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ABSTRACT

The correspondence theorem of Carlsson and Zomorodian, which states that one can
view persistence modules as modules over a polynomial ring of one variable, opened
the graded perspective in topological data analysis. In this thesis, we want to pro-
pose a new generic theoretical framework for understanding generalized persistence
modules from this perspective by considering monoid actions on preordered sets.
Secondly, in the case the indexing set is a poset, we introduce a new tameness con-
dition for a generalized persistence module by defining the notion of S-determinacy,
where S is a subposet containing all the ‘births’ and the ‘deaths’.

We first focus on the correspondence between generalized persistence modules
and graded modules in the case the indexing set has a monoid action. We introduce
the notion of an action category over a monoid graded ring. We show that the
category of additive functors from this category to the category of Abelian groups
is isomorphic to the category of modules graded over the set with a monoid action,
and to the category of unital modules over a certain smash product.

In the case S is finite, our notion of S-determinacy leads to a new characterization
for a generalized persistence module being finitely presented. Moreover, we show
that after adding ‘infinitary points’ to Zn, ‘S-determined’ is equivalent to ‘finitely
determined’ as defined by Miller.

iii



iv



PREFACE

Returning home after a late military service, I had to make a big decision of whether
I should pursue a doctorate or some other career. The answer came quite naturally
(and without toomuch thought), when I was offered a full-time position of a doctoral
student at the then University of Tampere. Back then, topological data analysis,
which is the subject of this dissertation, was a brand new research area for everyone
at the faculty, so there was some groundwork to cover. Unbeknownst to me at
the time, the years writing this dissertation would be filled not only with learning
experiences, but also with some highs and lows of life. It feels like an understatement,
but getting to this point was not easy, so I would like to acknowledge some of the
people that made it possible.

First of all, I want to thankmy supervisor, Professor EeroHyry, for his continued
support and guidance during the process, as well as for his firm belief in my capability
to finalize this dissertation. For all these years it has been a pleasure to work with
and to learn from Eero. His expertise has been invaluable. I also wish to thank
the pre-examiners of this dissertation, Professor Peter Bubenik and Professor Kevin
Knudson, for their good work and inspiring commentary, and Professor Ran Levi
for agreeing to be the opponent in my thesis defence.

Secondly, I would like to thank all my co-workers at the Faculty of Information
Technology and Communication Sciences and its predecessors, for the work envi-
ronment that has always been enjoyable. Ari, Pentti, Pertti, Raine, Kerkko, Lauri,
Mika, Miikka and Antti, to name a few. It has also been nice to get more people
into the topological data analysis group, and to be able to learn from other doctoral
students. In particular, I should mention Ville Puuska, who has constantly been a
source of good ideas during our discussions.

Lastly, I thank my family and friends, who have tried their best to keep me sane
during this time, and of course my girlfriend Heidi. Kiitos!

v



vi



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Basic properties of RC-modules . . . . . . . . . . . . . . . . . . . 17
1.2 Additive and R-linear functors . . . . . . . . . . . . . . . . . . . 18
1.3 Order theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Colimits and limits . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Finiteness conditions . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Kan extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Modules over a monoid act . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Monoid action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Automorphic actions . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Action categories over a graded ring . . . . . . . . . . . . . . . . 37
2.4 Category algebras and smash products . . . . . . . . . . . . . . . 40
2.5 Kan extensions and action categories . . . . . . . . . . . . . . . . 44

3 Finitely presented RC-modules . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 S-presented and S-generated RC-modules . . . . . . . . . . . . . . 49
3.2 Births and deaths relative to S . . . . . . . . . . . . . . . . . . . . 54
3.3 S-splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Minimality of births and deaths . . . . . . . . . . . . . . . . . . . 60

4 Presentations with finite support . . . . . . . . . . . . . . . . . . . . . . 65
4.1 S-determined RC-modules . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Minimal upper bounds . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Finitely presented RC-modules in mub-complete posets . . . . . . 68
4.4 Pointwise stabilizing direct systems . . . . . . . . . . . . . . . . . 70

vii



5 Strongly bounded posets . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Modules over strongly bounded posets . . . . . . . . . . . . . . . 79
5.2 Modules determined by cartesian sets . . . . . . . . . . . . . . . . 82
5.3 Finitely determined modules . . . . . . . . . . . . . . . . . . . . 87

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



INTRODUCTION

One of the main methods of topological data analysis is persistent homology. In the
simplest case, data is encoded in an increasing nested sequence

∅ = X0 ⊆ X1 ⊂ . . . ⊆ Xr = X

of simplicial complexes. This filtration reflects the topological and geometric struc-
ture of the data at different scales. By taking homology with coefficients in a field k,
one obtains for every i a sequence of vector spaces and linear maps

0 = Hi (X0) → Hi (X1) → . . . → Hi (Xr) = Hi (X ).

This sequence is called a persistence module. Intuitively, persistent homology is a tool
to track down how topological features are born and die throughout the filtration.
If a non-zero homology class in Hi (Xj) is not in the image of Hi (Xj−1), it is said to
be born at the step j of the filtration. It dies at the step j + 1 if its image in Hi (Xj+1)
is zero. Otherwise, the homology class is said to persist. Carlsson and Zomorodian
[33, p. 259, Thm. 3.1 (Correspondence)] realized that one can view persistence
modules as modules over a polynomial ring of one variable. The above persistence
module then corresponds to the graded k[x]-module

M :=
∑︁
j≥0

Hi (Xj).

The variable x acts on M by means of the maps Hi (Xj) → Hi (Xj+1). One can now
use the structure theorem of finitely generated modules over a principal ideal domain
to observe that we have the decomposition

M =
⨁︂
i

xaik[x]/xbik[x] ⊕
⨁︂
i

xcik[x],
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where ai , bi , ci ∈ N and ai < bi The numbers ai and bi record the birth and death
of a homology class, respectively, whereas the homology class born at the step ci
lives forever. The intervals [ai , bi [ and [ci ,∞[ thus represent homological properties
that span over a certain range of scales. The collection of these intervals is called a
barcode, and it is a complete and discrete invariant for persistence modules ([5]).

Considering filtrations indexed byNn leads to the so calledmultipersistence. In [5,
p. 78, Thm. 1], Carlsson and Zomorodian showed that multipersistence modules
now correspond to modules over a polynomial ring of n variables. More generally,
one can start from a filtration of a topological space indexed by a preordered set.
However, the resulting generalized persistence modules do not necessarily have an
immediate expression as a module over a graded ring.

The correspondences byCarlsson and Zomorodian opened the graded perspective
in topological data analysis, leading many researchers to utilize graded module the-
ory in their investigations (see, for example, [6], [19], [4], [12], [14], [16], [29]). The
most general cases of modules over a ring in this line of research are modules graded
over Abelian groups with monoids as their positive cones, and modules canonically
graded over cancellative monoids. In this thesis, we want to propose a new generic
theoretical framework for understanding generalized persistence modules under the
lens of graded algebra by considering monoid actions on preordered sets. Secondly,
we want to investigate finitely presented generalized persistence modules. In partic-
ular, we will give a certain subclass of preordered sets over which finite presentation
can be characterized by a suitable ’tameness’ condition.

We now want to explain this in more detail. Using the language of category the-
ory, it is convenient to define a generalized persistence module as a functor from
a preordered set P to the category of k-vector spaces, where k is a field. In rep-
resentation theory, given a commutative ring R and a small category C, a functor
C → R-Mod is called an RC-module. In this terminology, a generalized persis-
tence module is then a kP-vector space. Following Mitchell ([20]), we also regard a
small preadditive category A as a ‘ring with several objects’, and an additive functor
A → Ab as an A-module. The RC-modules may then be seen as modules over the
linearization RC, where RC is a preadditive category with the same objects as C and
morphisms R[MorC (c, d)], where c, d ∈ Ob C (for any set S, we denote by R[S] the
free R-module generated by S).

Suppose now that G is a monoid. To any G-act (or G-set) A, we can associate an
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action category G∫A, whose objects are the elements of A, and for any a, b ∈ A the
morphisms a → b are pairs (a, g), where g ∈ G with b = ga. It is easy to see that the
category of R(G∫A)-modules is now equivalent to the category of A-graded R[G]-
modules. Note that if the action of G on A is free, then simply G∫A ≅ A, where A is
the thin category whose morphisms are given by G. Moreover, if in this situation A
is connected, G is both commutative and cancellative, and the action is automorphic,
then A is in fact isomorphic to the Grothendieck group Ggp (see Corollary 2.8).

Given any G-graded ring S, this leads us is to investigate the relationship between
A-graded S-modules and modules over A in general. We define the action category
over S, denoted by G∫ SA, with objects A and morphisms

  s\in \bigoplus _{g\in G, \ ga=b}S_g, 





where a, b ∈ A. In the case S = R[G], G∫ SA is just the linearization of G∫A. Our
first main result, Theorem 2.13, then says that the categories of A-graded S-modules
and G∫ SA-modules are isomorphic.

We can also look at the category algebra R[G∫A]. If C is any category, then
the category algebra R[C] is defined as the free R-module with a basis consisting
of the morphisms of C, and the product of two basis elements is given by their
composition, if defined, and is zero otherwise. It now turns out in Proposition 2.18
that the category algebra R[G∫A] coincides with the smash product R[G]#A, which
has been much studied in ring theory (see [22]). This leads us to Theorem 2.20,
where we identify G∫ SA-modules with the category of unital S#A-modules i.e. the
category of S#A-modulesM withM = (S#A)M.

A morphism of G-acts φ : A → B defines an obvious functor of action categories
φ : G∫A → G∫B. The restriction functor resφ from the category of R(G∫B)-modules
to the category of R(G∫A)-modules has the left adjoint indφ, the induction func-
tor, and the right adjoint coindφ, the coinduction functor, to the opposite direction.
In Proposition 2.23 and Proposition 2.24 we examine the reindexing of R(G∫A)-
modules and R(G∫B)-modules by means of the functors indφ and coindφ.

We then turn to consider finitely presented generalized persistence modules. Note
that being finitely presented is a categorical property, so an equivalence between
generalized persistence modules and graded modules preserves this property. Recall

11



first that an RC-moduleM is finitely presented if there exists an exact sequence  \bigoplus _{j\in J} R[\Mor _{\C }(d_j,-)] \rightarrow \bigoplus _{i\in I} R[\Mor _{\C }(c_i,-)] \rightarrow M\rightarrow 0, 


  



     

where I and J are finite sets, and ci , dj ∈ C for all i ∈ I , j ∈ J . We will look at posets
C which are weakly bounded from above and mub-complete. By ‘weakly bounded’
we mean that every finite subset S ⊆ C has a finite number of minimal upper bounds
in C, whereas C is mub-complete if given a finite non-empty subset S ⊆ C and an
upper bound c of S, there exists a minimal upper bound s of S such that s ≤ c. In our
Theorem 4.15, we characterize finitely presented generalized persistence modules
in this situation. More precisely, we can show that an RC-module M is finitely
presented if and only if the R-modulesM (c) are finitely presented for all c ∈ C, and
M is S-determined for some finite set S ⊆ C.

Given S ⊆ C, we call an RC-module M S-determined if Supp(M) ⊆ ↑S and the
implication

  S\cap {\downarrow } c = S \cap {\downarrow } d \ \Rightarrow \ \text {the morphism}\ M(c\leq d) \text { is an isomorphism}              

holds for every c ≤ d in C. Here Supp(M) := {c ∈ C | M (c) ≠ 0} denotes the
support ofM, and for any T ⊆ C, we use the usual notations

  \hbox {${\uparrow } T := \{c\in \C \mid t\leq c \text { for some }t\in T\}$}              

and
  \hbox {${\downarrow } T := \{c\in \C \mid c\leq t \text { for some }t\in T\}$}              

for the upset generated and the downset cogenerated by T , respectively. Our intu-
ition for this definition comes from topological data analysis, where one tracks how
the elements of each M (c) evolve in the morphisms M (c ≤ c′) (c, c′ ∈ C). One says
that an element m ∈ M (c) is born at c if it is not in the image of any morphism
M (c′ ≤ c), where c′ < c, and dies at c′′ if M (c ≤ c′′) (m) = 0 and M (c ≤ c′) (m) ≠ 0
for all c ≤ c′ < c′′. Suppose that there exists a set S such that all births and deaths oc-
cur inside S. The condition S∩↓c = S∩↓d then implies that looking down from both
c and d, we see the same deaths and births. In particular, the morphism M (c ≤ d)
must be an isomorphism.

12



Our proof for Theorem 4.15 starts from the fact that an RC-moduleM is finitely
presented if and only if the R-modules M (c) are finitely presented for all c ∈ C and
M is S-presented for some finite subset S ⊆ C. Here S-presented means the existence
of a set S ⊆ C and an exact sequence of the type  \bigoplus _{s\in S}B_s[\Mor _\C (s,-)] \rightarrow \bigoplus _{s\in S}A_s[\Mor _\C (s,-)] \rightarrow M \rightarrow 0, 


  




     

where As and Bs are R-modules for all s ∈ S. It is easily seen that ifM is S-presented,
thenM is S-determined. We denote the set of minimal upper bounds of non-empty
subsets of a finite set S ⊆ C by

  \hat {S} := \bigcup _{\emptyset \neq S'\subseteq S} \mub _\C (S'). 





In Corollary 4.13 we now make the crucial observation that M is S̃̃ -presented if
S ⊆ C is a finite set such thatM is S-determined.

As a useful tool we introduce the sets of births and and deaths relative to S by

  B_S(M):=\{c\in \C \mid \underset {s<c, \ s\in S}\colim M(s) \rightarrow M(c) \ \text {is a non-epimorphism}\}       


      

and
  D_S(M):=\{c\in \C \mid \underset {s<c, \ s\in S}\colim M(s) \rightarrow M(c) \ \text {is a non-monomorphism}\}.       


      

An RC-module M is known to be S-presented if and only if the natural morphism
indS resS M → M is an isomorphism. Here resS denotes the restriction functor from
the category of RC-modules to the category of RS-modules, and indS its left adjoint,
the induction functor. Note the pointwise formula

  (\ind _S\res _S M)(c)= \underset {s<c, \ s\in S}\colim M(s)     




for all c ∈ C. We observe in Proposition 3.9 that the moduleM is S-presented if and
only if BS (M) ∪ DS (M) ⊆ S. Interestingly, if S is Artinian, then BS (M) ∪ DS (M)
is the minimal subset T ⊆ S such that M is T -presented (see Proposition 3.25).
Suppose that C = Zn, R = k is a field and

  0\rightarrow L \rightarrow N\stackrel {f}{\rightarrow } M\rightarrow 0,   

  

13



is an exact sequence, where N is a free module and f a minimal epimorphism. In
this case our Theorem 3.28 says that DS (M) = BS (L) confirming the intuition that
deaths should correspond to ‘relations’.

Since the categoryRC-Mod ofRC-modules is a locally finitely generated Grothen-
dieck category, we know that an RC-moduleM is finitely presented if and only if the
functor HomRC (M,−) preserves colimits of direct systems. One says that a direct
system (Mi)i∈I is pointwise stabilizing if for all c ∈ C there exists ic ∈ I such that

  i_c\leq i \leq j \ \Rightarrow \ \varphi _{ij}\colon M_i(c)\rightarrow M_j(c) \ \text {is an isomorphism}.              

We prove in Proposition 4.25 that M is S-presented for some finite subset S ⊆ C if
and only if HomRC (M,−) preserves colimits of pointwise stabilizing direct systems.
This result is due to Djament, but is given without a proof in [9, p. 14, Remar-
que 2.15].

This thesis unifies several earlier results. In the context of topological data analy-
sis, monoid actions have been considered by Bubenik et al. in their article [3], where
they looked at the action on any preordered set given by the monoid of its transla-
tions. In the article [7] of de Silva et al., an indexing category with an additional struc-
ture of a [0,∞)-action is called a category with a coherent flow. Recently, Bubenik
and Milicevic considered modules graded over Abelian groups with monoids as their
positive cones ([4]).

We have in particular beenmotivated by the article [6] of Corbet and Kerber, who
generalized the result of Carlsson and Zomorodian to the case where the indexing set
is a so called good monoid. We point out that if G is a monoid, then RG-modules of
finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are the same thing
as finitely presented RG-modules. The set Ŝ is a framing set in the sense of [6, p. 19,
Def. 15].

Our sets of births and and deaths relative to S are related to the invariants ξ0
and ξ1 studied by Carlsson and Zomorodian in [5], and also by Knudson in [14].
For a finitely generated Zn-graded k[X1, . . . , Xn]-module M, the invariants ξ0(M)
and ξ1(M) are multisets indicating the degrees of minimal generators and minimal
relations of M equipped with the multiplicities they occur. The underlying sets of
ξ0(M) and ξ1(M) are now BS (M) and DS (M).

Miller introduces in [19, p. 31, Def. 5.1] another notion of tameness. He defines
an RZn-module M to be finitely determined, if there is a closed interval [a, b] ⊆ Zn

14



such that the morphismsM (c ≤ c+ ei) are isomorphisms for all i = 1, . . . , n whenever
ci lies outside [ai , bi]. Here e1, . . . , en denote the standard basis vectors of Zn. It is
obvious that ifM is [a, b]-determined, thenM is finitely determined with respect to
the interval [a − u, b], where u = (1, . . . , 1). In general, finitely determined modules
do not, of course, fill the requirement that Supp(M) ⊆ ↑S for some finite set S.
However, we can save the situation by adding some infinitary points. This idea is
due to Perling (see [23, pp. 16-19, Ch. 3.1]). Set Z := Z ∪ {−∞}. It is easy to see
that Z

n
inherits the poset structure from Zn. Any RZn-moduleM may be naturally

extended to an RZn-moduleM by setting

  \overline {M}(c) = \lim _{d\geq c, \ d\in \mathbb Z^n}M(d)  




for all c ∈ Zn. In Theorem 5.19, we show that an RZn-module M is finitely deter-
mined if and only if M is S-determined for some finite S ⊆ Zn. We also show that
the notion of an S-determined moduleM is compatible with that of anM-admissible
poset S defined in [23, p. 18, Def. 3.4].

15



16



1 PRELIMINARIES

Throughout this thesis, let C be a small category, R a commutative ring (with unit),
and G a monoid. If S is a set, we use the notation R[S] for the free R-module with
the basis S. In particular, we can write the elements of R[S] uniquely in the form∑︁

s∈S rses, where {es | s ∈ S} is the basis of R[S].

1.1 Basic properties of RC-modules

We shall assume that the reader is familiar with the basics of category theory. For a
more detailed reference, see, for example, [18].

A functor from the small category C to the category R-Mod of R-modules is
called an RC-module. A morphism between two RC-modules M and N is a natural
transformation µ : M → N . More explicitly, a morphism of RC-modules µ : M →
N is a collection of R-homomorphisms µc : M (c) → N (c), where c ∈ C, such that
the diagram

  \xymatrix { M(c)\ar [r]^{M(u)} \ar [d]_{\mu _c}& M(d) \ar [d]^{\mu _d}\\ N(c) \ar [r]^{N(u)}& N(d)}  









  
 

commutes for all morphisms u : c → d in C. IfM is an RC-module, then the support
ofM is the set

  \supp (M):=\{c\in \C \mid M(c)\neq 0 \}.         

The category RC-Mod of RC-modules is an Abelian category with kernels, im-
ages, products and coproducts computed objectwise. For example, if µ : M → N is a
morphism of RC-modules, then Ker µ is defined by (Ker µ) (c) = Ker µc for all c ∈ C.

Let I be a collection of objects of C. Such a collection gives rise to a functor
I : Ob C → Set, which we call an Ob C-set. Here Ob C is considered to be the
category with the same objects as C and with identities being the only morphisms.

17



More precisely, for an object c ∈ C, the set I (c) has the same cardinality as the set
of elements in I that are equal to c. A morphism λ : I → J of Ob C-sets is just a set
of functions I (c) → J (c), where c ∈ C. We denote by U the forgetful functor from
RC-modules to Ob C-sets.

An RC-module F is free with the basis I if there exists a morphism of Ob C-sets
j : I → UF that satisfies the following universal property: For a morphism f : I →
UM of Ob C-sets, where M is an RC-module, there exists a unique morphism of
RC-modules, µ : F → M, such that the diagram

  \xymatrix { I\ar [r]^{j} \ar [rd]_{f}& UF \ar [d]^{U\mu }\\ & UM} 












commutes. Since the free RC-module with the basis I solves a universal problem,
it is unique up to isomorphism. It follows in particular that every free RC-module
with the basis I is isomorphic to the RC-module

⨁︁
c∈I R[MorC (c,−)].

For more details on RC-modules, we refer to [17] and [32].

1.2 Additive and R-linear functors

A category A is called preadditive if

1) the set of morphismsMorA(a, b) has the structure of an Abelian group for all
a, b ∈ A;

2) the composition operation of morphisms

  \Mor _{\A }(a,b)\times \Mor _{\A }(b,c)\rightarrow \Mor _{\A }(a,c)      

is bilinear for all a, b, c ∈ A.

A functor F : A → B between preadditive categories is called additive if the
function φa,b : MorA(a, b) → MorB (F (a), F (b)) is a group homomorphism for all
a, b ∈ A.

Furthermore, if the groups of morphisms of the preadditive category A are also
R-modules, then A is an R-linear category. A functor F : A → B between two
R-linear categories is R-linear if the function MorA(a, b) → MorB (F (a), F (b)) is a

18



homomorphism of R-modules for all a, b ∈ A.
Let C be a small category. We say that an R-linear category L with a morphism

j : C → L is an R-linearization of C, if the following universal property is satisfied:
For any functor f : C → A, where A is an R-linear category, there exists a unique
R-linear functor g : L → A such that the diagram

  \xymatrix { \C \ar [r]^{j} \ar [rd]_{f}& \mathcal L \ar [d]^{g}\\ & \A } 












commutes. The standard argument of universal properties suffices to show that the
linearization, if it exists, is unique up to isomorphism.

We define the canonical R-linearization of C as the category RC, with the set of
objects Ob C, and for all c, d ∈ RC the group of morphisms

  \Mor _{R\C }(c,d) = R[\Mor _{\C }(c,d)].      

Proposition 1.1. The category RC is an R-linearization of C.

Proof. Obviously RC is an R-linear category. Let i : C → RC be the embedding
where c ↦→ c for all c ∈ C, and u ↦→ eu for all morphisms u : c → d in C. Suppose
f : C → A is a functor, where A is an R-linear category. Let us define a functor
g : RC → A by setting g(c) = f (c) and g(eu) = f (u) for all c ∈ C and u ∈ MorC (c, d).
Clearly then g is R-linear with g ◦ i = f . The uniqueness of g immediately follows
from the requirement that g has to be linear. Thus RC is an R-linearization of C.

IfA is a small preadditive category, following Mitchell ([20]), an additive functor
M : A → Ab is called an A-module. A morphism of A-modules µ : M → N is
a natural transformation, where each µc, c ∈ C, is a group homomorphism. The
category of A-modules is denoted A-Mod. Like RC-Mod, the category A-Mod of
A-modules is an Abelian category with kernels, images, products and coproducts
computed objectwise.

Note that anRC-module could either be a functor from C toR-Mod or an additive
functor from RC to Ab. This ambiguity is covered next.

Example 1.2. Let M be a functor C → R-Mod. The R-linearization of C extends
M to an R-linear functor M′ : RC → R-Mod, where M′ ◦ i = M. Obviously an
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R-linear functor is also additive.
On the other hand, let N be an additive functor RC → Ab. We may define an

R-module structure on N (c) for all c ∈ C by setting

  rn:= N(r\cdot e_{\id _c})(n)       

for all r ∈ R, c ∈ C and n ∈ N (c). This yields a functor from C to R-Mod.

In Example 1.2, we have essentially proven

Proposition 1.3. The following categories are isomorphic:

1) Functors C → R-Mod;

2) Additive functors RC → Ab;

3) R-linear functors RC → R-Mod.

1.3 Order theory

Let P be a set, and let ≤ be a binary relation on P. We say that P is a preordered set if
the relation ≤ is both reflexive and transitive. If the relation ≤ is also antisymmetric,
then P is a partially ordered set, or a poset for short.

Let C be a poset. Given a subset S ⊆ C, an element c ∈ C is an upper bound of S, if
s ≤ c for all s ∈ S. We say that C is (upward) directed, if there exists an upper bound
for every finite subset S ⊆ C. An element c ∈ C is said to be minimal, if for every
d ∈ C, we have

  d\leq c \ \Rightarrow \ c=d.     

If for any c, d ∈ C there exists a unique minimal upper bound in C, we say that C
is a join-semilattice. We denote this unique minimal upper bound by c∨d, and call it
the join of c and d. A join-semilattice is bounded if it has a unique minimal element.

Remark 1.4. We could equivalently define a join-semilattice as a set P with a binary
operation ∨ such that

• p ∨ (q ∨ r) = (p ∨ q) ∨ r;

• p ∨ q = q ∨ p;

• p ∨ p = p
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for all p, q, r ∈ P. This operation induces a partial order on P by setting p ≤ q if and
only if p∨ q = q for p, q ∈ P. Defined in this way, p∨ q then coincides with the other
definition. The above axioms also imply that the notation

⋁︁
S makes sense for finite

non-empty subsets S ⊆ C.

Let L be a join-semilattice. If S ⊆ L is a join-semilattice such that  \bigvee _{L}T = \bigvee _{S}T 







for all finite non-empty subsets T ⊆ S, then we call S a join-sublattice of L.
All of the above definitions have dual versions, obtained by changing ≤ to ≥.

These are, respectively, lower bounds, downward directed sets,maximal elements,meet-
semilattices, meets, and meet-sublattices.

The poset C is called a lattice if it is both a join-semilattice and a meet-semilattice.
Given a subset S ⊆ C, we will use the notations

  \uparrow S := \{c\in \C \mid s\leq c \text { for some }s\in S\}             

for the upset generated by S, and

  \downarrow S := \{c\in \C \mid c\leq s \text { for some }s\in S\}             

for the downset cogenerated by S.

1.4 Colimits and limits

LetA be a preadditive category, I a small category, and F : I → A a functor. Assume
that A is an object inA, and that for all i ∈ I , we are given a morphism αi : F (i) → A.
Then the family (αi)i∈I is called a cone from F to A, if for every morphism u : i → j
in I , we have αj = αiF (u). A colimit of the functor F is an object colimI F ∈ A
together with a cone (µi)i∈I from F to colimI F , satisfying the following universal
property: If (λi)i∈I is a cone from F to L, where L ∈ A, then there exists a unique
morphism f : colimI F → L such that fµi = λi for all i ∈ I . In other words, (µi)i∈I
is the initial cone (from F ).

If the colimit colimI F exists for every functor I → A, where I is a small category,
then the category A is called cocomplete.
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Proposition 1.5. [30, p. 99, Prop. IV.8.1] If A is cocomplete, then colimI is a functor
from category of functors I → A to the category A.

Let I be a preordered set. Note that a functor F : I → Amay be described by the
family (F (i))i∈I and the morphisms F (i ≤ j) for all i ≤ j in I . With the data given in
this form, we can also denote the colimit colimI F more concretely by colimi∈I F (i),
and say that it is the colimit of the family (F (i))i∈I .

If I is a directed poset and C is any category, then a functor F : I → C is called a
direct system in C.

The next lemma is a basic property of the colimit that will be used later. The
proof is straightforward and follows from the universal property of the colimit.

Lemma 1.6. [13, p. 40] Let φ : A → B be an additive functor between cocomplete
preadditive categories. There exists a canonical morphism

  \theta \colon \underset {i\in I}\colim (\varphi \circ F)(i)\rightarrow \varphi (\underset {i\in I}\colim F(i)). 


     




For an easy reference, we gather some elementary results and facts about colimits
in the next remark.

Remark 1.7. Let I be a small category.

• IfM : I → R-Mod is a functor, then colimI M may be constructed as follows:
For the R-module N :=

⨁︁
i∈I M (i) and its submodule

  J:=\langle M(u)(x)-x \mid u\colon i\rightarrow j \text { is a morphism in } I, \ x\in M(i)\rangle ,                    

we have colimI M ≅ N/J .

• If I be a discrete category, i.e., a category with only identity morphisms, then
colim
i∈I

F ≅
∐︁

i∈I F (i).

• Let I be a poset. A subset J ⊆ I is said to be final, if for every i ∈ I there exists
an element j ∈ J such that i ≤ j. Let A be cocomplete. If I is directed and
J ⊆ I is final, then

  \underset {I}\colim F\cong \underset {J}\colim F. 


 




In particular, if I has a maximum element, then {max(I)} ⊆ I is final, and

  \underset {I}\colim F \cong F(\max (I)). 
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Limits

The limit of a functor F : I → A is defined in a dual fashion. Assume that A is an
object in A, and that for all i ∈ I , we are given a morphism βi : A → F (i). Then the
family (βi)i∈I is called a cone from A to F , if for every morphism u : i → j in I , we
have βj = F (u)βi. The limit of F is then an object limI F ∈ A together with a cone
(νi)i∈I from limI F to F that satisfies the following universal property: If (λi)i∈I is a
cone from L to F , where L ∈ A, then there exists a unique morphism g : L → limI F
such that νig = λi for all i ∈ I . In other words, (νi)i∈I is the terminal cone (to F ).

If the limit limI F exists for every functor I → A, where I is a small category, then
the category A is called complete. We can also state the dual versions of Proposition
1.5, Lemma 1.6 and Remark 1.7.

Proposition 1.8. IfA is complete, then limI is a functor from category of functors I → A
to the category A.

Lemma 1.9. Let φ : A → B be an additive functor between complete preadditive cate-
gories. There exists a canonical morphism

  \theta \colon \varphi (\lim _{i\in I} F(i)) \rightarrow \lim _{i\in I} (\varphi \circ F)(i). 


  


   

Remark 1.10. Let I be a small category.

• If M : I → R-Mod is a functor, then limI M may be constructed as follows:
For the R-module N :=

∏︁
i∈I M (i) and its submodule

  J:=\{ (x_i)_{i\in I}\in N \mid M(u)(x_i)=x_j \text { for all morphisms } u\colon i\rightarrow j \text { in } I\},                   

we have limI M ≅ J .

• If I is a discrete category, i.e., a category with only identity morphisms, then
limi∈I F ≅

∏︁
i∈I F (i).

• Let I be a poset. A subset J ⊆ I is said to be initial, if for every i ∈ I there
exists an element j ∈ J such that i ≥ j. Let A be complete. If I is downward
directed and J ⊆ I is initial, then

  \lim _I F\cong \lim _J F. 
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In particular, if I has a minimum element, then {min(I)} ⊆ I is initial, and

  \lim _I F \cong F(\min (I)). 

  

1.5 Finiteness conditions

Let A be a preadditive category. In the following, we use the notation HomA for
morphisms in A-Mod and MorA for morphisms in A.

Let G be an Abelian category with arbitrary coproducts, and in which taking
colimits of direct systems is exact. Recall that an element G ∈ G is a generator for G,
if for allM ∈ G there exists an epimorphism  \coprod _{j\in J} G \rightarrow M 


 

for some set J . A family (Gi)i∈I of objects of G is a generating family for G if and
only if

∐︁
i∈I Gi is a generator for G. If (Gi)i∈I indeed is a generating family, then for

every objectM ∈ G there exists an epimorphism  \coprod _{j\in J_M}G_j \rightarrow M 


 

where JM is a collection of elements of I . If G has a generating family, it is called a
Grothendieck category.

Example 1.11. The category R-Mod is a Grothendieck category with a generator
R.

Let G be a Grothendieck category, andM ∈ G.

• M is finitely generated if for every direct system (Mi)i∈I of subobjects ofM

  M=\sum _{i\in I}M_i \quad \Rightarrow \quad \text {There exists } i_0\in I \text { such that } M=M_{i_0}. 



          

• G is locally finitely generated if it has a generating family consisting of finitely
generated objects.

• M is finitely presented if M is finitely generated and for every epimorphism
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φ : L → M

  L \text { is finitely generated} \quad \Rightarrow \quad \Ker \varphi \text { is finitely generated}.       

Let G be a locally finitely generated Grothendieck category with a generating
family (Gi)i∈I . Let M ∈ G. It is well known ([25, p. 710, Prop. E.1.13]) that M is
finitely generated if and only if there exists an epimorphism  \coprod _{j\in J}G_{j} \rightarrow M, 


 

where J is a finite collection of elements of I . Similarly, M is finitely presented if
and only if there exists an exact sequence  \coprod _{k\in K}G_k\rightarrow \coprod _{j\in J}G_j \rightarrow M\rightarrow 0, 







   

where K and J are finite collections of elements of I ([24, p. 95, Prop. 5.13]). We
also have the following equivalent characterizations of finitely presented and finitely
generated objects:

Proposition 1.12. [30, p. 122, Prop. V.3.2, V.3.4] Let G be a locally finitely generated
Grothendieck category. An objectM ∈ G is

• finitely generated if and only if the functor HomG (M,−) preserves the colimits of
direct systems with monomorphisms;

• finitely presented if and only if the functor HomG (M,−) preserves the colimits of
direct systems.

Example 1.13. The category A-Mod of A-modules is a locally finitely generated
Grothendieck category with a generating family (MorA(a,−))a∈A.

We note that being finitely presented is a categorical property, which is a well
known fact, but in lack of suitable reference, we present the proof here.

Proposition 1.14. Let F : G → H be an equivalence of Grothendieck categories, and
letM ∈ G. IfM is finitely presented in G, then FM is finitely presented inH.

Proof. Let (Ni)i∈I be a direct system in H, and (Mi)i∈I the corresponding direct
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system in G. Since F preserves direct limits (as a left adjoint), we see that

  \Hom _{\mathcal H}(FM,\underset {i\in I}\colim N_i)&\cong \Hom _{\mathcal H}(FM, \underset {i\in I}\colim FM_i)\\ &\cong \Hom _{\mathcal H}(FM, F(\underset {i\in I}\colim M_i)).


  




  




But F is an equivalence, so we have

  \Hom _{\mathcal H}(FM, F(\underset {i\in I} \colim M_i))\cong \Hom _{\mathcal G}(M, \underset {i\in I}\colim M_i).  


   




BecauseM is finitely presented, Proposition 1.12 yields

  \Hom _{\mathcal G}(M, \underset {i\in I}\colim M_i) \cong \underset {i\in I}\colim \Hom _{\mathcal G}(M, M_i).  


 




Finally, since F is an equivalence,

  \underset {i\in I}\colim \Hom _{\mathcal G}(M, M_i)&\cong \underset {i \in I}\colim \Hom _{\mathcal H}(FM, FM_i) \\ &\cong \underset {i \in I}\colim \Hom _{\mathcal H}(FM, N_i).


  









1.6 Kan extensions

In the following section, we assume that C and D are small categories. Let α : C → D
and F : C → X be functors. The left Kan extension of F along α is a pair (L, µ), where

• L : D → X is a functor;

• µ : F → L ◦ α is a natural transformation.

This pair has the universal property saying that for all pairs (H, ν), whereH : D → X
is a functor and ν : F → H ◦ α is a natural transformation, there is a unique natural
transformation ρ : L → H with the property that ρα ◦ µ = ν. Here ρα is the natural
transformation L ◦ α → H ◦ α.

Dually, the right Kan extension of F along α is a pair (R, η), where

• R : D → X is a functor;

• η : R ◦ α → F is a natural transformation.
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This pair has the universal property saying that for all pairs (H, ν), whereH : D → X
is a functor and ν : H ◦ α → F is a natural transformation, there is a unique natural
transformation τ : H → R with the property that η ◦ τα = ν. Here τα is the natural
transformation H ◦ α → R ◦ α.

In general, Kan extensions do not necessarily exist. Before discussing their exis-
tence, we introduce the following categories.

Definition 1.15. Let d ∈ D.

1) The slice category (d/α) has the objects

  \Ob (d/\alpha ) = \{(c,u)\mid c\in \C , \ u\colon d\rightarrow \alpha (c) \ \text {is a morphism in }\D \}.                 

For (c, u), (c′, u′) ∈ (d/α), the morphisms (c, u) → (c′, u′) are those morphisms
f : c → c′ in C for which the diagram

  \xymatrix { d\ar [r]^{u} \ar [dr]_{u'}& \alpha (c) \ar [d]^{\alpha (f)}\\ & \alpha (c')} 









commutes.

2) The slice category (α/d) has the objects

  \Ob (\alpha /d) = \{(c,u)\mid c\in \C , \ u\colon \alpha (c)\rightarrow d \ \text {is a morphism in }\D \}.                 

For (c, u), (c′, u′) ∈ (α/d), the morphisms (c, u) → (c′, u′) are those morphisms
f : c → c′ in C for which the diagram

  \xymatrix { \alpha (c)\ar [r]^{u} \ar [d]_{\alpha (f)} & d \\ \alpha (c')\ar [ur]_{u'} & }  











commutes.

From Definition 1.15, it is clear that for every d ∈ D there are canonical projec-
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tion functors

  &p_d\colon (\alpha /d)\rightarrow \C , \ (c,u)\mapsto c, \ f\mapsto f,\\ &q_d\colon (d/\alpha )\rightarrow \C , \ (c,u)\mapsto c, \ f\mapsto f.          

          

We write Fun(C,D) for functors from C to D.

Proposition 1.16. [26, pp. 60, 65, Thm. 4.1.4, Thm. 4.2.2] LetM : C → X be a
functor.

1) If X be cocomplete, thenM has a left Kan extension LKanαM, defined on objects
by

  (\LKan _{\alpha }M)(d)=\underset {(\alpha /d)}\colim (M\circ p_d)   


 

for all d ∈ D. This defines a functor

  \LKan _\alpha \colon \Fun (\C ,\mathcal X)\rightarrow \Fun (\D ,\mathcal X).      

2) Let X be complete. IfM : C → X is a functor, thenM has a right Kan extension
RKanαM defined on objects by

  (\RKan _{\alpha }M)(d)=\lim _{(d/\alpha )}(M\circ q_d)   


 

for all d ∈ D. This defines a functor

  \RKan _\alpha \colon \Fun (\C ,\mathcal X)\rightarrow \Fun (\D ,\mathcal X).      

Definition 1.17. The restriction functor α∗ : Fun(D,X ) → Fun(C,X ) maps any
functorM : D → X to the functor

  \alpha ^*M= M\alpha \colon \C \rightarrow X.      

If φ : M → N is a morphism in Fun(D,X ), then the natural transformation

  \alpha ^*\varphi \colon M\alpha \rightarrow N\alpha    

is defined by
  (\alpha ^*\varphi )_c=\varphi _{\alpha (c)}  
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for all c ∈ C.

Proposition 1.18. [26, p. 64, Thm. 4.1.11] If X is cocomplete, the restriction func-
tor α∗ has a left adjoint given by the left Kan extension. Dually, if X is complete, the
restriction functor α∗ has a right adjoint given by the right Kan extension.

Definition 1.19. If X = R-Mod, we write resα := α∗. We call the left and right
adjoints of resα induction and coinduction, respectively, and denote them by

  \ind _\alpha :=\LKan _\alpha \quad \text {and} \quad \coind _\alpha :=\RKan _{\alpha }.       

Example 1.20. For any RC-moduleM, and any object d ∈ D, we have the pointwise
formulas

  (\ind _{\alpha } M)(d) = \underset {(c,u)\in (\alpha /d)}\colim M(c) \quad \text {and}\quad (\coind _{\alpha } M)(d) = \lim _{(c,u)\in (d/\alpha )}M(c).   
 

     
 



If C and D are posets, these formulas yield

  (\ind _{\alpha } M)(d) = \underset {c\in \C , \ \alpha (c)\leq d}\colim M(c) \quad \text {and}\quad (\coind _{\alpha } M)(d) = \lim _{c\in \C , \ d\leq \alpha (c)}N(c).   
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2 MODULES OVER A MONOID ACT

2.1 Monoid action

In this section we recall some basic properties of monoid actions. Let G be a monoid
and let A be a set. If there exists an operation · : G × A → A such that (gh)a = g(ha)
and 1G · a = a for all g, h ∈ G and a ∈ A, we say that A is a (left) G-act. A morphism
of G-acts f : A → B is a function, where f (ga) = gf (a) for all g ∈ G and a ∈ A.

Given a G-act A, we get a preorder on A by setting a ≤ b if b = ga for some g ∈ G.
The action naturally gives rise to two categories having A as the set of objects.

First, we have a small thin category A, where for all a, b ∈ A there exists a unique
morphism a → b if a ≤ b in the preorder. By abuse of notation we write a ≤ b for
this morphism. Recall that in general a category is thin if there exists at most one
morphism between any two objects.

Secondly, there is an action category G∫A, where morphisms a → b are pairs (a, g)
such that b = ga for some g ∈ G. If there is no possibility of confusion, we sometimes
denote the morphism (a, g) by g. Composition of morphisms in G∫A is defined by
the multiplication of G:

  (ga,h)\circ (a,g) = (a,hg).       

There is an obvious functor G∫A → A where

  a\mapsto a \quad \text {and} \quad (a,g)\mapsto (a\leq ga).        

This functor is an isomorphism if and only if the G-action on A is free, i.e. for all
g, h ∈ G,

  ga=ha \ \text {for some}\ a\in A \ \Rightarrow \ g=h.           

Remark 2.1. We often consider the monoid G itself as a G-act, so it gives rise to a
thin category G and the action category G ∫ G. Sometimes, the monoid G is viewed
as a category BG with a single object.
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Example 2.2. Let N : C → Set be a functor. The category of elements of N , denoted
∫ N , has pairs (c, x), where c ∈ C and x ∈ N (c), as objects. A morphism (c, x) →
(c′, x′) in ∫ N is a morphism u : c → c′ in C such that N (u) (x) = x′.

If we view the monoid G as the single object category BG, then a G-act A could
equivalently be defined as a functor AG : BG → Set. As shown in [27, p. 66,
Ex. 2.4.10], the corresponding action category G ∫ A coincides with the category
of elements ∫ AG.

Example 2.3. An abelian group G is called partially ordered if it is equipped with
a partial order ≤ such that g ≤ g′ implies g + h ≤ g′ + h for all g, g′, h ∈ G. If
G+ = {g ∈ G | g ≥ 0} is its positive cone, then g ≤ g′ is equivalent to g′ − g ∈ G+.
The action of the monoid G+ on G is free, because G is an Abelian group. Thus, as
stated above, we may identify the action category G+∫G with the poset G.

A translation is an order-preserving function F : P → P on a preordered set P
that satisfies the condition p ≤ F (p) for all p ∈ P. The translations of P form a
monoid Trans(P) with composition as the operation.

Let A be a G-act. The action by an element g ∈ G now determines a translation
on A if and only if a ≤ b implies ga ≤ gb. If this implication holds for all g ∈ G,
then we say that A is an order-preserving G-act. Note that any G-act A is order-
preserving if G is commutative. For an order-preserving G-act A, we get a monoid
homomorphism φ from G into the monoid of translations Trans(A). This induces a
monoid embedding φ̂ : G/Kerφ → Trans(A), where Kerφ is the congruence relation
defined by

  (g,h)\in \Ker \varphi \ \Leftrightarrow \ ga=ha \ \text {for all} \ a\in A.            

In particular, φ is an embedding if and only if the G-action on A is faithful: for all
g, h ∈ G, ga = ha for all a ∈ A implies that g = h.

We next give a slight generalization of [11, p. 4, Thm. 2.2].

Proposition 2.4. For any preordered set P, there exists a monoid G and a G-act A such
that P and A are isomorphic as thin categories.

Proof. We present the proof here for the convenience of the reader. Let G denote
the submonoid of the monoid of all functions P → P consisting of the functions
g : P → P for which a ≤P g(a) for all a ∈ P. Define the G-action on A := P by
setting g · a = g(a) for all g ∈ G and a ∈ A. Then A is a G-act. It remains to show
that a ≤P b if and only if a ≤A b.
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Assume first that a ≤A b. By definition, there exists an element g ∈ G such that
b = ga. But this means that a ≤P g(a) = ga = b. Conversely, if a ≤P b, we define a
function g : P → P by setting

  g(p)=\left \{\begin {aligned} &b, \ \text {if} \ p=a;\\ &p, \ \text {otherwise}. \end {aligned}\right . 

   



We then immediately see that g ∈ G and ga = g(a) = b, so that a ≤A b

Remark 2.5. The monoid G in Proposition 2.4 does not need to be unique: For
example, the one element set P = {∗} has the trivial monoid action for any monoid
G. Note that if G is the monoid of the proof of Proposition 2.4, then the order-
preserving elements in G are exactly the translations on A, so that Trans(A) ⊆ G.

2.2 Automorphic actions

Often we would like to work with group indexed structures instead of monoid in-
dexed structures. In this section we explore certain circumstances in which this
change is possible.

Let G be a commutative cancellative monoid and let A be a G-act. We assume that
the action of G on A is automorphic. That is, for every g ∈ G and a ∈ A, there exists
a unique a′ ∈ A such that ga′ = a, so that multiplication by g is an automorphism
in A. We introduce a more specific notation by setting T (g, a) := a′. Since G is
commutative and cancellative, it can be embedded into the Grothendieck group Ggp,
which consists of elements g/h, where g, h ∈ G. Note that G is a poset (with the
natural order) if and only if there are no non-trivial invertible elements in G.

We may extend A into a Ggp-act by setting

  \frac {g}{h}\cdot a = gT(h,a). 

    

Before proving this, we introduce some elementary properties of the notation intro-
duced above in the next lemma.

Lemma 2.6. For every g, h ∈ G and a ∈ A, we have

1) T (gh, a) = T (g, T (h, a)) = T (h, T (g, a));

2) T (g, ha) = hT (g, a).

33



Proof. Let g, h ∈ G and a ∈ A. To show 1), we first note that by definition
ghT (gh, a) = a. On the other hand,

  ghT(g,T(h,a))=hT(h,a) = a = gT(g,a) = ghT(h,T(g,a)).                    

From the uniqueness of T (gh, a), we see that 1) holds.
For 2), note that ghT (g, a) = ha = gT (g, ha). Thus, again by the uniqueness of

T (g, ha), 2) holds.

To prove that A is a Ggp-act, let us first show that the operation is well defined.
Suppose that g/h = g′/h′. Then gh′ = g′h. Furthermore,

  ghT(h,a) = ga = gh'T(h',a)=g'hT(h',a).            

Since G is commutative and cancellative, we see that gT (h, a) = g′T (h′, a). That is,
(g/h) · a = (g′/h′) · a, so the operation is well defined.

Suppose next that g/h, g′/h′ ∈ Ggp and a ∈ A. We have  \left (\frac {g}{h}\cdot \frac {g'}{h'}\right )a = \frac {gg'}{hh'}\cdot a = gg'T(hh',a). 













    

Using Lemma 2.6, we may write this as

  gg'T(hh',a) = gg'T(h,T(h',a)) = gT(h,g'T(h',a)) = \frac {g}{h}\left (\frac {g'}{h'}\cdot a\right ),               












showing us that   \left (\frac {g}{h}\cdot \frac {g'}{h'}\right )a=\frac {g}{h}\left (\frac {g'}{h'}\cdot a\right ), 






















as required. Of course, we also have (1/1)a = 1 · T (1, a) = a. Thus A is a Ggp-act.
Since A is a Ggp-act, we get for every a ∈ A the obvious group act map

  \varphi _a\colon G^{\gp }\rightarrow A, \ \frac {g}{h}\mapsto \frac {g}{h}\cdot a.    








The natural question we ask here is how closely does A resemble Ggp and does A
possibly have a group structure? We go through some properties of these maps in
the next proposition. Before that, we go through some terminology.

Given a ∈ A, we say that the G-action is free on a if ga = ha implies g = h for all
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g, h ∈ G. The G-act A is connected if the thin category A (or equivalently, the action
category G∫A) is connected. Recall that a category C is connected if for each c, d ∈ C
there exists a sequence c = c0, . . . , cn = d of elements of C with a morphism ci → ci+1
or ci+1 → ci for all i ∈ {0, . . . , n − 1}.

Proposition 2.7. Let G be a commutative cancellative monoid and A a G-act, where
the action is automorphic. Fix a ∈ A, so that we get a morphism φa as defined above.

1) The morphism φa is injective if and only if the G-action is free on a.

2) The morphism φa is surjective if and only if the G-act A is connected.

3) The morphism φa is bijective if and only if the G-act A is connected and the G-
action is free on a′ for some a′ ∈ A.

Proof. Let us show 1) first. Suppose that the G-action is free on a. Let g, g′, h, h′ ∈ G
such that (g/h)a = (g′/h′)a. Multiplying this equation by hh′ yields gh′a = hg′a. By
the freeness of the action on a, we have gh′ = g′h, and also g/h = g′/h′. Thus φa is
injective. Conversely, suppose that φa is injective. If ga = ha for some g, h ∈ G, we
have

  \varphi _a\left (\frac {g}{1}\right ) = ga = ha =\varphi _a\left (\frac {h}{1}\right ), 




    








and g = h follows from injectivity of φa.
Next, we will prove 2). Suppose that the G-act A is connected. That is, for any

b ∈ A, there exist elements a = a0, a1, . . . , an = b in A such that

  a_{i+1}=g_i a_i \quad \text {or} \quad a_{i+1} = (1/g_i)a_i.       

for every i ∈ {0, . . . , n−1}. From these equations, it is clear that b = (g/h)a = φa(g/h)
for some g, h ∈ G. Conversely, if φa is surjective, then for any b ∈ A there exists
g, h ∈ G such that (g/h)a = b. That is,

  a \leq ga \geq \frac {1}{h}ga = \frac {g}{h}a = b,   





 

so b is connected to a. Since b was arbitrary, the G-act A is connected.
Finally, we will prove 3). Suppose that A is connected and the G-action is free

on a′ for some a′ ∈ A. Since A is connected, φa is an epimorphism by 2), and there
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exist k, l ∈ G such that a′ = (k/l)a. Let ga = ha. Multiplication by k gives

  gla'= gk\frac {l}{k} a' = gka = hka = hk\frac {l}{k}a' = hla'.  


     



 

By the freeness of the action on a′, we now see that gl = hl. Because G is cancella-
tive, this implies g = h. Thus φa is injective by 1). The other direction follows
immediately from 1) and 2).

Let C be a small category. If C is not connected, it can be written as a disjoint union∐︁
i∈I Ci of its connected components ([18, p. 90, Ex. 7]). Then each RC-moduleM

is equivalent to a family (Mi)i∈I , where Mi is an RCi-module for all i ∈ I . That is,
we have an isomorphism of categories

  \RCmod \cong \prod _{i\in I}R\C _i\text {-}\textbf {Mod}. 





If C = G∫A, the connected components Ci are also G-acts, so we can write Ci =
G∫Ai, where Ai = Ob Ci, for all i ∈ I . Therefore

  R(G{\smallint } A)\text {-}\textbf {Mod}\cong \prod _{i\in I} R(G{\smallint } A_i)\text {-}\textbf {Mod}. 





Finally, we use Proposition 2.7 3) to sum up this discussion.

Corollary 2.8. Let G be a commutative cancellative monoid and A a G-act, where the
action is automorphic. Let Ai, where i ∈ I be the connected components of A. If for each
i ∈ I there exists an ai ∈ Ai such that G acts freely on ai, then

  R(G{\smallint } A)\text {-}\textbf {Mod}\cong \prod _{i\in I} RG^{\gp }\text {-}\textbf {Mod}. 





Furthermore, if the G-action on A is free, then

  RA\text {-}\textbf {Mod}\cong \prod _{i\in I} RG^{\gp }\text {-}\textbf {Mod}. 
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2.3 Action categories over a graded ring

Theorem 2.13 will generalize the equivalence of the correspondence theorem of
Carlsson and Zomorodian [33, p. 259, Thm. 3.1] mentioned in the Introduction.
Moreover, it generalizes the multi-parameter version of the theorem by Carlsson
and Zomorodian ([5, p. 78, Thm. 1]) as well as the generalization given by Corbet
and Kerber ([6, p. 18, Lemma 14]). For a discussion on related finiteness conditions,
see [6, p. 3] and Remark 4.16.

Let G be a monoid. Recall that a ring S is G-graded, if

1) S =
⨁︁

g∈G Sg, where Sg is an additive subgroup of S for all g ∈ G;

2) SgSh ⊆ Sgh for all g, h ∈ G.

Let A be aG-act, and let S := ⊕g∈GSg be aG-graded ring. We say that a (left) S-module
M is A-graded, if

1) M =
⨁︁

a∈AMa, whereMa is an Abelian group for all a ∈ A;

2) SgMa ⊆ Mga for all g ∈ G and a ∈ A.

A morphism of A-graded S-modules f : M → N is an S-module homomorphism
such that f (Ma) ⊆ Na for all a ∈ A. The category of A-graded S-modules is locally
finitely generated Grothendieck category with a generating family (S (a))a∈A, where
the free S-module S (a) generated by a ∈ A is defined by

  S(a)_b=\bigoplus _{g\in G, \ ga=b}S_g 





for all a, b ∈ A.
We begin by defining a certain preadditive category.

Definition 2.9. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The
action category over S, denoted G∫ SA, is the category with the set A as objects, and
morphisms (a, s) : a → b, where a, b ∈ A and

  s\in \bigoplus _{g\in G, \ ga=b}S_g. 
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Composition for morphisms (a, s) : a → ga and (ga, t) : ga → hga is defined by

  (ga,t)\circ (a,s) = (a,ts).       

Remark 2.10. Keeping a close eye on the domains, we may write s := (a, s). With
this notation, composition is just the multiplication in S.

Example 2.11. Let A be a G-act. If R is a commutative ring, then the action category
G∫R[G]A over the monoid ring R[G] coincides with the linearized action category
R(G∫A). Indeed, by definition ObR(G∫A) = A, and

  \Hom _{R(G {\smallint } A)}(a,b)=R[\{(a,g) \mid g\in G \text { and }ga=b\}].             

for all a, b ∈ A.

Example 2.12. If G is an Abelian group and S :=
⨁︁

g∈G Sg is a G-graded ring, the
category G∫ SG is called in [8, p. 358, Def. 2.1] a companion category. In this case,
we may identify HomG∫ SG (g, h) with Sh−g.

Preparing for Theorem 2.13, we will now define two functors, Φ and Ψ, that
connect A-graded S-modules to (G∫ SA)-modules.

Let M be a G∫ SA-module. By setting sm = M (s) (m) for all g ∈ G, s ∈ Sg and
m ∈ M (a), we can define an A-graded S-module

  \Phi M := \bigoplus _{a\in A} M(a). 





A morphism f : M → N of G ∫S A-modules consists of homomorphisms of Abelian
groups fa : M (a) → N (a) with commutative diagrams

  \xymatrix { M(a)\ar [d]_{f_a}\ar [r]^{M(s)}& M(ga) \ar [d]^{f_{ga}}\\ N(a) \ar [r]_{N(s)}& N(ga)} 




 







 

for all a ∈ A, g ∈ G and s ∈ Sg. These homomorphisms and diagrams obviously give
rise to a homomorphism Φf : ΦM → ΦN of A-graded S-modules with (Φf )a = fa
for all a ∈ A.
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Next, let Q be an A-graded S-module. We set (ΨQ) (a) = Qa for all a ∈ A. If
(a, s) : a → ga is a morphism, where a ∈ A, g ∈ G and s ∈ Sg, we can define a
homomorphism

  (\Psi Q)((a,s))\colon (\Psi Q)(a) \rightarrow (\Psi Q)(ga)        

by setting (ΨQ) ((a, s)) (q) = s ·q for all q ∈ Qa. It is clear that ΨQ is an additive func-
tor G ∫S A → Ab, i.e., a G ∫S A-module. Moreover, if h : Q → P is a homomorphism
of A-graded S-modules, we have a morphism of G ∫S A-modules Ψh : ΨQ → ΨP
given by (Ψh)a = ha for all a ∈ A.

We are now ready to state

Theorem 2.13. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The above
functors Φ and Ψ give an isomorphism of categories

  (G{\smallint }_S A)\text {-}\textbf {Mod} \cong A\text {-}\text {gr } S\text {-}\textbf {Mod}.    

Proof. It remains to prove that Φ ◦Ψ = id and Ψ ◦Φ = id, which is straightforward.

Combining this theorem with Example 2.11 gives

Corollary 2.14. Let A be aG-act, and letR be a commutative ring. There is an isomor-
phism of categories

  R(G{\smallint } A)\text {-}\textbf {Mod} \cong A\text {-}\text {gr } R[G]\text {-}\textbf {Mod}.   

In particular, if the G-action on A is free, we obtain an isomorphism

  RA\text {-}\textbf {Mod} \cong A\text {-gr } R[G]\text {-}\textbf {Mod}.   

Example 2.15. If A = {e} is a one object set, Theorem 2.13 gives us an isomorphism
G∫ S{e}-Mod ≅ S-Mod. In the case S = R[G], where R is a commutative ring, this
means that RG-Mod ≅ R[G]-Mod, where RG is the linearization of the 1-object
category G.

Example 2.16. Let G be a partially ordered Abelian group with the positive cone G+

(see Example 2.3). If R is a commutative ring, then by Corollary 2.14 the categories
RG-Mod and G-gr R[G+]-Mod are isomorphic.

39



2.4 Category algebras and smash products

Let C be a small category, and let R be a commutative ring. A category algebra R[C]
is the free R-module with the basis consisting of the elements eu, where u : c → d is
a morphism in C, and with multiplication defined by

  e_v\cdot e_u = \left \{ \begin {aligned} &e_{vu}, \ \text {if} \ c'=d;\\ &0, \ \text {otherwise} \end {aligned} \right .   

   



for morphisms u : c → d and v : c′ → d′ in C. Equipped with this product, R[C]
becomes a ring that has a unit if C is finite.

Let A be a G-act and S a G-graded ring. We recall (see [21, p. 390]) that a smash
product S#A is the free (left) S-module with the basis {pa | a ∈ A}, and with multi-
plication defined by the bilinear extension of

  (s_g p_a)(t_h p_b) = \left \{ \begin {aligned} &(s_g t_h)p_b, \ \text {if} \ hb=a;\\ &0, \ \text {otherwise} \end {aligned} \right .  

   



where g, h ∈ G, sg ∈ Sg, th ∈ Sh and a, b ∈ A. Equipped with this multiplication,
S#A is a non-unital ring, i.e. a ring possibly without identity. However, S#A has local
units. This means that every finite subset of S#A is contained in a subring of the form
w(S#A)w, where w is an idempotent of S#A. More precisely, let T := {t1, . . . , tn} be a
finite subset of S#A. We may assume that ti = sipai , where gi ∈ G, ai ∈ A and si ∈ Sgi
for all i ∈ {1, . . . , n}. We denote

  B := \{ a \in A \mid a=a_i \text { or } a=g_ia_i \text { for some } i\in \{1,\ldots ,n\}\}                     

and w :=
∑︁

a∈B pa. It is now straightforward to see that w is idempotent and wtiw =

wti = ti for all i ∈ {1, . . . , n}.
Let R′ be a non-unital ring. An R′-moduleM is unital if it satisfies the condition

M = R′M.
The next proposition and its proof are inspired by [2, p. 221, Cor. 2.4].

Proposition 2.17. LetM be an S#A-module. ThenM is unital if and only if for every
finite subset N ⊆ M there exists a finite subset B ⊆ A such that wn = n for all n ∈ N ,
where w :=

∑︁
a∈B pa.
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Proof. Assume first thatM is unital. LetN := {n1, . . . , np} ⊆ M be a finite set. Now,
for all i ∈ {1, . . . , p}, the element ni may be written as

  n_i=\sum _{j=1}^q s_{i,j}n_{i,j}, 





where si,j ∈ S#A and ni,j ∈ M for all j ∈ {1, . . . , q}. This gives us a finite set

  T=\{s_{i,j}\mid i\in \{1,\ldots ,p\}, \ j\in \{1,\ldots ,q\}\}\subseteq S\# A.                    

As stated above, we then have a finite subset B ⊆ A such that w = ws for all s ∈ T ,
where w :=

∑︁
a∈B pa. Thus for all i ∈ {1, . . . , p},

  wn_i=w(\sum _{i=1}^q s_{i,j}n_{i,j}) = \sum _{i=1}^q(ws_{i,j})n_{i,j} = \sum _{i=1}^q s_{i,j}n_{i,j} =n_i.  











  

Conversely, suppose that for every finite subsetN ⊆ M there exists a finite subset
B ⊆ A such that wn = n for all n ∈ N , where w :=

∑︁
a∈B pa. Taking N = {m} for

m ∈ M, we get m = wm ∈ S#A.

Proposition 2.18. Let R be a commutative ring, G a monoid, and A a G-act. There
exists an isomorphism of non-unital rings

  \varphi \colon R[G{\smallint } A] \rightarrow R[G]\# A   

defined by e(a,g) ↦→ egpa for all a ∈ A and g ∈ G.

Proof. It is easy to see that φ is an isomorphism of R-modules. It is also a ring
homomorphism, since for all a, b ∈ A and g, h ∈ G,

  \varphi (e_{(b,h)}e_{(a,g)})&=\left \{\begin {aligned} &\varphi (e_{(a,hg)}), \text { if } b=ga;\\ &0, \ \text {else} \end {aligned}\right .\\ &=\left \{\begin {aligned} &e_{hg} p_a, \text { if } b=ga;\\ &0, \ \text {else} \end {aligned}\right .\\ &=(e_hp_b)(e_gp_a)\\ &=\varphi (e_{(b,h)})\varphi (e_{(a,g)}).\qedhere  
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Proposition 2.19. LetM be an S#A-module. ThenM =
⨁︁

a∈A paM if and only ifM
is unital.

Proof. Assume first that M =
⨁︁

a∈A paM. Let N := {n1, . . . , np} ⊆ M. Since for all
i ∈ {1, . . . , p}, the element ni may be written as

  n_i=\sum _{j=1}^q p_{a_{i,j}}n_{i,j}, 





where ai,j ∈ A and ni,j ∈ M for all j ∈ {1, . . . , q}, there exists a finite subset

  B:=\{a_{i,j} \mid i\in \{1,\ldots ,p\}, \ j\in \{1,\ldots ,q\}\}                  

of A. Let w :=
∑︁

a∈B pa. Then

  wn_i = w\left (\sum _{j=1}^q p_{a_{i,j}}n_{i,j}\right ) = \sum _{j=1}^q wp_{a_{i,j}}n_{i,j}= n_i,   









  

soM is unital by Proposition 2.17.
Assume next that M is unital. Let m ∈ M. By Proposition 2.17, we may write

m = wm for some w =
∑︁

a∈B pa, where B ⊆ A is finite. Thus

  m=(\sum _{a\in B}p_{a})m = \sum _{a\in B} p_{a}m, 









so thatM =
∑︁

a∈A paM. Furthermore, since the elements pa are orthogonal, the sum
is direct.

Let us denote by S#A-Mod the category of unital S#A-modules. We will now
define two functors, Γ andΛ, that connect unital (S#A)-modules to (G∫ SA)-modules.
LetM be a G∫ SA-module. Set

  \Gamma M := \bigoplus _{a\in A}M(a). 





It is not difficult to check that by setting (spa)m = M ((a, s)) (ma) for all g ∈ G, s ∈ Sg,
a ∈ A and m :=

∑︁
b∈Amb ∈ ΓM, ΓM becomes an S#A-module. To show unitality,

notice that pa(ΓM) = M (a) for all a ∈ A, which implies that ΓM =
⨁︁

a∈A pa(ΓM).
Thus ΓM is unital by Proposition 2.19. If f : M → N is a morphism of G∫ SA-
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modules, we can define a homomorphism Γf : ΓM → ΓN of (S#A)-modules by
setting

 (\Gamma f)(m)=\sum _{a\in A}f_a(m_a)  





for all m =
∑︁

a∈Ama ∈ ΓM.
Next, let Q be a unital S#A-module. We define a G∫ SA-module ΛQ by first setting

(ΛQ) (a) = paQ for all a ∈ A. Let a ∈ A and g ∈ G, s ∈ Sg. Given a morphism
(a, s) : a → ga, we then have a homomorphism of Abelian groups

 (\Lambda Q)((a,s))\colon (\Lambda Q)(a)\rightarrow (\Lambda Q)(ga), q\mapsto (sp_a)q.          

Finally, for a homomorphism h : Q → P of S#A-modules, there is a morphism of
G∫ SA-modules Λh : ΛQ → ΛP with (Λh)a(q) = h(q) for all a ∈ A and q ∈ (ΛQ) (a).

Theorem 2.20. Let A be a G-act, and let S := ⊕g∈GSg be a G-graded ring. The functors
Γ and Λ give an isomorphism of categories

  (G{\smallint }_S A)\text {-}\textbf {Mod} \cong S\# A \text {-}\textbf {Mod}.   

Proof. We need to show that ΓΛ = id and ΛΓ = id.
Let Q be a unital S#A-module. By Proposition 2.19 we then have

  (\Gamma \Lambda )Q = \bigoplus _{a\in A} (\Lambda Q)(a) = \bigoplus _{a\in A} p_aQ = Q. 



 



 

Moreover, the S#A-module structures of Q and (ΓΛ)Q are the same. Indeed, writing
∗ for the multiplication by S#A on (ΓΛ)Q, we get

  (sp_a)*q = (\Lambda Q)((a,s))(p_a q_a) = (sp_a) (p_a q_a) = (sp_a) q            

for all a ∈ A, g ∈ G, s ∈ Sg and q :=
∑︁

a∈A paqa ∈ Q.
On the other hand, letM be a G∫ SA-module. For an object a ∈ A,

  ((\Lambda \Gamma )M)(a)= p_a(\Gamma M) = M(a).      

Furthermore, if (a, s) : a → ga is a morphism in G∫ SA, then

  ((\Lambda \Gamma )M)((a,s))(m)=(sp_a)m = M((a,s))(m)          
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for all m ∈ M (a), so that ((ΛΓ)M) ((a, s)) = M ((a, s)).

Corollary 2.21. Let A be a G-act, and let R be a commutative ring. There exists an
isomorphism of categories between the category of R(G∫A)-modules and the category of
unital R[G∫A]-modules.

Proof. This follows from Proposition 2.18 and Theorem 2.20.

2.5 Kan extensions and action categories

Let G be a commutative monoid. A morphism of G-acts φ : A → B defines a functor
of action categories

  \varphi \colon G{\smallint } A\rightarrow G{\smallint } B,   

where a ↦→ φ(a) and (a, g) ↦→ (φ(a), g) for all a ∈ A, g ∈ G. It is important to be able
to reindex R(G∫A)-modules as R(G∫B)-modules, and conversely. In this section, we
do this by means of adjoint pairs (indφ, resφ) and (resφ, coindφ).

We first remark that the notions of final and initial subsets from Examples 1.7
and 1.10 can be generalized. Let α : C → D be a functor between small categories.
We say that α is final if the slice category (d/α) is non-empty and connected for every
d ∈ D. Dually, α is initial if (α/d) is non-empty and connected for every d ∈ D.
Part 1) of the following proposition appears in [18], and part 2) is the dual result.

Proposition 2.22. [18, p. 217, Thm. 1] Let α : C → D be a functor between small
categories, A a preadditive category, and F : D → A a functor.

1) If α is final and colimC (F ◦ α) exists, then colimD F exists, and the canonical mor-
phism colimC (F ◦ α) → colimD F is an isomorphism.

2) If α is initial and limC (F ◦α) exists, then limD F exists, and the canonical morphism
limD F → limC (F ◦ α) is an isomorphism.

Before continuing, we will define two functors, Lφ and Rφ, from the category of
R(G∫A)-modules to the category ofR(G∫B)-modules. LetM be anR(G∫A)-module.
We want to define R(G∫B)-modules LφM and RφM. First, for b ∈ B, we set

  (L_{\varphi }M)(b)=\bigoplus _{a\in \varphi ^{-1}(b)} M(a) \quad \text {and} \quad (R_{\varphi }M)(b)=\prod _{a\in \varphi ^{-1}(b)}M(a).  



    






44



Secondly, given a morphism (b, h) : b → hb in G∫B, we have ha ∈ φ−1(hb) for all
a ∈ φ−1(b). We define a morphism

  (L_{\varphi }M)((b,h)) \colon (L_{\varphi }M)(b)\rightarrow (L_{\varphi }M)(hb)        

as follows: If m :=
∑︁

a∈φ−1 (b) ma ∈ (LφM) (b), then

  (L_{\varphi }M)((b,h))(m) = \sum _{a\in \varphi ^{-1}(b)}M((a,h))(m_a).    



  

Similarly, a morphism

  (R_{\varphi }M)((b,h)) \colon (R_{\varphi }M)(b)\rightarrow (R_{\varphi }M)(hb)        

is defined for all n := (na)a∈φ−1 (b) ∈ (RφM) (b) by the formula

  (R_{\varphi }M)((b,h))(n) = (M((a,h))(n_a))_{{a\in \varphi ^{-1}(b)}}.          

Finally, let µ : M → N be a morphism of R(G ∫ A)-modules. We will define natural
transformations

  L_{\varphi }\mu \colon L_{\varphi }M\rightarrow L_{\varphi }N \quad \text {and} \quad R_{\varphi }\mu \colon R_{\varphi }M\rightarrow R_{\varphi }N.          

Let b ∈ B. If

  m:=\sum _{a\in \varphi ^{-1}(b)}m_a\in (L_{\varphi }N)(b) \quad \text {and} \quad n:=(n_a)_{a\in \varphi ^{-1}(b)}\in (R_{\varphi }N)(b), 



            

we set

  (L_{\varphi }\mu )_b(m) = \sum _{a\in \varphi ^{-1}(b)}\mu _a(m_a) \quad \text {and} \quad (R_{\varphi }\mu )_b(n) = (\mu _a(n_a))_{{a\in \varphi ^{-1}(b)}}. 



     

From the definitions of Lφ and Rφ, it is clear that we have a natural inclusion

  i: L_{\varphi }\rightarrow R_{\varphi }.   
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Proposition 2.23. Let φ : A → B be a morphism of G-acts. Then

  \ind _\varphi \cong L_{\varphi }.  

Proof. Let b ∈ B, and letM be an R(G∫A)-module. Recall that by definition

  (\ind _{\varphi }M)(b)= \underset {(a,g)\in (\varphi /b)} \colim M(a).   
 



Let I be the full subcategory of (φ/b) consisting of all elements of the form (a, 1). We
note that I is a discrete category. Indeed, if there is a morphism h : (a, 1) → (a′, 1),
we immediately see that a′ = ha and h = 1. We wish to show that the inclusion
functor i : I → (φ/b) is final. For this, fix (a, g) ∈ (φ/b). We must prove that the
slice category ((a, g)/i) is non-empty and connected.

First, since gφ(a) = 1·φ(ga), we note that (ga, 1) ∈ (φ/b), and there is a morphism
g : (a, g) → (ga, 1). Hence ((ga, 1), g) ∈ ((a, g)/i), so that the slice category is non-
empty. Secondly, we will show that (φ/b) consists of only one element. Suppose that
((a′, 1), h) ∈ ((a, g)/i). Then (a′, 1) ∈ (φ/b) and there is a morphism h : (a, g) →
(a′, 1). This means that the diagram

  \xymatrix { \varphi (a) \ar [d]_{h} \ar [r]^{g} & b \\ \varphi (a') \ar [ur]_{1}& } 












commutes, implying h = g, and furthermore, a′ = ga. Thus ((ga, 1), g) is the only
element of ((a, g)/i). Since i is final and I is discrete, we have

  (\ind _{\varphi }M)(b)\cong \underset {(a,1)\in I}\colim M(a) \cong \bigoplus _{a\in \varphi ^{-1}(b)} M(a)=(L_{\varphi }M)(b).   


 



   

by Proposition 2.22 1). It is now straightforward to see that these isomorphisms
yield an isomorphism of R(G∫B)-modules indφM → LφM, and moreover, a natural
isomorphism indφ → Lφ.

If G is an Abelian group, we get a dual result.

Proposition 2.24. Assume that G is an Abelian group. Let φ : A → B be a morphism
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of G-acts. Then
  \coind _\varphi \cong R_{\varphi }.  

Proof. Let b ∈ B, and letM be an R(G∫A)-module. By definition,

  (\coind _{\varphi }M)(b)= \lim _{(a,g)\in (b/\varphi )}M(a).   
 



Let I be the full subcategory of (b/φ) consisting of all elements of the form (a, 1). We
note that I is a discrete category, because if there is a morphism h : (a, 1) → (a′, 1),
we immediately see that a′ = ha and h = 1. We wish to show that the inclusion
functor i : I → (b/φ) is initial. To do this, fix (a, g) ∈ (b/φ). We must prove that
the slice category (i/(a, g)) is non-empty and connected.

First, since 1 · b = g−1φ(a) = φ(g−1a), we note that (g−1a, 1) ∈ (b/φ) and there
is a morphism g : (g−1a, 1) → (a, g). Hence ((g−1a, 1), g) ∈ (i/(a, g)), so that the
slice category is non-empty. Secondly, we will show that (b/φ) consists of only one
element. Suppose that ((a′, 1), h) ∈ (i/(a, g)). Then (a′, 1) ∈ (b/φ) and there is a
morphism h : (a′, 1) → (a, g). This means that the diagram

  \xymatrix { b\ar [dr]_-{g} \ar [r]^-{1} & \varphi (a') \ar [d]^-{h} \\ & \varphi (a)} 




 






commutes, implying h = g, and furthermore, a′ = g−1a. Thus ((g−1a, 1), g) is the
only element of ((a, g)/i). Since i is initial and I is discrete, we have

  (\coind _{\varphi }M)(b)\cong \lim _{(a,1)\in I}M(a) \cong \prod _{a\in \varphi ^{-1}(b)} M(a)\cong (R_{\varphi }M)(b).   


 



   

by Proposition 2.22 2). It is now straightforward to see that these isomorphisms
yield an isomorphism of R(G∫B)-modules coindφM → RφM, and moreover, a nat-
ural isomorphism coindφ → Rφ.

Corollary 2.25. Assume that G is an Abelian group. Let φ : A → B be a morphism of
G-acts. Then there is a natural transformation

  \rho \colon \ind _\varphi \rightarrow \coind _\varphi   
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that is an isomorphism if and only if φ−1(b) is finite for all b ∈ B. IfM is an R(G∫A)-
module, then ρM is an isomorphism if and only if Supp(M) ∩ φ−1(b) is finite for all
b ∈ B.

Proof. We define a natural transformation ρ : indφ → coindφ as the composition

  \ind _{\varphi }\stackrel {\cong }{\rightarrow } L_{\varphi }\stackrel {i}{\rightarrow } R_{\varphi } \stackrel {\cong }{\rightarrow } \coind _{\varphi }. 



 

Here the first isomorphism is from Proposition 2.23, i is the natural inclusion, and
the last isomorphism is given in Proposition 2.24. We immediately see that ρ is
an isomorphism if and only if direct sums and direct products indexed by φ−1(b)
coincide for all b ∈ B, and this is equivalent to φ−1(b) being finite for all b ∈ B.

For the last part of the proposition, let M be an R(G∫A)-module, and let b ∈ B.
Then Supp(M)∩φ−1(b) is finite if and only ifM (a) ≠ 0 for finitely many a ∈ φ−1(b),
and these conditions are true if and only if ρM,b is an isomorphism. This implies the
claimed equivalence.

Remark 2.26. By Corollary 2.14, the category of R(G∫A)-modules is isomorphic to
the category of A-graded R[G]-modules. Let φ : A → B be a morphism of G-acts.
Then the graded module versions of the functors

  &\ind _\varphi \colon R(G{\smallint } A)\text {-}\textbf {Mod} \rightarrow R(G{\smallint } B)\text {-}\textbf {Mod} \quad \text {and}\\ &\res _\varphi \colon R(G{\smallint } B)\text {-}\textbf {Mod}\rightarrow R(G{\smallint } A)\text {-}\textbf {Mod}   

  

appear in [28] with several different names:

• If φ is surjective, the functor indφ is called φ-coarsening and resφ is φ-refinement.

• If φ is injective, the functor indφ is called φ-extension and resφ is φ-restriction.
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3 FINITELY PRESENTED RC-MODULES

We will assume in the following that C is a small category and R a commutative ring.
Recall from Section 1.5 that an RC-moduleM is

• finitely generated if there exists an epimorphism  \bigoplus _{i\in I} R[\Mor _{\C }(c_i,-)] \rightarrow M 


   

where I is a finite set, and ci ∈ C for all i ∈ I ;

• finitely presented if there exists an exact sequence  \bigoplus _{j\in J} R[\Mor _{\C }(d_j,-)] \rightarrow \bigoplus _{i\in I} R[\Mor _{\C }(c_i,-)] \rightarrow M\rightarrow 0, 


  



     

where I and J are finite sets, and ci , dj ∈ C for all i ∈ I and j ∈ J .

3.1 S-presented and S-generated RC-modules

Let S ⊆ C be a full subcategory. The notions of S-generated and S-presented modules
will play an important role in the rest of this thesis. Before going into details, we
will recall some facts about the restriction and induction functors along the inclusion
i : S ⊆ C from Section 1.6.

The restriction resS : RC-Mod → RS-Mod is defined by precomposition with
i, and the induction indS : RS-Mod → RC-Mod is its left Kan extension along i.
The induction is the left adjoint of the restriction. Note, in particular, that it thus
commutes with colimits. The counit of this adjunction gives us for every RC-module
M the canonical morphism

  \mu _M\colon \ind _S\res _S M\rightarrow M,      
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which we will use frequently.
Let A be an R-module and c ∈ C. We define an RC-module

  A[\Mor _\C (c,-)]:= A \otimes _R R[\Mor _\C (c,-)]      

by taking a pointwise tensor product. We note that the functor R-Mod→ RC-Mod
that sends A to A[MorC (c,−)] is right exact for all c ∈ C.

Proposition 3.1. Let S ⊆ C be a full subcategory, A an R-module, and s ∈ S. Then

  \ind _S\res _S A[\Mor _\C (s,-)]\cong A[\Mor _\C (s,-)].      

Proof. By Yoneda’s lemma and the aforementioned adjunction, we have the follow-
ing isomorphisms:

  \Hom _{R\C }(R[\Mor _\C (s,-)], M) &\cong M(s)\\ &\cong \Hom _{RS}(R[\Mor _S(s,-)],\res _S M)\\ &\cong \Hom _{R\C }(\ind _S R[\Mor _S(s,-)],M).    

    

   

This shows us that indS resS R[MorC (s,−)] ≅ R[MorC (s,−)]. In particular

  \underset {(t,u)\in (i/d)} \colim R[\Mor _\C (s,t)] \cong R[\Mor _\C (s,d)] 
 

     

for d ∈ C. Since tensoring commutes with colimits, we see that for all d ∈ C,

  (\ind _S\res _S A[\Mor _\C (s,-)])(d)&= \underset {(t,u)\in (i/d)}\colim A[\Mor _\C (s,t)] \\ &\cong A\otimes _R \underset {(t,u)\in (i/d)}\colim R[\Mor _\C (s,t)] \\ &\cong A\otimes _R R[\Mor _\C (s,d)] \\ &\cong A[\Mor _\C (s,d)].    
 

 

  
 

 

    

  

Therefore indS resS A[MorC (s,−)] ≅ A[MorC (s,−)] as wanted.

An RC-moduleM is said to be S-generated if the natural morphism  \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow M 
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is an epimorphism. Since this morphism factors through the canonical morphism
µM : indS resS M → M, we see thatM is S-generated if and only if µM is an epimor-
phism.

Proposition 3.2. Let S ⊆ C be a full subcategory. Assume that M is an S-generated
RC-module, so that we have an exact sequence of RC-modules

  0\rightarrow K \rightarrow \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow M \rightarrow 0.  



      

Then the following are equivalent:

1) The canonical morphism µM : indS resS M → M is an isomorphism;

2) If there exists an exact sequence of RC-modules

  0\rightarrow L \rightarrow N\rightarrow M \rightarrow 0,       

where N is S-generated, then L is S-generated;

3) K is S-generated;

4) The sequence  \bigoplus _{s\in S}K(s)[\Mor _\C (s,-)] \rightarrow \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow M \rightarrow 0 


   



      

is exact;

5) For each s ∈ S, there exist R-modules As and Bs such that the sequence  \bigoplus _{s\in S}B_s[\Mor _\C (s,-)] \rightarrow \bigoplus _{s\in S}A_s[\Mor _\C (s,-)]\rightarrow M \rightarrow 0 


  



     

is exact.

When these equivalent conditions hold, we say thatM is S-presented.

Proof. We will show that 1)⇒ 2)⇒ 3)⇒ 4)⇒ 5)⇒ 1). Assume first that 1) holds,
and that there is an exact sequence of RC-modules

  0\rightarrow L \rightarrow N\rightarrow M \rightarrow 0.       
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Since the functor resS is exact and the functor indS right exact, we get a commutative
diagram with exact rows

  \xymatrix { & \ind _S\res _S L \ar [d]_{\mu _L} \ar [r] & \ind _S\res _S N \ar [d]_{\mu _N} \ar [r] & \ind _S\res _S M \ar [d]_{\mu _M} \ar [r] & 0 \ar [d]\\ 0\ar [r]& L \ar [r] & N \ar [r] & M \ar [r] & 0 }  




  




  








       

where µM is an isomorphism and µN is an epimorphism. An easy diagram chase
shows us that µL is an epimorphism, so 2) holds.

The implication 2) ⇒ 3) is trivial. Assume next that 3) holds. Now the mor-
phism

⨁︁
s∈S K (s) [MorC (s,−)] → K is an epimorphism, so the images of K and⨁︁

s∈S K (s) [MorC (s,−)] are the same in
⨁︁

s∈S M (s) [MorC (s,−)]. The required ex-
actness then follows immediately.

Trivially 4) implies 5). Finally, let us assume that 5) holds. By Proposition 3.1,
we get a commutative diagram with exact rows  \xymatrix { \bigoplus _{s\in S} B_s[\Mor _{\C }(s,-)] \ar [d]_{\cong } \ar [r] & \bigoplus _{s\in S} A_s[\Mor _{\C }(s,-)] \ar [d]_{\cong } \ar [r] & \ind _S\res _S M \ar [d]_{\mu _M} \ar [r] & 0 \ar [d]\\ \bigoplus _{s\in S} B_s[\Mor _{\C }(s,-)] \ar [r] & \bigoplus _{s\in S} A_s[\Mor _{\C }(s,-)] \ar [r] & M \ar [r] & 0 } 

  








  





  







   


      

from which we can see that µM is an isomorphism by the five lemma.

Remark 3.3. Proposition 3.2 is due to Djament [9, p. 11, Prop. 2.14]. The reader
should be cautious, since we use the term ‘support’ in a different meaning as in [9].

A small category is said to be locally finite, if its every morphism set is finite. The
following proposition is a special case of [10, p. 83, Prop.]. For the sake of clarity,
we present a proof using our notation.

Proposition 3.4. Let C be locally finite. An RC-moduleM is finitely presented if and
only if there exists a finite full subcategory S ⊆ C such that

1) M (s) is finitely presented for all s ∈ S;

2) M is S-presented.

Proof. Assume first thatM is finitely presented, so that there exists an exact sequence  \bigoplus _{j\in J} R[\Mor _{\C }(b_j,-)] \rightarrow \bigoplus _{i\in I}R[\Mor _{\C }(a_i,-)] \rightarrow M\rightarrow 0, 
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where I and J are finite sets, and ai , bj ∈ C for all i ∈ I and j ∈ J . Evaluating this at
point c ∈ C gives us an exact sequence

  R^{m_c} \rightarrow R^{n_c} \rightarrow M(c)\rightarrow 0       

for some mc, nc ∈ N, so that 1) holds. For 2), by setting

  S:=\{a_i\mid i\in I\} \cup \{b_j\mid j\in J\}            

we immediately see thatM is S-presented by Proposition 3.2 5).
Assume next that there exists a finite full subcategory S ⊆ C such that 1) and 2)

hold. Now M is S-generated, so the natural morphism
⨁︁

s∈S M (s) [MorC (s,−)] →
M is an epimorphism. Since M (s) is finitely generated for all s ∈ S, there exists an
epimorphism Rns → M (s) for all s ∈ S, where ns ∈ N. Combining these epimor-
phisms, we get an epimorphism  \bigoplus _{t\in S}R^{n_t}[\Mor _\C (t,-)]\rightarrow \bigoplus _{t\in S}M(t)[\Mor _\C (t,-)] \rightarrow M 


  




    

and an exact sequence

  0\rightarrow N \rightarrow \bigoplus _{t\in S}R^{n_t}[\Mor _\C (t,-)]\rightarrow M \rightarrow 0.  



     

Because M is S-presented, N must be S-generated by Proposition 3.2 2), so there
exists an epimorphism

⨁︁
t∈S N (t) [MorS (t,−)] → N . On the other hand, M (s) is

finitely presented, so N (s) is finitely generated for all s ∈ S. Thus there exists an
epimorphism Rms → N (s) for all s ∈ S, where ms ∈ N. Hence we get an exact
sequence   \bigoplus _{t\in S}R^{m_t}[\Mor _\C (t,-)]\rightarrow \bigoplus _{t\in S}R^{n_t}[\Mor _\C (t,-)]\rightarrow M\rightarrow 0. 


  




     

From the proof of Proposition 3.4 we immediately get the following corollary:

Corollary 3.5. An RC-moduleM is finitely generated if and only if there exists a finite
full subcategory S ⊆ C such that
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1) M (s) is finitely generated for all s ∈ S;

2) M is S-generated.

3.2 Births and deaths relative to S

From now on, we will assume that C is a poset.
Let M be an RC-module, S ⊆ C a subset, and c ∈ C. Write S′ := S\{c}. We note

that
  \underset {d < c, \ d\in S} \colim M(d) = \underset {d\leq c, \ d\in S'}\colim M(d) = (\ind _{S'}\res _{S'} M)(c). 


  


     

Since resS′ is exact and indS′ is right exact, we then see that the functor

  \RCmod \rightarrow \Rmod , \ M \mapsto \underset {d < c, \ d\in S}\colim M(d).    




is also right exact.

Definition 3.6. Let C be a poset,M an RC-module, S ⊆ C a subset and c ∈ C. Let

 \lambda _{M,c}\colon \underset {d < c, \ d\in S}\colim M(d) \rightarrow M(c) 


   

be the natural homomorphism. We define the set of births relative to S by

  B_S(M):=\{c\in \C \mid \lambda _{M,c} \ \text {is a non-epimorphism}\}          

and the set of deaths relative to S by

  D_S(M):=\{c\in \C \mid \lambda _{M,c} \ \text {is a non-monomorphism}\}.          

Remark 3.7. Note that λM,c is an epimorphism if and only if the natural homomor-
phism

⨁︁
d<c, d∈S M (d) → M (c) is an epimorphism. This implies that if T ⊆ S ⊆ C,

then BS (M) ⊆ BT (M).

Example 3.8. Let C be a poset. Let I be an interval of C i.e. a non-empty subset of
C satisfying the condition that if a, b ∈ I , c ∈ C and a ≤ c ≤ b, then c ∈ I . Let RI be
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the RC-module defined on objects by

  R_I(c)=\left \{ \begin {aligned} &R, \ \text {when} \ c\in I;\\ &0, \ \text {otherwise,} \end {aligned}\right .  

    



and with identity morphisms inside the interval. Then the sets of births BC (RI ) and
BI (RI ) both consist of the minimal elements of I . To find the deaths, we note that
RI is ↑I -presented, so deaths must either be inside I or above it (see Remark 4.2).

First, let c ∈ S1 := (↑ I)\I . Now RI (c) = 0. Since S1 ⊆ ↑ Supp(RI ), we see that
colimd<c, d∈I RI (d) ≠ 0. Thus c ∈ DI (RI ), so S1 ⊆ DI (RI ). Furthermore, it is clear
that colimd<c RI (d) ≠ 0 if and only if c is minimal in S1. This implies that exactly the
minimal elements of S1 are in DC (RI ).

Secondly, let c ∈ I . It is straightforward to see that c ∈ DI (RI ) if and only if the
set (I ∩ ↓c)\{c} is not connected as a poset. This applies also to DC (RI ). Set

  S_2 := \{c\in I \mid (I\cap {\downarrow }c) \backslash \{c\} \text { is not connected }\}.            

We conclude that DI (RI ) = S1 ∪ S2, while DC (RI ) is the union of the set of the
minimal elements of S1, and the set S2.

Proposition 3.9. Let C be a poset,M an RC-module, and S ⊆ C a subset. Then

1) M is S-generated if and only if BS (M) ⊆ S;

2) M is S-presented if and only if BS (M) ∪DS (M) ⊆ S.

Proof. Both 1) and 2) are proved similarly. We only prove 2) here. Directly from
the definitions,

  &M \text { is }S\text {-presented} \\ &\Leftrightarrow \ \mu _{M,c}\colon \underset {d\leq c, \ d\in S} \colim M(d)\rightarrow M(c) \text { is an isomorphism for all }c\in \C \\ &\Leftrightarrow \ \lambda _{M,c} \colon \underset {d<c, \ d\in S}\colim M(d)\rightarrow M(c) \text { is an isomorphism for all }c\in \C \backslash S\\ &\Leftrightarrow \ B_S(M)\cup D_S(M)\subseteq S. 

  


           

  


           

     

Let S ⊆ C. We may think of BC (M) as the set of ‘real’ births ofM. The following
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proposition shows that for S-generated modules we may focus only on births relative
to S.

Proposition 3.10. LetM be an S-generated RC-module. Then BC (M) = BS (M).

Proof. ByRemark 3.7 it is enough to show that BS (M) ⊆ BC (M). Let c ∈ C\BC (M),
so that the natural homomorphism

⨁︁
d<c M (d) → M (c) is an epimorphism. Since

M is S-generated, there is an epimorphism  \bigoplus _{d'\leq d, \ d'\in S}M(d')\rightarrow M(d) 


   

for all d < c. We may combine these epimorphisms to get an epimorphism  \bigoplus _{d<c, \ d\in S}M(d)\rightarrow M(c), 


   

implying that c ∈ C\BS (M).

3.3 S-splitting

Definition 3.11. Let S ⊆ C a subset and c ∈ C. If M is an RC-module, denote by
SS,cM the R-module defined by the exact sequence

  \underset {d<c, \ d\in S}\colim M(d) \stackrel {\lambda _{M,c}}{\rightarrow } M(c) \stackrel {\pi _{M,c}}{\rightarrow } S_{S,c}M \rightarrow 0, 



 

  

where πM,c is the canonical epimorphism. If φ : M → N is a morphism of RC-
modules, we have a commutative diagram

  \xymatrix { \underset {d<c, \ d\in S}\colim M(d) \ar [r]^-{\lambda _{M,c}} \ar [d] & M(c) \ar [r]^-{\pi _{M,c}} \ar [d]_{\varphi _c}& S_{S,c}M \ar @{-->}[d]^{S_{S,c}\varphi } \ar [r]& 0 \\ \underset {d<c, \ d\in S}\colim N(d) \ar [r]_-{\lambda _{N,c}} & N(c) \ar [r]_-{\pi _{N,c}} & S_{S,c}N \ar [r] & 0 } 
































  
  

where the existence of SS,cφ follows from the the universal property of cokernels.
This gives rise to a functor SS,c, the S-splitting functor at c. More explicitly,

  S_{S,c}M = M(c) / \Img (\lambda _{M,c}).   
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Remark 3.12. The concept of a splitting functor is due to Lück ([17, p. 156]). For
c ∈ C, the original splitting functor Sc : RC-Mod → R-Mod is the case S = C of the
S-splitting functor. That is, ifM is an RC-module, then

  S_c M:= M(c) / \Img (\eta _{M,c}),   

where ηM,c is the canonical morphism colimd<c M (d) → M (c).
The S-splitting functor at c could equivalently be defined as the composition of the

splitting functor Sc : R(S ∪ {c})-Mod → R-Mod and the restriction functor resS∪{c}
by setting

  S_{S,c}=S_c\circ \res _{S\cup \{c\}}.     

Since both Sc and resS∪{c} are left adjoints, we see that SS,c is a left adjoint, and thus
additive.

The basic example for us is the following:

Example 3.13. Let k be a field, S ⊆ Zn a subset, and M a k(Nn∫Zn)-module.
We identify M with the corresponding Zn-graded k[X1, . . . , Xn]-module. Denote by
m := ⟨X1, . . . , Xn⟩ the maximal homogeneous ideal of k[X1, . . . , Xn]. If N is the ho-
mogeneous submodule of M generated by the union of Ms, where s ∈ S, we notice
that

  (M/mN)_c = M_c / (mN)_c = M(c) / \Img (\lambda _{M,c}) = S_{S,c} M         

for all c ∈ Zn. In particular, this yields an isomorphism of k-vector spaces,

  M/mN \cong \bigoplus _{c\in \mathbb Z^n} S_{S,c}M. 





Remark 3.14. Let M be an RC-module and S ⊆ C a subset. Note that for all c ∈ C,
we have c ∈ BS (M) if and only if SS,cM ≠ 0.

Remark 3.15. LetA be anR-module, S ⊆ C a subset, s ∈ S, and c ∈ C. Let S′ := S\{c}.
If s ≠ c, we see that

  \underset {d<c, \ d\in S}\colim A[\Mor _\C (s,d)] =\underset {d\leq c, \ d\in S'}\colim A[\Mor _\C (s,d)] \cong A[\Mor _\C (s,c)] 


   


     

by Proposition 3.1. If s = c, then obviously colimd<c, d∈S A[MorC (s, d)] = 0. In
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particular

  S_{S,c}(A[\Mor _\C (s,-)])=\left \{\begin {aligned} &A, \text { when }s=c\\ &0, \ \text {otherwise}. \end {aligned} \right .   

   



Next, we prove a version of Nakayama’s lemma (cf. [31, p. 12, Lemma 6.2]).

Lemma 3.16. Let M be an RC-module and S ⊆ C a subset. If Supp(M) ∩ S has a
minimal element c, then SS,cM ≠ 0.

Proof. Assume that c ∈ Supp(M) ∩ S is minimal. ThenM (d) = 0 for all d ∈ S with
d < c. In particular, colimd<c, d∈S M (d) = 0. Thus SS,cM ≠ 0.

Recall that a poset P is called Artinian, if there are no infinite strictly descending
chains of elements of P, or equivalently, if every non-empty subset S ⊆ P has a
minimal element.

Proposition 3.17. Let f : L → M be a morphism of RC-modules, where M is S-
generated with an Artinian S ⊆ C. If SS,cf : SS,cL → SS,cM is an epimorphism for
all c ∈ BS (M), then f is an epimorphism.

Proof. We first note that Coker f is S-generated, since M is S-generated. Suppose
that f is not an epimorphism. Then Coker f ≠ 0, so there exists s ∈ S such
that (Coker f ) (s) ≠ 0. Hence Supp(Coker f ) ∩ S has a minimal element c by the
Artinian property. Now SS,c (Coker f ) ≠ 0 by Lemma 3.16, which implies that
c ∈ BS (Coker f ) ⊆ BS (M). Since SS,c is right exact, we get Coker SS,cf ≠ 0, so SS,cf is
not an epimorphism.

Lemma 3.18. Let S ⊆ C be a subset and

  0\rightarrow L \stackrel {j}{\rightarrow }N\stackrel {f}{\rightarrow }M\rightarrow 0 




  

an exact sequence of RC-modules. The following are equivalent for all c ∈ C:

1) (Ker f ) (c) ⊆ Im λN,c;

2) SS,c (j) = 0;

3) SS,c (f ) is a monomorphism;

4) SS,c (f ) is an isomorphism.
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Proof. The equivalence of 1) and 3) immediately follows from the fact that

  \Ker S_{S,c}(f) = ((\Ker f)(c)+\Img \lambda _{N,c})/\Img \lambda _{N,c}.            

Since SS,c is right exact, we have Ker SS,c (f ) = Im SS,c (j). Therefore 2) is equivalent
to 3). The equivalence of 3) and 4) holds, because SS,c preserves epimorphisms.

We recall that an epimorphism ofRC-modules f : N → M is calledminimal, if for
all morphisms g : L → N , fg is an epimorphism if and only if g is an epimorphism.
It is known that an epimorphism f is minimal if and only if for all submodules
N ′ ⊆ N

  N'+\Ker f=N \ \Rightarrow \ N'=N.          

A minimal epimorphism f : N → M, where N is projective, is called a projective
cover ofM (see e.g. [1, p. 28]).

Remark 3.19. Let A be an R-module and c ∈ C. Then A may be thought of as an
R{c}-module, and we note that A[MorC (c,−)] ≅ ind{c} A. In particular, the functor
A ↦→ A[MorC (c,−)] preserves projectives, since it is the left adjoint of the exact
functor res{c} .

Proposition 3.20. Let f : N → M be an epimorphism of S-generated RC-modules,
where S ⊆ C is Artinian. If (Ker f ) (c) ⊆ Im λN,c for all c ∈ C, then f is minimal. The
converse implication holds if SS,cM is projective for all c ∈ S.

Proof. Let (Ker f ) (c) ⊆ Im λN,c for all c ∈ C. Suppose that N ′ + Ker f = N for
some submodule N ′ ⊆ N . We note that for all c ∈ C, (N ′) (c) + Im λN,c = N (c).
This implies that SS,cN ′ = SS,cN for all c ∈ C. Since S is Artinian, we may use
Proposition 3.17 to conclude that N ′ = N , so f is minimal.

Next, let f be minimal, and let SS,cM be projective for all c ∈ S. Thus we can find
sections SS,cM → M (c) for all c ∈ S. These induce a morphism

  h\colon \bigoplus _{s\in S} S_{S,s}M[\Mor _\C (s,-)] \rightarrow \bigoplus _{s\in S} M(s)[\Mor _\C (s,-)] \rightarrow M. 



  



    

Remark 3.15 now implies that SS,ch = idSS,cM for all c ∈ S, so h is an epimorphism
by Proposition 3.17.

Since SS,cM is projective for all c ∈ S, we see that
⨁︁

s∈S SS,sM [MorC (s,−)] is also
projective by Remark 3.19 (as a sum of projectives). Thus the morphism h factors
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through f , and we get a diagram  \xymatrix { \bigoplus _{s\in S}S_{S,s}M[\Mor _c(s,-)] \ar [r]^-{g} \ar [dr]_-{h} & N\ar [d]^{f}\\ & M } 
  














that commutes. Now f is minimal, so g is an epimorphism. Applying functor SS,c,
where c ∈ S, on the diagram, we see that SS,cf ◦SS,cg = id, which implies that SS,cg is a
monomorphism, and therefore an isomorphism. Hence SS,cf is an isomorphism for
all c ∈ S. This is equivalent to (Ker f ) (c) ⊆ Im λN,c for all c ∈ C by Lemma 3.18.

Remark 3.21. LetM be an S-generated RC-module, where S is Artinian. If SS,cM is
projective for all c ∈ S, the morphism h :

⨁︁
s∈S SS,sM [Morc (s,−)] → M induced by

sections SS,sM → M (s) is a projective cover ofM.
Indeed, as noted earlier, h is an epimorphism with SS,ch = id for all c ∈ S. Then

Lemma 3.18 implies that (Ker f ) (c) ⊆ Im λN,c for all c ∈ C, and the rest follows from
Proposition 3.20.

3.4 Minimality of births and deaths

We will now show how the sets of births and deaths relative to a subset S ⊆ C are in
a sense minimal if the module is S-generated or S-presented.

Proposition 3.22. Let M be an S-generated RC-module, where S ⊆ C is Artinian.
ThenM is BS (M)-generated. Furthermore, BS (M) is the minimum element of the set
{T ⊆ S | M is T -generated}.

Proof. Let ρ be the natural morphism ρ :
⨁︁

s∈BS (M ) M (s) [MorC (s,−)] → M. Re-
mark 3.15 shows us that applying the S-splitting functor at c ∈ S yields the canonical
epimorphism SS,cρ = π : M (c) → SS,cM. Thus ρ is an epimorphism by Proposi-
tion 3.17.

To show the claimed minimality: If M is T -generated for some T ⊆ S, we have
BS (M) ⊆ BT (M) ⊆ T by Proposition 3.9 and Remark 3.7.

Next, we introduce a technical lemma.
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Lemma 3.23. Assume that we have a commutative diagram of R-modules with exact
rows

  \xymatrix { & L\ar [d]_{f} \ar [r] & N \ar [d]_{g} \ar [r] & M \ar [d]^{h}\ar [r]& 0 \\ 0 \ar [r] & L' \ar [r] & N' \ar [r] & M'& } 














      

where g is a monomorphism. If f is an epimorphism, then h is a monomorphism. The
converse holds if either the natural morphism Coker g → Coker h is a monomorphism or
g is an epimorphism.

Proof. The snake lemma gives us an exact sequence

  \Ker f \rightarrow \Ker g \rightarrow \Ker h \rightarrow \Coker f \rightarrow \Coker g \rightarrow \Coker h,                

where Ker g = 0. If Coker f = 0, we get Ker h = 0. If Coker g = 0, we have Ker h ≅
Coker f , and we are done. If Coker g → Coker h is a monomorphism, we see that
Coker f maps to 0, so Ker h → Coker f is an epimorphism. Since Ker g = 0, the
morphism Ker h → Coker f is also a monomorphism.

Lemma 3.24. LetM be an S-presented RC-module, where S ⊆ C is Artinian. Assume
that we have an exact sequence of RC-modules

  0\rightarrow L \rightarrow N \stackrel {f}{\rightarrow } M\rightarrow 0,   

  

where N is S-generated and DS (N ) = ∅. Then DS (M) ⊆ BS (L). Furthermore, if N is
BS (M)-generated, we have BS (L) ⊆ BS (M) ∪DS (M).

Proof. Let c ∈ C. Applying colimd<c, d∈S to the exact sequence above, we get a dia-
gram with exact rows

  \xymatrix @C=1.5em{ &\underset {d<c, \ d\in S} \colim L(d)\ar [d]_{\lambda _{L,c}} \ar [r] & \underset {d<c, \ d\in S} \colim N(d) \ar [d]_{\lambda _{N,c}} \ar [r] & \underset {d<c, \ d\in S} \colim M(d)\ar [r] \ar [d]_{\lambda _{M,c}}& 0 \\ 0 \ar [r] & L(c)\ar [r] & N(c) \ar [r]^-{f_c} & M(c) \ar [r]& 0 } 



















 







    


   

that commutes. Here λN,c is a monomorphism, because DS (N ) = ∅. To show that
DS (M) ⊆ BS (L), suppose that c ∉ BS (L). In this case λL,c is an epimorphism, so λM,c

is a monomorphism by Lemma 3.23. Thus c ∉ DS (M).
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Assume thatN is BS (M)-generated. Since f is an epimorphism, Proposition 3.22
implies that BS (M) = BS (N ). Suppose that c ∉ BS (M) ∪ DS (M). Now λN,c is an
epimorphism, since c ∉ BS (N ) = BS (M). Moreover, λM,c is a monomorphism
because c ∉ DS (M). It follows from Lemma 3.23 that λL,c is an epimorphism, so
c ∉ BS (L). Thus BS (L) ⊆ BS (M) ∪DS (M).

Proposition 3.25. Let M be an S-presented RC-module, where S ⊆ C is Artinian.
ThenM is BS (M) ∪DS (M)-presented. Furthermore, BS (M) ∪DS (M) is the minimum
element of the set {T ⊆ S | M is T -presented}.

Proof. Let us examine an exact sequence

  0\rightarrow L \rightarrow N \rightarrow M\rightarrow 0,       

with N of the form N =
⨁︁

s∈BS (M ) As [MorC (s,−)], where As is an R-module for
all s ∈ BS (M). Note that such N always exists by Proposition 3.22. Since M is
S-presented, Proposition 3.2 2) implies that L is S-generated. Using Proposition 3.2
5), we notice that if L is T -generated for some T ⊆ S, then M is (BS (M) ∪ T )-
presented. Now L is BS (L)-generated by Proposition 3.22, so we deduce that M
is (BS (M) ∪ BS (L))-presented. We can now use Lemma 3.24 to see that then M
is(BS (M) ∪DS (M))-presented.

Suppose next that M is also T -presented for some T ⊆ S. As in the proof of
Lemma 3.24, we note that BS (M) = BS (N ). The minimality of BS (M) in Propo-
sition 3.22 implies that BS (N ) = BS (M) ⊆ T , so N is T -generated by Proposi-
tion 3.22. Thus L is T -generated by Proposition 3.2 2). Therefore we must have

  B_S(M)\subseteq B_T(M)\subseteq T \ \text {and} \ B_S(L)\subseteq B_T(L)\subseteq T,              

by Proposition 3.9 1) and Remark 3.7. We use Lemma 3.24 to conclude that

  B_S(M) \cup D_S(M) = B_S(L)\cup B_S(M) \subseteq T.           

Remark 3.26. Assume thatM is an S-presentedRC-module, where S ⊆ C is Artinian.
Let f : N → M be a projective cover. Then SS,cf is an isomorphism for all c ∈ C if
and only if SS,cM is projective for all c ∈ C.
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To see this, first suppose that SS,cf is an isomorphism for all c ∈ C. Since SS,c
preserves projectives for all c ∈ C, we see that SS,cN is projective, and thus SS,cM is
projective.

Conversely, suppose that SS,cM is projective for all c ∈ C. We may now apply
Proposition 3.20 and Lemma 3.18 to get isomorphisms SS,cf : SS,cN → SS,cM for all
c ∈ C.

Remark 3.27. In [5], Carlsson and Zomorodian define multiset-valued invariants ξ0
and ξ1 for a finitely generated Zn-graded k[X1, . . . , Xn]-moduleM, where k is a field.
The multisets ξ0(M) and ξ1(M) indicate the degrees in Zn where the elements ofM
are born and where they die, respectively. In more algebraic terms, ξ0(M) and ξ1(M)
consist of the degrees of minimal generators and minimal relations of M equipped
with the multiplicities they occur. Consider an exact sequence

  0\rightarrow L \rightarrow N \stackrel {f}{\rightarrow } M \rightarrow 0,   

  

where N is a free module and f a minimal homomorphism. SinceM is S-presented
for some finite S ⊆ Zn, it is easy to see that ξ0(M) is a multiset where the underlying
set is BS (M) and the multiplicity of c ∈ BS (M) is the dimension of M (c). Note
that the choice of S does not matter here, since BS (M) = BC (M) by Proposition
3.10. We note that L is S-generated by Proposition 3.2 3), so we may apply a similar
argument to conclude that ξ1(M) is a multiset with BS (L) as the underlying set and
the dimension of L(c) as the multiplicity of c ∈ BS (L). The next theorem will show
that DS (M) is the underlying set of ξ1(M).

Theorem 3.28. LetM be an S-presentedRC-module, where S ⊆ C is Artinian. Assume
that SS,cM is projective for all c ∈ BS (M). If

  0\rightarrow L \rightarrow N\stackrel {f}{\rightarrow } M\rightarrow 0   

  

is an exact sequence where f is a projective cover, then BS (L) = DS (M).

Proof. By Lemma 3.24, it is enough to show that BS (L) ⊆ DS (M). If c ∉ BS (M),
then c ∈ BS (L) implies c ∈ DS (M) by Lemma 3.24. Let c ∈ BS (M). Suppose that
c ∉ DS (M). Then λM,c is a monomorphism. Since f is minimal, by Proposition 3.20
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and Lemma 3.18, there exists a natural isomorphism

  S_{S,c}f\colon S_{S,c}N=\Coker \lambda _{N,c} \rightarrow \Coker \lambda _{M,c}=S_{S,c}M.          

It now follows from Lemma 3.23 that λL,c is an epimorphism, which is equivalent
to c ∉ BS (L).
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4 PRESENTATIONS WITH FINITE SUPPORT

In this chapter we will prove our main result, Theorem 4.15, which gives a char-
acterization for finitely presented modules. We will assume that C is a poset and
R a commutative ring.

4.1 S-determined RC-modules

Let M be an RC-module. If S ⊆ C is a finite set such that M is S-presented, we say
that S is a finite support of a presentation (FSP) of M. In what follows, we are trying
to find a condition equivalent forM having an FSP.

Definition 4.1. An RC-moduleM is S-determined if there exists a subset S ⊆ C such
that Supp(M) ⊆ ↑S, and for every c ≤ d in C

  S\cap {\downarrow } c = S \cap {\downarrow } d \ \Rightarrow \ M(c\leq d) \text { is an isomorphism.}             

Remark 4.2. LetM be an RC-module and S ⊆ C a subset. Denote T := ↑S. Then the
condition Supp(M) ⊆ T of Definition 4.1 is equivalent to the following conditions:

1) M is T -generated;

2) M is T -presented;

3) If S ∩ ↓c = ∅, thenM (c) = 0.

To show this, we first note that 1) implies 3), because ↑S = T . Taking the contra-
position of 3), we get Supp(M) ⊆ T . Next, note that below every c ∈ DT (M)
there must be some d ∈ Supp(M) such that d < c. Thus DT (M) ⊆ ↑ Supp(M).
Obviously also BT (M) ⊆ Supp(M). We now observe that if Supp(M) ⊆ T , we get

  B_T(M)\cup D_T(M)\subseteq {\uparrow } \supp (M) \subseteq {\uparrow } T = T,          

This means that Supp(M) ⊆ T implies 2) by Proposition 3.9. Finally, 1) trivially
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follows from 2).

Proposition 4.3. Let M be an S-presented RC-module, where S ⊆ C. Then M is S-
determined.

Proof. Trivially Supp(M) ⊆ ↑S. If c ≤ d in C, we have a commutative diagram

  \xymatrix { \underset {e\leq c, \ e\in S}\colim M(e)\ar [d]_{\cong } \ar [r] & \underset {e\leq d, \ e\in S}\colim M(e) \ar [d]^{\cong } \\ M(c) \ar [r]_{M(c\leq d)} & M(d)} 




















 

with the vertical isomorphisms being components of the canonical isomorphism of
Proposition 3.2, 1). This immediately shows us thatM is S-determined.

4.2 Minimal upper bounds

Let S ⊆ C. We would like to find conditions under which S-determined implies S-
presented. In general this is false (see Example 4.17), so we first need to apply some
technical limitations on the poset C to guarantee that it is “small” enough.

Notation 4.4. Let S ⊆ C be a subset. We denote the set of minimal upper bounds of
S by mubC (S).

Definition 4.5. The poset C is weakly bounded from above if every finite S ⊆ C has
a finite number of minimal upper bounds in C.

Definition 4.6. The poset C ismub-complete if given a finite non-empty subset S ⊆ C
and an upper bound c of S, there exists a minimal upper bound s of S such that s ≤ c.

Remark 4.7. A poset that is weakly bounded from above and mub-complete is called
a poset with property M in [15]. In contrast to [15], we do not require the empty
set to have minimal upper bounds for a poset to be mub-complete.

Example 4.8. If L is a lattice, then L is weakly bounded from above and mub-
complete.

A ‘good’ monoid G in [6] is a cancellative monoid that is weakly bounded from
above as a poset (with the natural order). If G is also commutative, we get the
following description of mub-completeness.
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Proposition 4.9. Let G be a commutative cancellative monoid that is weakly bounded
from above as a poset (with the natural order). Then G is mub-complete if and only if
there exists a maximal common divisor for each g, h ∈ G.

Proof. Assume first that G is mub-complete. Let g, h ∈ G. Since gh is an upper bound
of g and h, there exists a minimal upper bound j ∈ G of g and h such that lj = gh for
some l ∈ G. We claim that l is a maximal common divisor of g and h. We may write
j = ag = bh, where a, b ∈ G. Now

  gh=lj=lag=lbh,      

so that g = lb and h = la by cancellativity. Thus l is a common divisor of g and
h. For the maximality, let k ∈ G be another common divisor of g and h such that l
divides k. We may then write k = k′l, where k′ ∈ G. Furthermore, we have g = ck
and h = dk for some c, d ∈ G. Combining these equations, we get

  lj=gh=ck'lh=gdk'l.      

Cancelling l, we see that j = k′ch = k′dg. Furthermore, cancelling k′ yields ch = dg,
another upper bound for g and h. Since j is a minimal upper bound of g and h, we
must have k′ = 1, proving the maximality of l.

For the other direction, assume that each pair g, h ∈ G has a maximal common
divisor. Let H := {h1, . . . , hn} ⊆ G be a finite non-empty set, and let d be an upper
bound of H . We now have

  d=g_1h_1=\cdots =g_nh_n       

for some g1, . . . , gn ∈ G. Let g′ ∈ G be a maximal common divisor of g1, . . . , gn. Hence
there exists g′i ∈ G such that gi = g′ig

′ for all i ∈ {1, . . . , n}. Also, d = d′g′ for some
d′ ∈ G. It is now easy to see that the maximal common divisor of g′1, . . . , g

′
n is 1, and

that d′ is a minimal upper bound of H .

Notation 4.10. Let S ⊆ C be a finite subset. We denote the set of minimal upper
bounds of non-empty subsets of S by

  \hat {S} := \bigcup _{\emptyset \neq S'\subseteq S} \mub _\C (S'). 
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We notice that if C is weakly bounded from above, then Ŝ is finite.

Using the terminology from [6], a set S ⊆ C is a framing set of M if every c ∈
↑ Supp(M) has an element s ∈ S ∩ ↓c, called a frame of c, such that M (s ≤ c′) is an
isomorphism for all s ≤ c′ ≤ c.

Lemma 4.11. If an RC-moduleM has a framing set S, thenM is S-determined.
Conversely, if C is weakly bounded from above and mub-complete, and M is S-

determined for some finite set S ⊆ C, then Ŝ is a finite framing set ofM. In particular, if
c ∈ C, then there exists a frame s ∈ mub(S ∩ ↓c) ⊆ Ŝ of c such that S ∩ ↓c = S ∩ ↓s.

Proof. Assume first that S is a framing set forM. If c ∈ Supp(M), then there exists
a frame s ∈ S of c, and therefore c ∈ ↑S. Thus Supp(M) ⊆ ↑S. Let c ≤ d in C such
that S ∩ ↓c = S ∩ ↓d. If d ∉ ↑ Supp(M), we have M (c) = M (d) = 0, and we are
done. Otherwise, there exists a frame s ∈ S of d. Since S ∩ ↓c = S ∩ ↓d, we see that
s ≤ c ≤ d. ThereforeM (c ≤ d) is an isomorphism.

Assume next that C is weakly bounded from above and mub-complete, and M
is S-determined for some finite set S. Since C is weakly bounded from above, Ŝ is
finite. Let c ∈ ↑ Supp(M). Now there exists an element b ≤ c such that M (b) ≠ 0.
SinceM is S-determined, we see that S ∩ ↓c ⊇ S ∩ ↓b ≠ ∅. Thus c is an upper bound
of the non-empty set S ∩ ↓c, so by mub-completeness there exists a minimal upper
bound s ∈ mub(S∩↓c) ⊆ Ŝ such that s ≤ c. It follows that S∩↓c ⊆ S∩↓s. Obviously
s ≤ c implies S ∩ ↓s ⊆ S ∩ ↓c. Hence S ∩ ↓s = S ∩ ↓c. If s ≤ c′ ≤ c, then trivially
S ∩ ↓s = S ∩ ↓c′, soM (s ≤ c′) is an isomorphism.

4.3 Finitely presented RC-modules in mub-complete posets

In the next proposition we find out how the minimal upper bounds connect to births
and deaths relative to S. This allows us to prove our main result, Theorem 4.15.

Proposition 4.12. Let C be weakly bounded from above and mub-complete. Let M
be an RC-module that is S-determined for some finite S ⊆ C. If BŜ (M) ⊆ S, then
DŜ (M) ⊆ Ŝ.

Proof. Suppose that BŜ (M) ⊆ S. This implies that M is Ŝ-generated by Proposi-
tion 3.9, so M is BŜ (M)-generated by Proposition 3.22. Let c ∈ DŜ (M), so that
λM,c is not a monomorphism. This means that there exist d1, . . . , dn ∈ Ŝ such that
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di < c for all i = {1, . . . , n}, and a non-zero sum of x1 ∈ M (d1), . . . , xn ∈ M (dn), for
which

∑︁n
i=1M (di ≤ c) (xi) = 0. If there exists c′ ∈ Ŝ such that di ≤ c′ < c for all

i ∈ {1, . . . , n}, we may assume that ∑︁n
i=1M (di ≤ c′) (xi) ≠ 0, since the homomor-

phism
  \bigoplus _{i=1}^n M(d_i)\rightarrow \underset {d< c, \ d\in \hat {S}}\colim M(d) 


  




factors through M (c′). Because M is BŜ (M)-generated, we may also assume that
di ∈ BŜ (M) ⊆ S for all i ∈ {1, . . . , n}.

On the other hand, by Lemma 4.11, we have S ∩↓s = S ∩↓c for some frame s ∈ Ŝ
of c. This implies that di ≤ s for all i ∈ {1, . . . , n}. If s < c, we get a contradiction∑︁n

i=1M (di ≤ s) (xi) = 0. Therefore c = s ∈ Ŝ.

Corollary 4.13. Let C be weakly bounded from above and mub-complete. LetM be an
S-determined RC-module, where S ⊆ C is a finite subset. Then S̃̃ is an FSP ofM.

Proof. ObviouslyM is Ŝ-determined, since S ⊆ Ŝ. By Proposition 4.12, it is enough
to show that BS̃̃ (M) ⊆ Ŝ, because then DS̃̃ (M) ⊆ S̃̃ . The rest now follows from
Proposition 3.9. Since Ŝ ⊆ S̃̃ , by Remark 3.7 we have BS̃̃ (M) ⊆ BŜ (M). Let c ∈ C.
If c ∉ Ŝ, then c has a frame s ∈ Ŝ by Lemma 4.11. This means that c ∉ BŜ (M), and
thus BŜ (M) ⊆ Ŝ.

We sum up Proposition 4.3 and Corollary 4.13 in the next corollary.

Corollary 4.14. Let C be weakly bounded from above and mub-complete. An RC-
moduleM has an FSP if and only ifM is S-determined for some finite S ⊆ C.

Finally, we get our new characterization of finitely presented modules.

Theorem 4.15. LetM be an RC-module. IfM is finitely presented, then

1) M (c) is finitely presented for all c ∈ C;

2) M is S-determined for some finite S ⊆ C.

Furthermore, if C is weakly bounded from above and mub-complete, and M satisfies
conditions 1) and 2), thenM is finitely presented.

Proof. Using Proposition 3.4, the first part of the theorem immediately follows from
Proposition 4.3 and the second part from Corollary 4.13.
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Remark 4.16. Let G be a monoid. Theorem 4.15 and Lemma 4.11 show us that the
RG-modules of finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are
the same thing as finitely presented RG-modules.

Furthermore, let A be a free G-act that is mub-complete and weakly bounded
from above as a poset. Starting from the isomorphism RA-Mod ≅ A-gr R[G]-Mod
of Corollary 2.14, and using the fact that being finitely presented is a categorical
property, we get an isomorphism between finitely presentedRA-modules and finitely
presented A-graded R[G]-modules. Taking A = G now gives the commutative case
of [6, p. 25, Thm. 21].

Example 4.17. Let C = {a, b} ∪ Z, where a < n and b < n for all n ∈ Z, and Z has
the usual ordering. Then the RC-module M := R[MorC (a,−)] ⊕ R[MorC (b,−)] is
obviously finitely presented, but M does not have a finite framing set even though
it is {a, b}-determined. Caution is required here: If we define an RC-module N by

  N(a)=N(b)=R \quad \text {and} \quad N(n)=R^3,          

for all n ∈ Z, then N satisfies the conditions 1) and 2) in Theorem 4.15 but is not
finitely presented. This follows from the fact that C is not mub-complete.

4.4 Pointwise stabilizing direct systems

Definition 4.18. Let I be a directed set, and let (Mi)i∈I be a direct system of RC-
modules with morphisms φij : Mi → Mj for all i ≤ j in I . The system (Mi)i∈I is
pointwise stabilizing if for all c ∈ C there exists an element ic ∈ I such that

  i_c\leq i \leq j \ \Rightarrow \ \varphi _{ij}\colon M_i(c)\rightarrow M_j(c) \ \text {is an isomorphism}.               

Remark 4.19. For a pointwise stabilizing direct system (Mi)i∈I of RC-modules as
above, if c ∈ C, then

  (\underset {i \in I}\colim M_i)(c) \cong (\underset {i\geq i_c}\colim M_i)(c)\cong M_{i_c}(c). 


  


   

This follows from Remark 1.7, since the set {i ∈ I | i ≥ ic} is final in I .

Let M be an RC-module. The result we are aiming for, Theorem 4.25, states
that M has an FSP if and only if the functor HomRC (M,−) preserves the colimits
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of pointwise stabilizing direct systems. This result is mentioned without a proof in
[9, p. 14, Remarque 2.15]. Note the similarity to Proposition 1.12, which states
that M is finitely presented if and only if HomRC (M,−) preserves the colimits of
direct systems. We will first present a few lemmas.

Lemma 4.20. Denote by Cf the set of finite subposets of C. Then the direct system
(indS resS M)S∈Cf with the natural morphisms is pointwise stabilizing, and

  \underset {S\in \C _f}\colim \ind _S\res _S M \cong M. 


   

Proof. Given c ∈ C and S ∈ Cf , we have S ⊆ S ∪ {c}, which implies that the set

  \C _{f,c}:=\{T\in \C _f \mid c\in T\}         

is final in Cf . Thus, by Remark 1.7,

  \underset {S\in \C _f}\colim \ind _S\res _S M \cong \underset {S\in \C _{f,c}}\colim \ind _S\res _S M. 


   


 

On the other hand, we see that if S ∈ Cf,c, then trivially

  (\ind _S\res _S M)(c) = \underset {d\leq c, \ d\in S} \colim M(d) \cong M(c).     


   

This shows us that the direct system (indS resS M)S∈Cf is pointwise stabilizing.
Next, we have the canonical morphisms indS resS M → M for all S ∈ Cf that

form a cone from the direct system (indS resS M)S∈Cf to M. Thus, by the universal
property of colimits, there exists a natural morphism

  \underset {S\in \C _f}\colim \ind _S\res _S M\rightarrow M. 


   

This morphism is in fact an isomorphism: Since colimits are calculated pointwise,
we get

  (\underset {S\in \C _f}\colim \ind _S\res _S M)(c) &= (\underset {S\in \C _{f,c}}\colim \ind _S\res _S M)(c)\\ &\cong \underset {S\in \C _{f,c}}\colim (\ind _S\res _S M)(c)\\ &\cong \underset {S\in \C _{f,c}}\colim M(c)\\ &\cong M(c)


    


  




  










≅ M (c)

for all c ∈ C. We conclude that colimS∈Cf indS resS M ≅ M.

Lemma 4.21. LetA be anR-module, and c ∈ C. ThenA[MorC (c,−)] preserves colimits
of pointwise stabilizing direct systems.

Proof. Let (Ni)i∈I be a pointwise stabilizing direct system of RC-modules, where the
morphisms are denoted by φij : Ni → Nj for all i ≤ j in I . Given an RC-moduleM,
by the adjointness of functors A ⊗R − and HomR(A,−), and by Yoneda’s lemma, we
see that

  \Hom _{R\C }(A[\Mor _\C (c,-)], M) &= \Hom _{R\C }(A\otimes _R R[\Mor _\C (c,-)], M)\\ &\cong \Hom _{R\C }(R[\Mor _\C (c,-)], \Hom _R(A,M))\\ &\cong \Hom _R(A,M(c)).       

  

 

On the other hand, since the direct system (Ni)i∈I is pointwise stabilizing, there
exists an element ic ∈ I such that

  i\geq i_c \ \Rightarrow \ N_i(c)\cong N_{i_c}(c).       

Because the set {i ≥ ic | i ∈ I} is final in I , Remark 1.7 shows us that

  \underset {i \in I}\colim \Hom _R(A,N_i(c)) &\cong \underset {i\geq i_c}\colim \Hom _R(A,N_i(c)) \\ &\cong \underset {i\geq i_c}\colim \Hom _R(A,N_{i_c}(c))\\ &\cong \Hom _R(A,N_{i_c}(c))\\ &\cong \Hom _R(A, \underset {i \in I}\colim N_i(c)).


  









 

 




Combining these results, we notice that in the commutative diagram

  \xymatrix { \underset {i\in I}\colim \Hom _{R\C }(A[\Mor _\C (c,-)], N_i)\ar [d]_{\cong } \ar [r] & \Hom _{R\C }(A[\Mor _\C (c,-)], \underset {i\in I}\colim N_i) \ar [d]^{\cong } \\ \underset {i\in I}\colim \Hom _{R}(A, N_i(c)) \ar [r]_{\cong } & \Hom _{R}(A,\underset {i\in I}\colim N_i(c))} 


  





   











 
 




both vertical morphisms and the lower horizontal morphism are isomorphisms.
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Thus the upper horizontal morphism is also an isomorphism.

Remark 4.22. Finite coproducts of modules of the form A[MorC (c,−)] also preserve
the colimits of pointwise stabilizing direct systems. To show this, consider an RC-
module A :=

⨁︁
s∈S As [MorC (s,−)], where S is a finite set, and As is an R-module for

all s ∈ S. Given a pointwise stabilizing direct system (Ni)i∈I , we have

  \Hom _{R\C }(A, \underset {i \in I}\colim N_i)\cong \bigoplus _{s\in S}\Hom _{R\C }(A_s[\Mor _\C (s,-)], \underset {i \in I}\colim N_i)  






   




since S is finite. Lemma 4.21 now shows us that

  \Hom _{R\C }(A, \underset {i \in I}\colim N_i) \cong \bigoplus _{s\in S}\underset {i \in I}\colim \Hom _{R\C }(A_s[\Mor _\C (s,-)], N_i).  









   

Finally, since colimits commute with each other, using the finiteness of S again, we
get

 \Hom _{R\C }(A, \underset {i \in I}\colim N_i) \cong &\underset {i \in I}\colim \bigoplus _{s\in S}\Hom _{R\C }(A_s[\Mor _\C (s,-)], N_i) \\ \cong &\underset {i \in I}\colim \Hom _{R\C }(A, N_i), 








   






as desired.

We still need two more lemmas concerning S-presented and S-generated RC-
modules.

Lemma 4.23. Let 0 → L → N → M → 0 be an exact sequence of RC-modules. If N
is S-presented and L is S-generated, thenM is S-presented.

Proof. Consider the commutative diagram

  \xymatrix { & \ind _S\res _S L \ar [d]_{\mu _L} \ar [r] & \ind _S\res _S N \ar [d]_{\mu _N} \ar [r] & \ind _S\res _S M \ar [d]_{\mu _M} \ar [r] & 0 \\ 0 \ar [r] & L \ar [r] & N \ar [r] & M \ar [r] & 0 }  




  




  






       

where µL is an epimorphism and µN is an isomorphism. The five lemma now states
that µM is an isomorphism.

Lemma 4.24. LetM be an RC-module such thatM = M1
⨁︁

M2.
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1) IfM is S-generated, thenM1 is S-generated.

2) IfM is S-presented, thenM1 is S-presented.

Proof. To prove 1), letM be S-generated. We have a commutative diagram  \xymatrix { \bigoplus _{s\in S} M(s)[\Mor _\C (s,-)] \ar [d]_{\varphi _M} \ar [r] & \bigoplus _{s\in S} M_1(s)[\Mor _\C (s,-)] \ar [d]^{\varphi _{M_1}} \\ M \ar [r] & M_1} 
   







  



 

where the horizontal morphisms are epimorphisms, and the natural morphism φM
is an epimorphism becauseM is S-generated. It now follows from the commutativity
of the diagram that φM1 is an epimorphism, so thatM1 is S-generated.

Next, for 2), suppose thatM is S-presented. Note that we have an exact sequence

  0\rightarrow M_2\rightarrow M \rightarrow M_1\rightarrow 0.       

whereM2 is S-generated by the first statement. Thus we immediately see thatM1 is
S-presented by Lemma 4.23.

We are now ready to prove

Theorem 4.25. LetM be an RC-module. ThenM has an FSP if and only if the functor
HomRC (M,−) preserves the colimits of pointwise stabilizing direct systems.

Proof. Assume first that S is an FSP of M. Let (Ni)i∈I be a pointwise stabilizing
direct system of RC-modules. By Proposition 3.2 5), we have an exact sequence  \bigoplus _{s\in S}B_s[\Mor _\C (s,-)] \rightarrow \bigoplus _{s\in S}A_s[\Mor _\C (s,-)]\rightarrow M \rightarrow 0, 


  




     

where As and Bs are R-modules for all s ∈ S. Let us denote

  A:=\bigoplus _{s\in S}A_s[\Mor _\C (s,-)] \quad \text {and} \quad B:=\bigoplus _{s\in S}B_s[\Mor _\C (s,-)]. 



    



 

Recall that taking colimits of direct systems is exact, and the contravariant Hom-
functor is left exact. Applying these functors on the exact sequence above, and using
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the morphism from Lemma 1.6, we get a commutative diagram with exact rows

  \xymatrix { 0 \ar [r] & \underset {i \in I}\colim \underset {R\C }\Hom (M, N_i)\ar [d] \ar [r] &\underset {i \in I}\colim \underset {R\C }\Hom (A, N_i)\ar [d]^-{\cong } \ar [r] & \underset {i \in I}\colim \underset {R\C }\Hom (B, N_i) \ar [d]^-{\cong } \\ 0 \ar [r] & \underset {R\C }\Hom (M,\underset {i \in I}\colim N_i) \ar [r] & \underset {R\C }\Hom (A, \underset {i \in I}\colim N_i) \ar [r] & \underset {R\C }\Hom (B, \underset {i \in I}\colim N_i)} 

































 





 





 







where the rightmost two vertical morphisms are isomorphisms because of Remark
4.22. It now follows from the five lemma that the leftmost vertical morphism is also
an isomorphism.

Assume next that HomRC (M,−) preserves the colimits of pointwise stabilizing
direct systems. Denote by Cf the set of finite subposets of C. Lemma 4.20 tells us
that (indS resS M)S∈Cf with the natural morphisms is a pointwise stabilizing direct
system, and M is the colimit of this system. Combined with the assumption about
HomRC (M,−), this implies that

  \Hom _{R\C }(M,M) &\cong \Hom _{R\C }(M,\underset {S\in \C _f}\colim \ind _S\res _S M) \\ &\cong \underset {S\in \C _f}\colim \Hom _{R\C }(M,\ind _S\res _S M).    


 




   

In particular, the identity morphism idM factors through indS resS M for some S ∈
Cf . By the splitting lemma, we then have a split exact sequence

  0\rightarrow M \rightarrow \ind _S\res _S M \rightarrow M' \rightarrow 0,         

so that M is a direct summand of indS resS M. Finally, using Lemma 4.24, we con-
clude thatM has an FSP S.

We may also use a similar argument to characterize S-generated modules, where
S is finite.

Proposition 4.26. Let M be an RC-module. Then M is S-generated for some finite
subset S ⊆ C if and only if HomRC (M,−) preserves the colimits of pointwise stabilizing
direct systems of monomorphisms.

Proof. Suppose first that M is S-generated for some finite subset S ⊆ C, so that we
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have an epimorphism

  \rho \colon \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow M. 



    

Let (Ni)i∈I be a pointwise stabilizing direct system of monomorphisms. Since taking
colimits over direct systems is exact, and the contravariant hom-functor is left exact,
by Lemma 1.6 we get a commutative diagram with exact rows

  \xymatrix { 0 \ar [r] & \underset {i\in I}\colim \Hom _{R\C }(M, N_i)\ar [d]_{\theta } \ar [r] &\underset {i\in I}\colim \Hom _{R\C }\left (\displaystyle {\bigoplus _{s\in S}}M(s)[\Mor _{\C }(s,-)], N_i\right )\ar [d]_{\cong } \\ 0 \ar [r] & \Hom _{R\C }(M,\underset {i\in I}\colim N_i) \ar [r] & \Hom _{R\C }\left (\displaystyle {\bigoplus _{s\in S}}M(s)[\Mor _{\C }(s,-)], \underset {i\in I}\colim N_i\right ) } 
















   






   


 




   





Note that the rightmost vertical morphism is an isomorphism by Lemma 4.22. It is
obvious from the diagram that θ is a monomorphism. We will show that θ is also an
epimorphism. Let f : M → colimi∈I Ni be a morphism of RC-modules. Since M is
S-generated, we get a morphism

  g\colon \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow \underset {i \in I}\colim N_i 



    




such that g = fρ. By Lemma 4.21, g factors through Nj for some j ∈ I . Note that Nj

is a submodule of colimi∈I Ni, because (Ni)i∈I is a direct system of monomorphisms.
Thus the image of g is in Nj. This implies that the image of f is also in Nj, so f
factors through Nj, which was required.

Conversely, suppose that HomRC (M,−) preserves the colimits of pointwise sta-
bilizing direct systems of monomorphisms. Denote by Cf the set of finite subposets
of C. For every S ⊆ C we have a natural morphism

  \rho _S\colon \bigoplus _{s\in S}M(s)[\Mor _\C (s,-)]\rightarrow M. 



    

We now note that if S ⊆ T ⊆ C, then Im ρS ⊆ Im ρT . Thus we get a direct system of
monomorphisms (Im ρS)S∈Cf with inclusions as morphisms. It is easy to see (compare
to Lemma 4.20) that this system is pointwise stabilizing with a colimit M. By the
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assumption about HomRC (M,−), we get

  \Hom _{R\C }(M,M) \cong \Hom _{R\C }(M,\underset {S\in \C _f}\colim \Img \rho _S) \cong \underset {S\in \C _f}\colim \Hom _{R\C }(M,\Img \rho _S).     


  


  

In particular, the identity morphism idM factors through Im ρS for some S ∈ Cf .
Therefore, we have a split exact sequence

  0\rightarrow M \rightarrow \Img \rho _S \rightarrow M' \rightarrow 0,        

so M is a direct summand of Im ρS , again by the splitting lemma. Using Lemma
4.24, we conclude thatM is S-generated.
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5 STRONGLY BOUNDED POSETS

5.1 Modules over strongly bounded posets

Definition 5.1. The poset C is strongly bounded from above if every finite S ⊆ C has
a unique minimal upper bound in C. We denote this unique minimal upper bound
by mub(S).

Remark 5.2. The condition of C being strongly bounded from above is equivalent
to C being a bounded join-semilattice. Also note that if C is strongly bounded from
above, then C is weakly bounded from above and mub-complete.

Let C be strongly bounded from above, and let S ⊆ C be a finite set. In this section
we considermub(S) as an element of C, and not as a (one element) set as in Notation
4.4. In particular, every element of Ŝ is then of the form mub(S′), where S′ ⊆ S is
a non-empty subset. Viewing C as a join-semilattice, we have the join-operation

  a\vee b := \mub (a,b):=\mub (\{a,b\}).       

Extending this operation to finite sets, we get an operation that coincides with min-
imal upper bounds.

Lemma 5.3. Let C be strongly bounded from above, and let S ⊆ C be a finite subset.
Then S̃̃ = Ŝ.

Proof. An element s ∈ S̃̃ may be written in the form

  s=\mub (\mub (S_1),\ldots ,\mub (S_n)),     

where S1, . . . , Sn are (finite) non-empty subsets of S. Since the join-operation is asso-
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ciative in join-semilattices, we see that

  s=\bigvee _{i=1}^n(\bigvee S_i) = \bigvee (\bigcup _{i=1}^n S_i). 















This implies that s = mub(S1 ∪ · · · ∪ Sn), which belongs to Ŝ by definition.

Assume that C is strongly bounded from above. Then C has a minimum element
min(C) = mub(∅). Let S ⊆ C be a finite subset. Denote

  \tilde {S} := \hat {S}\cup \{\min (\C )\}.    

We define a poset morphism αS : C → S̃ by setting

  \alpha (c)=\mub (S \cap {\downarrow } c)    

for every c ∈ C. In other words, αS maps each c ∈ C to the minimal upper bound
of the elements of S below it. To show that α actually is a poset morphism, suppose
that c ≤ d in C. Then S ∩ ↓c ⊆ S ∩ ↓d, which implies that α(c) ≤ α(d).

Proposition 5.4. Let C be strongly bounded from above, and let S ⊆ C be a finite subset.
Then αS = αŜ = αS̃ .

Proof. Using Lemma 5.3, we first note that Ŝ̃ = S̃ and Ŝ̂ = S̃. Let c ∈ C. We claim
that

  \mub (S\cap {\downarrow }c) = \mub (\hat {S}\cap {\downarrow }c) = \mub (\tilde {S}\cap {\downarrow }c).          

The latter equation follows from the fact that for all subsets T ⊆ C, we have
mub(T ) = mub(T ∪ {min(C)}). (In particular mub(T ) = min(C), if T = ∅.)

For the first equation, since S ⊆ Ŝ, we have mub(S ∩ ↓c) ≤ mub(Ŝ ∩ ↓c). On the
other hand, Ŝ ∩ ↓c is a subset of Ŝ. Thus mub(Ŝ ∩ ↓c) ∈ S̃̃ = Ŝ, where the equation
follows from Lemma 5.3. By the definition of Ŝ, we may now write

  \mub (\hat {S}\cap {\downarrow }c)=\mub (s_1,\ldots ,s_n),         

where s1, . . . , sn ∈ S. Furthermore, mub(Ŝ ∩ ↓c) ≤ c, so we also have s1, . . . , sn ≤ c.
This implies that

  \mub (s_1,\ldots ,s_n) \leq \mub (S\cap {\downarrow }c),         
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which completes the proof.

Encouraged by Proposition 5.4, we just write α instead of αS , if there is no risk
of confusion.

Lemma 5.5. Let C be strongly bounded from above, and let S ⊆ C be a finite subset.
Then Ŝ ∩ ↓α(c) = Ŝ ∩ ↓c for all c ∈ C.

Proof. Let c ∈ C. We immediately see that Ŝ ∩ ↓α(c) ⊆ Ŝ ∩ ↓c, because α(c) ≤ c.
Suppose that d ∈ Ŝ ∩ ↓c. We need to show that d ≤ α(c). This follows from
Proposition 5.4, because now

  \alpha (c)=\alpha _{\hat {S}}(c)=\mub (\hat {S}\cap {\downarrow }c).       

Let C be strongly bounded from above, let S ⊆ C be a finite subset, and M an
RC-module. The morphism α gives rise to a natural transformation

  T_{\alpha }\colon \res _{\alpha }\res _{\tilde {S}} M \rightarrow M,      

where for any c ∈ C, Tα,c is the morphism

  M(\alpha (c)\leq c)\colon (\res _{\alpha }\res _{\tilde {S}} M)(c)=M(\alpha (c)) \rightarrow M(c).             

Proposition 5.6. Let C be strongly bounded from above, let S ⊆ C be a finite subset,
and M an RC-module. Then M is S-determined if and only if Supp(M) ⊆ ↑S and
Tα : resα resS̃ M → M is an isomorphism.

Proof. Suppose first that M is S-determined. Let c ∈ C. Then, by definition,
Supp(M) ⊆ ↑S. Also,M is S̃̃ -presented by Corollary 4.13. Lemma 5.3 now tells us
thatM is Ŝ-presented, so we haveM ≅ indŜ resŜ M by Proposition 3.2. This implies
that

  (\res _{\alpha }\res _{\tilde {S}}M)(c) = M(\alpha (c)) \cong \underset {d\leq \alpha (c), \ d\in \hat {S}}\colim M(d).        
 



Furthermore, by Lemma 5.5, we get

  \underset {d\leq \alpha (c), \ d\in \hat {S}}\colim M(d) = \underset {d\leq c, \ d\in \hat {S}}\colim M(d) = (\ind _{\hat {S}} \res _{\hat {S}} M)(c) \cong M(c). 
 

  


        

81



Suppose then that Supp(M) ⊆ ↑S and Tα : resα resS̃ M → M is an isomorphism.
Let c ≤ d in C such that S ∩ ↓c = S ∩ ↓d. This immediately implies that α(c) = α(d).
Thus

  M(c) \cong M(\alpha (c)) = M(\alpha (d)) \cong M(d),         

soM (c ≤ d) is an isomorphism.

5.2 Modules determined by cartesian sets

One approach to understandingRZn-modules better is to expand the set Zn to include
points at infinity. This idea has been utilized by Perling in [23]. Set Z := Z ∪ {−∞}.
It is easy to see that Z

n
inherits the poset structure from Zn. Any RZn-module M

may be naturally extended to an RZn-moduleM by setting

  \overline {M}(c) = \lim _{d\geq c, \ d\in \mathbb Z^n}M(d)  




for all c ∈ Zn. More formally, this is the coinduction of M with respect to the
inclusion Zn → Z

n
. The functor M ↦→ M establishes an equivalence of categories

between RZn-Mod and its essential image in RZn-Mod.
Let S ⊆ Zn be a finite non-empty subset. We denote by mlb(S) the (unique)

maximal lower bound of S.

Proposition 5.7. Let pi : Z
n → Z be the canonical projection for every i ∈ {1, . . . , n},

and let S ⊆ Zn be a finite non-empty subset. Then

1) mub(S) = (max(p1(S)), . . . ,max(pn(S)));

2) mlb(S) = (min(p1(S)), . . . ,min(pn(S))).

Proof. Both 1) and 2) are proved in the same way. We will present the proof of 1)
here. Let i ∈ {1, . . . , n}. The existence of max(pi (S)) follows from the fact that pi (S)
is non-empty, linearly ordered and finite. Write

  d=(d_1,\ldots ,d_n):=\mub (S).        

We will show that di = max(pi (S)). First, since d is an upper bound of S and the
canonical projection pi preserves order, we see that

  d_i=p_i(d)\geq \max (p_i(S)).      
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Secondly, if max(pi (S)) < di, then

  d':=(d_1,\ldots ,d_{i-1},\max (p_i(S)),d_{i+1},\ldots ,d_n)              

is an upper bound of S such that d′ < d, contradicting the minimality of d. Thus
di = max(pi (S)).

Let S ⊆ Zn be a non-empty subset. We say that the subset S is cartesian, if it is of
the form

  S=S_1\times \cdots \times S_n,       

where S1, . . . , Sn are subsets of Z. In this situation, we write

  \overline {S}=\tilde {S_1}\times \cdots \times \tilde {S_n},        

where ˜︁Si = Si ∪ {−∞} ⊆ Z for all i ∈ {1, . . . , n}. Note that if S is finite, then S is
finite.

Example 5.8. Let a ≤ b in Zn, and write a = (a1, . . . , an), b = (b1, . . . , bn). For the
closed interval [a, b], we have

  [a,b]&=\{c\in \mathbb Z^n\mid a\leq c\leq b\}\\ &=[a_1,b_1]\times \cdots \times [a_n,b_n].          

        

Therefore

  \overline {[a,b]}&=\widetilde {[a_1,b_1]}\times \cdots \times \widetilde {[a_n,b_n]}\\ &=\{(c_1,\ldots ,c_n)\mid a_i\leq c_i\leq b_i \ \text {or} \ c_i=-\infty \, \ (i\in \{1,\ldots ,n\})\}.          

                       

Lemma 5.9. Let S := S1 × · · · × Sn ⊆ Zn be a finite cartesian subset, and let T ⊆ S be a
finite non-empty subset. Then

1) mub(T ) ∈ S;

2) mlb(T ) ∈ S;

3) S̃ = S.

Proof. To prove 1), let pi be the canonical projection Z
n → Z for all i ∈ {1, . . . , n}.
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From Proposition 5.7 1), we get that

  \mub (T)=(\max (p_1(T)),\ldots ,\max (p_n(T))).         

Thus mub(T ) ∈ S, because pi (T ) ⊆ pi (S) = Si for all i ∈ {1, . . . , n}.
Next, the proof for 2) is done in the same way as 1), this time using Proposition

5.7 2).
Finally, for 3), we note that S is finite and cartesian, so 1) implies Ŝ = S. Since S

already contains the minimum element of Z
n
, we get

  \tilde {\overline {S}}&=\hat {\overline {S}}\cup \{(-\infty ,\ldots ,-\infty )\}\\ &=\overline {S}\cup \{(-\infty ,\ldots ,-\infty )\}\\ &=\overline {S}.       

      



Let S := S1 × · · · × Sn ⊆ Zn be a finite cartesian subset. Since S̃ = S by Lemma 5.9
3), we have a poset morphism α := αS : Z

n → S, where

  \alpha (c)= \mub (\overline {S}\cap {\downarrow } c)    

for all c ∈ Zn. By Lemma 5.9 2), we may define a “dual” poset morphism β :=
βS : S → S, with

  \beta (c)=\mlb (S \cap {\uparrow } c)    

for all c ∈ S. Here the set S ∩ ↑c is always non-empty, because S is final in S.

Proposition 5.10. We write αi := αSi and βi := βSi for all i ∈ {1, . . . , n}. For c :=
(c1, . . . , cn) ∈ Z

n, we have

1) α(c) = (α1(c1), . . . , αn(cn));

2) if c ∈ S, then β(c) = (β1(c1), . . . , βn(cn)).

Proof. To prove 1), we will first show that

  p_i(\overline {S}\cap {\downarrow }c)=\overline {S_i}\cap {\downarrow }c_i,        

where pi : Z
n → Z is the canonical projection for all i ∈ {1, . . . , n}. Since pi (S) = Si

and pi (↓c) = ↓ci, we see that pi (S ∩ ↓c) ⊆ Si ∩ ↓ci. For the other direction, suppose
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that d ∈ Si ∩ ↓ci. Then d ≤ ci, so we have an element

  d':=(-\infty ,\ldots ,-\infty ,d,-\infty ,\ldots ,-\infty ) \in \overline {S}\cap {\downarrow }c               

such that pi (d′) = d. Hence pi (S ∩ ↓c) = Si ∩ ↓ci. Now, using this result and
Proposition 5.7 1), we get

  \alpha (c) &= \mub (\overline {S}\cap {\downarrow } c)\\ &=(\max (\overline {S_1}\cap {\downarrow }c_1),\ldots ,\max (\overline {S_n}\cap {\downarrow }c_n))\\ &=(\alpha _1(c_1),\ldots ,\alpha _n(c_n)).   

        

     

For 2), the proof is similar. Let c ∈ S. We will first show that

  p_i(S\cap {\uparrow }c)= S_i\cap {\uparrow }c.       

From pi (S) = Si and pi (↑c) = ↑ci, we see that pi (S ∩ ↑c) ⊆ Si ∩ ↑ci. Next, suppose
that d ∈ Si ∩ ↑ci. Since c ∈ S, there is an element s := (s1, . . . , sn) ∈ S such that s ≥ c.
Because d ≥ ci and S is cartesian, we again have an element

  d':=(s_1,\ldots ,s_{i-1},d,s_{i+1},\ldots ,s_n)\in S\cap {\uparrow }c                  

such that pi (d′) = d. Thus pi (S∩↑c) = Si∩↑c. To finish the proof, we use Proposition
5.7 2):

  \beta (c) &= \mlb (S\cap {\uparrow } c)\\ &=(\min (S_1\cap {\uparrow }c_1),\ldots ,\min (S_n\cap {\uparrow }c_n))\\ &=(\beta _1(c_1),\ldots ,\beta _n(c_n)).   

        

     

We note that α and β ◦ α are “continuous” in the following sense.

Proposition 5.11. Let c := (c1, . . . , cn) ∈ Z
n.

1) If N is an RS-module, then

  \lim _{d\geq c, \ d\in \mathbb Z^n}N(\alpha (d)) \cong N(\alpha (c)). 
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2) If Q is an RS-module, then

  \lim _{d\geq c, \ d\in \mathbb Z^n}Q((\beta \circ \alpha )(d)) \cong Q((\beta \circ \alpha )(c)). 


       

Proof. To show 1), suppose that N is an RS-module. We define an element c′ :=
(c′1, . . . , c′n) ∈ Z

n
as follows: For any i ∈ {1, . . . , n}, we set ai = min(Si∩Z), if it exists,

and

  c'_i:=\left \{\begin {aligned}&\max (c_i,0), \ \text {if} \ S_i\cap \mathbb Z=\emptyset ;\\ &\max (c_i, a_i-1), \ \text {otherwise}. \end {aligned}\right . 


       

    

This guarantees that we always have c ≤ c′ and c′ ∈ Zn. With the notation from
Proposition 5.10, we may write

  \alpha (c) = (\alpha _1(c_1),\ldots ,\alpha _n(c_n)).       

Let i ∈ {1, . . . , n}. If Si ∩ Z = ∅, then αi (c′i ) = −∞ = αi (ci). Similarly, if c′i = ai − 1,
then αi (c′i ) = −∞ = αi (ci). Thus α(c) = α(c′) in all cases. Since α is a poset morphism,
we see that for all d ∈ Zn such that c ≤ d ≤ c′,

  \alpha (c)=\alpha (d)= \alpha (c'),    

and therefore
  N(\alpha (c))=N(\alpha (d))=N(\alpha (c')).      

Furthermore, because the set {d ∈ Zn | c ≤ d ≤ c′} is an initial subset of {d ∈ Zn |
c ≤ d}, Remark 1.10 shows us that

  \lim _{d\geq c, \ d\in \mathbb Z^n}N(\alpha (d))\cong \lim _{c\leq d\leq c', \ d\in \mathbb Z^n}N(\alpha (d)) \cong N(\alpha (c)). 


  
 

   

Next, for 2), let Q be an RS-module. Now resβ Q is an RS-module, so by 1), we
have

  \lim _{d\geq c, \ d\in \mathbb Z^n}(\res _{\beta }Q)(\alpha (d))\cong (\res _{\beta }Q)(\alpha (c)). 


     

On the other hand, by definition, for all e ∈ Zn,

  (\res _{\beta }Q)(\alpha (e))= Q(\beta (\alpha (e)))= Q((\beta \circ \alpha )(e)).         
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This means that we may write the above isomorphism as

  \lim _{d\geq c, \ d\in \mathbb Z^n}Q((\beta \circ \alpha )(d))\cong Q((\beta \circ \alpha )(c)). 


       

Corollary 5.12. Let N be an RZn-module, and let c ∈ Zn. Then

1) limd≥c, d∈Zn N (α(d)) ≅ N (α(c));

2) limd≥c, d∈Zn N ((β ◦ α) (d)) ≅ N ((β ◦ α) (c)).

Proof. For 1), we note that resS N is an RS-module, where (resS N ) (d) = N (d) for
all d ∈ S. We may then apply Proposition 5.11 1) to get the result. For 2), we use
Proposition 5.11 2) on the RS-module resS N .

5.3 Finitely determined modules

Let M be an RC-module. In [19, p. 24, Def. 4.1], Miller defines an encoding of M
by a poset D to be a poset morphism f : C → D and an RD-module N such that
resf N ≅ M. Furthermore, as defined in [19, p. 25, Ex. 4.5], an RZn-module M is
finitely determined, if it is has an encoding by the convex projection π : Zn → [a, b]
for some a ≤ b in Zn. Here the convex projection π takes every point in Zn to its
closest point in the closed interval

  [a,b]=\{c\in \mathbb Z^n\mid a\leq c\leq b\}.           

If we write a = (a1, . . . , an) and b = (b1, . . . , bn), we get a formula for π, where for
any c := (c1, . . . , cn) ∈ Zn,

  \pi (c) = (\pi _1(c_1),\ldots ,\pi _n(c_n)),       

with
  \pi _i(c_i)=\max (a_i,\min (c_i,b_i))      

for all i ∈ {1, . . . , n}. This definition of a finitely determined module may seem a bit
different from the one given in the introduction, but the definitions are equivalent
([19, p. 32, Remark 5.2]). Note that, unlike Miller, we will not require R to be a
field, or finitely determined modules to be pointwise finite dimensional.
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Remark 5.13. Let M be an RZn-module. Then M is finitely determined with the
encoding convex projection π : Zn → [a, b] if and only ifM ≅ resπ res[a,b] M. Indeed,
ifM ≅ resπ N for some R[a, b]-module N , then for all c ∈ Zn, we have

  M(c)\cong (\res _{\pi }N)(c) = N(\pi (c))=N(\pi (\pi (c)))\cong M(\pi (c))              

because for all c ∈ Zn, π(π(c)) = π(c).

We would like to show that the notion of finitely determined is consistent with
our notion of S-determined, when S is finite. While the requirement that Supp(M) ⊆
↑S does not necessarily hold for finitely determined modules, we do have the follow-
ing:

Proposition 5.14. LetM be an RZn-module, and let a, b ∈ Zn such that a ≤ b. Set
u := (1, 1, . . . , 1) ∈ Zn.

1) IfM is [a, b]-determined, thenM is finitely determined with the encoding convex
projection π : Zn → [a − u, b].

2) If Supp(M) ⊆ ↑a andM is finitely determined with the encoding convex projec-
tion π : Zn → [a, b], thenM is [a + u, b]-determined.

Proof. For 1), suppose that M is [a, b]-determined. Let c := (c1, . . . , cn) ∈ Zn, and
let π : Zn → [a − u, b] be the convex projection. We note that if ci < ai for some
i ∈ {1, . . . , n}, then also πi (ci) < ai, so that c, π(c) ∉ Supp(M). Otherwise c ≥ a, in
which case π(c) ≤ c and mub ( [a, b] ∩ ↓π(c)) = mub ( [a, b] ∩ ↓c). ThusM (π(c)) →
M (c) is an isomorphism by the definition of [a, b]-determined modules, and M ≅

resπ res[a−u,b] M.
To prove 2), assume that Supp(M) ⊆ ↑a and M is finitely determined with the

encoding convex projection π : Zn → [a, b]. Let c := (c1, . . . , cn) ∈ Zn. Suppose that
ci < ai for some i ∈ {1, . . . , n}. From the condition Supp(M) ⊆ ↑a, we see that
M (c) = 0. SinceM is finitely determined, we also haveM (c) = M (π(c)) = 0. Thus
M (c) = 0, if ci ≤ ai for some i ∈ {1, . . . , n}. If this is not the case, we have c ≥ a + u.
Let c ≤ d in C such that a + u ≤ c ≤ d and [a + u, b] ∩ ↓ c = [a + u, b] ∩ ↓ d. This
implies that π(c) = π(d), soM (c ≤ d) is an isomorphism.
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Extending to Z
n

Let a ≤ b in Zn. We will now shift our focus to RZn-modules. With the notation
from Section 5.2, we will view the case S = [a, b]. In particular, we have α = α[a,b]
and β = β[a,b] . Proposition 5.10 gives us formulas for α and β. If c := (c1, . . . , cn) ∈ Z

n

and d := (d1, . . . , dn) ∈ [a, b], then

  \alpha (c)=(\alpha _1(c_1),\ldots ,\alpha _n(c_n)) \quad \text {and} \quad \beta (d)=(\beta _1(d_1),\ldots ,\beta _n(d_n)).                

Here αi := αSi and βi := βSi for all i ∈ {1, . . . , n}. Explicitly,

  \alpha _i(c_i)=\left \{\begin {aligned} &-\infty , \ \text {if} \ c_i<a_i;\\ &c_i, \ \text {if} \ a_i\leq c_i \leq b_i;\\ &b_i, \ \text {if} \ c_i >b_i, \end {aligned}\right . \quad \text {and} \quad \beta _i(d_i)=\left \{\begin {aligned} &a_i, \ \text {if} \ d_i=-\infty ;\\ &d_i, \ \text {otherwise}. \end {aligned}\right .  


   

      

     

  

    

 

for every i ∈ {1, . . . , n}. The next proposition shows us that the composition β ◦ α is
an extension of the convex projection π from Zn to Zn.

Proposition 5.15. Let π : Zn → [a, b] be the convex projection, and let c ∈ Zn. Then

  \pi (c) = (\beta \circ \alpha )(c).     

Proof. Suppose first that n = 1. Recall that π(c) = max(a,min(c, b)). Now there are
three cases:

• If c ∈ [a, b], then (β ◦ α) (c) = β(c) = c = π(c).

• If c < a, then (β ◦ α) (c) = β(−∞) = a = π(c).

• If c > b, then (β ◦ α) (c) = β(b) = b = π(c).

Suppose next that n > 1. Using Proposition 5.10, we may write

  \alpha (c) = (\alpha _1(c_1),\ldots ,\alpha _n(c_n)) \quad \text {and} \quad \beta (d) = (\beta _1(d_1),\ldots ,\beta _n(d_n))                

for all d ∈ [a, b]. Similarly, also recall

  \pi (c)=(\pi _1(c_1),\ldots ,\pi _n(c_n)).       
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It now follows from the case n = 1 that

  (\beta \circ \alpha )(c) &=\beta (\alpha _1(c_1),\ldots ,\alpha _n(c_n))\\ &= ((\beta _1\circ \alpha _1)(c_1),\ldots ,(\beta _n\circ \alpha _n)(c_n))\\ &=(\pi _1(c_1),\ldots ,\pi _n(c_n))\\ &=\pi (c).         

           

     



Corollary 5.16. Let [a, b] ⊆ Zn, and let N be an R[a, b]-module. Then

  \overline {\res _{\pi }N} \cong \res _{\beta \circ \alpha }N.   

Proof. Let c ∈ Zn. From the definitions, we get

  (\overline {\res _{\pi }N})(c)= \lim _{d\geq c, \ d\in \mathbb Z^n} (\res _{\pi }N)(d)=\lim _{d\geq c, \ d\in \mathbb Z^n} N(\pi (d)).     


    




Proposition 5.15 and Proposition 5.11 then show us that

  \lim _{d\geq c, \ d\in \mathbb Z^n} N(\pi (d)) = \lim _{d\geq c, \ d\in \mathbb Z^n} N((\beta \circ \alpha )(d))\cong N((\beta \circ \alpha )(c))=(\res _{\beta \circ \alpha }N)(c). 


  


             

Proposition 5.17. LetM be an RZn-module, and let c ∈ [a, b]. Set u := (1, 1, . . . , 1) ∈
Zn.

1) IfM is finitely determined with the encoding convex projection π : Zn → [a, b],
thenM (c) ≅ M (β(c)).

2) IfM is [a + u, b]-determined, thenM (c) ≅ M (β(c)).

Proof. To show 1), suppose thatM is finitely determined with the encoding convex
projection π : Zn → [a, b]. Then, by the definition ofM,

  \overline {M}(c)=\lim _{d\geq c, \ d\in \mathbb Z^n}M(d).  




Because M is finitely determined, we have M (d) ≅ M (π(d)) for all d ∈ Zn. This
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implies that
  \overline {M}(c)\cong \lim _{d\geq c, \ d\in \mathbb Z^n}M(\pi (d)).  




We may now apply Corollary 5.12 to see that M (c) ≅ M (β(α(c))). Note that
c ∈ [a, b] implies α(c) = c. ThusM (c) ≅ M (β(c)).

Next, to prove 2), letM be [a + u, b]-determined. Since c ≤ β(c), it is then enough
to show that [a + u, b] ∩ ↓c = [a + u, b] ∩ ↓β(c). We instantly have ↓c ⊆ ↓β(c). For
the other direction, let d := (d1, . . . , dn) ∈ [a + u, b] ∩ ↓β(c). We want to show that
d ≤ c. Recall that we may write β(c) = (β1(c1), . . . , βn(cn)), where

  \beta _i(c_i)=\left \{\begin {aligned} &a_i, \ \text {if} \ c_i=-\infty ;\\ &c_i, \ \text {otherwise}. \end {aligned}\right .  

    

 

for all i ∈ {1, . . . , n}. Suppose that i ∈ {1, . . . , n}. If βi (ci) = ci, we have di ≤ βi (ci) =
ci. Otherwise, if βi (ci) = ai, we must have di = ci = −∞, because di , ci ∈ [ai + 1, bi].
We conclude that d ≤ c.

The next Corollary is a direct consequence of Proposition 5.17.

Corollary 5.18. LetM be an RZn-module. Set u := (1, 1, . . . , 1) ∈ Zn.

1) IfM is finitely determined with the convex projection π : Zn → [a, b], then

  \res _{\overline {[a,b]}}\overline {M}\cong \res _{\beta }\res _{[a,b]}M.     

2) IfM is [a + u, b]-determined, then

  \res _{\overline {[a,b]}}\overline {M}\cong \res _{\beta }\res _{[a,b]}M.     

We will now present the main result of this chapter.

Theorem 5.19. LetM be an RZn-module. ThenM is finitely determined if and only
ifM is S-determined for some finite S ⊆ Zn. In particular, we have:

1) IfM is finitely determined with the encoding convex projection π : Zn → [a, b],
thenM is [a, b]-determined;

2) IfM is [a + u, b]-determined, where u := (1, . . . , 1) ∈ Zn, thenM is finitely deter-
mined with the encoding convex projection π : Zn → [a, b].
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Proof. Suppose first that M is finitely determined. Let π : Zn → [a, b] be its en-
coding convex projection. Now, since M is finitely determined, we have M ≅

resπ res[a,b] M, as stated in Remark 5.13. By Corollary 5.16 and Corollary 5.18,
respectively, we get

  \overline {M}\cong \overline {\res _{\pi }\res _{[a,b]}M}\cong \res _{\beta \circ \alpha }\res _{[a,b]}M=\res _{\alpha }\res _{\beta }\res _{[a,b]}M\cong \res _{\alpha }\res _{\overline {[a,b]}}\overline {M}.                

This means thatM is [a, b]-determined by Proposition 5.6.
Next, suppose that M is S-determined for some finite S ⊆ Zn. Since S is fi-

nite, we may assume that S̃ ⊆ [a + u, b] for some a, b ∈ Zn. Recall that if M
is T -determined and T ⊆ T ′, then M is T ′-determined. This implies that M is
both [a + u, b]-determined and [a, b]-determined. Using Proposition 5.6, we see
thatM ≅ resα res[a,b] M. Applying Corollary 5.18 and Corollary 5.16, respectively,
shows us that

  \overline {M}\cong \res _{\alpha }\res _{\overline {[a,b]}}\overline {M}\cong \res _{\alpha }\res _{\beta }\res _{[a,b]}M =\res _{\beta \circ \alpha }\res _{[a,b]}M\cong \overline {\res _{\pi }\res _{[a,b]}M}.                

Restricting this to Zn, we get the required result by Remark 5.13.

Example 5.20. LetM be an RZ2-module that is defined on objects by

  M(c)=\left \{\begin {aligned} &R, \ \text {if} \ c\leq (0,0);\\ &0, \ \text {otherwise}, \end {aligned} \right . 

    



for all c ∈ Z2, and where a morphism R → R is always idR. Then M is finitely
determined with the convex projection π : Z2 → [(0, 0), (1, 1)]. Now, by Theorem
5.19 1),M is [(0, 0), (1, 1)]-determined. Here [(0, 0), (1, 1)] is the set

  \{(-\infty ,-\infty ),(0,-\infty ),(-\infty ,0),(1,-\infty ),(-\infty ,1),(0,0),(0,1),(1,0),(1,1)\}.              

In particular, we have

  \overline {M}((-\infty ,-\infty ))=\overline {M}((-\infty ,0))=\overline {M}((0,-\infty ))=\overline {M}((0,0))=R,             

and

  \overline {M}((-\infty ,1))=\overline {M}((1,-\infty ))=\overline {M}((0,1))=\overline {M}((1,0))=\overline {M}((1,1))=0.                  
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Furthermore, using Theorem 4.15, we see that M is [0, 1]-presented. In more con-
crete terms, we have an exact sequence of RZ2-modules

  K \rightarrow N \rightarrow \overline {M} \rightarrow 0,     

where
  N=R[\Mor _{\overline {\mathbb Z}^2}((-\infty ,-\infty ),-)] 




and
  K=R[\Mor _{\overline {\mathbb Z}^2}((1,-\infty ),-)]\oplus R[\Mor _{\overline {\mathbb Z}^2}((-\infty ,1),-)]. 


  


 

Admissible join-sublattices

Recall that a subset L ⊆ Zn is a join-sublattice if mub(S) ∈ L for every finite subset
S ⊆ L. Note that this is equivalent to the condition that L = L̂. Given a join-
sublattice L ⊆ Zn, following Perling in [23, pp. 16-19, Ch. 3.1], we define the zip-
functor

  \zip _L\colon R\mathbb Z^n\text {-}\textbf {Mod} \rightarrow RL\text {-}\textbf {Mod}  


and the unzip-functor

  \unzip _L\colon RL\text {-}\textbf {Mod}\rightarrow R\overline {\mathbb Z}^n\text {-}\textbf {Mod}.   

Contrary to Perling, we do not assume that R is a field. The zip-functor maps an
RZn-module M to the RL-module resLM, whereas he unzip-functor maps an RL-
module N to an RZn-module unzipLN defined by

  (\unzip _L N)(c)=\left \{\begin {aligned} &N(\mub (L\cap {\downarrow }c)), \ \text {if} \ L\cap {\downarrow }c\neq \emptyset ; \\ &0, \ \text {otherwise.} \end {aligned}\right .   

        



for all c ∈ Zn. Note that Supp(unzipLN ) ⊆ ↑L.

Remark 5.21. It turns out that unzipL is essentially the same thing as resα, when
L is finite and α := αL. There is the slight complication that unzipL is defined for
RL-modules, while resα is defined for RL̃-modules. We may, however, extend an
RL-module N to an RL̃-module Ñ by setting

  \tilde {N}((-\infty ,\ldots ,-\infty ))=0,       

93



if (−∞, . . . ,−∞) ∉ L, and Ñ (c) = N (c), otherwise. Defined in this way, we see that
unzipLN ≅ resα Ñ .

Given an RZn-moduleM, the join-sublattice L is calledM-admissible in [23] if the
conditionM ≅ unzipL zipLM is satisfied. This leads to our following proposition.

Proposition 5.22. LetM be an RZn-module, and L a finite join-sublattice. Then L is
M-admissible if and only ifM is L-determined.

Proof. Let c ∈ Zn. With the earlier notation, we see that

  \unzip _L\zip _L M = \unzip _L\res _L\overline {M}\cong \res _{\alpha } \widetilde {\res _L\overline {M}},       

where

  (\res _{\alpha }\widetilde {\res _L \overline {M}})(c)=\left \{\begin {aligned} &(\res _{\alpha }\res _{\tilde {L}}\overline {M})(c), \ \text {if} \ L\cap {\downarrow }c\neq \emptyset ; \\ &0, \ \text {otherwise.} \end {aligned}\right .   

        



Assume first that M ≅ unzipL zipLM. If L ∩ ↓c = ∅, we have M (c) = 0 by the
definition of unzipL. But in this case α(c) ≤ c, so that L ∩ ↓α(c) = ∅, and using the
definition of unzipL again, we get

  (\res _{\alpha }\res _{\tilde {L}}\overline {M})(c)=\overline {M}(\alpha (c))=0.        

On the other hand, if there exists an element d ∈ L∩↓c, thenM (c) ≅ (resα resL̃M) (c)
by the above formula. Since theseRZ-modules are isomorphic on all objects, we have

  \overline {M}\cong \res _{\alpha }\res _{\tilde {L}}\overline {M},   

and Supp(M) ⊆ ↑L, soM is L-determined by Proposition 5.6.
Conversely, suppose thatM is L-determined. By Proposition 5.6, we haveM ≅

resα resL̃M and Supp(M) ⊆ ↑L. The above formula shows us that

  (\unzip _L\zip _L M)(c) = (\res _{\alpha }\res _{\tilde {L}}\overline {M})(c)       

for all c ∈ ↑L. If c ∉ ↑L, then c ∉ Supp(M), which means that M (c) = 0. In this
case, we also have (unzipL zipLM) (c) = 0 by the definition of unzipL. Thus we have
an isomorphism

  \overline {M}\cong \unzip _L\zip _L M.\qedhere  
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