩, (2.2)

where |ψn,k⟩ are the Bloch-wavefunctions of the quasiparticles in band n, Eg is the band

gap of TMD, p̂ is the linear momentum operator, m0 is the free electron mass, and e is

the electron charge.

In general, exciton states are not described in their operator form given in Eq. (2.1).

Instead, semi-analytical model of the exciton band structure in the K and K ′ valleys

is used, assuming small exciton momentum ||Q|| ≪ 1. These are determined by first

solving the amplitude terms ΛS
vc,Q(k) and the electron band energies in Bethe-Salpeter

equation (BSE) via Density-functional theory (DFT)- and GW- based calculations and

also using k · p-expansion [7, 12, 63, 69–72] at the valleys of the Brillouin zone. These

fitted models are then used in formulating the effective exciton band Hamiltonians and

eigenstates, simplifying the analysis. In Appendix A, we show how the excitons states

given in Eq. (2.1) into solving the amplitude terms ΛS
vc,Q(k) in BSE, and finally deriving

the effective form of the Hamiltonians as superposition of basis functions in the points of

high symmetry, namely in valleys K and K ′, determined by the solutions of BSE.

In the next sections, our basis functions will be the single-valley excitons |Ψξ
τ,Q⟩, where

ξ = {+,−} ≡ {K,K ′} is the valley index, and τ = {b, d} is the index separating

bright and dark excitons. The effective Hamiltonians are derived by the aforementioned

BSE solutions accompanied with k · p-expansion and group theory analysis. We have,

in general, four exciton functions as a basis, two at each valley, namely the bright and
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dark excitons at K and K ′ valley, and thus, 4x4 effective Hamiltonian, which sometimes,

depending on the situation, can be factored into 2x2 pseudospin Hamiltonians, if external

potentials that couple the bright and dark excitons together are not present. More detailed

description of these are given in Refs. [23, 24, 63, 70, 71, 73].

2.2.1 Bright excitons in TMDs

When working in the basis of intravalley exciton states, the first bright exciton states are

given as intermixed states of {|ΨK
b,Q⟩, |ΨK′

b,Q⟩}, for which, in the presence of electron-hole

exchange interaction, can be described by the following 2x2 pseudospin Hamiltonian [29]:

Ĥb =

⎛⎝ E0 +
ℏ2
2Mb

Q2 + V K,K
b V K,K′

b

V K′,K
b E0 +

ℏ2
2Mb

Q2 + V K′,K′

b

⎞⎠ , (2.3)

whereMb is the bright exciton effective mass, Q = {Q,φQ} is the exciton center-of-mass

momentum in polar coordinates, and E0 is an arbitrary real-valued constant defining the

zero-point of energy, i.e., the reference level. The terms V ξ,ξ′

b in the diagonal(antidiagonal)

arise from the intra (inter)-valley exhcange interaction, and are explicitly given as V K,K
b =

V K′,K′

b = γQ and V K,K′

b =
(︂
V K′,K
b

)︂∗
= e−2iφQγQ, where γ = 1.47 eV · Å [29].

When solving the eigenvalues of (2.3), we see that first bright exciton states are split into

two bands, when in presence of electron-hole exchange interaction, one with standard

parabolic Q-dependence, Eξ−

Q , and another one with almost linear dependence, Eξ+

Q ,

distinguished by the pseudospin index ξ±. These are called the particle-like and light-like

energy dispersion bands, respectively [63]:

Eξ−

b,Q = E0 +
ℏ2Q2

2Mb

, (2.4a)

Eξ+

b,Q ≈ E0 + 2γQ, (2.4b)

where we have neglected the quadratic term ℏ2Q2/2Mb in the linear band due to heavy

effective mass of TMDs, of the order of an electron mass [26, 63]. The solved eigenstates

are obtained as intermixed states of K and K ′ exciton states:

|Ψξ−

b,Q⟩ =
1√
2

(︁
|ΨK

b,Q⟩ − e2iφQ |ΨK′

b,Q⟩
)︁
, (2.5a)

|Ψξ+

b,Q⟩ =
1√
2

(︁
|ΨK

b,Q⟩+ e2iφQ|ΨK′

b,Q⟩
)︁
, (2.5b)

Dipole moments of the brightK andK ′ valley excitons, in monolayer TMDs, are polarised

along the left- and right-handed circular polarisation unit vectors ĥ± = (x̂ ± iŷ)/
√
2,
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respectively [24, 29]: 1

Dξ
b = ξi

√
2Ω d∥ĥξ, (2.6)

where d∥ = 0.128|e|. Now, in the case of E-H exchange interaction, similar to the eigen-

states, the dipole moments of exciton states are given as intermixed of K and K ′ valley

dipole moments:

Dξ±

b,Q =
1√
2

(︁
DK

b ± e2iφQDK′

b

)︁
= i

√
Ω d∥

(︁
ĥ+ ∓ e2iφQĥ−

)︁
(2.7)

2.2.2 Bright exciton states in the presence of out-of-plane magnetic

field

When an out-of-plane magnetic field is present, we need to add a term in the Hamiltonian

to account for the interaction of the electron spin with the external magnetic field, leading

to Zeeman shift term in our Hamiltonian [24]:

Ĥb =

⎛⎝ E0 +
ℏ2
2Mb

Q2 + V K,K
b + gbB⊥ V K,K′

b

V K′,K
b E0 +

ℏ2
2Mb

Q2 + V K′,K′

b − gbB⊥

⎞⎠ , (2.8)

where B⊥ = µB|B⊥|/2, where µB is the Bohr magneton. The Hamiltonian’s eigenvalues

are

Eξ−

b =
ℏ2

2Mb

Q2 + γQ−
√︁

(gbB⊥)2 + γ2Q2, (2.9a)

Eξ+

b =
ℏ2

2Mb

Q2 + γQ+
√︁

(gbB⊥)2 + γ2Q2, (2.9b)

and the eigenvectors are

N
ξ−

b,Q|Ψ
ξ−

b,Q⟩ = κ1(Q)|ΨK
b,Q⟩ − e2iφQ|ΨK′

b,Q⟩, (2.10a)

N
ξ+

b,Q|Ψ
ξ+

b,Q⟩ = |ΨK
b,Q⟩+ κ2(Q)e

2iφQ|ΨK′

b,Q⟩, (2.10b)

where N
ξ±

b,Q are the renormalisation constants, and

κ1(Q) =

√︁
(gbB⊥)2 + γ2Q2 − gbB⊥

γQ
, (2.11a)

κ2(Q) =
γQ√︁

(gbB⊥)2 + γ2Q2 + gbB⊥
, (2.11b)

1Throughout this thesis, we are assuming the TMD layer to lie in the xy-plane.
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where gb is the bright exciton g-factor, which for MoS2 is gb = −1.8 [32]. and the dipole

moments follow accordingly:

N
ξ−

b,QD
ξ−

b,Q = i
√
2Ω d∥

(︁
κ1ĥ+ + e2iφQĥ−

)︁
, (2.12a)

N
ξ+

b,QD
ξ+

b,Q = i
√
2Ω d∥

(︁
ĥ+ − κ2e

2iφQĥ−
)︁
. (2.12b)

Note, that in the limit |B⊥| = 0 the equations above reduce into ones in Subsection 2.2.1,

as they should.

2.2.3 Dark excitons in TMDs

The dark exciton Hamiltonian can be described, similarly to the bright exciton counterpart,

with a 2x2 pseudospin Hamiltonian [24, 25, 63]:

Ĥd =

⎛⎝ E1 +
ℏ2

2Md
Q2 + V K,K

d V K,K′

d

V K′,K
d E1 +

ℏ2
2Md

Q2 + V K′,K′

d

⎞⎠ , (2.13)

where E1 = E0 −∆, where ∆ is the energy difference between the excitation energies

of the bright and dark excitons, i.e., bright and dark exciton splitting energy. Now, in con-

trast to bright exciton Hamiltonian, the exchange interaction terms are not momentum-

dependent, but a constant term instead, namely V ξ,ξ′

d = δ/2, which lift the valley de-

generacy of dark excitons and mix the K and K ′ valleys in the eigenstates, leading to

eigenvalues

Eξ−

d,Q =
ℏ2

2Md

Q2, (2.14a)

Eξ+

d,Q =
ℏ2

2Md

Q2 + δ, (2.14b)

and the eigenstates corresponding to the eigenvalues are

|Ψξ−

d,Q⟩ =
1√
2

(︁
|ΨK

d,Q⟩ − |ΨK′

d,Q⟩
)︁
, (2.15a)

|Ψξ+

d,Q⟩ =
1√
2

(︁
|ΨK

d,Q⟩+ |ΨK′

d,Q⟩
)︁
, (2.15b)

and because the transition dipole moments of the dark excitons are D
K(K′)
d,Q = i

√
Ωd⊥ẑ,

we see that the exchange interaction gives rise to one "grey" and one truly "dark" state:

Dξ−

d,Q = 0, (2.16a)

Dξ+

d,Q = 2i
√
Ωd⊥ẑ. (2.16b)
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Thus, the state with higher energy can couple to out-of-plane polarised light, and is

called "grey", while the lower energy state is completely uncoupled from light, namely

truly "dark".

2.3 Brightening of spin-dark exciton states in TMDs

The interplay between the first bright and dark exciton states and the exciton fine structure

are important to understand, in order to effectively develop optoelectronic and valleytronic

applications, as dark excitons might have a significant impact on the optical properties of

TMDs, especially in the lower temperatures. In tungsten-based compounds, WS2 and

WSe2, the lowest exciton state being dark is both theoretically well understood and ex-

perimentally verified [25, 32, 74], but for molybdenum-based ones, especially MoS2, the-

oretical studies have arrived in conflicting and inconsistent results on the ordering of the

spin-polarised conduction bands [63, 68, 71, 73, 75]. To experimentally confirm the or-

dering of the exciton states, one needs to be able to control photon emission from these

states and observe the energies of the states from the PL spectrum, and recently, these

kinds of experiments have managed to verify the ordering for some of these compounds

[21, 22, 26, 66], but even these have had differing results, especially for MoS2. For these

experiments, one needs to be able to couple the dark excitons with light, and there are

mechanisms to "brighten" the dark states, namely induce mixing between the dark and

bright exciton states, which lead to relaxation of optical selection rules, and light emission

can be observed from the dark states. One possibility is with an external out-of-plane

electric field via Rashba-type coupling between the bright and dark states, which, how-

ever, has been proven to be weak in TMDs, resulting in negligible effect on radiative decay

from dark excitons [23, 73]. More practical way is with an in-plane magnetic field via Zee-

man coupling, which has been shown to have a noticeable effect on the PL spectra [21,

22, 24, 25]. Fig. 2.4 shows schematically the mixing of the bright and dark excitons due

to external in-plane magnetic field, and the resulting modification in the PL spectrum.

The total Hamiltonian, in the basis {|ΨK
b,Q⟩, |ΨK′

b,Q⟩, |ΨK
d,Q⟩, |ΨK′

d,Q⟩}, in the presence of

in-plane magnetic field B∥ and out-of-plane magnetic field, is given in block-Hamiltonian

form as follows:

Ĥ =

⎛⎝ Ĥb + Ĥb,Z⊥ ĤZ∥

Ĥ
†
Z∥

Ĥd + Ĥd,Z⊥

⎞⎠ , (2.17)

where Ĥb is given by (2.3) and Ĥd is given by (2.13), and here, for simplicity, we impose

E0 = ∆, which means that we have set the reference energy level at the dark exciton

excitation energies.

The diagonal blocks Ĥτ,Z⊥ , where τ = {b, d} is the index separating bright and dark
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Magnetic field

Q0 0

↑↑ ↑↓KK  - Δ KKB
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Figure 2.4. Brightening of a spin-dark exciton via external magnetic field. Panel (a) shows schematically
how the like-spin and unlike-spin single-valley states mix together in the presence of a (in-plane) magnetic
field, indicated by the term ∆B . Panel (b) shows how the PL spectra will be modified when magnetic field
is applied in TMD, giving rise to an extra peak at the excitation energy of the dark exciton.

excitons, describe the Zeeman shift term, which was described above, now interacting

with electrons of both bright and dark excitons [24]:

Ĥτ,Z⊥ =

⎛⎝ gτB⊥ 0

0 −gτB⊥

⎞⎠ , (2.18)

where gd is now the dark exciton g-factor, which for MoS2 is gd = −6.5 [24].

Finally, the antidiagonal block ĤZ∥ is the Zeeman coupling between the conduction band

spin states, given rise by the in-plane magnetic field, and it is given by [24]

ĤZ∥ =

⎛⎝ g∥B∥e
−iϕB 0

0 g∥B∥e
iϕB

⎞⎠ , (2.19)

where g∥ = 2 is the in-plane conduction band g-factor [27], B∥ = µB|B∥|/2 and ϕB =

arg{|Bx| + i|By|}. This Zeeman coupling term gives rise to the mixing of the bright

and dark exciton states, leading to the possibility of coupling in-plane polarised light with

otherwise dark excitons.
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2.3.1 Brightened dark exciton states without the presence of

out-of-plane magnetic field

We now assume that out-of-plane magnetic field is absent, i.e., |B⊥| = 0, thus we neglect

Ĥτ,Z⊥ terms in Eq. (2.17). Still, for the simplicity of our analysis, we will consider the

Zeeman coupling term in (2.17) as a perturbative Hamiltonian on the free Hamiltonian

composed by Ĥb and Ĥd, giving small correction terms on the energies and eigenstates

of free bright exciton states given by Eqs. (2.4) and (2.5), and dark excitons states given

by Eqs. (2.14) and (2.15).

We will be limiting our scope to the first-order corrections to the free exciton states, for

which the corrections to the energies are zero, and the mixed dark exciton eigenstates

are

˜︂Nξ−

d,Q|˜︁Ψξ−

d,Q⟩ = |Ψξ−

d,Q⟩+
(︁
− α(Q)|ΨK

b,Q⟩+ α(Q)∗|ΨK′

b,Q⟩
)︁
, (2.20a)˜︂Nξ+

d,Q|˜︁Ψξ+

d,Q⟩ = |Ψξ+

d,Q⟩+
(︁
β(Q)|ΨK

b,Q⟩+ β(Q)∗|ΨK′

b,Q⟩
)︁
, (2.20b)

where the renormalisation constants ˜︂Nξ±

d,Q ≈ 1, and α(Q) and β(Q) are explicitly given

as

α(Q) = g∥B∥
e−iϕB (∆ + νQ2 + γQ) + eiϕBγQe−2iφQ

√
2 (∆ + νQ2) (∆ + νQ2 + 2γQ)

, (2.21a)

β(Q) = g∥B∥
−e−iϕB (∆1 + νQ2 + γQ) + eiϕBγQe−2iφQ

√
2 (∆1 + νQ2) (∆1 + νQ2 + 2γQ)

, (2.21b)

where ν = ℏ2
2
(1/Mb − 1/Md), and ∆1 = ∆− δ.

We can now determine the transition dipole moments of these brightened states, given

by

˜︂Nξ−

d,Q
˜︁Dξ−

d,Q = i
√
2Ω d∥

(︁
− α(Q)ĥ+ − α(Q)∗ĥ−

)︁
, (2.22a)˜︂Nξ+

d,Q
˜︁Dξ+

d,Q = 2i
√
Ωd⊥ẑ+ i

√
2Ω d∥

(︁
β(Q)ĥ+ − β(Q)∗ĥ−

)︁
, (2.22b)

We would get similar results for the corrected bright states, but, for the moment, we are

only interested in the brightened dark excitons, thus we will not report them here. In the

first order approximation, the energies of these mixed states are the same as the ones for

free bright and dark excitons, and the second order corrections would be of magnitude

(g∥µBB∥)
2/∆ ≪ 1, even for large magnetic fields like |B| = 30 T. However, the modulus

of the mixing terms |α(Q)| and |β(Q)| are of order g∥µBB∥/∆, which, although pretty

small, are considerably higher than the shift in energies and mix the bright and dark

exciton states, leading to in-plane dipole moments for brightened dark excitons which are
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comparable to the dark exciton out-of-plane dipole moments [23]. As mentioned above,

due to the much larger thermal population of dark excitons in some TMDs, this coupling

leads to photon emission from the dark exciton states which can be observed in the PL

spectra [21, 22, 25, 27].

2.3.2 Brightened dark exciton states in the presence of out-of-plane

magnetic field

We now consider the case where out-of-plane magnetic field is present. However, for the

simplicity of our analysis, we will only consider one valley at a time, thus neglecting the

terms V ξ,ξ′
τ in Eqs. (2.3) and (2.13). In this case, the valleys are decoupled from each

other, so we can factor out the valley degree of freedom by introducing single valley bright

and dark excitons |Ψξ
τ ⟩, and consider only the 2x2 single-valley Hamiltonian

Ĥ
ξ
=

⎛⎝ ∆+ ℏ2
2Mb

Q2 + ξgbB⊥ g∥B∥e
−ξiϕB

g∥B∥e
iξϕB ℏ2

2Md
Q2 + ξgdB⊥

⎞⎠ . (2.23)

We simplify this problem further and consider the in-plane magnetic field term g∥B∥ per-

turbatively, leading to free Hamiltonian to be in diagonalised form, with eigenvalues given

by the diagonal terms:

Eξ
b = ∆+

ℏ2

2Mb

Q2 + ξgbB⊥, (2.24a)

Eξ
d =

ℏ2

2Md

Q2 + ξgdB⊥, (2.24b)

and trivially, corresponding eigenstates are |Ψξ
b⟩ and |Ψξ

d⟩, respectively.

We again limit ourselves to first-order corrections, where the eigenvalues remain un-

changed, and the corrected dark state is

˜︂Nξ
d,Q|˜︁Ψξ

d⟩ = |Ψξ
d⟩+∆ξ

B|Ψ
ξ
b⟩, (2.25)

where, again, ˜︂Nξ
d,Q ≈ 1, and

∆ξ
B(Q) =

−g∥B∥e
−ξiϕB

νQ2 +∆+ ξ(gb − gd)B⊥
(2.26)

Thus, the dipole moment of this brightened single-valley dark state is

˜︂Nξ ˜︁Dξ
d,Q = 2i

√
Ωd⊥ẑ+ ξi

√
2Ω d∥∆

ξ
Bĥξ. (2.27)
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3. PARAXIAL OPTICAL BEAMS AND POLARISATION

STRUCTURES

In this chapter, we will cover the paraxial beam modes which satisfy the scalar Helmholtz

equation, namely the Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) solutions.

These solutions are then used to define the cylindrically polarised vector beams as super-

positions of these modes accompanied with suitable polarisation vectors. We also look

at plane wave expansions of optical fields, namely the angular spectrum representation,

which will be used in the next chapter for LG beams.

3.1 Maxwell’s equations and vector potentials

Electric and magnetic fields must satisfy Maxwell’s equations. They can also be described

conveniently in terms of a vector potential A and a scalar potential Φ. Maxwell’s equa-

tions, and other properties of an electromagnetic field, such as interaction with matter, can

be described by these potentials. These potentials do not uniquely determine the electric

and magnetic field, but belong to a equivalence class of gauge functions that are related

to each other via gauge transformation. Imposing conditions for these electromagnetic

potentials is called gauge fixing. [76, 77]

The basis of classical theory of electromagnetic field is given by the Maxwell’s equations,

which in the vaccuum, are given as follows [76–78]:

∇ ·E = 0, (3.1a)

∇×E = −∂B
∂t
, (3.1b)

∇ ·B = 0, (3.1c)

∇×B =
1

c2
∂E

∂t
, (3.1d)

where E is the electric field, B is the magnetic field, and c is the speed of light in vacuum.

In Coulomb gauge, electric and magnetic field are defined solely in terms of a vector

potential A [76, 77]:



17

E = −∂A
∂t

, (3.2a)

B = ∇×A, (3.2b)

and, by inserting Eq. (3.2a) and (3.2b) into (3.1a) and (3.1d), we have

∇ ·A = 0 (3.3a)

∇2A − 1

c2
∂2A

∂t2
= 0. (3.3b)

In the Coulomb gauge, the vector potential A is completely transverse, and it satisfies the

wave equation by Eq. (3.3b). Therefore, the vector potential has the form of a harmonic

wave.

Vector potential for a monochromatic, time harmonic electromagnetic field can be written

as A(r, t) = A(r)e−iωt, where r is the position vector, ω is the frequency, and t is the

time. Inserting this into Eq. (3.2a), we have thatE(r, t) = iωA(r, t), i.e., the electric field

and the vector potential are related together via a multiplicative constant iω. Inserting this

definition of vector potential into Eq. (3.3b), we see that A(r) must satisfy the Helmholtz

equation: [79]

∇2A(r) + k20A(r) = 0, (3.4)

where k0 = c ω is the wavenumber.

3.2 Paraxial optical beams

A particular class of solutions to the Helmholtz equation (3.4) are the so-called paraxial

optical beams, i.e., fields which propagate primarily in a fixed direction, usually denoted

as the z-direction. In this case, the vector potential associated to that field can be written

as

A(r) = A0u(r)e
ik0z f̂ , (3.5)

where A0 is the amplitude, and f̂ = {fx, fy} is a unit vector determining the polarisation.

These optical beams can be intuitively seen as plane waves propagating in z-direction,

but instead of a constant complex amplitude, the transverse profile is determined by the

complex envelope u(r). By substituting (3.5) into Eq. (3.4), we obtain

∇2
⊥u(r) + 2ik0

∂u(r)

∂z
+
∂2u(r)

∂z2
= 0, (3.6)
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where ∇2
⊥ is the transverse Laplacian operator. Assuming that the field is paraxial, i.e.,⃓⃓⃓⃓

∂2u(r)

∂z2

⃓⃓⃓⃓
≪ k0

⃓⃓⃓⃓
∂u(r)

∂z

⃓⃓⃓⃓
,∇2

⊥u(r), (3.7)

we obtain the paraxial Helmholtz equation:

∇2
⊥u(r) + 2ik0

∂u(r)

∂z
= 0. (3.8)

In the Cartesian coordinates r = {x, y, z}, the solutions satisfying (3.8) are given as

Hermite-Gaussian (HG) modes of order M = n+m: [79, 80]

uHG
n,m(r) = NHG

n,m

w0

w(z)
Hn

(︄√
2x

w(z)

)︄
Hm

(︄√
2y

w(z)

)︄
e
−x2+y2

w2(z)
+ik0

x2+y2

2R(z)
−i(1+n+m)φ(z)

, (3.9)

where NHG
n,m =

√︂
2

2n+mn!m!πw2
0
, Hn(u) are the Hermite polynomials of order n [81]. Other

parameters are the beam width w(z), wavefront curvature R(z), Gouy phase φ(z) and

Rayleigh range zR, which are defined as follows:

w(z) =w0

√︂
1 + z2/z2R (3.10a)

R(z) =z(1 + z2R/z
2) (3.10b)

φ(z) = arctan(z/zR) (3.10c)

zR =k0w
2
0/2 (3.10d)

where w0 is the Gaussian beam waist, namely the beam width at z = 0, which defines

all the other parameters, along with the wavenumber k0. HG beams are the complete set

of orthogonal solutions to the Helmholtz equation, namely they span the whole paraxial

domain, which means that every paraxial beam can be presented as a superposition of

solutions defined by (3.9), with different n and m.

There is an alternative family of orthogonal solutions that span the whole paraxial beam

domain, which are the solutions of the Helmholtz equation in the cylindrical coordinates

r = {r, θ, z}, and these are the Laguerre-Gaussian (LG) modes, given as follows: [79,

80]

uLGℓ,p (r) = NLG
ℓ,p

w0

w(z)

[︄√
2r

w(z)

]︄|ℓ|
L|ℓ|
p

(︃
2r2

w2(z)

)︃
e
− r2

w2(z)
+ik0

r2

2R(z)
+iℓθ−i(1+2p+|ℓ|)φ(z)

, (3.11)

where NLG
ℓ,p =

√︂
2p!

πw2
0(p+|ℓ|)! , L

|ℓ|
p (u) is the generalised Laguerre polynomial [81], defined

by the radial index p ∈ N0 and the azimuthal index ℓ ∈ Z (also known as the topological

charge).
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As both HG and LG beams form a complete set of orthogonal solutions for paraxial beams

in free space, we can present any LG beam as a linear superposition of HG beams

and vice versa. In particular, it can be shown that LG solutions uLG±1,0 are equivalent to

superposition of first order HG modes uHG
1,0 and uHG

0,1 :

uLG±1,0 =
1√
2
(uHG

1,0 ± iuHG
0,1 ), (3.12)

and, equivalently, HG modes in terms of LG modes are given as follows:

uHG
1,0 =

1√
2
(uLG1,0 + uLG−1,0) (3.13a)

uHG
0,1 =

−i√
2
(uLG1,0 − uLG−1,0). (3.13b)

Eqs. (3.12) and (3.13) will be useful when defining the cylindrically polarised fields, which

are described as superposition of HG or LG beams with suitable polarisation vectors.

With these equations, we can change from the HG representation to LG representation

of cylindrically polarised beams and vice versa.

3.3 Angular spectrum of optical fields

Plane wave is the simplest solution to the Maxwell’s equation, which, however, is unphys-

ical, as it has infinite energy due to the constant amplitude in the transverse profile [76].

However, due to their simple nature, they still have important uses in describing electro-

magnetic fields, as many optical phenomena are explained by how a single plane wave

is affected. Moreover, we can take an arbitrarily shaped optical beam, and describe it

by a suitable linear superposition of plane waves, namely describe the beam in the form

of angular spectrum representation [82]. In angular spectrum representation, the optical

field is presented in the reciprocal space, namely the k-space, describing the field as a

sum of plane waves with different k-vector.

We now assume a paraxial scalar electric field E(r) = u(r)eik0z, satisfying the paraxial

Helmholtz equation (3.8), at an arbitrary constant point z. We expand our wave E(r) as

a superposition of plane waves by taking a 2D Fourier transform in the transverse space:

˜︁E(K, z) =
1

(2π)2

∫︂∫︂
R

d2RE(r)e−iK·R, (3.14)

where R = {r, θ} and K = {k⊥, ϕ} are the position- and wave-vectors in the transverse

plane, respectively, in the cylindrical coordinates, and d2R = rdrdθ. The original field is
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obtained through the inverse Fourier transform:

E(r) =

∫︂∫︂
K

d2K ˜︁E(K, z)eiK·R, (3.15)

where d2K = k⊥dk⊥dϕ. By inserting (3.15) into Eq. (3.8), and defining

kz =
√︂
k20 − k2⊥ = k0

(︃
1− k2⊥

2k20

)︃
+O(k4⊥), (3.16)

we notice, that, in order to satisfy Helmholtz equation (3.4), the z-dependence of the

Fourier spectrum is given as follows:

˜︁E(K, z) = ˜︁E(K, 0)eikzz. (3.17)

Inserting (3.17) into (3.15), we obtain the angular spectrum representation of a paraxial

field:

E(r) =

∫︂∫︂
K

d2K ˜︁E(K, 0)e
iK·R+ik0

(︃
1− k2⊥

2k20

)︃
z
. (3.18)

To obtain the angular spectrum representation of a given field E(r), we need to calculate

its Fourier transform by Eq. (3.14) at some point z = z0, usually imposed to z0 = 0, for

simplicity. The angular spectrum ũ(K) is defined as [82]

ũ(K) = ˜︁E(K, 0) =
1

(2π)2

∫︂∫︂
R

d2Ru(R, 0)e−iK·R, (3.19)

as E(R, 0) = u(R, 0). The physical interpretation of angular spectrum ũ(K) is intuitive:

It describes the amplitude profile of the beam, at z = 0, as a superposition of plane

waves with transverse wave vectors, which, for paraxial beams, vanish really quickly as

the magnitude of the transverse wave vector grows, as most of the plane waves are

centered around the propagation direction ẑ.

We now calculate the angular spectrum for Laguerre-Gaussian beams, which will be used

in the later sections. By inserting Eq. (3.11) with z = 0 into (3.19), and calculating the

integral, we have

ũLGℓ,p (K) =
iℓw2

0

2π
NLG

ℓ,p

(︃
k⊥w0√

2

)︃|ℓ|

e−
k2⊥w2

0
4 L|ℓ|

p

(︃
k2⊥w

2
0

2

)︃
eiℓϕ. (3.20)

The above equation holds in free space. However, when propagating inside the TMD,

we need to rescale up the wavevector of our beam by the square root of the dielectric

function ϵ of the TMD material, namely k0 ↦→
√
ϵk0, which can be taken into account by
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Figure 3.1. Complex polarisation patterns for co-rotating (a) radially polarised mode u+
R and (b) az-

imuthally polarised mode u+
A, defined by Eqs. (3.22), with the characteristic doughnut-shaped intensity

distribution underlayed.

scaling down the norm of the transverse wavevector in (3.20) by a factor of
√
ϵ, namely

ũLGℓ,p (k⊥, ϕ) ↦→ ũLGℓ,p (k⊥/
√
ϵ, ϕ). For a monolayer MoS2, the dielectric function is approxi-

mately ϵ ≈ 25, for photon energies equal to the bandgap energy Eg ≃ 1.8 eV [83].

3.4 Cylindrically polarised fields

Cylindrically polarised modes, such as radially or azimuthally polarised beams, present

a nonuniform polarisation pattern across the transverse profile [35]. This means that

the polarisation is dependent on the transverse position, and we cannot separate the

amplitude profile and the polarisation of the beam as two independent values like in Eq.

(3.5), as the change in the polarisation of the field, like passing through a polariser, will

change the overall amplitude profile and vice versa. These unusual polarisations have

many useful properties, such as yielding very tight optical focus, and generating strong

axial electric [33] or magnetic [34] fields, and it is also possible to classically entangle the

fields [84]. These properties are used in many applications, such as optical tweezing [85],

single molecule spectroscopy [86], sensing [87], metrology [88], and material processing

[89], to name a few.

Ref. [35] shows, that in the paraxial domain, radially and azimuthally polarised beams live

in the four dimensional space spanned by the Cartesian product between the first order

HG modes {uHG
1,0 , u

HG
0,1 } and the polarisation basis vectors {x̂, ŷ}, namely

{uHG
1,0 , u

HG
0,1 } ⊗ {x̂, ŷ} = {uHG

1,0 x̂, u
HG
1,0 ŷ, u

HG
0,1 x̂, u

HG
0,1 ŷ}. (3.21)
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Figure 3.2. Complex polarisation patterns for counter-rotating (a) radially polarised mode u−
R and (b)

azimuthally polarised mode u−
A, defined by Eqs. (3.23), with the characteristic doughnut-shaped intensity

distribution underlayed.

With suitable superposition of these vectors, we can build four linearly independent,

orthogonal vectors, forming a complete four dimensional basis, namely the co-rotating

modes:

u+
R =

1√
2
(uHG

1,0 x̂+ uHG
0,1 ŷ), (3.22a)

u+
A =

1√
2
(−uHG

0,1 x̂+ uHG
1,0 ŷ), (3.22b)

and the counter-rotating modes:

u−
R =

1√
2
(−uHG

1,0 x̂+ uHG
0,1 ŷ), (3.23a)

u−
A =

1√
2
(uHG

0,1 x̂+ uHG
1,0 ŷ). (3.23b)

The non-uniform polarisation patterns and intensity distribution of these modes are shown

in Fig. 3.1 and 3.2.

Explicit calculations in Ref. [35] show, that all of the modes above have zero total angu-

lar momentum (TAM). This can also be seen intuitively, by writing the Hermite-Gaussian

modes as Laguerre-Gaussian modes given in Eq. (3.13), which results in following ex-
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pression for the co-rotating modes:

u+
R =

1√
2
(uLG1,0 ĥ− + uLG−1,0ĥ+), (3.24a)

u+
A =

i√
2
(uLG1,0 ĥ− − uLG−1,0ĥ+). (3.24b)

In this case, spatial mode carries one unit of orbital angular momentum (OAM) and po-

larisation carries one unit of spin angular momentum (SAM), leading to zero global TAM,

even though, locally, the beam carries angular momentum. Writing the same for counter-

rotating modes has following expressions:

u−
R =

−1√
2
(uLG1,0 ĥ+ + uLG−1,0ĥ−), (3.25a)

u−
A =

−i√
2
(uLG1,0 ĥ+ − uLG−1,0ĥ−), (3.25b)

Now, as radially and azimuthally polarised modes are just sum of LG modes with circular

polarisations, the vector potentials can be written then as: 1

A+
R =

A0√
2
(uLG1 (r)ĥ− + uLG−1 (r)ĥ+)e

ik0z−iωt, (3.26a)

A+
A =

iA0√
2
(uLG1 (r)ĥ− − uLG−1 (r)ĥ+)e

ik0z−iωt, (3.26b)

A−
R =

−A0√
2
(uLG1 (r)ĥ+ − uLG−1 (r)ĥ−)e

ik0z−iωt, (3.26c)

A−
A =

−iA0√
2

(uLG1 (r)ĥ+ + uLG−1 (r)ĥ−)e
ik0z−iωt. (3.26d)

1From here on, we assume implicitly that p = 0, and denote uLG
ℓ,0 (r) ≡ uLG

ℓ (r).
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4. EXCITON-LIGHT INTERACTION WITH

CYLINDRICALLY POLARISED BEAMS

In this chapter, we introduce the theory of light-matter interaction of TMD excitons. In

particular, we show how radially polarised light excites the exciton states in monolayer

TMDs. The LMI of excitons with light will be simulated by using Fermi golden rule to

calculate the transition rate to the excitons bands, namely the spectral functions. This will

give the indication how the particular TMD interacts with light and will also predict the PL

spectra of the TMD given that thermal dynamics are also taken into account. We first look

at the excitations of bright exciton states, then the excitations of brightened dark exciton

states.

4.1 Exciton interaction with cylindrically polarised light

The average transition rate from a groundstate |GS⟩ to an excited exciton state |ΨS
Q⟩,

under periodic perturbation, is, according to Fermi golden rule, given by [90]

wS
Q(ω) =

2π

ℏ

⃓⃓⃓⃓
⟨ΨS

Q|ĤI |GS⟩
⃓⃓⃓⃓2
δ(ES

Q − ℏω), (4.1)

where ES
Q is the energy dispersion of the state, and δ(x) is the Dirac delta function. ĤI is

the light-matter interaction Hamiltonian, introduced through minimal coupling [91], which

is, in the lowest order (assuming weak excitation of light), given by

ĤI =
|e|
2m0

A±
µ (r, t) · p̂, (4.2)

where p̂ is the linear momentum operator, and A±
µ is the vector potential of cylindrically

polarised light, given by one of the equations in (3.26). Here, we denote µ = {+,−} ≡
{R,A} as the polarisation mode index, and ± in the superscript separates the co-rotating

and counter-rotating modes, respectively.

In Appendix B, we show that the expectation values in Eq. (4.1), by using the definition of
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the exciton states (2.1), are given as:

⟨ΨS
Q|ĤI |GS⟩ =

1√
Ω

∑︂
vc

∑︂
k

Λ∗S
vc,Q(k)⟨ψc,k+Q|ĤI |ψv,k⟩, (4.3)

The elements of the sum in Eq. (4.3) can be expanded further, using the definition of our

interaction Hamiltonian and vector potential of co-rotating beams, given by Eqs.(3.26a)

and (3.26b):

⟨ψc,k+Q|ĤI |ψv,k⟩ =
A0|e|e−iωt

√
2m0

[︃ ∫︂∫︂
K

d2K ũLG+1 (K)ĥ− · ⟨ψc,k+Q|eiK·Rp̂|ψv,k⟩

+ µ

∫︂∫︂
K′

d2K ′ ũLG−1 (K
′)ĥ+ · ⟨ψc,k+Q|eiK

′·Rp̂|ψv,k⟩
]︃
, (4.4)

where we have expanded the LG beams into their angular spectrum given by Eq. (3.20),

and implicitly assumed z = 0, i.e., that the beam waist is at the TMD. We get similar

expressions for the counter-rotating modes given by Eqs. (3.26c) and (3.26d):

⟨ψc,k+Q|ĤI |ψv,k⟩ =
A0|e|e−iωt

√
2m0

[︃ ∫︂∫︂
K

d2K ũLG+1 (K)ĥ+ · ⟨ψc,k+Q|eiK·Rp̂|ψv,k⟩

− µ

∫︂∫︂
K′

d2K ′ ũLG−1 (K
′)ĥ− · ⟨ψc,k+Q|eiK

′·Rp̂|ψv,k⟩
]︃
. (4.5)

In Appendix C, we write these states explicitly in Bloch wavefunction form [92], and use

the low thickness of the TMD compared to the wave length of impinging light to write the

following approximation [29]:

⟨ψc,k+Q|eiK·Rp̂|ψv,k⟩ ∼ δ(K−Q)⟨ψc,k|p̂|ψv,k⟩. (4.6)

When these equations above are inserted into Eq. (4.3), we notice that we have get terms

proportional to ones in Eq. (2.2), and we then have

⟨ΨS
Q|ĤI |GS⟩ =

EgA0

2
√
2iℏΩ

[︃
ũLG+1 (Q)(ĥ− ·D∗S

Q ) + µũLG−1 (Q)(ĥ+ ·D∗S
Q )

]︃
e−iωt, (4.7)

for the the co-rotating modes, and

⟨ΨS
Q|ĤI |GS⟩ =

EgA0

2
√
2iℏΩ

[︃
ũLG+1 (Q)(ĥ+ ·D∗S

Q )− µũLG−1 (Q)(ĥ− ·D∗S
Q )

]︃
e−iωt, (4.8)

for the counter-rotating modes.
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4.2 Spectral functions of bright excitons excited by cylindrically

polarised light

In this section, we look at how bright excitons interact with cylindrically polarised light. We

first consider the case where there is not magnetic field present, and then the case where

we have out-of-plane magnetic field causing a Zeeman shift on the energy levels.

With the definition of the dipole moments given in Eq. (2.7), we have that

(ĥ+ ·D∗ξ±
b,Q ) =

√
Ωd∥ (4.9a)

(ĥ− ·D∗ξ±
b,Q ) = ∓e−2iφ

√
Ωd∥ (4.9b)

using the equations above, our expectation values are given as:

⟨Ψξ
Q|ĤI |GS⟩ =

EgA0d∥

2i
√
2ℏ

√
Ω

[︃
∓ ũLG1 (Q)e−2iφQ + µũLG−1 (Q)

]︃
e−iωt, (4.10a)

⟨Ψξ
Q|ĤI |GS⟩ =

EgA0d∥

2i
√
2ℏ

√
Ω

[︃
ũLG1 (Q)± µũLG−1 (Q)e−2iφ

]︃
e−iωt, (4.10b)

for the co-rotating and counter-rotating modes, respectively.

Inserting these two equations into Eq.(4.1), and integrating over all frequencies ω, we get

the total rate of excitation of an exciton state |Ψξ±

b,Q⟩:

W ξ±

b,Q(A
+
µ ) =

∫︂ ∞

0

dω wS
Q(ω) =

πE2
gA

2
0d

2
∥

4ℏ3Ω

⃓⃓⃓⃓
∓ ũLG1 (Q)e−2iφQ + µũLG−1 (Q)

⃓⃓⃓⃓2
, (4.11a)

W ξ±

b,Q(A
−
µ ) =

∫︂ ∞

0

dω wS
Q(ω) =

πE2
gA

2
0d

2
∥

4ℏ3Ω

⃓⃓⃓⃓
ũLG1 (Q)± µũLG−1 (Q)e−2iφQ

⃓⃓⃓⃓2
. (4.11b)

Using Eq. (3.20), we can explicitly calculate the modulus terms in Eqs. (4.11a) and

(4.11b):⃓⃓
∓ ũLG1 (Q)e−2iφQ + µũLG−1 (Q)

⃓⃓2
= 2|ũLG1 (Q/

√
ϵ)|2 (1± µ) , (4.12a)⃓⃓

ũLG1 (Q)± µũLG−1 (Q)e−2iφQ
⃓⃓2

= 2|ũLG1 (Q/
√
ϵ)|2 (1∓ µ cos 4φ) , (4.12b)

where we have used the fact that modulus of the angular spectrum of LG beam is only

dependent on the norm of the momentum, and that |ũLG−1 (Q)|2 = |ũLG1 (Q)|2. Also, be-

cause the interaction takes place inside the TMD, we have rescaled the momentum down

in the angular spectrum by the factor of
√
ϵ. This leads to following transition rates for the
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Figure 4.1. Spectral density functions of excitons excited by co-rotating azimuthally polarised light (blue
line) and co-rotating radially polarised light (red line). We see the spectral function of the light-like-band

gξ
+

A
+
R

(E) in meV scale, and we have zoomed in on the spectral function of the particle-like band gξ
−

A
+
A

(E),

which is in the µeV scale.

cylindrically polarised beams, for plane wave components with momentum Q:

W ξ+

b,Q(A
+
A ) = W ξ−

b,Q(A
+
R ) = 0, (4.13a)

W ξ−

b,Q(A
+
A ) = W ξ+

b,Q(A
+
R ) =

πE2
gA

2
0d

2
∥

ℏ3Ω

⃓⃓⃓⃓
ũLG1 (Q/

√
ϵ)

⃓⃓⃓⃓2
, (4.13b)

W ξ+

b,Q(A
−
A ) = W ξ−

b,Q(A
−
R ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
ũLG1 (Q/

√
ϵ)

⃓⃓⃓⃓2
(1 + cos 4φ) , (4.13c)

W ξ−

b,Q(A
−
A ) = W ξ+

b,Q(A
−
R ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
ũLG1 (Q/

√
ϵ)

⃓⃓⃓⃓2
(1− cos 4φ) . (4.13d)

The spectral density function g(E) of an exciton band is estimated by integrating the

transition rates over the whole exciton center-of-mass momentum Q space, thus obtain-

ing the total transition rate for the exciton band, and then making a change of variables to

integrating over the energies [29]:

W =

∫︂∫︂
Q

d2QWQ =

∫︂
dE g(E), (4.14)
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Figure 4.2. Spectral density functions for counter-rotating cylindrically polarised beams (brown lines),
where the transition energy is equally distributed for particle-like bands (panel (a)) and light-like bands
(panel (b)). For comparison, we have plotted the spectral functions for co-rotating modes, as blue lines in
panel (a), for azimuthally polarised light, and red lines in panel (b), for radially polarised light.

For co-rotating azimuthally polarised beam, we have W ξ+

b (A+
A ) = 0, and

W ξ−

b (A+
A ) =

∫︂∫︂
Q

d2QW ξ−

b,Q =
E2

gA
2
0d

2
∥

4πℏ3

∫︂ 2π

0

dφQ

∫︂ ∞

0

dQQ|ũLG1 (Q/
√
ϵ)|2

=
E2

gA
2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQ|ũLG1 (Q/
√
ϵ)|2, (4.15)

and for ξ− bands, Eq. (2.4a) gives us Q =
√︁
2Mb(E)/ℏ, where, for simplicity, we have

imposed E0 = 0, and when carrying out the change of variables, our integral becomes

W ξ−

b (A+
A ) =

∫︂
dE η

(︃
Mb

ℏ2

)︃(︃
w2

0

2ϵ

)︃(︃
2MbE

ℏ2

)︃
e
−
(︃

w2
0

2ϵ

)︃(︂
2MbE

ℏ2

)︂
, (4.16)
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Figure 4.3. Spectral density functions (black line) with out-of-plane magnetic field |B⊥| = 10 T, for co-
rotating radially polarised beam. For comparison, we have plotted spectral functions for the case |B⊥| = 0
as dashed red curve for co-rotating radially polarised mode, and the spectral function of light-like band for
counter-rotating modes as dashed magenta. We see that the presence of out-of-plane magnetic field brings
nonzero spectral function for the particle-like band, as well as modifying the shape of the spectral functions.

where η = (E2
gA

2
0d

2
∥πw

2
0)/ℏ3. This means that

g
ξ−

A+
A

(E) = η

(︃
Mb

ℏ2

)︃(︃
w2

0

2ϵ

)︃(︃
2MbE

ℏ2

)︃
e
−
(︃

w2
0

2ϵ

)︃(︂
2MbE

ℏ2

)︂
, (4.17)

and, trivially, spectral density for the linear band is g
ξ+

A+
A

(E) = 0.

For co-rotating radially polarised beam, we have it other way around, namely W ξ− = 0,

and

W ξ+

b,Q(A
+
R ) =

∫︂
dE η

(︃
E

(2γ)2

)︃(︃
w2

0

2ϵ

)︃(︃
E2

(2γ)2

)︃
e
−
(︃

w2
0

2ϵ

)︃(︂
E2

(2γ)2

)︂
, (4.18)

where change of variables have been made with Q = 2γE, from Eq.(2.4b), leading to

spectral density function

g
ξ+

A+
R

(E) = η

(︃
E

(2γ)2

)︃(︃
w2

0

2ϵ

)︃(︃
E2

(2γ)2

)︃
e
−
(︃

w2
0

2ϵ

)︃(︂
E2

(2γ)2

)︂
, (4.19)

while trivially, gξ−

A+
R

(E) = 0. From here on, all the simulations of the spectral functions will
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Figure 4.4. Spectral density functions (green line) with out-of-plane magnetic field |B⊥| = 10 T, for
co-rotating azimuthally polarised beam. For comparison, we have plotted spectral functions for the case
|B⊥| = 0 as dashed blue curve for co-rotating azimuthally polarised beam, and the spectral function
of particle-like band for counter-rotating modes as dashed magenta. The effect of out-of-plane magnetic
field is to introduce nonzero spectral function for the light-like band as well as significantly broadening the
spectral function of particle-like band.

be done for MoS2, and we use the following parameters for all the figures: Beam waist

w0 = 1.5 µ, parameter γ = 1.47 eV · Å, bright exciton effective mass Mb = 1.4m0 [63],

and dielectric function ϵ = 25. The spectral functions of bright excitons for co-rotating

cylindrically polarised modes are shown in Fig. 4.1. The results show, that co-rotating

modes show selective photoexcitation of the bright exciton bands: co-rotating azimuthally

polarised light only excites transition into the lower, parabolic particle-like band of the two

bright exciton bands, where as for co-rotating radially polarised light, it is the opposite,

namely it only excites transitions into the linear light-like band. This gives the possibility

to tune exciton population in the bands by switching between the co-rotating cylindrically

polarised modes.

For counter-rotating cylindrically polarised beams, on the other hand, we have

W ξ±

b,Q(A
−
µ ) =

1

2

E2
gA

2
0d

2
∥

4πℏ3

∫︂ 2π

0

dφQ (1± µ cos 4φQ)

∫︂ ∞

0

dQQ|ũLG±1 (Q/
√
ϵ)|2

=
1

2

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQ|ũLG±1 (Q/
√
ϵ)|2, (4.20)
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as
∫︁ 2π

0
dφQ cos 4φQ = 0. Thus, we arrive in a result that

g
ξ−

A−
µ
(E) =

1

2
g

ξ+

A+
A

(E), (4.21a)

g
ξ+

A−
µ
(E) =

1

2
g

ξ−

A+
R

(E), (4.21b)

i.e., both counter-rotating modes excite transitions equally for both bands, leading to the

same result as for uniformly polarised LG beam with ℓ = 1, reported in Ref [29]. The

spectral functions of bright excitons for counter-rotating modes are shown in Fig. 4.2.

When out-of-plane magnetic field is present, we do the same as above, but now insert

Eq. (2.12) into Eqs. (4.7), and insert those into (4.1), and get the following:

˜︂W ξ−

b,Q(A
+
µ ) =

πE2
gA

2
0d

2
∥

4ℏ3Ω
(︂
N

ξ−

b,Q

)︂2 ⃓⃓⃓⃓ũLG1 (Q)e−2iφQ + µκ1ũ
LG
−1 (Q)

⃓⃓⃓⃓2
, (4.22a)

˜︂W ξ+

b,Q(A
+
µ ) =

πE2
gA

2
0d

2
∥

4ℏ3Ω
(︂
N

ξ+

b,Q

)︂2 ⃓⃓⃓⃓− ũLG1 (Q)e−2iφQ + µκ2ũ
LG
−1 (Q)

⃓⃓⃓⃓2
, (4.22b)

˜︂W ξ−

b,Q(A
−
µ ) =

πE2
gA

2
0d

2
∥

4ℏ3Ω
(︂
N

ξ−

b,Q

)︂2 ⃓⃓⃓⃓κ1ũLG1 (Q) + µ ũLG−1 (Q)e−2iφQ

⃓⃓⃓⃓2
, (4.22c)

˜︂W ξ+

b,Q(A
−
µ ) =

πE2
gA

2
0d

2
∥

4ℏ3Ω
(︂
N

ξ+

b,Q

)︂2 ⃓⃓⃓⃓ũLG1 (Q)− µκ2ũ
LG
−1 (Q)e−2iφQ

⃓⃓⃓⃓2
. (4.22d)

Now, like we did above, we integrate over the momentum space Q to relate the transition

rate with the spectral function:

˜︂W ξ−

b (A+
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQζ−µ(Q)|ũLG1 (Q/
√
ϵ)|2, (4.23a)

˜︂W ξ+

b (A+
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQζµ(Q)|ũLG1 (Q/
√
ϵ)|2, (4.23b)

˜︂W ξ±

b (A−
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQ|ũLG1 (Q/
√
ϵ)|2, (4.23c)

where we have defined

ζµ(Q) := 1 + µ
γQ√︁

(gbB⊥)2 + γ2Q2
. (4.24)

We notice that for counter-rotating modes, out-of-plane magnetic field does not modify

the transition rates of the bright excitons band in the momentum space, thus affecting

the spectral function only by the change in energy dispersion. For the co-rotating modes,

we see that contrary to the case when |B⊥| = 0, we have nonzero transition rate for
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both bands, for both cylindrically polarised modes, indicated by the ζµ function, which has

values on the interval [1, 2] for µ = 1, and [0, 1] for µ = −1. We see that when Q → ∞,

then ζµ → 1 + µ, which means that for low Q, out-of-plane magnetic field makes the

transition possible for both bands, but for increasing Q, less excitations are possible for

the other band, depending on which cylindrical polarisation mode is employed.

We will not solve the exact spectral functions, as solving Q in Eqs. (2.9) would be really

cumbersome. Instead, to plot the spectral functions in energy, we solve them pointwise

and numerically. These spectral functions are shown in Fig. 4.3 for radially polarised,

and in Fig. 4.4 for azimuthally polarised modes, where for the bright exciton g-factor we

used the one for MoS2, gb = −1.8. We have also used |B⊥| = 10 T for these plots.

We see that because the magnetic field made the parabolic band have a linear region for

small values of exciton center-of-mass momentum, we have significant broadening of the

parabolic band spectral function, for all cylindrically polarised beams. Also, we see that

now both co-rotating beams excite both exciton bands. The ratio between the total tran-

sitions to the particle-like band and the light-like band for radially polarised beam is about˜︂W ξ−

b (A+
R )/˜︂W ξ+

b (A+
R ) ∼ 10%, and vice versa for the azimuthally polarised beam. This

gives the possibility to fine-tune the exciton population in these bands by using tunable

out-of-plane magnetic field on the TMD.

4.3 Spectral functions of dark excitons excited by cylindrically

polarised light

First considering the case where out-of-plane magnetic field is neglected: By inserting

Eqs. (2.22) into (4.7) and (4.8), and those into (4.1), and integrating over all frequencies

ω, we get following equations for transition rates:

˜︂W ξ+

d,Q(A
+
µ ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
− α(Q)∗ũLG1 (Q)− µα(Q)ũLG−1 (Q)

⃓⃓⃓⃓2
, (4.25a)

˜︂W ξ−

d,Q(A
+
µ ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
− β(Q)∗ũLG1 (Q) + µβ(Q)ũLG−1 (Q)

⃓⃓⃓⃓2
, (4.25b)

˜︂W ξ+

d,Q(A
−
µ ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
− α(Q)ũLG1 (Q)− µα(Q)∗ũLG−1 (Q)

⃓⃓⃓⃓2
. (4.25c)

˜︂W ξ−

d,Q(A
−
µ ) =

πE2
gA

2
0d

2
∥

2ℏ3Ω

⃓⃓⃓⃓
β(Q)ũLG1 (Q) + µβ(Q)∗ũLG−1 (Q)

⃓⃓⃓⃓2
. (4.25d)

Using Eqs. (2.21a), (2.21b) and (3.20), and integrating over the Q-space, like in the
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Figure 4.5. Spectral density functions of brightened dark excitons, with parallel magnetic field |B∥| = 10
T, and no perpendicular magnetic field present, in panels (a) and (b). Purple line is for both co-rotating
modes. In panel (c) we have plotted for comparison the bright exciton excitations, to show the effect of
dark-bright exciton splitting, ∆ = 14 meV.

previous section, we obtain the following expressions for the total transition rates:

˜︂W ξ−

d (A+
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQa1(Q)|ũLG1 (Q/
√
ϵ)|2, (4.26a)

˜︂W ξ+

d (A+
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQb1(Q)|ũLG1 (Q/
√
ϵ)|2, (4.26b)

˜︂W ξ−

d (A−
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQ
(︁
a1(Q) + µa2(Q)

)︁
|ũLG1 (Q/

√
ϵ)|2, (4.26c)

˜︂W ξ+

d (A−
µ ) =

E2
gA

2
0d

2
∥

2ℏ3

∫︂ ∞

0

dQQ
(︁
b1(Q) + µ b2(Q)

)︁
|ũLG1 (Q/

√
ϵ)|2, (4.26d)
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Figure 4.6. Spectral density functions of brightened dark excitons, with parallel magnetic field |B∥| = 10
T, and no perpendicular magnetic field present. The cyan line is for counter-rotating radially polarised beam,
and purple dashed line for counter-rotating azimuthally polarised beam.

where

a1(Q) = (g∥B∥)
2 (∆ + νQ2 + γQ)

2
+ (γQ)2

(∆ + νQ2)2 (∆ + νQ2 + 2γQ)2
, (4.27a)

b1(Q) = (g∥B∥)
2 (∆1 + νQ2 + γQ)

2
+ (γQ)2

(∆1 + νQ2)2 (∆1 + νQ2 + 2γQ)2
, (4.27b)

a2(Q) = (g∥B∥)
2 γQ (∆ + νQ2 + γQ)

(∆ + νQ2)2 (∆ + νQ2 + 2γQ)2
, (4.27c)

b2(Q) = (g∥B∥)
2 γQ (∆1 + νQ2 + γQ)

(∆1 + νQ2)2 (∆1 + νQ2 + 2γQ)2
. (4.27d)

Using Eq. (2.14), we can do the change of variables and transform the integral to function

of energy, giving us the spectral functions:

˜︁gξ−

d,A+
µ
(E) = η a1

(︁
f1(E)

)︁(︃Md

ℏ2

)︃(︃
w2

0f1(E)
2

2ϵ

)︃
e−

w2
0f1(E)2

2ϵ , (4.28a)

˜︁gξ+

d,A+
µ
(E) = η b1

(︁
f2(E)

)︁(︃Md

ℏ2

)︃(︃
w2

0f2(E)
2

2ϵ

)︃
e−

w2
0f2(E)2

2ϵ , (4.28b)

˜︁gξ−

d,A−
µ
(E) = η

[︃
a1
(︁
f1(E)

)︁
+ µ a2

(︁
f1(E)

)︁]︃(︃Md

ℏ2

)︃(︃
w2

0f1(E)
2

2ϵ

)︃
e−

w2
0f1(E)2

2ϵ , (4.28c)

˜︁gξ+

d,A−
µ
(E) = η

[︃
b1
(︁
f2(E)

)︁
+ µ b2

(︁
f2(E)

)︁]︃(︃Md

ℏ2

)︃(︃
w2

0f2(E)
2

2ϵ
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e−

w2
0f2(E)2

2ϵ , (4.28d)

where

f1(E) =

√
2MdE

ℏ
, (4.29a)

f2(E) =

√︁
2Md(E − δ)

ℏ
. (4.29b)

Spectral functions for brightened dark excitons are in Fig. 4.5 for co-rotating cylindrically
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Figure 4.7. Spectral density functions of brightened dark excitons, with parallel magnetic field |B∥| = 10
T, and perpendicular magnetic field |B⊥| = 3 T. Panel (a) is for the K valley, and panel (b) for the K ′ valley.
The Zeeman interaction lowers the energy of the state in the K valley by about 400 meV, hence the negative
energies in the x-axis in panel (a), and, in contrast, increases the energy of the K ′ valley state by the same
amount, leading to positive energies in the x-axis in panel (b). The spectral functions are the same for all
cylindrically polarised modes.

polarised modes, and in Fig. 4.6 for counter-rotating modes. We have used |B∥| = 10

T for these figures. We have used the dark exciton effective mass of MoS2 Md = 1.5m0

[63], and also its latest measured bright/dark exciton splitting value ∆ = 14 meV [26], and

dark/gray exciton splitting δ = 0.6 meV, which is actually for WSe2, but there is not a clear

value for MoS2 [26], so we use this one. The ratio between the total transitions of bright-

ened dark states to the ones of bright states are about ˜︂W ξ−

b (A±
µ )/˜︂W ξ−

b (A±
µ ) ∼ 0.2%,

which is corroborated by the previous studies. Even though the amount of excitations is

really low, these dark excitons can be seen in the PL spectra, when thermal population

is taken into account in equilibrium, and the dark excitons can sometimes even dominate

the PL spectra at low temperatures [21, 22, 27].

The spectral functions are the same for co-rotating modes. For the counter-rotating

modes, as these spectral functions have an extra term, we see higher spectral function for

the counter-rotating radially polarised beam and lower it for azimuthally polarised beams,

compared to the co-rotating modes. This added or subtracted amount is about 5% of the

peak of co-rotating modes.

When the out-of-plane magnetic field is present, we have neglected the exchange inter-

action for brightened states. We now insert Eq. (2.27) into (4.7) and (4.8), and those into

(4.1), and integrate over all the frequencies and then over the Q-space, and get

˜︂W ξ
d (A

±
µ ) =

E2
gA

2
0d

2
∥

ℏ3

∫︂ ∞

0

dQQ|∆ξ
B(Q)|

2|ũLG1 (Q/
√
ϵ)|2, (4.30)

using Eq. (2.24), we obtain the spectral function

˜︁gξ

d,A+
µ
(E) = η |∆ξ

B

(︁
fξ(E)

)︁
|2
(︃
2Mb

ℏ2

)︃(︃
w2

0fξ(E)
2

2ϵ

)︃
e−

w2
0fξ(E)2

2ϵ , (4.31)
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where fξ(E) =
√︁

2Md(E − ξgdB⊥)/ℏ.

Spectral functions for theK andK ′ valley excitons are shown in Fig. 4.7, where the value

of dark exciton g-factor is the one for MoS2, namely gd = −6.5. These spectral functions

do not differ much from the ones obtained without the out-of-plane magnetic field, but now

the splitting between the energy states is caused by the Zeeman interaction and not the

valley exchange interaction.
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5. TIGHTLY FOCUSED CYLINDRICALLY POLARISED

FIELDS

So far, we have considered electromagnetic fields of form u(r)eik0z f̂ , which are not actu-

ally solutions to the Maxwell equation, as they do not satisfy the transversality condition.

A bona fide electromagnetic field with more complex amplitude pattern than a plane wave

has a longitudinal component in the electric and/or magnetic field [93]. This longitudi-

nal component is typically really weak for paraxial fields. However, tightly focused fields,

especially cylindrically polarised ones, can have a strong longitudinal component, which

can be useful in some applications. In this chapter, we are interested in the full vectorial

form of the magnetic field of cylindrically polarised modes, as with sufficiently intense light

beam, we could induce brightening of the dark excitons in TMDs.

5.1 Full vector solutions of tightly focused cylindrically polarised

light

To obtain the proper vectorial form of the electric and magnetic field, we follow the method

shown in Ref. [94], where the vector potentials of cylindrically polarised modes in Eq.

(3.26) get demoted into the role of Hertz potentials of the electromagnetic field [76, 77].

We obtain the TM (transverse magnetic) electric and magnetic field via following equa-

tions:

EA±
µ
= ∇× (∇×A±

µ ), (5.1a)

BA±
µ
=

1

c2
∂

∂t
(∇×A±

µ ), (5.1b)

and the TE (transverse electric) fields can be derived by exchanging the role of the electric

and magnetic field, and applying an extra minus sign between the TE electric field and

TM magnetic field, namely letting BTM ↦→ −ETE and ETM ↦→ BTE .

From Eq. (5.1a), we obtain the full vectorial expressions of the TM electric fields for

cylindrically polarised beams, given explicitly, in their unnormalised form, at the plane

z = 0, and t = 0, in the cylindrical coordinates {r, θ, z}, as follows:
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for the co-rotating radially polarised field,

Er
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A
= 0, (5.3a)
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for the co-rotating azimuthally polarised field,
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for the counter-rotating radially polarised field, and
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for the counter-rotating azimuthally polarised field.

We obtain the TM magnetic fields from in similar manner, using Eq. (5.1b):

Br
A+

R
= 0, (5.6a)
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A+

R
= − ir
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0

e
− r2

w2
0

(︃
k2w4

0 + 2r2 − 4w2
0
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, (5.6b)

Bz
A+

R
= 0, (5.6c)
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for the co-rotating radially polarised (electric) field,
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for the co-rotating azimuthally polarised (electric) field,
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for the counter-rotating radially polarised (electric) field, and
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for the counter-rotating azimuthally polarised (electric) field. The TE electric and magnetic

fields can be obtained by exchanging the roles of electric and magnetic fields, together

with an extra minus sign, as described above.

Fig. 5.1 shows the polarisation structure and the intensity distribution of the in-plane

magnetic fields |B∥|2 = |Bx|2 + |By|2 of the cylindrically polarised modes. The beam is

defined by the beam waist w0 = 1 µm and wavelength λ ≃ 700 nm. We have normalised

the magnetic field values with respect to the maximum values of the co-rotating radially

polarised mode, which has the highest values for the parallel magnetic fields, due to it not

having a longitudinal component, in contrast to other modes, as will be shown in Fig. 5.2.

Note that we see that the polarisation structure of the magnetic field is the opposite to

the one for the electric field, as magnetic field has to be perpendicular to the electric field

at every point, i.e., for radially polarised mode, we have azimuthally polarised magnetic

field and vice versa, which is expected as the electric and magnetic field have to be

perpendicular to each other at every point in space.

Fig. 5.2 shows the intensity distribution of the longitudinal component of the magnetic

field |B⊥|2 = |Bz|2, where the parameters used are the same as above. The values are
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Figure 5.1. In-plane magnetic field intensity distribution |B∥|2 = |Bx|2 + |By|2, for tightly focused
cylindrically polarised modes, and the polarisation profile of those modes. In panel (a) is for the co-rotating
radially polarised modes, and in panel (b) we have for the co-rotating azimuthally polarised mode. In panels
(c) and (d) we have in-plane magnetic fields for the counter-rotating radially and azimuthally polarised
modes, respectively. The values are normalised with respect to the maximum value of the co-rotating
radially polarised mode. Note that we see that the polarisation structure is the opposite to the electric field,
as magnetic field has to be perpendicular to the electric field at every point. The parameters that define our
beam are w0 = 1 µm, and wavelength λ ≃ 700 nm.

normalised with respect to the maximum value of parallel magnetic field for the co-rotating

radially polarised mode, shown in Fig. 5.1. We see that the co-rotating radially polarised

mode does not have longitudinal magnetic field, while the co-rotating azimuthally po-

larised beam has a strong magnetic field at its focus. For both counter-rotating modes, we

see a four-leaf clover structure for the magnetic field. The strongest longitudinal magnetic

fields are achieved for the co-rotating azimuthally polarised mode, whereas the counter-

rotating modes have considerably lower values.

In order to have a significant impact on the exciton states in TMD, such as brighten the

dark excitons, the magnetic field should be of the order of Teslas, as discussed in Chapter

4. To achieve such high values, the beam power would need to be really large, even for

tightly focused beam. This perhaps could be possible using ultrashort pulses, which

can achieve high peak power, while having considerably low average power. There is



41

Figure 5.2. Longitudinal magnetic field intensity distribution |B⊥|2 = |Bz|2, for tightly focused cylindri-
cally polarised electromagnetic modes. Panel (a) is for the co-rotating radially polarised mode, which has
no longitudinal component for the magnetic field, and in panel (b) we have for the co-rotating azimuthally
polarised mode, which has a strong magnetic field at its focus. In panel (c) and (d) we have the longitudinal
magnetic fields for the counter-rotating radially and azimuthally polarised modes, respectively, with four-leaf
clover structure for both modes. The values are normalised with respect to the maximum value of parallel
magnetic field for the co-rotating radially polarised mode. The magnetic field is substantially smaller for the
counter-rotating modes than for the co-rotating azimuthally polarised mode. The parameters that define our
beam are w0 = 1 µm, and wavelength λ ≃ 700 nm.

a damage threshold limit for the peak fluence of the beam, where the TMD becomes

damaged, thus the power of the beam cannot beam arbitrarily high [95]. This makes it

challenging to achieve this strong magnetic fields for the light beams, as the high beam

power combined with the tight focusing might lead to damaged TMD sample, thus making

experimental realisations impossible. Nevertheless, the magnetic fields for cylindrically

polarised modes are higher than for uniformly polarised light beams, and perhaps with

very short pulse these magnetic fields can be achieved, as using the magnetic field of

these beams would be really interesting prospect.

In order to simulate the LMI of TMD excitons for tightly focused cylindrically polarised light

beams, we would first need to redefine the vector potential of our light, as the paraxial

vector potential is not a good vector potential anymore, and is demoted into the role of

a Hertz potential, and the new vector potential for the TM fields would be ATF (r, t) =
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−
∫︁ t

0
dt′ ∇ × (∇ × APA(r, t

′)), where TF stands for tightly focused and PA stands for

paraxial. For the TE fields, the vector potential would be ATF (r, t) = ∇ × APA(r, t).

Also, the angular spectrum of our fields would need to be recalculated, as the beam is

not a sum of LG beams anymore, but a superposition of its partial derivatives.
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6. CONCLUSION AND OUTLOOK

In this thesis, we investigated the dynamics of exciton fine structure in monolayer TMDs

excited by cylindrically polarised light. We also looked at the case when an external

magnetic field is present, which, depending on the orientation of the magnetic field, can

change the exciton bands of TMD and also brighten the dark excitons to couple with light

in the case of the magnetic field being in the plane of the TMD.

We did the simulations for MoS2, due to its material characteristics being best known at

this moment. The formulas given here are, however, completely general and can be used

for any of the TMDs mentioned in this thesis, given that their characteristic parameters are

known. We used all four different modes of the cylindrically polarised, namely the co- and

counter-rotating radially polarised modes and the co- and counter-rotating azimuthally

polarised modes, all of which are the four basis vectors of the space spanned by the

transverse orthogonal linear polarisation vectors and the first order HG-modes.

The LMI of excitons with light was simulated by calculating the spectral functions of the

exciton bands as a function of energy, using the Fermi golden rule. The spectral function

of an exciton can be regarded as the distribution of the total rate of transition to the band,

giving the energy distribution of photons which will excite the exciton band. This will

give the indication how the particular TMD interacts with light and will also predict the PL

spectra of the TMD given that thermal dynamics are also taken into account.

First, we investigated the bright exciton interaction with the cylindrically polarised light

beams. The results indicated that the counter-rotating modes do not lead to different

spectral function compared to the uniformly polarised LG beams with |ℓ| = 1, reported

in Ref. [29]. Co-rotating modes, on the other hand, show selective photoexcitation of the

bright exciton bands: co-rotating azimuthally polarised light only excites transition into the

lower, parabolic particle like band of the two bright exciton bands, whereas for co-rotating

radially polarised light it is the other way around: it only excites transitions into the linear

light-like band, giving the possibility to tune exciton population in the bands by switching

between the co-rotating cylindrically polarised modes.

The bright exciton states start to exhibit different response to light when they are under

a magnetic field which is perpendicular to the TMD plane: the Zeeman interaction with

an out-of-plane magnetic field |B⊥| = 10 T split the two bands apart by a few hundred



44

meV. The magnetic field also made the parabolic band linear for small values of exciton

center-of-mass momentum, i.e., photon energies close to the band edge. This lead to sig-

nificant broadening of the parabolic band spectral function, for each cylindrically polarised

beam. Also, contrary to the case when B⊥ = 0, both co-rotating beams can now excite

transitions to both bands. For radially polarised beams, the ratio between the total tran-

sitions into the particle-like band and the light-like band was about 10%, and vice versa

for azimuthally polarised beam, for the case when |B⊥| = 10 T. This gives the possibility

to fine-tune the exciton population in these bands by using tunable out-of-plane magnetic

field on the TMD.

After investigating the dynamics of bright exciton states, we turned our attention on the

dark exciton states and their LMI when the in-plane magnetic field was present, which lead

to these states to couple with light. We used the in-plane magnetic field with magnitude

|B∥| = 10 T, and did not consider its direction, as it did not have an impact in our case. For

all cylindrically polarised modes, the brightened dark states had the total transition rate of

about 0.2% of the transition rate of the bright ones, leading to low amount of excitations

even with this considerably strong magnetic field. The result is similar to ones obtained in

experimental studies, and these low amount of excitations can be seen in the PL spectra,

when thermal population is taken into account in equilibrium, which can make the dark

excitons even dominate the PL spectra [21, 22, 27].

For the co-rotating modes, the spectral functions for brightened excitons were the same.

For the counter-rotating modes, these spectral functions had an extra term, which lowered

the spectral functions for the counter-rotating radially polarised beam and lowered it for

azimuthally polarised beams, compared to the co-rotating modes. This added term was

pretty small however, about 5% of the peak of co-rotating modes, and might be hard to be

seen in the absorption spectra in experiments, but might give the possibility to tune the

dark exciton population with this dependence on the cylindrical polarisation mode.

We finally looked at the case when also out-of-plane magnetic field was present. In

this case, we neglected the exchange interactions between the electrons and holes, and

only looked at the transitions in the single-valley of the Brillouin zone. In this case, the

spectral functions were the same for all cylindrically polarised modes, and the magnitude

of the spectral functions were similar to the case when out-of-plane magnetic field was

not present. In this case, Zeeman interaction with out-of-plane magnetic field |B⊥| = 3

T caused also an about 800 meV splitting between the dark exciton levels, similar to the

splitting caused by the exchange interaction.

Last, we looked at how tightly focused cylindrically polarised fields could be used in gen-

erating the magnetic fields needed for brightening the dark excitons. We showed that by

going from the paraxial to nonparaxial case, we need to demote our paraxial vector po-

tential to a Hertz potential, which gives solutions where strongly focused electromagnetic
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field with co-rotating azimuthally polarised electric field has a strong longitudinal magnetic

field component at its focus, as well as all field components becoming stronger when fo-

cused. However, to achieve magnetic fields of the order of Teslas, as needed to have a

noticeable effect on the exciton states, we would need to use an ultrashort pulsed beam

with high peak power, which could lead to damaged TMD sample [95]. Nevertheless, the

magnetic field of tightly focused cylindrically polarised light beams are larger than uni-

formly polarised ones, thus, in principle, using the magnetic field of these beams is an

interesting prospect.

Future work would be to reproduce these calculations with tightly focused beams, for

which the vector potential of the paraxial case is not a good vector potential anymore,

and is demoted into the role of a Hertz potential, and the calculations would need to be

done with the new vector potential, and because the field does not consist of LG-modes

anymore but its derivatives, we would also calculate new angular spectra and use them.
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APPENDIX A: EXCITON BASIS FUNCTIONS FROM

SECOND QUANTISATION LANGUAGE

The exciton band energies ES
Q and the electron-hole amplitudes in Eq. (2.1) are deter-

mined by the BSE [63, 69, 70]:

Ecv,k,QΛ
S
vc,Q(k) +

∑︂
v′c′k′

⟨vc,k,Q|K̂
e−h

|v′c′,k′,Q⟩ΛS
v′c′,Q(k

′) = ES
QΛ

S
vc,Q(k), (A.1)

where |nn′,k,Q⟩ = ĉ†n,k+Qĉn′,k|GS⟩, Ecv,k,Q = Ec,k+Q − Ev,k is the energy of free

electron-hole pair, and K̂
e−h

is the electron-hole interaction kernel consisting of both the

direct Coulomb interaction term as well as the exchange interaction term. The detailed

expressions of these terms are given in Ref. [63]

BSE equation is, in general, calculated numerically, with various methods, such as DFT

and GW -method [7, 63], and the calculations become more accurate when a large amount

of valence and conduction band basis states are used, with several hundred wavevectors

at each band, leading to computationally heavy calculations [69], which can lead to heav-

ily varying results, depending on the computational details [72].

To develop a semi-analytical model of exciton functions, the exciton states are calculated

at the K and K ′ valleys, with Q = 0, and those solutions are then taken as basis

functions. In the limit ||Q|| ≪ 1, the solutions then are given by intermixed states of

these basis states, given by the Hamiltonian of the system, which usually is approximated

with group theory and k · p-expansion, using the symmetries of the system. [63, 71]

For the lowest four exciton states, two bright and two dark, at small Q limit, namely
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||Q|| ≪ 1, the basis functions are given by single-valley pseudospinors [23, 24, 63]:

|ΨK
b,Q⟩ ≈ |eiQ·RΨK

b,0⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.2a)

|ΨK′

b,Q⟩ ≈ |eiQ·RΨK′

b,0⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.2b)

|ΨK
b,Q⟩ ≈ |eiQ·RΨK

d,0⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.2c)

|ΨK′

b,Q⟩ ≈ |eiQ·RΨK′

d,0⟩ ≡

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎠ (A.2d)

where |eiQ·RΨS
τ,0⟩ = 1√

Ω

∑︁
vc,k Λ

S
τ,vc,0(k)|vc,k,Q⟩, and R is the center-of-mass position

of the exciton at the plane of TMD.

The general form of the exciton bands are mixed states of the four basis functions given

above. The effective Hamiltonian is dependent on the external potentials present on the

system. For example, if external in-plane magnetic field is not present, bright and dark

states are decoupled, so that they can be factored out into two 2x2 effective Hamiltonians.

The effective Hamiltonian in various cases are given in Refs. [22–24, 29, 63]



55

APPENDIX B: CALCULATING THE EXPECTATION

VALUES OF THE INTERACTION HAMILTONIAN

By inserting Eq. (2.1) into (4.1), we get the following expression for the expecation value:

⟨ΨS
Q|ĤI |GS⟩ =

1

Ω

∑︂
vc

∑︂
k

Λ∗S
vc,Q(k)⟨GS|ĉc,k+Qĉ

†
v,kĤI |GS⟩. (B.1)

We now insert the resolution of identity (I =
∑︁

nk |ψn,k⟩⟨ψn,k|), where |ψn,k⟩ is the Bloch-

wavefunction of the quasiparticle in band n, on the left and right side of the interaction

Hamiltonian ĤI , leading to following expression:

⟨ΨS
Q|ĤI |GS⟩ =

1

Ω

∑︂
vck

∑︂
nk′

∑︂
mk′′

Λ∗S
vc,Q(k)⟨GS|ĉc,k+Qĉ

†
v,k|ψn,k′⟩

× ⟨ψn,k′ |ĤI |ψm,k′′⟩⟨ψm,k′′ |GS⟩. (B.2)

As ĉc,k+Qĉ
†
v,k are operators for different bands, they commute, we thus can calculate

ĉc,k+Q|ψn,k′⟩ = δc,nδk+Q,k′|GS⟩. Then, by definition, ĉ†v,k|GS⟩ = |ψv,k⟩, we thus have an

expression

⟨ΨS
Q|ĤI |GS⟩ =

1

Ω

∑︂
vck

∑︂
m,k′′

⟨GS|ψv,k⟩⟨ψc,k+Q|ĤI |ψm,k′′⟩⟨ψm,k′′ |GS⟩ (B.3)

Finally, using that ⟨GS|ψv,k⟩⟨ψm,k′′ |GS⟩ = δm,vδk,k′′ , we have the Eq. (4.3) in the main

text:

⟨ΨS
Q|ĤI |GS⟩ =

1√
Ω

∑︂
vc

∑︂
k

Λ∗S
vc,Q(k)⟨ψc,k+Q|ĤI |ψv,k⟩. (B.4)



56

APPENDIX C: ELECTRIC DIPOLE APPROXIMATION OF

THE INTERACTION HAMILTONIAN

The Bloch wavefunctions in the k-space |ψn,k⟩ are explicitly written as follows:

|ψn,k⟩ = eik·r|un(k)⟩, (C.1)

Using Eq. (C.1), our terms ⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ in Eqs. (4.4) and (4.5) have the following

form:

⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ = ⟨uc(k+Q)|e−i(k+Q)·reiK·rp̂eik·r|uv(k)⟩. (C.2)

By writing p̂ = −iℏ∇ [90], we can see that p̂eik·r|uv(k)⟩ = eik·r(ℏk+ p̂)|uv(k)⟩, leading

to term

⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ = ⟨uc(k+Q)|ei(K−Q)·r(ℏk+ p̂)|uv(k)⟩. (C.3)

We now insert the resolution of identity in r, namely I =
∫︁
L3 d

3r |r⟩⟨r|, to transform from

Bloch wavefunctions in the k-space into the ones in the direct space:

⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ =
∫︂
L3

d3r ei(K−Q)ψ∗
c,k+Q(r)(ℏk+ p̂)ψv,k(r), (C.4)

where ψ∗
c,k+Q(r) = ⟨uc(k + Q)|r⟩, and ψv,k(r) = ⟨r|uv(k)⟩. We use the following

expansion for the ψn,k(r), deriving from the k · p-approximation:

ψn,k(r) ∼
1

L3/2
un,0(r), (C.5)

where un,0(r) has the periodicity of the crystal lattice of TMD [92]. We then have

⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ =
1

L3

∫︂
L3

d3r ei(K−Q)·ru∗c,0(r)(ℏk+ p̂)uv,0(r). (C.6)

The integral above covers the whole volume of TMD. We will now replace it with an integral

over a single unit cell, and sum the contributions of all unit cells covering the whole volume
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of TMD. We do this by making the following substitutions:

r ↦→ r+Rb
n, (C.7a)

1

L3

∫︂
L3

d3r ↦→ 1

N

N∑︂
n=1

∫︂
l3

d3r

l3
, (C.7b)

where Rb
n = nRb, where Rb is the Bravais lattice vector. We then have

⟨ψc,k+Q|eiK·rp̂|ψv,k⟩ =
1

N

N∑︂
n=1

ei(K−Q)·Rb
n

∫︂
l3

d3r

l3
u∗c,0(r)(ℏk+ p̂)uv,0(r). (C.8)

We have the expression of Kronecker delta 1
N

∑︁N
n=1 e

i(K−Q)·Rb
n ∼ δK,Q. In the limit of

infinite sheet of TMD, we can transform the Kronecker delta into Dirac delta, δK,Q ↦→
δ(K−Q). We now revert the approximation of Eq. (C.5) to obtain

d3r

l3
u∗c,0(r)(ℏk+ p̂)uv,0(r) ∼

∫︂
l3
d3rψ∗

c,k+Q(r)(ℏk+ p̂)ψv,k(r)

=

∫︂
l3
d3r⟨uc(k+Q)|r⟩(ℏk+ p̂)⟨r|uv(k)⟩

= ⟨uc(k+Q)|ℏk|uv(k)⟩+ ⟨uc(k+Q)|p̂|uv(k)⟩

= ⟨uc(k+Q)|p̂|uv(k)⟩, (C.9)

as ⟨uc(k)|ℏk|uv(k)⟩ = ℏk⟨uc(k + Q)|uv(k)⟩ = 0, as the band wavefunctions are or-

thogonal with respect to band n. By the example of Ref. [29], if we expand uc(k + Q)

into series, and neglect the weakest term in the series, we arrive in the electric dipole

approximations of the interaction Hamiltonian terms:

⟨ψc,k|eiK·rp̂|ψv,k⟩ ∼ δ(K−Q)⟨ψc,k|p̂|ψv,k⟩. (C.10)


	Introduction
	Transition metal dichalcogenides
	Crystal structure of TMDs
	Excitons in TMDs
	Bright excitons in TMDs
	Bright exciton states in the presence of out-of-plane magnetic field
	Dark excitons in TMDs

	Brightening of spin-dark exciton states in TMDs
	Brightened dark exciton states without the presence of out-of-plane magnetic field
	Brightened dark exciton states in the presence of out-of-plane magnetic field


	Paraxial optical beams and polarisation structures
	Maxwell's equations and vector potentials
	Paraxial optical beams
	Angular spectrum of optical fields
	Cylindrically polarised fields

	Exciton-light interaction with cylindrically polarised beams
	Exciton interaction with cylindrically polarised light
	Spectral functions of bright excitons excited by cylindrically polarised light
	Spectral functions of dark excitons excited by cylindrically polarised light

	Tightly focused cylindrically polarised fields
	Full vector solutions of tightly focused cylindrically polarised light

	Conclusion and outlook
	References
	Exciton basis functions from second quantisation language
	Calculating the expectation values of the interaction Hamiltonian
	Electric dipole approximation of the interaction Hamiltonian

