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Abstract—In this paper, we propose a machine learning (ML)
aided physical layer receiver technique for demodulating OFDM
signals that are subject to very high Doppler effects and the
corresponding distortion in the received signal. Specifically, we
develop a deep learning based convolutional neural network
receiver system that absorbs proper two-dimensional received sig-
nal entities in time and frequency, while containing convolutional
neural network layers to efficiently and reliably demodulate the
bits — when properly trained — despite the substantial Doppler
distortion. Representative set of numerical results is provided, in
the context of 5G NR mobile communication network and corre-
sponding base-station demodulation performance for uplink. The
obtained results show that the proposed receiver system is able
to clearly outperform classical LMMSE receivers that operate
on subcarrier level and neglect the Doppler-induced intercarrier
interference (ICI). Additionally, the proposed ML receiver has the
advantage over ICI cancellation based receivers in terms of the
reference signal overhead. This paper provides the description of
the method and vast set of numerical results in 5G NR network
context.

Index Terms—5G NR, deep learning, Doppler, intercarrier in-
terference, machine learning, mobility, OFDM, reference signals

I. INTRODUCTION

The first many deployments of the fifth-generation (5G)
mobile networks have already taken place, providing ma-
jor performance enhancements compared to fourth-generation
(4G) Long Term Evolution (LTE) technology, in terms of the
network capacity, peak data rates, reliability and latency [1],
for example. Additionally, stemming already from the Interna-
tional Telecommunication Union (ITU) 5G requirements [2],
enhanced mobility support up to 500 km/h, or even beyond,
is one essential requirement. A good example of such high-
mobility use cases is the high-speed train (HST) scenario
studied, e.g., in [3]. Following the 3GPP guidelines for the
5G New Radio (NR) high-speed scenario specified in [4], it
was illustrated that signal impairments due to extreme mobility
conditions must be handled properly in order to support high
data rates and the possible underlying mission-critical railway
management functionalities.

One technical challenge related to high user equipment
(UE) mobility in orthogonal frequency division multiplexing
(OFDM) based networks, such as 5G NR, is the Doppler
phenomenon stemming from the time-varying mobile radio
channel [5], [6]. Specifically, the Doppler spread is known to
induce intercarrier interference (ICI) to the received signal,
challenging the data demodulation. One system engineering

approach to reduce or control the impact of the ICI is to design
the radio interface numerology, specifically the subcarrier
spacing (SCS), such that OFDM symbols are sufficiently
short compared to mobile channel coherence time. However,
assuming that a fixed cyclic prefix (CP) overhead is pursued,
this then directly means that the CP duration is also shorter
compared to the case of smaller SCS and longer symbols.
Short CP duration, in turn, reduces the feasible cell size
and time-dispersion tolerance in the system. An alternative
technical approach is to develop and deploy more advanced
receivers that can estimate and cancel the ICI along the
demodulation process, see, e.g., [3], [6], [7] and the references
therein. However, such approaches call for additional system
overhead in terms of properly designed reference signals while
also imposing increased receiver complexity.

In this article, we propose a trained machine learning
(ML) aided physical-layer receiver system as an alternative
to existing ICI cancellation based receivers, for efficiently
demodulating OFDM signals under the presence of severe
Doppler distortion. The ML receiver system contains cus-
tomized convolutional layers such that, when complemented
with proper training procedures, the receiver can efficiently
and reliably demodulate the received signal without any addi-
tional ICI-related reference signals. This allows for reducing
the system reference signal overhead, while at the same time
facilitating support for extreme Doppler spreads in the order
of 10% of the SCS, or even beyond. Therefore, the proposed
receiver scheme allows for supporting large UE velocities in
the network with smaller SCS values, compared to normal
system design trade-offs, which in turn helps in increasing the
cell size in the network.

The proposed scheme is evaluated with numerical results in
the context of 5G NR mobile networks, which specifically
explore the performance under varying Doppler distortion.
The results show that the ML-based receiver compensates the
effects of the ICI even under high Doppler distortion.

Notation: Matrices are represented with boldface uppercase
letters and they can consist of either real- or complex-valued
elements, i.e., X ∈ FN×M , where F stands for either R or C.

II. ML RECEIVERS – STATE-OF-THE-ART

ML-aided radio reception has already been considered in
several works, which have investigated implementing certain
parts of the receiver chain with learned layers. For instance,



channel estimation with neural networks has been studied
in [8], [9], while [10] utilizes convolutional neural networks
(CNNs) [11] for equalization. ML-based demapping has been
considered in [12], where it was shown to achieve nearly
the same accuracy as the optimal demapping rule, albeit with
greatly reduced computational cost. Some works also propose
augmenting the receiver processing flow with deep learning
components [13]–[15] and show improved performance in
comparison to conventional benchmark receivers.

A fully convolutional neural network based receiver, re-
ferred to as DeepRx, was proposed in [16], [17], and it was
shown to achieve high performance especially under sparse
pilot configurations. In addition to that, there are also other
ML-based solutions for learning larger portions of the receiver,
such as the work in [18], where channel estimation and
signal detection are carried out jointly using a fully-connected
neural network. There it is shown that the proposed ML-based
receiver outperforms the conventional receiver when there are
few channel estimation pilots or when the cyclic prefix is
omitted. In addition, it is shown to be capable of dealing
rather well with clipping noise, a type of hard nonlinearity. The
work in [19], on the other hand, applies CNNs to implement
a receiver that extracts the bit estimates directly from a time-
domain RX signal by learning the discrete Fourier transform
(DFT).

The prospect of learning the transmitter and receiver jointly
has also been investigated by various works [20]–[23]. Such
schemes do not assume any pre-specified modulation scheme
or waveform, but instead learn everything from scratch. Such
end-to-end learning has been shown to have potential to
outperform traditional heuristic radio links, e.g., by learning a
better constellation shape [22] or by learning to communicate
under a nonlinear power amplifier [23].

Despite the wide body of literature regarding ML-based ra-
dio receivers and the various demonstrations of their promising
performance, the effects of severe Doppler and corresponding
ICI have been largely omitted in the analysis thus far — to the
best of the authors’ knowledge. In this paper, we specifically
address this issue and describe a CNN-based receiver architec-
ture, inspired by [16], that is capable of accurate and reliable
OFDM signal demodulation under heavy Doppler-induced ICI
distortion.

III. SYSTEM MODEL

Figure 1 depicts the general framework of the considered
receiver architecture. The upper part of Fig. 1 illustrates a
conventional OFDM receiver, highlighting the parts replaced
by the learned CNN receiver in this work. Let us first define
the received signal model under time-varing multipath channel.
Using baseband equivalents, it can be expressed as

y(n) =

M−1∑
m=0

hm,nx(n−m) + w(n), (1)

where hm,n denotes the time-varying M -path channel impulse
response, x(n) is the transmit waveform, and w(n) is the

noise-plus-interference signal. The ICI stems from the fact
that hm,n varies also within each OFDM symbol (i.e., with
respect to the time index n), and is commonly expressed in
frequency domain, i.e., at subcarrier level.

To this end, after CP removal, the received time-domain
signal is converted to frequency domain using a fast Fourier
transform (FFT). Then, the ith received OFDM symbol can
be expressed as

Yi = HiXi +Ni, (2)

where Yi ∈ CND×1 and Xi ∈ CND×1 are the received and
transmitted OFDM symbols in frequency domain, respectively,
Hi ∈ CND×ND is the frequency-domain channel matrix
containing also the effects of the ICI, Ni ∈ CND×1 is the
noise-plus-interference signal, and ND denotes the number
of allocated subcarriers. Specifically, Hi is a banded matrix,
where the non-zero off-diagonal elements stem from ICI.

In a conventional receiver, the demodulation reference sig-
nals (DMRSs) are extracted from the pilot-carrying OFDM
symbols in Yi for channel estimation, as illustrated in Fig. 1,
after which the signal is equalized and the soft bits are
extracted. In this work, we consider the widely-used linear
minimum mean square error (LMMSE) receiver as the baseline
or reference, which performs single-tap equalization for each
resource element (RE). For a description of such a receiver,
see, e.g., [16]. As a final outcome, the receiver will provide the
so-called log-likelihood ratios (LLRs) for each data-carrying
RE.

More complex ICI estimation and cancellation based re-
ceivers, such as those in [3], [6], [7], involve also the esti-
mation of the non-diagonal entries of the channel matrix Hi

which can be facilitated by specifically designed additional
reference signals that allow for ICI estimation [6], [24].

IV. PROPOSED METHOD AND DATA GENERATION

The goal of the proposed ML-based receiver is to detect the
bits from the Doppler distorted RX signals collected during
a TTI. A high-level depiction of the receiver architecture is
shown in the lower part of Fig. 1. As the Doppler distortion
affects the nearby subcarriers, we utilize 2D convolutional
layers with residual connections that follows residual network
(ResNet) structure [16]. Such 2D CNNs are generally tasked
to learn features on small regions of the input. The receptive
field of the complete 2D CNN structure is chosen such that
it can observe the neighboring subcarriers in both frequency
and time. Furthermore, as the Doppler distortion affects nearby
subcarriers, we assume that trained convolutional filters with
suitable receptive fields can mitigate the ICI. Our assumption
is that the CNN, in addition to estimating the channel, can
mitigate the distortion caused by the Doppler spread even in
high mobility cases.

The inputs of the ML-based receiver are the Doppler-
distorted RX signals and the raw least squares DMRS channel
estimates, whose real and imaginary values are concatenated
along the third input dimension. The raw channel estimate
array contains zeros for the data-carrying REs. Thus, the input
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Fig. 1. General depiction of a conventional OFDM receiver (top), with the learned parts of the receiver being highlighted. The structures of the learned receiver
and of an individual pre-activation ResNet block are also illustrated.

TABLE I
SIMULATION PARAMETERS FOR TRAINING AND VALIDATION

Parameter Value Randomization

Channel model TDL-A to TDL-E Uniform distribution

Center frequency 2.6 GHz None

SNR 0 dB – 35 dB Uniform distribution

Doppler shift 0 Hz – 1500 Hz Uniform distribution

Channel bandwidth 5 MHz None

Number of subcarriers (ND) 312 subcarriers None

FFT size (N ) 512 None

Subcarrier spacing 15 kHz None

OFDM symbol duration 71.4 µs None

TTI length (Nsymb) 14 OFDM symbols None

DMRS configuration 2 symbols per TTI None

Modulation scheme 64-QAM None

to the network is a real valued array Z ∈ RND×Nsymb×4.
The overall ML receiver architecture is illustrated in Fig. 1,
being composed of 2D convolutional pre-activation ResNet
blocks. The output of the learned receiver is a real-valued array
L ∈ RND×Nsymb×NB consisting of the estimated LLRs, where
Nsymb is the number of OFDM symbols per TTI (typically 14
in 5G NR networks), and NB is the number of bits per RE.
The bit estimates are obtained by feeding the LLRs through
the sigmoid-function.

A. Training and Data Generation

In order to generate training and validation data, we simu-
lated a 5G physical uplink shared channel (PUSCH) link with
Matlab’s 5G Toolbox [25], using the parameters specified in
Table I. Since the focus of this work is on the ML receiver’s
performance under severe Doppler shifts, we generated one
large dataset for training with random Doppler shifts in the
range of 0 to 1500 Hz. This training with a large Doppler
variability is done especially in order to learn a general
solution for the ICI. The dataset utilizes randomly chosen
channel models among TDL-B, TDL-C and TDL-D [26]

as well as randomly chosen SNR in the range of 0 to 35
dB, the total size thereof being 150 000 TTIs. The training
is performed based on the binary cross entropy (CE) loss
between the estimated bits and the transmitted bits, similar
to [16]. The CE loss is defined as

CE(θ) , − 1

#DB
∑

(i,j)∈D

B−1∑
l=0

(
bijl log

(
b̂ijl

)
(3)

+(1− bijl) log
(
1− b̂ijl

))
where θ represents the set of trainable of parameters, D
denotes the time and frequency indices of data-carrying REs,
#D is the total number of data-carrying REs, B is the
number of bits per resource element, and b̂ijl is the receiver’s
estimate for the probability that the bit bijl is one. The chosen
stochastic gradient descent (SGD) algorithm in this work is
the widely used Adam optimizer, which updates the weights
of the network based on the binary CE loss in (3).

For validation, we generated separate datasets for each
250 Hz interval in the same range as in training. The separate
datasets with varying the maximum Doppler shift allow us
to observe the performance for varying levels of Doppler
distortion up to 1500 Hz, which corresponds to 10% of the
SCS, while representing each Doppler shift interval with equal
number of samples. These datasets utilize the channel models
TDL-A and TDL-E, while the SNRs are in uniform grid over
the specified range with 2.5dB steps, each dataset consisting
of 32 000 TTIs.

V. PERFORMANCE EVALUATION

The performance of the proposed ML-based receiver
(DeepRx) is evaluated with varying levels of maximum
Doppler shift, representing varying degrees of UE mobility.
We consider uncoded bit error rate (BER) as the main per-
formance criterion. The results of the ML-based receiver are
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Fig. 2. Uncoded BER performance of the ML-based receiver in comparison with benchmarks, with Doppler shift interval of (a) 500 to 750 Hz and (b) 1250
to 1500 Hz.

compared with two baseline receivers: (i) LMMSE equaliza-
tion with least squares (LS) channel estimation based on two
DMRS symbols per TTI and (ii) LMMSE equalization with
a known channel. Note that the ML-based receiver always
estimates the channel based on the two DMRS pilots. The
figures show also the BER of LMMSE with a known channel
and 0 Hz Doppler shift for reference, representing essentially
the lower bound for the achievable BER.

Figure 2 shows the BER performance with Doppler shift
intervals of 500 to 750 Hz and 1250 to 1500 Hz, corresponding
to the rather extreme velocities up to 310 and 620 km/h,
respectively. It is evident that with both cases, the proposed
ML-based receiver achieves considerably higher performance
than the benchmark LMMSE receivers. This clearly highlights
that the ML-based receiver learns to mitigate the ICI very
efficiently. Especially the latter case represents already very
extreme mobility, demonstrating that the ML-based receiver
can ensure reliable detection even with very high UE speeds.

Next, let us investigate the performance of the receiver
with varying Doppler shift while considering a specific BER
value. To this end, Fig. 3 shows the SNR required to achieve
uncoded BER values of 10% and 5% with varying Doppler
shift intervals. At low Doppler shift values of 0 to 250 Hz, all
of the considered receivers have almost equal performance,
due to low Doppler distortion in the signals. However, a
difference in performance between the proposed receiver and
LMMSE with known channel can already be observed with a
Doppler shift in the order of 350 Hz, when the BER target is
5%. This difference increases considerably when the Doppler
shift is increased. It is also noteworthy that the LMMSE with
two pilots is not able to achieve the BER target in most of
the considered cases, even though the DeepRx is also based on
the two pilots. Altogether, the results show that DeepRx learns
high resilience against the ICI even under the most severe
nonlinear distortion that we considered, despite the fact that

only ordinary sparse reference signals are considered.

VI. CONCLUSIONS

In this paper, we presented a ML-based receiver architec-
ture, which is capable of learning a highly accurate detection
scheme for extreme mobility scenarios where the received sig-
nal is subject to severe intercarrier interference. In particular,
we equip the ML-based receiver with 2D convolutional layers,
which allow it to observe and compensate for the effects of
intercarrier interference in frequency domain even under high
Doppler shifts. This is demonstrated by the provided numerical
results, where the proposed ML-based receiver is shown to
outperform the conventional baseline receivers with a clear
margin when considering a typical 5G NR uplink scenario
with Doppler shifts as high as 10% of the subcarrier spacing.
This indicates that the proposed ML-based receiver archi-
tecture learns high resilience against the detrimental effects
of extreme mobility and the involved interference — despite
it utilizing only ordinary sparse reference signals with low
system overhead.
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