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ABSTRACT

The correspondence theorem of Carlsson and Zomorodian, which states that one can
view persistence modules as modules over a polynomial ring of one variable, opened
the graded perspective in topological data analysis. In this thesis, we want to pro-
pose a new generic theoretical framework for understanding generalized persistence
modules from this perspective by considering monoid actions on preordered sets.
Secondly, in the case the indexing set is a poset, we introduce a new tameness con-
dition for a generalized persistence module by defining the notion of S-determinacy,
where § is a subposet containing all the ‘births’ and the ‘deaths’.

We first focus on the correspondence between generalized persistence modules
and graded modules in the case the indexing set has a monoid action. We introduce
the notion of an action category over a monoid graded ring. We show that the
category of additive functors from this category to the category of Abelian groups
is isomorphic to the category of modules graded over the set with a monoid action,
and to the category of unital modules over a certain smash product.

In the case S is finite, our notion of S-determinacy leads to a new characterization
for a generalized persistence module being finitely presented. Moreover, we show

that after adding ‘infinitary points’ to Z”, ‘S-determined’ is equivalent to ‘finitely
determined’ as defined by Miller.
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INTRODUCTION

One of the main methods of topological data analysis is persistent homology. In the

simplest case, data is encoded in an increasing nested sequence

of simplicial complexes. This filtration reflects the topological and geometric struc-
ture of the data at different scales. By taking homology with coefficients in a field 4,

one obtains for every 7 a sequence of vector spaces and linear maps
0 = H:(Xo) —» H;(X1) — ... = H/(X,) = Hi(X).

This sequence is called a persistence module. Intuitively, persistent homology is a tool
to track down how topological features are born and die throughout the filtration.
If a non-zero homology class in H;(X;) is not in the image of H;(X;-), it is said to
be born at the step ; of the filtration. It dies at the step ; + 1 if its image in H;(X;41)
is zero. Otherwise, the homology class is said to persist. Carlsson and Zomorodian
[33, p. 259, Thm. 3.1 (Correspondence)] realized that one can view persistence
modules as modules over a polynomial ring of one variable. The above persistence

module then corresponds to the graded £[x]-module

M= Hi(X).

720

The variable x acts on M by means of the maps H;(X;) — H;(Xj:1). One can now
use the structure theorem of finitely generated modules over a principal ideal domain

to observe that we have the decomposition

M = P x“klx]/x"k[x] & EP) x“k[x],



where a4;, b;,c; € N and a; < b; The numbers 4; and b, record the birth and death
of a homology class, respectively, whereas the homology class born at the step ¢;
lives forever. The intervals [4;, b;[ and [¢;, oo thus represent homological properties
that span over a certain range of scales. The collection of these intervals is called a
barcode, and it is a complete and discrete invariant for persistence modules ([5]).

Considering filtrations indexed by N” leads to the so called multipersistence. In [5,
p.- 78, Thm. 1], Carlsson and Zomorodian showed that multipersistence modules
now correspond to modules over a polynomial ring of 7 variables. More generally,
one can start from a filtration of a topological space indexed by a preordered set.
However, the resulting generalized persistence modules do not necessarily have an
immediate expression as a module over a graded ring.

The correspondences by Carlsson and Zomorodian opened the graded perspective
in topological data analysis, leading many researchers to utilize graded module the-
ory in their investigations (see, for example, [6],[19], [4], [12], [14], [16],[29]). The
most general cases of modules over a ring in this line of research are modules graded
over Abelian groups with monoids as their positive cones, and modules canonically
graded over cancellative monoids. In this thesis, we want to propose a new generic
theoretical framework for understanding generalized persistence modules under the
lens of graded algebra by considering monoid actions on preordered sets. Secondly,
we want to investigate finitely presented generalized persistence modules. In partic-
ular, we will give a certain subclass of preordered sets over which finite presentation
can be characterized by a suitable "tameness’ condition.

We now want to explain this in more detail. Using the language of category the-
ory, it is convenient to define a generalized persistence module as a functor from
a preordered set P to the category of k-vector spaces, where £ is a field. In rep-
resentation theory, given a commutative ring R and a small category C, a functor
C — R-Mod is called an RC-module. In this terminology, a generalized persis-
tence module is then a £P-vector space. Following Mitchell ([20]), we also regard a
small preadditive category A as a ‘ring with several objects’, and an additive functor
A — Ab as an A-module. The RC-modules may then be seen as modules over the
linearization RC, where RC is a preadditive category with the same objects as C and
morphisms R[Morc (¢, d)], where ¢, d € ObC (for any set S, we denote by R[S] the
free R-module generated by .5).

Suppose now that G is a monoid. To any G-act (or G-set) A, we can associate an
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action category G[A4, whose objects are the elements of 4, and for any 4, b € A4 the
morphisms 2 — b are pairs (4, ¢), where ¢ € G with b = ga. It is easy to see that the
category of R(GJA)-modules is now equivalent to the category of A-graded R[G]-
modules. Note that if the action of G on 4 is free, then simply G[4 = A, where 4 is
the thin category whose morphisms are given by G. Moreover, if in this situation 4
is connected, G is both commutative and cancellative, and the action is automorphic,
then 4 is in fact isomorphic to the Grothendieck group G#P (see Corollary 2.8).
Given any G-graded ring S, this leads us is to investigate the relationship between
A-graded S-modules and modules over 4 in general. We define the action category

over S, denoted by G4, with objects 4 and morphisms

where 4,0 € A. In the case S = R[G], G54 is just the linearization of Gf4. Our
first main result, Theorem 2.13, then says that the categories of 4-graded S-modules
and G[sA-modules are isomorphic.

We can also look at the category algebra R[G[A]. If C is any category, then
the category algebra R[C] is defined as the free R-module with a basis consisting
of the morphisms of C, and the product of two basis elements is given by their
composition, if defined, and is zero otherwise. It now turns out in Proposition 2.18
that the category algebra R[G[A4] coincides with the smash product R[G]#4, which
has been much studied in ring theory (see [22]). This leads us to Theorem 2.20,
where we identify Gf¢4-modules with the category of unital S#4-modules i.e. the
category of S#A4-modules M with M = (S#A)M.

A morphism of G-acts p: 4 — B defines an obvious functor of action categories
@: G[A — G[B. The restriction functor res, from the category of R(G[B)-modules
to the category of R(G[A)-modules has the left adjoint indy, the induction func-
tor, and the right adjoint coind,, the coinduction functor, to the opposite direction.
In Proposition 2.23 and Proposition 2.24 we examine the reindexing of R(G[A4)-
modules and R(G[B)-modules by means of the functors ind, and coind,.

We then turn to consider finitely presented generalized persistence modules. Note
that being finitely presented is a categorical property, so an equivalence between

generalized persistence modules and graded modules preserves this property. Recall
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first that an RC-module M is finitely presented if there exists an exact sequence

P RriMorc(d;, -)] = D RMorc (e, -)] — M — 0,

j€J i€l

where / and / are finite sets, and ¢;, d; € C forall 7 € 1, j € /. We will look at posets
C which are weakly bounded from above and mub-complete. By ‘weakly bounded’
we mean that every finite subset §' C C has a finite number of minimal upper bounds
in C, whereas C is mub-complete if given a finite non-empty subset § € C and an
upper bound ¢ of S, there exists a minimal upper bound s of S such that s < ¢. In our
Theorem 4.15, we characterize finitely presented generalized persistence modules
in this situation. More precisely, we can show that an RC-module A1 is finitely
presented if and only if the R-modules M (c¢) are finitely presented for all ¢ € C, and
M is S-determined for some finite set S C C.

Given § C C, we call an RC-module A1 S-determined if Supp(A) C 1S and the

implication
SNle=8SnN|d = the morphism M (c < d) is an isomorphism

holds for every ¢ < d in C. Here Supp(M) := {c € C | M(c) # 0} denotes the

support of M, and for any 7" C C, we use the usual notations
1T :={ceC|t<cforsomere T}

and

T ={ceC|c<tforsomete T}

for the upset generated and the downset cogenerated by 7', respectively. Our intu-
ition for this definition comes from topological data analysis, where one tracks how
the elements of each M (¢) evolve in the morphisms M (c < ¢’) (¢ ¢’ € C). One says
that an element m € M(c) is born at ¢ if it is not in the image of any morphism
M(c <), where ¢’ < ¢, and dies at " if M(c < ¢")(m) = 0and M(c < ')(m) # 0
forall ¢ < ¢’ < ¢”. Suppose that there exists a set S such that all births and deaths oc-
cur inside S. The condition SN ¢ = SN |d then implies that looking down from both
¢ and d, we see the same deaths and births. In particular, the morphism M(c < d)

must be an isomorphism.
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Our proof for Theorem 4.15 starts from the fact that an RC-module 1 is finitely
presented if and only if the R-modules A (¢) are finitely presented for all ¢ € C and
M is S-presented for some finite subset § C C. Here S-presented means the existence

of aset .S C C and an exact sequence of the type

P B.[Morc (s -)] = @D A.[More(s =) = M — 0,

SES SES
where A, and B, are R-modules for all s € S. It is easily seen that if M is S-presented,
then M is S-determined. We denote the set of minimal upper bounds of non-empty

subsets of a finite set S C C by

§ = U mube (S).

0£S'CS

In Corollary 4.13 we now make the crucial observation that M is ?-presented if
S C C is a finite set such that M/ is S-determined.

As a useful tool we introduce the sets of births and and deaths relative to S by
Bs(M) ={ceC| colirré‘M(s) — M(c) is a non-epimorphism}
$5<¢, SE

and

Ds(M) :={ceC| colin}gM(s) — M(c) is a non-monomorphism}.
5<¢, SE

An RC-module A is known to be S-presented if and only if the natural morphism
indg ress M — M is an isomorphism. Here resg denotes the restriction functor from
the category of RC-modules to the category of RS-modules, and indy its left adjoint,

the induction functor. Note the pointwise formula

(indg resg M) (c) = colin}M ()

5<¢6 SE

for all ¢ € C. We observe in Proposition 3.9 that the module 1 is S-presented if and
only if Bg(M) U Dg(M) C S. Interestingly, if S is Artinian, then Bg(M) U Dg(M)
is the minimal subset 77 C § such that M is T-presented (see Proposition 3.25).
Suppose that C = Z", R = k is a field and

0—>L—>Ni>M—>O,
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is an exact sequence, where NN is a free module and /" a minimal epimorphism. In
this case our Theorem 3.28 says that Dg(M) = Bg(L) confirming the intuition that
deaths should correspond to ‘relations’.

Since the category RC-Mod of RC-modules is a locally finitely generated Grothen-
dieck category, we know that an RC-module A1 is finitely presented if and only if the
functor Hompg¢ (M, —) preserves colimits of direct systems. One says that a direct

system (M;);es is pointwise stabilizing if for all ¢ € C there exists 7, € I such that
i, <i<j = @5 Mi(c) > M;(c) is an isomorphism.

We prove in Proposition 4.25 that M is S-presented for some finite subset S C C if
and only if Hompgc (MM, —) preserves colimits of pointwise stabilizing direct systems.
This result is due to Djament, but is given without a proof in [9, p. 14, Remar-
que 2.15].

This thesis unifies several earlier results. In the context of topological data analy-
sis, monoid actions have been considered by Bubenik et al. in their article [3], where
they looked at the action on any preordered set given by the monoid of its transla-
tions. In the article [7] of de Silva et al., an indexing category with an additional struc-
ture of a [0, c0)-action is called a category with a coherent flow. Recently, Bubenik
and Milicevic considered modules graded over Abelian groups with monoids as their
positive cones ([4]).

We have in particular been motivated by the article [6] of Corbet and Kerber, who
generalized the result of Carlsson and Zomorodian to the case where the indexing set
is a so called good monoid. We point out that if G is a monoid, then RG-modules of
finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are the same thing
as finitely presented RG-modules. The set S is a framing set in the sense of [6, p. 19,
Def. 15].

Our sets of births and and deaths relative to S are related to the invariants &
and & studied by Carlsson and Zomorodian in [5], and also by Knudson in [14].
For a finitely generated Z"-graded £[Xj,..., X, ]-module M, the invariants & (M)
and & (M) are multisets indicating the degrees of minimal generators and minimal
relations of M equipped with the multiplicities they occur. The underlying sets of
& (M) and & (M) are now Bg(M) and Dg(M).

Miller introduces in [19, p. 31, Def. 5.1] another notion of tameness. He defines
an RZ"-module M to be finitely determined, if there is a closed interval [4, b] C Z”

14



such that the morphisms M (¢ < c+¢;) are isomorphisms for all 7 = 1,..., » whenever
¢; lies outside [4;, b;]. Here ¢y,..., ¢, denote the standard basis vectors of Z”. It is
obvious that if M is [, b]-determined, then A1 is finitely determined with respect to
the interval (2 — #, b], where # = (1,...,1). In general, finitely determined modules
do not, of course, fill the requirement that Supp(AM) C 1§ for some finite set .
However, we can save the situation by adding some infinitary points. This idea is
due to Perling (see [23, pp. 16-19, Ch. 3.1]). Set Z := Z U {—co}. It is easy to see
that Z" inherits the poset structure from Z”. Any RZ"-module M may be naturally
extended to an RZ -module A by setting

M(c) = chl,H;leZn M(d)

for all c € Z'. In Theorem 5.19, we show that an RZ”-module M is finitely deter-
mined if and only if A1 is S-determined for some finite § C Z". We also show that

the notion of an S-determined module A1 is compatible with that of an Af-admissible

poset S defined in [23, p. 18, Def. 3.4].

15
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1 PRELIMINARIES

Throughout this thesis, let C be a small category, R a commutative ring (with unit),
and G a monoid. If S is a set, we use the notation R[S] for the free R-module with
the basis S. In particular, we can write the elements of R[S] uniquely in the form
Dses 7ses, where {e; | s € S} is the basis of R[S].

1.1 Basic properties of RC-modules

We shall assume that the reader is familiar with the basics of category theory. For a
more detailed reference, see, for example, [18].

A functor from the small category C to the category R-Mod of R-modules is
called an RC-module. A morphism between two RC-modules M and N is a natural
transformation x: M — N. More explicitly, a morphism of RC-modules x: M —
N is a collection of R-homomorphisms y.: M(c) — N(c), where ¢ € C, such that
the diagram

M) 2 (4

/th JM

N(o) 2 N(d)

commutes for all morphisms #: ¢ — d in C. If M is an RC-module, then the support
of M is the set
Supp(M) ={ceC | M(c) # 0}.

The category RC-Mod of RC-modules is an Abelian category with kernels, im-
ages, products and coproducts computed objectwise. For example, if u: M — N isa
morphism of RC-modules, then Ker y is defined by (Ker x)(¢) = Ker g, for all c € C.

Let 7 be a collection of objects of C. Such a collection gives rise to a functor
I: ObC — Set, which we call an ObC(C-set. Here ObC(C is considered to be the

category with the same objects as C and with identities being the only morphisms.

17



More precisely, for an object ¢ € C, the set I(c) has the same cardinality as the set
of elements in 7 that are equal to ¢. A morphism A: 7 — J of ObC-sets is just a set
of functions 7(¢) — J(c), where ¢ € C. We denote by U the forgetful functor from
RC-modules to Ob C-sets.

An RC-module F is free with the basis I if there exists a morphism of Ob C-sets
j: I — UF that satisfies the following universal property: For a morphism f: 7 —
UM of ObC-sets, where M is an RC-module, there exists a unique morphism of
RC-modules, u: F — M, such that the diagram

I— s Ur

X |

UM

commutes. Since the free RC-module with the basis / solves a universal problem,
it is unique up to isomorphism. It follows in particular that every free RC-module
with the basis / is isomorphic to the RC-module € __; R[Mor¢(c, —)].

For more details on RC-modules, we refer to [17] and [32].

1.2 Additive and R-linear functors

A category A is called preadditive if

1) the set of morphisms Mor 4(4, ) has the structure of an Abelian group for all
a,b e A

2) the composition operation of morphisms
Mor 4 (a, &) X Mor 4(b,c) — Mor 4(a, c)

is bilinear for all 4, b, c € A.

A functor F: A — B between preadditive categories is called additive if the
function @,;: Mor4(a, b)) — Morg(F(a), F(b)) is a group homomorphism for all
a4, be A

Furthermore, if the groups of morphisms of the preadditive category A are also
R-modules, then A is an R-linear category. A functor F: A — B between two

R-linear categories is R-linear if the function Mor 4(a, b)) — Morg(F(a), F(b)) is a

18



homomorphism of R-modules for all 2, 6 € A.

Let C be a small category. We say that an R-linear category £ with a morphism
j: C — L is an R-linearization of C, if the following universal property is satisfied:
For any functor /: C — A, where A is an R-linear category, there exists a unique

R-linear functor g: £ — A such that the diagram

C%E

N

A

commutes. The standard argument of universal properties suffices to show that the
linearization, if it exists, is unique up to isomorphism.

We define the canonical R-linearization of C as the category RC, with the set of
objects ObC, and for all ¢, d € RC the group of morphisms

Morgce (e, d) = R[More(c d)].

Proposition 1.1. The category RC is an R-linearization of C.

Proof- Obviously RC is an R-linear category. Let 7: C — RC be the embedding
where ¢ — ¢ for all ¢ € C, and # + ¢, for all morphisms #: ¢ — d in C. Suppose
f:C — Ais a functor, where A is an R-linear category. Let us define a functor
¢g: RC — A by setting g(c) = f(c) and g(e,) = f(«) for all c € C and # € Morc (¢, d).
Clearly then g is R-linear with ¢ o7 = f. The uniqueness of ¢ immediately follows

from the requirement that ¢ has to be linear. Thus RC is an R-linearization of C. [J

If A is a small preadditive category, following Mitchell ([20]), an additive functor
M: A — Ab is called an A-module. A morphism of A-modules u: M — N is
a natural transformation, where each p, ¢ € C, is a group homomorphism. The
category of A-modules is denoted A-Mod. Like RC-Mod, the category .A-Mod of
A-modules is an Abelian category with kernels, images, products and coproducts
computed objectwise.

Note that an RC-module could either be a functor from C to R-Mod or an additive

functor from RC to Ab. This ambiguity is covered next.

Example 1.2. Let M be a functor C — R-Mod. The R-linearization of C extends
M to an R-linear functor M’: RC — R-Mod, where M’ o i = M. Obviously an

19



R-linear functor is also additive.
On the other hand, let N be an additive functor RC — Ab. We may define an
R-module structure on N(c) for all ¢ € C by setting

rn=N(r-eq.)(n)

forall » € R, c € C and n € N(c). This yields a functor from C to R-Mod.
In Example 1.2, we have essentially proven

Proposition 1.3. The following categories are isomorphic:

1) Functors C — R-Mod;
2) Additive functors RC — Ab;
3) R-linear functors RC — R-Mod.

1.3 Order theory

Let P be a set, and let < be a binary relation on P. We say that P is a preordered set if
the relation < is both reflexive and transitive. If the relation < is also antisymmetric,
then P is a partially ordered set, or a poset for short.

Let C be a poset. Given a subset S C C, an element ¢ € C is an upper bound of S, if
s < cforall s € S. We say that C is (upward) directed, if there exists an upper bound
for every finite subset § C C. An element ¢ € C is said to be minimal, if for every
d € C, we have

d<c¢ = c=d

If for any ¢, d € C there exists a unique minimal upper bound in C, we say that C
is a join-semilattice. We denote this unique minimal upper bound by ¢V d, and call it

the join of ¢ and d. A join-semilattice is bounded if it has a unique minimal element.

Remark 1.4. We could equivalently define a join-semilattice as a set P with a binary

operation V such that
V@V =@V Vr;
*PVg=qVp;
*pVp=p

20



for all p, g, » € P. This operation induces a partial order on P by setting p < ¢ if and
only if pV g = g for p, g € P. Defined in this way, p V ¢ then coincides with the other
definition. The above axioms also imply that the notation \/ S makes sense for finite

non-empty subsets § C C.

Let L be a join-semilattice. If § C L is a join-semilattice such that
\/r=\/T
L s

for all finite non-empty subsets 7" C .S, then we call S a join-sublattice of L.

All of the above definitions have dual versions, obtained by changing < to >.
These are, respectively, lower bounds, downward directed sets, maximal elements, meet-
semilattices, meets, and meet-sublattices.

The poset C is called a lattice if it is both a join-semilattice and a meet-semilattice.

Given a subset § C C, we will use the notations
18:={ceC|s<cforsomeseS}
for the upset generated by S, and
L S:={ceC|c<sforsomesesS}

for the downset cogenerated by S.

1.4 Colimits and limits

Let A be a preadditive category, / a small category, and F': I — A a functor. Assume
that 4 is an object in A, and that for all 7 € 7, we are given a morphism «;: F(7) — A.
Then the family («;);¢s is called a cone from F to 4, if for every morphism #: 7 —
in 7, we have @; = a;F(u). A colimit of the functor F is an object colim; F € A
together with a cone (¢;);e; from F to colim; F, satisfying the following universal
property: If (1;);es is a cone from F to L, where L € A, then there exists a unique
morphism f: colim; F — L such that fu; = A, for all 7 € /. In other words, (;);es
is the initial cone (from F).

If the colimit colim; F exists for every functor / — A, where / is a small category,

then the category A is called cocomplete.
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Proposition 1.5. [30, p. 99, Prop. IV.8.1] If A is cocomplete, then colim; is a functor
from category of functors [ — A to the category A.

Let 7 be a preordered set. Note that a functor F: I — A may be described by the
family (F(7));er and the morphisms F(7 < j) for all 7 < ;j in . With the data given in
this form, we can also denote the colimit colim; F more concretely by colim;e; F(7),
and say that it is the colimit of the family (F(7));e;.

If 7 is a directed poset and C is any category, then a functor F: I — C is called a
direct system in C.

The next lemma is a basic property of the colimit that will be used later. The

proof is straightforward and follows from the universal property of the colimit.

Lemma 1.6. [13, p. 40] Let ¢: A — B be an additive functor between cocomplete

preadditive categories. There exists a canonical morphism
9: c?g[m@ o F)(7) — @(cc;g]mF(z)).

For an easy reference, we gather some elementary results and facts about colimits

in the next remark.
Remark 1.7. Let I be a small category.

o If M: I — R-Mod is a functor, then colim; M may be constructed as follows:
For the R-module N := €p,_; M(7) and its submodule

iel
J=M(u)(x) —x | u: i — jis amorphism in [, x € M (7)),

we have colim; M = N/J.
e If 7 be a discrete category, i.e., a category with only identity morphisms, then
cqlilrnF = [],e; F(2).
1€

e Let 7 be a poset. A subset ] C [ is said to be final, if for every 7 € I there exists
an element ; € J such that 7 < ;. Let A be cocomplete. If ] is directed and
J € I is final, then

colimF = co}imF.

In particular, if 7 has a maximum element, then {max(/)} C 7 is final, and
colfimF = F(max(1)).
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Limits

The limit of a functor F: I — A is defined in a dual fashion. Assume that 4 is an
object in A, and that for all 7 € 7, we are given a morphism j3;: 4 — F(7). Then the
family (8;);es is called a cone from A to F, if for every morphism #: 7 — j in I, we
have 8; = F(u)f;. The limit of F is then an object lim; F' € A together with a cone
(v:)er from lim; F to F that satisfies the following universal property: If (1;);es is a
cone from L to F, where L € A, then there exists a unique morphism ¢: L — lim; F
such that ;¢ = A; for all 7 € I. In other words, (v;);es is the terminal cone (to F).

If the limit lim; F exists for every functor I — A, where [ is a small category, then

the category A is called complete. We can also state the dual versions of Proposition
1.5, Lemma 1.6 and Remark 1.7.

Proposition 1.8. If A is complete, then lim; is a functor from category of functors I — A
to the category A.

Lemma 1.9. Let ¢: A — B be an additive functor berween complete preadditive cate-

gories. There exists a canonical morphism
9: p(lim (7)) — lim(p o F) (7).
Remark 1.10. Let I be a small category.

e If M: 1 — R-Mod is a functor, then lim; M may be constructed as follows:
For the R-module N := [],c; M(7) and its submodule

J = A{(%)ier € N | M(u)(x;) = x; for all morphisms #: 7 — ;7 in I},

we have lim; M = J.

e If 7 is a discrete category, i.e., a category with only identity morphisms, then
liml‘ejF = HZ'EI F(Z’).
o Let 7 be a poset. A subset /] C [ is said to be initial, if for every i € I there

exists an element j € / such that 7 > j. Let A be complete. If / is downward

directed and J C 7 is initial, then

lim F = lim F,
{ J
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In particular, if 7 has a minimum element, then {min(/)} C 7 is initial, and

li}n F = F(min(1)).

1.5  Finiteness conditions

Let A be a preadditive category. In the following, we use the notation Hom 4 for
morphisms in A-Mod and Mor 4 for morphisms in A.

Let G be an Abelian category with arbitrary coproducts, and in which taking
colimits of direct systems is exact. Recall that an element G € G is a generator for G,

if for all M € G there exists an epimorphism

UG—>M

Jj&J

for some set /. A family (G;);c; of objects of G is a generating family for G if and
only if [ [,c; G; is a generator for G. If (G;);c; indeed is a generating family, then for

every object M € G there exists an epimorphism

where /)7 is a collection of elements of 7. If G has a generating family, it is called a

Grothendieck category.

Example 1.11. The category R-Mod is a Grothendieck category with a generator
R.

Let G be a Grothendieck category, and M € G.

o M is finitely generated if for every direct system (M;);e; of subobjects of A1

M= ZMZ- =  There exists 7y € I such that M = M,

iel

e G is locally finitely generated if it has a generating family consisting of finitely

generated objects.

e M is finitely presented if M is finitely generated and for every epimorphism
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p: LM

L is finitely generated = Ker ¢ is finitely generated.

Let G be a locally finitely generated Grothendieck category with a generating
family (G;);e;. Let M € G. It is well known ([25, p. 710, Prop. E.1.13]) that M1 is

finitely generated if and only if there exists an epimorphism
[ -
7€/

where / is a finite collection of elements of /. Similarly, A1 is finitely presented if

and only if there exists an exact sequence

UGkHUGjeMAO,

keK j€J

where K and J are finite collections of elements of 7 ([24, p. 95, Prop. 5.13]). We
also have the following equivalent characterizations of finitely presented and finitely

generated objects:

Proposition 1.12. [30, p. 122, Prop. V.3.2, V.3.4] Let G be a locally finitely generated
Grothendieck category. An object M € G is

o finitely generated if and only if the functor Homg (M, —) preserves the colimits of

direct systems with monomorphisms;

o finitely presented if and only if the functor Homg (M, —) preserves the colimits of

direct systems.

Example 1.13. The category A-Mod of A-modules is a locally finitely generated
Grothendieck category with a generating family (Mor 4(4, —)),cA-

We note that being finitely presented is a categorical property, which is a well

known fact, but in lack of suitable reference, we present the proof here.

Proposition 1.14. Let F: G — H be an equivalence of Grothendieck categories, and
let M € G. If M is finitely presented in G, then FM is finitely presented in H.

Proof. Let (N;);e; be a direct system in H, and (M;);e; the corresponding direct
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system in G. Since F preserves direct limits (as a left adjoint), we see that

Homy (FM, coli]ran~) = Homy (FM, coli]mFMi)
i€ i€

= Homy (FM, F(cqliPMZ-)).
1€
But F is an equivalence, so we have
Homy (FM, F(cqlijm]%l-)) =~ Homg (MM, cqlijrn]l/[i).
1€ 1€
Because A is finitely presented, Proposition 1.12 yields
Homg (M, colimM;) = colim Homg (M, M;).
i€l i€l
Finally, since F is an equivalence,

cqli[m Homg (M, M;) = cqli1r11 Homy (FM, FM;)
1€ 1€

> coli[m Homy (FM, N;).
‘e

1.6 Kan extensions

In the following section, we assume that C and D are small categories. Leta: C — D
and F: C — X be functors. The left Kan extension of F along « is a pair (L, 1), where

e L: D — X is a functor;

® u: F — L oaisanatural transformation.
This pair has the universal property saying that for all pairs (#, v), where H: D — X
is a functor and v: F — H o « is a natural transformation, there is a unique natural
transformation p: L — H with the property that p, o z = ». Here p, is the natural
transformation Loa — H o a.

Dually, the right Kan extension of F along « is a pair (R, ), where

e R: D — X is a functor;

® 7: Roa — F is a natural transformation.
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This pair has the universal property saying that for all pairs (H, v), where H: D — X
is a functor and v: H o @ — F is a natural transformation, there is a unique natural
transformation 7: H — R with the property that 7 o 7, = ». Here 7, is the natural
transformation H oz — R o .

In general, Kan extensions do not necessarily exist. Before discussing their exis-

tence, we introduce the following categories.
Definition 1.15. Letd € D.
1) The slice category (d/«) has the objects

Ob(d/a) ={(¢u) | c€C, u: d — a(c) is a morphism in D}.

For (¢ u), (¢, u") € (d/a), the morphisms (¢, #) — (¢’, #”) are those morphisms

f: ¢ — ¢ in C for which the diagram

d—= a(c)

X lu(f)

a(c)
commutes.

2) The slice category («/d) has the objects
Ob(a/d) ={(¢u) | c € C, u: a(c) — d is a morphism in D}.

For (¢ u), (¢, u") € (a/d), the morphisms (¢, #) — (¢’, #”) are those morphisms

f:¢— ¢ inC for which the diagram

a(c) —=—d

o

a(c)
commutes.

From Definition 1.15; it is clear that for every d € D there are canonical projec-
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tion functors

pa: (a/d) = C, (cu) = f =1
ga: [d]a) = C, (cu) ¢ [ [

We write Fun(C, D) for functors from C to D.

Proposition 1.16. [26, pp. 60, 65, Thm. 4.1.4, Thm. 4.2.2] Let M: C — X bea

functor.

1) If X be cocomplete, then M has a left Kan extension LKan, M, defined on objects

by

(LKan. M)(d) = colim(M o
forall d € D. This defines a functor

LKan,: Fun(C, X) — Fun(D, X).

2) Let X be complete. If M : C — X is a functor, then M has a right Kan extension
RKan, M defined on objects by

(RKan, 24)(d) = lim (31 4,
forall d € D. This defines a functor

RKan,: Fun(C, X) — Fun(D, X).

Definition 1.17. The restriction functor «*: Fun(D, X) — Fun(C, X) maps any
functor M : D — X to the functor

aM=Ma:C— X
If p: M — N is a morphism in Fun(D, X), then the natural transformation
a'p: Ma — Na

is defined by
(‘x*¢)f = @zz([)
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forallceC.

Proposition 1.18. [26, p. 64, Thm. 4.1.11] If X is cocomplete, the restriction func-
tor & has a left adjoint given by the left Kan extension. Dually, if X is complete, the

restriction functor & has a right adjoint given by the right Kan extension.

Definition 1.19. If X = R-Mod, we write res, := «*. We call the left and right

adjoints of res, induction and coinduction, respectively, and denote them by
ind, := LKan, and coind, := RKan,.

Example 1.20. For any RC-module M, and any object d € D, we have the pointwise

formulas

(ind, M) (d) = ( c)ohm M(c) and (coind, M)(d) = hr?/ )M( c).

If C and D are posets, these formulas yield

(ind, M)(d) = colim M(c) and (coind, M)(d)= lim N(c).
ceC, a(c)< ceC, d<a(c)
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2  MODULES OVER A MONOID ACT

2.1 Monoid action

In this section we recall some basic properties of monoid actions. Let G be a monoid
and let 4 be a set. If there exists an operation -: G X 4 — 4 such that (¢gh)a = g(ha)
and 1g-a =aforall g h € Gand a € 4, we say that 4 is a (left) G-act. A morphism
of G-acts f: A — B is a function, where f(ga) = gf (a) forallg € Gand a € 4.

Given a G-act 4, we get a preorder on 4 by settinga < bif b = ga for some g € G.
The action naturally gives rise to two categories having A4 as the set of objects.

First, we have a small thin category A, where for all 4, b € A4 there exists a unique
morphism 2 — b if 2 < b in the preorder. By abuse of notation we write 2 < & for
this morphism. Recall that in general a category is thin if there exists at most one
morphism between any two objects.

Secondly, there is an action category G [ A, where morphisms 2 — b are pairs (4, g)
such that b = ga for some ¢ € G. If there is no possibility of confusion, we sometimes
denote the morphism (4, g) by g. Composition of morphisms in Gf4 is defined by

the multiplication of G:
(ga, b) o (a4, g) = (a, hg).

There is an obvious functor GfA4 — A where
ara and (a,9) — (a < ga).

This functor is an isomorphism if and only if the G-action on 4 is free, i.e. for all
ghegG,
ga =hatforsomeacd = g=h

Remark 2.1. We often consider the monoid G itself as a G-act, so it gives rise to a
thin category G and the action category G [ G. Sometimes, the monoid G is viewed

as a category BG with a single object.
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Example 2.2. Let N: C — Set be a functor. The category of elements of N, denoted
[ N, has pairs (¢ x), where ¢ € C and x € N(c), as objects. A morphism (¢ x) —
(¢,x") in [ N is a morphism #: ¢ — ¢’ in C such that N(#)(x) = x’.

If we view the monoid G as the single object category BG, then a G-act 4 could
equivalently be defined as a functor 4g: BG — Set. As shown in [27, p. 66,
Ex. 2.4.10], the corresponding action category G [ A coincides with the category

of elements [ A4g.

Example 2.3. An abelian group G is called partially ordered if it is equipped with
a partial order < such that g < ¢’ implies ¢+ h < ¢’ + b forall g ¢',h € G. If
G, = {g € G | g > 0} is its positive cone, then g < ¢’ is equivalent to ¢’ — g € G,.
The action of the monoid G, on G is free, because G is an Abelian group. Thus, as

stated above, we may identify the action category G, /G with the poset G.

A translation is an order-preserving function F: P — P on a preordered set P
that satisfies the condition p < F(p) for all p € P. The translations of P form a
monoid Trans(P) with composition as the operation.

Let 4 be a G-act. The action by an element ¢ € G now determines a translation
on 4 if and only if 2 < b implies ga < gb. If this implication holds for all ¢ € G,
then we say that 4 is an order-preserving G-act. Note that any G-act 4 is order-
preserving if G is commutative. For an order-preserving G-act 4, we get a monoid
homomorphism ¢ from G into the monoid of translations Trans(4). This induces a
monoid embedding ¢: G/Ker ¢ — Trans(A), where Ker ¢ is the congruence relation
defined by

(g h) eKerp & ga=haforallac A

In particular, ¢ is an embedding if and only if the G-action on 4 is faithful: for all
&b € G, ga = ha for all 2 € 4 implies that ¢ = h.
We next give a slight generalization of [11, p. 4, Thm. 2.2].

Proposition 2.4. For any preordered set P, there exists a monoid G and a G-act A such

that P and A are isomorphic as thin categories.

Proof. We present the proof here for the convenience of the reader. Let G denote
the submonoid of the monoid of all functions P — P consisting of the functions
g: P — P for which a <p g(a) for all 2« € P. Define the G-action on 4 := P by
setting ¢ - 2 = g(a) for all g € G and 4 € A. Then 4 is a G-act. It remains to show
thata <p bifand only if 2 < b.
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Assume first that @ <, b. By definition, there exists an element ¢ € G such that

b = ga. But this means that 2 <p g(4) = ga = b. Conversely, if 2 <p b, we define a

b, if p=a
g2(p) = _
, otherwise.

We then immediately see that ¢ € G and ga = g(a) = b, so thata <, b O

function g: P — P by setting

Remark 2.5. The monoid G in Proposition 2.4 does not need to be unique: For
example, the one element set P = {x} has the trivial monoid action for any monoid
G. Note that if G is the monoid of the proof of Proposition 2.4, then the order-

preserving elements in G are exactly the translations on A4, so that Trans(4) C G.

2.2 Automorphic actions

Often we would like to work with group indexed structures instead of monoid in-
dexed structures. In this section we explore certain circumstances in which this
change is possible.

Let G be a commutative cancellative monoid and let 4 be a G-act. We assume that
the action of G on 4 is automorphic. That is, for every ¢ € G and 4 € 4, there exists
a unique 4’ € 4 such that ga’ = 4, so that multiplication by ¢ is an automorphism
in 4. We introduce a more specific notation by setting 7'(g, 2) := 4’. Since G is
commutative and cancellative, it can be embedded into the Grothendieck group G8P,
which consists of elements g/h, where g, b € G. Note that G is a poset (with the
natural order) if and only if there are no non-trivial invertible elements in G.

We may extend A4 into a G8P-act by setting

ca=gT(h a).

S0

Before proving this, we introduce some elementary properties of the notation intro-

duced above in the next lemma.

Lemma 2.6. Foreveryg h € G and a € A, we have

1) T(gha) = T(g T(ha) = T(h T(ga));
2) T(g ha) = hT (g a).
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Proof. Let b € G and a2 € 4. To show 1), we first note that by definition
¢hT (gh,a) = a. On the other hand,

hT(g T(ha)) =hT(ha) =a=gT(ga)=ghT(h T(ga)).

From the uniqueness of 7'(¢gh, 2), we see that 1) holds.
For 2), note that ghT (g, a) = ha = gT (g ha). Thus, again by the uniqueness of
T (g, ha), 2) holds. O

To prove that 4 is a G8-act, let us first show that the operation is well defined.

Suppose that g/h = ¢’ /F'. Then gh’ = ¢’h. Furthermore,
ghT(ha) =ga=gh'T(W,a)=ghT(F,a).

Since G is commutative and cancellative, we see that ¢7'(h, a) = ¢’ T(V', a). That is,
(g/h)-a=(g'|V) - a, so the operation is well defined.
Suppose next that ¢/h, ¢’ /I’ € G# and a € A. We have

£ £\ &
(b b’)d_bb' a=gd T(hV,a).

Using Lemma 2.6, we may write this as

& TV, a) =g T T, ) =gT(hg T, a) = (‘i‘ )

showing us that

as required. Of course, we also have (1/1)a =1+ T(1,4) = a. Thus 4 is a G8-act.

Since A4 is a G8P-act, we get for every 4 € A the obvious group act map

The natural question we ask here is how closely does A4 resemble G8 and does 4
possibly have a group structure? We go through some properties of these maps in
the next proposition. Before that, we go through some terminology.

Given a € A, we say that the G-action is free on a if ga = ha implies g = b for all
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&b € G. The G-act A4 is connected if the thin category 4 (or equivalently, the action
category G[A) is connected. Recall that a category C is connected if for each ¢, d € C
there exists a sequence ¢ = ¢y, ..., ¢, = d of elements of C with a morphism ¢; — ¢y

orcy1 — ¢ forall7 € {0,...,n —1}.

Proposition 2.7. Let G be a commutative cancellative monoid and A a G-act, where
the action is automorphic. Fix a € A, so that we get a morphism @, as defined above.

1) The morphism @, is injective if and only if the G-action is free on a.

2) The morphism @, is surjective if and only if the G-act A is connected.

3) The morphism @, is bijective if and only if the G-act A is connected and the G-

action is free on a’ for some a’ € A.

Proof. Let us show 1) first. Suppose that the G-action is free on a. Let g, ¢/, h, b’ € G
such that (g/h)a = (¢’ /' )a. Multiplying this equation by hb’ yields gh’a = hg’'a. By
the freeness of the action on 4, we have gb’ = ¢’h, and also g/h = ¢’ /. Thus ¢, is

injective. Conversely, suppose that ¢, is injective. If gz = ba for some g, b € G, we

5=t 2.

and ¢ = b follows from injectivity of @,.

have

Next, we will prove 2). Suppose that the G-act 4 is connected. That is, for any

b € A, there exist elements 2 = 4, 41, ..., 4, = b in A such that
ai+1 = gid; Or 441 = (1/gz)ﬂz

forevery 7 € {0,..., n—1}. From these equations, it is clear that b = (¢g/h)a = ¢,(g/h)
for some g, h € G. Conversely, if ¢, is surjective, then for any & € A there exists

&b € G such that (¢g/h)a = b. That is,

aSgﬂZ%ga:‘%a:b,

so b is connected to 4. Since b was arbitrary, the G-act 4 is connected.
Finally, we will prove 3). Suppose that 4 is connected and the G-action is free

on 4’ for some 4’ € 4. Since 4 is connected, @, is an epimorphism by 2), and there
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exist k,/ € G such that 4’ = (k/l)a. Let ga = ha. Multiplication by & gives

gla' =gkéa' = gka = bka = hkéa' = hld'.

By the freeness of the action on 4’, we now see that g/ = hl. Because G is cancella-
tive, this implies ¢ = . Thus @, is injective by 1). The other direction follows
immediately from 1) and 2). O

Let C be a small category. If C is not connected, it can be written as a disjoint union
[, C; of its connected components ([18, p. 90, Ex. 7]). Then each RC-module M
is equivalent to a family (M;);e;, where M; is an RC;-module for all 7 € 7. That is,

we have an isomorphism of categories

RC-Mod = ]_[ RC,-Mod.

iel

If C = GJA4, the connected components C; are also G-acts, so we can write C; =

G[A;, where A; = Ob(C;, for all 7 € I. Therefore

R(G[A)-Mod = ]—[ R(G[A,)-Mod.

iel
Finally, we use Proposition 2.7 3) to sum up this discussion.

Corollary 2.8. Let G be a commutative cancellative monoid and A a G-act, where the
action is automorphic. Let A;, where i € I be the connected components of A. If for each

i € I there exists an a; € A; such that G acts freely on a;, then

R(G[A)-Mod = 1_[ RG#-Mod.

iel

Furthermore, if the G-action on A is free, then

RA-Mod = ]—[ RG®-Mod.

iel
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2.3  Action categories over a graded ring

Theorem 2.13 will generalize the equivalence of the correspondence theorem of
Carlsson and Zomorodian [33, p. 259, Thm. 3.1] mentioned in the Introduction.
Moreover, it generalizes the multi-parameter version of the theorem by Carlsson
and Zomorodian ([5, p. 78, Thm. 1]) as well as the generalization given by Corbet
and Kerber ([6, p. 18, Lemma 14]). For a discussion on related finiteness conditions,
see [6, p. 3] and Remark 4.16.

Let G be a monoid. Recall that a ring S is G-graded, if

1) §= @gech, where S, is an additive subgroup of § for all ¢ € G;

2) Sng - Sgb for all % bheG.
Let A4 be a G-act, and let § := @S, be a G-graded ring. We say that a (left) S-module
M is A-graded, if

1) M=, , M,, where M, is an Abelian group for all 2 € 4;

2) SgM, S My, forallg € Ganda € 4.
A morphism of 4-graded S-modules f: M — N is an S-module homomorphism
such that f(M,) € N, for all 2 € 4. The category of A-graded S-modules is locally

finitely generated Grothendieck category with a generating family (S5(4)),c4, where
the free S-module S(2) generated by 2 € 4 is defined by

say= P

¢€G, ga=b

forall 4,6 € 4.
We begin by defining a certain preadditive category.

Definition 2.9. Let 4 be a G-act, and let § := @®,cS, be a G-graded ring. The
action category over S, denoted G4, is the category with the set 4 as objects, and

morphisms (a,5): 2 — b, where 4,6 € 4 and

s € @ Se-

2€G, ga=b
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Composition for morphisms (4,5): 4 — ga and (ga, t): ga — hga is defined by

(ga, 1) o (a,5) = (a, ts).

Remark 2.10. Keeping a close eye on the domains, we may write s := (4,5). With

this notation, composition is just the multiplication in S.

Example 2.11. Let 4 be a G-act. If R is a commutative ring, then the action category
G[r[c14 over the monoid ring R[G] coincides with the linearized action category
R(G[A). Indeed, by definition Ob R(GfA4) = A, and

Hompg(gra)(a,b) = R[{(4,¢) | ¢ € G and ga = b}].
forall 4, b € A.

Example 2.12. If G is an Abelian group and § := @geG
category G[¢G is called in [8, p. 358, Def. 2.1] a companion category. In this case,

Sg is a G-graded ring, the

we may identify Homg/ (g b) with S),_,.

Preparing for Theorem 2.13, we will now define two functors, ® and ¥, that
connect A-graded S-modules to (G ¢4)-modules.

Let M be a G[gA-module. By setting sm = M(s)(m) for all ¢ € G, s € S, and
m € M(a), we can define an A4-graded S-module

oM = (P M(a).
a€A
A morphism f: M — N of G [¢.A-modules consists of homomorphisms of Abelian
groups f,: M(a) — N(a) with commutative diagrams

M(a) 2 21 (ga)

4

N(a) WN(g&z)

forallz € 4, g € G and 5 € S,. These homomorphisms and diagrams obviously give
rise to a homomorphism ®f : ®M — DN of A-graded S-modules with (®f), = £,
foralla € 4.
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Next, let Q be an A-graded S-module. We set (YQ)(a) = Q, foralla € 4. If
(4,5): @ — ga is a morphism, where 2 € 4, g € G and s € S, we can define a

homomorphism

(Y ((4,9)): (YQ)(2) = (YQ)(ga)

by setting (Y Q)((4,5))(g) =s-qforallg € Q,. It is clear that WQ is an additive func-
tor G [¢A — Ab,i.e., a G [y A-module. Moreover, if »: Q — P is a homomorphism
of A-graded S-modules, we have a morphism of G [y 4-modules ¥h: ¥YQ — ¥P
given by (¥h), = b, forallaz € 4.

We are now ready to state

Theorem 2.13. Let A be a G-act, and let S := ®,ccS, be a G-graded ring. The above

functors ® and P give an isomorphism of categories
(G[gA)-Mod = A-gr S-Mod.

Proof. It remains to prove that ® o ¥ = id and ¥ o @ = id, which is straightforward.
O

Combining this theorem with Example 2.11 gives

Corollary 2.14. Let A be a G-act, and let R be a commutative ring. There is an isomor-
phism of categories
R(G[A)-Mod = A-gr R[G]|-Mod.

In particular, if the G-action on A is free, we obtain an isomorphism
RA-Mod = A-gr R[G]-Mod.

Example 2.15. If 4 = {e} is a one object set, Theorem 2.13 gives us an isomorphism
G[s{e}-Mod = S-Mod. In the case S = R[G], where R is a commutative ring, this
means that RG-Mod = R[G]-Mod, where RG is the linearization of the 1-object
category G.

Example 2.16. Let G be a partially ordered Abelian group with the positive cone G,
(see Example 2.3). If R is a commutative ring, then by Corollary 2.14 the categories
RG-Mod and G-gr R[G.]-Mod are isomorphic.
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2.4  Category algebras and smash products

Let C be a small category, and let R be a commutative ring. A category algebra R|C]
is the free R-module with the basis consisting of the elements ¢,, where #: ¢ — d is

a morphism in C, and with multiplication defined by

ew, if ¢’ =d
ey ey =

0, otherwise

for morphisms #: ¢ — d and v: ¢/ — d’ in C. Equipped with this product, R[C]
becomes a ring that has a unit if C is finite.

Let 4 be a G-act and S a G-graded ring. We recall (see [21, p. 390]) that a smash
product S#A is the free (left) S-module with the basis {p, | 2 € 4}, and with multi-

plication defined by the bilinear extension of

, if bb = a;
() () = {(Jg%)’) ' ‘

0, otherwise

where g, b € G, 5, € S;, 1), € S and 4,b € A. Equipped with this multiplication,
S#A is a non-unital ring, i.e. a ring possibly without identity. However, S#A4 has local
units. This means that every finite subset of S#4 is contained in a subring of the form
w(S#A)w, where w is an idempotent of S#4. More precisely, let T := {#,...,%,} bea
finite subset of S#4. We may assume that #; = s;p,,, where g; € G, 2, € A and s5; € S,
forall7 € {1,...,n}. We denote

B:={a€d|a=a;ora=ga;forsomei€{l,...,n}}

and w := ) cpp,. It is now straightforward to see that w is idempotent and wz,w =
wt; =t; forall 7 € {1,...,n}.

Let R’ be a non-unital ring. An R’-module M is unital if it satisfies the condition
M =RM.

The next proposition and its proof are inspired by [2, p. 221, Cor. 2.4].

Proposition 2.17. Let M be an S#A-module. Then M is unital if and only if for every
finite subset N C M there exists a finite subset B C A such that wn = n for all n € N,

where w := Y, ,cp pa-

40



Proof. Assume first that A is unital. Let N := {ny,..., n,} C M be a finite set. Now,

forall 7 € {1,..., p}, the element 7, may be written as

9

n; = Z S5y
7=l

where s;; € S#A and n,;; € M for all j € {1,..., g}. This gives us a finite set

T:{Si)j | i€ {1,...,10},]'6 {1,,q}} C S#A.

As stated above, we then have a finite subset B C A such that w = ws for all s € T,
where w =Y ,cpp,. Thusforall7 e {1,...,p},

9

9q 7
wni = w(Y i) = ) (wsipniy = ) signiy =
i=1 i=1 ;

=1

Conversely, suppose that for every finite subset N' C M there exists a finite subset
B C A such that wn = n for all n € N, where w := },cpp,. Taking N = {m} for
m € M, we get m = wm € S#A. ([

Proposition 2.18. Ler R be a commutative ring, G a monoid, and A a G-act. There

exists an isomorphism of non-unital rings
0: R[G[A] — R[G]#4

defined by e(4q) > eqpa foralla € Aand g € G.

Proof. Tt is easy to see that ¢ is an isomorphism of R-modules. It is also a ring

homomorphism, since for all 2, € 4 and g, b € G,

P(€(ahg))s if b= ga;
plewh)eag) = { ¢

0, else
ChgPa> if b = ga;
- 0, else

= (enpi) (egpa)
= @(eb,h)) P(e(ayg))- O
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Proposition 2.19. Let M be an S#A-module. Then M = P, , p.M if and only if M

is unital.

Proof. Assume first that M = €, p.M. Let N := {ny,..., n,} € M. Since for all

7 €{l,...,p}, the element »; may be written as

9
n; = Zpﬂl'dni’j’
J=1

where 2,; € A and n;; € M forallj € {1,..., 4}, there exists a finite subset

B=Aaylie{l,....p}, je{L,....q}}

of A. Let w:= 3 ,cpp,. Then

Il
—

wpﬂ[’jn[’j = n;

9
wn; = w Zpﬂtljnl;j =
7=1 7

so M is unital by Proposition 2.17.
Assume next that M is unital. Let m € M. By Proposition 2.17, we may write

m = wm for some w = ), pp,, where B C 4 is finite. Thus

m = (Zpﬂ)m = Zpam’

a€B a€B

so that M = ), 4 p.M. Furthermore, since the elements p, are orthogonal, the sum

is direct. O

Let us denote by S#4-Mod the category of unital S#4-modules. We will now
define two functors, I and A, that connect unital (S#4)-modules to (G ¢4)-modules.
Let M be a GfgA-module. Set

M = 5 M(a).
a€d
It is not difficult to check that by setting (sp,)m = M((a,5))(m,) forallg € G,s € S,
a € Aand m := Y, my € UM, T M becomes an S#A-module. To show unitality,
notice that p,(I'M) = M(a) for all 2 € 4, which implies that T = B __ , p.(T'M).
Thus I'MM is unital by Proposition 2.19. If f: M — N is a morphism of G/s4-
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modules, we can define a homomorphism I'f: T4 — I'N of (S#4)-modules by

setting

(T (m) = > fulma)

acA

forallm=3%,.4m, € TM.
Next, let Q be a unital S#4-module. We define a G [g4-module AQ by first setting
(AQ)(a) = p,Q foralla € 4. Leta € Aand g € G, s € S,. Given a morphism

(a,5): a — ga, we then have a homomorphism of Abelian groups

(AQ)((4,5)): (AQ)(a) = (AQ)(ga), g = (pa)g.

Finally, for a homomorphism »: Q — P of S#4-modules, there is a morphism of
G[gd-modules Ab: AQ — AP with (Ah),(q) = h(q) for all z € 4 and g € (AQ)(a).

Theorem 2.20. Let A be a G-act, and let S := ®,c S, be a G-graded ring. The functors

[ and A give an isomorphism of categories
(GfgA)-Mod = StA-Mod.

Proof. We need to show that I'A = id and AT = id.
Let Q be a unital S#¥4-module. By Proposition 2.19 we then have

TAQ = P =PHr.o=0

a€d a€d

Moreover, the S#4-module structures of Q and (I'A) Q are the same. Indeed, writing
* for the multiplication by S#4 on (I'A)Q, we get

(5]74) *gq = (AQ)((ﬂ) 5))(]7474) = (-&Da)(f’aqéz) = (Jpa)q

foralla € 4,0 € G,s€ Spand g := ¥ ,c 4 paqa € Q-
On the other hand, let M be a Gf¢A-module. For an object 2 € 4,

((AD)M)(a) = p,(TM) = M(a).
Furthermore, if (4,5): 4 — ga is a morphism in G [¢4, then
((AD)M) (4, 5)) (m) = (spa)m = M((, 5)) (m)
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for all m € M(a), so that (AD)M)((a,s)) = M((a,s)). O

Corollary 2.21. Let A be a G-act, and let R be a commutative ring. There exists an
isomorphism of categories between the category of R(G[A)-modules and the category of
unital R[ G [A]-modules.

Proof. This follows from Proposition 2.18 and Theorem 2.20. O

2.5  Kan extensions and action categories

Let G be a commutative monoid. A morphism of G-acts ¢: 4 — B defines a functor

of action categories

0: Gf4 — G[B

wherea — @(a) and (4, ¢g) = (@(a),g) foralla € 4, ¢ € G. Itis important to be able
to reindex R(GfA)-modules as R(G[B)-modules, and conversely. In this section, we
do this by means of adjoint pairs (indy, resy) and (resy, coind,).

We first remark that the notions of final and initial subsets from Examples 1.7
and 1.10 can be generalized. Let #: C — D be a functor between small categories.
We say that « is final if the slice category (d/z) is non-empty and connected for every
d € D. Dually, « is initial if (2/d) is non-empty and connected for every d € D.
Part 1) of the following proposition appears in [18], and part 2) is the dual result.

Proposition 2.22. [18, p. 217, Thm. 1] Let a: C — D be a functor between small
categories, A a preadditive category, and F: D — A a functor.

1) If a is final and colime (F o a) exists, then colimp F exists, and the canonical mor-
phism colime (F o ) — colimp F is an isomorphism.
2) If ais initial and lime (F oa) exists, then limp F exists, and the canonical morphism

limp F — lime (F o a) is an isomorphism.

Before continuing, we will define two functors, L, and R,, from the category of
R(G[A)-modules to the category of R(G[B)-modules. Let M be an R(G[A)-module.
We want to define R(G[B)-modules L,M and R, M. First, for b € B, we set

(LeM)(B) =  M(a) and (RpM)(b) = ]_[ M(a).

acp1(b) acp1(b)
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Secondly, given a morphism (4, 5): b — hb in G[B, we have ha € ¢~ (hb) for all
a € 971(b). We define a morphism

(LoM)((b, b)) : (LeM)(b) = (LpM) (hb)

as follows: If m := X co1() ma € (LpM)(D), then

(LeM) (B, h)m) = > M((a, b)) (m,).

acp1(b)
Similarly, a morphism
(RpM)((b, b)) : (RpM)(b) — (RpM)(hb)
is defined for all 7 := (n,),cp-1(s) € (RpM)(b) by the formula
(RpM)((b, b)) (n) = (M((a, £))(74)) se o1 (1)-

Finally, let z: M — N be a morphism of R(G [ 4)-modules. We will define natural

transformations
Lop: LoM — LoN  and  Rpu: RpM — RpN.
Let b e B. If

me= Y me€(LN)(b) and 7= (24)sep1(s) € (REN) (D),
acp 1 (b)

we set

(Lo)o(m) = > palma) and  (Rop)p(n) = (ta(1))aepr1 ()
acp~(b)

From the definitions of L, and Ry, it is clear that we have a natural inclusion

z':[,¢ — R¢.
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Proposition 2.23. Let ¢: A — B be a morphism of G-acts. Then
ind, = L,.
Proof. Let b € B, and let M be an R(G[A)-module. Recall that by definition

ind, M) (b) = lim M(a).
(indp M)(8) (ag)e(01b) @)

Let 7 be the full subcategory of (¢/b) consisting of all elements of the form (4, 1). We
note that / is a discrete category. Indeed, if there is a morphism /b: (4,1) — (&', 1),
we immediately see that 4/ = ha and » = 1. We wish to show that the inclusion
functor 7: I — (@/b) is final. For this, fix (4,¢) € (¢/b). We must prove that the
slice category ((4, ¢)/7) is non-empty and connected.

First, since gp(a) = 1-¢(ga), we note that (ga,1) € (¢/b), and there is a morphism
g: (a,9) — (ga,1). Hence ((ga,1),g) € ((a,2)/7), so that the slice category is non-
empty. Secondly, we will show that (¢/&) consists of only one element. Suppose that
((a',1),h) € ((a,9)/7). Then (a’,1) € (p/b) and there is a morphism b: (2,g) —
(a’,1). This means that the diagram

o(a) =— b

| A

o(a’)

commutes, implying » = ¢, and furthermore, 42’ = ga. Thus ((g4, 1), g) is the only

element of ((4,¢)/7). Since 7 is final and 7 is discrete, we have

(ind, M) (b) = (c%gM(a) ~ 619@ M(a) = (LpM)(b).
acp”

by Proposition 2.22 1). It is now straightforward to see that these isomorphisms
yield an isomorphism of R(G/B)-modules ind, M — LM, and moreover, a natural

isomorphism ind, — L,. O
If G is an Abelian group, we get a dual result.

Proposition 2.24. Assume that G is an Abelian group. Let o: A — B be a morphism
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of G-acts. Then
coindy, = Ry,

Proof. Let b € B, and let M be an R(G[A)-module. By definition,

(coindy, M) (b) = (a’g§i€r1(1b/¢)M(a).
Let 7 be the full subcategory of (/@) consisting of all elements of the form (4,1). We
note that / is a discrete category, because if there is a morphism b: (4,1) — (4',1),
we immediately see that 4/ = ba and b = 1. We wish to show that the inclusion
functor 7: I — (b/@) is initial. To do this, fix (2,¢) € (b/@). We must prove that
the slice category (7/(a, g)) is non-empty and connected.

First, since 1 - b = ¢ 'p(a) = p(g7'a), we note that (¢"'2,1) € (b/p) and there
is a morphism g: (¢7'2,1) — (4,g). Hence ((¢7'4,1),g) € (i/(4,g)), so that the
slice category is non-empty. Secondly, we will show that (4/p) consists of only one
element. Suppose that ((4’,1),h) € (i/(4,g)). Then (a’,1) € (b/@) and there is a
morphism b: (a’,1) — (4,¢). This means that the diagram

b— o(a’)
N
o(a)

commutes, implying » = g, and furthermore, 2’ = g7'2. Thus ((¢"'4,1), g) is the

only element of ((4,¢)/7). Since 7 is initial and / is discrete, we have

(coind, M) (b) = ( iilr)rleIM(a) ~ E[(b)M(ﬂ) = (R, M) (b).
acp”

by Proposition 2.22 2). It is now straightforward to see that these isomorphisms
yield an isomorphism of R(G[B)-modules coindy M — R,M, and moreover, a nat-

ural isomorphism coind, — R,. O

Corollary 2.25. Assume that G is an Abelian group. Let 9: A — B be a morphism of

G-acts. Then there is a natural transformation

p: indy — coind,
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that is an isomorphism if and only if p~1(b) is finite for all b € B. If M is an R(G[A)-
module, then pyy is an isomorphism if and only if Supp(M) N @~1(b) is finite for all
b€ B.

Proof. We define a natural transformation p: ind, — coind, as the composition
= i =
indy — L, = Ry — coind,,.

Here the first isomorphism is from Proposition 2.23, 7 is the natural inclusion, and
the last isomorphism is given in Proposition 2.24. We immediately see that p is
an isomorphism if and only if direct sums and direct products indexed by ¢~!(4)
coincide for all & € B, and this is equivalent to ¢~!(/) being finite for all b € B.

For the last part of the proposition, let M be an R(G[A)-module, and let & € B.
Then Supp(M)Ne~1(4) is finite if and only if M () # 0 for finitely many 2 € ¢71(b),
and these conditions are true if and only if ps; is an isomorphism. This implies the

claimed equivalence. O]

Remark 2.26. By Corollary 2.14, the category of R(GJA)-modules is isomorphic to
the category of 4-graded R[G]-modules. Let ¢: 4 — B be a morphism of G-acts.

Then the graded module versions of the functors

indy: R(GfA4)-Mod — R(G[B)-Mod and
resy: R(GJ[B)-Mod — R(G[A)-Mod

appear in [28] with several different names:

* If pis surjective, the functor ind, is called p-coarsening and res,, is p-refinement.

e If ¢ is injective, the functor ind, is called p-extension and res, is p-restriction.
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3  FINITELY PRESENTED RC-MODULES

We will assume in the following that C is a small category and R a commutative ring.
Recall from Section 1.5 that an RC-module A1 is

e finitely generated if there exists an epimorphism

(D RIMorc(e; -)] — M

i€l
where 7 is a finite set, and ¢; € C for all 7 € [;

e finitely presented if there exists an exact sequence

P rMorc(d;, )] = € RMore (e, -)] — M — 0,

j€/ iel

where I and / are finite sets, and ¢;,d; € C for all7 € [ and j € /.

3.1 S-presented and S-generated RC-modules

Let § C C be a full subcategory. The notions of S-generated and S-presented modules
will play an important role in the rest of this thesis. Before going into details, we
will recall some facts about the restriction and induction functors along the inclusion
7: § € C from Section 1.6.

The restriction ress: RC-Mod — RS-Mod is defined by precomposition with
7, and the induction indg: RS-Mod — RC-Mod is its left Kan extension along 7.
The induction is the left adjoint of the restriction. Note, in particular, that it thus
commutes with colimits. The counit of this adjunction gives us for every RC-module

M the canonical morphism

1278 indg resSM — M
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which we will use frequently.
Let A be an R-module and ¢ € C. We define an RC-module

A[More(c, —)] :== A ®r R[More(g —)]

by taking a pointwise tensor product. We note that the functor R-Mod — RC-Mod
that sends 4 to A[Mor¢ (¢, —)] is right exact for all ¢ € C.

Proposition 3.1. Let S C C be a full subcategory, A an R-module, and s € S. Then
indg resg A[More(s, —)] = A[More(s, —)].

Proof. By Yoneda’s lemma and the aforementioned adjunction, we have the follow-
ing isomorphisms:
Hompgc (R[More (s, —)1, M) = M(s)
= Hompgg(R[Mors(s, —)], ress M)
= Hompc (indg R[Morg(s, —)], M).

This shows us that indg resg R[Mor¢ (s, —)] = R[Morc(s, —)]. In particular

colim R[Mor¢(s, £)] = R[More(s, d
<olim R[Morc(s )] = R[More(sd)]

for d € C. Since tensoring commutes with colimits, we see that for all d € C,

(indg resg A[More(s, —)])(d) = colim A[Morc (s, £)]
(tu)e(i/d)

= A®p colim R[Morc(s, )]
(tu) e (i/d)

= A ®r R[Morc (s, d)]
= A[Morc (s, 4)].

Therefore indg resg A[Morc (s, —)] = A[More (s, —)] as wanted. Ol

An RC-module M is said to be S-generated if the natural morphism

D M More(s )] — M

seS§
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is an epimorphism. Since this morphism factors through the canonical morphism
un: indsress M — M, we see that M is S-generated if and only if #,/ is an epimor-

phism.

Proposition 3.2. Let S C C be a full subcategory. Assume that M is an S-generated

RC-module, so that we have an exact sequence of RC-modules

0 — K — (P M(s) [Morc (s -)] — M = o.
seS

Then the following are equivalent:
1) The canonical morphism s : indg ress M — M is an isomorphism;
2) If there exists an exact sequence of RC-modules

0>L—>N->M-—0,

where N is S-generated, then L is S-generated,
3) K is S-generated;

4) The sequence

(D K5 [Morc(s -)] = (P M(s)[More (5 )] — M — 0

ses ses

1S exact;

5) For each s € S, there exist R-modules A; and B such that the sequence

P . Morc (s -)] = @D 4. [More(s )] - M — 0

ses seS

is exact.
When these equivalent conditions hold, we say that M is S-presented.

Proof. We will show that 1) = 2) = 3) = 4) = 5) = 1). Assume first that 1) holds,

and that there is an exact sequence of RC-modules

0—>L—>N->M-—NO.
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Since the functor resg is exact and the functor indy right exact, we get a commutative

diagram with exact rows

indg ress L —— indg resg N —— indg resg M —— 0

S

0 L N M 0

where pr is an isomorphism and ux is an epimorphism. An easy diagram chase
shows us that g/ is an epimorphism, so 2) holds.

The implication 2) = 3) is trivial. Assume next that 3) holds. Now the mor-
phism P ¢ K (s)[Morc(s, —)] — K is an epimorphism, so the images of X and
P, s K(s)[Morc (s, —)] are the same in @B, M (s)[Morc(s, —)]. The required ex-
actness then follows immediately.

Trivially 4) implies 5). Finally, let us assume that 5) holds. By Proposition 3.1,

we get a commutative diagram with exact rows

P, s Bi[Morc (s, —)] —— P, g 4;s[Morc (s, )] — indg resg M —— 0

N

@;es B[More(s, —)] —— @;eSA:[MOTC (5, )] M 0

from which we can see that y/ is an isomorphism by the five lemma. O

Remark 3.3. Proposition 3.2 is due to Djament [9, p. 11, Prop. 2.14]. The reader

should be cautious, since we use the term ‘support’ in a different meaning as in [9].

A small category is said to be locally finite, if its every morphism set is finite. The
following proposition is a special case of [10, p. 83, Prop.]. For the sake of clarity,

we present a proof using our notation.

Proposition 3.4. Let C be locally finite. An RC-module M is finitely presented if and
only if there exists a finite full subcategory S C C such that

1) M(s) is finitely presented for all s € S;
2) M is S-presented.
Proof. Assume first that M is finitely presented, so that there exists an exact sequence
(D RIMorc (b, -)] = (P RMorc(a;, -)] — M — 0,
j€J i€l
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where 7 and / are finite sets, and 4;, b; € C for all 7 € I and ;j € /. Evaluating this at

point ¢ € C gives us an exact sequence
R"™ — R™ — M(c) - 0
for some m,, n, € N, so that 1) holds. For 2), by setting

S:=Aa; 1€} U{b|je]}

we immediately see that M is S-presented by Proposition 3.2 5).

Assume next that there exists a finite full subcategory S C C such that 1) and 2)
M(s)[More (s, —)] —
M is an epimorphism. Since M (s) is finitely generated for all s € S, there exists an

hold. Now M is S-generated, so the natural morphism €P

seS

epimorphism R™ — AM(s) for all s € S, where n, € N. Combining these epimor-

phisms, we get an epimorphism

D r*[Morc (5, )] — @D M(2) [Morc (5, )] — M

teS§ teS§

and an exact sequence

0> N— @R”’[Morc(t, -)] > M — 0.

tes

Because M is S-presented, N must be S-generated by Proposition 3.2 2), so there
exists an epimorphism B, ¢ N (¢)[Morg(z, —)] — N. On the other hand, M (s) is
finitely presented, so N (s) is finitely generated for all s € S. Thus there exists an
epimorphism R” — N(s) for all s € S, where m, € N. Hence we get an exact

sequence

@ R™ [Morc (s, -)] — @ R™[More(f, —)] — M — 0.

reS§ reS§

O
From the proof of Proposition 3.4 we immediately get the following corollary:

Corollary 3.5. An RC-module M is finitely generated if and only if there exists a finite
full subcategory S C C such that
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1) M((s) is finitely generated for all 5 € S;
2) M is S-generated.

3.2  Births and deaths relative to .S

From now on, we will assume that C is a poset.
Let M be an RC-module, S C C a subset, and ¢ € C. Write S" := S\{c}. We note
that

li = colim M(d) = (indg resg .
dc<cg IdISSM(d) dgg}irély (d) = (indg resg» M) (c)

Since resg is exact and indg is right exact, we then see that the functor

RC-Mod — R-Mod, M +— colim M (d).
d<c, deS

is also right exact.

Definition 3.6. Let C be a poset, M an RC-module, S C C a subset and ¢ € C. Let
e LQlM(@ = MO
be the natural homomorphism. We define the set of births relative to S by
Bs(M) :={c € C | A1, is a non-epimorphism}
and the set of deaths relative to S by
Dg(M) = {c € C | 21, is a non-monomorphism}.

Remark 3.7. Note that 154, is an epimorphism if and only if the natural homomor-
phism @d«, Jes M(d) — M(c) is an epimorphism. This implies thatif 7 C S C C,
then Bg(M) C By (M).

Example 3.8. Let C be a poset. Let I be an interval of C i.e. a non-empty subset of

C satisfying the condition thatif 2,6 € I,c € Cand 4 < ¢ < b, then ¢ € I. Let R; be
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the RC-module defined on objects by

R, when ¢ € I;
Ri(e) =

0, otherwise,

and with identity morphisms inside the interval. Then the sets of births B¢(R;) and
Br(R;) both consist of the minimal elements of 7. To find the deaths, we note that
R; is TI-presented, so deaths must either be inside 7 or above it (see Remark 4.2).

First, let ¢ € §; == (T I)\I. Now R;(c) = 0. Since S} C T Supp(R;), we see that
colimy, ger R7(d) # 0. Thus ¢ € D;(R;), so S; € D;(R;). Furthermore, it is clear
that colimy., R;(d) # 0 if and only if ¢ is minimal in §j. This implies that exactly the
minimal elements of S| are in D¢ (R;).

Secondly, let ¢ € 1. It is straightforward to see that ¢ € D;(R;) if and only if the
set (1 N [c)\{c} is not connected as a poset. This applies also to D¢ (R;). Set

Sy :={cel| (N lc)\{c} is not connected }.

We conclude that D;(R;) = S; U S,, while D¢(R;) is the union of the set of the

minimal elements of 57, and the set .S,.
Proposition 3.9. Let C be a poset, M an RC-module, and S C C a subset. Then

1) M is S-generated if and only if Bs(M) C S;
2) M is S-presented if and only if B¢(M) U Ds(M) C S.

Proof. Both 1) and 2) are proved similarly. We only prove 2) here. Directly from

the definitions,

M is S-presented

& wp dé(c);lialllelSM(d) — M(c) is an isomorphism for all c € C
S A dcilidngSM (d) — M(c) is an isomorphism for all c € C\S
& Bs(M) U Ds(M) C S,
O

Let S € C. We may think of B¢ (M) as the set of ‘real’ births of 4. The following
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proposition shows that for S-generated modules we may focus only on births relative
to S.

Proposition 3.10. Ler M be an S-generated RC-module. Then Bo(M) = Bs(M).

Proof. By Remark 3.7 it is enough to show that Bg(M) C Be(M). Letc € C\Be (M),
so that the natural homomorphism € ,_ M (d) — M(c) is an epimorphism. Since

M is S-generated, there is an epimorphism

M(d') — M(d)
d' <d, d'eS

for all d < ¢. We may combine these epimorphisms to get an epimorphism

P M) - Mm@,

d<c, des

implying that ¢ € C\Bs(M). O

3.3  S-splitting

Definition 3.11. Let § € C a subset and ¢ € C. If M is an RC-module, denote by
Ss.M the R-module defined by the exact sequence

AMe M,
colim M (d) 5 M(c) 5 S5.M — 0,
d<c, deS

where 7, is the canonical epimorphism. If ¢: A — N is a morphism of RC-

modules, we have a commutative diagram

A c ¢
colim M (d) 225 M (c) —25 Sg. M 0
d<t‘, desS |
J %l | S50
d <+
lim N N S¢.N 0
dc<?, g?s () AN ) e S

where the existence of Sg.¢ follows from the the universal property of cokernels.

This gives rise to a functor Ss,, the S-splitting functor at c. More explicitly,
SseM = M (c) [Im(Apg).
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Remark 3.12. The concept of a splitting functor is due to Liick ([17, p. 156]). For
¢ € C, the original splitting functor S,: RC-Mod — R-Mod is the case § = C of the
S-splitting functor. That is, if M is an RC-module, then

SeM = M(c) [Tm(7a1,),

where 7,4, is the canonical morphism colimg.. M(d) — M(c).

The S-splitting functor at ¢ could equivalently be defined as the composition of the
splitting functor S;: R(S U {c})-Mod — R-Mod and the restriction functor resgy}
by setting

S_g[ = S[ S resSU{[} .
Since both S, and ressyy.} are left adjoints, we see that Sg, is a left adjoint, and thus
additive.

The basic example for us is the following:

Example 3.13. Let £ be a field, § C Z” a subset, and M a £(N”[Z")-module.
We identify M with the corresponding Z”-graded k[Xj, ..., X,,]-module. Denote by
m = (Xy,...,X,) the maximal homogeneous ideal of £[X,..., X,]. If N is the ho-

mogeneous submodule of M generated by the union of M, where s € §, we notice
that
(M/mN), = M. [(mN), = M(c) /Im(ljy[,[) = SsM

for all ¢ € Z”. In particular, this yields an isomorphism of 4-vector spaces,

MmN = EBSS[M

ceZ"

Remark 3.14. Let M be an RC-module and S C C a subset. Note that for all ¢ € C,
we have ¢ € Bg(M) if and only if Sg .M # 0.

Remark 3.15. Let A be an R-module, S C C asubset, s € S,andc € C. LetS" := S\{c}.

If 5 # ¢, we see that
lim A[M ,d)] = colim A[M ,d)] = A[M ,
Lolim, [More (s, d)] olim [More (s, d)] [More (s, ¢)]

by Proposition 3.1. If s = ¢, then obviously colim,, yesA[Morc(s,d)] = 0. In
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particular

A, whens=c¢

Ssc(A[More(s -)]) =
0, otherwise.
Next, we prove a version of Nakayama’s lemma (cf. [31, p. 12, Lemma 6.2)).

Lemma 3.16. Let M be an RC-module and S C C a subset. If Supp(M) NS has a

minimal element c, then S5 .M + 0.

Proof. Assume that ¢ € Supp(M) N S is minimal. Then M (d) = 0 for all 4 € § with
d < ¢. In particular, colimy., ges M(d) = 0. Thus Sg.M # 0. O

Recall that a poset P is called Artinian, if there are no infinite strictly descending
chains of elements of P, or equivalently, if every non-empty subset S C P has a

minimal element.

Proposition 3.17. Let f: L — M be a morphism of RC-modules, where M is S-
generated with an Artinian S C C. If Ss.f: Ss.L — Ss.M is an epimorphism for
all ¢ € Bs(M), then f is an epimorphism.

Proof. We first note that Cokerf is S-generated, since M is S-generated. Suppose
that / is not an epimorphism. Then Cokerf # 0, so there exists s € § such
that (Cokerf)(s) # 0. Hence Supp(Coker /) NS has a minimal element ¢ by the
Artinian property. Now Ss.(Cokerf) # 0 by Lemma 3.16, which implies that
¢ € Bg(Cokerf) C Bs(M). Since Sg, is right exact, we get Coker Ss.f # 0, so Ssf is

not an epimorphism. O

Lemma 3.18. Let S C C be a subset and

0 hNL S0

an exact sequence of RC-modules. The following are equivalent for all c € C:

1) (Kerf)(c) € Im Ans

2) Ss.(7) = 0;

3) Ss.(f) is a monomorphism;
4) Ss.(f) is an isomorphism.
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Proof. The equivalence of 1) and 3) immediately follows from the fact that

Ker Sso(f) = ((Ker £)(¢) + Im Ax) /Im L.

Since S, is right exact, we have Ker S5, (f) = Im Ss.(7). Therefore 2) is equivalent
to 3). The equivalence of 3) and 4) holds, because S, preserves epimorphisms. [

We recall that an epimorphism of RC-modules f: N — M is called minimal, if for
all morphisms g: L — N, fg is an epimorphism if and only if ¢ is an epimorphism.
It is known that an epimorphism f is minimal if and only if for all submodules
N CN

N +Kerf=N = N' =N

A minimal epimorphism f: N — M, where N is projective, is called a projective
cover of M (see e.g. [1, p. 28]).

Remark 3.19. Let 4 be an R-module and ¢ € C. Then 4 may be thought of as an
R{c}-module, and we note that 4[Morc(;, —)] = ind(,} 4. In particular, the functor
A +— A[Morc(c, —)] preserves projectives, since it is the left adjoint of the exact

functor resy;.

Proposition 3.20. Let f: N — M be an epimorphism of S-generated RC-modules,
where S C C is Artinian. If (Ker f)(c) C Im Ay, forall c € C, then f is minimal. The
converse implication holds if Ss.M is projective for all ¢ € S.

Proof. Let (Kerf)(¢) € ImApn, for all ¢ € C. Suppose that N’ + Kerf = N for
some submodule N’ € N. We note that for all c € C, (N')(¢) + ImAn, = N(c).
This implies that S5, N’ = S5 N for all ¢ € C. Since S is Artinian, we may use
Proposition 3.17 to conclude that N’ = N, so /" is minimal.

Next, let / be minimal, and let S5, be projective for all ¢ € S. Thus we can find
sections Ss. M — M(c) for all ¢ € S. These induce a morphism

b: @ Ss.M[More (s )] — @D M () [More (s, -)] — M.
seS seS
Remark 3.15 now implies that S/ = idg, 4 for all ¢ € S, so b is an epimorphism
by Proposition 3.17.
Since S5, M is projective for all ¢ € S, we see that ), S5, M [More (s, )] is also

projective by Remark 3.19 (as a sum of projectives). Thus the morphism 4 factors
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through £, and we get a diagram

P, SsM[Mor. (s -)] AN

xjf

M

that commutes. Now £ is minimal, so ¢ is an epimorphism. Applying functor S,
where ¢ € S, on the diagram, we see that S5/ 0 S5.¢ = id, which implies that Sg.¢ is a
monomorphism, and therefore an isomorphism. Hence S5/ is an isomorphism for
all ¢ € S. This is equivalent to (Ker f)(¢) € ImAn, for all ¢ € C by Lemma 3.18. [

Remark 3.21. Let M be an S-generated RC-module, where S is Artinian. If S5 A1 is
SsM[Mor,(s, —)] — M induced by

sections Sg,M — M(s) is a projective cover of M.

projective for all ¢ € §, the morphism h: @, ¢
Indeed, as noted earlier, / is an epimorphism with S5,/ = id for all ¢ € S. Then
Lemma 3.18 implies that (Ker /) (¢) € Im Ay, for all ¢ € C, and the rest follows from

Proposition 3.20.

3.4  Minimality of births and deaths

We will now show how the sets of births and deaths relative to a subset S C C are in

a sense minimal if the module is S-generated or S-presented.

Proposition 3.22. Let M be an S-generated RC-module, where S C C is Artinian.
Then M is Bs(M)-generated. Furthermore, Bs(M) is the minimum element of the set
{T C S| M is T-generated}.

Proof. Let p be the natural morphism p: @JEBS(M) M(s)[More(s, —)] — M. Re-
mark 3.15 shows us that applying the S-splitting functor at ¢ € S yields the canonical
epimorphism Ss0 = 7: M(c) — Ss.M. Thus p is an epimorphism by Proposi-
tion 3.17.

To show the claimed minimality: If A1 is T-generated for some 7 C S, we have
Bsg(M) € Br(M) € T by Proposition 3.9 and Remark 3.7. O

Next, we introduce a technical lemma.
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Lemma 3.23. Assume that we have a commutative diagram of R-modules with exact

rows
L N M 0

14

0 L N’ M’

where g is a monomorphism. If f is an epimorphism, then b is a monomorphism. The
converse holds if either the natural morphism Coker g — Coker b is a monomorphism or

g is an epimorphism.

Proof. The snake lemma gives us an exact sequence
Ker f — Kerg — Ker b — Coker f — Cokerg — Coker 5,

where Kerg = 0. If Coker f = 0, we get Kerh = 0. If Cokerg = 0, we have Ker b =
Coker f, and we are done. If Cokerg — Coker b is a monomorphism, we see that
Coker f maps to 0, so Kerh — Cokerf is an epimorphism. Since Kerg = 0, the

morphism Ker » — Coker f is also a monomorphism. ([

Lemma 3.24. Let M be an S-presented RC-module, where S C C is Artinian. Assume

that we have an exact sequence of RC-modules
/
0->L—>N>M-—>D0,

where N is S-generated and Dg(N) = 0. Then Ds(M) C Bs(L). Furthermore, if N is
By (M)-generated, we have Bs(L) C Bs(M) U Dg(M).

Proof. Let ¢ € C. Applying colim,., 4es to the exact sequence above, we get a dia-

gram with exact rows

colim L(d) — colim N(d) — colim M(d) — 0
d<c, deS d<c, deS

d<c, deS
lL,cl 21\1',5‘[ )-M[l
0 L(0) NG —F () —— 0

that commutes. Here 1, is a monomorphism, because Dg(N) = 0. To show that
Dg(M) C Bs(L), suppose that ¢ ¢ Bs(L). In this case A, is an epimorphism, so 4,7,
is a monomorphism by Lemma 3.23. Thus ¢ ¢ Dg(M).
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Assume that N is Bs(M)-generated. Since f is an epimorphism, Proposition 3.22
implies that Bs(M) = Bg(N). Suppose that ¢ ¢ Bs(M) U Ds(M). Now Ap, is an
epimorphism, since ¢ ¢ Bs(N) = Bg(M). Moreover, Ay, is a monomorphism
because ¢ ¢ Dg(M). It follows from Lemma 3.23 that A7, is an epimorphism, so
¢ ¢ Bg(L). Thus Bs(L) € Bs(M) U Dg(M). O

Proposition 3.25. Let M be an S-presented RC-module, where S C C is Artinian.
Then M is Bs(M) U Ds(M)-presented. Furthermore, Bs(M) U Ds(M) is the minimum
element of the set {T C S | M is T-presented}.

Proof. Let us examine an exact sequence
0>L—>N->M-—>DO,

with N\ of the form N = @:eBS(M) A;[Morc (s, —)], where 4, is an R-module for
all s € Bg(M). Note that such N always exists by Proposition 3.22. Since M is
S-presented, Proposition 3.2 2) implies that L is S-generated. Using Proposition 3.2
5), we notice that if L is 7T-generated for some 7" C §, then M is (Bs(M) U T)-
presented. Now L is Bs(L)-generated by Proposition 3.22, so we deduce that M/
is (Bs(M) U Bs(L))-presented. We can now use Lemma 3.24 to see that then M/
is(Bs(AM) U Dg(M))-presented.

Suppose next that M is also T-presented for some 77 C S. As in the proof of
Lemma 3.24, we note that Bg(M) = Bs(N). The minimality of Bg(M) in Propo-
sition 3.22 implies that Bs(IN) = Bsg(M) C T, so N is T-generated by Proposi-
tion 3.22. Thus L is T-generated by Proposition 3.2 2). Therefore we must have

Bs(M) C Bp(M) € T and Bs(L) C By (L) € T,
by Proposition 3.9 1) and Remark 3.7. We use Lemma 3.24 to conclude that
Bs(M) U Ds(M) = Bs(L) U Bs(M) € T.

O]

Remark 3.26. Assume that M is an S-presented RC-module, where S C C is Artinian.
Let f: N — M be a projective cover. Then S5 f is an isomorphism for all ¢ € C if
and only if S5, is projective for all ¢ € C.
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To see this, first suppose that Ssf is an isomorphism for all ¢ € C. Since S,
preserves projectives for all ¢ € C, we see that SN is projective, and thus Sg M is
projective.

Conversely, suppose that S5 .M is projective for all ¢ € C. We may now apply
Proposition 3.20 and Lemma 3.18 to get isomorphisms S/ : SN — Ss.M for all
ceC.

Remark 3.27. In [5], Carlsson and Zomorodian define multiset-valued invariants &
and & for a finitely generated Z"-graded £[ X, ..., X, |-module M, where £ is a field.
The multisets & (A1) and & (M) indicate the degrees in Z" where the elements of M/
are born and where they die, respectively. In more algebraic terms, & (A1) and & (M)
consist of the degrees of minimal generators and minimal relations of M equipped

with the multiplicities they occur. Consider an exact sequence
f
0—>L—>N->M—>QO,

where N is a free module and /' a minimal homomorphism. Since M is S-presented
for some finite § C Z”, it is easy to see that & (M) is a multiset where the underlying
set is Bg(M) and the multiplicity of ¢ € Bg(M) is the dimension of M (c). Note
that the choice of S does not matter here, since Bg(M) = Bc(M) by Proposition
3.10. We note that L is S-generated by Proposition 3.2 3), so we may apply a similar
argument to conclude that & (M) is a multiset with Bg(L) as the underlying set and
the dimension of L(c) as the multiplicity of ¢ € Bg(L). The next theorem will show
that Dg(M) is the underlying set of & (M).

Theorem 3.28. Let M be an S-presented RC-module, where S C C is Artinian. Assume
that Ss.M is projective for all c € Bs(M). If

0—>L—>N£>M—>O

is an exact sequence where f is a projective cover, then Bs(L) = Ds(M).

Proof. By Lemma 3.24, it is enough to show that Bg(L) € Ds(M). If ¢ ¢ Bs(M),
then ¢ € Bg(L) implies ¢ € Dg(M) by Lemma 3.24. Let ¢ € Bg(M). Suppose that
¢ ¢ Dg(M). Then 54, is a monomorphism. Since f is minimal, by Proposition 3.20
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and Lemma 3.18, there exists a natural isomorphism
Ssof '+ SscIN = Coker Ay, — Coker A, = Ss.M.

It now follows from Lemma 3.23 that A;, is an epimorphism, which is equivalent

toc ¢ Bg(L). O
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4 PRESENTATIONS WITH FINITE SUPPORT

In this chapter we will prove our main result, Theorem 4.15, which gives a char-
acterization for finitely presented modules. We will assume that C is a poset and

R a commutative ring.

41 S-determined RC-modules

Let M be an RC-module. If § C C is a finite set such that A1 is S-presented, we say
that S is a finite support of a presentation (FSP) of M. In what follows, we are trying

to find a condition equivalent for Af having an FSP.

Definition 4.1. An RC-module M is S-determined if there exists a subset .S C C such
that Supp(M) C 1S, and for every c < d in C

SNle=8SNld = M(c <d) is an isomorphism.
Remark 4.2. Let M be an RC-module and S C C a subset. Denote 7" := 1S. Then the

condition Supp(M) C T of Definition 4.1 is equivalent to the following conditions:

1) M is T-generated;
2) M is T-presented;
3) SN |c=0,then M(c) =0.

To show this, we first note that 1) implies 3), because 1S = 7. Taking the contra-
position of 3), we get Supp(M) C T. Next, note that below every ¢ € Dy (M)
there must be some d € Supp(M) such that d < ¢. Thus Dy (M) C T Supp(M).
Obviously also By (M) € Supp(M). We now observe that if Supp(M) C T, we get

By (M) U Dr(M) € 1Supp(M) €17 = T,

This means that Supp(M) C T implies 2) by Proposition 3.9. Finally, 1) trivially

65



follows from 2).

Proposition 4.3. Let M be an S-presented RC-module, where S C C. Then M is S-

determined.

Proof. Trivially Supp(M) € 1S. If ¢ < d in C, we have a commutative diagram

colim M (e) —— colim M (e)

e<¢ ¢€S e<d, e€eS

with the vertical isomorphisms being components of the canonical isomorphism of

Proposition 3.2, 1). This immediately shows us that A1 is S-determined. O

4.2 Minimal upper bounds

Let § € C. We would like to find conditions under which S-determined implies S-
presented. In general this is false (see Example 4.17), so we first need to apply some

technical limitations on the poset C to guarantee that it is “small” enough.
Notation 4.4. Let S C C be a subset. We denote the set of minimal upper bounds of
S by mubc¢(S).

Definition 4.5. The poset C is weakly bounded from above if every finite S C C has

a finite number of minimal upper bounds in C.

Definition 4.6. The poset C is mub-complete if given a finite non-empty subset S C C

and an upper bound ¢ of §, there exists a minimal upper bound s of S such that s < c.

Remark 4.7. A poset that is weakly bounded from above and mub-complete is called
a poset with property M in [15]. In contrast to [15], we do not require the empty

set to have minimal upper bounds for a poset to be mub-complete.

Example 4.8. If L is a lattice, then L is weakly bounded from above and mub-

complete.

A ‘good’ monoid G in [6] is a cancellative monoid that is weakly bounded from
above as a poset (with the natural order). If G is also commutative, we get the

following description of mub-completeness.
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Proposition 4.9. Let G be a commutative cancellative monoid that is weakly bounded
from above as a poset (with the natural order). Then G is mub-complete if and only if

there exists a maximal common divisor for each g, b € G.

Proof. Assume first that G is mub-complete. Let g, » € G. Since gh is an upper bound
of ¢ and b, there exists a minimal upper bound j € G of g and / such that /j = gh for
some / € G. We claim that / is a maximal common divisor of g and h. We may write

j =ag = bb, where a,b € G. Now
gh=1j = lag = Ibh,

so that ¢ = /b and b = la by cancellativity. Thus / is a common divisor of ¢ and
h. For the maximality, let £ € G be another common divisor of ¢ and 4 such that /
divides k. We may then write £ = &'/, where ¥’ € G. Furthermore, we have ¢ = ck

and b = dk for some ¢, d € G. Combining these equations, we get
lj = gh=ck'lh = gdk'l.

Cancelling /, we see that j = k'ch = k’dg. Furthermore, cancelling £’ yields ch = dg,
another upper bound for g and A. Since j is a minimal upper bound of ¢ and 5, we
must have &’ = 1, proving the maximality of /.

For the other direction, assume that each pair g, » € G has a maximal common
divisor. Let A4 := {hy,..., h,} C G be a finite non-empty set, and let 4 be an upper
bound of H. We now have

d:glblz"':gnhn

for somegy,..., g, € G. Letg’ € G be amaximal common divisor of gy, ..., g,. Hence
there exists g/ € G such that g; = gl¢’ for all 7 € {1,..., n}. Also, d = d’g’ for some
d’ € G. It is now easy to see that the maximal common divisor of g---> gy is1,and

that 4’ is a minimal upper bound of H. O

Notation 4.10. Let S C C be a finite subset. We denote the set of minimal upper

bounds of non-empty subsets of S by

S = U mube (§).

0#S8'CcS
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We notice that if C is weakly bounded from above, then S is finite.

Using the terminology from [6], a set S C C is a framing set of M if every ¢ €
1 Supp(M) has an element s € S N [c, called a frame of ¢, such that M (s < ¢) is an

isomorphism for all s < ¢’ <.

Lemma 4.11. Ifan RC-module M has a framing set S, then M is S-determined.

Conwversely, if C is weakly bounded from above and mub-complete, and M is S-
determined for some finite set S C C, then S is a finite framing set of M. In particular, if
¢ € C, then there exists a frame s € mub(S N [¢) C 8 of c such that SN e =8N |s.

Proof. Assume first that S is a framing set for M. If ¢ € Supp(AM), then there exists
a frame s € S of ¢, and therefore ¢ € 1S. Thus Supp(M) C 1S. Let ¢ < d in C such
that SN e = SN |d. It d ¢ TSupp(M), we have M(c) = M(d) = 0, and we are
done. Otherwise, there exists a frame 5 € S of d. Since S N ¢ = 5 N |d, we see that
s < ¢ < d. Therefore M(c < d) is an isomorphism.

Assume next that C is weakly bounded from above and mub-complete, and A1
is S-determined for some finite set §. Since C is weakly bounded from above, S is
finite. Let ¢ € TSupp(M). Now there exists an element & < ¢ such that M (b) # 0.
Since M is S-determined, we see that SN [¢ 2 SN b # 0. Thus ¢ is an upper bound
of the non-empty set S N |¢, so by mub-completeness there exists a minimal upper
bound s € mub(SN Jc) C & such that s < ¢. It follows that SN [¢ € SN 5. Obviously
s < cimpliesSN s €SN Je. Hence SN s =5N [e. If s < ¢ < ¢, then trivially
SNls=85n]d,so M(s <) is an isomorphism. O

4.3  Finitely presented RC-modules in mub-complete posets

In the next proposition we find out how the minimal upper bounds connect to births

and deaths relative to S. This allows us to prove our main result, Theorem 4.15.

Proposition 4.12. Let C be weakly bounded from above and mub-complete. Let M
be an RC-module that is S-determined for some finite S C C. If By(M) C S, then
D¢(M) C 8.

Proof. Suppose that By(M) C S. This implies that M is S-generated by Proposi-
tion 3.9, so M is By(M)-generated by Proposition 3.22. Let ¢ € Dy(M), so that

Aa. is not a monomorphism. This means that there exist dy,...,d, € S such that
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d; < cforall7={1,...,n}, and a non-zero sum of x; € M(d,),...,x, € M(d,), for
which 7, M(d; < ¢)(x;) = 0. If there exists ¢’ € S such that d; < ¢ < ¢ for all
i € {L,...,n}, we may assume that )", M(d; < ¢’)(x;) # 0, since the homomor-

phism

P md;) - colim M(d)
= d<¢, des

factors through A(c"). Because M is By(AM)-generated, we may also assume that
d; € By(M) C Sforall7 € {1,...,n}.

On the other hand, by Lemma 4.11, we have SN |s = §N ¢ for some frame s € §

of ¢. This implies that d; < sforall 7 € {1,...,n}. If s < ¢, we get a contradiction

T M(d; <5)(x;) = 0. Therefore c =s € 3. O

Corollary 4.13. Lez C be weakly bounded from above and mub-complete. Let M be an
S-determined RC-module, where S C C is a finite subset. Then S is an FSP of M.

Proof. Obviously M is S-determined, since § C §. By Proposition 4.12, it is enough
to show that By (M) C 3, because then Dy (M) < S. The rest now follows from
Proposition 3.9. Since 8 C §', by Remark 3.7 we have B:(M) C By(M). Let c € C.
If ¢ ¢ S, then ¢ has a frame s € § by Lemma 4.11. This means that ¢ ¢ By (M), and
thus By (M) c S. O

We sum up Proposition 4.3 and Corollary 4.13 in the next corollary.

Corollary 4.14. Ler C be weakly bounded from above and mub-complete. An RC-
module M has an FSP if and only if M is S-determined for some finite S C C.

Finally, we get our new characterization of finitely presented modules.
Theorem 4.15. Let M be an RC-module. If M is finitely presented, then

1) M((c) is finitely presented for all ¢ € C;
2) M is S-determined for some finite S C C.

Furthermore, if C is weakly bounded from above and mub-complete, and M satisfies
conditions 1) and 2), then M is finitely presented.

Proof. Using Proposition 3.4, the first part of the theorem immediately follows from

Proposition 4.3 and the second part from Corollary 4.13. O
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Remark 4.16. Let G be a monoid. Theorem 4.15 and Lemma 4.11 show us that the
RG-modules of finitely presented type of Corbet and Kerber ([6, p. 19, Def. 15]) are
the same thing as finitely presented RG-modules.

Furthermore, let 4 be a free G-act that is mub-complete and weakly bounded
from above as a poset. Starting from the isomorphism R4-Mod = A4-gr R[G]-Mod
of Corollary 2.14, and using the fact that being finitely presented is a categorical
property, we get an isomorphism between finitely presented RA4-modules and finitely

presented A-graded R[G]-modules. Taking 4 = G now gives the commutative case
of [6, p. 25, Thm. 21].

Example 4.17. Let C = {4, b} UZ, where a < n and b < n for all n € Z, and Z has
the usual ordering. Then the RC-module M := R[Mor¢(a, —)] ® R[Morc (b, —)] is
obviously finitely presented, but M does not have a finite framing set even though

it is {4, b}-determined. Caution is required here: If we define an RC-module N by
N(2)=N()=R and N(n)=R>

for all » € Z, then N satisfies the conditions 1) and 2) in Theorem 4.15 but is not

finitely presented. This follows from the fact that C is not mub-complete.

4.4  Pointwise stabilizing direct systems

Definition 4.18. Let 7 be a directed set, and let (AM;);e; be a direct system of RC-
modules with morphisms @;;: M; — M; for all 7 < j in I. The system (M;);es is

pointwise stabilizing if for all ¢ € C there exists an element 7, € I such that
i, <1 <] = @5 Mi(c) > M;(c) is an isomorphism.

Remark 4.19. For a pointwise stabilizing direct system (M;);e; of RC-modules as
above, if ¢ € C, then

(CQE]HIMZ') (C) = (CollmMz) (C) = Mz} (C)

This follows from Remark 1.7, since the set {7 € I | 7 > 7.} is final in 1.

Let M be an RC-module. The result we are aiming for, Theorem 4.25, states
that M has an FSP if and only if the functor Hompgc (M, —) preserves the colimits
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of pointwise stabilizing direct systems. This result is mentioned without a proof in
[9, p- 14, Remarque 2.15]. Note the similarity to Proposition 1.12, which states
that M is finitely presented if and only if Hompgc (M, —) preserves the colimits of

direct systems. We will first present a few lemmas.

Lemma 4.20. Denote by Cr the set of finite subposets of C. Then the direct system

(indg resg M) sec; with the natural morphisms is pointwise stabilizing, and

colim indg resg M = M.
SeC f

Proof. Given ¢ € C and S € Cr, we have § C S U {c}, which implies that the set
Croe ={T €Cr|ceT}
is final in Cr. Thus, by Remark 1.7,

colimindg resg M = colim indg resg M.
SeCr SeCy,

On the other hand, we see that if S € Cy,, then trivially

(indg ress M) (c) = colim M (d) = M(c).
d<c deS

This shows us that the direct system (indg resg M )Secf is pointwise stabilizing.
Next, we have the canonical morphisms indgress M — M for all § € Cy that
form a cone from the direct system (indg resg M )Secf to M. Thus, by the universal

property of colimits, there exists a natural morphism

cohm indg resg M — M.
SeC
f

This morphism is in fact an isomorphism: Since colimits are calculated pointwise,
we get

(colim indg resg M) (¢) = (colim indg resg M) (c)
SeCy SeCy,

= cohm(lndg ress M) (c)
SeC fe

= cohmM (c)
SeC e
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= M(c)

for all ¢ € C. We conclude that colimgecf indg resg M = M. O

Lemma 4.21. Let A be an R-module, and c € C. Then A[Morc (¢, —)] preserves colimits

of pointwise stabilizing direct systems.

Proof. Let (N;);c; be a pointwise stabilizing direct system of RC-modules, where the
morphisms are denoted by ¢;;: N; — N; for all 7 < j in /. Given an RC-module M,
by the adjointness of functors 4 ®z — and Homz (4, —), and by Yoneda’s lemma, we

see that

Hompc(A[Morc (¢ —)], M) = Hompe (A ®r R[More(c, —)], M)
= Hompe (R[More (¢, —)], Hompg (A, M))
= Homp (A, M(c)).

On the other hand, since the direct system (N;);es is pointwise stabilizing, there

exists an element 7, € I such that
1> = Ni(c) = N; (o).
Because the set {7 > 7, | 7 € I} is final in 7, Remark 1.7 shows us that

chi[m Hompg (4, N;(¢)) = chim Homg (4, N;(c))
i€ i>i,

1

= colim Hompg (4, N, (c))

121,
Homg (4, N; (c))
= Hompg (4, coli]m]\[l-(c)).
i€

I3

Combining these results, we notice that in the commutative diagram

coli;n Hompc (4[Morc (¢, —)], N;) —— Hompc (4[Morc(¢ —)], coliImNz')
1€ 1€

cqli[rn Hompg (A, N;(c)) — Hompg (4, cqlijrn]\fl' (c))
4SS - 1€

both vertical morphisms and the lower horizontal morphism are isomorphisms.
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Thus the upper horizontal morphism is also an isomorphism. O

Remark 4.22. Finite coproducts of modules of the form 4[Mor¢ (¢, —)] also preserve
the colimits of pointwise stabilizing direct systems. To show this, consider an RC-

module 4 := P ¢ A[Morc(s, —)], where S is a finite set, and 4, is an R-module for

all s € S. Given a pointwise stabilizing direct system (IN;);es, we have

Homgc (4, colimN;) = () Hompge (4, [More (5, =), colim;)
el el el

since S is finite. Lemma 4.21 now shows us that

Hompge (A4, colimN;) = @ colim Hompge (A4;[More (s, —)], N;).
iel e iel

Finally, since colimits commute with each other, using the finiteness of .S again, we

get
Hompe (4, colimN;) =colim @ Hompgc (4;[More (s, —)], N;)
i€l el seS
Ecqli[rn Hompgc (4, N;),
4SS
as desired.

We still need two more lemmas concerning S-presented and S-generated RC-

modules.

Lemma 4.23. Let 0 —» L — N — M — 0 be an exact sequence of RC-modules. If N
is S-presented and L is S-generated, then M is S-presented.

Proof. Consider the commutative diagram

indg resg L — indg resg N —— indg resg M —— 0

Ml Wl Ml

0 L N M 0

where g/ is an epimorphism and gy is an isomorphism. The five lemma now states

that ps is an isomorphism. O

Lemma 4.24. Let M be an RC-module such that M = M, P M.
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1) If M is S-generated, then M, is S-generated.
2) If M is S-presented, then M, is S-presented.

Proof. To prove 1), let M be S-generated. We have a commutative diagram

Des M (5) [More (s, =) ] —— D5 Mi(s) [More (s, -)]

’”Ml lm

M M

where the horizontal morphisms are epimorphisms, and the natural morphism @,/
is an epimorphism because A1 is S-generated. It now follows from the commutativity
of the diagram that ¢y, is an epimorphism, so that A4; is S-generated.

Next, for 2), suppose that A is S-presented. Note that we have an exact sequence
0> M, > M — M; — 0.

where MM, is S-generated by the first statement. Thus we immediately see that A4 is
S-presented by Lemma 4.23. O

We are now ready to prove

Theorem 4.25. Let M be an RC-module. Then M has an FSP if and only if the functor

Hompge (M, —) preserves the colimits of pointwise stabilizing direct systems.

Proof. Assume first that S is an FSP of M. Let (N;);e; be a pointwise stabilizing

direct system of RC-modules. By Proposition 3.2 5), we have an exact sequence

D B.[Morc (s )] = @D 4.[More(s -)] = M — o,

ses ses

where A, and B, are R-modules for all s € S. Let us denote

A= @A;[Morc (5-)] and B:= @Bj[Morc(s, =]

seS seS

Recall that taking colimits of direct systems is exact, and the contravariant Hom-

functor is left exact. Applying these functors on the exact sequence above, and using
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the morphism from Lemma 1.6, we get a commutative diagram with exact rows

0 —— colimHom (M, N;) —— colimHom (4, N;) —— colimHom(B, N;)
iel RC iel RC iel RC

| N

0 —— Hom (M, colimN;) —— Hom (4, colim/N;) —— Hom (B, colim\;)
RC iel RC iel RC iel

where the rightmost two vertical morphisms are isomorphisms because of Remark
4.22. Tt now follows from the five lemma that the leftmost vertical morphism is also
an isomorphism.

Assume next that Hompgc (A, —) preserves the colimits of pointwise stabilizing
direct systems. Denote by Cy the set of finite subposets of C. Lemma 4.20 tells us
that (indg resg M) SeCr with the natural morphisms is a pointwise stabilizing direct
system, and A is the colimit of this system. Combined with the assumption about

Hompc (M, —), this implies that

Hompgc (M, M)

IR

Hompze (M, colim indg resg M)
SECf

IR

colim Hompg¢ (M, indg resg M).
SECf

In particular, the identity morphism id,s factors through indg resg M for some S €

Cr. By the splitting lemma, we then have a split exact sequence
0 > M — indgress M — M’ — 0,

so that M is a direct summand of indg ress M. Finally, using Lemma 4.24, we con-

clude that A has an FSP S. O

We may also use a similar argument to characterize S-generated modules, where

S is finite.

Proposition 4.26. Let M be an RC-module. Then M is S-generated for some finite
subset S C C if and only if Hompgc (M, —) preserves the colimits of pointwise stabilizing

direct systems of monomorphisms.

Proof. Suppose first that M is S-generated for some finite subset S C C, so that we
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have an epimorphism

p: P M) [More(s -)] = M.
seS

Let (N;);es be a pointwise stabilizing direct system of monomorphisms. Since taking
colimits over direct systems is exact, and the contravariant hom-functor is left exact,

by Lemma 1.6 we get a commutative diagram with exact rows

0—— cqli}n Hompe (M, N;) —— cqli]m Hompe (@M(J) [More (s, —)], N,)
1€ 1€
se§

; -|

0 —— Hompg¢ (M, colimN;) —— Hompe (@M(;) [More (s, —)], colimM-)
i€l i€l

seS

Note that the rightmost vertical morphism is an isomorphism by Lemma 4.22. It is
obvious from the diagram that ¢ is a monomorphism. We will show that & is also an
epimorphism. Let /: M — colim;e; N; be a morphism of RC-modules. Since A1 is

S-generated, we get a morphism

g @ M) More (s -)] - colimn;
seS

such that ¢ = fp. By Lemma 4.21, ¢ factors through N; for some ; € 1. Note that N;
is a submodule of colim;e; IN;, because (I\;);e; is a direct system of monomorphisms.
Thus the image of ¢ is in N;. This implies that the image of f is also in N}, so f
factors through N;, which was required.

Conversely, suppose that Hompgc (M, —) preserves the colimits of pointwise sta-
bilizing direct systems of monomorphisms. Denote by Cy the set of finite subposets

of C. For every S C C we have a natural morphism

st D M) More(s )] — M.
SES

We now note that if § € 7' C C, then Im pg C Im p7. Thus we get a direct system of
monomorphisms (Im ps)sec, with inclusions as morphisms. It is easy to see (compare

to Lemma 4.20) that this system is pointwise stabilizing with a colimit /. By the
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assumption about Hompg¢ (M, —), we get

Hompe (M, M) = Hompe (M, colim Im pg) = colim Hompge (A, Im pg).
SECf SECf

In particular, the identity morphism idys factors through Impg for some S € Cy.

Therefore, we have a split exact sequence
0> M —Imps — M —0,

so M is a direct summand of Im pg, again by the splitting lemma. Using Lemma
4.24, we conclude that M is S-generated. O
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5  STRONGLY BOUNDED POSETS

5.1 Modules over strongly bounded posets

Definition 5.1. The poset C is strongly bounded from above if every finite S C C has

a unique minimal upper bound in C. We denote this unique minimal upper bound

by mub(S).

Remark 5.2. The condition of C being strongly bounded from above is equivalent
to C being a bounded join-semilattice. Also note that if C is strongly bounded from

above, then C is weakly bounded from above and mub-complete.

Let C be strongly bounded from above, and let § C C be a finite set. In this section
we consider mub(S) as an element of C, and not as a (one element) set as in Notation
4.4. In particular, every element of S is then of the form mub(S’), where S’ C § is

a non-empty subset. Viewing C as a join-semilattice, we have the join-operation
aV b :=mub(a, b) := mub({4, b}).

Extending this operation to finite sets, we get an operation that coincides with min-

imal upper bounds.

Lemma 5.3. Let C be strongly bounded from above, and let S C C be a finite subset.
Then § = 3.

Proof. An element s € Ky may be written in the form
s = mub(mub(Sy),..., mub(S,)),

where Sy, ..., S, are (finite) non-empty subsets of S. Since the join-operation is asso-
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ciative in join-semilattices, we see that

5= V(\/ ) = \/(OS,-).
=1 =1

This implies that s = mub(S; U - -- U S,,), which belongs to 8 by definition. O

Assume that C is strongly bounded from above. Then C has a minimum element

min(C) = mub(0). Let S € C be a finite subset. Denote
$:=8 U {min(C)}.

We define a poset morphism a5: C — S by setting
a(c) = mub($ N [c)

for every ¢ € C. In other words, 25 maps each ¢ € C to the minimal upper bound
of the elements of S below it. To show that « actually is a poset morphism, suppose
that c < din C. Then SN ¢ € SN |d, which implies that «(c) < a(d).

Proposition 5.4. Let C be strongly bounded from above, and let S C C be a finite subset.

Then as = a; = ag.

Proof. Using Lemma 5.3, we first note that S=5and S =35. Let c € C. We claim
that
mub(S N {¢) = mub(S N [¢) = mub(3 N [o).

The latter equation follows from the fact that for all subsets 77 C C, we have
mub(7) = mub(7 U {min(C)}). (In particular mub(7") = min(C), if 7 = 0.)

For the first equation, since S C 5, we have mub(S N |¢) < mub(5 N [¢). On the
other hand, 8§ N [c is a subset of 8. Thus mub(§ N J¢) € 5= S, where the equation

follows from Lemma 5.3. By the definition of 8, we may now write
mub (8 N J¢) = mub(sy, ..., s,),

where s51,...,5, € S. Furthermore, mub(S N |¢) < ¢, so we also have s;,...,5, < c.
This implies that
mub(sy,...,s5,) < mub(SN [o),
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which completes the proof. O

Encouraged by Proposition 5.4, we just write « instead of «g, if there is no risk

of confusion.

Lemma 5.5. Ler C be strongly bounded from above, and let S C C be a finite subset.
Then 80 |a(c) =80 |cforall c € C.

SN le, because a(c) < c.
a(c). This follows from

Proof. Let ¢ € C. We immediately see that § N |(c)
Suppose that d € 5§ N |c. We need to show that d

IA 1IN

Proposition 5.4, because now
a(c) = ag(c) = mub (3 N Jo).

O

Let C be strongly bounded from above, let § € C be a finite subset, and A an

RC-module. The morphism « gives rise to a natural transformation
Ty: res,resg M — M,
where for any ¢ € C, T, is the morphism
M(a(c) < c): (resyresg M) (c) = M(a(c)) — M(c).

Proposition 5.6. Let C be strongly bounded from above, let S C C be a finite subset,
and M an RC-module. Then M is S-determined if and only if Supp(M) C 1S and

T,: tes,resg M — M is an isomorphism.

Proof. Suppose first that A is S-determined. Let ¢ € C. Then, by definition,
Supp(M) C 1S. Also, M is Ky -presented by Corollary 4.13. Lemma 5.3 now tells us
that M is S-presented, so we have M = ind; resg M by Proposition 3.2. This implies
that

(res, resg M) (c) = M(a(c)) = colim M(d).
d<a(c), de§

Furthermore, by Lemma 5.5, we get

colim AM(d) = colim M(d) = (indg resg M) (c) = M(c).
d<a(c), de§ d<c de§

81



Suppose then that Supp(M) C 1S and 7,: res,resg. M — M is an isomorphism.
Let ¢ < d in C such that S N |c = S N |d. This immediately implies that 2(c) = «(d).
Thus

M(c) = M(a(c)) = M(a(d)) = M(d),

so M(c < d) is an isomorphism. O

5.2 Modules determined by cartesian sets

One approach to understanding RZ”-modules better is to expand the set Z” to include
points at infinity. This idea has been utilized by Perling in [23]. Set Z := Z U {—c0}.
It is easy to see that Z" inherits the poset structure from Z”. Any RZ”-module M

may be naturally extended to an RZ-module M by setting

Mc) = dzilglez*f M(d)

for all ¢ € Z'. More formally, this is the coinduction of M with respect to the
inclusion Z* — Z. The functor M — M establishes an equivalence of categories
between RZ"-Mod and its essential image in RZ -Mod.

Let S C Z' be a finite non-empty subset. We denote by mlb(S) the (unique)

maximal lower bound of S.

Proposition 5.7. Let p;: Z" — 7 be the canonical projection for every i € {1,..., n},
and let S C 7 be a finite non-empty subset. Then

1) mub(S) = (max(pi(S)),...., max(p,(5)));

2) mlb(S) = (min(py(S)),..., min(p,(S))).
Proof. Both 1) and 2) are proved in the same way. We will present the proof of 1)
here. Let 7 € {1,..., n}. The existence of max(p;(S5)) follows from the fact that p;(S)

is non-empty, linearly ordered and finite. Write
d=(dy,...,d,) = mub(S).

We will show that d; = max(p;(S)). First, since 4 is an upper bound of S and the

canonical projection p; preserves order, we see that

d; :Pz(d) = maX(Pz(S))
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Secondly, if max(p;(S)) < d;, then
d/ = (dl, R dz‘—l: max(pl(S)), dl'+1, ceey dn)

is an upper bound of § such that d’ < d, contradicting the minimality of 4. Thus
d; = max(p;(S)). O

=4 . M . . .
Let S € Z be a non-empty subset. We say that the subset S is cartesian, if it is of

the form
S=85X---X%XS5,

where S, ..., S, are subsets of Z. In this situation, we write

where S; = S; U {~c0} C Z for all 7 € {1,..., n}. Note that if S is finite, then S is

finite.

Example 5.8. Letz < b in 2", and write a = (ay,...,a,), b = (by,..., b,). For the

closed interval [4, 6], we have

(4,6 ={c€Z" |a<c<b}

= [a, b1] X -+ X [ay, by].

Therefore

—_—~ o/~

[2, 6] = [a1, b1] X -+ X [ay, b,]

={(ct,...,¢n) |a; S ¢c; <bjor¢=-c0 (1 €{L,...,n})}

Lemma5.9. LetS:=S; x---XS, C7Z be a finite cartesian subset, and let T C S be a
finite non-empty subset. Then

1) mub(7) € S;
2) mlb(T) € S;
3)5=5.

Proof. To prove 1), let p; be the canonical projection 7' — Zforalie{l,..., n}
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From Proposition 5.7 1), we get that

mub(7) = (max(p;1(7)),..., max(p,(T))).

Thus mub(7) € S, because p,(T) C p;(S) = S; forall7 € {1,..., n}.

Next, the proof for 2) is done in the same way as 1), this time using Proposition
5.7 2).

Finally, for 3), we note that S is finite and cartesian, so 1) implies g' = S. Since S

. . . =
already contains the minimum element of Z, we get

Ll
Il

SU{(=o0,..., —00)}
SU{(~o09,...,—0)}
S.

O]

LetS =85 %x---%xS, C 7" be a finite cartesian subset. Since g' =S by Lemma 5.9

. —4 =
3), we have a poset morphism « := a5: Z' — S, where

a(c) = mub(S N L)

for all ¢ € Z'. By Lemma 5.9 2), we may define a “dual” poset morphism B :
ﬂg: E - S s with
B(c) = mlb(S N Te)

for all ¢ € S. Here the set S N ¢ is always non-empty, because S is final in S.

Proposition 5.10. We write «; := a5 and B; := fs, forall i € {1,...,n}. Forc :

(... 0) €Z, we have

1) a(0) = (@), .., 2.(ca))s
2) ifc €S, then B(c) = (Bi(cr), ..., Bn(cn)).

Proof. To prove 1), we will first show that
Pz(g N lC) = *?z N lcz"

where p;: 7" — 7 is the canonical projection for all 7 € {1,..., n}. Since pl-(g’) =S
and p;(l¢) = l¢;, we see that p,-(gw N lc) € 8; N ¢;. For the other direction, suppose
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that 4 € S; N |¢;. Then d < ¢;, so we have an element
d = (-c0,...,—00,d, —00,...,—c0) € SN |¢

such that p;(d") = d. Hence pl-(g' N le) = S; N le;. Now, using this result and
Proposition 5.7 1), we get

2(c) = mub(S N [c)
= (max(i Nlec),..., max(S_n N len))

= (a(a), ..., an(cy)).
For 2), the proof is similar. Let ¢ € S. We will first show that
p:(SNTe) =8 NTe

From p;(S) = S; and p;(Tc) = Te;, we see that p;(S N Tc) € S; N T¢;. Next, suppose
that d € S; N 7¢;. Since ¢ € S, there is an element 5 := (s1,...,5,) € S such that s > c.

Because d > ¢; and S is cartesian, we again have an element
’
d = (1.5 d St .55,) €SN Tc

such that p;(d") = d. Thus p;(SNTc) = S;NTc. To finish the proof, we use Proposition
5.7 2):

B(c) = mlb(S N Te)
= (min(S; N Tey), ..., min(S, N Tc,))
= (ﬂl(cl)’ cees ﬂn(fn))

We note that « and 8 o « are “continuous” in the following sense.
°_ . —
Proposition 5.11. Letc:= (cy,...,c,) €Z .

1) If N is an RS-module, then
dz},iglezn N(a(d)) = N(a(c)).
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2) If Q is an RS-module, then

lim _Q((8oa)(d) = Q((Boa)(c))

d>c, deZ”

Proof. To show 1), suppose that N is an RS-module. We define an element ¢’ :=
(c)p..0r0p) € 7" as follows: For any 7 € {1,..., n}, we set 2; = min(S; N Z), if it exists,

and

;-

, max(c;, 0), if S;NZ = 0;
=
max(c;, a; — 1), otherwise.

This guarantees that we always have ¢ < ¢’ and ¢’ € Z". With the notation from

Proposition 5.10, we may write

a(c) = (ai(cr), ..., an(cn)).

Let7 € {L,...,n}. If ;N Z = 0, then ;(c}) = —c0 = ,(¢;). Similarly, if ¢! = 2, -1,
then a;(c/) = —00 = 2,(¢;). Thus a(c) = a(¢’) in all cases. Since 2 is a poset morphism,

we see that for all d € Z” such that c < d < ¢/,
a(c) = a(d) = a(),

and therefore

N(a(c)) = N(a(d)) = N(a(c)).

Furthermore, because the set {d € Z" | ¢ < d < ¢’} is an initial subset of {d € Z”" |
¢ <d}, Remark 1.10 shows us that

li N = li N ~N .
de, dez (=) c<dse, dez (a(d)) = N(a(c))

Next, for 2), let Q be an RS-module. Now resg Q is an RS-module, so by 1), we

have

1R

dz},i?ilezn(resfg Q)(a(d)) = (resg Q)(a(c)).

On the other hand, by definition, for all ¢ € Zn,

(resg Q) (a(e)) = Q(B(a(e))) = Q((B o a)(e)).
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This means that we may write the above isomorphism as

lim Q((8oa)(d) = Q((Boa)(c))

d>c, deZ”

Corollary 5.12. Let N be an RZ -module, and let c € Z". Then
1) limgs,, gezs N(a(d)) = N(a(c));
2) limgs, gezr N((Boa)(d)) = N((Bo2)(0)).
Proof. For 1), we note that resg N is an RS-module, where (res N)(d) = N(d) for

all d € S. We may then apply Proposition 5.11 1) to get the result. For 2), we use
Proposition 5.11 2) on the RS-module resg N. O

5.3  Finitely determined modules

Let M be an RC-module. In [19, p. 24, Def. 4.1], Miller defines an encoding of M
by a poset D to be a poset morphism /: C — D and an RD-module N such that
resp N = M. Furthermore, as defined in [19, p. 25, Ex. 4.5], an RZ"-module M is
finitely determined, if it is has an encoding by the convex projection 7: Z" — [a, b]
for some 2 < b in Z”. Here the convex projection 7 takes every point in Z” to its

closest point in the closed interval
(4,6 ={ce€Z" |a<c<b}

If we write 2 = (ay,...,4,) and b = (by,..., b,), we get a formula for 7, where for

any ¢ := (cy,...,¢,) €27,

W(C) = (771 ([1)1 ey Ty (Cn)):

with

7;(c;) = max(a;, min(c;, b;))

forall7 € {1,..., n}. This definition of a finitely determined module may seem a bit
different from the one given in the introduction, but the definitions are equivalent
([19, p. 32, Remark 5.2]). Note that, unlike Miller, we will not require R to be a

field, or finitely determined modules to be pointwise finite dimensional.
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Remark 5.13. Let M be an RZ"-module. Then M is finitely determined with the
encoding convex projection 7: Z" — [a, b] if and only if M = res, res, ;) M. Indeed,
if M = res, N for some R[4, b]-module N, then for all ¢ € Z”, we have

M(c) = (resz N)(c) = N(7(c)) = N(z(7(c))) = M(z(c))

because for all c € Z”, z(%(c)) = 7(c).

We would like to show that the notion of finitely determined is consistent with
our notion of S-determined, when § is finite. While the requirement that Supp (M) C
1S does not necessarily hold for finitely determined modules, we do have the follow-

ing:

Proposition 5.14. Let M be an RZ"-module, and let a,b € Z" such that a < b. Set
w=(1...,1) €z

1) If M is [a, b]-determined, then M is finitely determined with the encoding convex

projection w: Z" — [a — u, b].

2) If Supp(M) C Ta and M is finitely determined with the encoding convex projec-
tionmw: Z" — |a, b], then M is [a + u, b]-determined.

Proof. For 1), suppose that M is [4, b]-determined. Let ¢ := (cy,...,¢,) € Z”, and
let 7: Z" — [a — u, b] be the convex projection. We note that if ¢; < 4, for some
7 €{l,...,n}, then also 7;(¢;) < a;, so that ¢ 7(c) ¢ Supp(M). Otherwise ¢ > 4, in
which case 7(c) < ¢ and mub ([4, 6] N |7(c)) = mub ([4, 6] N |c). Thus M(7z(c)) —
M(c) is an isomorphism by the definition of [4, b]-determined modules, and M =
res; res[,—y 5] M.

To prove 2), assume that Supp(M) C T4 and M is finitely determined with the
encoding convex projection 7: Z" — [a, b]. Let ¢ := (¢y,...,¢,) € Z". Suppose that
¢; < a; for some 7 € {1,...,n}. From the condition Supp(M) C T4, we see that
M(c) = 0. Since M is finitely determined, we also have M (c) = M(z(c)) = 0. Thus
M(c) =0,if ¢; < a; for some 7 € {1,..., n}. If this is not the case, we have ¢ > 2 + .
Letc<dinCsuchthata+u <c<dand [a+u,b]N|c=[a+ub]lN]d This
implies that 7(c) = 7(d), so M(c < d) is an isomorphism. O
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Extending to Z"

Let 2 < b in Z". We will now shift our focus to RZ -modules. With the notation
from Section 5.2, we will view the case § = [4, b]. In particular, we have « = a7

and 8 = f|,]. Proposition 5.10 gives us formulas for  and 8. If ¢ := (¢c1,...,¢,) € zZ

and d := (d,...,d,) € [a, b], then
a(c) = (a1(c1),...,an(c,)) and f(d) = (Bi(dh),...,B.(dy)).
Here ; := ag and ; := fs, for all 7 € {1,..., n}. Explicitly,

— oo, if ¢; < ay;
a;(¢;) =3¢y ifa; <¢; < bs and B;(d;) = {
by, if¢; > by,

a if dl' = —09;

d;, otherwise.

for every i € {1,..., n}. The next proposition shows us that the composition S o « is

. . . =
an extension of the convex projection 7 from Z” to Z .

Proposition 5.15. Let 7: 2" — |[a, b] be the convex projection, and let c € Z". Then

7(c) = (8o a) (o)

Proof. Suppose first that n = 1. Recall that 7(¢) = max(4, min(¢, 4)). Now there are

three cases:

e Ifc €[4 0], then (Boa)(c) =p(c) =c=n(c).
e Ifc<a,then (Boa)(c) =p(—) =a=mn(c).
e If¢> b, then (Boa)(c) =4(b) =b=n(c).

Suppose next that # > 1. Using Proposition 5.10, we may write

a(c) = (a(a)s...,an(c)) and  B(d) = (bi(dy),..., Bu(dn))

for all d € [4, b]. Similarly, also recall

w(c) = (m(a), ..., Tulcn))-
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It now follows from the case » = 1 that

(Boa)(c) =plar(cr)s..., an(cn))
= (Broa)(c)s..., (Bnoan)(cn))
= (m(a)s ..., Tulcn))
=7(c).

Corollary 5.16. Let [a,b] C Z", and let N be an R|a, b]-module. Then

res;y N = resgo, N.
Proof. Letc € Z . From the definitions, we get
» N = i <N)(d)= i N(z(d)).
(o) = lim(rese N)(d) = lim  N(x(d)
Proposition 5.15 and Proposition 5.11 then show us that

i N(z(d) = lim N((Boa)d)) = N((foa)c)) = (resgor N)(c).

O]

Proposition 5.17. Let M be an RZ"-module, and let c € [a, b]. Setu .= (1, 1,...,1) €
Z".

1) If M is finitely determined with the encoding convex projection w: 7" — |a, b],
then M (c) = M(p(c)).

2) If M is [a + u, b)-determined, then M(c) = M (B(c)).

Proof. To show 1), suppose that M is finitely determined with the encoding convex
projection 7: Z” — [a, b]. Then, by the definition of M,

M(c) = dzilglezn M(d).

Because M1 is finitely determined, we have M (d) = M(%(d)) for all d € Z". This
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implies that
M =~ lim M(z(d)).
(c) 26)1 L (7(d))

We may now apply Corollary 5.12 to see that M(c) = M(B(a(c))). Note that
c€[ab] implies a(c) = ¢c. Thus M(c) = M(B(c)).

Next, to prove 2), let M be [a + u, b]-determined. Since ¢ < B(c), it is then enough
to show that [z +# 6] N [c = [a+u 6] N 1B(c). We instantly have |c C |8(c). For
the other direction, let d := (dy,...,d,) € [a+u,b] N 1B(c). We want to show that
d < c. Recall that we may write 8(c) = (8i(c1), ..., 8,(c,)), where

a;, if ¢ = —00;
[gz‘(cz') =

¢;, otherwise.

forall7 € {1,...,n}. Suppose that 7 € {1,..., n}. If B;(¢;) = ¢;, we have d; < B;(¢;) =
¢;. Otherwise, if 5;(¢;) = a;, we must have d; = ¢; = —co, because d;, ¢; € [a; +1, b;].

We conclude that d < c. O
The next Corollary is a direct consequence of Proposition 5.17.
Corollary 5.18. Let M be an RZ"-module. Set u := (1,1,...,1) € Z".

1) If M is finitely determined with the convex projection mw: Z" — |[a, b), then

rest = resp resy,, ) M.

2) If M is [a + u, b]-determined, then

resmM = resp res[,,p) M.

We will now present the main result of this chapter.

Theorem 5.19. Let M be an RZ"-module. Then M is finitely determined if and only
if M is S-determined for some finite S C 7. In particular, we have:

1) If M is finitely determined with the encoding convex projection : 7" — |a, b),

then M is |a, b]-determined;

2) If M is [a + u, b]-determined, where u := (1,...,1) € 2", then M is finitely deter-

mined with the encoding convex projection w: Z" — |a, b].
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Proof. Suppose first that M is finitely determined. Let z: Z" — [4, ] be its en-
coding convex projection. Now, since M is finitely determined, we have A1 =
res, res|, 5] M, as stated in Remark 5.13. By Corollary 5.16 and Corollary 5.18,

respectively, we get

M = resyres[,p) M = respo, res[,,p) M = res, resg resy,p) M = res, resWM.

This means that A is [4, b]-determined by Proposition 5.6.

Next, suppose that A7 is S-determined for some finite S C Z . Since S is fi-
nite, we may assume that § C [a+ub] for some a,b € Z". Recall that if M
is T-determined and 7" C 7", then M is T’-determined. This implies that A1 is
both [4 + #, b]-determined and [4, b]-determined. Using Proposition 5.6, we see

that M = res, resmﬂ . Applying Corollary 5.18 and Corollary 5.16, respectively,

a,

shows us that

M = res, resWM = res, resp res|y, ) M = reSgo, r€8[ 45 M = resy resy,p) M.

Restricting this to Z”, we get the required result by Remark 5.13. O

Example 5.20. Let M be an RZ*-module that is defined on objects by

. {R, if ¢ < (0,0);

0, otherwise,

for all ¢ € Z2, and where a morphism R — R is always idz. Then A is finitely
determined with the convex projection 7: Z> — [(0,0), (1,1)]. Now, by Theorem
5.19 1), M is [(0,0), (1, 1)]-determined. Here [(0,0), (1,1)] is the set

{(—c0, =), (0, —e0), (=00, 0), (1, —0), (=00, 1), (0, 0), (0, 1), (1, 0), (L, 1) }.
In particular, we have
M (=00, —00)) = M ((=00,0)) = M((0, —c0)) = M ((0,0)) = R,
and

M((—00,1)) = M((L, —o0)) = M((0,1)) = M((1,0)) = M((1,1)) = 0.
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Furthermore, using Theorem 4.15, we see that M1 is [0, 1]-presented. In more con-

=2
crete terms, we have an exact sequence of RZ -modules
K—>N->M-—>0,

where
N = R[Mor((—00, —0), -)]

and
K = R[Mor((1, =00), =)] & R[Morz2 ((=0o, 1), -)].

Admissible join-sublattices

Recall that a subset L C Z is a join-sublattice if mub(S) € L for every finite subset
S C L. Note that this is equivalent to the condition that L = L. Given a join-
sublattice L C Z, following Perling in [23, pp. 16-19, Ch. 3.1], we define the zip-
functor

zip; : RZ*-Mod — RL-Mod

and the unzip-functor
unzip, : RL-Mod — RZ"-Mod.

Contrary to Perling, we do not assume that R is a field. The zip-functor maps an
RZ"-module M to the RL-module res; M, whereas he unzip-functor maps an RL-
module N to an RZ -module unzip, N defined by

b , if ;
(unzip, N)(c) = {N(mu (LNnlo), ftLNlc#0

0, otherwise.

for all ¢ € Z". Note that Supp(unzip , N) € TL.

Remark 5.21. Tt turns out that unzip, is essentially the same thing as res,, when
L is finite and « := 7. There is the slight complication that unzip, is defined for
RL-modules, while res, is defined for RL-modules. We may, however, extend an
RL-module N to an RL-module N by setting

N((=09,...,—00)) =0,
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if (=00,...,—00) ¢ L, and N(c) = N(c), otherwise. Defined in this way, we see that

unzip, N = res, IN.
Given an RZ"-module M, the join-sublattice L is called M-admissible in [23] if the

condition M = unzip ;. zip; M is satisfied. This leads to our following proposition.

Proposition 5.22. Let M be an RZ"-module, and L a finite join-sublattice. Then L is
M-admissible if and only if M is L-determined.

= . . .
Proof. Let ¢ € Z . With the earlier notation, we see that

P

unzip; zip, M = unzip, res; M = res, res; M,

where

- res, ,]_M , .fLﬂ + 0’
(resﬂ I'CSLM)(C) — {( €S, reSL )(C) i lc

0, otherwise.

Assume first that M = unzip, zip, M. If LN [¢ = 0, we have M(c) = 0 by the
definition of unzip,. But in this case a(c) < ¢, so that L N |2(c) = 0, and using the

definition of unzip, again, we get
(res, resy M)(c) = M(a(c)) = 0.

On the other hand, if there exists an element d € LN |c, then M(c) = (res, res 7 M)(c)

by the above formula. Since these RZ-modules are isomorphic on all objects, we have

M = res, res; M,

and Supp(]_M ) C 1L, so M is L-determined by Proposition 5.6.
Conversely, suppose that M is L-determined. By Proposition 5.6, we have M =
res, resZ]l_4 and Supp(]_\/[ ) € TL. The above formula shows us that

(unzip, zip, M)(c) = (res, resy M)(c)

forallc € TL. If ¢ ¢ TL, then ¢ ¢ Supp(]_M), which means that M(c) = 0. In this
case, we also have (unzip, zip, M)(c) = 0 by the definition of unzip,. Thus we have
an isomorphism

M = unzip, zip; M. O]

94



BIBLIOGRAPHY

[1] L. Assem, A. Skowronski, and D. Simson, Elements of the representation theory of associative alge-
bras: Volume 1: Techniques of representation theory, Vol. 65, Cambridge University Press, 2006.

[2] M. Beattie, A generalization of the smash product of a graded ring, Journal of Pure and Applied
Algebra 52 (1988), no. 3, 219-226.

[3] P. Bubenik, V. De Silva, and J. Scott, Metrics for generalized persistence modules, Foundations of
Computational Mathematics 15 (2015), no. 6, 1501-1531.

[4] P. Bubenik and N. Mili¢evi¢, Homological algebra for persistence modules, Foundations of Compu-
tational Mathematics (2019), 1-46.

[5] G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete & Compu-
tational Geometry 42 (2009), no. 1, 71-93.

[6] R. Corbet and M. Kerber, The representation theorem of persistence revisited and generalized, Journal
of Applied and Computational Topology 2 (2018), no. 1-2, 1-31.

[7]1 V. de Silva, E. Munch, and A. Stefanou, Theory of interleavings on categories with a flow, arXiv
e-prints (June 2017), arXiv:1706.04095, available at 1706.04095.

[8] L Dell’Ambrogio and G. Stevenson, On the derived category of a graded commutative noetherian
ring, Journal of Algebra 373 (2013), 356-376.

[9] A. Djament, Des propriétés de finitude des foncteurs polynomiaux, Fundamenta Mathematicae 233
(2016), 197-256.

[10] P. Gabriel and A. V. Roiter, Representations of finite-dimensional algebras, Vol. 73, Springer Sci-
ence & Business Media, 1997.

[11] L Garcia-Marco, K. Knauer, and G. Mercui-Voyant, Cayley posets, arXiv e-prints (August 2019),
arXiv:1908.09308, available at 1908.09308.

[12] H. A. Harrington, N. Otter, H. Schenck, and U. Tillmann, Stratifying multiparameter persistent
homology, SIAM Journal on Applied Algebra and Geometry 3 (2019), no. 3, 439-471.

[13] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der mathematischen Wis-
senschaften, vol. 332, Springer Berlin Heidelberg, Berlin, Heidelberg (eng).

[14] K. P. Knudson, A refinement of multi-dimensional persistence, Homology, Homotopy & Applica-
tions 10 (2008), no. 1.

[15] J. Lawson, The upper interval topology, property m, and compactness, Electronic Notes in Theoret-
ical Computer Science 13 (1998), 158-172.

95


1706.04095
1908.09308

[16] M. Lesnick and M. Wright, Interactive visualization of 2-d persistence modules, arXiv preprint
arXiv:1512.00180 (2015).

[17] W. Liick, Transformation groups and algebraic k-theory, Springer, 1989.

[18] S. Mac Lane, Categories for the working mathematician, Vol. 5, Springer Science &’ Business Media,
2013.

[19] E. Miller, Homological algebra of modules over posets, arXiv e-prints (July 2020),
arXiv:2008.00063, available at 2008.00063.

[20] B. Mitchell, Rings with several objects, Advances in Mathematics 8 (1972), no. 1, 1-161.

[21] C Nastasescu, F Van Oystaeyen, and Z. Borong, Smash products for g-sets, clifford theory and duality
theorems, Bull. Belg. Math. Soc 5 (1998), 389-398.

[22] C. Nastasescu and F. Van Oystaeyen, Methods of graded rings, Springer, 2004.

[23] M. Perling, Resolutions and cobomologies of toric sheaves: the affine case, International Journal of

Mathematics 24 (2013), no. 09, 1350069.
[24] N. Popescu, Abelian categories with applications to rings and modules, Vol. 3, Academic Press, 1973.
[25] M. Prest, Purity, spectra and localisation, Vol. 121, Cambridge University Press, 2009.
[26] B. Richter, From categories to homotopy theory, Vol. 188, Cambridge University Press, 2020.
[27] E. Riehl, Category theory in context, Courier Dover Publications, 2017.
[28] F. Rohrer, Toric schemes, Ph.D. Thesis, 2010.

[29] M. Scolamiero, W. Chachélski, A. Lundman, R. Ramanujam, and S. Oberg, Multidimensional
persistence and noise, Foundations of Computational Mathematics 17 (2017), no. 6, 1367-1406.

[30] B. Stenstrom, Rings of quotients. an introduction to methods of ring theory, Springer, 1975.

[31] A. Tchernev and M. Varisco, Betti categories of graded modules and applications to monomial ideals
and toric rings, arXiv e-prints (May 2016), arXiv:1605.09748, available at 1605.09748.

[32] T. tom Dieck, Transformation groups and representation theory, Vol. 766, Springer, 2006.

[33] A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete & Computational
Geometry 33 (2005), no. 2, 249-274.

96


2008.00063
1605.09748







	kansilehti_klemetti
	vaitos_paino
	Introduction
	Preliminaries
	Basic properties of RC-modules
	Additive and R-linear functors
	Order theory
	Colimits and limits
	Finiteness conditions
	Kan extensions

	Modules over a monoid act
	Monoid action
	Automorphic actions
	Action categories over a graded ring
	Category algebras and smash products
	Kan extensions and action categories

	Finitely presented RC-modules
	S-presented and S-generated RC-modules
	Births and deaths relative to S
	S-splitting
	Minimality of births and deaths

	Presentations with finite support
	S-determined RC-modules
	Minimal upper bounds
	Finitely presented RC-modules in mub-complete posets
	Pointwise stabilizing direct systems

	Strongly bounded posets
	Modules over strongly bounded posets
	Modules determined by cartesian sets
	Finitely determined modules

	Bibliography

	Tyhjä sivu
	Tyhjä sivu



