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Abstract
In this paper we present new results on the preservation of polynomial stability of damped
wave equations under addition of perturbing terms. We in particular introduce sufficient
conditions for the stability of perturbed two-dimensional wave equations on rectangular
domains, a one-dimensional weakly damped Webster’s equation, and a wave equation with
an acoustic boundary condition. In the case of Webster’s equation, we use our results to
compute explicit numerical bounds that guarantee the polynomial stability of the perturbed
equation.
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semigroup · Webster’s equation
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1 Introduction

In this paper we study the stability properties of damped wave equations and abstract second-
order differential equations of the form [17,29]{

wt t (t) − Lw(t) + D0D∗
0wt (t) = 0, t > 0,

w(0) = w0, wt (0) = w1
(1.1)

on a Hilbert space X0. Here L : dom L ⊂ X0 → X0 is a negative self-adjoint operator
with a bounded inverse and D0 ∈ L(U , X0) for some Hilbert space U . Our main interest
is in the preservation of stability under bounded perturbations in the situation where the
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unperturbed differential Eq. (1.1) is only polynomially stable [7,10] (as opposed to being
uniformly exponentially stable). The polynomial stability of (1.1) means that there exist
constants α, M > 0 such that for all initial conditions w0 ∈ dom L and w1 ∈ dom (−L)1/2

the solutions of (1.1) satisfy [10]

‖(−L)1/2w(t)‖2 + ‖wt (t)‖2 ≤ M

t2/α
(‖Lw0‖2 + ‖(−L)1/2w1‖2

)
, t > 0. (1.2)

Polynomial stability has been investigated in detail in the literature for dampedwave equations
on multi-dimensional domains [5,11,20], coupled partial differential equations [6,16,27,30],
as well as abstract damped second-order systems of the form (1.1) [3,4,13,15,21].

Polynomial stability is a strictly weaker concept than exponential stability, and it can in
particular be destroyed under addition of arbitrarily small lower order terms in the partial
differential equation. In this paper we employ and refine the general framework introduced in
[23,24] to present conditions for preservation of the polynomial stability of the abstract dif-
ferential Eq. (1.1) under finite-rank and Hilbert–Schmidt perturbations. Moreover, we study
preservation of polynomial stability for selected partial differential equation models, namely,
a damped two-dimensional wave equation on a rectangular domain, a weakly damped Web-
ster’s equation, and a one-dimensional wave equation with a dynamic boundary condition.

As our first main results we present general conditions for the polynomial stability of
perturbed second-order systems of the form

{
wt t (t) − Lw(t) + D0D∗

0wt (t) = B2(C1w(t) + C2wt (t)), t > 0
w(0) = w0, wt (0) = w1.

(1.3)

Here the operators B2 ∈ L(Y , X0), C1 ∈ L(dom (−L)1/2, Y ), and C2 ∈ L(X0, Y ) for some
Hilbert spaceY describe the perturbations to the nominal polynomially stableEq. (1.1).As our
first main results we adapt and improve the main results in [23,24] to make them more easily
verifiable for second-order systems of the form (1.3). Our results show that if the unperturbed
equation is polynomially stable so that (1.2) is satisfied with some α ∈ (0, 2], then (1.3) is
polynomially stable provided that for exponents β, γ ∈ [0, 1] satisfying β +γ ≥ α the graph
norms ‖(−L)β/2B2‖, ‖(−L)(γ−1)/2C∗

1‖, and ‖(−L)γ /2C∗
2‖ are finite and sufficiently small.

Our new results also provide concrete bounds for the required sizes of these graph norms
based on lower bounds for the operator D∗

0 restricted to the spectral subspaces of L . The
results are applicable in the situations where Y is either finite-dimensional or where B2, C1,
and C2 are Hilbert–Schmidt operators.

As the first concrete partial differential equation we study a wave equation with viscous
damping on a rectangle � = (0, a) × (0, b),

{
wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y) = 0, t > 0, (x, y) ∈ �

w(t, x, y) = 0, t > 0, (x, y) ∈ ∂�.
(1.4)

We assume the damping coefficient d(·, ·) ≥ 0 is strictly positive on some non-empty open
subset of � which does not satisfy the Geometric Control Condition (see, e.g., [5]). We
apply our abstract results to present conditions for the polynomial stability of perturbed wave
equations of the form

wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y)

=
m∑

k=1

bk,2(x, y)

∫
�

(w(t, ξ, η)ck,1(ξ, η) + wt (t, ξ, η)ck,2(ξ, η))dξdη
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where bk,2, ck,1, ck,2 ∈ L2(�). In particular, our results show that the perturbed wave equa-
tion is polynomially stable provided that the coefficient functions bk,2, ck,1, and ck,2 have
sufficient smoothness properties in the sense that these functions belong to fractional domains
of −� (the Dirichlet Laplacian on �), and the associated fractional graph norms are suffi-
ciently small. We present also analogous results of Hilbert–Schmidt perturbations of (1.4).
Finally, we analyse the stability of (1.4) in a situation where the damping term is perturbed
in a non-dissipative way with a rank one operator.

Our second concrete partial differential equation is a Webster’s equation with a weak
damping on (0, 1),⎧⎨

⎩
wt t (t, x) − wxx (t, x) − awx (t, x) + d(x)

∫ 1
0 wt (t, ξ)d(ξ)eaξ dξ = 0

w(t, 0) = w(t, 1) = 0
w(0, x) = w0(x), wt (0, x) = w1(x),

where a > 0 and d(·) ∈ L2(0, 1) is the damping coefficient. In this article we focus on
a special case where d(x) = 1 − x . We begin by proving that the Webster’s equation is
polynomially stable with this particular damping coefficient. Using our abstract results we
then present conditions for the preservation of the Webster’s equation under addition of a
perturbation term.We also present a numerical examplewherewe compute numerical bounds
for the coefficient functions in the perturbation to guarantee the preservation of polynomial
stability of the Webster’s equation.

Finally, as our third partial differential equation we consider a one-dimensional wave
equation with a dynamic boundary condition. The polynomial stability of this model was
shown in [1,22], and in this paper we present conditions for the preservation of the stability
under addition of perturbation terms to the differential equation.

We use the following notation. Given a closed operator A on a Hilbert space X , which
will be assumed to be complex, we denote its domain by dom A, its kernel by ker A, and its
range by ran A. The spectrum of A is denoted by σ(A), and given λ ∈ ρ(A) := C\σ(A) we
write R(λ, A) for the resolvent operator (λ− A)−1. The space of bounded linear operators on
X is denoted by L(X). Given two functions f , g : (0,∞) → R+, we write f (t) = O(g(t))
to indicate that f (t) ≤ Cg(t) for some constant C > 0 and for all sufficiently large t > 0.

2 Robustness of Stability for GeneralizedWave Equations

2.1 Polynomial Stability of Strongly Continuous Semigroups

The second-order differential Eq. (1.1) with a negative and boundedly invertible operator
L : dom L ⊂ X0 → X0 and D0 ∈ L(U , X0) can be represented as a first-order abstract
Cauchy problem with state u(t) = (w(t), wt (t))
 as

du

dt
= Au, where A =

(
0 I
L −D0D∗

0

)

with the initial condition u(0) = (w0, w1)

. We choose the state space of this linear system

as

H = dom (−L)1/2 × X0.

The space H is a Hilbert space with inner product defined by

〈u, v〉H = 〈
(−L)1/2u1, (−L)1/2v1

〉
X0

+ 〈u2, v2〉X0
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for all u = (u1, u2)

, v = (v1, v2)


 ∈ H. The domain of A is dom A = dom L ×
dom (−L)1/2. The operator A has the form A = A0 − DD∗ where

A0 =
(
0 I
L 0

)
: dom A ⊂ H → H and D =

(
0

D0

)
∈ L(U ,H). (2.1)

Here A0 is a skew-adjoint operator and A generates a strongly continuous semigroup T (t)
on H by the Lumer-Phillips theorem [17, Sec. VI.3].

Definition 2.1 ( [10]) A strongly continuous semigroup T (t) generated by a linear operator
A is said to be polynomially stablewithα > 0 if it is uniformly bounded, i.e. supt≥0 ‖T (t)‖ <

∞, if iR ⊂ ρ(A), and if

∥∥T (t)A−1
∥∥ ≤ M

t1/α
, for all t > 0

for some constant M > 0.

2.2 Polynomial Stability of Perturbed Semigroups

We are interested in robustness of the polynomial stability of (1.1) under perturbations of the
form {

wt t (t) − Lw(t) + D0D∗
0wt (t) = B2(C1w(t) + C2wt (t)), t > 0

w(0) = w0, wt (0) = w1
(2.2)

where B2 ∈ L(Y , X0), C1 : dom (−L)1/2 ⊂ X0 → Y , and C2 ∈ L(X0, Y ) for some Hilbert
space Y are such that C1(−L)−1/2 ∈ L(X0, Y ). If we define B := (0, B2)


 ∈ L(Y ,H)

and C := (C1, C2) ∈ L(H, Y ), the perturbed system can be represented as an abstract
Cauchy problem du

dt = (A + BC)u. The following theorem presented in [24] provides
general conditions for the preservation of the polynomial stability of the semigroup TA+BC (t)
generated by A + BC .

Theorem 2.2 ([24, Thm. 6]) Assume T (t) generated by A is polynomially stable with α > 0,
let β, γ ≥ 0 be such that β + γ ≥ α, and let κ > 0 satisfy

κ <
1

supλ∈C+‖R(λ, A)(−A)−β−γ ‖1/2 .

If B ∈ L(Y ,H) and C ∈ L(H, Y ) are such that

ran B ⊂ dom (−A)β, ranC∗ ⊂ dom (−A∗)γ , (2.3)

if (−A)β B and (−A∗)γ C∗ are Hilbert–Schmidt operators, and if∥∥(−A)β B
∥∥ < κ,

∥∥(−A∗)γ C∗∥∥ < κ, (2.4)

then the semigroup generated by A + BC is polynomially stable with the same α.

The following theorem introduces a concrete bound κ > 0 for the norms of the perturba-
tions in Theorem 2.2 for A = A0 − DD∗ with a skew-adjoint operator A0 in the important
special case β, γ ≥ 0 are chosen so that β + γ = α� (here α� ∈ N denotes the ceiling of
α > 0). The first part of the result is a special case of [13, Thm. 3.5] with a proof which has
been modified in a trivial manner to yield an explicit constant MR > 0.
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Theorem 2.3 Let X and U be Hilbert spaces, and assume A = A0 − DD∗ where A0 :
dom A0 ⊂ X → X is skew-adjoint and D ∈ L(U , X). Let P(a,b) ∈ L(X) be the spectral
projection of A0 corresponding to the interval (ia, ib) ⊂ iR. Assume there exist η0, δ0 > 0
and functions η : R → (0, η0] and δ : R → (0, δ0] such that

‖D∗x‖ ≥ η(s)‖x‖, ∀x ∈ ran P(s−δ(s),s+δ(s)). (2.5)

Then

‖R(is, A)‖ ≤ MR

η(s)2δ(s)2
, ∀s ∈ R,

where

MR = 2
√

η40δ
2
0 + 2η20δ

2
0‖D‖2 + (δ20 + η20‖D‖2 + 2‖D‖4)2.

If there exists M0 > 0 such that η(s)−2δ(s)−2 ≤ M0(1 + |s|α) for all s ∈ R, then for
β, γ ≥ 0 with β + γ = α� in Theorem 2.2 it is possible to choose any κ > 0 such that

κ <
1√
2MC

,

where MC > 0 is defined with an arbitrary s0 > 0 by

MC = max

⎧⎨
⎩MR M0‖A−1‖α�(1 + sα

0 ),
MR M0(1 + sα

0 )

sα�
0

+
α�∑
k=1

‖A−1‖k

sα�+1−k
0

⎫⎬
⎭ .

Proof Assume that the functionsη and δ satisfy the assumptions of the theorem.Let y ∈ X and
s ∈ R be arbitrary and write x = R(is, A)y ∈ dom A. We then have (is − A0+ DD∗)x = y,
and thus

‖D∗x‖2 = Re〈DD∗x, x〉 = Re〈(is − A0 + DD∗)x, x〉 = Re〈y, x〉 ≤ ‖y‖‖x‖.

Denote Ps := P(s−δ(s),s+δ(s)) for brevity and write X = Xs ⊕⊥ X∞ where Xs = Ps X and
X∞ = (I −Ps)X . If wewrite x = x0+x∞ and y = y0+y∞ according to this decomposition,
then

(is − A0)x∞ + (I − Ps)DD∗x = y∞,

⇔ x∞ = (is − A0)
−1 [y∞ − (I − Ps)DD∗x

]
,

since the restriction (is − A0)|X∞ of is − A0 to X∞ is boundedly invertible. Since A0 is
skew-adjoint and σ((is − A0)|X∞) ⊂ iR\(−iδ(s), iδ(s)), we have

‖x∞‖2 ≤ δ(s)−2‖y∞ − (I − Ps)DD∗x‖2
≤ 2δ(s)−2 (‖y‖2 + ‖D‖2‖D∗x‖2) .

By assumption we have ‖x0‖ ≤ η(s)−1‖D∗x0‖ ≤ η(s)−1(‖D∗x‖+‖D∗x∞‖). If we denote
q(s) = 1 + 2η(s)−2‖D‖2, we can use ‖D∗x‖2 ≤ ‖x‖‖y‖ and the Young’s inequality to
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estimate

‖x‖2 = ‖x0‖2 + ‖x∞‖2 ≤ 2η(s)−2(‖D∗x‖2 + ‖D‖2‖x∞‖2) + ‖x∞‖2
= 2η(s)−2‖D∗x‖2 + q(s)‖x∞‖2
≤ 2η(s)−2‖D∗x‖2 + 2δ(s)−2q(s)

(‖y‖2 + ‖D‖2‖D∗x‖2)
≤ 2δ(s)−2q(s)‖y‖2 + 2(η(s)−2 + δ(s)−2q(s)‖D‖2)‖x‖‖y‖
≤ 2δ(s)−2q(s)‖y‖2 + 1

2
‖x‖2 + 2(η(s)−2 + δ(s)−2q(s)‖D‖2)2‖y‖2.

This estimate implies

‖x‖2 ≤ 4(δ(s)−2q(s) + (η(s)−2 + δ(s)−2q(s)‖D‖2)2)‖y‖2. (2.6)

Recall that 1 ≤ η20η(s)−2 and 1 ≤ δ20δ(s)
−2. We have

q(s) = 1 + 2η(s)−2‖D‖2 ≤ η(s)−2(η20 + 2‖D‖2).
The estimate (2.6) implies

‖R(is, A)‖2 ≤ 4(δ(s)−2q(s) + (η(s)−2 + δ(s)−2q(s)‖D‖2)2)
≤ 4(η20δ

2
0(η

2
0 + 2‖D‖2) + (δ20 + (η20 + 2‖D‖2)‖D‖2)2)η(s)−4δ(s)−4.

This completes the first part of the proof.
Assume now that there exists M0 > 0 such that η(s)−2δ(s)−2 ≤ M0(1 + |s|α) for all

s ∈ R and denote nα = α� ∈ N. Then ‖R(is, A)‖ ≤ M0MR(1 + |s|α) for all s ∈ R, and
Theorem 2.2 implies that if β, γ ≥ 0 are such that β + γ = nα , then the constant κ > 0
is required to satisfy κ < (supλ∈C+‖R(λ, A)A−nα‖)−1/2. The approach in the proof of [8,
Lem. 5.3] can be used to show that

sup
λ∈C+

‖R(λ, A)A−nα‖ ≤ 2 · sup
s∈R

‖R(is, A)A−nα‖.

This implies that κ > 0 in Theorem 2.2 can be chosen to have any value κ < 1/
√
2MC

provided that the constant MC > 0 in the statement of the theorem is such that
‖R(is, A)A−nα‖ ≤ MC for all s ∈ R. In order to show this, let s0 > 0 be arbitrary and
fixed. For any s ∈ R with |s| ≤ s0 we have

‖R(is, A)A−nα‖ ≤ MR M0‖A−1‖nα (1 + sα
0 ).

On the other hand, if |s| ≥ s0, then using the resolvent identity R(is, A)A−1 =
(is)−1(R(is, A) + A−1) repeatedly shows that

‖R(is, A)A−nα‖ = ‖(is)−nα R(is, A) +
nα∑

k=1

(is)k−1−nα A−k‖

≤ MR M0(1 + |s|α)

|s|nα
+

nα∑
k=1

|s|k−1−nα‖A−1‖k

≤ MR M0(1 + sα
0 )

snα

0

+
nα∑

k=1

sk−1−nα

0 ‖A−1‖k .

Combining the above two estimates shows that sups∈R‖R(is, A)A−β−γ ‖ ≤ MC for the
constant MC > 0 in the statement of the theorem, and thus the proof is complete. ��
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Remark 2.4 In the case where −L has a complete set of orthonormal eigenvectors −Lφn =
μnφn with 0 < μ1 ≤ μ2 ≤ · · · , the operator A0 in (2.1) has eigenvalues λn = sign (n)i

√
μn

and a complete set of orthonormal eigenvectors {ψn}n∈Z\{0} such that

A0ψn = λnψn, ψn = 1√
2λn

(
φ|n|

λnφ|n|

)
.

In this situation for every s ∈ R the spectral subspace ran P(s−δ(s),s+δ(s)) of A0 consists of
linear combinations of the eigenvectors ψn with every n ∈ Z\{0} for which s − δ(s) <

sign (n)
√

μn < s +δ(s). The functions η : R → (0, η0] and δ : R → (0, δ0] in Theorem 2.3
should then be chosen so that

‖D∗
0 x2‖ ≥ η(s)

√
‖(−L)1/2x1‖2X0

+ ‖x2‖2X0

for all s ∈ R and x = (x1, x2)
 ∈ ran P(s−δ(s),s+δ(s)). In particular, if δ : R → (0, δ0] is
chosen in such a way that δ(−s) = δ(s) and every interval (i(s − δ(s)), i(s + δ(s))) contains
at most one eigenvalue λn = sign (n)i

√
μn , then η : R → (0, η0] in Theorem 2.3 can be

chosen to be an even function satisfying

‖D∗
0φ|n|‖ ≥ √

2η(s) whenever |s − √
μn | < δ(s), s ≥ 0.

Remark 2.5 The second part of the proof of Theorem 2.3 can be extended in a straightforward
manner to the more general case where β, γ ≥ 0 are any exponents satisfying β + γ ≥ α.
Indeed, if we denote nβγ = β + γ �, the moment inequality [17, Thm. II.5.34] with θ =
(nβγ − β − γ )/nβγ and a constant Mβ,γ > 0 can first be used estimate

‖R(is, A)(−A)−β−γ ‖ ≤ Mβ,γ ‖R(is, A)‖θ‖R(is, A)A−nβγ ‖1−θ ,

and ‖R(is, A)A−nβγ ‖ can be estimated using the resolvent identity similarly as before.
However, in this case the constant MC in the bound for κ > 0 has a more complicated
formula.

2.3 Robustness Results forWave Equations

The structure of the operator A allows us to improve the assumptions of Theorem 2.2 to
overcome the difficulty of computing the graph norms of the fractional powers of the damped
generators −(A0 − DD∗) and −(A0 − DD∗)∗. Instead, the conditions are given in terms
of the graph norms of the fractional powers of the positive operator −L . Throughout this
section C∗

1 denotes the adjoint of C1 as an operator C1 : dom C1 ⊂ X0 → Y .

Theorem 2.6 Assume that the strongly continuous semigroup T (t) generated by

A =
(
0 I
L −D0D∗

0

)
: dom L × dom (−L)1/2 ⊂ H → H

is polynomially stable with α ≤ 2, that 0 ≤ β, γ ≤ 1 are such that β + γ ≥ α, and that
κ > 0 is as in Theorem 2.2. If the perturbation operators B = (0, B2)


 ∈ L(Y ,H) and
C = (C1, C2) ∈ L(H, Y ) satisfy

ran B2 ⊂ dom (−L)β/2, ranC∗
1 ⊂ dom (−L)

γ−1
2 , ranC∗

2 ⊂ dom (−L)γ /2
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if (−L)β/2B2, (−L)
γ−1
2 C∗

1 , and (−L)γ /2C∗
2 are Hilbert–Schmidt operators, and if

∥∥(−L)β/2B2
∥∥ <

κ

Kβ

,

∥∥∥(−L)
γ−1
2 C∗

1

∥∥∥2 + ∥∥(−L)γ /2C∗
2

∥∥2 <
κ2

K 2
γ

,

(2.7)

then the semigroup generated by A + BC is polynomially stable with the same α. Here

Kθ = e
1
2π2θ(1−θ)Mθ with θ ∈ [0, 1] and M = 1 + ‖D0‖2‖(−L)−1/2‖.

For proving this result we use the following theorem from [19].

Theorem 2.7 ( [19, Thm. 1]) If A1, A2 are closed maximal accretive operators on a Hilbert
space H such that domA1 ⊂ domA2 and ‖A2u‖ ≤ M‖A1u‖ for some constant M > 0
and for all u ∈ domA1, then domAθ

1 ⊂ domAθ
2 and∥∥Aθ

2u
∥∥ ≤ Kθ

∥∥Aθ
1u
∥∥ , u ∈ domAθ

1, 0 ≤ θ ≤ 1,

where Kθ = e
1
2π2θ(1−θ)Mθ .

Proof (Proof of Theorem 2.6) Let 0 ≤ β, γ ≤ 1 be such that β +γ ≥ α. Our aim is to show
that if B2, C1, and C2 satisfy the given assumptions, then B = (0, B2)


 and C = (C1, C2)

satisfy (2.4) with the same κ > 0. The stability of the semigroup generated by A + BC then
follows directly from Theorem 2.2. To this end let κ > 0 be as in Theorem 2.2 and suppose
that (2.7) hold. Define Ad : dom Ad ⊂ H → H and A0 : dom A0 ⊂ H → H with domains
dom Ad = dom A0 = dom A = dom L × dom (−L)1/2 by

Ad :=
(

(−L)1/2 0
0 (−L)1/2

)
and A0 :=

(
0 I
L 0

)
,

and let D = (0, D0)

 ∈ L(U ,H). Clearly

dom Aθ
d = dom (−L)(θ+1)/2 × dom (−L)θ/2

for all 0 ≤ θ ≤ 1. Since C ∈ L(H, Y ) and C∗ = (−L−1C∗
1 , C∗

2 )

, the assumptions on B2,

C1, and C2 imply that ran B ⊂ dom Aβ
d and ranC∗ ⊂ dom Aγ

d . For every u = (u1, u2)

 ∈

dom Ad we have ‖A0u‖2H = ‖(−L)1/2u2‖2 + ‖Lu1‖2 = ‖Adu‖2H, and

‖Au‖H = ∥∥(A0 − DD∗)u
∥∥H ≤

∥∥∥I − DD∗ A−1
0

∥∥∥ ‖A0u‖H
≤
(
1 +

∥∥∥DD∗ A−1
0

∥∥∥) ‖Adu‖H,

where ‖DD∗ A−1
0 ‖ ≤ ‖D0‖2‖(−L)−1/2‖. An analogous argument shows that we have

‖A∗u‖H = ‖(A0+ DD∗)u‖ ≤ (1+‖D0‖2‖(−L)−1/2‖)‖Adu‖H for all u ∈ dom Ad . Since
−A, −A∗ and Ad are closed and maximally accretive operators and dom A = dom A∗ =
dom Ad , Theorem 2.7 implies that ran B ⊂ dom (−A)β and ranC∗ ⊂ dom (−A∗)γ , and for
all y ∈ Y with ‖y‖ = 1 we have

‖(−A)β By‖H ≤ Kβ‖Aβ
d By‖H ≤ Kβ‖(−L)β/2B2‖‖y‖ < κ

‖(−A∗)γ C∗y‖H ≤ Kγ ‖Aγ

d C∗y‖H
≤ Kγ

(
‖(−L)(γ−1)/2C∗

1‖2 + ‖(−L)γ /2C∗
2‖2

)1/2 ‖y‖ < κ.

By Theorem 2.2 the semigroup generated by A + BC is polynomially stable with α. ��
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If the operator L is diagonalizable [29, Sec. 2.6], then for θ ∈ R the spaces dom (−L)θ

and the graph norms of (−L)θ have the forms

Hθ (L) := dom (−L)θ =
{

u ∈ X0 :
∞∑

k=1

μ2θ
k |〈u, φk〉X0 |2 < ∞

}
(2.8a)

‖u‖Hθ := ‖(−L)θ u‖X0 =
∞∑

k=1

μ2θ
k |〈u, φk〉X0 |2, u ∈ Hθ (L), (2.8b)

where μk are the eigenvalues of −L and φk are the corresponding orthonormal eigenvectors.
With these definitions the space H−θ (L) is the dual of Hθ (L) with respect to the pivot space
X0 [29, Sec. 2.9].

Corollary 2.8 Assume that L is diagonalisable, that the strongly continuous semigroup T (t)
generated by A is polynomially stable with α ≤ 2, 0 ≤ β, γ ≤ 1 satisfy β + γ ≥ α, and
κ > 0 is as in Theorem 2.2. If the perturbation operators B = (0, B2)


 ∈ L(Y ,H) and
C = (C1, C2) ∈ L(H, Y ) satisfy

B2 ∈ L(Y , Hβ/2(L)), C∗
1 ∈ L(Y , H(γ−1)/2(L)), and C∗

2 ∈ L(Y , Hγ /2(L)),

if (−L)β/2B2, (−L)
γ−1
2 C∗

1 , and (−L)γ /2C∗
2 are Hilbert–Schmidt operators and if

‖B2‖L(Y ,Hβ/2) <
κ

Kβ

,

∥∥C∗
1

∥∥2
L(Y ,H(γ−1)/2)

+ ∥∥C∗
2

∥∥2
L(Y ,Hγ /2)

<
κ2

K 2
γ

,

then the semigroup generated by A + BC is polynomially stable with the same α. Here

Kθ = e
1
2π2θ(1−θ)Mθ with θ ∈ [0, 1] and M = 1 + ‖D0‖2‖(−L)−1/2‖.

3 Perturbations of Damped Two-Dimensional Wave Equations

In this section we consider damped wave equations on rectangular domains with different
damping functions. We use Theorem 2.6 to derive concrete conditions for preservation the
polynomial stability of perturbed wave equations with finite rank and Hilbert-Schmidt per-
turbations. We consider the damped wave Eq. (1.4) on � = (0, a) × (0, b), a, b > 0, with
a damping coefficient d(·, ·) ∈ L∞(�). The equation is of the form (1.1) on X0 = L2(�)

with the choice L = � and domain dom� = H2(�) ∩ H1
0 (�), and with D0 ∈ L(L2(�))

defined as the multiplication operator such that D0u = √
d(·, ·)u(·, ·) for all u ∈ L2(�).

We suppose that the set ω = {d(x, y) > 0} contains an open, nonempty subset and does
not satisfy Geometric Control Condition (GCC) (see a definition of GCC for example in [5,
Sec. 1]). It was shown in [18] that for such damping the Schrödinger group is observable,
i.e., the pair (D∗

0 , i(−�)) is exactly observable [29, Def. 6.1.1] (see also [12]). In this case
the damped wave equation (1.4) is polynomially stable with α = 2 by [5, Thm. 2.3].

Our assumptions together with the results in [18] and [13, Prop. 3.9] also imply that the
condition (2.5) is satisfied for some functions η : R → (0, η0] and δ : R → (0, δ0] satisfying
η(s)−2δ(s)−2 ≤ M0(1 + s2) for all s ∈ R. Because of this, Theorem 2.3 could in principle
be used to derive numerical values for κ > 0 for particular damping functions d(·, ·). In
practice, however, finding suitable concrete functions η and δ can be challenging, and in the
case of the two-dimensional wave equation this is an important topic for further research.
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Remark 3.1 In some cases of damping functions the estimate for the exponent of polynomial
stability can be improved. For example, in [28] the exponent of polynomial stability for the
damping function

d(x, y) =
{
1 if x < ε;
0 if x > ε,

ε ∈ (0, 1) (3.1)

was shown to be α = 3/2. Moreover, additional differentiability assumptions on d(·, ·)
improve the rate of polynomial decay, as shown in [5,11,14].

3.1 Rank One Perturbations

We begin by considering perturbed wave equations of the form

wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y)

= b2(x, y)

∫
�

(w(t, ξ, η)c1(ξ, η) + wt (t, ξ, η)c2(ξ, η))dξdη (3.2)

with b2, c2 ∈ L2(�) and c1 ∈ H−1/2(�). The following theorem presents sufficient condi-
tions for the polynomial stability of (3.2).

Theorem 3.2 Assume that damped wave equation (1.4) is polynomially stable with α ≤ 2,
0 ≤ β, γ ≤ 1 are such that β + γ ≥ α, and κ > 0 is as in Theorem 2.6. If b2 ∈ Hβ/2(�),
c1 ∈ H(γ−1)/2(�), c2 ∈ Hγ /2(�) satisfy

‖b2‖Hβ/2 <
κ

Kβ

, ‖c1‖2H(γ−1)/2
+ ‖c2‖2Hγ /2

<
κ2

K 2
γ

, (3.3)

then perturbed wave equation (3.2) is polynomially stable with the same α. Here Kθ =
e
1
2π2θ(1−θ)Mθ with M = 1 + ab‖d‖L∞

π
√

a2+b2
and θ ∈ [0, 1]. For such perturbations there exists

MT > 0 such that the solutions of (3.2) corresponding to initial conditions w0 ∈ H2(�) ∩
H1
0 (�) and w1 ∈ H1

0 (�) satisfy

‖w(t, ·, ·)‖2H1 + ‖wt (t, ·, ·)‖2L2 ≤ MT

t2/α
(‖w0‖2H2 + ‖w1‖2H1

)
, t > 0.

Proof In this case the perturbed wave equation has the form (2.2) with Y = C and

B2 = b2 ∈ L2(�), C1 = 〈·, c1〉H1/2,H−1/2 , and C2 = 〈·, c2〉L2 ,

where 〈·, ·〉H1/2,H−1/2 denotes the dual pairing between H1/2(�) and H−1/2(�). Since B2 =
b2, C∗

1 = c1 and C∗
2 = c2, the claim follows from Corollary 2.8 and a suitable upper bound

for ‖D0‖2
∥∥(−�)−1/2

∥∥. Since −� is a positive self-adjoint operator with compact resolvent
and its smallest eigenvalue is π2(a2 + b2)/(a2b2), we have

∥∥(−�)−1/2
∥∥ ≤ ab

π
√

a2+b2
. Since

‖D0‖ = ‖√d(·, ·)‖L∞ = √‖d(·, ·)‖L∞ , the claim holds for M = 1 + ab‖d‖L∞
π

√
a2+b2

. ��
Remark 3.3 Conditions (3.3) have the simplest form if we choose β = γ = 1

‖b2‖H1/2 <
κ

M
, ‖c1‖2L2 + ‖c2‖2H1/2

<
κ2

M2 ,

where M = 1 + ab‖d‖L∞
π

√
a2+b2

.
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Remark 3.4 If the damping function is as in (3.1), then the exponent of polynomial stability
is α = 3/2. In this case β, γ can be chosen as β = 1

2 and γ = 1 and conditions (3.3) take
the form

‖b2‖H1/4 <
κ

K1/2
, ‖c1‖2L2 + ‖c2‖2H1/2

<
κ2

M2 ,

where K1/2 = e
π2
8

√
M with M = 1 + ab

π
√

a2+b2
.

3.2 Finite Rank Perturbations

We now consider the wave Eq. (1.4) with a finite number of perturbation terms

wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y)

=
m∑

k=1

bk,2(x, y)

∫
�

(
w(t, ξ, η)ck,1(ξ, η) + wt (t, ξ, η)ck,2(ξ, η)

)
dξdη

(3.4)

with bk,2, ck,2 ∈ L2(�) and ck,1 ∈ H−1/2(�).

Theorem 3.5 Assume that damped wave equation (1.4) is polynomially stable with α ≤ 2,
0 ≤ β, γ ≤ 1 are such that β + γ ≥ α, and κ > 0 is as in Theorem 2.6. If for all
k ∈ {1, . . . , m} we have bk,2 ∈ Hβ/2(�), ck,1 ∈ H(γ−1)/2(�), and ck,2 ∈ Hγ /2(�) and

∥∥ck,1
∥∥2

H(γ−1)/2
+ ∥∥ck,2

∥∥2
Hγ /2

<
κ2

m2K 2
γ

,

∥∥bk,2
∥∥

Hβ/2
<

κ

mKβ

,

(3.5)

then the perturbed wave equation (3.4) is polynomially stable with the same α. Here Kθ =
e
1
2π2θ(1−θ)Mθ with M = 1 + ab‖d‖L∞

π
√

a2+b2
and θ ∈ [0, 1]. For such perturbations there exists

MT > 0 such that the solutions of (3.4) corresponding to initial conditions w0 ∈ H2(�) ∩
H1
0 (�) and w1 ∈ H1

0 (�) satisfy

‖w(t, ·, ·)‖2H1 + ‖wt (t, ·, ·)‖2L2 ≤ MT

t2/α
(‖w0‖2H2 + ‖w1‖2H1

)
, t > 0.

Proof The perturbation can be written in the form (2.2) with the choice Y = C
m and defining

B2 ∈ L(Y , X0), C1 ∈ L(dom (−L)1/2, Y ), and C2 ∈ L(X0, Y ) so that

B2y =
m∑

k=1

bk,2yk,

C1x = (〈x, ck,1〉H1/2,H−1/2)
m
k=1 ∈ Y ,

C2z = (〈z, ck,2〉L2)m
k=1 ∈ Y
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for all y = (yk)
m
k=1 ∈ Y , x ∈ H1/2(�) and z ∈ L2(�). For any 0 ≤ β, γ ≤ 1 we have

‖B2‖L(Cm ,Hβ/2) ≤
m∑

k=1

‖bk,2‖Hβ/2 < m
κ

mKβ

= κ

Kβ

∥∥C∗
1

∥∥2
L(Cm ,H(γ−1)/2)

+ ∥∥C∗
2

∥∥2
L(Cm ,Hγ /2)

≤ m
m∑

k=1

(∥∥ck,1
∥∥2

H(γ−1)/2
+ ∥∥ck,2

∥∥2
Hγ /2

)

< m2 κ2

m2K 2
γ

= κ2

K 2
γ

,

and thus the claims follow from Corollary 2.8 as in the proof of Theorem 3.2. ��

3.3 Hilbert–Schmidt Perturbations

Now we consider a more general case of perturbations of the wave equation

wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y)

=
∞∑

k=1

bk,2(x, y)

∫
�

(
w(t, ξ, η)ck,1(ξ, η) + wt (t, ξ, η)ck,2(ξ, η)

)
dξdη

(3.6)

where the functions bk,2, ck,2 ∈ L2(�) and ck,1 ∈ H−1/2(�) of the perturbation are assumed
to satisfy

∞∑
k=1

‖bk,2‖2L2(�) < ∞,

∞∑
k=1

‖ck,1‖2H−1/2
< ∞, and

∞∑
k=1

‖ck,2‖2L2(�) < ∞.

The stability of this perturbed wave equation can be studied using Corollary 2.8 for Hilbert–
Schmidt perturbations.

Theorem 3.6 Assume that damped wave equation (1.4) is polynomially stable with α ≤ 2,
0 ≤ β, γ ≤ 1 are such that β + γ ≥ α, and κ > 0 is as in Theorem 2.6. If for all k ∈ N we
have bk,2 ∈ Hβ/2(�), ck,1 ∈ H(γ−1)/2(�), and ck,2 ∈ Hγ /2(�) and

∞∑
k=1

∥∥bk,2
∥∥2

Hβ/2
<

κ2

K 2
β

,

∞∑
k=1

∥∥ck,1
∥∥2

H(γ−1)/2
+ ∥∥ck,2

∥∥2
Hγ /2

<
κ2

K 2
γ

,

then the perturbed wave equation (3.6) is polynomially stable with the same α. Here Kθ =
e
1
2π2θ(1−θ)Mθ with M = 1 + ab‖d‖L∞

π
√

a2+b2
and θ ∈ [0, 1]. For such perturbations there exists

MT > 0 such that the solutions of (3.6) corresponding to initial conditions w0 ∈ H2(�) ∩
H1
0 (�) and w1 ∈ H1

0 (�) satisfy

‖w(t, ·, ·)‖2H1 + ‖wt (t, ·, ·)‖2L2 ≤ MT

t2/α
(‖w0‖2H2 + ‖w1‖2H1

)
, t > 0.
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Proof The perturbations can be written in the form (2.2) with Y = �2(C) if we define B2,
C1, and C2 so that

B2y =
∞∑

k=1

bk,2yk,

C1x = (〈x, ck,1〉H1/2,H−1/2)
∞
k=1,

C2z = (〈z, ck,2〉L2)∞k=1,

The assumptions (‖bk,2‖L2)k ∈ �2, (‖ck,1‖H−1/2)k ∈ �2, and (‖ck,2‖L2)k ∈ �2 imply that
B2 ∈ L(Y , X0), C1 ∈ L(H1/2, Y ) and C2 ∈ L(X0, Y ). If we let 0 ≤ β, γ ≤ 1 be such that
β + γ ≥ α, then

∞∑
k=1

‖(−�)β/2bk,2‖2X0
=

∞∑
k=1

‖bk,2‖2Hβ/2
<

κ

Kβ

∞∑
k=1

(∥∥∥(−�)(γ−1)/2ck,1

∥∥∥2
X0

+ ∥∥(−�)γ/2ck,2
∥∥2

X0

)

=
∞∑

k=1

(∥∥ck,1
∥∥2

H(γ−1)/2
+ ∥∥ck,2

∥∥2
Hγ /2

)
<

κ2

K 2
γ

.

imply that (−�)β/2B2, (−�)
γ−1
2 C∗

1 , and (−�)γ/2C∗
2 are Hilbert–Schmidt operators and

that

‖B2‖L(Y ,Hβ/2) <
κ

Kβ

, and
∥∥C∗

1

∥∥2
L(Y ,H(γ−1)/2)

+ ∥∥C∗
2

∥∥2
L(Y ,Hγ /2)

<
κ2

K 2
γ

.

Thus the claim follows from Corollary 2.8 as in the proof of Theorem 3.2. ��

3.4 Wave Equation with "Almost Dissipative" Damping

Finally, we consider the two-dimensional damped wave equation with a perturbed damping
term, namely

wt t (t, x, y) − �w(t, x, y) + d(x, y)wt (t, x, y)

− b2(x, y)

∫
�

√
d(ξ, η)wt (t, ξ, η)c(ξ, η)dξdη = 0 (3.7)

with b2, c ∈ L2(�). We also make an additional assumption that d ∈ C2(�). The structure
of the perturbed semigroup generator is now Ã := A0 − (D + B)D∗ = A − B D∗, where
D = (0,

√
d(·))
 and B = (0, b2〈·, c〉L2)
. Because of this structure, the damping in the

wave Eq. (3.7) can be thought to be “almost dissipative”.
Since we assumed that the damping coefficient is smooth, i.e. d(·) ∈ C2(�), it is possible

to characterise the higher order domain dom A2 and the stability of (3.7) can be studied using
Theorem 2.2 with the parameters β = 2 and γ = 0, as shown in the following theorem.

Theorem 3.7 Assume that damped wave equation (3.7) is polynomially stable with α ≤ 2 in
the case where b2 = 0. There exists κ > 0 such that if b2 ∈ dom� and c ∈ L2(�) satisfy

‖√dc‖L2 < κ, ‖db2‖2H1/2
+ ‖b2‖2H1 <

κ2

M2 , (3.8)
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where M = 1 + ab‖d‖2L∞
π

√
a2+b2

, then (3.7) is polynomially stable with the same α. For such

perturbations there exists MT > 0 such that the solutions of (3.7) corresponding to initial
conditions w0 ∈ H2(�) ∩ H1

0 (�) and w1 ∈ H1
0 (�) satisfy

‖w(t, ·, ·)‖2H1 + ‖wt (t, ·, ·)‖2L2 ≤ MT

t2/α
(‖w0‖2H2 + ‖w1‖2H1

)
, t > 0.

Proof Let κ > 0 be as in Theorem 2.2 and suppose the assumptions on b2 and c are satisfied.
We define B̃ := (0, b2)
 and C̃ := (0, 〈·,√dc〉). It is clear that B̃C̃ = B D∗. Our aim is to
verify that the conditions of Theorem 2.2 are satisfied for the perturbed operator for A − B̃C̃
with parameters β = 2 and γ = 0. We have

dom A2 = {u ∈ dom A0 : Au ∈ dom A0}
=
{

u =
(

u1

u2

)
∈
(

dom�

dom (−�)1/2

)
:
(

u2

�u1 − du2

)
∈
(

dom�

dom (−�)1/2

)}
,

and thus ran B = {0} × span{b j } ⊂ dom A2 provided that b2 ∈ dom� and db2 ∈
dom (−�)1/2. Since d ∈ C2(�), the assumption b2 ∈ dom� also implies db2 ∈
dom (−�)1/2.

The norm of A2B can be estimated by

‖A2B‖2 ≤ ‖I − DD∗ A−1
0 ‖2‖A0AB‖2

≤ (I + ‖d‖L∞‖(−�)−1/2‖)2‖A0AB‖2 ≤ M2‖A0AB‖2, (3.9)

where the last estimate is completed as in the proof of Theorem 3.2. Moreover,

‖A0AB‖2 ≤
∥∥∥∥
(

� −d
0 �

)(
0
b2

)∥∥∥∥
2

=
∥∥∥∥
(

db2
�b2

)∥∥∥∥
2

= (‖(−�)1/2(db2)‖2 + ‖�b2‖2) <
κ2

M2 .

(3.10)

Thus ‖(−A)2B‖ < κ . We also have that ‖(−A∗)0C∗‖ = ‖√dc‖L2 < κ . The polynomial
stability of the semigroup generated by A − B̃C̃ = A − B D∗ follows from Theorem 2.2 and
then wave Eq. (3.7) is polynomial stable with α. ��

4 Perturbations of Webster’s Equations

In this section we show the polynomial stability of weakly damped Webster’s equation and
use Theorems 2.6 and 2.3 to derive sufficient conditions for the preservation of the stability
under addition of perturbing terms.Webegin by considering an undampedWebster’s equation
on � = (0, 1) which has the form

⎧⎨
⎩

wt t (t, x) = 1
r(x)

(r(x)wx (t, x))x

w(t, 0) = w(t, 1) = 0
w(0, x) = w0(x), wt (0, x) = w1(x).

We consider r(x) = eax , where a ≥ 0. Then Webster’s equation takes the form

wt t (t, x) = wxx (t, x) + awx (t, x).
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We denote by L2
a(0, 1) the Hilbert space L2(0, 1) with the inner product

〈 f , g〉L2
a

=
1∫

0

f (ξ)g(ξ)eaξ dξ.

Let us define the operator L = d2

dx2
+ a d

dx from L2
a(0, 1) to L2

a(0, 1) with dom L = {h ∈
L2

a(0, 1) : h, h′ are absolutely continuous , h′′ ∈ L2
a(0, 1) and h(0) = h(1) = 0}. In the

next lemma we state some properties of L .

Lemma 4.1 The operator L = d2

dx2
+a d

dx from L2
a(0, 1) to L2

a(0, 1) is a negative self-adjoint
operator with a bounded inverse. The eigenvalues and eigenvectors of L are

μn = −a2

4
− π2n2, ϕn(x) = e− ax

2 sin(πnx),

respectively, for n ∈ N.

Proof We define a unitary mapping V : L2(0, 1) → L2
a(0, 1) by the formula

(V f )(x) = e− ax
2 f (x), x ∈ (0, 1).

Now we can consider an auxiliary operator L̃ : L2(0, 1) → L2(0, 1) defined by L̃ = V ∗LV

with dom L̃ = H2(0, 1) ∩ H1
0 (0, 1). Direct calculations yield that L̃ f = d2 f

dx2
− a2

4 f . It is

well known that L̃ is a negative self-adjoint operator with a bounded inverse. Hence L is also
a negative self-adjoint operator with a bounded inverse. The eigenvalues and the eigenvectors
of the operator L̃ are

μn = −a2

4
− π2n2, ϕ̃n(x) = sin(πnx), n ∈ N.

Since L̃ = V ∗LV , the operators L̃ and L have the same eigenvalues and the eigenvectors of
L are given by the formula ϕn(x) = (V ϕ̃n)(x) = e− ax

2 sin(πnx). ��
Now we consider weakly damped Webster’s equation⎧⎨

⎩
wt t (t, x) − wxx (t, x) − awx (t, x) + d(x)

∫ 1
0 wt (t, ξ)d(ξ)eaξ dξ = 0

w(t, 0) = w(t, 1) = 0
w(0, x) = w0(x), wt (0, x) = w1(x),

(4.1)

where the damping coefficient is d ∈ L2
a(0, 1). This equation is of the form (1.1) on X0 =

L2
a(0, 1) with L defined above and with a rank one operator D0 = d(·) ∈ L(C, L2

a(0, 1))
and D∗

0 = 〈·, d〉L2
a
.

The polynomial stability of the weakly dampedWebster’s equation can be analyzed using
[25, Thm. 6.3]. The following result in particular shows that (4.1) is polynomially stable for
the particular choice of damping d(x) = 1 − x .

Proposition 4.2 The weakly damped Webster’s equation (4.1) with the damping function
d(x) = 1 − x is polynomially stable with α = 2.

Proof We can write

A =
(
0 I
L −D0D∗

0

)
=
(
0 I
L 0

)
−
(

0
D0

) (
0 D∗

0

) =: A0 − DD∗
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with dom A0 = dom A and D ∈ L(C, X). We will use [25, Thm. 6.3] to show that
‖R(is, A)‖ ≤ M(1 + s2) for some M > 0. To this end, we need to estimate the quan-
tities |D∗ψn | from below, where ψn are the normalized eigenvectors of A0. Since L has

eigenvaluesμn = − a2
4 −π2n2 with the corresponding eigenvectors ϕn(x) = e− ax

2 sin(πnx)

for n ∈ N, the eigenvectors ψn and the corresponding eigenvalues λn of A0 are given by

λn = sign (n)i

√
a2

4
+ π2n2, and ψn(x) = 1

λn

(
ϕ|n|(x)

λnϕ|n|(x)

)
, n ∈ Z\{0}.

For any n ∈ Z\{0} we thus have

|D∗ψn | =
∣∣∣〈ϕ|n|(x), 1 − x〉L2

a

∣∣∣ =
∣∣∣∣∣∣

1∫
0

eax e− a
2 x sin(πnx)(1 − x)dx

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
π |n|

a2
4 + π2n2

− aπ |n| (ea/2(−1)|n| − 1
)

(
a2
4 + π2n2

)2
∣∣∣∣∣∣∣
≥ c

|λn |

for some constant c > 0 and for all sufficiently large |n|. By [25, Thm. 6.3] we have
‖R(is, A)‖ = O(s2) for |s| large, and thus [10, Thm. 2.4] implies that the semigroup
generated by A = A0 − DD∗ is polynomially stable with α = 2. ��

Remark 4.3 Note that if in this weakly damped Webster’s equation one takes a = 0 then we
get a weakly damped wave equation on the interval (0, 1) with the same damping coefficient
d(x) = 1 − x and such equation is also polynomially stable with α = 2.

We consider the weakly damped Webster’s equation with additional perturbing terms of
the form

wt t (t, x) − wxx (t, x) − awx (t, x) + d(x)

∫ 1

0
wt (t, ξ)d(ξ)dξ

= b2(x)

∫ 1

0
(w(t, ξ)c1(ξ) + wt (t, ξ)c2(ξ)) eaξ dξ,

(4.2)

where b2, c2 ∈ L2(0, 1) and c1 ∈ H−1/2(L). The following theorem presents conditions
for the polynomial stability of the perturbed Webster’s Eq. (4.2). The spaces Hθ (L) and the
corresponding norms are defined as in (2.8). The above perturbations correspond to rank one
perturbation operators in the abstract wave equation. Addition of multiple perturbation terms
can be treated similarly as in the case of the two-dimensional wave equation in Sect. 3.

Theorem 4.4 Assume that the weakly damped Webster’s equation (4.1) is polynomially stable
with α ≤ 2, that 0 ≤ β, γ ≤ 1 such that β + γ ≥ α, and that κ > 0 is as in Theorem 2.2. If
b2 ∈ Hβ/2(L), c1 ∈ H(γ−1)/2(L), c2 ∈ Hγ /2(L) satisfy

‖b2‖Hβ/2 <
κ

Kβ

, ‖c1‖2H(γ−1)/2
+ ‖c2‖2Hγ /2

<
κ2

K 2
γ

,

then the perturbed Webster’s Eq. (4.2) is polynomially stable with the same α. Here Kθ =
e
1
2π2θ(1−θ)Mθ , θ ∈ [0, 1], and M = 1 + ‖d‖L2

a
( a2
4 + π2)−1/2.
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Proof The perturbed system is of the form (1.3) with

B2 = b2 ∈ L2(�), C1 = 〈·, c1〉H1/2,H−1/2 , and C2 = 〈·, c2〉L2 ,

where 〈·, ·〉H1/2,H−1/2 denotes the dual pairing between H1/2(L) and H−1/2(L). We have
B2 = b2, C∗

1 = c1 and C∗
2 = c2, and ‖D0‖ = ‖d‖L2

a
. Since −L is positive and its smallest

eigenvalue is given by −μ1 = a2/4 + π2, we also have ‖(−L)−1/2‖ = (−μ1)
−1/2 =

(a2/4 + π2)−1/2. Thus the claim follows from Corollary 2.8. ��
As shown in Proposition 4.2 the Webster’s equation with the damping function d(x) =

1 − x is polynomially stable with α = 2. Since ‖d‖2
L2

a
= 2a−3(ea − 1 − a − a2/2) for this

d , for the choices β = γ = 1 Theorem 4.4 has the following form.

Corollary 4.5 Let d(x) = 1 − x. If κ > 0 is as in Theorem 2.2 with β = γ = 1 and if
b2, c2 ∈ H1/2(L), c1 ∈ L2

a(0, 1) satisfy

‖b2‖H1/2 <
κ

M
, ‖c1‖2L2

a
+ ‖c2‖2H1/2

<
κ2

M2 ,

where M = 1 + 2a−3(ea − 1 − a − a2/2)( a2
4 + π2)−1/2, then the perturbed Webster’s

Eq. (4.2) is polynomially stable with α = 2.

Example 4.6 We use Theorem 2.3 for computing an explicit numerical value of κ for the case
d(x) = 1 − x and a = 2. To this end, we need to find functions η(·) and δ(·) such that the
condition (2.5) in Theorem 2.3 is satisfied. For a = 2 the eigenvalues and the corresponding
eigenvectors of A0 are λn = sign (n)i

√
1 + π2n2,

ψn(x) = 1

λn

(
ϕ|n|(x)

λnϕ|n|(x)

)
, where ϕ|n|(x) = e−x sin(π |n|x), n ∈ Z\{0}.

For all n ∈ N (using the inequality
√

x + y ≤ √
x + √

y)

dist (λn, λn+1) = dist (λ−n, λ−(n+1)) =
√
1 + π2(n + 1)2 −

√
1 + π2n2

= π2(2n + 1)√
1 + π2(n + 1)2 + √

1 + π2n2
≥ π2(2n + 1)

2 + π(2n + 1)
≥ 3π2

2 + 3π
,

since f (x) = π2x
2+πx is increasing for x ∈ (1,∞). If we choose δ(s) ≡ δ0 = π2

a+3π , then every
interval (i(s −δ0), i(s +δ0)) contains at most one eigenvalue and ran P(s−δ0,s+δ0) consists of
the corresponding eigenvector. Similar computations as in the proof of Proposition 4.2 then
show that

|D∗ψn | =
∣∣∣〈ϕ|n|, d〉L2

a

∣∣∣ = π |n|
1 + π2n2

(
1 − 2

(
e(−1)|n| − 1

)
(
1 + π2n2

)2
)

≥ c

|λn | ≥ c

s + δ0
= η(s)‖ψn‖,

where η(s) = c
s+δ0

with the c > 0 such that

c ≤ inf

{
π |n|√

1 + π2n2

(
1 − 2

(
e(−1)|n| − 1

)
(
1 + π2n2

)2
)}

.
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To find a suitable c > 0, let us denote

F(n) = π |n|√
1 + π2n2

(
1 − 2

(
e(−1)|n| − 1

)
(
1 + π2n2

)2
)

and

G(n) = π |n|√
1 + π2n2

(
1 − 2 (e − 1)(

1 + π2n2
)2
)

.

It is obvious that F(n) ≥ G(n) for n ≥ 2. The values G(n) for n ≥ 2 are increasing and
G(n) → 1 as n → ∞ and therefore min

n≥2
G(n) = G(2). Hence we can choose

c = min{F(1), G(2)} = 2π√
1 + 4π2

(
1 − 2 (e − 1)(

1 + 4π2
)2
)

.

Finally, the maximum of η(s) when s ≥ 0 is η0 = c/δ0.
In the next step we calculate MR . To this end, we need also ‖D‖ which is

‖D‖ = ‖d‖L2
2

=
√

e2 − 5

2
.

We can now use Matlab to compute MR = 5.451.
Now we will find the constant M0 > 0. A direct estimate using (x + y)2 ≤ 2(x2 + y2)

and δ0 < 1 shows that

η(s)−2δ(s)−2 = (s + δ0)
2

c2δ20
≤ 2(s2 + δ20)

c2δ20
≤ 2

c2δ20
(s2 + 1) = M0(s

2 + 1),

with M0 = 2
c2δ20

. To compute MC > 0, we also need an estimate for ‖A−1‖. We have

‖A−1‖ = ∥∥(A0 − DD∗)−1
∥∥ ≤

∥∥∥(I − DD∗ A−1
0 )−1

∥∥∥ ‖A−1
0 ‖

=
∥∥∥I + DD∗ A−1

0

∥∥∥ ‖A−1
0 ‖ ≤

(
1 + ‖d‖2

L2
2
‖(−L)−1/2‖

)
‖(−L)−1/2‖

=
(
1 + e2 − 5

4
√
1 + π2

)
1√

1 + π2
.

If we take s0 = 2.8 in the formula for MC , we obtain MC = 17.0664. This way, we finally
see that κ > 0 in Theorem 2.2 can take any value such that κ < 1√

2MC
= 0.1712.

Now we are able to give explicit upper bounds for the norms of b2, c1, and c2 for the
preserving of polynomial stability. From Corollary 4.5 we have that b2, c2 ∈ H1/2(L),
c1 ∈ L2

a(0, 1) satisfy

‖b2‖H1/2 <
κ

M
= 0.1449,

√
‖c1‖2L2

a
+ ‖c2‖2H1/2

<
κ

M
= 0.1449,

where M = 1+ e2−5
4
√
1+π2 , then the perturbed Webster’s Eq. (4.2) is polynomially stable with

α = 2.
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5 Wave Equation with an Acoustic Boundary Condition

In this section we consider a one-dimensional wave equation with an "acoustic boundary
condition" on the interval � = (0, 1),⎧⎪⎪⎨

⎪⎪⎩

wt t (t, x) = wxx (t, x) in (0,∞) × �

att (t) = −ka(t) − dat (t) − wt (1, t)
wx (t, 1) = at (t), wx (t, 0) = 0,
w(0, x) = w0(x), wt (0, x) = w1(x), a(0) = a0, at (0) = a1

(5.1)

with k, d > 0 [1, Sec. 6.1]. The spectral properties and polynomial stability of differential
equations of this form (also on multidimensional spatial domains) have been studied in detail
in [1,2,9,22]. In particular, it was shown in [22, Thm. 1.3] that the energy of the classical
solutions of (5.1) decays at a rational rate, and the optimality of this decay rate was proved
in [1, Sec. 6.1]. This model is not of the form (1.1), but the preservation of its polynomial
stability can be studied using Theorem 2.2.

Equation (5.1) can be formulated as an abstract Cauchy problem with state u(t) =
(wx (t, ·), wt (t, ·), a(t), at (t))
 on the Hilbert space H = L2(0, 1) × L2(0, 1) × C

2 with
inner product defined as

〈u, v〉H = 〈u1, v1〉L2 + 〈u2, v2〉L2 + ku3v3 + u4v4

for all u = (u1(·), u2(·), u3, u4)

, v = (v1(·), v2(·), v3, v4)
 ∈ H. In this situation the

semigroup generator is defined as

A =

⎛
⎜⎜⎝

0 ∂x 0 0
∂x 0 0 0
0 0 0 1

−C0 0 −k −d

⎞
⎟⎟⎠ , C0 f = f (1) for f ∈ H1(0, 1),

with domain

dom A =
{
(u1(·), u2(·), u3, u4)


 ∈ (H1(0, 1))2 × C
2 : u2(0) = 0, u2(1) = u4

}
.

The operator A generates a contraction semigroup onH, and it was shown in [22, Thm. 1.3]
(see also [1, Sec. 6.1], [26, Sec. 4]) that this semigroup is polynomially stable with α = 2.
In the context of the wave Eq. (5.1) this means that there exists a constant MT > 0 such that
for all initial conditions w0, w1, a0, a1 such that (w′

0, w1, a0, a1)
 ∈ dom A the solutions
of (5.1) satisfy

‖wx (t, ·)‖2L2 + ‖wt (t, ·)‖2L2 + |a(t)|2 + |at (t)|2

≤ MT

t

(‖w′′
0‖2L2 + ‖w′

1‖L2 + k|a0|2 + |a1|2
) (5.2)

for all t > 0.
We can now study the stability of perturbed wave equations of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt t (x, t) = wxx (x, t) + b2(x)
∫ 1
0 (wt (ξ, t)c1(ξ) + wx (ξ, t)c2(ξ))dξ

+b2(x)(ka(t)c3 + at (t)c4)

att (t) = −ka(t) − dat (t) − wt (1, t)
wx (t, 1) = at (t), wx (t, 0) = 0,
w(0, x) = w0(x), wt (0, x) = w1(x), a(0) = a0, at (0) = a1

(5.3)
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where b2, c1, c2 ∈ L2(0, 1) and c3, c4 ∈ C. The following two theorems introduce conditions
for the polynomial stability of (5.3).

Theorem 5.1 Assume κ > 0 is as in Theorem 2.2 with β = γ = 1. If b2 ∈ H1
0 (0, 1),

c1, c2 ∈ H1(0, 1), and c4 = 0 satisfy

‖b′
2‖L2 < κ, and 4‖c1‖2H1 + ‖c′

2‖2L2 + 3k2|c3|2 < κ2,

then the perturbed Eq. (5.3) is polynomially stable with α = 2. For such perturbations
there exists MT > 0 such that the solutions of (5.3) corresponding to initial conditions
w0, w1, a0, a1 such that (w′

0, w1, a0, a1)
 ∈ dom A satisfy (5.2) for all t > 0.

Proof The perturbed systemoperator can bewritten as A+BC where B = (0, b2(·), 0, 0)
 ∈
L(C,H) and C = (〈·, c1(·)〉L2 , 〈·, c2(·)〉L2 , c3, 0) ∈ L(H,C) with b2 ∈ H1

0 (0, 1), c1, c2 ∈
H1(0, 1) and c3 ∈ C. A straightforward computation shows that the adjoint operator of A
has the form

A∗ =

⎛
⎜⎜⎝

0 −∂x 0 0
−∂x 0 0 0
0 0 0 −1

C0 0 k −d

⎞
⎟⎟⎠

and that its domain dom A∗ contains the subspace
{
(u1(·), u2(·), u3, u4)


 ∈ H1 × H1 × C × C : u2(1) = u4, u2(0) = 0
}

.

The assumptions therefore imply that ran B ⊂ dom A and ranC∗ ⊂ dom A∗, and

‖AB‖ = ‖b′
2‖L2 ,

‖A∗C∗‖2 = ‖c′
1‖2L2 + ‖c′

2‖2L2 + |c1(1) + kc3|2
≤ ‖c1‖2L2 + ‖c′

2‖2L2 + (‖c1‖L2 + ‖c′
1‖L2 + k|c3|

)2
≤ 4‖c1‖2H1 + ‖c′

2‖2L2 + 3k2|c3|2.
Here we have used the property |c1(1)| ≤ ‖c1‖L2 + ‖c′

1‖L2 , which can be verified using the

identity c1(1) = ∫ 1
0

d
dx (xc1(x))dx = ∫ 1

0 (c1(x) + xc′
1(x))dx . Thus the claim follows from

Theorem 2.2 with β = γ = 1. ��
Similarly, applying Theorem2.2withβ = 2 and γ = 0we obtain the following alternative

conditions for the polynomial stability of (5.3).

Theorem 5.2 Assume κ > 0 is as in Theorem 2.2 with β = 2 and γ = 0. If b2 ∈ H1
0 (0, 1) ∩

H2(0, 1), c1, c2 ∈ L2(0, 1), and c3, c4 ∈ C satisfy

‖b′
2‖H1 < κ, ‖c1‖2L2 + ‖c2‖2L2 + k|c3|2 + |c4|2 < κ2,

then (5.3) is polynomially stable with α = 2. For such perturbations there exists MT > 0
such that the solutions of (5.3) corresponding to initial conditions w0, w1, a0, a1 such that
(w′

0, w1, a0, a1)
 ∈ dom A satisfy (5.2) for all t > 0.

Proof The perturbations have the same form as in the proof of Theorem 5.1. Since B =
b := (0, b2(·), 0, 0)
 with b2 ∈ H1

0 (0, 1) ∩ H2(0, 1), we have (0, b2(·), 0, 0)
 ∈ dom A
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and Ab = (b′
2(·), 0, 0, 0)
 ∈ dom A. Thus ran B ⊂ dom A2 and

A2

⎛
⎜⎜⎝

0
b2
0
0

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

b′
2
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
b′′
2
0

−b′
2(1)

⎞
⎟⎟⎠ .

implies ‖A2B‖2 = ‖b′′
2‖2L2 + |b′

2(1)|2 ≤ 3‖b′
2‖2H1 , since |b′

2(1)|2 ≤ 2‖b′
2‖2H1 similarly as in

the proof of Theorem 5.1. The claim now follows from Theorem 2.2 with the choices β = 2
and γ = 0. ��
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