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Abstract 20 

This review examines the acid and ferric sulfate bioleaching of uranium from low grade ores. The review 21 

traces back the progression of the technology from the time the role of microorganisms was recognized 22 

in the 1950’s and 1960’s. Some past and present uranium mining operations with active or potential 23 

microbial contribution are summarized. Experimental techniques and laboratory bioleaching experiments 24 

are described. Choice microorganisms have been iron- and sulfur-oxidizing acidophiles, comprising 25 

bacteria and archaea with mesophilic and thermophilic temperature ranges. Uranium is bioleached from 26 

ores in acidic ferric sulfate lixiviant. Ferric iron oxidizes tetravalent uranium to the hexavalent form and is 27 

thereby reduced to ferrous iron in this redox reaction. Microorganisms in the bioleaching process oxidize 28 

ferrous iron to the ferric form and thus regenerate ferric sulfate. Iron oxidation requires oxygen as the 29 

electron acceptor in the leach solution. Acidity ensures that ferric iron is soluble in the lixiviant and 30 

protons increase the solubilization of the oxidized, hexavalent uranium. Ancillary sulfide minerals such as 31 

pyrite enhance the bioleaching because their oxidation releases ferrous iron and reduced sulfur 32 

compounds for biological ferric iron and sulfuric acid generation. The main mining engineering approaches 33 

used for uranium leaching are heap, dump, stope, in situ, and in-place leaching. The efficiency of uranium 34 

bioleaching is affected by a number of mineralogical, physicochemical, microbial and process factors. 35 

Bioinformatics and synthetic biology are progressing the research on bioleaching microorganisms but 36 

these developments have not been materialized in the industrial practice of uranium mining. New 37 

applications of uranium bioleaching may focus increasingly on deposits where other products such as rare 38 

earth elements or base metals can be recovered in addition to uranium. 39 
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1. Introduction 68 

Uranium is an important strategic element, mostly used as enriched 235U for nuclear power generation 69 

and nuclear arsenal. Depleted uranium is used as ballast (density 19.1 g cm-3) in vessels and in some 70 

instances as aircraft counterweights, in armor and as penetrators in ammunition (Betti, 2003; Bleise et al., 71 

2003). The quantity of uranium in the Earth’s crust varies considerably between different rock types, while 72 

the average level of uranium is approximately 2.7 mg kg-1 (Majumder and Wall, 2017), making it a more 73 

abundant element than for example gold or silver.  74 

 75 

Uranium occurs largely as oxide and silicate minerals and in phosphate rocks in association with many 76 

different metals in the Earth’s crust. The most common mineral of economic importance is uraninite (i.e., 77 

the black botryoidal form pitchblende), ideally UO2, which occurs in a variety of geological settings. Over 78 

200 minerals containing uranium have been described in the literature but approximately 20 of them are 79 

of economic importance (Edwards and Oliver, 2000; Pohl, 2005; Pownceby and Johnson, 2014; Bhargava 80 

et al., 2015). Table 1 lists uranium minerals in ores that have been beneficiated or tested for bioleaching. 81 

The general formula of uranium content in oxide minerals is often presented as U3O8 (triuranium 82 

octoxide). U3O8 is the main component (70-90% w/w) in yellow cake, which is a composite of uranyl 83 

hydroxide (UO2(OH)2nH2O, uranyl sulfate (UO2)x(SO4)y(OH)2(x-y), sodium p-uranate (Na6U7O24), uranyl 84 

peroxide (UO4), uranium trioxide (UO3) and minor amounts of various other uranium oxides (Hausen, 85 

1998). Yellow cake is the stable chemical and physical form of uranium handled by mills and refineries.  86 

 87 

The mining of uranium ores over the years has resulted in progressive exhaustion of high-grade 88 

uranium reserves (Mudd, 2009). As the grade of uranium in ores is on decline, the industry is looking for 89 

alternative processes that can be used to recover uranium from low-grade or complex ores that are 90 

difficult to process with existing techniques. Bioleaching may be a suitable alternative when low-grade 91 

and complex ores are uneconomical for conventional processes (Kaksonen et al., 2018; Yang et al., 2019). 92 

With declining ore grades, the concomitant or sequential leaching of uranium and base metals (Lecomte 93 
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et al, 2014), rare earth elements (Nancucheo et al. 2017), thorium (Desouky et al., 2016) and phosphate 94 

(Mäkinen et al., 2019) has gained recent attention. 95 

 96 

Uranium is usually finely disseminated in ore bodies, making the leaching the most common process 97 

to recover it instead of ore dressing for concentrate production. Many uranium ores processed via 98 

bioleaching have contained significant amounts of pyrite and other Fe-sulfides, which are oxidized to 99 

acidic ferric sulfate. The hydrolysis of ferric iron in bioleach solutions releases protons, which together 100 

with biogenic sulfuric acid contribute to satisfy acid demand. Alkaline accessory minerals (e.g., carbonates 101 

and some silicates) may have high acid consumption, which can be neutralized with sulfuric acid titration 102 

in the pre-leaching stage. Carbonate bearing uranium can be processed with alkaline leaching (pH ~11) 103 

that involves, in principle, sodium bicarbonate and sodium carbonate (soda) solutions to precipitate 104 

sodium diuranate Na2U2O7 (Gow and Ritcey, 1969; Butler, 1972). Alkaline leaching is not usually practiced 105 

with ores that have pyrite or other sulfide phases as main minerals because of their high carbonate 106 

consumption. Some studies have addressed the alkaline bioleaching (e.g., Fekete et al., 1980; Zakó-Vér et 107 

al., 1980; Cecal et al., 2000), but research in this area has been scarce. Lacking documented data, microbes 108 

seem to have no known, specific role in the process and the prospect for alkaline bioleaching is in doubt.  109 

 110 

The solubility of uranium – and other metals – is influenced by changes in pH and redox conditions 111 

which are subject to microbial activity. In addition, the formation of metal-complexing ligands such as 112 

organic acids formed by heterotrophic microorganisms including actinomycetes and fungi enhances the 113 

solubility of uranium as well as other metal and metalloids (Burgstaller and Schinner, 1993; Hefnawy et 114 

al., 2002; Mishra et al., 2009; Patra et al., 2011; Abhilash and Pandey, 2013c; Anjum et al., 2015; Abdulla 115 

et al, 2017; Amin et al., 2018; Ghazala et al., 2019; Harpy, 2019). However, to our knowledge heterotrophic 116 

bioleaching has not been practiced in commercial scale and the role of heterotrophs in acid bioleaching 117 

involving sulfuric acid and ferric iron is low because the available organic substrates are mainly limited to 118 

small quantities of residual chemicals from solvent extraction and carry-over soil borne organic 119 

compounds as well as those excreted by autotrophic acidophiles in the leach circuit (Johnson and Roberto, 120 

1997).  121 

 122 

The objective of this review is to examine the current knowledge of the acid bioleaching of uranium 123 

ores. Historical perspectives of past operations are discussed as they have provided impetus to test and 124 

develop the technology since the 1950’s and 1960’s. This review underscores the link between 125 

experimental approaches in the bioleaching of uranium ores and the underlying biology of 126 

microorganisms. The bioleaching mechanisms and the roles of microorganisms in acid- and ferric sulfate-127 

based processes are appraised in the light of the past and recent advances published in the literature. This 128 

review also covers the unique traits and requirements for function of microorganisms in bioleaching 129 

processes, with emphasis on tolerance to toxic metals, low pH, and the ability to oxidize reduced sulfur 130 

compounds and ferrous iron, which are their only substantially available energy sources in uranium 131 

bioleaching operations.  132 

2. Methods 133 

This review is based on an in-depth literature search and review of peer review journal papers 134 

supplemented with reports, conference publications and information available on company web sites 135 

when required. The review covers publications that span over 70 years, from 1950 to 2020. Peer reviewed 136 

literature was searched through data bases and search engines such as Web of Science and Google Scholar 137 

using keywords including, but not limited to biomining, biohydrometallurgy, bioleaching, ferric leaching, 138 
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acidophilic, uranium, and decommissioning. The quality of the selected literature was ascertained by 139 

carefully analyzing the content, and publications with relevant information were cited. The information 140 

gathered from the literature was analyzed and organized to discuss acid and ferric sulfate bioleaching of 141 

uranium ores, effective microorganisms and their underlying biology, experimental approaches, and 142 

examples of commercial uranium mines and potential microbial involvement. Bench-scale feasibility and 143 

optimization experiments were reviewed to discuss mineralogical, physicochemical and microbiological 144 

factors that affect uranium bioleaching. Additionally, approaches for the control of microbial processes 145 

and uranium contamination after mine closure were briefly discussed.  146 

3. Mechanisms of acid and ferric sulfate bioleaching of uranium  147 

The choice of lixiviant for uranium leaching depends on the valence of the uranium, the composition 148 

of the matrix, the solubility of contaminants, economic feasibility, the mill tailings management and other 149 

environmental considerations. Several chemical oxidants have been tested for the oxidation of uranium 150 

in minerals to the hexavalent form in order to maximize the acid leaching (e.g., Haque and Ritchie, 1982). 151 

In the ferric sulfate leaching, these oxidants also regenerate ferric iron if it has been reduced to ferrous 152 

iron by contact with U4+ and sulfide minerals in the ore. Bioleaching-based processes with acidic ferric 153 

sulfate and iron- and sulfur-oxidizing bacteria do not require additional chemical oxidants such as chlorate 154 

(NaClO3), pyrolusite (MnO2), or hydrogen peroxide (H2O2) to achieve adequate ferric iron regeneration 155 

rates (Muñoz et al., 1995a, 1995b, 1995c; Nemati and Webb, 1996; Venter and Boylett, 2009).  156 

 157 

Both tetravalent and hexavalent U occur as admixtures in many uranium ores (examples given in Table 158 

1). Hexavalent uranium (U6+ as in paraschoepite UO3xH2O) is solubilized to uranyl ion (UO2
2+) in dilute 159 

sulfuric acid without the need of an oxidant (Reaction 1):  160 

 161 

UO3 + 2H+ → UO2
2+ + H2O  (1) 162 

 163 

Tetravalent uranium is not soluble in acidic sulfate-rich solutions. Its dissolution requires the oxidation 164 

of the tetravalent uranium to the hexavalent form (Reaction 2). This is greatly enhanced with a chemical 165 

oxidant such as Fe3+ leading to the formation of uranyl ions (Reaction 3):  166 

 167 

2UO2 + O2 + 4H+ → 2UO2
2+ + 2H2O  (2) 168 

 169 

UO2 + 2Fe3+ → UO2
2+ + 2Fe2+ (3) 170 

 171 

Acidophilic Fe- and S-oxidizing microorganisms catalyze uranium leaching by generating soluble ferric 172 

iron and sulfuric acid from Fe2+ (Reaction 4), and reduced sulfur compounds such as elemental S (Reaction 173 

5), respectively (Figures 1 and 2): 174 

 175 

4Fe2+ + O2 + 4H+ → 4Fe3+ + 2H2O  (4) 176 

 177 

2S0 + 3O2 + 2H2O → 2SO4
2+

 + 4H+ 
  (5) 178 

 179 

The major steps in uranium bioleaching are the lixiviant production and its contact with the ore for 180 

the solubilization of uranium. Both steps can be improved through testing and optimization. In the two-181 

stage bioleaching (or indirect bioleaching) the generation of bioleach solutions (acidic ferric iron-based 182 

lixiviants) is separated from contact with the ore. The biological oxidation of Fe2+ and the regeneration of 183 
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Fe3+ in sulfuric acid-containing solutions requires the supply of dissolved O2 and CO2 for the microbes. 184 

 185 

In addition to the ferric-iron mediated oxidation, tetravalent uranium can also be oxidized directly to 186 

the hexavalent form by Acidithiobacillus ferrooxidans (Reaction 6) (DiSpirito and Tuovinen, 1981). 187 

DiSpirito and Tuovinen (1982a, 1982b) demonstrated O2 uptake and CO2 fixation by washed cell 188 

suspensions of A. ferrooxidans with uranous sulfate [U(SO4)2] as the substrate in the absence of iron. 189 

 190 

 2U4+ + O2 + 2H2O → 2UO2
2+ + 4H+ (6)   191 

 192 

Metallosphaera prunae, a thermophilic acidophilic archaeon first isolated from a smoldering refuse 193 

pile of a uranium mine (Fuchs et al., 1995), has been reported to solubilize U3O8 to the soluble hexavalent 194 

form (Mukherjee et al., 2012). The octaoxide is a mixture of tetravalent and hexavalent uranium. It is not 195 

clear whether biomolecules are involved in the direct oxidation of U4+ to U6+ or whether it is indirect 196 

chemical action. The facultative anaerobe Thiobacillus denitrificans has been shown to oxidize uraninite 197 

as an electron donor (coupled with nitrate consumption) and at least c-type cytochromes seem to be 198 

involved (Beller 2005, Beller et al., 2009). These findings come from pure culture experiments with limited 199 

uranium amounts and it is inexplicable to perceive their significance to the bioleaching of uranium ores.  200 

 201 

Sulfuric acid is the most widely used lixiviant for uranium leaching and dissolved uranium forms 202 

soluble uranyl sulfate complexes (Tuovinen and Bhatti 1999; Bhargava et al., 2015). In acid uranium 203 

leaching systems where bacteria may be involved, iron is invariably in the solution. The source of dissolved 204 

Fe is the sulfidic accessory minerals and silicates which may dissolve partially or completely with bacterial 205 

action and acid attack. The rate of the biological oxidation of Fe2+ is considerably faster (approximately 206 

105-106 times) than that of the chemical oxidation at pH values 2 (Lacey and Lawson, 1970; Meruane and 207 

Vargas, 2003; Rao et al., 1995).  208 

 209 

The formation of secondary mineral phases such as jarosite-type precipitates and elemental S layers 210 

is inevitable in bioleaching processes. The solubility of the oxidant Fe3+ is greatly influenced by pH, iron 211 

concentration, temperature and ionic composition of the leach solution and the precipitation products 212 

are strongly dependent on solution conditions. Ferric-iron in acid, sulfate-rich solutions forms mainly 213 

jarosite type precipitates (AFe3(SO4)2 (OH)6 where A is a structural monovalent cation, usually Na, K, NH4, 214 

H3O or a 0.5 equivalent of a divalent metal) at ambient temperatures and pressures and at pH values <3.5 215 

(Reaction 7). Depending on the concentration and composition of monovalent cations in bioleaching 216 

systems, the precipitates occur as solid solutions of potassium jarosite, ammoniojarosite, and 217 

natrojarosite, often with hydronium jarosite making up for the charge deficiency (Jones et al., 2014, 2018). 218 

End members of jarosite minerals are not found in leaching systems or mine tailings. For the first three 219 

jarosite precipitates, their formation involves the highest affinity for K+ followed by NH4
+ and Na+ (Gramp 220 

et al., 2008). 221 

 222 

3Fe3+ + A+ + 2SO4
2- + 6H2O → AFe3(SO4)2(OH)6 + 6H+ (7) 223 

 224 

In the absence of monovalent alkali ions, the hydrolysis of Fe3+ in acidic sulfate-rich environments at 225 

ambient temperatures also produces Fe(III)-hydroxysulfate complexes, of which poorly crystallized 226 

schwertmannite (Fe8O8(OH)6SO4) is the predominant form at pH 2 to 3.5 (Bigham and Nordstrom, 2000) 227 

(Reaction 8).  228 

 229 

8Fe3+ + SO4
2- + 14H2O → Fe8O8(OH)6(SO4) + 22H+ (8) 230 

 231 
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Hydrolysis of ferric iron in sulfate-rich solutions at higher pH values initially leads to poorly crystallized 232 

ferrihydrite and acid formation (Bigham and Nordstrom, 2000) (Reaction 9).  233 

 234 

5Fe3+ + 12H2O → Fe5HO84H2O + 15H+  (9) 235 

 236 

With time, ferrihydrite is increasingly converted to well crystallized goethite (α-FeOOH) (Bigham et al. 237 

1996a, 1996b; Bigham and Nordstrom, 2000) (Reaction 10):  238 

 239 

Fe3+ + 2H2O → FeOOH + 3H+  (10) 240 

 241 

In bioleaching systems without pH control, jarosite-type precipitates may accumulate on mineral 242 

surfaces, decreasing the level of dissolved Fe3+ that acts as an oxidizing agent. The precipitation creates 243 

diffusion barriers for fluxes of reactants and products on mineral surfaces and impacts negatively the 244 

leaching rates of mineral surfaces (Nemati et al., 1998; Stott et al., 2000; Watling, 2006; Petersen and 245 

Dixon, 2007; Pradhan et al., 2008; Abhilash and Pandey, 2013b, 2013d). Sorption of hexavalent uranium 246 

on Fe-precipitates can negatively impact the concentration of dissolved uranium and affect adversely the 247 

movement of reactants and products on mineral surface (Vuorinen et al., 1986; Duff et al. 2002). 248 

Precipitates can also physically occupy space within a heap or an in situ fractured ore body and block 249 

solution flow paths or pipelines, pumps and valves. Thus, uncontrolled ferric iron precipitation can create 250 

major challenges to bioleaching operations. A separate ferric iron regeneration step in the leach circuit 251 

(Nurmi et al., 2009, 2010; Kaksonen et al., 2014a, 2014b, 2014c) could, therefore, also facilitate the 252 

removal of excess iron before contact with uranium ore.  253 

 254 

Oxidative dissolution of U4+ is favored at high Fe3+/Fe2+ ratios, which largely determine the redox 255 

potential of the leach solution. The redox potential should be above +400 mV vs. standard hydrogen 256 

electrode for efficient uranium oxidation by ferric iron (Muñoz et al., 1995a, 1995b, 1995c). In addition to 257 

UO2, Fe3+ in acid solution oxidizes sulfide minerals (Reaction 11), releasing Fe2+, and SO4
2- and H+, shown 258 

as an idealized example for pyrite: 259 

 260 

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2- + 16H+ (11) 261 

 262 

Pyrite is a common sulfide mineral in many uranium ores and constitutes a natural source of ferric 263 

sulfate and acidity via microbial oxidation. Pyrrhotite (Fe(1-x)S, x = 0-0.2) is also present in many sulfidic 264 

ores and is readily oxidized in acid leaching systems (Reaction 12). Pyrrhotite is Fe-deficient and is oxidized 265 

chemically faster than pyrite, up to two orders of magnitude by some accounts (Nicholson and Scharer, 266 

1994). Partial oxidation of pyrrhotite can also produce elemental S or sulfur-enriched pyrrhotites (Janzen 267 

et al., 2000), all of which can be oxidized in bioleaching systems (Reaction 12).  268 

 269 

Fe1-xS + (2-0.5x)O2 + xH2O → (1-x)Fe2+ + SO4
2- + 2xH+ (12) 270 

 271 

Pyrrhotite is also dissolved reductively under anaerobic conditions in acid solutions (Chiriţȃ and 272 

Rimstidt, 2014) (Reactions 13 and 14).  273 

 274 

Fe(1-x)S + 2(1-x)H+ → (1-x)Fe2+ + (1-x)H2S + xS0  (13) 275 

 276 

FeS + 2H+ → Fe2+ + H2S   (14) 277 

 278 
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The subsequent reaction with Fe3+ can form additional elemental sulfur (S0) and polysulfides (Sn-S-S-279 

Sn), which may precipitate on mineral surfaces. Sulfur-oxidizing bacteria are an integral part of the 280 

microbiome in uranium bioleaching systems. Bioleaching studies have addressed their role in sulfur 281 

oxidation by using A. thiooxidans in mixed inocula (e.g., Abdollahy et al., 2011; Umanskii and Klyushnikov, 282 

2013; Li et al., 2017). Pyrrhotite oxidation can generate thiosulfate (S2O3
2-) and polythionates (e.g., 283 

tetrathionate S4O6
2- and trithionate S3O6

2), which are corrosive in contact with iron and steel structures 284 

(Newman et al., 1982; Horowitz, 1983; Abd Elhamid et al., 2001; Yonezu et al., 2013). Acid ferric sulfate 285 

solutions are also corrosive and thus the selection of corrosion-resistant materials for leach circuits is 286 

particularly important.  287 

4. Bioleaching in uranium mines  288 

4.1 Bioleaching microorganisms 289 

Historically, acidophilic iron-oxidizing bacteria were enriched and isolated from metal and coal mine 290 

impacted water, sediment, and tailings samples and recognized to contribute to acidity of coal mine 291 

drainage (Colmer et al., 1950; Leathen et al., 1953a, 1953b; Temple and Delchamps, 1953). Iron-oxidizing 292 

acidophilic bacteria obtained from coal mine samples were named as Thiobacillus ferrooxidans (renamed 293 

Acidithiobacillus (A.) ferrooxidans in the late 1990’s) (Temple and Colmer, 1951). Sulfur-oxidizing bacteria 294 

were also described (Leathen et al., 1953a) and identified as Thiobacillus (T.) thiooxidans (renamed 295 

Acidithiobacillus thiooxidans). However, the original description of A. thiooxidans dates back to the 1920’s 296 

as elaborated by Harrison (1988). Ferrobacillus ferrooxidans was a novel bacterial isolate that could only 297 

oxidize Fe2+ but not inorganic S-compounds (Leathen et al., 1956). It was subsequently renamed as T. 298 

ferrooxidans (and later as A. ferrooxidans; Kelly and Wood, 2000) when it was recognized that its lack of 299 

growth on sulfur compounds was due to poorly designed experimental conditions (Kelly and Tuovinen, 300 

1972). Ferrobacillus sulfooxidans was also described from coal mine drainage (Kinsel, 1960) but the 301 

nomenclature was surpassed when the two Ferrobacillus species were renamed as T. ferrooxidans. In 302 

general, the two physiological groups of bacteria, acidophilic iron- and sulfur-oxidizers, have been of 303 

primary interest but they were not well characterized in the 1950’s and 1960’s investigations of 304 

bioleaching. Over the succeeding decades, many new genera and species were discovered and 305 

characterized including Acidithiobacillus ferrivorans, A. ferridurans, A. ferriphilus, A. ferrianus, A. 306 

sulfuriphilus, Leptospirillum spp., moderately thermophilic Acidithiobacillus caldus, Acidimicrobium and 307 

Sulfobacillus spp. as well as mesophilic and thermophilic archaea such as Ferroplasma, Sulfolobus, 308 

Acidianus, Metallosphaera spp. and many others including iron-oxidizing heterotrophs (Johnson and 309 

Hallberg, 2008; Schippers et al., 2010, 2013, 2014; Johnson, 2012; Mahmoud et al., 2017; Falagán et al., 310 

2019; Norris et al., 2020).   311 

 312 

The initial impetus for the bioleaching approaches was the discovery in laboratory studies that the 313 

yields of leaching of metals from sulfide minerals were always higher in the presence of iron- and sulfur-314 

oxidizing bacteria as compared to the corresponding abiotic chemical controls (Bryner et al., 1954, 1967; 315 

Bryner and Anderson, 1957, 1958; Razzell and Trussell, 1963; Duncan et al., 1968). When the potential 316 

application of bioleaching of sulfide ores was better recognized, these findings were extended also to 317 

uranium leaching from ores. These acidophilic bacteria could be used to produce lixiviants for uranium 318 

leaching with ferric iron and sulfuric acid from Fe-sulfides and elemental sulfur (Miller et al., 1963; 319 

MacGregor, 1966, 1969a, 1969b; White and Smith, 1969; Gow et al., 1971; Manchee and Garrett, 1974; 320 

Manchee, 1977). The early trials and findings in the 1950’s and 1960’s have been summed up by Hamidian 321 

et al. (2009) and Hamidian (2012).  322 
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 323 

Microbial diversity in active and abandoned uranium mine sites has been examined with cultivation-324 

dependent and molecular ecological methods. Dhal (2018) summarized several studies on cultivable and 325 

uncultivable bacteria in uranium mine tailings and concluded that microbial diversity entails many 326 

physiological and ecological groups of aerobes and anaerobes. These analyses have uncovered not only 327 

the ubiquitous presence of acidithiobacilli but also considerable microbial diversity (e.g., Silver, 1987; de 328 

Silóniz et al., 1991; Berthelot et al., 1993, 1997; Schippers et al., 1995, 2013; Selenska-Pobell et al., 2001; 329 

Selenska-Pobell, 2002; Coral et al., 2018). Proteobacteria is usually the dominant phylum and 330 

Acidobacteria and Firmicutes are also invariably present. At the genus level, dominant microorganisms 331 

usually represent Acidithiobacillus, Leptospirillum, Sulfobacillus, Alicyclobacillus, and Ferroplasma. 332 

Alicyclobacillus and Sulfobacillus spp. have been found to dominate some microbial communities in 333 

laboratory column leaching of a weathered low-grade uranium ore from the Ranger Uranium Mine 334 

(Vázquez-Campos et al., 2017). Fungi have also been found in uranium mine water and raffinate samples 335 

(Mishra et al., 2009; Vázquez-Campos et al., 2014, Coelho et al., 2020). Microbial composition varies with 336 

the specific location at the mine; i.e., heap interior layers, leach solution and raffinate can have very 337 

different microbial populations.  338 

 339 

Open pit and underground uranium mines practicing leaching operations have naturally, over time, 340 

enriched for microorganisms by virtue of being open processes exposed to air, moisture and rain. This is 341 

analogous to sulfide ore mines and tailings that undergo environmental, chemical, and microbiological 342 

changes over time. It is inevitable that microbes have some role in redox and chemical reactions leading 343 

to changes in the solubility of mineral constituents. It is not possible to separate microbial and abiotic 344 

effects on the solubilization in uranium leaching operations. Thus uranium-bearing ores and mines with 345 

exposed mineral surfaces have microbiomes that include indigenous acidophilic bacteria and archaea. 346 

These communities have developed under selective environmental conditions, including selection 347 

pressure by low pH, dissolved metals, and usually insignificant levels of organic compounds. The 348 

predominant energy sources for microbial life at mine sites are reduced compounds of iron and sulfur. 349 

Several reviews have addressed the microbial diversity associated with bioleaching and sulfide mine water 350 

impacted environments (Schippers et al., 2013, 2014; Mahmoud et al., 2017).  351 

 352 

Anecdotally, some large scale pilot and commercial scale trials have involved inoculation of uranium 353 

bioleaching operations with laboratory-grown bacteria. Native microbes, selected over decades of 354 

exposure to ambient conditions, may be the best acclimated to the specific environmental conditions at 355 

the mine site but not necessarily to bioprocess conditions when a leaching operation is initiated in an 356 

open or closed system (Holmes, 1998). To date, there are no reports that external introduction of 357 

laboratory-grown inocula would have replaced the native microbiome in uranium bioleaching mine sites. 358 

In general, laboratory and pilot-scale bioleaching studies have used iron- and sulfur-oxidizing acidophiles 359 

as inocula from a broad range of sources that may have had no previous association with the specific ore 360 

material or the location. Given the scale of commercial leaching operations with leach solution volumes 361 

in millions of cubic meters, it is uncertain how quickly and efficiently the external addition of microbes 362 

could impact the operation in an open system. Some commercial-scale heap bioleaching operations have 363 

initially inoculated leach solutions with a wide spectrum of laboratory-grown microbes from various 364 

sources with a view to promoting early establishment of diverse microbes in the heap, but technical 365 

information and monitoring of these endeavors remain undocumented. This is a gray area in permitting 366 

and environmental regulations in many countries, but the general interpretation is that genetically 367 

modified microbes must not be released with such inoculations.  368 
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4.2 Lixiviant generation and leaching systems 369 

The main mining engineering approaches used for uranium leaching are heap, dump, stope, in situ, 370 

and in-place leaching (Figures 3 and 4). Pachuca and stirred tank leaching have also been practiced in the 371 

industry. Livesey-Goldblatt et al. (1977) developed a pilot-plant unit for the continuous oxidation of 372 

recycled ferrous sulfate leach solution from a uranium ore processing plant. The process was called 373 

BACFOX, and utilized iron-oxidizing Acidithiobacillus ferrooxidans bacteria, which were retained as a film 374 

on corrugated packing media. The process achieved oxidation rates of 7.5 g Fe2+ m-2 h-1 (Livesey-Goldblatt 375 

et al., 1977). The BACFOX system was tested for instance in conjunction with a Pachuca tank leach circuit 376 

at the Buffelsfontein uranium plant (closed in the mid-1990’s) in South Africa (Ring, 1980). The system 377 

also performed successfully in a pilot-scale Pachuca bioleaching of a low-grade uranium ore in India 378 

(Mathur et al., 2000). Murayama et al. (1987) reported a large-scale application of bacterial oxidation of 379 

iron as part of the acid mine water treatment process. Since then various types of bioreactors, including 380 

fluidized-bed reactors, packed-bed reactors, trickle-beds, circulating-beds, agitated reactors, airlift 381 

reactors and rotating biological contactors, have been tested for their potential for high-rate Fe2+ 382 

oxidation by acidophilic prokaryotes (Nurmi, 2009; Nurmi et al., 2009, 2010; Kaksonen et al., 2014a,b,c). 383 

Biofilm-based reactors allow faster oxidation rates than suspended cell systems due to greater biomass 384 

density and mass transfer rates (Jensen and Webb, 1995). The fastest iron oxidation rates (52 and 26 g 385 

Fe2+ L-1 h-1, respectively) have been achieved in packed-bed and fluidized-bed reactors (Grishin and 386 

Tuovinen, 1988; Kinnunen and Puhakka, 2004). Granular activated carbon has been the best support 387 

material for fixed film bioreactors (van der Meer et al., 2007; Nemati et al., 1998; Özkaya et al., 2019). 388 

Other tested solid matrices for biomass retention have included sand, glass and resin beads, polyvinyl 389 

chloride and ore particles (Tuovinen and Bhatti 1999). Precipitation of jarosite type secondary phases has 390 

been reported to promote biomass retention as the precipitates serve as a porous matrix for bacteria 391 

(Nikolov and Karamanev, 1987; Karamanev, 1991; Kinnunen and Puhakka, 2004).  392 

 393 

Reactor or tank leaching (Figure 3A) has been used mostly for concentrates whereas heap (Figure 3B), 394 

dump, stope (Figure 3C) and in situ leaching (Figure 3D) methods are more suitable for low-grade ores 395 

(Figure 4). Vat leaching allows the processing of larger particle size materials than reactors, and thus can 396 

also be used for low grade ores. In heap leaching, the ore is crushed, often also ground, and agglomerated 397 

with H2SO4, and piled on a water-impermeable leach pad. The heaps are aerated from the bottom. The 398 

leach solution is sprayed or irrigated on the top and allowed to percolate to the bottom of the heap where 399 

it is collected as a pregnant solution for the recovery of dissolved metals (Figure 3B). Dump leaching is 400 

similar to heap leaching but the dumps are often not aerated and the process is less controlled. In stope 401 

leaching a stope is filled with broken ore and sealed with concrete bulkheads (Figure 3C). The stope is 402 

flooded, drained and allowed to rest periodically. Flooding, draining and rest cycles are repeated (Chien 403 

et al., 1990). In the in situ leaching process the ore is not removed from the ore body. Leaching solution 404 

is injected into the subsurface ore body, which is usually not fractured, and pregnant leaching solution is 405 

collected from production wells for recirculation or metal recovery (Figure 3D). In-place leaching is similar 406 

to in situ leaching but the ore body is fractured by blasting to improve the permeability before the leaching 407 

(Wadden and Gallant, 1985).  408 

 409 

A schematic flowsheet of possible contributions of microorganisms in uranium solubilization in the 410 

indirect in situ leaching with the two-stage approach is shown in Figure 4. The two-stage process allows 411 

separate optimization of the conditions for both stages and facilitates the removal of excess iron and 412 

sulfate should that be desired. In situ leaching is especially suitable for ore bodies which are not economic 413 

to mine by conventional open-pit or underground methods. It does not usually require extensive mine 414 

infrastructure and may reduce the visual impact of the mining operation. However, in situ leaching 415 
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requires very long contact times and well developed and characterized permeability of the ore body. For 416 

both in situ and in-place leaching especially, extensive knowledge of the hydrology and geology of the 417 

underlying and adjacent area is needed, and careful control and volumetric mass-balance of leaching 418 

solutions are required to prevent contamination of underlying aquifers.  419 

 420 

In situ leaching is an established technology in many uranium producing countries (Mudd, 2001a, 421 

2001b; Lottermoser, 2010; Campbell et al., 2015). The mines use either dilute sulfuric acid or alkaline 422 

solutions (carbonate or bicarbonate) for uranium extraction depending on the accessory minerals in the 423 

fractured ore body. Pyritic uranium ores with <2% carbonate content are typically subject to sulfuric acid 424 

leaching in the initial range of 15-25 g acid/l according to some estimates (IAEA, 2001, 2016). Ferric iron 425 

in acid in situ leach solutions are regenerated with oxidants such as nitric acid, hydrogen peroxide or 426 

pyrolusite. There is no specific information on the presence or use of iron and sulfur-oxidizing bacteria in 427 

in situ uranium leaching operations (Zammit et al., 2014). Microbial community analyses of acidic mine 428 

waters from in situ uranium leaching indicate resemblance to bacteria commonly found in acid mine 429 

drainage (Coral et al., 2018). In the past, in situ acid leach uranium mines in Eastern Europe especially 430 

were controversial and abandoned as the Cold War ended. They have left an environmental legacy and 431 

liability of surface contamination and polluted groundwater that extend for decades because of poor 432 

practices, lack of regulation, and indifference toward environmental protection during active mining.  433 

4.3 Examples of commercial uranium mines and potential microbial involvement 434 

4.3.1 Australia 435 

In the early 1950’s, there was a push to develop uranium production in Australia because of increased 436 

demand (Stewart, 1967a, 1967b). The Radium Hill uranium plant (South Australia) was the first uranium 437 

plant in Australia, starting in 1906, operating intermittently, and commencing once more in 1954-1961. 438 

The ore contained uranium mainly as davidite, which is a complex oxidic mineral containing some rare 439 

earth elements (Ce, La, and Y) in addition to uranium. The Rum Jungle uranium plant (Dyson’s ore, White’s 440 

ore, and Rum Jungle Creek South ore, all in Northern Territory) operated from 1954 to 1971. Leach piles 441 

were constructed for low-grade uranium ores and they were leached with sulfuric acid (Andersen and 442 

Allman, 1968; Lowson, 1975). No effort was made to direct the sulfuric acid leaching toward a bioleaching 443 

type circuit. Pitchblende was the main uranium mineral, associated with carbonaceous slate while the 444 

overburden contained pyrite mineralization. Copper was also recovered from most ore deposits. South 445 

Alligator River Valley (Northern Territory) had 13 uranium mines in 1954-1965. Pitcblende was the main 446 

source of uranium in the mined areas and gold was recovered as a by-product. The Mary Cathleen uranium 447 

plant in Queensland operated in 1958-1968 and 1972-1982. The ore contained uraninite as the main 448 

mineral, which was altered to various other uranium phases in the oxidized zone. Uranium was mined 449 

with the open-cut method, which amplified subsequent pollution problems because of the site exposure 450 

to acidophilic bacteria and monsoon climate. Sulfuric acid leaching of uranium was practiced in all plants. 451 

Mine closures became inevitable in the face of prominent environmental pollution problems (Davy, 1975). 452 

 453 

Although bioleaching trials at the mine sites were not initiated, the subject has been under scrutiny 454 

for decades in Australia (Lowson, 1972, 1975). Bioleaching of samples from a Rum Jungle uranium mine 455 

(Dyson’s ore) and Mary Cathleen mine was tested in 6 kg batches in column systems (effective depth 61 456 

cm) (Miller et al., 1963). Up to 80% uranium was leached from the samples with 10% pyrite addition. 457 

Ferrous sulfate supplementation also resulted in similar yields. Samples from the Rum Jungle site 458 

especially yielded acidophilic iron- and sulfur-oxidizing bacteria in later investigations (Babij et al., 1980; 459 

Goodman et al., 1981a, 1981b), which were largely prompted by the environmental problems resulting 460 
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from mine closures. Native microorganisms at the mine sites produced acid and dissolved metals from 461 

exposed sulfide minerals in flooded open cuts, tailings and overburden heaps (Babij et al., 1981). The 462 

monsoon climate promoted the seepage, acid mine water formation, and drainage problem (Davy, 1975; 463 

Harries and Ritchie, 1981). Initial attempts to mitigate the Rum Jungle site and acid drainage were 464 

inadequate and the Federal Government instituted a more comprehensive rehabilitation program in the 465 

1980’s (Allen and Verhoeven, 1986; Mudd and Patterson, 2010). To date, all the uranium plant sites from 466 

the 1950’s are still under reconnaissance to continue monitoring and abatement.  467 

 468 

None of the three currently operating uranium mines in Australia intentionally uses bioleaching for 469 

uranium extraction (Mudd, 2014; Pizarro et al., 2017; Energy Resources of Australia Pty Ltd, 2018a, 470 

2018b). The Ranger Uranium Mine in Northern Territory commenced operation in 1981 (Energy Resources 471 

of Australia Pty Ltd, 2018a) and is facing closure within the next few years. The mine utilizes ore from an 472 

unconformity deposit, containing uraninite (UO2), with minor coffinite (U(SiO₄)1−x(OH)4x) and brannerite 473 

((U,Ca,Ce)(Ti,Fe)O6) (Pownseby and Johnson, 2014; Skirrow et al., 2016). Ground ore is leached in tanks 474 

with sulfuric acid, and uranium is recovered by solvent extraction with kerosene tertiary amine, followed 475 

by stripping with ammonia and precipitation as ammonium diuranate. The precipitate is converted in a 476 

furnace to uranium oxide U3O8 (Energy Resources of Australia Pty Ltd, 2018b).  477 

 478 

The Olympic Dam Mine in South Australia produces copper (chalcopyrite (CuFeS2), bornite (Cu₅FeS₄), 479 

and chalcocite (Cu2S)) and uranium (pitchblende (UO2)) as well silver and gold. Copper is primarily 480 

recovered by copper sulfide flotation of finely ground ore (Edwards and Oliver, 2000). Silver and gold are 481 

separated from the waste before production of uranium concentrate. Uranium and remaining Cu are 482 

leached in sulfuric acid and further separated by solvent extraction. Uranium is converted to yellow cake 483 

and uranium oxide, while copper is recovered by electrowinning (Edwards and Oliver, 2000).  484 

 485 

Beverley Mine in South Australia has a sandstone-hosted deposit with predominantly coffinite and 486 

minor amounts of uraninite (Pownseby and Johnson, 2014) confined by clays above and below (Taylor et 487 

al., 2004). Pyrite and other sulfides are less abundant (Märten, 2006). The mine commenced Australia’s 488 

first in situ recovery operation in 2000. The process utilizes sulfuric acid lixiviant with hydrogen peroxide 489 

as a chemical oxidant for ferric iron regeneration (Taylor et al., 2004). Uranium is captured with anionic 490 

ion exchange, eluted with sulfuric acid and salt, and precipitated with hydrogen peroxide after 491 

neutralisation with caustic soda. The precipitated uranium is then thickened and washed to remove 492 

impurities, dewatered and dried (Taylor et al., 2004; Märten, 2006).  493 

 494 

Australia’s second uranium in situ recovery operation was commissioned at Honeymoon Mine in 495 

South Australia in 2011 (Mudd, 2014; Boss Resources Limited, 2019), but in 2013 the mine was placed in 496 

care and maintenance due to low uranium prices and high operating costs (World Nuclear News, 2013). 497 

Similar to Beverley, Honeymoon also has a sandstone-hosted deposit, but aquifer salinity in Honeymoon 498 

is considerably higher (Taylor et al., 2004; Pownseby and Johnson, 2014). The mine used sulfuric acid 499 

leaching followed by solvent extraction with a tertiary amine extractant in an organic diluent (Taylor et 500 

al., 2004; Mudd, 2014). 501 

 502 

The Yeelirrie deposit in Western Australia has vanadium-rich potassium carnotite (K2(UO2)2(VO4)2 1-503 

3H2O) present in calcrete material associated with clay-rich carbonated rocks (Pownseby and Johnson, 504 

2014). The deposit changed ownership from BHP Billiton to Cameco in 2012 (Cameco, 2018a) and plans 505 

are underway to utilize open cut mining with alkali leaching and direct precipitation alkaline leaching, 506 

counter current decantation, and direct precipitation of U3O8 (Cameco, 2018a, 2018b).  507 

https://inis.iaea.org/search/search.aspx?orig_q=author:%22Verhoeven,%20T.J.%22
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4.3.2 Brazil 508 

Uranium production in Brazil was started in 1982 at the Poços de Caldas mine (Amaral et al., 1985; 509 

Fernandes and Franklin, 2001). Uranium was associated mostly with pitchblende, coffinite, autunite, and 510 

tobernite and was extracted from the ore at 70 °C with sulfuric acid and MnO2 as an oxidant (Fernandes 511 

et al., 1996). The mine was closed in 1997 and has since been decommissioned. As with sulfide and coal 512 

mines, acidophilic iron- and sulfur-oxidizing microorganisms can be readily enriched from mine waters in 513 

Brazilian uranium mines and deposits (Garcia, 1991, 1993; Campos et al., 2011). Such acidophiles are a 514 

resource for bioleaching experiments with uranium ores but also a cause of concern for the long-term 515 

remediation of the tailings area. Laboratory bioleaching experiments with uraninite-containing ore from 516 

the Figueira mineralization were piloted with 800 tons of crushed ore (-10 in.) and 200 m3 leach solution 517 

(Garcia and de Brito, 1984; Garcia, 1993). The experiments demonstrated positive results for acid 518 

bioleaching of uranium and enhancement by ferric sulfate, but the bioleaching project was not sustained 519 

to commercial output. Uranium production in the Caetité mine (Bahia) was started in 2002 and the ore is 520 

leached in heaps with sulfuric acid (Fernandes et al., 2006). Processing of uranium ore by heap leaching 521 

was started at the Lagoa Real (Bahia) mine in 2000 (Carvalho et al., 2005). In efforts for self-sufficiency, 522 

work at the new Engenho uranium mine (Bahia) started in 2017 and is now online for yellowcake 523 

production. Another one, Santa Quitéria (Ceará), is to start in 2020 for phosphate and uranium production 524 

(Filho et al., 2009). Sulfuric acid continues to be the lixiviant of choice.   525 

4.3.3 Canada  526 

In the early 1960’s, bioleaching processes were applied to the commercial-scale extraction of uranium 527 

by heap, dump and stope leaching of mine waste rocks and worked-out stopes in uranium mines in the 528 

Elliot Lake area, Ontario, Canada (Campbell et al., 1985, 1987; McCready and Gould, 1990). Uranium-529 

bearing ore bodies in this region are pyritized quartz pebble conglomerates. Uranium mineralogy is 530 

variable, comprising brannerite, uraninite, pitchblende, some monazite, and minor coffinite, thucolite, 531 

uranothorite, and uranothorianite (MacGregor, 1969a, Robertson and Gould, 1983). Underlying test work 532 

was undertaken in several research laboratories (Fisher, 1966; Harrison et al., 1966a, 1966b; MacGregor 533 

1966, 1969a, 1969b; McCreedy et al., 1969; Duncan and Bruynesteyn, 1971a, 1971b; Manchee and 534 

Garrett, 1974; Derry et al., 1976; Manchee, 1977). The surge in uranium demand during the Cold War in 535 

the 1950’s resulted in the construction of 12 uranium mines in the Elliot Lake area between 1955 and 536 

1958 (Goode, 2013). Subsequently the demand slowed down and several uranium mines were phased 537 

down and eventually closed. In the 1970’s the international oil crisis shifted energy production to nuclear 538 

power plants, leading transiently to increased demand from the Canadian uranium mines (Goode, 2013). 539 

Among the uranium leaching operations in the Elliot Lake area were the Stanrock Mine, Denison Mine 540 

and, later, Agnew Lake Mine. In the 1980’s it was recognized that the demand for nuclear fuel was 541 

overestimated, causing global uranium supply to exceed the demand. Other uranium mines with chemical 542 

processing were also started, for example in Saskatchewan (e.g., the McArthur River and Cigar Lake 543 

uranium mines). Eventually the remaining uranium mines in the Elliot Lake area could not economically 544 

justify their operation, leading to mine closures. Some ore deposits in the Elliot Lake area also contained 545 

thorium and rare earth elements (yttrium especially), and their recovery afforded additional operation 546 

and production in several mines (Goode, 2013). Saskatchewan is now the only province in Canada that 547 

has uranium mining ongoing.  548 

 549 

The Stanrock Mine initiated a bacterial leaching circuit in 1964. This involved washings of underground 550 

stopes and other workings on shifts as well as sprinkling of waste heaps (MacGregor, 1969a). The 551 

operation tested nutrient effect by adding mineral salts to the leach solution, but no enhancement in 552 
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uranium dissolution was noted (Duncan and Bruynesteyn, 1971a). Following clarification to remove 553 

suspended fines, the pooled solutions were routed to ion exchange followed by elution and precipitation 554 

as yellowcake. The Stanrock Mine also recovered yttrium from the leach solution. The mine closed in 1985 555 

(Goode, 2013).  556 

 557 

The Denison Mine in the Elliot Lake area, Ontario, practiced underground stope bioleaching in the 558 

1980’s and early 1990’s. Prior research with pyrite oxidation (Napier et al., 1968) and column leaching 559 

with regenerated Fe3+ in small scale and in 330 kg batches of ore (Derry et al., 1976) suggested that more 560 

uranium can be dissolved using acid ferric sulfate and bacteria than by purely chemical acid leaching. The 561 

bioleaching process at the mine employed fracturing of the ore followed by construction of a concrete 562 

bulkhead across the opening of a horizontal shaft. The ore behind the bulkhead was flooded with leach 563 

solution and, after a period of up to three weeks (at 12-15 ºC), the leach solution was drained and pumped 564 

to the surface for uranium recovery by ion exchange (McCready and Gould, 1990). This cycle was repeated 565 

until the amount of uranium leached declined to a level that was no longer economically viable (Wadden 566 

and Gallant, 1985). Numerous iron-oxidizing bacterial isolates have been obtained from Denison mine 567 

samples and their characterization has revealed variation in metal resistance and suboptimal temperature 568 

for iron oxidation (Ferroni et al., 1986; Berthelot et al., 1993, 1997; Leduc et al., 1997).  569 

 570 

The Agnew Lake Mine in Ontario, Canada, was considered to be the first operation where the uranium 571 

bioleaching process was applied to a virgin ore body (Figure 6). Uranium was mineralized as uranothorite 572 

[(Th,U)SiO4] and monazite [(Ce,La)PO4], with lesser amounts of uraninite, in pyrite- and pyrrhotite-rich 573 

conglomerate quartz (SiO2) pebbles (McCready and Gould, 1990). The ore also contained cubanite 574 

(CuFe₂S₃) and pyrrhotite (Fe(1-x)S), and rare earth element mineralization has also been reported. The mine 575 

started production in 1971 and employed surface heap leaching of the swell from ore breakage and a 576 

circuit for underground stope leaching (Edwards, 1992). The mine did not have a mill for the comminution 577 

of the blasted ore particles. Ore fracturing was moderately orchestrated because of concerns on escape 578 

of the leach solution to groundwater. Stope leaching was not sustainable because the fractures in the 579 

underground stopes were insufficient to promote contact between uranium mineralization and leach 580 

solution. The surface heap leaching did not have sufficient contact time because of large ore pieces. 581 

Subsequent tests with flood leaching underground did not justify continuation. The height of the 582 

operation was from 1977 to the closure in 1983, which was dictated by low uranium recoveries. The site 583 

was decommissioned during the ensuing five years and turned over to the province of Ontario in 1988 584 

(Edwards, 1992; Goode, 2013). Subsequently the ownership has changed with renewed interest in the 585 

site because of prospects for additional metals in the mineralization.   586 

4.3.4 Finland  587 

Uranium containing accessory minerals and phases occur in many sulfidic ores that are mined for 588 

other metals. An example is the heap bioleaching operation at the Terrafame Mine (formerly known as 589 

Talvivaara Mine) in Finland (Figure 7). It was started in commercial scale in 2008 for Cu, Co, Ni, and Zn 590 

production from black schist, but has since expanded to Mn recovery (Riekkola-Vanhanen, 2010, 2013) 591 

and the mine has plans to commence uranium production in the near future. The main sulfide phases 592 

hosted by black schist are pyrrhotite (Fe1-xS), pyrite (FeS2), sphalerite ((Fe,Zn)S), pentlandite ((Fe,Ni)9S8) 593 

and altered pentlandite ((Fe,Ni,Co)9S8), chalcopyrite (CuFeS2) and alabandite (MnS) (Luukkonen and 594 

Ruokola, 2011). External Fe is not supplied because the Fe-sulfides in the black schist dissolve to produce 595 

acidic ferrous sulfate.  596 

 597 

Uranium in the black schist ore is associated with thucholite, which usually has a core of uraninite 598 

https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Sulfur


14 

 

14 

 

flanked by pyrobituminous hydrocarbons. The black schist contains on average 17 ppm U (0.0017% U) 599 

(Pohjolainen, 2015), with estimates ranging between 10 and 30 ppm and 19 and 50 ppm U (Luukkonen 600 

and Ruokola, 2011; Lecomte et al., 2014). Although the concentration in the ore is low, dissolved uranium 601 

concentration increases due to recirculation of the leach solution. Thus, uranium can be economically 602 

recovered from the leach solution as part of the process cycle. Uranium recovery would also benefit 603 

environmental management because it would decrease the concentration of uranium in discharge water. 604 

Terrafame Ltd. applied for a permit for uranium recovery in October 2017 and a permit was issued by the 605 

Finnish Government in February 2020 (Terrafame, 2020). Plans are in place to commence uranium 606 

recovery at the Terrafame Mine within one year, but the Government decision is still subject to appeal at 607 

the Supreme Administrative Court of Finland, which may cause additional delay.  608 

 609 

Finland has several ore deposits that contain uranium, but the deposits are low grade and relatively 610 

small (Pohjolainen, 2015). Uranium in these low-grade rocks and deposits are primarily associated with 611 

apatite and other phosphoritic mineralizations with predominance of various silicates such as quartz and 612 

quartzite, muscovite, and plagioclase gneiss. Iron sulfides are usually rare. Uranium bioleaching has been 613 

tested in shake flasks with samples of rock and ore deposits from four locations (Kesänkitunturi, 614 

Nuottijärvi, Temo, and Vihanti). In general, uraniferous phosphorites requite additional iron source, either 615 

in the form of pyrite or ferrous sulfate, to sustain microbial activity (Tuovinen et al., 1983). Most uranium 616 

in these samples dissolve via acid attack that can employ biologically produced sulfuric acid (Tuovinen and 617 

Hsu, 1984). Because much of the uranium in these samples was already in the oxidized form, the contact 618 

time needed for uranium dissolution was as short as 24 h cycles for finely ground samples (-200 mesh).   619 

4.3.5 Portugal  620 

Commercial processes for the leaching of uranium from low-grade ores have been operated in 621 

Portugal since the 1950’s (White and Smith, 1969). More than 60 uranium mines, mostly small, were in 622 

operation as open pits and underground mines or their combinations at the height of the national 623 

program in Portugal, largely credited to the contract with the U.K. Atomic Energy Authority to provide 624 

uranium for nuclear armament as the period of the Cold War was beginning in the late 1940’s (White and 625 

Smith, 1969). Some Portuguese uranium was also used in the U.S. nuclear industry. 626 

  627 

In Portugal, some uranium heap leaching processes with dilute sulfuric acid involved conditions that 628 

were conducive to auxiliary enhancement due to bioleaching. The Urgeiriça uranium mine had the largest 629 

mill and chemical plant in Portugal, and uranium ores from small nearby mines were also transported to 630 

Urgeiriça mill for processing (Pereira et al., 2014; Abreu and Magalhães, 2017). The mine was initially a 631 
226Ra plant operated from 1913 to 1944. Uranium mining with chemical processing commenced after 632 

World War II (Pereira et al., 2014). Heap leaching of uranium was practiced at the Urgeiriça mine in the 633 

mid-1950’s but the yields of uranium dissolution remained lower than expected. Subsequently it was 634 

discovered that some uranium had already leached from the stockpile before the leaching process was 635 

initiated, and this was attributed to exposure to rainwater (Cameron, 1963; Lowson, 1975; Carvalho et al., 636 

2016). Consultant research at the National Chemical Laboratory in the U.K. showed that the rainwater 637 

effect in stockpiles was due to the action of iron- and sulfur oxidizing bacteria, which increased the yields 638 

of uranium dissolution multifold in column leaching experiments (Miller et al., 1963). Thus, research in 639 

the U.K. with Portuguese uranium ore samples (Urgeiriça, Bica, and Valhos mines) provided preliminary 640 

information on enhancing effects of bacteria in the leaching process (Miller et al., 1963).  641 

 642 

In the chemical leaching circuit for finely ground ores, uranium was mainly associated with 643 

pitchblende and uraninite and the ore (particle size 50% -70 m) was processed with sulfuric acid leaching 644 
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(pH 0.5-0.9) at 40 °C with MnO2 as the oxidant. Since the 1970’s the Urgeiriça mine intensified the effort 645 

on the heap leaching operations with sulfuric acid for low-grade uranium ore, and in situ leaching (also 646 

termed static leaching) by injecting sulfuric acid into low-grade ore was also introduced in the late phase 647 

to recover uranium from abandoned galleries. No information is available on bacterial activities or 648 

distribution at the Urgeiriça mine. The mine phased down the production in 1991 for the final closure and 649 

decommissioning (Pereira et al., 2014; Pinto et al., 2016; Abreu and Magalhães, 2017), and the mine 650 

ceased the operation completely in 2001.  651 

 652 

The Bica mine in Portugal practiced underground leaching of uranium between 1951 and 1977, 653 

followed by the preparation of the mine for sulfuric acid leaching of the underground excavations. The 654 

excavations were leached in situ by the injection of acidic leach solutions, which were collected in the 655 

bottom floor (-250 m). This static method of leaching was continued until the late 1980’s. The mine was 656 

subsequently flooded and the treatment of mine water now includes neutralization and barium 657 

precipitation of 226Ra (Carvalho et al., 2011, 2016).  658 

4.3.6 South Africa  659 

Uranium processing in the Witwatersrand Basin, South Africa was started in the 1950’s as a by-product 660 

from gold mining (Finney, 1971; Kenan and Chirenje, 2016). The deposit is relatively abundant with pyrite 661 

in conglomeration with uraninite (Pretorius, 1974). The uranium plant employed chemical leaching with 662 

sulfuric acid, ion exchange, solvent extraction and ammonium precipitation and thermal conversion to 663 

produce U3O8 (Matic and Mrost, 1964). Uranium levels were in the range of 100 to 300 ppm. For Au-U 664 

ores, uranium was leached first before the ore was processed for gold recovery (Matic and Mrost, 1964). 665 

The production of uranium declined substantially in the 1980s, eventually with only three mines left 666 

producing uranium (Kenan and Chirenje, 2016). Samples of tailings (slimes) from Witwatersrand have 667 

been evaluated over the years for acid bioleaching of uranium (Matic and Mrost, 1964; Mrost and Lloyd, 668 

1971). The oxidation of pyrite in the slimes was key to producing acidic ferric sulfate for contact with low-669 

grade uranium bearing minerals. Uranium recoveries from the slimes using the bacterial leaching with 670 

ferric sulfate were in excess of 90% at a hydraulic loading rate of 10 cm/month, but uranium dissolved 671 

from the slimes could not be captured quantitatively from the solution because of the vertical movement 672 

of water in the dams during wet and dry months (Matic and Mrost, 1964). Heap leaching of Witwatersrand 673 

tailings in a small scale (1 m2, 0.3 m depth) yielded recoveries of 87% in 60 days (Livesey-Goldblatt, 1986). 674 

Bioleaching was not commercialized for uranium production in the advent of the world-wide decline in 675 

uranium demand and the overstocking in South Africa in the 1980-1990’s (Kenan and Chirenje, 2016). 676 

Present plans are underway to increase uranium production in the Witwatersrand Basin operations and 677 

to open new production in the Karoo Uranium Province and the Namaquala region (Kenan and Chirenje, 678 

2016). The new production sites are based on chemical processes and no specific bioleaching plans are in 679 

place at this time.  680 

4.3.7 Sweden  681 

Sweden has large alum shale deposits that contain uranium up to 100-300 ppm, possibly having 11% 682 

of the global U resources (Beeson and Goodall, 2014; Lecomte et al., 2017). These are pyritic black shales 683 

that comprise kerogenic organic material, micas, graphite, quartz, and feldspar (Armands 1970, 1972; 684 

Andersson et al., 1985; Beeson and Goodall, 2014). Uranium is associated with the kerogenic fraction and 685 

micas. In the 1950’s, as the country established the Swedish Nuclear Power Program and was planning to 686 

develop independent nuclear power, chemical processing of uranium-containing shale was started at a 687 

pilot plant scale at Kvarntorp (near the city of Örebro) in 1953. Several leaching techniques were tested 688 
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in the pilot system. Commercial scale processing was started at a plant in Ranstad in 1965, using -2 mm 689 

shale and leaching with FeCl3 and sulfuric acid (Hormander and Gelin, 1963; Peterson, 1967a, 1967b). The 690 

leach solution was reduced with Rongalite (sodium formaldehyde sulfoxylate) in order to precipitate 691 

uranium as a U4+U6+-phosphate complex, and ferrous iron was re-oxidized with chlorine gas. Uranium was 692 

sold in the open market, mostly to the U.S. as the plans to develop nuclear power independence were 693 

abandoned. The mine and mill were closed in 1969, but plans were to recommence the processing in the 694 

advent of the oil crisis (Andersson, 1976). Eventually, these plans did not materialize due to public 695 

opposition and protests locally and nationally. The national referendum in 1980 caused a change of the 696 

national policy on nuclear power. Subsequent decommissioning and monitoring of the mine site including 697 

the tailings, briefly described by Ehdwall (1996), Ledin and Pedersen (1996), and Sundblad (2000), are 698 

ongoing. Tailings at Ranstad are geochemically not stable and continue to release metals due to microbial 699 

action (Kalinowski et al., 2004, 2006; Edberg et al., 2010).  700 

 701 

Regions of interest in Sweden for further testing of samples and development are Tåsjö and Myrviken 702 

in Jämtland and, possibly, still also Ranstad (Mount Billingen) in Västergötland. Preliminary results indicate 703 

that up to 90% U can be solubilized in bioleaching experiments (Beeson and Goodall, 2014), but the details 704 

have not been documented in public. Acidithiobacilli as well as eukaryotic microbes (fungi) have been 705 

enriched from Billingen samples (Napier and Wakerley, 1963). The deposit is also a potential source of Ni, 706 

Zn, Mo and V. Very preliminary test work on uranium shale bioleaching in a three-stage experimental 707 

design was reported by Björling (1973). The first stage (33-50% pulp density) was the bacterial oxidation 708 

of pyrite at pH 2.0 to produce ferric sulfate, which was used as the oxidant in the following two chemical 709 

leaching stages. In shake flask and stirred tank bioleaching experiments of a uraniferous black shale 710 

sample from Tåsjö (Bhatti, 2015), metals were released primarily due to acid dissolution. The large 711 

kerogen fraction (>10% in the Tåsjö samples) is relatively recalcitrant and may be problematic in a large 712 

scale leaching system due to its partial dissolution and organic residue. The large organic fraction can act 713 

as a major reductant of ferric iron. Prospecting for uranium deposits has continued in the Jämtland and 714 

Lapland regions (Beeson and Goodall, 2014).  715 

5. Bench-scale feasibility and optimization experiments 716 

Uranium bioleaching experiments have employed numerous experimental designs to address factors 717 

that influence the outcome of the leaching. Most of the experimental techniques for testing the 718 

bioleaching of ore samples and microorganisms have summarized by Rossi (1990). Some studies have 719 

used response surface methodology for statistical optimization of uranium bioleaching (Jalali et al., 2019; 720 

Mo et al., 2019; Zhou et al., 2019b). Examples of shake flask, column and tank bioleaching experiments 721 

are summarized in Supplementary Tables S1-S3, and bioleaching yields from the various studies are 722 

illustrated in Figure 8. In the literature, the experimental conditions in shake flasks experiments have been 723 

variable and have had little commonality for comparative purposes. The particle size fractions have been 724 

too fine to represent a commercial scale leaching process. The shake flask technique is usually considered 725 

as a screening tool to assess the feasibility of the acid bioleaching. With phosphate minerals the technique 726 

can promote uranium dissolution within <24 h, but with other types of uranium mineralization the time 727 

course can extend to several weeks (Supplementary Table S1). Museum grade uranium minerals can 728 

dissolve much faster than uranium from polymetallic ores or rock samples because of the lack of uranium 729 

masking or encapsulation by other minerals.  730 

 731 

Column tests have also varied extensively. An example of column bioleaching of a uraninite-containing 732 

ore is shown in Figure 9 (Zare Tavakoli et al., 2017a). Laboratory feasibility and optimization studies rarely 733 

address nor simulate scaled-up designs and commercial-scale operational parameters. The gap between 734 
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the laboratory studies and mine practice can be extraordinarily difficult to reconcile. Hence, pilot and 735 

demonstration scale experiments are typically required to derive reliable design parameters for large scale 736 

processes. Wang et al. (2017) used a 4854 ton heap to explore heap bioleaching of uranium from a low-737 

grade ore (U-content 0.082%). The dominant minerals were quartz, potash feldspar, pyrite, hematite, 738 

fluorite and calcite (Wang et al., 2017) (Figure 10). The efficiency of uranium bioleaching can be influenced 739 

by a number of process factors, such as leaching method, dimensions of the leach system, irrigation (Zare 740 

Tavakoli et al., 2017b), aeration and mixing rate, pulp density and residence time (Wadden and Gallant, 741 

1985). The efficiency of uranium bioleaching is also affected by a number of mineralogical, 742 

physicochemical and microbial factors (Table 2). Some of the key factors are discussed briefly below. 743 

5.1 Mineralogical factors 744 

The potential of uranium bioleaching is usually considered particularly amenable to low-grade uranium 745 

ores with a threshold content of about <0.05% U3O8 (<0.042% U). Uranium mineralizations vary in ores 746 

that can be leached with acid and ferric sulfate. In general, oxides, phosphates, sulfates and carbonates 747 

are more readily leached in acid solutions as compared to silicates (Muñoz et al., 1995a, 1995b, 1995c). 748 

Based on bioleaching tests with synthetic mineral specimens, Yang et al. (2019) reported that the 749 

leachability of uranium minerals decreased in the following order: pitchblende ≈ uraninite > coffinite >> 750 

brannerite > betafite. Comparative ranking of native uranium minerals for bioleaching is not available 751 

from the literature data because they are difficult to standardize due to differences in experimental 752 

variables such as surface area, conglomeration, and ancillary minerals. Conglomerates of uranium and 753 

other minerals rather than single uranium bearing phases are common in low-grade ores. Although pure 754 

uranium minerals have been tested in bioleaching studies, uranium ores in leach mines rarely involve 755 

only a single uranium-bearing mineral. The presence of both U6+ and U4+ in uranium-bearing ores is not 756 

uncommon. For example, Abhilash et al. (2010) evaluated the column bioleaching of a low-grade silicate 757 

ore of uranium, which contained ferrosilicate and magnetite as the major phases. Uranium was present 758 

as uraninite (UO2) in the ore with 38-40% as U4+ and the rest as U6+. Uranium solubilization amounted to 759 

59% and 57% in 40 days at pH 1.7 and 1.9, respectively (Abhilash et al., 2010). 760 

 761 

In general, bioleaching of uranium has been mainly applied to ores that contain accessory Fe-sulfides 762 

such as pyrite as they provide Fe3+ and acid upon bacterial oxidation. Laboratory studies have also been 763 

reported for the bioleaching of uranium from sandstone deposits (Bosecker and Wirth, 1980; Bhatti et al., 764 

1989; Bhatti and Malik, 1997). Because sandstone deposits are deficient in sulfide minerals, supplemental 765 

Fe- and S-compounds are required to promote the regeneration of Fe3+ and the production of sulfuric 766 

acid. Similarly, the bioleaching of a relatively pure uraninite mineral, which was devoid of sulfide minerals, 767 

required a supplemental source of iron for lixiviant production and enhancement of uranium solubilization 768 

(Bhatti et al., 1998).  769 

 770 

The Elliot Lake area has uranium mineralizations associated with pyritic conglomerates or other Fe-771 

sulfides. Uranium deposits in the southwest U.S. generally have relatively low pyrite contents, and in these 772 

cases the addition of pyrite has beneficial effects on the bioleaching of uranium (Muñoz et al., 1995a, b, 773 

c). Chen et al. (2019) also showed enhanced uranium bioleaching from granite-type uranium ore with 774 

pyrite addition. Pyrite additions for enhancement of uranium bioleaching have usually been tested in the 775 

range of 5 kg pyrite/t for Portuguese and Indian uranium ores and 3 kg/t for Spanish uranium ores (Muñoz 776 

et al., 1995a, 1995b, 1995c). Pyrite oxidation produces the chemical oxidant but also serves to satisfy acid 777 

consumption of the ore caused by the dissolution of alkaline minerals such as carbonates. The pyrite:ore 778 

ratio depends on the mineralogical composition of the ore and on specific characteristics of the additional 779 

pyrite. In the case of in situ bioleaching, pyrite supplementation is not possible to implement unless pyrite 780 
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oxidation is conducted above ground to generate the lixiviant. The control or monitoring of the pH is 781 

important because it impacts the solubility of ferric iron and dissolution products and thus controls many 782 

dissolution reactions. The initial acid consumption must be taken into account in leaching tests until the 783 

microbial oxidation of reduced sulfur compounds starts producing acid.  784 

 785 

Gangue minerals impact the uranium bioleaching process. Carbonate minerals and K- and Na-786 

containing silicate phases in host rock consume acid and may cause the formation of precipitates and 787 

secondary minerals and retard the oxidation of U4+ mineral phases and the solubilization of uranium. 788 

Secondary solid phases such as gypsum (CaSO42H2O) and anhydrite (CaSO4) can hinder solution flow due 789 

to compaction and coating of mineral surfaces, resulting in loss of dissolved uranium. Some mica minerals 790 

may also cause channeling because they may transform to expanded phases (e.g., vermiculite {ideal 791 

formula (Mg,Fe+2,Fe+3)3[(Al,Si)4O10](OH)2·4H2O)} upon contact with acid leach solution (Bigham et al., 792 

2001; Bhatti et al., 2010).  793 

 794 

Because of their acid consumption, carbonates are usually neutralized before acid leaching 795 

experiments as otherwise they result in excessive precipitation of ferric iron as well as gypsum. Acidic 796 

gangue with quartz (SiO2) and Al-silicates have less of these problems because they usually have low acid 797 

consumption (Muñoz et al., 1995a, 1995b, 1995c). Although not documented for uranium bioleaching 798 

situations, excessive dissolution of aluminum and silica from silicates (Potysz et al., 2018) may lead to the 799 

formation of amorphous gels and blockages in leach columns and heaps (Dopson et al., 2008) and cause 800 

channeling of the leach solution. Excessive dissolved silica may also transfer with dissolved uranium to the 801 

tertiary amine extraction phase and then precipitate when the pH is adjusted to a higher value for further 802 

processing (McDonald et al., 1981).  803 

The rate of acid consumption and the dissolution of target minerals is a function of the specific surface 804 

area of the reactive mineral particles. In shake flasks and stirred tank bioreactors the particle size 805 

distribution is typically -200 mesh (<74 m) to allow suspension in agitated solution. The smaller the 806 

particle size, the faster is the reaction kinetics because of the increase in the reactive surface area (Wang 807 

et al., 2019b). Small particle size is not economically justified in uranium bioleaching, but shake flask and 808 

stirred bioreactor studies can be used as a screening tool for assessing the feasibility of using specific 809 

microbial cultures and process conditions and for determining acid consumption during bioleaching 810 

(Eisapour et al., 2013). The mineral porosity and the diffusion and permeability of the leach solution are 811 

less significant factors when ore particles are stirred as finely ground suspensions in leach solutions as 812 

opposed to column tests with larger particle size distribution. The mass transfer of O2 and CO2 from the 813 

air to the solution phase slows down at high pulp densities, but with up to 20% solids this is considered to 814 

be insignificant as a rate-limiting factor. Zokaei-Kadijani et al. (2013) evaluated the effects of process 815 

parameters on the oxygen mass transfer coefficient in stirred tank reactors during uranium bioleaching 816 

by A. ferrooxidans. Although the coefficient was dependent on agitation speed, aeration rate and pulp 817 

density, the rate limiting factor was the biochemical reaction; i.e., oxygen uptake by A. ferrooxidans for 818 

ferrous iron oxidation. Wang et al. (2017) concluded that uranium bioleaching was under diffusion control 819 

in a 4854-ton pilot-scale heap experiment that resulted in 88% uranium dissolution over 85 days (particle 820 

size -8 mm) (Figure 10). Kinetic modeling is complex because of the heterogeneous reactions and the 821 

relatively rapid leaching of uranium from fissures and pyritic phases as opposed to the slow dissolution of 822 

encapsulated minerals (Wang et al., 2017).  823 

 824 

With column tests and pilot and commercial scale heaps as well as underground stopes the reactive 825 

surface area (i.e., the particle size distribution) combined with mineral intergrowth and encapsulation can 826 

be one of the rate-limiting factors. The permeability must allow the seeping of leach solution to wet all 827 

surfaces, but this rarely is the case except in flood leaching. The formation of secondary minerals such as 828 
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jarosite-type precipitates, elemental sulfur, gypsum, or mixed interlayer micas can cause changes in the 829 

permeability. They may also limit the diffusion of O2 and CO2 in the interior layers to reactive sites. The 830 

lower zones especially may have poor contact with leach solution due to poor distribution and channeling 831 

of the solution and evaporation if the heap is aerated from the bottom. Column leaching in bench-scale 832 

can still have probes for monitoring purposes, but this is increasingly difficult in commercial-scale leaching 833 

operations. Heap construction, with installation of thermal probes, is limited to particle distribution that 834 

allows even solution flow and averts channeling. For example, the Talvivaara (nowadays operated by 835 

Terrafame Ltd.) surface heaps are constructed with crushed, agglomerated ore particles with a size of -8 836 

mm (Riekkola-Vanhanen, 2013). The Agnew Lake heap leaching system was targeted for -7.6 cm size (run 837 

1of mine and crushed) and the stope leaching for -20 cm size (rubblized run of mine) range (McCready 838 

and Gould, 1990), but neither size promotes good contact and penetration of the leach solution. 839 

Comminution with blasting and crushing is a cost factor that must be justified as a compromise against 840 

predicted leaching kinetics.  841 

5.2 Physicochemical factors 842 

A number of physicochemical factors, such as temperature, pH, redox potential, and the 843 

concentration of dissolved oxygen, CO2, uranium, Fe2+, Fe3+ and other metals affect the efficiency of 844 

uranium leaching (Table 2). In open heap bioleaching processes the prevailing temperature is a function 845 

of the climatic factors, the intensity of heap aeration and the presence of Fe-sulfide minerals. Depending 846 

on the heap design and scale, intense oxidation of Fe-sulfides can heat the inside of the heap up to the 847 

range of thermophilic microorganisms (50-70 °C), creating a temperature gradient from outside to inside. 848 

High temperatures prohibitive to thermophiles can be controlled by increased aeration, but it may also 849 

stimulate bacterial oxidation activity. Additionally, aeration blows off humidity, which is essential to 850 

bacterial activity. Liquid flow, aeration rates and the amount and oxidation of Fe-sulfides all affect heat 851 

generation and convection and are the most important factors involved in controlling the temperature 852 

inside bioleaching heaps (Liu and Granata, 2018).   853 

 854 

Nutrient media for culturing acidophilic microorganisms from leach solutions and acid mine water 855 

have been formulated and used routinely in leaching tests for many decades (e.g., Silverman and 856 

Lundgren, 1959; Tuovinen and Kelly, 1973; McCready et al., 1986; Gonzáles-Toril et al., 2006). Precise 857 

quantitative requirements of nutrient ions in liquid media optimized for microbial biomass growth have 858 

not been established. Chemical analysis can, of course, detail the elemental content of cell mass but that 859 

information cannot be equated to precise solution chemistry. In addition to reduced Fe- and S-compounds 860 

as substrates (energy sources), acidithiobacilli need dissolved O2 and CO2, N, P, and S sources, Mg and K, 861 

and minor and trace requirements for transition metals (at least Fe and Cu, and possibly Ni, Zn, and Co) 862 

for catalytic functions and redox properties of several enzymes. Trace nutrient requirements for 863 

acidophiles are not substantiated although some media formulations include trace metals. Some iron-864 

oxidizing acidophiles are nitrogen fixers (Norris et al., 1995; Parro and Moreno-Paz, 2004; Tyson et al., 865 

2005; Valdés et al., 2009) but their diazotrophic lifestyle in bioleaching processes is not clear. The addition 866 

of ammonium has been shown to enhance iron oxidation in Terrafame bioleach solutions in the laboratory 867 

experiments (Ahoranta et al., 2017), suggesting possible N-limitation of iron-oxidizers in the heap. In other 868 

studies the concentration of ammonium in bioleach solution has been shown to decrease with contact 869 

time, indicating precipitation (Niemelä et al., 1994). In acid sulfate-rich leaching solutions NH4
+ can be 870 

incorporated into ammoniojarosite precipitate [(NH4)Fe3(SO4)2(OH)6] and this is not a reversible reaction 871 

in oxidative leaching systems. The additions of mineral salts in laboratory experiments have proven to 872 

increase iron oxidation rates or leaching yields, whereas similar trials in commercial mines have not 873 

produced distinct enhancement. For example, Duncan and Bruynesteyn (1971a) reported on nutrient 874 
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supplementation of stope leaching using bacteria-containing solutions that were supplemented with 875 

fertilizer N and P to provide inorganic nutrients, but beneficial effects of nutrients on uranium bioleaching 876 

were not established unequivocally. Lee et al. (2005) reported that nutrient addition did not significantly 877 

increase uranium bioleaching over a two week contact time in batch experiments with a black shale, but 878 

such findings do not pertain to large scale bioleaching systems. Trials of nutrient additions in pilot scale 879 

leaching of low-grade uranium ores have also been reported by others (e.g., Jayaram et al., 1976; 880 

McCready et al., 1986; Dwivedy and Mathur, 1995) but specific, detailed qualitative and quantitative 881 

analyses of nutrient effect are absent.  882 

 883 

Some nutrient requirements may be satisfied by the dissolution of metals, S, Fe, P, N, organic substances, 884 

and micro and trace elements from the uranium-bearing phases and associated sulfide and gangue 885 

minerals during the contact with the leach solution, which further defies efforts of defining quantitative 886 

nutrient chemistry relevant in bioleaching processes. Organic compounds are not required in media 887 

formulations for acidithiobacilli and leptospirilli, but all heterotrophic microbes associated with leach 888 

operations require organic substrates. Heterotrophs have been found in acid bioleaching environments 889 

and they grow in close association with autotrophic iron- and sulfur-oxidizers, likely by scavenging organic 890 

compounds excreted by the autotrophic acidophiles (Johnson and Roberto, 1997). Organic compounds 891 

may also originate from surrounding soil as well as residuals from solvent extraction. Whether 892 

heterotrophs should be stimulated with readily biodegradable organic carbon amendments is debatable 893 

because their respiration competes for oxygen consumption. A beneficial role of heterotrophs in acid 894 

bioleaching of uranium has not been established, although mixed culture studies suggest that 895 

heterotrophs can consume organic compounds (organic acids especially) that are otherwise or potentially 896 

toxic to A. ferrooxidans in culture media (Shuttleworth and Unz, 1987; Fournier et al., 1998; Marchand 897 

and Silverstein, 2003). Under extreme circumstances heterotrophs may produce organic acids that are 898 

detrimental to autotrophic bacteria. The effect of organic acids has only been demonstrated in pure 899 

culture studies of iron- and sulfur-oxidizers (Fang and Zhou, 2006; Ren et al., 2009) and their relevance to 900 

uranium bioleaching systems is questionable. It is conceivable that, over time, heterotrophic biomass 901 

growth in interstitial and intraparticle pore spaces in ore heaps and piles may occupy physical space and 902 

interfere with solution flow and chemical and bacterial leaching reactions. Excessive organic compounds 903 

may also promote undesired biofouling effects typically caused by the proliferation of heterotrophic 904 

bacteria with large amounts of extracellular polymeric substances (such as polysaccharides) as well as 905 

fungal biomass, as demonstrated for example in connection of in situ bioremediation of uranium 906 

contaminated groundwater (Williams et al., 2011). However, biofouling in uranium bioleaching operations 907 

has not been documented.  908 

5.3 Microbiological factors 909 

Laboratory experiments of uranium bioleaching have used pure cultures of Fe- and S-oxidizing 910 

acidophiles or their mixtures. Enrichment cultures obtained from mine site samples have also been tested 911 

successfully. Microbial consortia have been generally considered to be superior to pure cultures in 912 

laboratory bioleaching experiments, but this is difficult to document unequivocally. The source inocula 913 

have always been variable in bioleaching studies conducted by different research groups. Standard 914 

protocols have not been established that would make it possible to compare the bioleaching rates and 915 

efficiencies by cultures of different origin and growth history under otherwise identical conditions. Pilot-916 

scale trials at mines may still involve inoculum transfer from the laboratory in an effort to minimize the 917 

lag period preceding the active bioleaching stage (Halinen et al., 2012). Acidophilic Fe- and S-oxidizers are 918 

indigenous in acid mine drainage and exposed mineral surfaces at mine sites (Riekkola-Vanhanen, 2013), 919 

and they may be enriched for in the microbial population during pilot trials (Halinen et al., 2012). In pilot- 920 
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and commercial scale operations there is only a limited extent of control of the microbial population, most 921 

notably by the supply of Fe and S, and via adjustment of pH and aeration.  922 

 923 

Microorganisms vary in their tolerance to uranium, other nuclides and non-radioactive metals that 924 

may be present in uranium leach liquors. UO2
2+ acts as an uncoupler of CO2 fixation from the substrate (Fe 925 

or S-compounds) oxidation (Tuovinen and Kelly, 1974). Uranyl ion inhibits A. ferrooxidans and other 926 

bacteria involved in iron and sulfur oxidation at >5 mM concentrations (Tuovinen and DiSpirito, 1984). In 927 

general, as with other potentially toxic metals, the resistance to uranium can be increased by successive 928 

subculturing of A. ferrooxidans in the presence of increasing concentrations of UO2
2+. Growth in the 929 

presence of 10 mM UO2
2+ has been reported (DiSpirito and Tuovinen, 1982b). Plasmid borne resistance is 930 

implicated but the underlying mechanism remains elusive. Culture resistance has been increased to as 931 

high as 20 mM (4.76 g U l-1) at least with one strain of A. ferrooxidans (Tuovinen and DiSpirito, 1984). 932 

Merroun and Selenska-Pobell (2001) reported that uranium resistance varied among A. ferrooxidans 933 

strains; some were resistant to 8-9 mM U and some did not tolerate more than 2 mM U. Several isolates 934 

were sourced from the Agnew Lake Mine leach solutions that contained 0.07-0.92 mM U and 3.28-5.99 935 

mM Th (Tuovinen et al., 1981). Resistance to 2 mM U was developed in one isolate by increasing stepwise 936 

the uranyl sulfate concentration in subcultures. A. thiooxidans, an isolate from Vulcano (Aeolian Islands) 937 

has been reported to have resistance in the range of 5.0-7.5 g U/l (31.5 mM UO2
2+) (Ebner and Schwartz, 938 

1973, 1974). A strain of A. ferrooxidans isolated from the same location had a 7 to 10 fold lower resistance 939 

to uranium (Ebner and Schwartz, 1973, 1974).  940 

 941 

Iron-and sulfur-oxidizing microorganisms have the propensity to develop resistance to dissolved 942 

uranium at concentrations relevant to uranium mine leach solutions. Duncan and Bruynesteyn (1971a) 943 

observed bacteria in uranium mine leach solutions that contained as much as 12 g L-1 U3O8 (43 mM U). 944 

However, the presence of bacterial cells is not synonymous with their activity. The presence of bacteria 945 

in mine water and leach solutions is to be expected in leaching processes. Bacteria may also slough off 946 

from surfaces of ore particles where their growth as biofilms may confer higher tolerance to uranium as 947 

compared to planktonic cells in the solution.  948 

 949 

A. ferrooxidans usually has a broad spectrum of tolerance to metals, but the toxic threshold levels 950 

vary with the metal, with Ag+ and Hg2+ being among the most toxic (Figure 11). Fluoride toxicity (HF pKa = 951 

3.2) has also been a concern in bioleaching practices (Brierley and Kuhn, 2010; Peng et al., 2013; Ma et 952 

al., 2016; Rodrigues et al., 2016; Mo et al., 2017; Zhou et al., 2019a). Chen et al. (2016) tested column 953 

bioleaching of a uranium ore sample (1.8% F) that contained pitchblende, coffinite and a uraniferous 954 

silicate phase as well as Ca-fluorite (CaF2). No toxicity of fluoride was evident in the results that showed 955 

89% uranium dissolution from the ore (-8 mm) in 120 days (Supplementary Table 2). Wang and Qiu (2011) 956 

concluded that 1 g/l of F was a threshold concentration for viability of A. ferrooxidans. Rodrigues et al. 957 

(2016) reported active bioleaching of copper with concurrent dissolution of fluoride of up to 2.5 g/l from 958 

biotite and fluorite phases. Peng et al. (2013) studied fluoride toxicity at 20-50 mg F/l in Fe-oxidizing 959 

cultures of A. ferrooxidans. The toxicity increased with acidity of the medium (pH 2.5-1.5), which may 960 

reflect the opposite effect of pH on jarosite formation in the leach solution. Fluoride ions have been shown 961 

to partially replace the structural hydroxyl group in jarosite (Gunneriusson et al., 2009). The reason for 962 

the 15 to 20-fold difference in the toxic concertation of fluoride between iron oxidation and bioleaching 963 

studies is not clear. Fluoride is also an inhibitor of enolase (2-phospho-D-glycerate hydrolyase), which 964 

converts 2-P-glycerate to P-enolpyruvate. The inhibition of the enolase activity has multiple effects 965 

downstream in the central metabolic pathways. Information to date indicates that the reported toxicity 966 

of fluoride to bacteria in bioleaching systems is variable and is influenced by leach solution chemistry and 967 

properties of the F-containing minerals and probably also the microbial composition. For example, the 968 
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complexation of fluoride with aluminum has been suggested to decrease fluoride toxicity (Brierley and 969 

Kuhn, 2010).  970 

 971 

In general, the tolerance to toxic ions involves the selection of resistant cells over time that have the 972 

genetic traits, possibly involving plasmids or other transmissible genetic elements, to protect them from 973 

the toxicity. Stress proteins are likely to be involved as well as uncharacterized proteins, which are 974 

upregulated when A. ferrooxidans is challenged with uranium (Dekker et al., 2016). Some physical 975 

protection is conferred by cellular exopolysaccharides of A. ferrooxidans that accumulate uranium from 976 

the solution phase (Merroun et al., 2003). As with other microbes, phosphate groups are ligands for 977 

uranium sequestration, another detoxification mechanism (Suzuki and Banfield, 2004; Hennig et al., 978 

2009).  979 

 980 

A. ferrooxidans and related acidophiles have multiple stress proteins that act as molecular chaperones 981 

that mediate correct assembly and folding of proteins in response to adverse conditions such as nutrient 982 

starvation and toxic shocks due to heat, extreme pH, toxic metals, and oxyradicals. Some stress proteins 983 

act as proteases to degrade unfolded proteins. For example, Hubert et al. (1995) demonstrated the 984 

presence of multiple heat and cold shock proteins in A. ferrooxidans. Ribeiro et al. (2011) characterized 985 

several small (12-43 kDa) heat shock proteins in A. ferrooxidans and suggested that some of the genes of 986 

heat shock proteins may be inherited via horizontal gene transfer. Seeger et al. (1996) demonstrated that 987 

two molecular chaperones responded to phosphate starvation. Responses to oxidative stress in A. 988 

ferrooxidans were characterized by Bellenberg et al. (2019); this involved multiple barriers to reactive 989 

oxygen species such as metal homeostasis, proteins quenching oxyradicals, various repair mechanisms 990 

and production of capsular polysaccharides to protect the cells. Various molecular repair mechanisms and 991 

stress responses have also been examined for example in A. caldus (Guo et al., 2014) and the 992 

thermoacidophile Metallosphaera sedula (Peeples and Kelly, 1995). As a side note, bioinformatics and 993 

synthetic biology have promise as tools for understanding and increasing the tolerance of bioleaching 994 

microorganisms to various stress factors such as elevated concentration of metals, salinity, low pH and 995 

temperature extremes (Valdés et al., 2008; Campodonico et al., 2016; Gumulya et al., 2017; Osorio et al., 996 

2019; Wang et al., 2019a; Johnson and Quatrini, 2020). 997 

 998 

Uranium has relatively high affinity for cellular molecules and biopolymers. Prokaryotic and eukaryotic 999 

microorganisms including acidithiobacilli have been shown to biosorb and accumulate uranium from the 1000 

solution (DiSpirito et al., 1983; Tsezos et al., 1989; Nakajima and Sakaguchi, 1993; Panak et al., 1998; 1001 

Suzuki and Banfield, 2004; Choudhary et al., 2012). Biosorption refers to a metabolism independent 1002 

process that occurs through adsorption (accumulation of uranium at the surface) or absorption 1003 

(penetration of atoms or molecules into the cells), whereas bioaccumulation refers to metabolism-1004 

dependent accumulation (Lloyd and Renshaw, 2005). Both living and dead cells are capable of biosorption 1005 

and ligands involved in binding include amine, carboxyl, hydroxyl, phosphoryl and sulfhydryl groups, while 1006 

bioaccumulation occurs only when the cells are living and active (Lloyd and Renshaw, 2005; Wang and 1007 

Chen, 2009). The capacity of uranium sorption onto cell surfaces depends on the number of available 1008 

binding sites (phosphoryl groups especially), uranium speciation and the properties of the solution (Suzuki 1009 

and Banfield, 2004; Hennig et al., 2009; Mkandawire, 2013; Acharya 2015). Cationic uranyl species are 1010 

more easily adsorbed than anionic species as there are generally more negatively charged ligands on cell 1011 

surfaces. However, in acidic solutions cations such as UO2
2+ compete with protons for negatively charged 1012 

binding sites on the biomass and hence sorption is lower than at higher pH values (Mkandawire, 2013). A. 1013 

ferrooxidans can take up uranium from solution and in the cells uranium has been found to be associated 1014 

primarily with the cell wall and membrane fractions (DiSpirito et al., 1983). Tuovinen and DiSpirito (1984) 1015 

reported that the accumulation was influenced by the external uranium concentration and was greater at 1016 
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pH 1-1.5 compared to pH values 2-4. By contrast, Panak et al. (1998) observed increased accumulation of 1017 

uranium in two A. ferrooxidans strains when pH was increased from 1.5 to 4.0.  1018 

 1019 

In addition to biosorption and bioaccumulation, microorganisms can decrease the solubility of 1020 

uranium by reduction and precipitation (Lloyd and Renshaw, 2005; Merroun and Selenska-Pobell, 2008). 1021 

Microbial reduction of soluble U6+ to insoluble U4+ can decrease the mobility of uranium and help in 1022 

uranium recovery or remediation. To date, the number of species that are known to be able to reduce 1023 

uranium are distributed among phylogenetically diverse prokaryotes (Suzuki and Suko, 2006; Choudhary 1024 

and Sar, 2015). They also include also some acid-tolerant bacteria (Shelobolina et al., 2004). Some of the 1025 

microbes are able to reduce uranyl carbonate and form U4+-oxide minerals such as uraninite (Suzuki and 1026 

Suko, 2006). Some of these organisms have been reported to conserve energy for growth when using 1027 

UO2
2+ as an alternative electron acceptor, while others reduce uranium without an energy gain (Lovley et 1028 

al., 1991; Merroun and Selenska-Pobell, 2008; Wufuer et al., 2017). Moreover, the hydrogen sulfide 1029 

generated by sulfate reducing microorganisms can also indirectly reduce U6+ to U4+ in conjunction with 1030 

precipitation of U4+ species (Mohagheghi et al., 1985; Spear et al., 1999).  1031 

 1032 

Extracellular precipitation of uranium can be caused by biogenic phosphate, carbonate, or hydroxide 1033 

or the consumption of uranium complexing organic compounds (Lloyd and Renshaw, 2005; Merroun and 1034 

Selenska-Pobell, 2008). Biogenic phosphate can precipitate uranium as H-autunite (HUO2PO4) (Macaskie 1035 

et al., 2000, Merroun and Selenska-Pobell, 2008), autunite/meta-autunite (e.g., calcium autunite 1036 

Ca(UO2)2(PO4)2 and meta-autunite Ca(UO2PO4)2) as well as other mineral phases (Jroundi et al., 2007; 1037 

Martinez et al., 2007; Nedelkova et al., 2007; Merroun and Selenska-Pobell, 2008) at pH values ranging 1038 

from 4.5 to 7. This process is based on passive uranium sorption by the negatively charged cell wall 1039 

extracellular polymers and active secretion of phosphate groups due to a phosphatase activity (Macaskie 1040 

et al., 1992; Jeong et al., 1997; Renninger et al., 2004; Martinez et al., 2007; Merroun and Selenska-Pobell, 1041 

2008). Microbial production of CO2 and NH3 increases carbonate alkalinity and solution pH, contributing 1042 

to the precipitation of uranium with vaterite, a polymorph of calcite in the microenvironment around the 1043 

cells, and directly onto the surface of bacterial cells (Rodriguez-Navarro et al., 2003, 2007; Merroun and 1044 

Selenska-Pobell, 2008; González-Muñoz et al., 2010). Alkalinity generating microorganisms can decrease 1045 

the solubility of uranium as [UO2]2+ forms insoluble precipitates with hydroxide at neutral pH values (Lloyd 1046 

and Renshaw, 2005). Although biosorption, bioaccumulation and bioprecipitation of uranium may be 1047 

unwanted during ferric sulfate bioleaching of uranium, these bioprocesses may hold potential for 1048 

treatment of uranium contaminated waters. In fact, a number of biological approaches have been tested 1049 

for the recovery of uranium from dilute solutions both as a means of recovery of U and pollution 1050 

abatement (Tuovinen and DiSpirito, 1984; Li et al., 2004; Wall and Krumholz, 2006; Newsome et al., 2014; 1051 

Jain et al., 2018b; Zhao et al., 2019; Ohnuki et al., 2020). The cost-efficiency of these bioprocesses must 1052 

be competitive with traditional methods of uranium separation and removal. New approaches such as 1053 

functionalised and ligand-based composite adsorbents (Shahat et al., 2018; Awual, 2019a; Awual, 2019b; 1054 

Jiang et al. 2020) have promise for large-scale implementation. The rehabilitation of mine sites always 1055 

requires complementary approaches of ecological restoration and revegetation (Hernandez-Santin et al., 1056 

2020). 1057 

6. Postlude: control of microbial processes and uranium contamination after mine closure  1058 

Upon closure of uranium bioleaching operations, decommissioning procedures are required to ensure 1059 

minimal environmental impacts and risks to human health. Without efficient containment, release of 1060 

uranium and daughter nuclides from the abandoned mine site and tailings piles can continue long after 1061 

the mining and milling operations have ceased (IAEA, 1997, 2004; Bernhard et al., 1998). Transport of 1062 
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radionuclides involves both surface waterways and aquifers as well as airborne particulate matter (IAEA, 1063 

1997, 2004; Bernhard et al., 1998). Any post operation procedures at the mine site need to be designed 1064 

with due consideration of the site-specific biogeochemical, hydrological and climatic conditions.  1065 

 1066 

Many processes and techniques have been reported that can potentially restrict the dissemination of 1067 

uranium and/or remove uranium from contaminated soil, sediments and water. Biological processes can 1068 

be useful in some mitigation efforts. For example, the anaerobic reduction of water-soluble hexavalent 1069 

U6+ to poorly soluble tetravalent U4+ helps limit uranium mobility in subsurface sediments and aquifers 1070 

(Williams et al., 2013; Selvakumara et al., 2018; Lakaniemi et al., 2019). Best known in these bioprocesses 1071 

are iron- and sulfate-reducing bacteria as they are native in soils and sediments. Other U-reducers include 1072 

for example Geobacter, Shewanella and Clostridium spp. (Gao and Francis, 2008) and Anaeromyxobacter 1073 

dehalogenans (Wu et al., 2006). The anaerobic reduction of uranium must be coupled with anaerobic 1074 

oxidation of electron donors (e.g., acetate). Many microbes can utilize organophosphates that are 1075 

hydrolyzed by phosphatases, leading to precipitation of uranium as poorly soluble uranyl phosphates 1076 

(Figure 1) (Newsome et al., 2014). In general, other approaches involve soil washing with uranium-1077 

complexing acids or bases such as citric acid or (bi)carbonates (Francis et al., 1999), phytoremediation 1078 

with uranium accumulating terrestrial plants (Dushenkov et al., 1997), and use of sorbents such as plant 1079 

or microbial biomass, biochar, zero-valent iron and activated carbon (Fiedor et al., 1998; Mellah et al., 1080 

2006; Jain et al., 2018a). Although not within the scope of this review, large-scale adoption of uranium 1081 

bioreduction and phytoremediation have shown positive outcomes in environmental trials but control 1082 

and prediction of uranium plumes is difficult and sometimes not even feasible. Conjugated methods 1083 

(chemical, physical and biological) are usually the most successful approaches for implementation and 1084 

remediation of uranium contamination (Li and Zhang, 2012; Malaviya and Singh, 2012; Rosenberg et al., 1085 

2016; Selvakumar et al., 2018). Monitoring is an important component in the reclamation. Geochemical 1086 

modelling can also provide ways to investigate and predict the potential effectiveness of reclamation 1087 

activities (Williams et al., 2013).  1088 

 1089 

Microorganisms in bioleaching operations are suspended in the solution phase and attached on solid 1090 

phases and are also associated with tailings and low-grade waste and overburden piles. Mine closure does 1091 

not the stop the microbial action. The inactivation of microbes is a challenge because iron- and sulfur-1092 

oxidizing bacteria continue to produce sulfuric acid and release metals from exposed sulfide minerals in 1093 

tailings, overburden, and leftovers in the mine. Acidophiles in bioleaching systems are sensitive to high 1094 

chloride (Shiers et al., 2005; Gahan et al., 2009; Zammit et al., 2012; Bomberg et al., 2018) and nitrate 1095 

concentrations as well as various organic compounds (e.g., low molecular weight fatty acids, benzoic acid, 1096 

and C1 to C8 alcohols) (Ballerstedt et al., 2017). Laboratory tests have also identified toxic surfactants 1097 

(Ballerstedt et al., 2017). Although some potential inhibitors can be embedded in slow-release matrices 1098 

to ensure extended contact time, their usefulness on-site is debatable because the toxic organic and 1099 

inorganic compounds tested against the bacteria are water-soluble or at least water miscible and can run 1100 

off with storm water. The excessively high concentrations also make these compounds problematic to the 1101 

environment. Silicate and phosphate coatings of pyrite have been developed (Evangelou, 1995; Kargbo 1102 

and Chatterjee, 2005; Bessho et al., 2011; Kang et al., 2016) that provide a barrier against bacterial 1103 

oxidation, but, again, their field applications may be rather limited. Preventing access of water and surface 1104 

layering of exposed spoil or tailings with soil or waste sludge have proven by and large successful, although 1105 

often impracticable, mitigation approaches in some closed uranium mine sites. Most success has been 1106 

achieved by increasing the impermeability of affected areas and vegetation of the surface cover by 1107 

capping the tailings with clay, geo textile membrane, gravel and soil. 1108 
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7. Concluding remarks  1109 

Since the historic times when ore bodies were excavated and exposed to air, humidity and rain, iron- 1110 

and sulfur-oxidizing bacteria have always been spread in mine water and mineral surfaces. Following 1111 

about ten years of the first discovery of acidophilic iron- and sulfur-oxidizers (A. ferrooxidans), commercial 1112 

uranium bioleaching using heap, dump and stope technology was practiced already at the turn of the 1113 

1960’s. Acidophiles in the bioleaching of uranium produce sulfuric acid by pyrite and sulfur oxidation and 1114 

maintain high redox potential in the ferric iron-based lixiviant by ferrous iron oxidation. Past practices in 1115 

uranium leaching operations confirm that microbes contributed to the oxidation and dissolution of 1116 

uranium minerals even when no special effort was made to augment the role.  1117 

 1118 

In the 1960’s, the bacteria in uranium and sulfide leaching processes were more or less synonymous 1119 

with iron- and sulfur-oxidizers as modern methods for analysis of genotypes and phylotypes were not 1120 

available and archaea were not known to exist. Information on prokaryotic diversity in the environment 1121 

rapidly expanded in the ensuing decades and microbial life in uranium and sulfide mine environments was 1122 

understood to involve complex biological, chemical, and physical interactions with cells, solutes and 1123 

mineral surfaces. Molecular and biochemical aspects of acidophiles have since received a great deal of 1124 

attention. Their genome sequences, gene regulation and expression, and bioinformatics can be exploited 1125 

as resource to select for traits for improving bioprocess conditions. Transmissible metabolic traits and 1126 

gene regulation in free-swimming and biofilm-associated acidophiles in environmental situations are 1127 

some key areas for advancing research that may benefit bioleaching technology. Strain improvement 1128 

through genetic modification is also possible but safeguards require containment in closed environment.  1129 

 1130 

Research in uranium bioleaching parallels many problems also relevant in the bioleaching of copper, nickel 1131 

and zinc from sulfide ores. Optimization of bioleaching processes is specific for the ore type, requiring 1132 

interdisciplinary approaches and expertise at each stage of research. Studies in the bioleaching of sulfide 1133 

minerals have progressively led to multiple commercial scale bioprocesses. Investigations on potential 1134 

bioleaching applications are underway for extracting metals from electronic and other metal-containing 1135 

waste streams. New applications of uranium bioleaching are expected in conjunction with extraction of 1136 

other commodities, such as rare earths, base metals and phosphate. The long-term environmental 1137 

mitigation and monitoring and public pressure and opposition to uranium mining are some of the 1138 

prohibitive factors in this regard. Global uranium demand and national self-sufficiency of uranium supply 1139 

are some of the mitigating factors that may justify opening new mine sites. The role of microorganisms is 1140 

now so well understood that mining operations can be designed to include bioleaching steps with 1141 

specifications that take into account their metabolic, physiological and environmental requirements.  1142 
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Table 1. Some uranium minerals of economic importance mentioned in the text.  2130 

 2131 

U-mineral  Ideal formula  

Autunite  Ca(UO2)2(PO4)2·10H2O 
Betafite  U2(Ti,Cb)2O6(OH) 
Brannerite  (U,Ca,Fe,Th,Y)(Ti,Fe)2O6  
Carnotite  K2(UO2)2(VO4)2·3H2O 
Coffinite  U(SiO4)1–x(OH)4x 
Pitchblende  UO2 [UO2 to UO2.25] 
Uraninite  UO2 [(U4+

1–x,U6+
x)O2+x] 

Uranophane  Ca(UO2)2Si2O7·6H2O  
Uranothorianite  (Th,U)O2  
Uranothorite (U,Th)SiO4 

 2132 



48 

 

48 

 

Table 2. Mineralogical, physicochemical, and microbial factors affecting uranium bioleaching 2133 

Factor Variable  Notes 

Mineralogy Uranium mineralogy Oxides, phosphates, sulfates and carbonates solubilized more easily while 
dissolution of silicates is relatively slower  

 Pyrite Oxidation generates acid, dissolved Fe and heat 

 Gangue minerals May consume acid and result in precipitate formation 

 Particle size Affects leaching rate and yield 

 Porosity and permeability Affects recovery rates of in situ leaching 

 Secondary precipitates Precipitates remove Fe3+ from solution; passivate mineral surfaces and 
decrease uranium dissolution  

Physical and 
chemical factors 

Particle size distribution Reactive surface area increases with ore comminution and grinding  

 Temperature Temperature affects reaction rates, solubility of gasses, microbial diversity 
and activity, and acid consumption  

 pH Solution pH affects microbial activity and solubility of uranium and other 
elements; low pH enhances uranium leaching 

 Redox High redox increases uranium leaching 

 Dissolved O2 Dissolved O2 is required for the oxidation of Fe2+ and reduced sulfur 
compounds; aerobic growth not limited at >1.5 mg/L O2 

 Dissolved CO2 CO2 is required by autotrophic microorganisms; 3-7 mg/L CO2 optimal for A. 
ferrooxidans 

 Nutrients Nutrients (e.g., N, P, Mg) and some trace metals (e.g., Cu2+) are required by 
microorganisms 

 Fe2+ Fe2+ addition increases the bioleaching of U4+ provided that Fe2+ is oxidized 
to Fe3+   

 Fe3+ Fe3+ increases uranium leaching and redox potential, oxidizes U4+; may 
precipitate as jarosite; excessive concentration may inhibit microbial activity; 
reduces acid consumption due to ferric iron hydrolysis  
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 Other metals Metals may inhibit microbial activity; the toxic threshold concentrations are 
highly variable  

 Uranium  Uranium can inhibit microbial activity; complete inhibition of A. ferrooxidans 
occurs usually at approximately 250-500 mg U/L  

Microbiology Microbial density The rate of microbial activity is a function of active cell numbers if no other 
limitation exists 

 Microbial activity Can increase or decrease U solubility due to oxidation, reduction, or 
sequestration with complexing agents  

 Microbial diversity Consortia generally superior to pure cultures in uranium bioleaching  

 Tolerance to U and toxic 
elements 

Tolerance varies among species and strains as well as with growth conditions 

 Adaptation to toxic metals Resistance to uranium and other metals can be increased by successive 
subculturing in the presence of increasing concentrations of the metal  

 Biofilms Biofilms are more resilient to toxic elements than suspended cells  

 Sorption  Uranium sorbs on fungal and bacterial biomass  

 2134 
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 2135 

Table S1. Examples of shake flask bioleaching studies published in the literature. PD = pulp density. 2136 

 2137 

Pulp density, uranium 
mineral, U3O8 content  

Experimental conditions  U solubilization (%) Reference 

0.356% U3O8, brannerite and 
uraninite,  

-48 mesh, 20-40% PD, 28 °C, A. ferrooxidans, 9 d 98%  Zajic and Ng (1971) 

<0.2% U3O8, 10%, ningyoite 
and autunite  

-17 mesh, 10% PD, 25 °C, A. ferrooxidans, 12 d  95%  Tomizuka and Takahara (1972); 
Tomizuka and Yagisawa (1978) 

0.11% U, brannerite <37 m, 2-40% PD, 30 °C, A. ferrooxidans, 10 d 80-100% Guay et al. (1975) 

0.11%, brannerite -64 m, 10% PD, 32 °C, A. ferrooxidans, 10 d 96%  Guay et al. (1976)  

0.03-0.15% U, pitchblende, 
pyrite, chalcopyrite 

5% PD, 30 °C, A. ferrooxidans  A. thiooxidans, 
40 d  

90% Bosecker and Wirth (1980)  

0.047, 0.051, and 0.116% U, 
three apatite-bearing rock 
samples; U in uraninite and 
apatite 

-200 mesh, 10% PD, 28 °C, A. ferrooxidans and 
culture filtrates, 24 h  

57-94%  Tuovinen et al. (1983) 

0.205% U associated mostly 
with apatite quartzite-
muscovite-cericite rock   

-325 mesh, 10-20% PD, 28 °C, dilute sulfuric 
acid, no added iron, 24 h  

-325 mesh, 10-20% PD, acidic ferric sulfate 
(chemical and biogenic), 24 h 

72-88%  

 

99-100%  

Tuovinen and Hsu (1984)  

0.047, 0.051, and 0.116% U, 
three apatite-bearing rock 
samples; U in uraninite and 
apatite  

-200 mesh, 30% PD, 28 °C, acidic biogenic ferric 
sulfate filtrates, 7 h; about 15% dissolved U co-
precipitated with biologically produced ferric 
iron 

60-99% Vuorinen et al. (1986)  

0.097% U3O8, pitchblende and 
UO3, pyrite  

< 180 m, 5% PD, 35 °C, mixed culture from Río 
Tinto mine water, 24 h   

100%  Muñoz et al. (1995a) 

0.28% U, museum grade 
carnotite, calcite, quartz 

-200 mesh, 5% PD, 22 °C, A. ferrooxidans, 15 d   Bhatti et al. (1997)  
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0.38% U, museum-grade 
uranophane, plagioclase, 
quartz, K-feldspar, mica 

100%  

100%  

1.30% U, museum-grade 
uraninite, ferroan 
rhodochrosite, quartz, 
microcline, kaolinite 

-200 mesh, 5% PD, 28 °C, A. ferrooxidans 7-15 d 80-100%  Bhatti et al. (1998) 

0.04% U3O8, quartz-chlorite-
cericite-apatite  

<150 m, 10-20% PD, 30 °C, A. ferrooxidans, 14 
d  

49% Pal et al. (2010) 

0.018% U3O8, uraninite, pyrite, 
quartz, Al-silicates  

<76 m, 10% PD, 35 °C, mixed culture of A. 
ferrooxidans, 40 d  

 

Abhilash and Pandey (2011), 
Abhilash et al. (2009)  

0.0465% U, uraninite 
magnetite, pyrite, quartz 

<106 m, 2.5% PD, 35 °C, mixed culture of A. 
ferrooxidans, A. thiooxidans, L. ferrooxidans, 8 d 

100% Abdollahy et al. (2011)  

0.047% U3O8, uraninite, 
apatite 

<45 μm, 10% PD, 35 °C, A. ferrooxidans, 40 d  96% Abhilash et al. (2012) 

0.052% U, coffinite  10% PD, 25 °C, A. ferrooxidans  A. thiooxidans, 
90 d  

72-85%  Umanskii and Klyushnikov (2013) 

0.48% U in uraninite, 
weeksite, boltwoodite, 
uranophane, U-thorianite  

-100 m, 5-15% PD, 35 °C, A. ferrooxidans, 2 d  84-88% Rashidi et al. (2014)  

ND, data not given. 2138 

  2139 
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 2140 

Table S2. Examples of column bioleaching studies published in the literature. Inoculation has varied between A. ferrooxidans and enrichment 2141 

culture from the mine site, but in view of the long time courses it is likely that the final microbial populations have been mixed cultures in each 2142 

case.  2143 

 2144 

Pulp density, uranium mineral, U3O8 
content  

Experimental conditions  U 
solubilization 
(%)  

Reference 

0.0278-0.0373% U -5 mesh, 8 kg ore, 109 d  63% Barbič et al. (1976) 

0.024% U, uranothorite, brannerite, 
monazite (Agnew Lake ore) 

+1” – -50 mesh, 6 kg ore, mixed culture, 120  34-55%  Bruynesteyn et al. (1981) 

0.13-0.56% U3O8 , coffinite, urananite 
and organo-uranium complexes  

-16 –  +35 mesh, 100 g ore, mixed culture, 54 d 95%  Brierley (1978) 

0.146% U3O8, pitchblende in black slate 
rock 

0.145% U3O8, pitchblende in granite rock  

-40 – 0.5 mm, ambient temperature, 20 t ore, 477 
d 

-40 – 0.5 mm, ambient temperature, 20 t ore, 429 
d 

57-83%  

 

31-86% 

Floeter et al. (1983) 

  

0.097% U3O8, pitcblende  -6 mm, amount of ore ND, mixed culture from 
mine water, 24 d 

~90% Muñoz et al. (1995b) 

0.11% U, brannerite  -4.75 mm, 2 °C, A. ferrooxidans,; 16 kg ore, 39 d 67% Guay et al. (1977)  

0.027% U3O8, U-rich sandstone 
uranophase, carnotite, tyuamunite, 
urananite, pitchblende, coffinite  

+30 to -300 mesh, Acidithiobacillus spp., 100 kg, 90 
d 

66-70% Bhatti et al. (1989) 

0.113% U, uraninite ore,  -10 mm, 20 kg ore, A. ferrooxidans, 38 d   74-79%  Ding et al. (2010) 

0.0308% U3O8, uraninite 2.5-0.5 cm, 6 kg, 60 d 60% Abhilash et al. (2010)   

0.164% U, uraninite, brannerite, 
uranothorite  

-2-5 mm, 24.7 kg, pooled enrichment culture from 
uranium mines, 64 d 

97% Qiu et al. (2011)  
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0.208% U, pitchblende, coffinite, fluorite 
silicate uranium 

-8 mm, ambient temperature, 120 d  89%  Chen et al. (2016) 

0.058% U, multiple U-bearing 
phosphates and silicates 

<0.2 mm – 0.63 mm, 3 kg, 25 °C, mixed culture 
from a mine site, 55 d 

75%  Szolucha and Chmielewski 
(2017) 

0.0230% U, uraninite, talc, magnetite, 
hematite and pyrite 

d80 = 5 mm, 3 kg, 25 °C, A. ferrooxidans, 19 d 50-62% Zare Tavakoli et al. (2017b)  

0.0218% U, uraninite, talc, magnetite, 
hematite and pyrite 

d80 = 10 mm, 3 kg, 25 °C, A. ferrooxidans, 19 d 48-59% Zare Tavakoli et al. (2017b) 

0.0211% U, uraninite, talc, magnetite, 
hematite and pyrite 

d80 = 15 mm, 3 kg, 25 °C, A. ferrooxidans, 19 d 46-54% Zare Tavakoli et al. (2017b) 

0.025% U3O8, uraninite, talc, magnetite, 
hematite and pyrite 

d80 = mm, 3 kg, 25 °C, A. ferrooxidans, 21 d  Zare Tavakoli et al. (2017c)  

 2145 

ND, data not given. 2146 

 2147 

 2148 

  2149 
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 2150 

Table S3. Examples of stirred tank bioleaching of uranium ores. PD = pulp density. 2151 

 2152 

Sample  Parameters  Contact time  U solubilisation (%) Reference  

0.12% U, pitchblende <0.6 mm, 10% PD, A. 
ferrooxidans, 30 °C 

3 d  90 Bosecker and Wirth 
(1980) 

0.047% U3O8, uraninite -45 and -100 m, 10% PD, 35-40 
°C, A. ferrooxidans and L. 
ferrooxidans   

10 h 57-63 Abhilash and Pandey 
(2013a) 

0.065% U, brannerite 
(Saghand anomaly II)  

80% -80 m, 5.8% PD, 25 °C  6 d 95 Eisapour et al. (2013) 

0.024% U, uraninite  <76 m, 20% 35 °C, A. 
ferrooxidans  

14 d 98  Abhilash and Pandey 
(2013b) 

1.3% U, ningyoite 10%, 30 °C, A. ferrooxidans  Continuous 
culture 

92 

excluded 

Tomizuka et al. (1976)  

0.03% U, uraninite  d80 = 100 μm, A. ferrooxidans  7 d 99  Zare Tavakoli et al. 
(2017a) 

0.036% U3O8, carbonaceous-
siliceous-argillaceous type 
uranium 

< 1 mm, 10% PD, 30 °C, A. 
ferrooxidans 

10 d 85 Wang et al. (2018) 

     
 2153 

 2154 



 

55 

 

 2155 

 2156 
 2157 

Figure 1. Potential roles of microorganisms in A) acid and ferric sulfate leaching of uranium ores and B) 2158 

treatment of uranium-containing acid mine drainage and groundwater. 2159 

 2160 
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 2162 

 2163 

 2164 
 2165 

Figure 2. A schematic diagram of the roles of A) iron-oxidizing, B) sulfur-oxidizing and C) uranium-oxidizing 2166 

microorganisms in the bioleaching or uranium ores. 2167 
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 2169 

 2170 

 2171 

 2172 
 2173 

Figure 3. Schematic diagrams showing the basic principles of (A) tank bioleaching, (B) heap bioleaching, 2174 

(C) stope leaching (adapted from McCready and Gould, 1990), (D) in-place bioleaching and. The 2175 

geometries of stope and in-place leaching can vary depending on the geometry of the stope and 2176 

uranium ore body, respectively.  2177 
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 2179 

 2180 

 2181 
 2182 

Figure 4. Characteristics of various biooxidation and bioleaching methods (adapted from Kinnunen, 2004). 2183 
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 2185 

 2186 
 2187 

Figure 5. A generalized flow sheet for in situ leaching of uranium with biologically generated ferric iron 2188 

and acid, and excess iron and sulfate removal through jarosite precipitation. Due to the lower solubility 2189 

of oxygen as compared to ferric iron, biological oxidation of reduced sulfur compounds in the subsurface 2190 

has been expected to be facilitated mainly by ferric iron rather than oxygen as the electron acceptor. 2191 

  2192 
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 2193 

Figure 6. Agnew Lake mine operation in 1978 (photos: O.H. Tuovinen).    2194 
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 2195 

Figure 7. Terrafame heap bioleaching in 2008 (photos: O.H. Tuovinen).  2196 

  2197 
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 2198 

 2199 
Figure 8. Examples of uranium bioleaching yields in shake flask (⚫), column (), and stirred tank (▼) 2200 

studies. Data pooled from the literature (see Tables S1, S2, and S3). Shake flasks: pulp density 5-40%, U-2201 

content 0.035% – 1.03% U; Columns: 100 g – 100 kg ore, U-content 0.024% -- 1.42% U; stirred tanks: 2202 

pulp density 5.8-20%, U-content 0.024% – 0.12% U.  2203 
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 2207 
Figure 9. An example of column bioleaching of a uraninite-containing ore (adapted from Zare Tavakoli et 2208 

al., 2017a with permission from Elsevier).  2209 

 2210 
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 2211 
Figure 10. A) Schematic of a 4854-ton bioheap leaching system (U-content 0.082%), B) uranium leaching 2212 

yield and sulfuric acid consumption during chemical pre-leaching and bioleaching. Acid consumption 2213 

started immediately and continued throughout the time course of 85 days (adapted from Wang et al., 2214 

2017 with permission from Springer Nature).   2215 
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 2217 
Figure 11. Schematic comparison of toxic threshold concentrations of metals inhibitory to iron oxidation 2218 

by A. ferrooxidans. Data pooled and averaged from various literature sources. There are numerous 2219 

differences in the threshold concentrations of each metal due to adaptation, strain variation and growth 2220 

conditions.  2221 
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