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Abstract: We address the specular properties of Bessel-correlated fields, generated by illumi-
nating a tilted rotating plane-parallel glass plate with a coherent Gaussian beam and passing the
output beam though a mirror-based wavefront folding interferometer. This device allows us to
produce beams whose specular properties are preserved in propagation. In the far zone, the spec-
ular nature of these partially coherent fields is shown to produce intensity-profile oscillations in
the sub-diffraction-limit scale. The analytical results at various propagation distances are verified
experimentally by using another wavefront-folding interferometer for coherence measurements.
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1. Introduction

The concept of specular cross-spectral density (CSD) functions was introduced by Gori and
his collaborators [1] already in 1987. However, the properties and propagation features of
specular beams have received only little attention since then [2,3], and the first experimental
demonstrations were provided only recently [4]. In Ref. [4], beamlike fields with specular
(and antispecular) CSDs were synthesized from Gaussian Schell-model incident beams using a
traditional retroreflecting prism-based wavefront-folding interferometer (WFI) and characterized
using Young’s interferometer.

In the experiments reported in Ref. [4], the characteristic features of specular and antispecular
fields (such as the cross-like structure of the CSD) were verified, but only at the plane of the
beam waist. Studies of propagated beams proved virtually impossible because diffraction from
the prism edges of the interferometer produces a pronounced cross-like and rapidly expanding
disturbance in the intensity profile of the field. This phenomenon effectively hides the specular
characteristics of the field, however sharp the prism edges are. However, recent developments
in coherence-measurement devices have lead to the introduction of WFI variants based on
planar mirrors instead of prisms [5,6]. These devices are free from prism-edge diffraction
effects and thereby excellent candidates also for performing the specular transformation to create
disturbance-free specular or antispecular beams. In this paper we use such a device to create
Bessel-correlated beams with specular CSDs, and to study their free-space propagation.

We begin with an introduction of the 2D specular transformation in Sec. 2, which is realizable
with a 2D WFI, and to describe the free-space propagation of specular fields in general. In
Sec. 3 we proceed to define the specific class of Bessel-correlated fields that we employ for
our experiments and consider their propagation features after the specular (or antispecular)
transformation. Their main physical features are highlighted in Sec. 4, and illustrated in Sec. 5.
In Sec. 6 we describe the experimental setup and provide verification of the main theoretical
results, including the super-oscillating nature of the far-zone intensity distribution of partially
coherent specular beams. Finally, conclusions are drawn and some possible future directions of
the work are discussed in Sec. 7.
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2. Specular transformation

Let us consider a spatially partially coherent light beam propagating along the z-axis, assuming
that the CSD at a plane z = z0 has the form

W0(x1, y1, x2, y2, z0) = ⟨E∗
0(x1, y1, z0)E0(x2, y2, z0)⟩, (1)

where E0(x, y, z) is the electric field at the position (x, y, z) in cartesian coordinates, and we have
left the dependence of the CSD on the angular frequency ω implicit for brevity. Specular and
antispecular fields can be generated from any arbitrary field via the specular transformation

W(x1, y1, x2, y2, z0) =
1
2
[W0(x1,−y1, x2,−y2, z0) +W0(−x1, y1,−x2, y2, z0)]

+
1
2
[W0(x1,−y1,−x2, y2, z0) exp (iϕ) +W0(−x1, y1, x2,−y2, z0) exp (−iϕ)] ,

(2)

where ϕ is a real number that can be interpreted as a phase delay. The transformed field is called
specular if ϕ = 2πn and antispecular if ϕ = 2πn + π/2, with n being an integer. Therefore, for
these two phase-delay values, the CSD has the property

W(−x1,−y1, x2, y2, z0) = ±W(x1, y1, x2, y2, z0), (3)

which corresponds to a specular (antispecular) CSD if the positive (negative) sign is chosen on
the right-hand side of the expression. One can also define fields that are specular or antispecular
in one dimension by demanding either that W(−x1, y1, x2, y2, z0) = ±W(x1, y1, x2, y2, z0) or that
W(x1,−y1, x2, y2, z0) = ±W(x1, y1, x2, y2, z0). Transformations of the type indicated in Eq. (2)
can be performed by first splitting the input field into two parts and then recombining them after
introducing a path-length difference corresponding to the desired phase difference ϕ.

The k-space (far zone) behaviour of the field is specified by the angular correlation function
(ACF), which describes coherence between different spatial frequencies

(︁
kx, ky

)︁
. The ACF is

defined as

T(kx1, ky1, kx2, ky2) =
1

(2π)4

⨌ ∞

−∞

W(x1, y1, x2, y2, z0)

× exp
[︁
i
(︁
kx1x1 + ky1y1 − kx2x2 − ky2y2

)︁ ]︁
dx1dy1dx2dy2.

(4)

In analogy with Eq. (3), the field is called specular or antispecular in the spatial-frequency
domain if the conditions

T(−kx1,−ky1, kx2, ky2) = ±T(kx1, ky1, kx2, ky2) (5)

hold. Clearly, a specular (antispecular) CSD leads to a specular (antispecular) ACF. Propagation
of beam-like fields into a plane z>z0 is governed by the paraxial form of the angular spectrum
representation,

W(x1, y1, x2, y2, z) =
⨌ ∞

−∞

T(kx1, ky1, kx2, ky2) exp
[︃
i∆z
2k0

(︂
k2

x1 + k2
y1 − k2

x2 − k2
y2

)︂]︃
× exp

[︁
−i

(︁
kx1x1 + ky1y1 − kx2x2 − ky2y2

)︁ ]︁
dkx1dky1dkx2dky2,

(6)

where ∆z = z − z0 and k0 = ω/c = 2π/λ0 is the vacuum wave number at wavelength λ0. It
is readily seen from Eqs. (6) and (4) that the specularity of the CSD is preserved in paraxial
propagation, i.e., Eq. (3) holds also for any z>z0.

In practice, the transformation in Eq. (2) can be realized by placing a perfectly aligned WFI,
with a phase delay ϕ between the arms, in the Fourier plane of an imaging system as illustrated in
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Fig. 1. (a) A linearized schematic of an imaging system for forming specular fields from an
arbitrary field in the object plane (O) and a WFI with its folding plane at the Fourier plane
(F) of the system. (b) Simplified setup for measuring the propagation properties of specular
fields at the image plane (I) of the 4f imaging system with a coherence detector CD.

Fig. 1(a). In a traditional WFI implementation with two perpendicularly oriented right-angle
prisms, the Fourier plane coincides with the planes of the prism corners. The propagation
properties of the field at any distance ∆z after the image plane of the system would then be
analyzed with a coherence detector (CD), such as another WFI.

In the setup of Fig. 1(a), the WFI acts on the ACF of the field instead of the CSD directly.
It transforms the ACF, T0(kx1, ky1, kx2, ky2), of the input spatial field W0(x1, y2, x2, y2, z0) into
T(kx1, ky1, kx2, ky2) that satisfies Eq. (5). However, since this ACF can be expressed as a
superposition analogous to Eq. (2), it is clear by inversion of Eq. (4) that the field after the WFI
appears as if it were generated by a virtual source of the form of Eq. (2). This leads to a somewhat
simplified system for full characterization of specular fields, as illustrated in Fig. 1(b). Here, the
entire imaging system with the WFI in its Fourier plane and the coherence detector at its image
plane, is moved along the z-axis. A system of this type will be employed in our experiments,
except that we will use a single-lens imaging setup. As a final note at this point, the location of
the WFI at the Fourier plane is not critical. Being a non-imaging device, we can place the WFI
quite freely within the Fourier space of the system.

3. New class of Bessel-correlated specular beams

The specular transformation given by Eq. (2) has thus far been applied to a few specific CSDs. If
applied to a fundamental Bessel-correlated Schell model plane wave, it leads to a propagation-
invariant field with either a bright central peak (specular case) or a dark dip (antispecular case) on
a uniform background [4,7,8]. Applying it to a conventional Gaussian Schell-model (GSM) beam
leads to a specular (antispecular) field with a non-Gaussian intensity profile having a central peak
(dip) whose width depends on the degree of coherence of the original GSM beam [4].

Here we consider a recently introduced class of Bessel-correlated fields [9,10], which do
not generally obey the Schell model. The free-space propagation properties of these fields are
known, and under certain conditions they can be self-Fourier-transforming in the sense that
W0(x1, y2, x2, y2, z0) and T0(kx1, ky1, kx2, ky2) have exactly the same functional form. Experimental
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generation of such fields is possible with rotating deterministic devices as illustrated in Fig. 2
[9,10]. We proceed with a summary of the theory for a wedge in Fig. 2(a), but the case of a
plane-parallel plate in Fig. 2(b), which we consider in the experimental demonstrations, follows
as a special case. We note that more general rotating devises could also be used, which might for
instance include diffractive structures on either surface of the wedge or the plate.

Fig. 2. Generation of the incident CSD by rotating devices such as (a) a wedge of central
thickness t and wedge angle α or (b) a glass plate of thickness t inclined by an angle α. The
axis of the output beam draws of cone (wedge) or a cylinder (plane-parallel plate) when the
device is rotated.

We assume illumination by a Gaussian beam, whose axis coincides with the rotation axis of
the device and has its waist at the output plane z = z0 of the device, indicated by the dashed
vertical line. The optical axis of the output beam then draws a cone characterized by radius r
and cone angle β in the case of the wedge, these parameters being directly related to the prism
parameters t and α. In the case of the plane-parallel plate β = 0 and the the output-beam axis
draws a cylinder of radius r. In both cases, the entire partially coherent beam can be interpreted
as an incoherent superposition of fully coherent ‘elementary’ Gaussian beams in time-averaged
sense [9,10]. The time average due to rotation can also be understood as an ensemble average
over space-frequency domain field realizations corresponding to different rotation angles, with
all realizations having an equal probability of occurrence.

The propagation properties of fields generated by rotating wedges have been derived in Ref.
[10]. In summary, the CSD at any distance ∆z from the source plane z = z0 is given by the
formula

W(x1, y1, x2, y2, z) = S0
w2

0
w2(z)

exp

[︄
−

x2
1 + x2

2 + y2
1 + y2

2 + 2 (r − ∆z sin β)2

w2(z)

]︄
× I0 [a(x1, y1, x2, y2, z)] exp

[︃
ik0

2R(z)

(︂
x2

2 − x2
1 + y2

2 − y2
1

)︂]︃
,

(7)

where I0 is a modified Bessel function of the first kind and order zero and

a(x1, y1, x2, y2, z) =
4r

w2(z)

{︄[︃(︃
1 +
∆z
r

sin β
)︃

x̄ − i
(︃
∆z
zR
+

zR
r

sin β
)︃
∆x
2

]︃2

+

[︃(︃
1 +
∆z
r

sin β
)︃

ȳ − i
(︃
∆z
zR
+

zR
r

sin β
)︃
∆y
2

]︃2
}︄1/2

,

(8)

where we have introduced the average and difference coordinates x̄ = (x1 + x2)/2, ȳ = (y1 + y2)/2,
∆x = x2−x1, ∆y = y2−y1. Furthermore, we have employed the usual Gaussian-beam propagation
parameters, i.e., the radius of the wave-front curvature

R(z) = ∆z + z2
R/∆z (9)

and the beam width
w(z) = w0

[︁
1 + (∆z/zR)

2]︁1/2 , (10)
where zR = k0w2

0/2 is the Rayleigh range of the incident Gaussian beam.
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The CSD of the beam after the specular transformation is obtained by inserting from Eq. (7)
into Eq. (2). By defining

b(x1, y1, x2, y2, z) =
4r

w2(z)

{︄[︃(︃
∆z
zR
+

zR
r

sin β
)︃

x̄ + i
(︃
1 +
∆z
r

sin β
)︃
∆x
2

]︃2

+

[︃(︃
∆z
zR
+

zR
r

sin β
)︃

ȳ + i
(︃
1 +
∆z
r

sin β
)︃
∆y
2

]︃2
}︄1/2 (11)

we obtain

W(x1, y1, x2, y2, z) = S0
w2

0
w2(z)

exp

[︄
−

x2
1 + x2

2 + y2
1 + y2

2 + 2 (r − ∆z sin β)2

w2(z)

]︄
× {I0[a(x1, y1, x2, y2, z)] + J0[b(x1, y1, x2, y2, z)] cos ϕ}

× exp
[︃

ik0
2R(z)

(︂
x2

2 − x2
1 + y2

2 − y2
1

)︂]︃
,

(12)

where J0 is a Bessel function of the first kind and order zero.
We can also write Eq. (12) entirely in terms of the average and difference coordinates and

extract the spherical phase term by writing the CSD in the form

W(x̄, ȳ,∆x,∆y, z) = Wr(x̄, ȳ,∆x,∆y, z) exp
[︃

ik0
R(z)

(x̄∆x + ȳ∆y)
]︃

, (13)

where

Wr(x̄, ȳ,∆x,∆y, z) = S0
w2

0
w2(z)

exp
[︃
−

2 (r − ∆z sin β)2

w2(z)

]︃
exp

[︄
−

2
(︁
x̄2 + ȳ2)︁
w2(z)

]︄
exp

[︃
−
∆x2 + ∆y2

2w2(z)

]︃
× {I0[a(x̄, ȳ,∆x,∆y, z)] + J0[b(x̄, ȳ,∆x,∆y, z)] cos ϕ}

(14)
is the ‘reduced’ CSD. This reduced form has the advantage that its phase (and that of the
reduced complex degree of coherence) only contains the difference from the propagation-induced
spherical phase. A corresponding expression for the incident field is obtained by dropping the J0
contribution (setting ϕ = π/2). Finally, the evolution of the CSD in the far zone ∆z ≫ zR of the
Gaussian elementary beam follows from Eqs. (13) and (14) in the asymptotic limits R(z) → ∆z
and w(z) → w0∆z/zR.

4. Physical properties of Bessel-correlated specular fields

We proceed to illustrate the main physical features of the specular fields under consideration.
Our interest is, in particular, to clarify the effects of the specular transformation on the beam
properties. We could analyze these for any combination of the parameters r and β, but choose
to restrict the attention to the special case β = 0 to reduce the number of degrees of freedom
and thereby keep the number of figures at a reasonable level. As already mentioned, this choice
corresponds to the plane-parallel plate geometry of Fig. 1(b).

It is convenient at this stage to introduce dimensionless (z-dependent) transverse coordinates
x̃ = x̄/w(z), ỹ = ȳ/w(z), ∆x̃ = ∆x/w(z), ∆ỹ = ∆y/w(z), a normalized parameter r̃ = r/w0, and a
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propagation parameter
D(z) =

[︁
1 + (∆z/zR)

2]︁1/2 . (15)
Then, in the special case β = 0, Eq. (14) takes the form

Wr(x̃, ỹ,∆x̃,∆ỹ, z) = C(z) exp
[︂
−2

(︂
x̃2 + ỹ2

)︂]︂
exp

[︃
−

1
2

(︂
∆x̃2 + ∆ỹ2

)︂]︃
× {I0[a(x̃, ỹ,∆x̃,∆ỹ, z)] + J0[b(x̃, ỹ,∆x̃,∆ỹ, z)] cos ϕ} ,

(16)

where
C(z) =

S0

D2(z)
exp

(︃
−

2r̃2

D2(z)

)︃
, (17)

is a z-dependent scaling factor and

a(x̃, ỹ,∆x̃,∆ỹ, z) =
4r̃

D(z)

[︄(︃
x̃ − i
∆z
zR

∆x̃
2

)︃2
+

(︃
ỹ − i
∆z
zR

∆ỹ
2

)︃2
]︄1/2

, (18)

b(x̃, ỹ,∆x̃,∆ỹ, z) =
4r̃

D(z)

[︄(︃
∆z
zR

x̃ + i
∆x̃
2

)︃2
+

(︃
∆z
zR

ỹ + i
∆ỹ
2

)︃2
]︄1/2

. (19)

The spectral density of the field is given by

S(x̃, ỹ, z) = C(z) exp
[︂
−2

(︂
x̃2 + ỹ2

)︂]︂ {︃
I0[a(x̃, ỹ, z)] + J0

[︃
∆z
zR

a(x̃, ỹ, z)
]︃

cos ϕ
}︃

(20)

with
a(x̃, ỹ, z) =

4r̃
D(z)

(︂
x̃2 + ỹ2

)︂1/2
, (21)

and the complex degree of spatial coherence (DOC) can be found by normalizing the CSD with
the spectral density as in

µr(x̃, ỹ,∆x̃,∆ỹ, z) =
Wr(x̃, ỹ,∆x̃,∆ỹ, z)√︁

S(x̃ + ∆x̃/2, ỹ + ∆ỹ/2, z)S(x̃ + ∆x̃/2, ỹ + ∆ỹ/2, z)
. (22)

This reduced DOC is real-valued and attains values between −1 and +1, corresponding to
perfect anticorrelation and correlation, respectively.

It is of particular interest to consider the propagation of the field into the far zone. In the
special case β = 0 we can interpret the full partially coherent beam as an incoherent superposition
of elementary Gaussian beams originating from a ring of radius r and propagating in parallel.
In the far zone of each elementary beam, we have D(z) → ∆z/zR and w(z) → w0∆z/zR. In this
limit the spectral density distribution takes on the form

S(x̃, ỹ, z) = C(z) exp
[︂
−2

(︂
x̃2 + ỹ2

)︂]︂ {︃
I0

[︃
4r̃zR
∆z

(︂
x̃2 + ỹ2

)︂1/2
]︃
+ J0

[︃
4r̃

(︂
x̃2 + ỹ2

)︂1/2
]︃

cos ϕ
}︃

,

(23)
where C(z) = S0 (zR/∆z)2 exp

[︁
−2r̃ (zR/∆z)2

]︁
. The far-zone region for the entire partially

coherent beam is achieved when ∆z ≫ 4r̃zR, in which case we have the limit

S(x̃, ỹ, z) = C(z) exp
[︂
−2

(︂
x̃2 + ỹ2

)︂]︂ {︃
1 + J0

[︃
4r̃

(︂
x̃2 + ỹ2

)︂1/2
]︃

cos ϕ
}︃

. (24)

By introducing a paraxial-domain diffraction angle θ =
√︁

x2 + y2/∆z we can write this result
in the form

S(θ, z) = C(z) exp
[︁
−2 (θ/θ0)2

]︁
[1 + J0 (4r̃θ/θ0) cos ϕ] , (25)

where θ0 = λ0/πw0 is the divergence angle of the incident Gaussian beam (and of each
elementary Gaussian beam in the elementary-field superposition of the field prior to the specular
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transformation). It is evident from this expression that the specular far-zone field exhibits spatial
intensity oscillations on a scale sharper than the classical diffraction limit of the incident field
(given by the Gaussian distribution with divergence angle θ0) would suggest. These oscillations
are reminiscent to those in, e.g., spatially coherent Bessel–Gauss beams [11], which can be
expressed as coherent superpositions of Gaussian beams. In our case we have an incoherent
superposition (if r̃>0); evidently, the intensity oscillations are due to the specularity of the
resulting partially coherent field since they vanish in the non-specular case ϕ = π/2 (and also if
r̃ = 0).

5. Numerical illustrations

We proceed to illustrate the effects of the specular transformation in three representative cases: at
the source plane ∆z = 0, at a propagation distance ∆z = zR equal to one Rayleigh range of the
incident beam, and in the far field region ∆z ≫ 4r̃zR. Figure 3 illustrates the intensity profiles of
the fields for some selected ratios r̃. The left and right columns show the profiles for specular
(ϕ = 0) and antispecular (ϕ = π) beams, whereas the middle column displays the profiles in the
non-specular (ϕ = π/2) case, which corresponds to the beam before the specular transformation.

Fig. 3. Cross sections S(x̃, 0, z) of intensity profiles for specular, non-specular, and
antispecular beams at three different propagation distances. Upper row: z = 0. Middle row:
z = zR. Bottom row: z ≫ zR. Red: r̃ = 1. Green: r̃ = 2. Blue: r̃ = 4.

Considering first the non-specular (incident) case, the ‘elementary’ Gaussian beams that make
up the Bessel-correlated beam as the plate rotates are centered on a ring of radius r̃ at the source
plane ∆z = 0. The doughnut shape of the intensity profile is apparent already at r̃ = 1 and
becomes increasingly clear for larger values. The propagation axes of the elementary beams lie
on a cylinder of radius r̃, and diffractive spreading causes the beams to overlap once they have
propagated far enough, leading to gradual weakening of the doughnut shape. In the far field, all
elementary beams overlap completely, resulting in a Gaussian profile regardless of r̃.

In the specular and antispecular cases the I0 and J0 contributions add up, with either a positive
or a negative sign for the latter. In the antispecular case this leads to zero intensity on the optical
axis at all propagation distances and values of r̃. In the specular case the axial intensity is
always non-zero: at the source plane we observe a nearly flat-top intensity profile if r̃ = 1. The
doughnut shape is preserved at the source plane when r̃ is increased, whether the field is specular
or antispecular. Diffraction ultimately smooths out the doughnut shape, and in the far field the
side lobes due to the J0 contribution become apparent when r̃ increases. These side lobes lead to
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‘superoscillating’ far-field intensity profiles, featuring sharper variations than a non-specular field
can have. The oscillations result from partial spatial coherence of the field; their role becomes
increasingly evident when the degree of coherence of the input beam is reduced by increasing the
ratio r̃.

Since the fields considered here are of the Schell-model form only in special cases, the CSD
and the associated complex degree of coherence are 4D functions, of which we can conveniently
present only 2D slices. We choose cuts of the form Wr(0, ỹ,∆x̃, 0, z), which corresponds to what
our coherence characterization device can measure in a single-shot manner (as described below).
One can also argue that this choice is the most intuitive one since, according to Eqs. (16)–19,
µr(0, ỹ,∆x̃, 0, z) is real-valued. Figure 4 illustrates slices µr(0, ỹ,∆x̃, 0, z) of the reduced degree
of coherence for r̃ = 1 and r̃ = 4.

Fig. 4. Reduced degree of coherence µr(0, ỹ,∆x̃, 0, z) in the (ỹ,∆x̃) coordinate system when
r̃ = 1 (left) and r̃ = 4 (right). Upper row: ∆z = 0. Middle row: ∆z = zR. Lower row:
∆z ≫ 4r̃zR.

In general, increasing r̃ leads to a richer texture in distributions of the reduced degree of
coherence. At the source plane the distribution of µr(0, ỹ,∆x̃, 0, 0) associated with the incident
beam is non-negative, but propagation introduces also negative values (phase changes by π radians).
In the far zone we have a Schell-model Bessel-correlated (ỹ-invariant) field with prominent side
lobes. The characteristic cross-like symmetry (asymmetry) of specular (antispecular) fields
becomes apparent in the plots of µr(0, ỹ,∆x̃, 0, z). In particular, we have µr(0, ỹ, 0, 0, 0, z) =
µr(0, 0,∆x̃, 0, z) = 1 for specular fields and µr(0, ỹ, 0, 0, z) = 1 while µr(0, 0,∆x̃, 0, z) = −1 for
antispecular fields at all propagation distances.

6. Experimental results

The principle of our experimental setup is as illustrated in Fig. 1(b). A rotating plate, illuminated
by a Gaussian beam of width w0, is used to generate a Bessel beam characterized by a radius
parameter r as in Fig. 2(b). The specular (antispecular) transformation is implemented by a 2D
mirror-based WFI illustrated in Fig. 5(a) and the coherence detector CD by a traditional 1D
folding WFI shown in Fig. 5(b).
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Fig. 5. (a) The 2D WFI for the specular transformation. Here M1–M6 are planar mirrors,
BS1 and BS2 are beam splitters, and P is piezo-electric stage. (b) The 1D WFI for beam
characterization. Here BS is a beam splitter, M is a planar mirror, LM is a retroreflecting
mirror, and CCD is a camera.

Instead of the 4f imaging system assumed in Fig. 1(b), we used a single-lens imaging system
with a magnification of M. Hence, the field at the plane I in Fig. 1(b) is characterized by a CSD

W(x̄, ȳ,∆x,∆y, zI) =
1

M2 W
(︃

x̄
M

,
ȳ
M

,
∆x
M

,
∆y
M

, z
)︃

exp
[︃
−

ik0
Mf

(x̄∆x + ȳ∆y)
]︃

. (26)

Inserting from Eq. (13) gives

W(x̄, ȳ,∆x,∆y, zI) =
1

M2 Wr

(︃
x̄
M

,
ȳ
M

,
∆x
M

,
∆y
M

, z
)︃

exp
[︃

ik0
R(zI)

(x̄∆x + ȳ∆y)
]︃

, (27)

where the image-plane radius of wavefront curvature R(zI) is given by

1
R(zI)

=
1

R(z)
−

1
Mf

. (28)

The 1D WFI in Fig. 5(b) measures slices W(x̄, ȳ,∆x, 0, zI) if its folding axis is scanned along x̄.
When x̄ = 0, it therefore produces direct access to (magnified) cross sections Wr(0, ȳ,∆x, 0, z) of
the reduced CSD, since the spherical phase term in Eq. (27) vanishes.

In our experimental implementation of the setup, we used a lens with 50 mm focal length
to focus a HeNe beam with λ0 = 632.8 nm on a 3 mm thick rotating glass plate to produce a
Bessel-correlated beam with parameters w0 ≈ 22.3 µm and r ≈ 29.1 µm, which give zR ≈ 2.47
mm and r̃ ≈ 1.3. An imaging lens of focal length 150 mm was used to produce an image of the O
plane with magnification M ≈ −10 onto the I plane. The phase ϕ was tuned with a piezo-electric
stage in one arm to produce specular (ϕ = 0), non-specular (ϕ = π/2, corresponding to the
incident beam), and antispecular (ϕ = π) beams. Figure 6 shows snapshots of the cross sections
ȳ = 0 of the intensity patterns produced directly by the 1D WFI in the specular, non-specular, and
antispecular cases. The associated video shows the directly measured 2D interference patterns
when the piezo is tuned to vary the phase ϕ over an interval of π radians.

Figure 7 shows simulated and measured intensity distributions of specular, non-specular, and
antispecular fields at three selected propagation distances ∆z = 0, ∆z = 4 mm ≈ 1.6zR, and
∆z = 13 mm ≈ 5.3zR (the slight interference patterns seen in the experimental results arise from
the coating on top of CCD). The non-specular case was measured by setting ϕ = π/2 in the 2D
WFI, instead of measuring the incident beam directly.

In the non-specular case, the doughnut shape has disappeared at ∆z = 4 mm and the beam
has expanded at ∆z = 13 mm, where the far field condition is yet fully satisfied. In the specular
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Fig. 6. Interference patterns observed directly by the 1D WFI at ȳ = 0 and ∆z = 13 mm in
specular (top row), non-specular (middle row), and antispecular (bottom row) cases. The
transition of the measured interference pattern from specular to antispecular case is captured
and presented in the Visualization 1

Fig. 7. Simulated (a) and measured (b) intensity distributions of specular (left columns),
non-specular (middle columms), and antispecular (right columns) Bessel-correlated fields
at propagation distance ∆z = 0 (top rows), ∆z = 4 mm (middle rows), and ∆z = 13 mm
(bottom rows).

case characteristic central peaks and some side-lobe structure emerge at ∆z = 4 mm, and become
clearer when the far field is approached at ∆z = 13 mm, where the ‘superoscillating’ nature of

https://doi.org/10.6084/m9.figshare.17499539
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the intensity profile is already visible. Finally, in the antispecular case, the central dip that is
preserved at all propagation distances, is clearly observed also experimentally. The simulated and
measured distributions of W(0, ȳ,∆x, 0) are plotted in Fig. 8 at the three propagation distances
∆z = 0, ∆z = 4 mm, and ∆z = 13 mm for the specular, non-specular, and antispecular cases. The
retrieval process of the experimental CSD is outlined in the Appendix.

Fig. 8. Normalized CSD in the (ȳ,∆x) coordinate system. (a) ∆z = 0. (b) ∆z = 4 mm. (c)
∆z = 13 mm. In each case the upper rows represent simulated results and the lower rows
are experimental. Left columns: ϕ = 0. Middle columns: ϕ = π/2. Right columns: ϕ = π.
The transformation from specular to anti-specular CSD (both simulated and measured) in
the case of ∆z = 0 mm and ∆z = 4 mm are presented in Visualization 2, Visualization 3.

Clearly, the simulations and the experiments match fairly well, especially for the specular case.
At larger propagation distances the deviations become somewhat more pronounced. Remarkably,
this is the case in particular for the non-specular beam, whereas the characteristic cross shapes of
the specular and non-specular beams (which are of main interest here) are much better preserved
on propagation. We stress, however, once again that the non-specular beam was generated by
setting ϕ = π/2 in the 2D WFI instead of measuring the (non-specular) incident beam directly.

https://doi.org/10.6084/m9.figshare.17499662
https://doi.org/10.6084/m9.figshare.17499782
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7. Conclusions and remarks

We have presented a scheme for carrying out the specular transformation implied in Eq. (2),
and to study the propagation of the resulting beams. Specifically, a mirror-based WFI with a
controllable phase difference between the optical paths along the two arms was used to produce
the specular transform of Bessel-correlated input fields, and a 1D-folding WFI was used to
characterize the properties of the generated beams. In particular, we demonstrated that specular
beams have ‘super-oscillating’ far-zone intensity profiles due to the partial degree of spatial
coherence of the input beam. Such oscillations would appear also in the focal regions of optical
systems. These oscillations may appear somewhat analogous to super-oscillations of coherent
fields, which imply superresolution beyond the diffraction limit in microscopy [12,13]. To avoid
potential misinterpretations, we stress that in our case the oscillations become more rapid when
the source coherence is decreased by increasing r̃. However, this comes only at the cost of
simultaneously increasing the effective source size. Hence, considering a focusing system with
given numerical aperture NA, decreasing spatial coherence ultimately results in truncation of the
source field by the NA.

Although we have applied the method to a particular class of Bessel-correlated input beams,
it could equally well be applied to any partially spatially coherent scalar beam. An obvious
next step would be to apply the specular transform to electromagnetic beams with arbitrary
partial coherence and polarization properties; in fact some work in this direction has already
been reported [14]. When applied to coherence measurement, the mirror-based WFI produces
only negligible polarization-dependent effects [5,6]. However, our preliminary analysis shows
that a WFI can produce a number of interesting polarization-dependent effects when used as a
device for transforming electromagnetic beams into specular (or antispecular) form. For instance,
the WFI may alter the polarization state and the degree of polarization of a fully polarized
(circular or elliptical) spatially partially coherent input beam. In the case of an electromagnetic
specular (or antispecular) beam, one may not observe an intensity peak (or dip), but rather a
polarization peak or dip. Altogether, there exists plenty of scope for further investigation on the
specular transform of electromagnetic beams with arbitrary partial coherence and polarization
properties.

Appendix

Fig. 9 illustrates the process of extracting the coherence properties of the field. In order to
construct the CSD function, at least three frames are generally needed [5,6]. However, since the
beam profile is rotationally symmetric and we measure CSD in coordinates (ȳ,∆x) using a 1D
WFI, a single measurement of the interference is sufficient. Figure 9(a) shows an example of such
measured interference fringes when a linear wavefront tilt has been introduced in the x direction.

This interference pattern can be represented as a superposition of three terms. The first is a DC
term determined by the (rotationally symmetric) intensity profile of the incident field, centered at
the zero spatial frequency in the Fourier space. The second and third terms are proportional to
the (real-valued) function Wr(0, ȳ,∆x, 0), and their Fourier transforms are centered at off-axis
points in the spatial-frequency space. Hence, Fourier transforming the measured fringe profile
(numerically) leads to results like illustrated in Fig. 9(b), where the DC terms is placed inside the
solid box. We can now extract one of the off-axis terms, such as the one inside the dashed box
in Fig. 9(b). Then the distribution of Wr(0, ȳ,∆x, 0) can be retrieved by calculating the inverse
Fourier transform. The result is shown in Fig. 9(c). Consequently, the intensity distribution and
the complex degree of spatial coherence can be calculated, resulting in Figs. 9(d)–(f).

In Fig. 9 we have illustrated the antispecular beam at z = 0 mm as an example. Hence, ideally,
the phase of the complex degree of spatial coherence should be binary (either zero or π). As
expected, the retrieved phase profile is of binary form only approximately.
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Fig. 9. Extraction of the intensity and complex degree of coherence from measured fringe
patterns. As an example we have chosen the antispecular beam at z = 0 mm. (a) Directly
measure fringe pattern. (b) Numerically calculated Fourier transform of the intensity pattern.
(c) Inverse Fourier of the extracted part, giving Wr(0, ȳ,∆x, 0). (d) The retrieved spatial
intensity profile S(x, y). (e) The retrieved absolute value of the complex degree of coherence
µr(0, ȳ,∆x, 0). (f) The retrieved phase of µr(0, ȳ,∆x, 0).
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