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ABSTRACT

Nico Ahola: Automation of Defensics for protocol implementation fuzzing
Master’s Thesis
Tampere University
Master’s Degree Programme in Information Technology
April 2022

Fuzzing is a security testing method that has existed for decades and that has been widely
adopted by the industry. Its goal is to expose vulnerabilities by generating inputs that cause
unexpected behaviour in a system, e.g. software crashes. There exists several different fuzzing
types, one of which is network protocol fuzzing. A network protocol fuzzer tries to find flaws in
protocol implementations. Defensics is one such fuzzer.

A Nokia team had been using Defensics manually via GUI as part of their product’s security
testing. Operating the GUI had taken notable time. The GUI also has limitations not present
when using Defensics via its CLI or HTTP API. Another challenge with Defensics had been its
execution time. Especially when Defensics marked test cases as skipped or failed seemed to
cause extremely slow behaviour.

To address the challenges, Defensics was added into existing CI process and its suites were
configured in a way that speeds up fuzzing process when many cases are marked as skipped or
failed. As part of the work, a Robot test suite and a Python program were created. The CI pipeline
that executes Defensics calls the Robot test suite which then calls the program. The program can
execute Defensics processes in parallel using Defensics CLI and multithreading.

A comparison was done between old and new suite configurations. The results show that
execution time has slightly improved when many skipped cases are encountered. Even with the
improvement, fuzzing was concluded to be too slow to be fully executed for every product release
candidate. Therefore, two pipelines exist: one for executing a small subset of cases for release
candidates and another for full execution on a weekly or on-demand basis.

Keywords: defensics, fuzzing, automation, security

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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Fuzz-testaus on vuosikymmeniä vanha ja laajasti käytössä oleva tietoturvatestauksen meto-
di. Sen tavoite on paljastaa haavoittuvuuksia luomalla syötteitä, jotka aiheuttavat odottamattomia
reaktioita kohdejärjestelmässä. Odottamaton reaktio voi olla esimerkiksi sovelluksen kaatuminen.
On olemassa monia eri fuzz-testauksen alalajeja ja näistä yksi on protokollien fuzz-testaus. Tällai-
sessa fuzz-testauksessa tarkoitus on löytää vikoja protokollatoteutuksista. Yksi tämän tyyppiseen
fuzz-testaukseen erikoistunut työkalu on Defensics.

Eräs Nokian työryhmä oli käyttänyt Defensicsiä manuaalisesti sen käyttöliittymän kautta osa-
na heidän tuotteensa tietoturvatestausta. Käyttöliittymän käyttö oli vaatinut huomattavasti aikaa.
Käyttöliittymässä on myös rajoituksia, joita ei ole Defensicsin komentorivikäyttöliittymässä. Toi-
nen haaste Defensicsin käytössä on ollut fuzz-testauksen hitaus. Erityistä hitautta on esiintynyt
Defensicsin merkitessä testitapauksia ohitetuiksi tai epäonnistuneiksi.

Näihin haasteisiin vastattiin liittämällä Defensics osaksi jatkuvaa integrointia (engl. continuous
integration, CI) ja Defensicsin asetukset määritettiin siten, että fuzz-testaus etenee nopeammin
niissä tilanteissa, joissa moni testitapaus merkataan ohitetuksi tai epäonnistuneeksi. Osana työtä
luotiin Robot framework testitiedosto ja Python-ohjelma. Robot-tiedostoa, joka suorittaa Python-
ohjelman, kutsutaan CI-putkesta. Python-ohjelma pystyy suorittamaan Defensics-prosesseja rin-
nakkaisesti Defensicsin komentorivikäyttöliittymän ja monisäikeistyksen avulla.

Työn lopuksi uusia asetuksia vertailtiin vanhoihin asetuksiin. Tuloksista ilmenee, että suori-
tusaika on hiukan parantunut kun ohitettuja testitapauksia esiintyy paljon. Edes parannuksen
kanssa fuzz-testaus ei kuitenkaan ole tarpeeksi nopeaa suoritettavaksi jokaiselle uudelle versiol-
le tuotteesta. Tämän seurauksena luotiin kaksi CI-putkea: yksi lyhyiden testien ajoon jokaiselle
uudelle versiolle tuotteesta ja toinen täysimittaisten testien ajoon viikottain tai aina tarpeen vaa-
tiessa.

Avainsanat: defensics, fuzz-testaus, automaatio, tietoturva

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The first chapter introduces the topic of the thesis and other relevant information. First,

general background about the topic is given. Secondly, existing challenges are introduced

and research questions are formed. Research methodologies are also described. Third,

objectives of the thesis and thesis outline are set out. Finally, other studies related to this

thesis are briefly discussed.

1.1 Background

Fuzzing is a security testing technique that has been present for over three decades. It

is widely used in the industry and research on fuzzing is only increasing [1]. Objective

of fuzzing is to generate data that will cause unexpected behaviour in the target system,

such as a crash. In its simplest form fuzzing is nothing but generating random data and

inputting it into a program. More complex techniques produce high quality inputs that

have a higher chance of causing a crash. The inputs may even evolve based on the

target system’s reactions. Crashes are the most obvious reactions, but they can be more

subtle too. The more subtle the reactions, the more target analysis must be performed by

the fuzzer. However, sometimes observing subtle reactions is not possible. For example,

when fuzzing network protocol implementations of a separate target machine it is possible

that only inputs and outputs can be observed. This type of fuzzing is called black box

fuzzing.

This thesis is done for a team of a Nokia organization, that develops a software product

for mobile networks. The product is installed on a host machine running a certain Linux

distribution. Software testing, including security testing, has been part of the product’s

life cycle for a while, but the testing has been mostly manual. Automation of the testing

has started only recently by using continuous integration (CI) practices. As one part

of the product’s security testing the team has conducted black box protocol fuzzing using

Defensics fuzzer, which is one of the tools not part of automated testing yet. But now there

is a need to automate Defensics too. The automation will be done as purely individual

work.
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1.2 Research questions and methodologies

For now, Defensics has been used via its GUI application. Operating the GUI is time-

consuming and embodies limitations not present in alternative execution methods, i.e.,

execution via Defensics command line interface (CLI) or HTTP API. Since these two al-

ternative methods exist, automation will be done using one of them. Which one and how

exactly should it be used is an open question. Another question that has risen during

manual execution is whether the execution time can be shortened. Currently executing

Defensics is by far the slowest testing method and therefore has a risk of extensively

prolonging automated execution. To formalize these questions into research questions of

this thesis:

• How should Defensics protocol fuzzing be integrated into existing CI process?

• Is it possible to speed up fuzzing performed by Defensics? If so, how?

Two primary research methodologies were used in this thesis: literature review and prac-

tical work. A large of amount of literature was reviewed for gathering information about

security testing, software testing in general and fuzz testing. Part of this literature was

used as source material, mainly for the first two chapters. Tampere University’s Andor

and Google Scholar were used as the main search engines. Search terms were focused

on security testing, testing automation, robustness and fuzz testing. The approach used

was however not systematic and the precise terms used are not available. Defensics doc-

umentation was used as source when writing about Defensics. This documentation is not

publicly available since it requires access to Defensics. Most of the practical work was

writing Python code, but a significant amount of time went also into creating test cases

with Robot framework and configuring the pipelines in Gitlab. The testing environment

and a security pipeline already existed before, but all work regarding Defensics was done

as individual work for this thesis.

1.3 Objectives and outline

The main objective of this thesis is to create a program for running Defensics commands.

This program is then integrated as part of the existing automated testing workflow. The

other objective is to create the program and configure Defensics in such a manner that ex-

ecution time is significantly shorter than currently. Ideally Defensics could be run multiple

times a day without reducing test coverage. Defensics allows fuzzing of file formats, but

for this thesis only protocol fuzzing of Defensics is analyzed. The theory part of the thesis

will, however, deal with other types of fuzzing too. The product will be treated as black

box, i.e., trying to infer control flow or such is out of the scope of this thesis. However,

monitoring the host machine is not out of the question.
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The structure of the thesis is as follows: first, chapter 2 briefly discusses theory behind

security testing and its automation. The chapter also summarizes requirements and en-

vironment set for the work. Chapter 3 then moves onto theory behind fuzz testing. The

chapter moves from general robustness testing onto fuzz testing and its different types

and techniques. As the last part of the chapter, fuzz testing maturity model is introduced.

Chapter 4 is the last theory chapter as it discusses Defensics and its features and re-

quirements. The fifth chapter describes what was actually done in this thesis: Defensics

configurations, automatic execution workflow of Defensics and the written code. Chapter

6 is for analysis and general discussion of the work done. Finally, everything is concluded

in chapter 7.

1.4 Related work

A work closely related to this thesis was conducted by Sorsa [2]. In her work Sorsa

designed and implemented a fuzzing framework into an existing CI environment. Fuzzer

used in the work was Radamsa, an open source general purpose fuzzer [3]. Similar to this

thesis, Robot Framework was used as testing automation framework. The used CI server

was, however, Jenkins. Besides differences in used technologies, no fuzzing had been

conducted prior the work. Hence, new implementation errors were found from the fuzzed

product, although detailed analysis was out of the scope of the work. Another important

difference compared to this work is that the fuzzed protocols were proprietary. For future

work Sorsa suggests Defensics SDK as an alternative for Radamsa. Defensics SDK

makes it possible to fuzz proprietary protocols by creating custom test suites. Because

no proprietary protocols are fuzzed in this work, Defensics SDK is not discussed further.

No other works related to integrating a fuzzer into a CI environment were identified using

the described research methodologies. However, other works related to Defensics and

its automation exist. Oka et al. [4] created a prototype that automates the process of

mapping security testing requirements and the corresponding test case(s) . The prototype

uses Jenkins to read test case requirements and launch appropriate Defensics test suite.

The requirements are read from an application lifecycle management (ALM) tool and

results are fed back into it after fuzz testing. The prototype uses preconfigured Defensics

testplans, instead of dynamically creating parameters for test suites. This may require

some manual work later if changes to testplans are necessary. Rossi [5] created scripts

as part of his thesis for automating certain Defensics related tasks that the target company

had done manually. Execution of Defensics itself however was not automated, i.e., fuzz

testing was not part of any CI environment.

There are also many works where Defensics is used but the automation perspective is

not considered. In such works the focus is commonly not in Defensics but in some other

system. Such systems include electronic control units used in automotive industry [6],
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various components used in smart grids [7] and programmable logic controllers used in

nuclear power plants [8]. In the mentioned works Defensics is used as comparison to

another fuzzer or for exposing vulnerabilities.

When it comes to fuzz testing in general, there is a large amount of studies with several

different focus areas. Developing a new fuzzer (e.g. [9]), writing more efficient fuzzing

algorithms (e.g. [10]) and comparing existing fuzzers (e.g. [11]) are examples of dif-

ferent focus areas. Due to the vast amount of studies, literature reviews and surveys

help to understand the big picture. Manes et al. [1], Liang et al. [12] and Li et al. [13]

have conducted such papers, to name a few. One of the most recent literature reviews

concerns machine learning based fuzzing [14]. Regarding this thesis, one of the most

interesting areas is network protocol fuzzing. Munea et al. [15] reviewed studies on net-

work protocol fuzzing and compared four fuzzers based on several criteria. Based on the

comparison and used criteria, an ideal network protocol fuzzing technique combination

was introduced. However, the authors state that creating a fuzzer that matches the ideal

combination may not be practical.
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2. SECURITY TESTING BACKGROUND

This chapter goes through theory behind security testing. First is discussed how security

testing is related to general software life cycle management. Then, the topic moves on

to security testing itself and its different methods. Thirdly, previous topics are analyzed

from Nokia perspective. After that, the security testing requirements and environments of

this work are introduced. Finally, concepts related to testing automation are gone through

from the perspective of the given environment.

2.1 Software life cycle management

Security and secure products play a big role in our current society, where the amount of

security flaws in products keeps rising [16]. When product security flaws are exploited,

the company’s brand can be damaged [17]. Positive brand image has been shown to have

a direct correlation to customer loyalty, which is also impacted by trust [18]. Therefore it

is important to create secure products that gain customer trust and create a trustworthy

brand.

To reach the objective of having secure products, there exists processes, policies and

guidelines. A high-level process for managing and developing products and information

related to them is called product life cycle management (PLM). It is a collection of instruc-

tions, subprocesses and guidelines aimed to reach the high-level goals of a business.

Besides company goals, PLM also depends on business problems and strategies. Be-

cause of this, PLMs between companies can differ vastly. However, the core objective

stays the same: handle product life cycle effectively. In practice, this means, for example,

improving product quality, minimizing waste and maximizing product value. [19]

One commonly used process for software development is called software development

life cycle (SDLC). It is an abstract process that describes phases of software from an

idea to maintaining it. There exists several high-level SDLC models, such as waterfall and

agile. The former emphasises planning and linear workflow, while the latter prioritises

continuous planning and development, among other stages. Businesses usually follow

one model during software’s life cycle, but implementations differ. After all, every software

and its environment is different. [20]
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Open Web Application Security Project (OWASP) is a nonprofit foundation that works to

improve software security. OWASP Testing guide [21] depicts a general SDLC model

consisting of 5 stages. These stages are define, design, develop, deploy and maintain as

seen in figure 2.1.

Figure 2.1. OWASP SDLC phases

Before any actual stage, company policies, standards and other documents concerning

software life cycle should be defined. These high-level documents guide processes dur-

ing the life cycle and set the objectives. After this identifying current problems and defin-

ing requirements for the software can be done. It is also important to evaluate project

feasibility to not waste time and resources. Then, during design, software architecture,

documentation, different models (e.g. UML models). etc. can be created. Design stage is

perhaps the most important stage as design decisions can become difficult and expensive

to change during later stages. [21]

The actual implementation of design happens in development stage. The level of detail

in previous stages assigns how much decisions are left for developers. Unit and system

testing is part of this stage. Application testing happens at deployment stage. Once

software has been deployed, it needs to be maintained. Maintaining includes updating

the software, performing health checks, doing regression testing etc. [21]

The problem with SDLC from security perspective is that security is usually implemented

after development. This is an ineffective approach for securing software [22]. Further-

more, the later the vulnerabilities are found, the more it costs to fix them [23] [24]. Be-

cause software gets increasingly complex, it is inevitable that vulnerabilities are found at

some point. This problem is addressed by secure software development life cycle (SS-

DLC), which extends SDLC by incorporating security into software’s life cycle.

Incorporating security into SDLC entails several benefits [25]. Bugs and vulnerabilities

are found earlier during the life cycle, which implies simpler bug fixes and therefore min-

imized effort and expenses. The more vulnerabilities are found before release, the less

the total amount of vulnerabilities. This makes the software more trustworthy. Trustwor-

thiness and thorough testing can be used as selling points for customers. Additionally,

since the total amount of vulnerabilities is minimized, malicious actors have less vulnera-

bilities to expose. This is important for business’s image, which can be greatly damaged

if vulnerabilities are exploited and become publicly known [17].

As with SDLC, several different SSDLC models exist. OWASP Testing Guide also has
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security actions listed for each of the 5 stages discussed, so the same model is discussed

here with the added actions. When implementing a SSDLC, security related policies and

standards ought to be included from the beginning. These should be followed same way

as other policies and standards during the lifcycle. During definition and design stage

all security requirements, designs, models etc. should be created and reviewed from

security perspective. Threat and risk assessment should also be made during this stage.

[21]

Producing secure code is the main goal of development stage. To achieve this goal, pre-

viously defined policies must be followed. In addition, code reviews, static code analysis

etc. can help. During deployment penetration testing acts as a final verification method

before software release. It is also important to check that no part of application is in debug

state anymore. Lastly, when releasing the software and moving into maintenance stage,

it must be ensured that the environment change has not affected security. [21]

OWASP Testing Guide provides only one type of (S)SDLC model. Microsoft SDL (MSDL)

is another well known SSDLC model created by Microsoft. It used to be a linear model

consisting of 7 phases, but nowadays there’s 12 different practices in no strict order,

instead of clear phases [26]. These practices are:

• Provide Training

• Define Security Requirements

• Define Metrics and Compliance Reporting

• Perform Threat Modeling

• Establish Design Requirements

• Define and Use Cryptography Standards

• Manage the Security Risk of Using Third-Party Components

• Use Approved Tools

• Perform Static Analysis Security Testing (SAST)

• Perform Dynamic Analysis Security Testing (DAST)

• Perform Penetration Testing

• Establish a Standard Incident Response Process

As can be seen, MSDL practices are not as high-level as the stages in OWASP Testing

Guide. However, there are a lot of similarities. For example, both models define require-

ments for policies, metrics, design etc. and they use code analysis and penetration testing

for verifying quality. Some MSDL practices are also part of OWASP’s SSDLC, although

not clearly mentioned. For example, appropriate training and avoiding bad cryptography

are mentioned in the Testing Guide, but not explicitly in the SSDLC framework.
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Besides the clear structural difference between OWASP framework and MSDL, there

are other differences. For instance, MSDL emphasises third-party component security

assessment more. Third-party risk assessment is a one whole practice in MSDL, but only

briefly mentioned in OWASP Testing Guide. Additionally, OWASP Testing Guide does not

mention incident response plan or how to act when a security incident is reported after

release. This is the last practice of MSDL and it used to be the last phase in old MSDL

model.

As software life cycle progresses from one phase to another, any vulnerabilities are also

carried to later phases [27]. If the vulnerabilities are known and risks they possess are ac-

cepted, this might not be a problem. However, if the vulnerabilities are unknown, they may

possess risks. Often the risks are financial. NIST study concerning economic impacts of

poor security testing frameworks from 2002 shows that bugs (vulnerabilites) become more

costlier to fix the later they are detected [24]. Main reason being dependencies that are

created as software grows. Untying the dependencies at late stages of software life cycle

can demand great amount of work.

2.2 Security testing

Although ideally the goal is to remove vulnerabilities before implementation, this is often

not feasible, as the growing number of vulnerabilities reported by NIST indicates [28].

Therefore, security testing is a vital part of SSDLC. Security testing aims to verify that

previously defined security requirements are met and that security properties work as

intended [22]. To thoroughly execute security testing on a software, various techniques

should be used to complement each other because there is no single testing technique to

cover everything [22]. In addition, testing should happen at different testing stages, e.g.

unit, integration and system level.

Bachmann et al. [29] suggest that security testing should be part of all phases of SDLC.

However, they continue that during planning and design phases no actual testing hap-

pens. Instead, these stages are a prerequisite for the actual security testing executed in

later stages. Bachmann et al. suggest various techniques for each of the phases, such

as threat modeling, static source code analysis and fuzz testing. Previously discussed

MSDL and OWASP Testing Guide follow this ideology as they have requirement defini-

tions, static code analysis and dynamic testing incorporated. OWASP Testing Guide has

also regression testing during maintenance, whereas MSDL only proposes readiness for

executing incident response plan.

Felderer et al. [22] suggest a similar structure, where testing is part of all phases of

SSDLC. Unlike Bachmann et al. though, they add model-based security testing as part

of design phase. Figure 2.2 visualizes how different testing types fit into SSDLC stages

defined in [21]. The figure has been adapted from [22].
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Figure 2.2. Security testing as a part of (S)SDLC

During definition and designing, model-based testing (MBT) can be applied. In MBT a

test model is created based on the system under test (SUT). The model is then evaluated

to see if previously defined requirements are met. This happens by deriving test cases

from the model. For instance, UML (or a subset of UML) model can be created from an

application, which is then given as an input for a program that generates test objectives

and test cases against these objectives [30]. Any design flaws detected during testing

can be fixed, which is cheaper than fixing the flaws in later SDLC stages, as discussed

earlier.

Model-based security testing (MBST) is like MBT, but only focuses on security properties.

The goal is to verify that security requirements are not violated. Because MBST (and

MBT) uses a model instead of the real system, false positives can occur during automatic

testing. It is therefore important to conduct manual review on any found violations. Be-

sides models used in MBT, MBST may also use property, attacker or vulnerability models.

Property models describe the properties that shall not be violated, namely with regard to

confidentiality, integrity and availability (CIA triad). Vulnerability models are intentional

faults, that attackers can exploit. These attackers and their attacks are described in at-

tacker models. [22]

During development mainly two security testing techniques are applied. These tech-

niques are code review and static application security testing (SAST). Code review means

manually inspecting code for finding bugs. From security perspective, the most interest-

ing bugs are vulnerabilities. Furthermore, code review should be done based on system’s

attack surface and threat analysis to narrow the review process. The automated counter-

part for code review is SAST, which tries to find vulnerabilities by applying syntactic and

semantic checks. SAST is naturally faster than manual code review and it can effectively

cover full source code, but it can also result in false positives and all vulnerabilities might

still not be found. Another drawback is that SAST is incapable of finding business logic

errors. Hence, one should not blindly trust SAST results. [22]

During deployment security testing consists of dynamic analysis and penetration testing.

When conducting penetration testing, tester acts as an attacker. If tester manages to



10

exploit vulnerabilities, they report them for fixing and attack surface updating. Dynamic

analysis includes vulnerability scanning, dynamic taint analysis and fuzz testing. Vulner-

ability scanning is an automated way of detecting vulnerabilities. For example, a scanner

may have a database of vulnerable libraries that it searches in the system. Dynamic taint

analysis means marking, or tainting, some data and observing if it’s used in an insecure

context. For example, if user inputted string data is used in SQL query, it might indicate

a possible SQL injection vulnerability. Finally, fuzz testing is used for testing system’s ro-

bustness by injecting invalid or semivalid inputs. The goal is usually to crash the system.

[22]

During maintenance, security regression testing is used for verifying security as the sys-

tem or its environment changes. Three different techniques exist: test suite minimization,

test case prioritization and test case selection [22]. The first two are concerned in mini-

mizing test case amount and optimizing test case execution order, respectively. The most

popular of these techniques, test case selection, handles selecting a subset of test cases

for testing modified parts of the system. Selecting only test cases that are affected by

system changes is important, because regression testing is one of the costliest parts of

SSDLC [31]. Both test case minimization and selection try to optimize test case amount,

but test case selection is only focused on finding cases related to system modifications

[32].

From the perspective of this thesis, the most interesting part of security testing is fuzz test-

ing or more generally robustness testing. Both robustness and fuzz testing are closely

related, but fuzz testing is actually a subset of robustness testing. This is because ro-

bustness testing also includes other methods, which might not even be strictly security

related. The two testing types are interested in observing how a system reacts to invalid

inputs and/or stressful conditions. The goal is to crash the system or cause other unex-

pected behaviour. Hence, both robustness and fuzz testing are related to availability part

of CIA triad. Fuzz testing is also included in OWASP Testing Guide and Microsoft SDL.

Both testing types are discussed more thoroughly in chapter 3.

2.3 Nokia processes

In a large corporation like Nokia, there exists great amount of processes, policies and

guidelines. One of these is a process for product, solution and service management. This

process describes how products, solutions and services, or generally speaking assets,

are defined, developed and managed throughout their life cycle. Because software is one

type of asset, this process is analogous to SDLC. Part of this general process is more

practical process focused on security, Nokia’s implementation of SSDLC. Nokia SSDLC

describes how products and systems should be developed to make them secure starting

from the beginning of their life cycle. It consists of different stages, where each stage
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Figure 2.3. Nokia SSDLC

contributes to the ultimate goal of creating secure products and systems.

Similar to OWASP testing framework, the Nokia SSDLC process is divided into multiple

stages. However, there are 3 additional stages. These stages are initial opportunity

definition, limited deployment and the end of life. The change from one stage to another

is called a milestone. In other words, milestones are deadlines for each of the stages.

Figure 2.3 visualizes Nokia SSDLC, including the security actions at different stages.

Security actions are split into proactive and reactive actions.

Proactive actions are taken as precaution, in case something bad happens, e.g. a new

vulnerability is discovered in a product. There are 4 proactive security actions, which are:

• Threat & risk analysis, requirements and architecture

• Secure coding, hardening, privacy

• Security testing and security updates

• Gap analysis and mitigation plan

These actions are represented in figure 2.3 close to a SSDLC stage which they concern

the most. The actions do not strictly correspond to a single action, however. For example,

creation of gap analysis and/or mitigation plan might already start during definition stage.

Nokia SSDLC closely resembles OWASP SSDLC and MSDL. One interesting aspect

is privacy, which is part of design and implementation phase of Nokia SSDLC. OWASP

SSDLC mentions privacy explicitly only as part of legislative compliance during define and

design phases. Also MSDL mentions privacy as part of defining security requirements.

All the processes therefore acknowledge privacy, although it does not seem to play a big

role. This makes sense though because security and privacy are separate concepts and

SSDLC, as the name implies, is focused on security.

Two terms not mentioned in OWASP SSDLC or MSDL are hardening and gap analysis.

Hardening is “any process, methodology, product or combination thereof that is used

to directly increase the security of existing software” [33]. It can be applied at different

levels, for example at source code or operating system level. Gap analysis is a technique
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used for comparing the current state against a standard or some predefined requirements

[34]. It helps a business to identify any gaps between expected state and actual state.

Resources can then be allocated accordingly to close the gaps.

Reactive actions are actions to be taken after something happens. For Nokia’s SSDLC

these actions are security vulnerability monitoring (SVM) and security updates & patch-

ing. SVM collects information on vulnerabilities from public sources to stay constantly

updated on latest vulnerabilities. Any found vulnerabilities proceed for a fault manage-

ment process, where appropriate actions are taken. For some cases this might mean

creating a ticket for patching, but in some cases the vulnerability might simply be tagged

as false positive. If there is something to fix, there will eventually be a security updates

and/or patch. Security updates and patches will be delivered until a product reaches its

end of life.

Important notice regarding Nokia SSDLC is that it is not a static model that keeps its

structure from one year to another. Instead, it is under constant development. The specific

tools and criteria can change whenever they are deemed outdated. For example, if a

better alternative is found for performing vulnerability scanning, the old scanner tool will

be replaced. Modifications to higher-level structure of the model are of course more rare,

but possible if needed.

Security testing conducted during integration & testing stage has several different test-

ing techniques. The techniques that are the most interesting regarding this thesis are

robustness and denial of service (DoS) testing. General robustness testing includes fuzz

testing, but also other not strictly security related actions. For example, robustness tests

can be related to usability of software, which is not a security concern but plays a big role

for the end user. Regarding security testing though only fuzz testing is part of robustness

testing. DoS testing relates to fuzz testing, as the objective is to find states leading to

a crash. The same tool, Defensics, is used for both fuzz and DoS testing. DoS testing

specifically, however, will not be discussed further in this thesis.

2.4 Testing requirements

For each security testing type there is a company recommended tool or multiple tools.

Although they are recommendations, in practice these are the only tools that should be

used. Using the recommended tools also makes things such as licensing and help sup-

port easier. Company recommended tool for robustness testing is Defensics, which is a

fuzz tester specialized in network protocols. Defensics is also the recommended tool for

testing denial of service attack scenarios.

There are also other upper-level requirements that need to be met during security testing.

The requirements mainly concern accountability and transparency, i.e. there must exist



13

proof that testing has been conducted and all the results need to be visible. In practice

this implies sufficient documentation. For example, each testing tool should provide some

output which states the test results. Furthermore, the outputs should be comparable so

that it is possible to say how software quality has progressed.

Product-level requirements are more interested in tool specific matters. For example,

scan coverage and scan frequency are such matters. All testing tools offer several con-

figuration possibilities which make it possible to modify what is scanned and what is not

scanned, i.e. scan coverage. Ideally every possible interface should be scanned, but

in practice time becomes a limiting factor. Hence, scan coverage should cover only the

necessary interfaces. Scan frequency is another aspect limited by time constraints. For

example, it is usually not possible to scan everything daily as even a single test run might

take over 24 hours. However system level tests should be frequent, because they have

been shown to reduce software development time especially when previous experience

on the software is low [35].

For Defensics, there are no requirements for scan frequency as long as all necessary

interfaces are tested. Ideally interfaces are tested once with successful scan results. In

practice though there might be scan failures or product updates, which require manual

analyzing and rerunning certain interfaces (or all of them). Every update practically cre-

ates a new product release candidate that must go through security testing. The goal is

to release a candidate that is as secure as possible. Even thorough scanning does not

provide perfect security, but it does increase confidence on the security and robustness

of the product.

The only requirements regarding Defensics are related to testing period, analyzing failed

cases and documentation. First, necessary interfaces must be tested within a system

testing period, which varies but usually lasts a couple of weeks. The interfaces are de-

termined using port scanning and product documentation. All open ports are an attack

vector, which an attacker could exploit. Therefore it is important to be aware of all the

possible attack vectors and test them as much as possible. Secondly, all failures must go

through manual analyzing to determine if they are legit or false positive. Third and final

requirement comes from upper-level: there must exist sufficient documentation from all

testing. This includes documenting both passed and failed cases, and possible reruns.

When it comes to automated testing and Defensics, testing requirements are related to

execution time. There are no clear limits, but it should be expected that testing is done

at least daily. Some Defensics scans have exceeded 24 hours, which is why there must

be an option to limit execution time. The product that is tested also has many interfaces,

which implies that parallel execution must be supported.
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2.5 Testing environment

There exists two different environments for security testing: bare metal and cloud envi-

ronment. Bare metal environment has physical machines while cloud environment has

virtual machines. Both environments are purely for security testing. They are isolated

into their own subnets to not cause interference to other environments. This is important

because interference can happen both ways. For example, security test results could be

flawed due to extra ports opened by other tests or an important server could crash due to

fuzz testing. Even if there is no crash, security testing, namely fuzz testing, might leave

servers in an unexpected state [36].

The environments consist of 2 different types of machines: scanners and targets. Scan-

ner machines are used for launching scans. They contain all the required security testing

tools. Target machines are the systems under test, i.e., they contain the latest product

release candidate. Target machines should be kept clean to match production environ-

ment as much as possible. In other words nothing extra should be installed or configured.

On the scanner machines though this is not as important, but limitations rather concern

available memory and processing power needed by security testing tools. Figures 2.4

and 2.5 visualize both bare metal and cloud environments.

Figure 2.4. Bare metal Topology

Bare metal environment shown in figure 2.4 has one scanner machine and 2 target ma-

chines, while cloud environment shown in figure 2.5 has capability to have any amount of

scanner and target machines. To not disrupt targets, only a single scanner should scan

certain targets, hence multiple test setups in the figure. The only limitations come from

cloud service’s resource limits, namely RAM, CPU amount and storage space. Naturally

all product types need to be included as targets and at least one scanner machine in

order to test everything. However, the cloud environment also makes it possible to divide
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test cases among multiple, identical targets.

Figure 2.5. Cloud Topology

As can be seen, scanner and target machines are in direct contact (besides the switch).

This way traffic is not interfered by other devices, such as routers. Certain security test-

ing, mainly fuzz testing, could also harm these devices. Additionally, other devices could

negatively effect execution times of test runs. Besides physical distance, another aspect

to be considered in security testing is logical distance. This means the amount of security

features between scanners and targets, e.g. firewalls. On the one hand target environ-

ment should be as similar as production environment, but on the other hand target should

be tested in its most vulnerable state [36].

The product which is installed into the testing environments consists of 2 target servers

with different roles. These product roles will be named type A and type B for this thesis.

Product role A acts a master and product role B as a slave. There can exist multiple

role B machines but only one role A in a single product deployment. Fuzz testing will be

executed against both product roles but because role B machines are identical, there is

only need for 2 target machines in the testing environments. However, it may be beneficial

to have multiple identical targets in order to reduce load of a single target. Each product

role is built out of several containerized components that communicate with each other

over TCP/IP or UDP/IP. All web-based network traffic, namely GUI component traffic, uses

HTTP and is secured with TLS.

2.6 Automated testing

Automated testing is a practice where test execution is left for program code. The ob-

jective is to minimize human interaction. The level of automatisation, i.e. how much

responsibility can be left for program code, depends on the environment and nature of

the tests. Simple tests that check a value of a variable probably do not require any hu-
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man interaction. Security testing on the other hand might always require a human to filter

out false positive results. Either way, test automation shortens tester’s work effort [37]

and is not dependent on working hours. Taking out the human factor also makes testing

repeatable and uniform. In other words, tests can be executed in the same way each

time.

Continuous integration (CI) is a software development practice, where code is frequently

integrated into a central repository. This repository stores all the code and usually inter-

acts with a runner application, that automatically verifies integrity of the software. Verifi-

cation processes can vary a lot between projects, but generally software is automatically

built and tested. Testing can also happen at several levels. For example, unit, system,

performance and security are testing categories that could be part of CI. At the end there

should exist some results to show whether quality gates are passed or failed. [38]

Figure 2.6. General CI workflow in the given environment

GitLab’s built in tool GitLab CI/CD is used for continuous integration. It executes pipelines

to verify software is ready for deployment. Pipelines comprises stages and jobs. A

pipeline can have several stages, where each stage can have multiple jobs. Jobs tell

the executing runner what to do, e.g. to run a certain script. In this scenario these

scripts are either Robot framework commands which execute test runs or commands for

a pipeline visualization tool. Jobs can also be dependent on previous jobs and they can

contain conditional statements to decide if they are included in the pipeline, for example.

Generally speaking, for a pipeline to successfully finish, all its stages and therefore jobs

need to successfully finish. However, it is possible to make exceptions to this rule.

Product source code, testing code etc. are stored in multiple GitLab repositories. Se-
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curity testing will be part of release testing repository. In other words, when ever a new

product release candidate is published, all the security tests in the security pipeline will

be run for that candidate. It would be possible to run security tests after each commit

during development, but due to the time-consuming nature of security tests this would be

impractical. The repository contains also other previously created pipelines, but they are

not relevant regarding this thesis. Work is done only for integrating Defensics into security

testing pipeline.

The CI workflow shown in figure 2.6 starts when a new product release candidate is

pushed into release candidate repository. The release candidate repository then triggers

CI in the release testing repository to execute its pipelines. Before executing the pipelines

though, CI fetches testing code from testing code repository. Pipeline jobs execute Robot

tests, which connect to one or more target servers via SSH. When testing is over, targets

usually return some information back to CI server, which then assigns job verdicts. Finally,

CI sends the results into a result visualization tool, where users are able to see all testing

results.

Figure 2.6 is a high-level visualization and therefore hides details. One detail worth men-

tioning though is what happens when the security pipeline is triggered. First, the pipeline

checks that the provided configuration files are valid. After that, installation job starts

installing the product in the target machine. If installation succeeds, a sanity check is

performed against the target. This essentially verifies that target is healthy and ready

for testing. Finally, the actual testing can be started from the scanner machine. Once

the tests have finished, it can be concluded that the product has either passed or failed

the tests. To further provide visual feedback, job results after installation, sanity check

and testing are sent into a tool that shows a run history of the pipeline for given release

candidate build.

Figure 2.7. CI Pipelines and CRT

Figure 2.7 visualizes how different pipelines together form continuous regression testing

(CRT), i.e., testing that new changes have not compromised software quality. The CRT

is essentially what each new product release candidate is tested against. If all pipelines

pass, the release candidate is ready for deployment. Likewise, if there are any fails, these
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should be assessed. Security pipeline is one of the lines in the figure. The stages are

previously mentioned steps, i.e. installation, sanity checking and actual testing. Stages

can contain multiple jobs, but in the security pipeline each stage contains only a single

job.

When considering the process that starts from actual programming and ends at CI results,

there are multiple different technologies in play. The main technologies related to the CI

environment of this work are Python, Robot framework and GitLab (CI/CD). GitLab is used

as the repository manager for version control tool Git. Robot framework is a tool designed

for test and process automation. In the given test environment it is used for calling Python

methods, which execute the actual code for test cases. It should also be used for creating

test cases for jobs in security pipeline(s). These tools and their purposes are listed in

table 2.1 for clarity purposes.

Table 2.1. Tools

Tool Purpose

Git Version control system

GitLab Git repository manager

GitLab CI/CD
GitLab’s built-in tool for

continuous software development

Robot framework
Generic open source automation framework

for automated testing

Python Most business logic for test execution

Robot framework has built-in libraries, but it also supports custom Python or Java libraries.

Libraries located in remote servers and/or written in other languages can be used via re-

mote libraries [39]. In the given environment custom libraries are written only with Python.

Robot framework offers very human-friendly syntax, but as a consequence developing ac-

tual business logic is clumsier. Therefore, in the given environment Python is mainly used

for creating business logic and Robot framework is used for wrapping the Python code

into Robot keywords and test cases. This abstraction provides user friendly test cases

even for inexperienced users.

Robot files, i.e. robot suites, are usually split into 4 sections: settings, variables, test

cases and keywords. Settings is for importing libraries and other files and for defining

metadata. Variables section is for defining variables, as the name suggests. Test cases

include all runnable tests for the test suite and lastly, keywords can be used to call lower-

level keywords or methods. Robot framework is not the main focus of this thesis, so

external sources should be used for details. However, to give a basic idea of the syntax,

program 2.1 is a simple robot test suite example. The program simply prints the string

given in MESSAGE variable using a Python module. The Python module is not shown

in the example, but it is only necessary to know that its print_message method has one
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argument, which should be a printable string.

1 * * * Se t t i ngs * * *
2 L i b r a r y UserMadePythonModule

3

4 * * * Var iab les * * *
5 $ {MESSAGE} Hel lo , wor ld !

6

7 * * * Test Cases * * *
8 EXAMPLE_TEST_CASE_1

9 [ Documentation ] Example t e s t case

10 [ Tags ] example

11 P r i n t Message $ {MESSAGE}

12

13 * * * Keywords * * *
14 P r i n t Message

15 [ Arguments ] $ { message }

16 UserMadePythonModule . print_message $ { message }

Program 2.1. Robot framework example suite
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3. FUZZING

This chapter goes through theory behind robustness and fuzz testing. First definitions

related to robustness are introduced, after which methods, classifications and basic con-

cepts of robustness testing are discussed. Third subchapter is the core of this chapter:

fuzz testing. It explains concepts, workflow, classifications and techniques related to fuzz

testing. The subchapter covers many areas but leaves most technical details for other

sources. Lastly, a separate part of fuzzing, network protocol fuzzing, is reviewed.

3.1 Robustness

ISO/IEC/IEEE 24765:2017 is a vocabulary designed to standardize software engineering

terminology. It defines robustness as “degree to which a system or component can func-

tion correctly in the presence of invalid inputs or stressful environmental conditions” [40].

Another definition provided by Avizienis et al. is “dependability with respect to external

faults, which characterizes a system reaction to a specific class of faults” [41].

Avizienis et al. describe a system as an entity, that interacts with its environment. The

environment consists of other systems. In this common environment, systems can act as

providers, users or as both. Providers provide one or more services, that users receive

[41]. Similar description can be found from ISO/IEC/IEEE 15288:2015, that defines sys-

tem to be “combination of interacting elements organized to achieve one or more stated

purposes” [42].

To define external fault, one needs to define a fault. Fault is the cause of error. An

error exists when at least one of system’s external states differ from its correct state,

which also implies a failure in the system. Failure means that system is unable to provide

correct service. It is noteworthy that a fault does not always lead to an error, but error

is always caused by a fault [22]. External state is a subset of system’s total state, which

consists of 5 substates: computation, communication, stored information, interconnection

and physical condition. The subset is determined by what can be perceived at the service

delivery part of provider’s system boundary. [41]

External fault can harm a system only if there exists an internal fault in the system. If

this kind of internal fault is related to any security properties, it is called a vulnerability
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[22] [41]. ISO 27000 defines vulnerability as “weakness of an asset or control that can

be exploited by one or more threats” [43], where asset means anything that can have

value to a business. Same standard defines threat as “potential cause of an unwanted

incident, which can result in harm to a system or organization”. Vulnerabilities and threats

relate to assets: a threat can harm asset’s value by exploiting a vulnerability in its security

properties [22].

By minimizing system’s internal faults, i.e. vulnerabilities, external faults, i.e. threats, have

less surface to cause errors and therefore less failures in the system. Because system’s

robustness was defined by how well it can function correctly in the presence of invalid

inputs or stressful environmental conditions (i.e. threats), one can deduce that system’s

robustness is also dependent on its vulnerabilities. The more vulnerabilities there are, the

less robust system, and vice versa.

3.2 Robustness testing

Robustness testing is the act of finding vulnerabilities that negatively affect system’s ro-

bustness [44]. In a systematic literature review on software robustness conducted by

Shahrokni et al. [45], it was found that fault injection is the primary method for robustness

testing. Fault injection can be defined as the deliberate introduction of faults into a system

[46]. Naturally the system behaviour must be observed afterwards to assess system ro-

bustness. In software fault injection faults are specifically inserted into a software system

[47].

Based on study made by Benso et al. [48], fault injection techniques can be categorized

into 4 classes:

• Hardware implemented

• Simulation-based

• Software implemented

• Hybrid

Hardware fault injection uses some physical device to change internal state of the SUT.

For example, heavy ion radiation is a hardware-based fault injection method. In a simulation-

based fault injection, an emulated model of the system is modified [45]. Hardware descrip-

tion language, such as VHDL, descriptions are examples of models that simulation-based

fault injection can test. Software fault injection uses software to test the target system.

Hybrid methods are combination of the above. [48]

In the context of software robustness testing, software implemented fault injection is the

primary fault injection method. However, simulation-based techniques are also used in

some environments [45]. In this thesis software robustness and therefore software fault
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injection techniques are the only focus of interest. Hence, software robustness testing

and software fault injection are referred mainly as robustness testing and fault injection

from now on.

If a fault successfully manages to cause an error in a system, a failure may occur. These

robustness failures can be classified using different benchmarks. The most common one

is CRASH criteria [45][49], which categorizes failures using 5 stages:

• Catastrophic

• Restart

• Abort

• Silent

• Hindering

Catastrophic failure causes whole system to fail by crashing or rebooting. Restart failure

leaves a single task in a state, where restarting is required. In abort failure a task ter-

minates unexpectedly. Failure is silent when an error should be generated, but no such

action is taken. Lastly, hindering failure generates an incorrect error. Generating a correct

error is considered robust [44][49].

Fault injection and robustness testing in general can be done manually or by automa-

tion. However, in practice complete manual robustness testing is usually not feasible due

to large amount of test cases. One of the most well-known [45] automated robustness

testing tools is Ballista. Ballista uses software fault injection using both valid and invalid

inputs. In the paper published in 1998 by Koopman et al. [50] Ballista was run against

233 function calls in 10 different POSIX operating systems. The results showed that ap-

proximately half of the functions were not robust. Failures were considered only on the

first 3 stages of CRASH criteria.

Nowadays there exists multiple modern tools for automated robustness testing, but the

tools are usually not referred as robustness testing tools. Instead, the automated tools

are fuzz testers. Fuzz testing, or fuzzing, means sending malformed data to a system to

measure its robustness [51]. It is therefore one fault injection and also robustness testing

method. Although as pointed out by [51], the terms robustness testing and fuzz testing

are sometimes mixed along with other terms. Fuzz testing is discussed more thoroughly

in the next subchapter.

Software robustness testing methods can be categorized into several categories [44], but

in practice many methods come down to invalid inputs. Invalid inputs can be intentionally

chosen outside of their specific domains, or they can be randomly generated. Either way,

conclusions can be made of SUT’s robustness based on its reaction to invalid inputs. A

fault injection method that is not solely based on invalid inputs is mutation testing. In
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mutation testing code is changed by, for example, deleting function calls or by changing

function call order [44]. Invalid inputs for functions are also mutation testing technique.

Besides invalid inputs, stressful conditions are another fault type. During stressful con-

ditions, system experiences conditions that test its resource limits. If resources are ex-

hausted, system may experience a failure. A robust system should be able to not exhaust

all of its resources. Hence, it is important to include stressful conditions as a part of ro-

bustness testing. An attack type that is based on resource exhaustion is called denial of

service (DoS). Testing for DoS scenarios can happen via fuzz testing [45].

3.3 Fuzz testing

Fuzz testing – a.k.a. fuzzing – is a robustness testing method, which can be used as a

part of security testing. In particular, the simplicity and efficiency of fuzzing have made

it increasingly popular option for security testing [52]. This subchapter first defines basic

concepts related to fuzzing and proceeds to describe the general workflow and algorithm.

Next, different types of fuzzers and their differences are discussed. Lastly, various tech-

niques used during fuzzing are listed and explained.

3.3.1 Basic concepts

In 1990 Miller et al. [53] published a paper called "An empirical study of the reliability of

UNIX utilities". In the paper a program called fuzz was used to generate random charac-

ters to test reliability of several Unix utilities. As a result, 24%-33% of utility programs in

different systems experienced a crash or were left in hanging state. From this simple yet

seemingly effective program the currently used terms such as fuzzing, fuzzer and fuzz

testing were derived [12].

Fuzzing is “a highly automated testing technique that covers numerous boundary cases

using invalid data ... as application input to better ensure the absence of exploitable

vulnerabilities” [54]. We can rephrase this definition using definitions from earlier: fuzzing

is an automated robustness testing technique that uses invalid input injection. Fuzzer, or

fuzz tester is a tool that generates the invalid inputs. Or by definiton given by [55]: “a tool

that tests a target program by iteration and random input generation”.

Some papers (e.g. [54]) do not define fuzzing as generating invalid data, but rather gen-

erating semivalid data, i.e. almost valid data. This is an important distinction. If SUT

receives data that is completely invalid, it might be dismissed immediately. However, if

the data is semivalid, the SUT is able to accept it, which may eventually lead to a failure

[54] [56]. Hence, semivalid data is usually the preferred option for a fuzzer.

The following chapters and subchapters contain various terms related to fuzzing. For
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Table 3.1. Fuzzing related terminology

Term Explanation

Fuzzing
Automated robustness testing method
for finding vulnerabilities by means of
injecting invalid (or semivalid) inputs

Fuzzer Tool that performs the fuzzing

Fuzz run A single injection including the result evaluation

Fuzz configuration
Parameters that control a fuzz run,

e.g. PUT and current seed

Fuzz campaign Complete fuzzing execution, i.e. a set of fuzz runs

Seed Valid data that is modified during fuzzing

Test case Invalid (or semivalid) input, e.g. a modified seed

PUT/SUT The program or system that fuzzer is run against

Mutation Seed modification

clarity, table 3.1 has a collection of terms that will be used throughout this thesis. The

table is also useful because some papers have slightly different meanings for the terms.

Regardless, the attempt was to use the most popular explanations.

Some papers (e.g. [1]) differentiate fuzzing from fuzz testing: fuzzing is considered the

actual execution while fuzz testing utilizes fuzzing to test security requirements of the

PUT/SUT in question. However, generally – including this thesis – fuzzing and fuzz testing

are used interchangeably.

3.3.2 Workflow

Fuzzing workflow describes what sort of fuzzing strategy a fuzzer uses. For example, how

inputs are generated and how are SUT reactions evaluated. Because there are many dif-

ferent types of fuzzers, fuzzing strategies can differ vastly. Hence, it is impossible to give

detailed description of a workflow that applies for every fuzzer. However, a higher level

structure can be given. Even for this though there does not seem to exist a standardized

model. Instead, papers give their own interpretations of a general fuzzing workflow. Fig-

ure 3.1 visualizes one type of workflow. It is a simplified adaptation of the figure in [57].

There are 4 main components in play: test case generator, SUT, static/dynamic analy-

sis and vulnerability detector. Test case generator generates test cases and sends them

to the target system. Static and dynamic analysis techniques can guide the fuzzing by

extracting additional information from SUT. The SUT reactions are then evaluated using

vulnerability detector, which reports all findings.

Vulnerability detector can also be called a bug oracle, or oracle for short. It is the part of

fuzzing that decides whether PUT/SUT has reached an erroneous state [1]. At the sim-
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Figure 3.1. Fuzzing Workflow

plest case, an oracle only observes crashes. However, more advanced fuzzers, namely

grey box and white box fuzzers, are also able to detect less serious faults. The challenge

of observing PUT/SUT reaction to generated input and deciding if a fault exists, is gener-

ally known as test oracle problem [58]. Valid case evaluation is a method where a valid

case is sent to SUT to see if it still responds as expected. This allows detecting catas-

trophic failures, but not less serious failures. If SUT can be accessed, its resource usage

can be monitored and protocols such SNMP can be utilized [59] to expose even minor

failures. Advanced evaluation includes methods such as dynamic binary instrumentation,

running source code in a debugger or analyzing memory allocations [59]. In some cases

it is possible to check correct functionality of target using case specific evaluation meth-

ods. For example, complex network protocol implementations such as TLS can be tested

by providing invalid credentials [59].

The original figure mentions only a program, but same workflow can be generalized to

systems. Initialization phase of the algorithm is not included in the figure because SSP

(see below) is included in test case generator and other methods vary a lot between

fuzzers. Scheduling and updating phases are also included in test case generator. Static

and dynamic analysis might not be used at all, especially for black box fuzzers. For

grey and white box fuzzers though there should be some level of analysis. Another note

about the figure concerns vulnerability detection: all detected errors might not actually be

vulnerabilities. They could be security-wise harmless bugs or even false positives.

Fuzzing workflow can also be described as an algorithm. Manès et al. [1] introduced an

algorithm consisting of 6 procedures, which have been simplified to 5 phases described

below:

• Initialization

• Scheduling

• Generation

• Evaluation
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• Updating

First, some fuzzers need to be initialized. There are multiple options that can be done

here. One possibility is to insert instrumentation code into SUT, that will be used during

fuzzing as a health check. It is also possible for a fuzzer to capture the program/system

state, before starting the fuzzing. This can be useful in situations where the PUT/SUT

takes time to initialize itself before accepting input. This technique is called in-memory

fuzzing. [1]

A problem that might need to be solved during initialization phase is seed selection prob-

lem (SSP). The problem is that there can be large or infinite amount of valid seeds to

be used for fuzzing, but only finite amount of time. Furthermore, seeds often produce

duplicate bugs, but for optimal efficiency no duplicate results should occur. SSP means

selecting minimal amount of seed(s) that maximize amount of bugs found, i.e., discarding

redundant seeds. In addition, seed size might be optimized during initialization phase for

minimized memory usage. Creating a driver program for indirect fuzzing can also be part

of initialization phase. [1] [60]

Scheduling happens between initialization and test case generation. In fuzzing this phase

means selecting a fuzz configuration for the next iteration [1]. The goal is to select a

configuration that results in the most valuable outcome. In practice this means maximizing

amount of vulnerabilities found. Because initially it is impossible to say which configuration

results in most vulnerabilities found, each configuration should be fuzzed enough to find

out whether the configuration is valuable. However, the caveat is wasting time on bad

configurations. This inherent problem in scheduling is called fuzz configuration scheduling

(FCS) problem [10].

Simple fuzzers might not need scheduling phase at all, but usually it makes sense to have

a scheduling algorithm to guide the fuzzing process. The information used for decision

making varies between fuzzers. Most notably, fuzzer type affects the amount of available

information. For example, black box fuzzers cannot use code coverage or constraints col-

lected during symbolic execution as their information, unlike grey box (e.g. [61]) and white

box fuzzers (e.g. [62]). Rather, black box fuzzers need to rely on simpler information, that

is observed crashes and execution time, for instance [10].

After fuzzer has been initialized and a fuzz configuration has been selected, the actual

test cases, or inputs, can be generated. There exists two primary approaches for this

phase: mutation- and generation-based fuzzing [1]. Mutation-based fuzzers generate

inputs by modifying the system’s valid data, i.e., seed data, and then feed the modified

data into SUT. Generation-based fuzzers on the other hand use a complete specification

of the system’s inputs and generate the test cases based on that. The fuzzer type affects

how much information can be used for generating the test cases. For example, white box

fuzzers have more techniques available than black box fuzzers.
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To determine if a test case has been successful, there needs to be a way to observe SUT

reaction. This is the evaluation, a.k.a instrumentation, phase. How the evaluation is done

heavily depends on the fuzzer and PUT/SUT. At the simplest cases evaluation can mean

making a connection attempt to SUT or observing any segmentation faults generated

by PUT. If connection cannot be established, or a segmentation fault is produced, it can

be said with high certainty that PUT/SUT has crashed. However, if there is a need to

observe less significant errors, evaluation becomes more case-by-case matter and likely

more challenging.

Knowing the cause of a fault is a crucial part of fuzz testing. After all, the reason why

fuzz testing is performed is to expose vulnerabilities that should be fixed. Without under-

standing the cause, fixing the vulnerability becomes unreasonably hard task. This is why

instrumentation is such an important stage. As shown later on, instrumentation might

not happen after every test case. Instead, instrumentation could be after certain period

of time. This can save time when instrumentation takes a lot of time, e.g. with network

protocol fuzzing. The drawback is that it becomes harder to identify which case caused a

failure, if a failure occurs that is.

When a test case has been executed and its result evaluated, the fuzzer decides if it

discards this configuration or keeps it for later use. In practice this means adding the

configuration into a pool of configurations, that can be used for fuzzing. During updat-

ing phase it is also possible to remove configurations that are not expected to provide

value anymore. Selecting which configurations to keep in the pool introduces a similar

problem as SSP in initialization phase: only minimal amount of configurations that result

in maximal vulnerabilities should be kept in the pool. Instead of adding and removing

configurations it is also possible to prioritize certain configurations. [1]

Once again, fuzzer type affects the execution of updating phase. The amount of infor-

mation available on PUT/SUT determines how sophisticated decisions can be made on

value of the configuration. Usually black box fuzzers do not update their configurations

since they have minimal amount of information to work with. Grey and white box fuzzers

on the other hand have information available, which they can use to update their config-

urations. For example, if a configuration has discovered a new path, it could be a reason

to keep it. [1]

3.3.3 White, grey and black box fuzzing

In software testing generally, 3 testing methods can be differentiated by their knowledge of

the SUT. These methods are called black box, white box and grey box testing. According

to NIST, the 3 methods can be defined as follows: black box testing has no information

about internal structure or implementation details of the assessed object. White box

testing on the other hand has all this information. Grey box testing is somewhere in
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between the former two [63]. Assessed object is the PUT/SUT in the context of fuzz

testing.

When talking specifically about fuzzing, the 3 methods can also be differentiated by their

observation of the PUT/SUT, source code dependency and degree of program analysis

[13]. Black box fuzzers only observe if program has crashed and they do not have access

to source code or structure of the PUT. White box fuzzers can observe the source code

itself, along with PUT reaction to test cases. They are able to systematically analyze the

state space of the PUT by analyzing its structure and runtime information [1]. Grey box

fuzzers are again in between the former: they can gather some intermediate information

about the SUT [55]. The information is anything that helps generating test cases, such as

code coverage or memory usage [12]. Code coverage measures the amount of execution

paths covered, i.e. executable control flows of a program. For example, a simple if/else

statement offers two possible execution paths. The distinctions between the 3 types of

fuzzing methods are not always clear, as pointed out by [1]: some black box fuzzers collect

some run information and white box fuzzers may have to rely on some approximations.

The 3 methods each have different advantages and drawbacks, so appropriate method

is very context dependent. White box fuzzing can offer high code coverage by systemati-

cally traversing code and detecting boundary conditions and possible vulnerabilities [64].

However, the drawback is that it consumes more time and space than black and grey box

fuzzing [55]. Slow execution comes often from the overhead of analyzing every command

of PUT [1], but also building a data structure of explored paths takes time and memory

[61]. There have been attempts to minimize the drawbacks by manual guidance or by

including grey box fuzzing features [1]. Despite these attempts white box fuzzing is not

regarded as practical currently [12].

Black box fuzzing can be very effective due to its simplicity. It fits well in a situation where

efficiency matters over result quality [12]. This is because black box fuzzers are able to

produce test cases faster than white and grey box fuzzers [65]. Because black box fuzzers

do not have access to observe SUT other than input and output, they cannot observe

non-critical failures. Hence, black box fuzzer results almost certainly do not contain false

positives. Sometimes the advantage of black box fuzzing is that other techniques are not

viable. After all, white and grey box fuzzers require at least some information about the

system. In some cases no such information can be gathered and black box fuzzing is left

as the only option.

The biggest drawback of black box fuzzing is low code coverage [12]. Low code coverage

leads to undetected vulnerabilities. Especially random mutation-based black box fuzzers

are incapable to reach high code coverage due to their simplicity [12]. A concrete example

is the area of web applications. Several papers have been published (e.g. [66], [67], [11]),

that show inefficiency of black box web scanners. These scanners operate like fuzzers,
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as they try to detect web-based vulnerabilities and inject faults to cause a failure. In [66]

11 web scanners were tested against an artificial web application. The results show that

some vulnerabilities were not found by any scanner and none of the scanners managed

to find over 50% of the vulnerabilities. These results cannot be generalized to all black

box fuzzers, but they do show that black box fuzzing can be inefficient in some cases.

Peach fuzzer is a popular black box fuzzer [68] [69]. It is a model-based fuzzer as its

seed generation is based on models, called Peach Pits [57]. Peach Pit files are XML files

that contain all needed information for running fuzz tests. This information is mainly seed

data structure and instructions for sending and receiving data. Creating the Peach Pit

files, or modeling, is the most time-consuming part because more detailed models create

higher quality test cases. According to developers of Peach, quality of the files is what

differentiates a "dumb" Peach fuzzer from a "smart" Peach fuzzer [68]. As we will see

later on, this is typical for model-based, a.k.a generation-based fuzzers.

To address the challenges of black and white box fuzzers, grey box fuzzers try to have the

best of both worlds. Mainly, grey box fuzzing tries to improve low code coverage of black

box fuzzers and reduce time spent on program analysis and constraint solving that white

box fuzzers suffer from [61].

American Fuzzy Lop (AFL) is an example of a popular and efficient grey box fuzzer [13].

To be specific, AFL is a coverage-based grey box fuzzer. It has found hundreds of vul-

nerabilities, including popular tools such as bash, curl and openssl [70]. AFL is probably

one of the most common fuzzers mentioned in literature. In a literature review in 2018

Klees et al. found that almost half of the papers they collected to evaluate fuzz testing

compared their own fuzzers against AFL [55]. Several fuzzers have been derived from

AFL, such as

• AFLFast: AFLFast explores new paths faster than AFL by using a Markov chain

model and focusing on the low-density areas of the model. Indeed, on average

AFLFast exposed an error 19 times faster than AFL in results provided by AFLFast

developers. It also found a few erros not found by AFL [61]. However, AFLFast

does not provide significant advantages in some target programs, such as image

processing programs tested in [55].

• AFLSmart: Generation-based fuzzer that combines input structure component of

Peach and coverage feedback of AFL. Proved to provide better code coverage and

amount of zero day bugs found compared to AFL and AFLFast in some open source

libraries. It also outperfomed VUzzer, although VUzzer did find a bug that was not

discovered by AFLSmart. [69]

• VUzzer: Uses static control and data flow analysis in combination with dynamic

taint analysis to produce fewer higher quality inputs. Proved to find significantly

more unique vulnerabilities in real-world programs than AFL while using less time
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to do so. [71]

In a study made by Pham et. al. in 2019 [69], grey box fuzzing was compared against

black box fuzzing. In particular, code coverage and number of identified bugs were mea-

sured. AFL was one of the used grey box fuzzers and Peach was the only black box

fuzzer. In the study Peach was used as a generation-based fuzzer rather than mutation-

based fuzzer. The results show that AFL outperformed Peach in almost all of the tests.

For instance, AFL found 16 zero day bugs, while Peach only found one. The researches

explain the results by the lack of feedback coverage and possibly insufficient seed speci-

fication in Peach.

Although some results in fuzzing studies, even mentioned in this thesis, might indicate one

fuzzer being better than the other, readers should not make generalized conclusions. As

Klees et al. [55] have shown: “In general, few papers use a common, diverse benchmark

suite”. Hence, comparisons between fuzzers are hard to make accurately. In order to

make fair comparisons, studies should use same datasets, similar environment and same

fuzz configurations.

3.3.4 Mutation- and generation-based fuzzing

Another way to classify fuzzers is by their input generation method. There are 2 primary

methods for this, already mentioned in this paper: mutation-based and generation-based

fuzzing [57].

Mutation-based fuzzers often need seed data, which they modify, i.e. mutate, and then

send the modified data to SUT [56]. The simplest mutation-based fuzzers do not need any

seed data because they generate inputs purely randomly. However, this kind of random

fuzzing is ineffective. A classic example is to consider an if statement that compares input

to some integer n. If integers are 32 bit, a fuzzer based on purely random inputs only has

probability of 1
232

to execute that path. More than likely the random input will get discarded

by PUT.

Purely random fuzzing is clearly ineffective, which is why mutation-based fuzzers need

some intelligence to guide the fuzzing. The intelligence comes from seed data. The seed

data is valid data for PUT, which is then slightly modified in order to detect vulnerabilities.

Modifications can happen at bit level by, for example, flipping, deleting and adding bits.

Some fuzzers may also use common problematic values in their operations, such as 0 and

-1 for integers. The main goal is always to modify seed data enough to cause problems

in PUT/SUT, but not too much so input is not instantly rejected. [1]

Generation-based fuzzing does not require seed data, but a specification, that is either

manually (e.g. Peach [68]) or automatically analyzed (e.g. PULSAR [72]). Based on

the analysis, semi-valid data is produced to test PUT/SUT [56]. Specification describes
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complete input format for PUT/SUT, which makes it possible for a fuzzer to generate

high quality test inputs. This, however, makes the fuzzer dependent on the quality of the

provided specification. Poor specification may produce poor results. Specification format

depends on the fuzzer. Network protocol fuzzer SNOOZE [73] and all-around fuzzing

framework Peach [68] both use their own XML-based models. Models can be written

based on completely new protocols, or from RFC specifications, for instance. As another

example, kernel API fuzzer Trinity [74] uses C structs to describe arguments of system

calls.

Mutation-based fuzzing is simpler than generation-based fuzzing. It only requires seed

data, which can be a file or any data accepted by the fuzzer. Seed data could be given

manually (e.g. AFL [13]) or fuzzer may retrieve it automatically by capturing network traffic

(e.g. LZFuzz [9]), for example. After that, fuzzing works similarly despite the input format.

Seed data can be modified randomly or by applying certain techniques, such as (dynamic)

symbolic execution or (dynamic) taint analysis [75]. More about these techniques will be

covered later on. If PUT performs complex input checking, mutation-based fuzzing most

likely fails to pass the syntax checks [75]. This is due to limited understanding of the

correct input format.

Generation-based fuzzing requires studying the specification to generate test cases. This

is often time-consuming, especially when done manually [57]. The advantage of generation-

based fuzzing is higher code coverage. This is due to deep understanding of a specifi-

cation, allowing detection of hard-to-reach execution paths. This indeed makes it easier

to pass syntax checks, but even generation-based fuzzers may struggle with semantic

checks [75]. In a 2007 study that compared code coverage of mutation and generation-

based fuzzers against PNG file [56], generation-based fuzzer covered 76% more code

than the mutation-based fuzzer.

A survey from 2019 compared a large set of fuzzers [1]. From the results it can be

seen that mutation-based fuzzers are more popular than generation-based, also known

as model-based, fuzzers. Another survey from 2018 backs up this claim [13]: “mutation

based fuzzers are easier to start and more applicable, and widely used by state-of-the-art

fuzzers”. However, most generation-based fuzzers listed are developed in recent years,

which indicates that generation-based fuzzing has not received as much research as

mutation-based fuzzing. Choosing between mutation- and generation-based fuzzing is

context dependent, but generally if PUT/SUT has specific or strict input format (e.g. com-

piler or network protocol), generation-based fuzzing is more effective [12].

3.3.5 Techniques

Even if two fuzzers are classified as white box or generation-based fuzzer, their underly-

ing algorithms can differ. More precisely, the algorithms that are used as part of test case
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generation. In a systematic review of fuzzing techniques in 2018 [57], Chen et al. present

various techniques they have discovered to be used during fuzzing to improve efficiency.

Furthermore, they have categorized these techniques into 3 categories by their role in

fuzzing workflow: sample generation techniques, dynamic analysis techniques and static

analysis techniques. Sample generation techniques determine the core strategy of test

case generation. Chen et al. categorize these into random mutating, grammar represen-

tation and scheduling algorithms. In practice these correspond to mutation-based fuzzing,

generation-based fuzzing and scheduling algorithms discussed earlier.

Dynamic and static analysis techniques are used to guide the test case generation based

on runtime and static information, respectively. Dynamic analysis techniques observe

a running program either in a real environment or in an emulator [14]. By gathering

runtime information they can gather accurate and context specific data, which can be

used when generating inputs. Static analysis techniques on the other hand observe a

static program, e.g. source code. Because static analysis does not have knowledge of

runtime information, it has tendency to be less accurate and produce more false positives

than dynamic analysis [14]. However, static analysis is more effortless in a sense that the

PUT does not need to be run.

Both dynamic and static analysis techniques are only used in white or grey box fuzzers

because they rely on information gathered from PUT/SUT. Especially dynamic symbolic

execution and dynamic taint analysis are techniques used in white box fuzzers [1]. Both

techniques are briefly introduced below and listed under corresponding categories. In

addition, fuzzing based on machine learning is introduced in the last sections. All tech-

niques are only briefly described. Detailed explanation of the techniques is beyond the

scope of this thesis.

Dynamic analysis techniques

• Dynamic symbolic execution: To discover most paths possible, dynamic symbolic

execution (DSE) traverses the program using both concrete values and symbolic

expressions [76]. Ideally, all execution paths and inputs that satisfy those paths are

found, which then makes vulnerability testing possible. DSE has a few problems

[14], but the most prevalent problem is path explosion. This means the number

of possible execution paths, or branches, grows exponentially, making the testing

infeasible [77].

• Coverage feedback: As program is traversed, input effect on the program under

test is observed. If the fuzzer decides the input caused an interesting reaction or a

failure, the input is stored and mutated for further testing. Otherwise it is discarded.

What is considered as interesting is dependent on the fuzzer. [61]

• Dynamic taint analysis: Input data is marked with metadata, or tainted, and the

execution path is tracked during runtime. When the tainted data changes another
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data, it also becomes tainted. As a result, all affected data can be tracked, which

helps in detecting vulnerabilities. [78]

Static analysis techniques

• Control flow analysis: Control flow analysis (CFA) is a static way of trying to

discover execution paths of a program. The instructions of a program are used to

produce a tree structure, called control flow graph (CFG). Based on the CFG it is

then possible to send semivalid data to execute certain CFG paths with the ultimate

goal of discovering vulnerabilities. [79]

• Data flow slices: The program under test is stripped, or sliced, so that only certain

data and all the data affecting it are left. The purpose is the same as with control

flow analysis, and CFG can also be used for slicing. [57] [80]

In addition to dynamic and static analysis techniques, machine learning-based fuzzing is

a newer approach. Machine learning means program improving its performance at some

specific tasks after being exposed to an experience [81]. In practice, learning happens by

iteration: program gathers experiences by performing similar tasks and hence improves

its performance in those tasks. The experience is data that the program has received from

some source [82]. For fuzz testing, those experiences can be things such as choosing

semivalid data to bypass format check of a program [14].

In a systematic review of machine learning-based fuzzers done by Wang et al. in 2020

[14], it was found that machine learning-based fuzzers can be more efficient than tradi-

tional fuzzers. For instance, code coverage was improved by 17.3% on average compared

to traditional fuzzers. However, machine learning-based fuzzers are not (yet) better at ev-

erything, as the study shows: no significant differences can be found in number of found

vulnerabilities in a popular LAVA-M dataset [83]. The reasoning behind this result is that

the vulnerabilities are deep in the dataset’s program code and traditional fuzzers still have

better program analysis capabilites. In general, machine learning-based fuzz testing is

still in research stage, but the growth in the amount of research papers and proved ad-

vantages over traditional fuzzing methods show that it is a viable and effective method

[57] [14].

It is noteworthy that fuzzers do not have to be purely one type. Instead, they can execute

steps in the workflow using methods from different fuzzer types. For example, SymFuzz

runs fuzz campaigns as a black box fuzzer, but before that it gather information from SUT

much like a white box fuzzer [84]. To be more precise, it first tries to find the optimal

mutation ratio, i.e. ratio of modified bits to total size of seed, for a program-seed pair.

SymFuzz then uses the mutation ratio to generate test cases, without probing the SUT

anymore. Driller is another example: it starts executing as a grey box fuzzer, but proceeds

to use dynamic symbolic execution — a distinctive white-box technique — when hard to
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reach paths are found [85].

3.4 Protocol fuzzing

RFC 1208 [86], or A Glossary of Networking Terms, defines protocol as “A formal descrip-

tion of messages to be exchanged and rules to be followed for two or more systems to

exchange information”. A computer network on the other hand is a collection of computers

capable of changing information [87]. Network protocol is therefore a formal description

of messages and corresponding rules for computers to exchange information.

The actual descriptions of a network protocol are described in a protocol specification

[88]. Protocol specifications include information about information change methods, be-

haviour and network packet format. In practice, these specifications are usually Request

for Comments (RFC) documents, which also cover other aspects of computer networking

[89]. An example is Transmission Control Protocol (TCP), which has its protocol specifi-

cation described in RFC 793 [90].

To actually use a network protocol, it needs to be implemented. Implementations are built

from the protocol specifications by manual interpretation. As the specifications may be too

vague, or they are misinterpreted, implementation errors can happen [88]. Furthermore,

implementation errors can be hard to detect and in the worst case scenario, these errors

are security vulnerabilities that can be exploited later on [22].

Undetected vulnerabilities in protocol implementations can cause serious problems. Heart-

bleed is an infamous example of a serious protocol implementation vulnerability [91]. It

affected TLS/DTLS implementations of early OpenSSL versions, and made it possible

to read private memory locations, possibly exposing private keys and passwords. As

OpenSSL is a popular library, the effect was widespread. Durumeric et al. [92] found

that 24-55% of the one million most popular HTTPS-enabled websites were affected by

Heartbleed. Similarly, other network protocols impose a risk of containing widespread

consequences due to their heavy usage [52].

It is evident that there is a need to detect these vulnerabilities before they are imple-

mented. Therefore, it is important to conduct proper testing for the implementations. This

is where automated tools can provide help. As discussed earlier, fuzzing can be used

for verifying software security and this applies for network protocols too. Same classi-

fications, methods and techniques apply. However, network protocol fuzzing has some

unique aspects to consider.

Fuzzing network protocols introduces a couple new challenges to fuzzing. As protocols

are mostly implemented through state machines, stateful fuzzing is required. This, how-

ever, is often not the case with fuzzers. Instead, fuzzers are usually stateless. Second

challenge arises from the fact that vulnerability in a protocol may require a specific com-
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bination of substates. The fuzzer needs to "lock in" a certain substate thats lead to the

vulnerability before moving on to the next substate. In practice, locking in the states

means first generating valid inputs to reach deeper states [93]. After that invalid inputs

can be generated to exploit vulnerabilities. Stateless fuzzers that are able to fuzz one

packet at a time are inefficient in finding these deep paths. [52]

Also, some protocols, such as security protocols, may use encryption for the messages.

In these cases fuzzers should be able to decrypt the messages. Otherwise fuzzed mes-

sages could be completely invalid and hence instantly rejected by the SUT. Security pro-

tocols also impose other challenges. For instance, keys that ensure message freshness

mean that fuzzers cannot use previous messages as inputs. Instead, fuzzers must use

fresh messages by acting as a man-in-the-middle, for example. [93]

Many protocols are based on client-server model [59]. Therefore, an aspect to be consid-

ered in protocol fuzzing is whether SUT acts a server and fuzzer as a client or vice versa.

The former is the simpler case as fuzzer only needs to initiate connections and observe

SUT reactions. When fuzzer acts as a server, it needs to listen for connection attempts

and respond with malformed messages. Furthermore, the SUT acting as the client needs

to repeatedly initiate connections for fuzzing to continue. This may require modifications

to the SUT.

In the realm of protocol fuzzers, generation-based fuzzers need a protocol specification to

generate semi-valid data. This implies that certain semi-valid inputs can only be applied to

certain protocols. New data must be generated for each protocol. By contrast, mutation-

based protocol fuzzers examine a current session and always apply same methods for

generating semi-valid data. Hence, mutation-based fuzzers are generally simpler. [15]

Mutation-based protocol fuzzers are more common than generation-based protocol fuzzers

[1]. Examples of mutation-based protocol fuzzers are AutoFuzz and SecFuzz [94] [93].

Both of these act as a man-in-the-middle between a client and a server to examine mes-

sages and produce semi-valid data. SNOOZE and PULSAR are examples of generation-

based protocol fuzzers [73] [72]. SNOOZE’s fuzzing engine takes a manually made spec-

ification as an input parameter. PULSAR on the other hand generates the specification

model automatically, by inferring network traffic. From the model it can deduce the pro-

tocol state machine and message formats. This information is used to guide the fuzzing

later on.

Generation-based network protocol fuzzers, like all fuzzers, can get specification, also

called as model, manually or automatically [1]. Manual acquiring happens by predefined

models or by user in a specified format. SNOOZE is an example of this kind of fuzzer.

User can use either predefined models or use their own model in XML format. Conversely,

inferring the model automatically requires fuzzer to have access to previous messages

where the protocol was used, or to live traffic. PULSAR is an example of this kind of
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generation-based fuzzer, as it infers a protocol model from live traffic.

SUT is often treated as a black box in network protocol fuzzing, meaning that many

fuzzers only analyze the output of SUT by comparing response to valid and invalid mes-

sages [15]. However, it is possible to conduct deeper analysis to identify the exact vulner-

abilities. A fuzzer called SecFuzz uses dynamic analysis tools to detect memory errors

[93]. In the SecFuzz study, a use-after-free memory access vulnerability was found. The

used dynamic analysis tool showed a stack trace which made it easy to detect cause of

the vulnerability. However, as it usually is with white box techniques, dynamic analysis

adds overhead, which in some cases can be significant.

Protocol fuzzers can work in either message-level or state-level [15]. Message-level

fuzzers alter individual messages, but the order of protocol messages is kept intact. State-

level fuzzers on the other hand can also alter the message order. Message-level fuzzing

is the more common option [95]. Message-level and state-level fuzzing are also known as

bit-level and order-level fuzzing, respectively [95]. AutoFuzz is an example of a message-

level fuzzer [94]. It captures live messages, constructs a model of them and performs

fuzzing operators to the models. AutoFuzz is not able to modify message order though

like a state-level fuzzer. An example of a state-level fuzzer is SecFuzz [93]. It is able to in-

sert a message from a previous session to random position of current session’s message

sequence. SecFuzz is also able to alter structure of single messages.

A recent network protocol fuzzer is AFLNet [96], which extends the previously discussed

grey box fuzzer AFL. AFLNet combines coverage-based grey box fuzzing (CGF) and

stateful black box fuzzing (SBF) into stateful coverage-based grey box fuzzer (SCGF),

where fuzzing is guided by server response codes. It addresses the problems in CGF

and SBF. The problems mainly being limitations in stateless nature of CGF and SBF’s de-

pendency on protocol specification quality. Unlike most network protocol fuzzers, AFLNet

is a mutation-based fuzzer. Also, unlike regular mutation-based fuzzers, seeds are mes-

sage sequences instead of individual messages. These sequences are mutated on both

state- and message-level. The results of the study suggest that AFLNet can outperform

both a CGF and a SBF fuzzer in coverage and vulnerability finding.

3.5 Fuzz testing maturity model

Fuzz testing varies a lot between different entities because the used tools, environments,

targets etc. differ. It is therefore hard to compare how well fuzzing has been done between

all these entities. Fuzz testing maturity model (FTMM) [97] attempts to provide a solution

for this by providing an unified framework to measure maturity of fuzz testing, independent

of all factors affecting fuzzing. The framework uses numbers from 0 to 5 for describing

the maturity level. Each level contains progressively more requirements that must be met.

The 6 different levels and their brief descriptions are listed in table 3.2. FTMM states that
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Table 3.2. Fuzz Testing Maturity Model Levels

Level Mut/Gen Mut. min. effort Gen. min. effort

0 - Immature One <2 h / <100k cases <2 h / <100k cases

1 - Initial One 2 h / 100k cases 2 h / 100k cases

2 - Defined One 8 h / 5M cases 8 h / 1M cases

3 - Managed Both 16 h / 5M cases 16 h / 2M cases

4 - Integrated Both 1 week / - 1 week / -

5 - Optimized Both 2 * 30 days / - 2 * 30 days / -

“The test case counts and minimum testing times in this document are based on years of

industry averages”.

Level 0 means no fuzzing has been performed or the fuzzing is less than required by level

1, which requires 2 hours or 100k test cases using either mutation- or generation-based

fuzzer. Level 2 ramps these numbers up to 8 hours or 1 million test cases for a generation-

based fuzzer and to 8 hours or 5 million test cases for a mutation-based fuzzer. Level 2

also requires a full attack surface analysis, while level 1 defines the requirements only for

known attack vectors. Level 1 also allows assertion failures. Levels 2 and 3 only allow

transient failures.

From level 3 onward, fuzzing must be performed using both mutation- and generation-

based fuzzer against full attack surface. Level 3 requires 16 hours of fuzzing for both

types, or 2 million and 5 million test cases. It is also the first level where automated

instrumentation must be used and test configuration must be documented. Level 4 in-

creases fuzzing time to 1 week for each fuzzer and removes the option for running certain

amount of test cases. In addition, fuzzing must be part of automated testing and com-

ponent analysis must be performed, which means analyzing SUT for components, e.g.

third-party libraries. Level 4 does not allow even transient failures. Level 5 is the highest

level of FTMM and the minimum fuzzing time is 30 days using 2 mutation-based and 2

generation-based fuzzers. In addition to level 4, SUT must be analyzed to detect subtle

failures and code coverage must be measured, i.e. white-box techniques should be used.

Much like CRASH criteria, FTMM defines different types of failures. What is special to

the model though, is that it defines two types of failures that are allowed at some maturity

levels. These are assertion failures and transient failures. Assertion failures cause some

internal check to fail in the target software, but do not produce an error which would stop

execution. Transient failures on the other hand might be legitimate failures during initial

run, but they are considered transient if they cannot be easily reproduced.

When measuring maturity level of a target, the whole attack surface must be taken into

account, which means that in practice attack surface analysis is required even for level 1.
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As with security in general, target is only as strong as its weakest link, i.e. attack vector.

The maturity model of a target is determined by the attack vector with the worst maturity

level. Thus, if at least one vector is not fuzzed, the maturity level of the whole target is 0.



39

4. DEFENSICS

This chapter introduces and analyzes Defensics, a fuzz testing tool focused on network

protocols. First, Defensics is introduced by discussing its basic concepts and functional-

ity. Then, fundamental requirements, namely installation and licensing, are gone through.

Third, different settings for configuring Defensics are listed. Lastly, current challenges

faced by the team using it are presented. As the main objective of this thesis is automa-

tion, this chapter primarily discusses things related to automation process.

4.1 Introduction

Defensics is a generation-based fuzzer. As discussed earlier, this means that test case

generation during fuzzing is based on specifications. In Defensics, specifications are the

basis for test suites, which include a collection of test cases for certain specification. Most

of the suites are for network protocols, but there are also suites for different file formats,

for instance. This thesis is only concerned about protocol test suites.

Each test suite needs to be configured before executing a fuzz campaign. Defensics uses

its own file format as configuration file, called a test plan. Test plans are created from a

test suite. They contain run specific parameters, such as target host and instrumentation

method. Besides test plans it is also possible to run pure test suites from command line.

Running pure test suites might require more parameters and is not the official recommen-

dation, but they do not require a separate file. In addition, executing certain features from

command line is not possible using a test plan.

Defensics is designed for black box testing, but it is possible to use grey and white box

techniques for evaluation purposes [98]. For example, user can provide custom scripts

that examine SUT and inform Defensics if certain criteria are not met. Defensics is also a

stateful protocol fuzzer. This state-aware approach allows Defensics to analyze not only

protocol messages, but also message sequences and exchanges.

The high-level testing setup consists of Defensics Monitor, test suite and SUT. Test suite

is considered as a single network component with its own network configuration, including

IP address. Test suite sends test cases to SUT and in many cases evaluates the results.

Exceptions where Defensics Monitor and SUT communicate directly are SNMP-based
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evaluation methods, for example. There can exist multiple parallel test suites that test a

single system or multiple systems. However, for accurate root cause analysis of a fault,

it is recommended to only run a single test suite at a time. Defensics recommendation is

also to reset SUT between test suite executions to ensure SUT is in a healthy state before

starting a fuzz campaign [99].

For automation purposes, Defensics offers command line interface (CLI) and HTTP API.

For this work it was decided to use only CLI. Listed below are the reasons why HTTP API

was not chosen:

• CLI makes more sense, because the CI workflow requires transferring files to scan-

ner machine anyway. Sending the files and additionally making HTTP requests

from CI server would seem more complex.

• Fetching results, especially those returned by interoperability probe, would require

separate parsing methods when using HTTP API.

• When Using HTTP API, suites can be started sequentially or all in parallel. Starting

only specific suites in parallel requires sending multiple POST requests.

• HTTP requests are messier than CLI commands.

• If Defensics server is restarted, new authentication token is created which needs to

be fetched manually or extra effort must be used for automation.

The subchapters below describe features and configurable settings of Defensics. Be-

cause HTTP API is not used in this work, it won’t be discussed further either. Hence,

below subchapters concern only GUI and CLI execution.

4.2 Installation and licensing

The Defensics application, called Defensics Monitor, must be downloaded from an official

download page. In order to access the official download page, user must have appropriate

credentials. These credentials can only be acquired from Defensics support and they are

linked to one user. From the download page it is possible to download either a Linux

shell script or a Windows executable. Both shell script and Windows executable can be

executed either via GUI or command line. Once the installation has finished, the Monitor

can be started from desktop menu or from command line on both platforms.

All Defensics test suites require a license key. There are 3 different license configuration

options, but the company recommended option is using a remote server. This remote

server contains license keys for all available suites. The connection is made from De-

fensics GUI or from command line by setting the server’s IP address and TCP port num-

ber. Once connection has been successfully established, test suites can be installed and

therefore fuzzing can be started.
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4.3 Configuration

There are multiple ways to configure Defensics. Defensics GUI has 8 tabs for different

settings. The first 5 are settings for fuzz campaign pre-execution, and the last 2 are for

post-execution. The remaining tab is for controlling an ongoing fuzz campaign. Settings

there make it possible to start, stop and pause current execution, but do not affect the

fuzzing otherwise. Hence, it will not be discussed further here. Sections below describe

settings before and after execution, i.e. what possibilities there are to control fuzz cam-

paigns.

4.3.1 Pre-execution

Basic

Basic settings vary a lot between test suites. The main idea stays the same however:

provide parameters for connecting to SUT. At the simplest case this means only setting

the IP address of SUT. In more complex cases basic settings can require port numbers,

MAC addresses, cryptographic keys etc. Without valid basic settings connecting to SUT

and therefore fuzzing is not possible. If basic settings have been configured incorrectly,

interoperability tests will fail too.

One of the configurable settings is virtual interfaces. Defensics uses virtual MAC and

IP addresses to disallow protocol messages being handled by host operating system’s

network stack. Both virtual addresses need to be unique in the subnet they are used

in. If not specified by user, MAC and IP addresses are automatically chosen. Automatic

choosing creates a problem in our cloud environment where allowed address pairs are

limited for a VM port. In other words, only fixed address pairs are allowed. IP address can

be set to a subnet using CIDR notation, but for MAC address no corresponding option is

available.

Interoperability

Due to Defensics having complete protocol specifications, it supports every possible con-

figuration of a protocol, which might not be the case for SUT. Interoperability checks which

configurations are supported by SUT. No fuzzing is performed at this stage as only the

valid cases for different configurations are sent to SUT. Interoperability results affect which

test cases are executed during fuzzing, because only the interoperable test cases are se-

lected. After all, it does not make sense to test unsupported features.

Interoperability test can be launched from the command line too. However, unlike GUI,

CLI does not allow selecting specific protocol features. Instead, all the interoperable

features are selected for test case selection. In most cases this should not be a problem,

because test coverage should be as large as possible while minimizing redundant cases.
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Advanced

Advanced settings affect test runs, but they are not as critical as basic settings. Advanced

settings are also more similar between test suites. The main settings are related to run

control, logging, packet capturing and CVSS scoring. Run control allows modifying set-

tings such as timeouts, delays, looping and stop criteria. Logging defines the level of

logging, e.g. are only valid and failed cases be logged, or should everything be logged.

Packet capturing makes it possible to save network traffic for debug purposes. Lastly,

CVSS scoring can be used to assign CVSS scores for found vulnerabilities.

Perhaps the most interesting advanced settings are timeout for received messages, amount

of send attempts and different stop criteria. Timeout for received messages determines

how long a suite will wait for a response from SUT. It can be set to a static value, that

will always be waited but by default the value is dynamic. Dynamic value is automatically

adjusted based on SUT responses. It still uses a default value which is also the time that

will be waited before sending a case, but there is no fixed response wait time. Amount of

send attempts defines how many times a case will be attempted to send, before assign-

ing a verdict. Stop criteria has different options for stopping the fuzz campaign, such as

amount of failed cases or total run time.

Instrumentation

Instrumentation is the act of observing SUT behaviour during fuzzing, i.e. evaluating test

case effect. Its goal is to perform a health check for the SUT and report any discrepancies

from expected state. How the health check is performed depends on the test suite, SUT

and chosen method. This is also where classifications such as CRASH criteria must be

considered: failure is not always catastrophic resulting in a complete system failure, but

failures can be more subtle too. For example, containers may go into a restart loop or

memory may be exhausted.

In some cases instrumentation might simply mean sending a valid case to SUT to see if

there is a response. If there is, SUT can be said to be healthy and fuzzing can continue.

Otherwise the conclusion is that SUT has reached an erroneous state, possibly implying a

crash. In case of instrumenting more subtle failures SUT must be first manually assessed

to find relevant symptoms which indicate a failure in the system and can therefore be used

as instrumentation methods. In these cases instrumentation is very case specific. For ex-

ample, different protocols have different message options for valid case instrumentation.

Valid case instrumentation and other instrumentation methods supported by Defensics

are discussed below and listed in table 4.1 based on Defensics User Guide [98].

Before delving into different instrumentation methods though, it is worth mentioning that

instrumentation can be synchronous or asynchronous. In synchronous instrumentation

health checks are performed depending on the test case, e.g. after n test cases, where
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Table 4.1. Instrumentation methods

Method Requirements

Valid case Test suite that supports request/response model.

Connection Always enabled for applicable suites.

Protocol Applicable suite.

External User made custom scripts.

SNMP-based SNMP agent on SUT and appropriate port(s) open.

Syslog Syslog support on SUT and appropriate port open.

Agent
Agent Instrumentation Framework on SUT

and appropriate port open.

SafeGuard Applicable suite.

ISASecure ISASecure solution customer.

n is a positive integer. On the other hand, asynchronous instrumentation performs health

checks periodically, e.g. after t seconds, where t is a positive number. These two meth-

ods favor either accuracy or speed. In case of a failure, detecting the cause is easier

with synchronous instrumentation especially if n is small. This is because failure is often

caused by a single test case rather than a combination of test cases [98], which makes lo-

cating the test case simple. The advantage of asynchronous instrumentation comes from

less frequent instrumentation, which reduces fuzzing time but also makes fault detection

harder.

Valid case instrumentation checks that SUT responds in an expected manner to a valid

message. If the response is unexpected or there is no response within a predefined

time frame, the test case is reported as a failure. Valid case instrumentation works syn-

chronously and is executed after each test case by default. Even if a test case is reported

as a failure, Defensics will continue using valid case instrumentation to get an expected

response before sending a new test case. The amount of attempts, timeouts and other

related parameters are configurable in advanced settings or instrumentation settings.

Connection-based instrumentation checks network connection between a test suite and

SUT. It is enabled and cannot be disabled for all protocols that send a verification when

connection has been established. For example, all TCP-based protocols work this way.

It is noteworthy that any intermediate devices may cause false negatives or false posi-

tives when only using connection-based instrumentation. For example, if SUT crashes

but a proxy between test suite and SUT is still opening a TCP socket, testing continues

normally.

Protocol instrumentation works in a similar way as connection-based instrumentation.

Instrumentation is done using request - response approach, but the requests are protocol

dependent. Upon receiving a response its semantics are analyzed, e.g. what return code
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is received. In order to assign a verdict, successful semantics must be predefined. For

example, HTTP response codes starting with 1, 2 or 3 are acceptable, otherwise test

case is marked as failed.

External instrumentation allows usage of custom instrumentation methods. Basically this

means custom scripts that are executed at given point. For example scripts can be exe-

cuted before test cases, after test cases or after the complete test run. External instru-

mentation allows user to freely determine how instrumentation is executed, but it also

requires extra work on building the scripts. Examples of external instrumentation include

monitoring of resources, log files and/or processes. External instrumentation is always

synchronous.

Simple Network Management Protocol (SNMP) provides a way to reference data located

in a remote system [100]. This data can be, for instance, CPU and memory usage data.

To fetch specific data, user needs to know the corresponding object identifier (OID). De-

fensics supports SNMP Trap and SNMP Query instrumentation. The former works by

SUT sending information to testing system once certain criteria are met, while the latter

works by periodically querying status of the SUT. For SNMP instrumentation to work, the

SUT must run an SNMP agent. SNMP Trap instrumentation sends data, including OIDs,

that Defensics parses and analyses. For SNMP Query instrumentation, all necessary

OIDs need to be specified. Defensics is also able to automatically fetch all the OIDs

supported by SUT by using SNMP Scanner.

Syslog instrumentation is similar to SNMP Trap instrumentation. Whenever Syslog en-

abled SUT observes an event that is worth a syslog message, the message is sent to

Defensics. Defensics then decides if the received syslog message is worth a failure. By

default all syslog messages cause a failure. Syslog messages contain numeric severity

and facility values, that can be used for filtering messages.

Agent instrumentation uses pieces of software specialised for a certain task, a.k.a. agents,

on the SUT to send information to Defensics when an interesting event occurs. For the

instrumentation to work, Defensics Agent Instrumentation Framework must be installed

on the SUT. The framework has built-in agents that can monitor file or process events,

for example. However, it also possible to create custom agents, that allow user freely to

decide what is monitored.

Stateful design of Defensics allows it to analyze even complex protocol message se-

quences. SafeGuard instrumentation is used to detect security vulnerabilities in the sys-

tem by observing the messages. SafeGuard instrumentation is prone to false positives,

which is why manual review is required in most cases. Only cases determined as critical

are automatically marked as a failure. SafeGuard is not supported by all test suites, but it

is enabled by default for those suites that support it. There are various SafeGuard vulner-

ability checks that can be used. To name one example, SafeGuard instrumentation can
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detect Heartbleed bug [91] by sending a Heartbeat request.

Lastly, ISASecure instrumentation monitors analog and digital waveforms to ensure they

fit in a predefined criteria. For ISASecure instrumentation to work, customer needs to be

part of Defensics ISASecure solution customers.

Test cases

Due to Defensics being a generation-based fuzzer, test suites are aware of the correct

protocol specification format. This also means that test cases, i.e. modified versions

of the correct messages, are predefined. The amount of test cases varies a lot, but

some test suites can contain millions of test cases while others have only few thousand

test cases. Each suite has certain amount of unique test cases from which a subset is

selected by interoperability test and possible manual selection. Only interoperable test

cases are used by default. Defensics is also able to loop test cases, allowing infinite

execution. Once launched, infinite execution must be manually stopped. Of course the

execution is not infinite in practice, as memory will run out at some point.

Defensics allows user to freely decide which cases are run and in which order. Test cases

can be specified by test case index or by group name. Groups are a collection of similar

test cases, e.g. cases that only alter a single field of a protocol message. Test cases are

sorted by groups and by default selected cases are run in order. It is, however, possible

to run the cases in a random order. Another option that does not execute test cases

in order is balanced execution, which means selecting a meaningful subset from all test

cases. For instance, instead of running first 1000 cases in order, which would only fuzz

few message fields, these 1000 cases will be selected so that each field of the message

is tested as much as possible. This way everything gets fuzzed, but not as much.

4.3.2 Post-execution

Results and Remediation

Defensics saves results of each fuzz campaign and interoperability test. The results con-

tain multiple files that contain information about the campaign. For example, main log

can save an entry for each test case, listing the contained anomaly and SUT response.

Defensics GUI additionally makes it possible to view the exact test case messages and

the anomalies contained in them in a graphical form. It is also possible to view runtime

information, which shows how many test cases have been executed and how many are

left, for instance. Result notes can be used for adding information about the test run or

the tester. Users can freely decide what is written in notes, if anything. Results can be

searched and filtered using notes later on.

Although the goal of Defensics is to find vulnerabilities, the ultimate goal behind fuzz
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testing is to fix all found vulnerabilities. To do so, it is important to be aware of the cause

behind an error, or vulnerability. Defensics makes it possible to rerun test cases that

caused a failure. In the simplest scenario, only the case that caused a failure is rerun.

However, sometimes a failure is caused by an earlier test case or by a combination of

cases. Hence, user can define which test cases are rerun, e.g. 10 test cases leading up

to the failure are rerun.

Remediation packages are a collection of files that can be used to reproduce a found

flaw. The content is up to package creator. However, at least results that can be used to

reproduce the fault should be included. Remediation packages should not contain whole

fuzz campaign results leading up to a fault, but instead only the test case(s) that cause the

fault. This makes reproducing the issue efficient. When importing a remediation package,

the same test suite and its configurations can be loaded. The idea Defensics has behind

remediation packages is that a tester can send the package to a developer, who can then

easily reproduce the issue.

4.4 Current Challenges

Defensics has been part of the team’s security testing for a while due to company require-

ments and recommendations. However, team members have not had time to thoroughly

study Defensics. Hence, no clear definitions have been made regarding necessary test

suites or their configurations. Instead, suites have been selected based on a tester’s per-

sonal decision. These suites have been configured using certain settings that pass the

testing easier than default settings. It would be beneficial to analyze which suites could

actually be used and how they should be configured.

Another challenge with Defensics is speed, which is affected by a few factors. First, fuzz

testing in general requires a large set of test cases. More cases there are, the more

time it takes to complete the fuzz campaign. Secondly, Defensics does protocol fuzzing,

where cases are send through a network which inherently takes some time. In addition,

after instrumentation Defensics needs to wait for a response, which again goes through

the network. Third, some cases take a lot longer than others. In the worst cases, total

execution time is over 24 hours for a single test suite due to cases that take multiple

seconds or even minutes. This challenge and its causes are discussed more thoroughly in

chapter 5. Fourth, the SUT has multiple interfaces, which all need to be fuzzed. However,

amount of parallel running test suites is limited. Defensics recommends not running more

than 5 test suites simultaneously in GUI [101]. Lastly, operating the GUI takes time. For

instance, loading test suites, configuring them and generating reports require notable

manual effort.

When it comes to resource usage, the limiting factors of Defensics are memory, proces-

sors and storage. Different test suites require different amounts of memory but the official
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recommendation is to have at least 2 GB of RAM for each suite. In addition, Defensics

Monitor itself requires additional 2 GB of RAM [98]. So, for example, to run 5 suites si-

multaneously, there should be at least 12 GB of available memory. Test suites also need

processing power. When running multiple suites simultaneously, one CPU core can han-

dle multiple test suites. For optimal performance though, one processor core should run

1-2 test suites [101]. Defensics also recommends using at least Intel Core i5 processor.

For disk storage, Defensics recommendation is to have at least 300 GB of available disk

space for installation and log file storage [101].

Defensics GUI has additional recommendations, namely a graphics display adapter and

sufficient amount of Java heap memory [101]. Defensics does not recommend running

more than 5 suites simultaneously in the GUI, because results are temporarily stored in

JAVA GUI components which causes large memory consumption [101]. Furthermore, the

recommendation is to use command line execution over GUI for optimal performance.

Real life test runs have shown that it is possible to run more than 5 suites simultaneously,

but not without problems. Running multiple simultaneous suites makes GUI slow and in

some cases the GUI has crashed, stopping all the running suites.
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5. AUTOMATING DEFENSICS

This chapter describes the practical work that was done for the thesis. First, the selected

Defensics suites are introduced. Then, all suite configurations that were chosen for CI are

listed. The topic then moves onto general CI workflow, i.e., how does Defensics integrate

into CI. Thirdly, it is described how Defensics Robot test suite and its test cases were

formed. Lastly, the program created for running Defensics processes is examined.

5.1 Defensics configuration

The Defensics test suite configurations are described in this subchapter. First, all protocol

suites that could be used to fuzz the given product are listed. From these suites a subset

is selected for CI. The rest of the suites will not be used at least for this implementation.

Reasons are given for excluded suites. Next is discussed which suite settings were mod-

ified from their default values. It is shown that certain situations cause significant delay

when Defensics assigns a test case verdict and mitigation actions are given for these sit-

uations. As the last step, test case selection mode and a way to limit fuzzing run time is

chosen.

5.1.1 Test suites

Defensics has numerous test suites, but only few of them are interoperable with the given

product and environment. To filter which protocol test suites could theoretically be used,

the full test suite list [102] was manually analyzed. Table 5.1 lists results of this analysis.

All suites in the table could potentially be used to test the SUT. Suites that were excluded

from the table are not interoperable with the SUT. In most cases this means that the

protocol is not present in SUT. In some cases the protocol may be internally used by the

product, but cannot be used from the outside and hence is not an attack vector.

Most protocol suites are for server-side testing, but Defensics also has suites for client

side testing. These suites will not probe SUT but instead they will open a socket for listen-

ing connections from SUT. Fuzzing happens by sending responses to messages sent by

SUT. This would naturally require adding functionality for repeatedly sending messages

to Defensics. Because we want to keep security testing environment as similar to produc-



49

tion environment as possible, client side testing is not a compelling option. Also, client

side testing is significantly more complex fuzzing method especially when executed dur-

ing CI. It was therefore decided not use client side testing for CI, but rather do it manually

if needed.

Table 5.1 lists suites that could be used for fuzzing the product, but not all of them are

applicable for continuous testing. When the system test period is rather short and fuzz

testing is only one part of security testing, it makes sense to prioritize some suites and

exclude others. As discussed earlier, fuzz testing can be time-consuming with some

fuzz campaigns lasting over 24 hours. However, excluding too much must be avoided to

cover as much attack surface as possible. Suites in table 5.1 were further analyzed by

considering their importance and executing test runs to gather final suitable test suites in

table 5.2.

Table 5.1. Possible test suites

Test suite Brief

X.509
Servers using TLS or other cryptographic
protocol that utilizes X.509 PKI standard.

SSHv2 Server
Servers supporting Secure Shell 2.0,

secure communications protocol.

TLS Server 1.2/1.3
Servers using Transport Layer Security (version 1.2 or 1.3), current

de facto protocol for securing web traffic.

HTTP Server
Servers using Hypertext Transfer Protocol, application level

protocol for transmitting hypermedia in the web.

TCP Server for IPv4
Servers using Transmission Control Protocol,

transport layer protocol for IP networks.

TCP Server for IPv6
Same as TCP Server for IPv4,
but for IPv6 implementations.

IPv4
Servers using Internet Protocol version 4,

network layer protocol for networks.

IPv6 Same as IPv4, but for IPv6 implementations.

ARP Server
Servers using Address Resolution Protocol,

network layer protocol for resolving MAC address.

ICMPv4
Servers using Internet Control Message Protocol

for IPv4, network layer protocol for
sending mostly diagnostic messages.

ICMPv6 Same as ICMPv4, but for IPv6 implementations.

Ethernet
Servers using Ethernet protocol,

data link layer protocol.

Traffic Capture Fuzzer Mutation-based suite for protocols.

The product runs OpenSSH server process, which means it supports SSH connections.

SSHv2 Server test suite is therefore interoperable with SUT and could be used during

fuzzing. There are, however, 2 main problems with the suite. First, although interoperable
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Table 5.2. Selected suites

Test suite Applicable Product Role

TLS Server 1.2/1.3 A

HTTP Server A

TCP Server for IPv4 A + B

TCP Server for IPv6 A + B

IPv4 A + B

IPv6 A + B

Ethernet A + B

with SUT, the primary focus of the testing should be on the product itself. In this case the

focus would be on OpenSSH. Secondly, performance of the suite is poor. This is because

the SSH protocol is complex. When running 1000 test cases in balanced execution mode,

the average case execution time was 0.18 seconds. For reference, the time was 0.05

seconds for HTTP suite and 0.02 seconds for TCP for IPv4 suite. The execution time

still seems small, but when running hundreds of thousands of test cases the difference

becomes more significant. For example, the SSH suite contains approximately 700,000

cases. If the cases on average take 0.18 seconds, this adds up to 35 hours. For HTTP

suite this time is 9.7 hours and for TCP suite it is 3.9 hours. For these reasons SSHv2

suite was decided to be excluded from CI testing.

ARP Server test suite is for testing ARP protocol implementations. ARP is used to re-

solve MAC address from corresponding IP address. ARP is implemented in the operat-

ing system of SUT, for example in Linux kernel. User’s should not directly interact with

ARP implementation, but rather it acts as a service for other protocols [103]. ICMPv4

and ICMPv6 test suites are for testing ICMP protocol implementations. ICMP is used

for sending information about error conditions and other diagnostics. Like ARP, ICMP is

implemented in the operating system and it should not be directly accessed by user be-

cause ICMP messages are sent via other protocols [104]. Like SSHv2 suite, ARP and

ICMP suites are not focused on testing the product. Additionally, there are already test

suites for data link layer and network layer. Hence, ARP and ICMP suites were excluded

from CI testing.

HTTPS, which uses TLS, is used in product role A. TLS needs public key certificates

and the certificate is in X.509 format. Therefore Defensics’s X.509 test suite could be

used for fuzzing. The suite, however, operates differently than other discussed suites.

Instead of directly sending test cases to SUT, the test cases, i.e. invalid certificates, are

only generated and sending is left as user responsibility. Defensics does offer options

for automatic sending, but it still needs user made scripts and/or configurations. One

option would also be running TLS suite simultaneously by looping valid TLS message
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and feeding a fuzzed certificate as part of the message. Either way, X.509 suite would

require special effort and since it also does not directly test the product, it was left out of

CI testing for now.

Unlike almost all other test suites, Traffic Capture Fuzzer (TCF) is mutation-based and

not generation-based. As the name suggests, the suite generates test cases by mutating

traffic capture files. There is no live traffic interference though, but instead a single cap-

ture file is imported. Traffic must be captured using an external tool such as Wireshark.

Because there are no proprietary protocols in use and there already exists a suite for

each used protocol, TCF does not add much value. Even the official recommendation is

to use a fitting suite if one exists. TCF will therefore not be used in CI testing.

5.1.2 Test suite configuration

As shown in chapter 4, Defensics suites can be configured in multiple ways. Most default

settings are already sufficient for testing the product and can therefore be left unchanged.

There exists a few settings that should be changed for CI testing though. First, basic

settings must be changed for interoperability test. Secondly, advanced run control settings

provide useful parameters for improving run efficiency. Same goes for instrumentation

settings. Lastly, test case settings allow changing test case selection mode. They also

make it possible to select only a subset of cases for execution.

Test suites contain thousands, hundreds of thousands or even millions of test cases.

When these cases are sent through a network, the fuzzing process will inherently be

time-consuming. But even if test suite execution is slow, it is still time-wise manageable

especially if parallel execution is used. However, time-wise real problems arise when

SUT stops processing messages, often due to high load caused by fuzzing. In these

cases Defensics may mark test cases as skipped or failed. Whether case is marked as

skipped or failed depends on instrumentation. Successful instrumentation yields a skip,

while unsuccessful instrumentation fails the case. Note that test cases might be marked

skipped in other cases too. For example, when fuzzing with uninteroperable cases. In

such situations concluding the verdict could be just as efficient as with successful cases.

By default, test cases will be attempted to be sent 3 times and instrumentation will be

done only once. If there is no response to any test case within send attempt limit case

is marked as skipped or failed. A failed case does not stop fuzzing, but instead instru-

mentation will continue until a response is received. Furthermore, delay between instru-

mentation attempts will progressively increase until the maximum time is reached, which

is 12 seconds by default. Even if test case is only skipped, the test suite could still wait

default timeout of 1 second for a response. Since there is 3 attempts by default, each

skipped case will take approximately 3 seconds. This is huge difference compared to

successful average execution time of a test case, which in the case of TCP for IPv4 suite
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was only 0.02 seconds. Furthermore, instrumentation time is still added on top of this.

What is worse is that previous fuzz runs have shown that usually SUT stops responding

to several messages instead of just one. In other words, if a case gets skipped, many

subsequent cases will also be skipped.

To address the performance problems caused by unresponsiveness of SUT, suites must

be configured in a way that minimizes time spent on analyzing such cases. First, maxi-

mum fail amount is set to 0, meaning that suite will stop if a fail occurs. This makes sense

because manually executed runs have shown that fails occur rarely and they should any-

way be manually analyzed despite the amount. Furthermore, a suite does not get stuck

on failed cases and slow the whole pipeline this way. Secondly, because normal test case

execution time for all selected suites is couple hundreds of a second at most, it should

be safe to lower the default timeout of 1 second. However, we do not want to set this too

strict in case of random network delays. For the same reason there should be at least

a couple send attempts. Therefore, dynamic timeout was set to 300 ms and amount of

send attempts was kept at default. Instrumentation fail limit was increased from 1 to 5 to

further add some leeway. After all, suite stops if at least 1 fail is encountered. Increasing

instrumentation frequency would increase fuzzing speed, since instrumentation is done

less often. It was, however, decided that accuracy should not be reduced and frequency

was kept at 1.

The instrumentation methods themselves were kept simple. SNMP-based, syslog and

agent framework instrumentation would all require extra SUT configurations and hence

were chosen not to be used. ISASecure is not applicable because there is no ISASecure

customer subscription. Valid, connection, protocol and SafeGuard instrumentation are

used if they are set on by default. Also instrumentation messages were kept as default.

External instrumentation could turn out to be useful because it can be used to check SUT

internals, such as container status or logs. However, doing this after every test case would

be inefficient. It would make more sense to do such instrumentation less often, although

then accuracy is worse. External instrumentation was, however, not implemented for this

thesis work and it was instead left as future work.

Although ideally all interoperable tests would be run, sometimes running a subset of cases

is required to stay within time constraints. Hence, limiting test case amount should be an

option. Defensics has different options for this, namely maximum case amount, maximum

run time and trim percentage. Trim percentage allows selecting a percentage of cases

from all cases, but can only be used with specific test case selection modes: trim and

random. Trim executes cases sequentially as done by default, while random mode selects

cases in a random order. Random execution is based on a customizable seed value,

which is 0 by default.

Third usable test case selecion mode is balanced. Balanced mode is like random execu-
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tion, but instead of choosing cases based on a random seed, Defensics chooses cases

equally among test groups. The objective of balanced execution is to choose a mean-

ingful subset of cases from all cases. This guarantees usage of all test groups, which in

most cases implies fuzzing all fields of a protocol message. Drawback of balanced mode

is that trim percentage cannot be used with it. Therefore, to limit test cases with balanced

mode, another limit must be used. Maximum run time limit was chosen for this purpose.

When suite reaches the limit, the fuzz campaign is stopped despite how many test cases

have been executed. Maximum run time can also be used to mitigate prolonged run times

caused by unresponsive SUT. Regarding CI, the time limit of the particular job needs to

be taken into account, since all needed suites must be completed within the limit. Maxi-

mum run time was set only to 1 hour to guarantee reasonable execution time even with

limited target machines and few suites running in parallel. Running most or all suites in

parallel against multiple identical target machines was left as future work.

5.2 Executing Defensics in CI

Out of the two security testing environments presented in chapter 2, cloud environment

felt like the natural choice for CI purposes. This is due to flexibility of virtual machines.

Scanners, targets and possible other machines can be easily created and destroyed. Re-

source assignment, e.g. setting enough memory and virtual CPUs is trivial. Furthermore,

these environment changes can be made automatically. For example, it is possible for

CI pipeline to execute jobs that first create all target VMs, then perform scans against

them and finally destroy them. Similarly, scanner VMs can be created during pipeline

execution.

Another great advantage that the cloud environment offers is parallelization. Because

Defensics scans can take a long time to finish, it can be a good idea to run a single

fuzz campaign against multiple identical targets. For example, if a test suite has 1 million

test cases, they can be split to 10 subsets of 100,000 cases and run against 10 identical

targets. This offers opportunity for great time savings. It is theoretically possible to miss a

specific combination of test cases leading to a failure by dividing test cases into subsets,

but probability of this can be considered low. After all, failures are usually caused by

individual test cases, as discussed in earlier chapters. Besides splitting cases of individual

test suites, different interfaces can be split among identical targets. For example, each

target could be used to fuzz one TCP port.

The CI workflow was explained in chapter 2 and visualized in figure 2.6. For this work, a

stage was added to the security pipeline. The stage has a job that executes a Defensics

Robot test suite, which was also created for this work. Two Python modules were also

created: one for implementing business logic for the Robot suite and one for executing

Defensics CLI commands on a scanner machine. The former has methods for performing
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Figure 5.1. Defensics as part of CI

remote operations via SSH, such as transferring files, creating directories and launching

scans. The latter will be explained in detail below.

When specifically considering Defensics and CI, the interesting part is what happens

when the security pipeline is started. This is visualized on a high-level in figure 5.1.

The connection between CI server and SUT allows preconfiguration etc. Currently this

connection is only used for product installation. On a lower level, before fuzzing the

product is first installed on the target machine and its condition is verified. These steps are

related to the overall CI structure and not to strictly fuzzing. Unlike fuzzing job, they existed

already before this work. After verifying successful installation, the target is ready for

fuzzing. The CI fetches Robot test suite, the code for running Defensics and configuration

files (see below) from testing code repository. Upon Robot suite initialization, the code

and configuration file corresponding to the Robot test case is sent to scanner machine.

After initialization, a command is sent to the scanner that executes the code using the

provided files and parameters. Once fuzz campaigns have been completed, result files

are fetched from scanner machine to CI server. Job verdict is then assigned and sent for

observation.

Assigning a verdict is a key aspect of testing. Because Defensics does not use sophisti-

cated white box techniques and instrumentation was chosen to be simple, amount of false

positives is expected to be low. For this reason it is reasonable for a job to fail whenever

any of the Defensics scans fail. Defensics CLI allows rerunning failed test runs, which

could be implemented as a feature. However, failures are not always caused by individ-

ual test cases and sometimes system might be considered robust enough, even if a test

fails. To recall FTMM from chapter 3, transient failures happen when failures cannot be

easily reproduced and they can be considered acceptable. For this reason and the re-

quirement from chapter 2, all failures are manually analysed and manually given a verdict

afterwards.



55

As the core aspect of this thesis, a program was created for running Defensics suites.

The program is called DefensicsPy and it was decided to run using pure suites instead

of running commands with test plan files. Upon running DefensicsPy, the first step is

checking for any absent or outdated suites. If so, all of these are downloaded and installed

automatically. This ensures that scans are always executed using the latest test suite

versions. After updating suites, the subnet is scanned for available IP addresses. The

addresses are assigned for each test suite to be run. Thirdly, the test suites, i.e. scan

processes, are started. The scans continue until all interoperable cases are run, time limit

is reached or when a failure occurs. As a final step, reports are renamed to match the

suite and interface, and then moved to another directory on the scanner machine. Further

details are provided below.

5.3 Robot test cases

To not mix Robot test cases with Defensics fuzzing test cases, Robot test cases are called

just Robot tests in this subchapter. Robot tests are the highest abstraction level when it

comes to the code written. They use Robot keywords to call Python methods, which

connect to a scanner machine and start the actual testing. The Robot calls made in CI or

by a user specify which Robot tests are executed. Tests can be called using their names

or tags assigned to them. Tags can be used to select tests without specifying test names.

This is done by specifying the Robot test suite (in this case Defensics) and then including

and/or excluding tags. When there are many Robot tests and/or their names are long,

tags usually allow simpler commands.

1 DEFENSICS_PROUCT_ROLE_A

2 [ Documentation ] Scan product r o l e A .

3 [ Tags ] ro le −a

4 $ { scan_verd ic t } = Launch Scan $ {CFG_ROLE_A} ro le −a

5 Fetch Resul ts ro le −a

6 Should Be True $ { scan_verd ic t } msg=SCAN FAILED !

7

8 DEFENSICS_PROUCT_ROLE_B

9 [ Documentation ] Scan product r o l e B .

10 [ Tags ] ro le −b

11 $ { scan_verd ic t } = Launch Scan $ {CFG_ROLE_B} ro le −b

12 Fetch Resul ts ro le −b

13 Should Be True $ { scan_verd ic t } msg=SCAN FAILED !

Program 5.1. Robot test cases for Defensics Robot test suite

Robot tests were created for each target. The tests and their tags were named to differ-

entiate product roles. The Defensics Robot test suite imports modules, which consist of
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all the necessary methods for executing the tests. When a Robot test suite is called, first

all necessary SSH connections are opened, i.e., connections to scanner and SUT. If suc-

cessful, the tests and the scanner machine are initialized. For test initialization, temporary

directory is created on the scanner machine, which will include DefensicsPy, configuration

file and finally the results. These, besides results, are transferred next. Once initialization

has been completed, the tests will be run. Robot tests select corresponding configuration

file and execute a Python method, that executes the scanning script in the scanner ma-

chine and waits for scans to finish. When the scanning has been fully completed, results

are fetched to a local result directory and scan verdict is given based on the return value.

The verdict will also be given for the job in CI pipeline, e.g. a failed scan verdict will fail

both Robot test and the job in CI pipeline.

Program 5.1 is a simplified version of the Robot tests created. There are 3 keywords

in use: Launch Scan, Fetch Results and Should Be True. The first two were created

for the Defensics Robot test suite, while the last one is a global keyword. Launch Scan

passes the configuration file name for the Python module, which connects to the scanner

machine, and returns the verdict upon scan finishing. Fetch Results calls the Python

method which will retrieve all results that were gathered. This will happen regardless of

scan verdict. Finally, the Robot test will either pass or fail depending whether scan verdict

is true or false. If it is false, a message will displayed to state that.

5.4 Code implementation

As stated earlier in chapter 4, Defensics CLI was chosen for the automation. Defensics

CLI has almost the same functionality as GUI with only few unnecessary functionalities

missing. The CLI commands are launched from a Python program, that allows a con-

trolled parallel execution of suites. Parameters for the commands are mostly given in a

configuration file, with a couple hard coded parameters. Basic settings and other settings

that should be configurable for each run are given in a configuration file. The file contents

are analyzed more thoroughly below. The hard coded parameters are for interoperabil-

ity probe and post-run report creation. They are applicable for all test suites and should

remain constant between runs.

Because the main objective was to create code for CI, configuring must be suitable for

it. The CI fetches code from testing code repository and executes predefined Robot

commands in release testing repository. The code does not only include the business

logic for running Defensics commands but also the needed configuration file. There is

no user to modify configuration files or command line parameters at this point. Changes

to configuration files or to business logic must made by updating code in testing code

repository, while changes to Robot commands are done in release testing repository.

However, there may be need to run the scripts without CI, for example to rerun certain
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test cases. For these occasions configuration and test cases were made user friendly.

Configuration files exist to provide an easy way for changing run specific settings. In

theory, there could be only one configuration file that would be modified before each

run. However, due to large amount of target interfaces and needed parameters, this

would require a large amount of Robot test cases, command line parameters or a long

configuration file. Neither of those options are very practical or user friendly. Therefore,

each target (product role) has a separate configuration file. This is a practical choice,

because there are only 2 separate targets and interfaces between them differ quite a lot.

There also exists a separate test case for each target, which automatically chooses the

correct configuration file.

Configuration files use YAML syntax. Defensics test suites are lists of dictionaries, that

have one or more targets as values. Targets include basic settings for given test suite,

e.g. target IP address, port or URI. Because configuration files are specific for certain

product role, all targets defined should be of the same role. It is possible to give set-

tings for different product roles, but for example report directories will be misleading in

this case. Besides test suites, other settings are given as simple dictionary mappings.

These settings include everything that was considered nice to have configurable: path to

Defensics application on the scanner machine, subnet CIDR, test case selection mode

and test case indexes to name a few.

For running Defensics and wrapping the CLI commands, a program named Defensic-

sPy was created. DefensicsPy launches Defensics processes using Defensics CLI com-

mands. Parameters for the commands are given in a configuration file or they are hard

coded, as described above. DefensicsPy uses several classes, which are shown in UML

class diagram in figure 5.2. The diagram is conceptual, i.e., it does not contain class

methods or variables because the main focus is on higher level implementation along

with suite configurations instead of implementation details. Command line arguments for

DefensicsPy are path to configuration file, path to suite directory and path to result direc-

tory. Both configuration file sending and result directory creation are done during Robot

test initialization. Suite directory should already exist on the executing machine. This is

actually guaranteed by DefensicsPy, because it handles suite download and installation

too (see below sections). Once suite execution has started, logs and run time results are

generated to the result directory already during fuzzing.

DefensicsRunner is the main class responsible for controlling the execution flow of Defen-

sicsPy. Only command line argument parsing is done before starting the runner object.

DefensicsRunner uses Pinger to find available IP addresses, SuiteController to update

suites and finally launches one or many DefensicsProcess objects. ConcreteSuite is a

generalized term made for figure 5.2, as listing all suites in table 5.2 would require too

much space. The concrete suite classes are implemented based on the abstract Suite
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Figure 5.2. DefensicsPy UML Class Diagram

class. ConcreteSuite instance is fetched via SuiteController and SuiteFactory and then

given as a parameter for each created DefensicsProcess. NetworkConfig, a class for con-

figuring network related parameters, is created after finding available IP addresses. An

IP address along with other network related parameters required by a specific Defensics

suite are also given as a single parameter for DefensicsProcess instances.

Pinger class was created because Defensics suites need their own unique IP address.

Defensics has option for automatic network configuration too, but due to the allowed ad-

dress pair restriction in cloud environment (see chapter 4) it was decided not to be used

to ensure correct configuration. To assign a unique IP address for a test suite, the free IP

addresses in the subnet need to be found. This is done by scanning the subnet provided

in configuration file using ping command and marking the hosts free that do not send a

response. Because sequentially pinging even a relatively small subnet is slow, Python’s

multiprocessing module is used, making the scanning significantly faster. Also timeout

options of the ping call are shortened for faster verdicts. Once available addresses have

been found, test suites try to reserve one for themselves. If there are no available ad-

dresses, the test suites will have to wait for one to free up. Otherwise they are ready to

be launched. After a test suite is finished, it will free the address pair it used. This pair

can then be reused by a new test suite. In addition to subnet CIDR, addresses included

in the cloud’s DHCP pool are given in configuration file so they can be excluded.

For each suite, i.e., fuzz campaign, a new DefensicsProcess object is created. The class

objects launch a subprocess, which is a process for the executed test suite. The class

object stores the executed command along with a process ID, used address pair etc.

The address pair is retrieved using a Pinger class object and the pair is freed when the

process finishes. The pair can then be used by possible new processes waiting in queue.

Processes are launched using multiprocessing module’s pool.ThreadPool class which

takes care of the queue along with other multiprocessing details. It also determines the

amount of suites executed in parallel. To be more precise, the amount is determined by

CPU core amount that is given in a configuration file.
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The full scan command used in DefensicsProcess consists of different parts. For exam-

ple, base command, interoperability parameter and suite options are different parts. Each

part is built sequentially, and finally concatenated at the end just before execution. Test

suites have different basic setting and network parameter structure which is why com-

mands need to be created based on the given suite. The rest of the command is built

similarly for all suites. Each suite class object also stores the official suite name (without

version number) to locate correct suite and its latest version from given suite directory.

This implies that suite directories are expected to use default naming, for example "tcps-

8.5.0".

If a configuration file contains an interface which cannot be reached (e.g. a closed TCP

port), the interoperability test will fail. In this case execution will continue and a warning

is logged indicating which suite and interface was skipped. Defensics does not have a

specific return code to identify a failed interoperability test from a real failure. Therefore,

process output is used to determine this scenario if return code indicates anything but a

successful scenario. But interoperability test might also fail because SUT is experiencing

too much load and refuses to handle new messages. For this reason DefensicsPy will

run processes only in pools the size of parallel suite count given in configuration file and

recover for certain amount of time before launching another pool. Recovery time was

set to be only 1 minute by default to not prolong the run too much. It is possible that

the recovery time is not enough in some cases, which is why it is recommended to use

multiple identical targets instead of just one SUT.

Once interoperability test has passed, suite will either successfully complete or it will fail.

Nothing will be skipped anymore. In a successful scenario, HTML report is created for

proof that the interface has passed fuzzing using the given suite. On the other hand, if

a suite fails, DefensicsPy will throw an exception and terminate itself. Termination will

happen after all processes in the pool have finished. This will return an erroneous return

code, which CI server can use to detect a failure. The failed suite and the interface will

be logged. In addition, a summary file is created to indicate which case caused the

failure. This summary can then be fetched from the CI machine, as the information in

the summary should be enough for debugging purposes. If further details are needed, all

files generated by Defensics are located on the scanner machine, including remediation

files for failed suites.

Occasionally a new updated version of a test suite is released. Defensics CLI provides

command for listing all suites not present on the machine, including new versions of ex-

isting suites. By defining which suites are used in DefensicsPy, the suites can be filtered

from the command output. After that, if there exists any suites to update, they are in-

dividually updated using a separate command. If there is nothing to update, execution

will continue normally. If an update fails, it will be skipped and DefensicsPy resorts to

older suite version. If there is not even an older version installed, suite will fail. Checking,
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downloading and installing of suites is handled by SuiteController class.
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6. ANALYSIS AND DISCUSSION

In this chapter the work done in chapter 5 is analyzed and discussed. This chapter is

divided into 4 subchapters: execution time comparison, comparison to manual workflow,

limitations and future work. First, execution times of the new suite configuration are com-

pared to execution times of the previous configurations by executing test runs using each

of the configurations. Then, new automated fuzzing workflow is compared to manual

workflow by analyzing how tasks related to Defensics were done and how they are done

now. Third subchapter lists and analyzes limitations of the work. In the final subchapter it

is discussed what improvements could be done in the future.

6.1 Execution time comparison

Suite configurations were modified for CI but their possible impact on fuzzing were not

analyzed. To analyze the impact, a test setup must be created. Creating a good test setup

is hard because the made configurations have effect only when SUT stops responding to

fuzzed messages. Setting SUT in such a state would require either modifying its internal

structure or generating heavy load like in a real fuzzing scenario. Because the product

is treated as black box in this work and inspecting its internals would require excessive

studying, only the latter is a viable option.

For analyzing modifications to suite configuration, 2 realistic setups that stress SUT with

heavy load were created. In the first setup 10 suites compatible with product role A were

selected for fuzzing. These 10 suites are run in parallel using the code created for this

work. Settings for the suites, however, are changed to match 3 different configurations:

default, old and new. Default settings are those set by Defensics. Old settings match

settings used previously when the team has run Defensics manually. New settings are

those made for this work, except that maximum fail limit and run time were not set to make

total run time comparable. The second test setup is almost the same as the first one. The

differences are that only TCP Server for IPv4 suites are used, there are 15 suites instead

of 10 and testing is done for product role B. SUT is rebooted after every test run.

The results of the first setup are in table 6.1. The table first lists suite settings for each

configuration. Timeout is the time until turn changes to next case in queue. Send attempts

define how many times a single case is attempted to send to SUT. Fail limit is short for
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instrumentation fail limit, i.e., how many times instrumentation is attempted. After the

settings, the table lists the total amount of skipped and failed cases observed during

fuzzing. The last column indicates total execution time for running all suites in parallel. In

practice this is the execution time of the slowest fuzz campaign plus time used for Robot

test suite initialization etc. Because same suites were used agains the same SUT, total

test case amount is same for all configurations. This amount was approximately 8 million

cases.

Table 6.1. Suite configuration comparison for mixed suites

Config Timeout (ms) Send attempts Fail limit Skipped Failed Total time

Default 1000 3 1 0 306 10 h 34 min

Old 1000 10 10 0 0 10 h 32 min

New 300 3 5 1 0 10 h 36 min

From the total execution times we can see that there has not been any improvement

when using the new configuration. In fact, the old configuration seems to be the fastest.

However, when comparing differences to total execution times, the differences become

negligible. Hence, it can be said that fuzzing takes same amount of time with all config-

urations. This result is expected because the settings should affect execution time only

if SUT becomes unresponsive and results in many skipped and failed cases. In this test

setup there were only few skipped and failed cases. Furthermore, if skips or failures

would occur in suites that take less time than other suites in successful scenarios, the

differences are hidden.

Indeed, detailed analysis showed that all the 306 failures were observed in TCP suites

which are not the slowest suites. In this case. however, the differences were only about 15

minutes between default and new configuration. The reason why default settings produce

failures and others do not is the fail limit. When dealing with heavy load, SUT is prone

to leave a few messages unanswered within the time limits. When fail limit is higher, it

becomes less likely that SUT does not send a response to at least one instrumentation

attempt. The fail limit is most likely also the reason for 0 skipped cases with default

settings. To recall from chapter 5, skipped cases are assigned only if instrumentation

succeeds within fail limit, which was only 1 for default configuration. The one skipped

case with new settings is assumed to be a random occurrence related to heavy load.

With the objective to cause SUT become unresponsive, second test setup is more de-

manding. There are 15 TCP suites running in parallel against a single SUT. The total test

case amount adds up to 11 million. Configurations, i.e., suite settings are still the same

as with previous test setup. Results of the second test setup are listed in table 6.2.

From the results in table 6.2, it is clear that SUT had harder time to deal with the heavier

load. Each configuration had over a hundred thousand skipped cases and default config-



63

Table 6.2. Suite configuration comparison for TCP suites

Config Timeout (ms) Send attempts Fail limit Skipped Failed Total time

Default 1000 3 1 100116 18244 7 h 25 min

Old 1000 10 10 100002 0 6 h 55 min

New 300 3 5 108012 0 6 h 10 min

uration had almost twenty thousand failed cases. Failed cases with default configuration

are again explained by the instrumentation fail limit. When comparing the execution times,

it does look like the new configuration is slightly faster than the other two configurations.

As numbers, new configuration is approximately 11% faster than old configuration and

approximately 17% faster than default configuration. However, stating this would be inac-

curate as the first test setup already shows. These results apply only for this particular

test run. It is expected though that the new configuration is slightly faster whenever many

cases get skipped. Interestingly vast majority of skipped cases with all configurations

were caused by a single interface, as the generated reports show. This is an indication

that it could be worthwhile to investigate the component behind the interface and see why

it produces so many skipped cases compared to other components.

The data in the tables or reports does not tell everything. More conclusions can be made

by looking at the logs generated by Defensics. For instance, from the logs it can be seen

that most skipped cases do not use the full timeout. This is due to Defensics’s dynamic

timeout, i.e., timeout is adjusted during fuzzing to be as fast as possible. Dynamic time-

out is the reason why total execution times are not significantly longer with a hundred

thousand skipped cases. To be more precise: when individual send attempts take same

time as passed cases that only need 1 attempt, the full time it takes to assign a verdict

is approximately the product of send attempts and time of a passed case with 1 send

attempt. For example, with old suite configuration skipped cases are handled 10 times

slower than passed cases with a single send attempt. In other words, skipped cases

slow the fuzzing even with dynamic timeout. For this reason and to avoid skipped cases

caused by unresponsive SUT, multiple identical targets should be used instead of a single

SUT.

6.2 Comparison to manual workflow

Launching suites happened previously from Defensics monitor, i.e., Defensics GUI. This

workflow requires connecting to scanner machine via remote desktop application and

then launching Defensics. Once GUI has opened, tester loads a few suites one-by-

one. Target’s IP address, suite’s virtual addresses and other settings are then set for

each loaded suite. Suites are renamed to differentiate them from each other and finally

launched one-by-one. Due to Java heap memory restrictions, not all suites can be run si-
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multaneously. Hence, the process must be repeated a couple times for running rest of the

suites. Conversely, The CI workflow allows setting all required settings into configuration

file, which must be done only once. After that, the settings do not need to be modified un-

less targets or testing environment are updated so that e.g. IP addresses change. Using

the configuration file, CI starts suites automatically on scanner machine.

To comply with transparency requirements, reports must be created after Defensics scans

are over. From GUI this is done from results tab, where name and other options must be

set for each report. The process is done for each suite. After generating all reports, they

must be transferred from scanner machine to other storage. When Defensics is run from

CI, reports are automatically generated, named and moved to the executing server after

test run. From there they still should be moved to some long term storage. Generation

of testing documents based on reports also works the same way for both manual and

automated execution.

Whenever there is a new version of a suite available, it will be detected by the created

program. Assuming there are no installation errors, this means that fuzzing is done using

latest suites. If done from GUI, tester needs to open suite browser and manually install

each update. Likewise, the Defensics monitor can be updated from suite browser. Monitor

will not be automatically updated in CI either. Instead, the scanner machine must be

accessed and monitor updated using command line.

6.3 Limitations

As can be seen from execution times in tables 6.1 and 6.2 and from chapter 5, run times

of Defensics in successful scenarios have not improved significantly. There is not enough

target machines or scripts to automate their creation and/or maintenance either. This is

required for executing all suites in parallel. Hence, full execution is still time-consuming

and not practical for CI. Because of this, all test cases of the suites will not be run in

CI for every release candidate but instead smaller subsets will be selected. These are

determined by suite’s maximum run time and order of Defensics’s balanced execution.

Full runs will still be done, but the triggering happens manually or on a weekly basis. A

separate pipeline was created for this purpose. CI pipeline and virtual machines make

it possible to automate environment modification, e.g. creating and destroying scanners

and targets. However, currently no such functionality is in place. The machines must exist

before a pipeline is run. If there are multiple target machines, it is also recommended to

have static IP addresses. Otherwise configuration files need to be updated whenever

machines are recreated. Furthermore, before installing the product into target machines,

the operating system must be correctly configured, e.g. running hardening scripts. This

configuration is not automated at the moment and therefore not part of the pipeline.

The scanner machines must be initialized before using them. Since code was created us-
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ing Python and certain libraries are only supported from version 3.8 onwards, the scanner

requires Python version 3.8 or higher. The configuration files also need PyYAML package

for parsing. Regarding Defensics, the application itself and Java must be installed. As

mentioned in chapter 4, when downloading Defensics a certain download page must be

accessed using provided credentials, which are tied to one employee. Although it could

be possible to create a download script using the credentials, it imposes a risk to the

particular employee. If something malicious, intentional or accidental, is done using the

credentials, the employee will be held responsible. A better option would be to have a

specific account for automation, but unfortunately this is not possible. Additionally, all

possible configurations related to previously mentioned requirements must be done.

Although suites are automatically downloaded and installed, this does not apply to Defen-

sics itself, i.e., Defensics monitor. Defensics does not offer option for automatic installa-

tion. When there is a new monitor update, it must be manually downloaded and installed,

including all configurations needed by installation script. Fortunately, this is minimal effort

and there are only few updates per year. There is no automation for configuring licenses

either. Unlike the monitor however, automating license configuration is possible using

Defensics CLI.

Due to large amount of interfaces and therefore required fuzz campaigns, functionality for

dividing test cases for a single test suite was not implemented. If there was only a couple

of suites and interfaces, this feature would make more sense. But currently there are

several of both suites and interfaces, which would require significant amount of identical

SUT machines. Therefore it is only possible to split interfaces among different targets,

e.g. different TCP ports are used to fuzz different targets.

Configuration files offer a simple syntax and a common place for Defensics parameters,

but modifying them is laborous from CI perspective. As can be seen from figure 2.6,

modifications cannot be made where CI is located. Instead, they must be made in testing

code repository. It would be easier from CI perspective if parameters could be given as

robot variables. However, the reason configuration files were made is that it should be

easy for users to do custom scans too. Ideally parameters could be changed from Robot

side while maintaining some easily readable syntax for humans. Having a need for doing

such modifications should be rare though.

6.4 Future work

The natural next step for the work done would be to increase the level of automation.

First, everything required by Defensics and DefensicsPy should be done automatically.

Downloading and installing Java, Defensics monitor, licenses, Python and PyYAML could

be done in a separate stage in the security pipeline. Successful installation of these would

then be required by Defensics scanning stage. Once everything related to Defensics is
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handled automatically, the focus can move to environment. Here the first step would be to

integrate OS level configuration of target machines into CI. After that automatic creation

of the machines could be considered. The security pipeline would then cover creation of

target machines, configuring them, installation of the product, installing Defensics related

dependencies and finally performing the scans. The created target machines could be

destroyed as the final clean-up stage.

The other step is for suite configuration. In this work the configurations were analyzed but

not optimized. In could be worthwhile to check more thoroughly how e.g. different timeout

and instrumentation fail limit values affect execution time. Valid case instrumentation also

uses default messages for instrumenting, e.g. TCP SYN and TCP Reset for TCP suites.

It could be investigated if other message types are more efficient for instrumentation.

Additionally, use of other instrumentation methods could be investigated. As discussed

before, external instrumentation could provide useful data during fuzzing. However, moni-

toring SUT does not need to be responsibility of the fuzzer. It is also possible to use some

separate tool for monitoring, although identifying possible failures becomes more difficult

then.

One aspect that was not really considered in this work is limiting amount of executed

test cases. For each selected suite, the full test case amount is executed by default. As

explained in chapter 3 though, there is an infinite amount of cases that could be used.

The cases in Defensics are selected by its developers by some criteria and we trust those

cases are enough. No proof, however, exists to support this belief. It is possible that the

current case amount is even too much, i.e., there is redundancy. If this is true, we could

use a subset of cases with same results, while reducing execution time. In order to do

so without compromising testing quality, one would need to prove that a certain subset is

enough for (near) optimal fuzzing result. This is an idea to consider for future work.
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7. CONCLUSIONS

This thesis was done for a team in Nokia, who have been running Defensics fuzzer as

part of their product’s security testing. The product consists of 2 product roles, which are

treated as separate targets. The fuzzing has been done manually via Defenesics GUI.

This approach has had 2 main challenges: speed and efficiency. Manual operation via

GUI is time-consuming and running several test suites in parallel is not possible. The

other problem is that the scans themselves take a lot of time. When combining these two

challenges, it is evident that there should be a better option. Therefore, the objectives

of this thesis were to integrate Defensics fuzz testing as part of CI and investigate if the

fuzzing can be speed up. The scope was set to concern only protocol fuzzing with Defen-

sics and the product was treated as a black box. Out of two security testing environments,

bare metal and cloud, the cloud environment was chosen for automation.

Regarding the automation, there were 3 main components in play: CI, Robot framework

and DefensicsPy. DefensicsPy is the program created for this work. It launches fuzzing

processes using Defensics CLI and supports running multiple suites in parallel. Robot

framework was used to create a Robot test suite for Defensics. Robot test cases were

created for both product roles. A separate Python module was also created to hide busi-

ness logic of the Robot suite. Defensics was added to CI by creating a stage and a job

for it into existing security testing pipeline. To limit execution time of the pipeline, a subset

of test cases were selected by limiting suite run time. Another pipeline was created for

running all test cases. Both pipelines use DefensicsPy via the Defensics Robot test suite.

After analyzing Defensics behaviour, it was reasoned that Defensics acts the slowest

when SUT becomes unresponsive and causes Defensics to assign skip or fail verdicts.

A few parameters were then identified that could affect execution time. Two of these,

maximum run time and maximum fail limit, were taken into use to stop execution if time

limit is exceeded or any fails occur. The other parameters will not stop execution but

should rather speed up execution when facing an unresponsive SUT. To evaluate the new

suite settings, two test runs were conducted to compare old and new settings. The results

show that fuzzing speed has improved slightly when many cases are skipped, but when

most cases are passed the difference is negligible. Even the slight improvement was,

however, not enough for running full runs for every product release candidate, hence the

two separate pipelines.
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Overall the work seems successful. Defensics was successfully taken as part of the

existing CI and the brief comparison between automated and manual workflow shows that

needed effort by a tester has clearly decreased. Although performance improvements

were not enough for running full test case amount for every release candidate, full runs

can still be executed on a weekly basis and triggered manually whenever needed. Other

limitations mostly concern the level of automation. For example, target machines are

expected to exist and be correctly configured before fuzz testing. The level of automation

was therefore identified as the clear next step for the work. Other identified steps were

related to suite configurations: more thorough analysis could be performed to further

improve fuzzing performance and external instrumentation could be used for detecting

more subtle errors.
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