
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

1

Abstract—Versatile Video Coding (VVC/H.266) is an emerging

successor to the widespread High Efficiency Video

Coding (HEVC/H.265) and is shown to double the coding

efficiency for the same subjective visual quality. Nevertheless,

VVC still adopts the similar hybrid video coding scheme as HEVC

and thereby sets the scene for reusing many HEVC coding tools

and techniques as is or with minor modifications. This paper

explores the feasibility of developing a practical software VVC

intra encoder from our open-source Kvazaar HEVC encoder. The

outcome of this work is called uvg266 VVC intra encoder that is

distributed under the same permissive 3-clause BSD license as

Kvazaar. uvg266 inherits the optimized coding flow of Kvazaar

and all upgradable Kvazaar intra coding tools, but it also

introduces basic VVC intra coding tools not available in HEVC.

To the best of our knowledge, this is the first work to describe the

implementation details of upgrading an HEVC encoder to a VVC

encoder. The rapid development time with promising coding

performance make our proposal a viable approach over the

encoder development from scratch.

Index Terms—Code reuse, encoder implementation, High

Efficiency Video Coding (HEVC), Versatile Video Coding (VVC),

video codec.

I. INTRODUCTION

UR modern society is surrounded by a myriad of media

applications where digital video is of the essence. This

trend has resulted in snowballing growth of video data that has

been estimated to account for 82% of all global IP traffic [1].

On top of that, the current growth rate of video shows no signs

of deceleration thanks to an increasing plurality of new products

and services that continuously seek for enhanced consumer

experience.

Over the last three decades, ISO/IEC MPEG and ITU-T

VCEG have released a series of international video coding

standards to mitigate the phenomenal growth of video

transmission and storage requirements. The latest standard,

Versatile Video Coding (VVC/H.266), was ratified in 2020 [2]

as the successor to the famous High Efficiency Video

Coding (HEVC/H.265) [3]. VVC aims for 50% higher coding

efficiency for the same subjective visual quality but the coding

gain does not come without the added computational

complexity as VVC is found to be from 7.4× up to 34.0× as

complex as HEVC [4].

HEVC has been adopted for more than 2 billion devices and

around 50% of broadcast and video streaming professionals are

already using it [5]. Hence, it is likely that VVC will also gain

a firm foothold this decade, though efficient encoder

implementations will be key to its wider success.

Currently, there are two well-known open-source VVC

encoders: VVC test model (VTM) [6] and Fraunhofer Versatile

Video Encoder (VVenC) [7]. VTM is the VVC reference

encoder that implements all normative VVC coding tools, but

it is not designed for practical encoding. VVenC is an optimized

implementation of VVC encoder for practical encoding, but it

is currently unable to reach real-time coding speed [8].

Altogether, there are three conceivable approaches to

developing a practical VVC encoder: 1) implementing an

encoder from scratch; 2) optimize VTM as is the case with

VVenC; or 3) converting a practical HEVC encoder into a VVC

encoder. Starting the encoder from scratch allows for

customized data structures but it tends to be the most time-

consuming approach as a complete encoder can take more than

hundred thousand lines of code. On the other hand, optimizing

VTM easily requires design compromises that could result in

suboptimal performance due to legacy of standardization

process, e.g., no attention was paid on parallelization. This

paper focuses on the third option. VVC can be considered a

superset of HEVC, so reusing the optimized coding flow, tool,

and techniques can improve productivity without performance

compromises.

VVC encoders can be developed and benchmarked under the

following four VVC common test conditions (CTC) [9]: all

intra (AI), low delay P (LDP), low delay B (LDB), and random

access (RA). AI coding is the simplest of these cases as it only

includes spatial prediction and therefore all frames are

independent of each other. LDP adds unidirectional temporal

prediction and LDB bidirectional temporal prediction. Finally,

RA allows encoding the frames in an arbitrary order. This paper

only considers AI condition due to its simplicity. Efficient intra

encoding tools are also vital in the other conditions.

This paper introduces a step-by-step workflow to upgrade an

HEVC encoder to a VVC intra encoder. Kvazaar HEVC

encoder [10] is used as a design entry point for this study. First,

we make Kvazaar intra coding tools compatible with VVC and

then we include a carefully selected set of new VVC tools based

on their estimated performance impact and implementation

effort. The outcome of this work is called uvg266 VVC intra

Marko Viitanen, Member, IEEE, Joose Sainio, Member, IEEE, Alexandre Mercat, Member, IEEE,

Ari Lemmetti, Member, IEEE, and Jarno Vanne, Member, IEEE

From HEVC to VVC: the First Development

Steps of a Practical Intra Video Encoder

O

Manuscript submitted September 30th, 2021.

This work was supported in part by the AI for situational

Awareness (AISA) project led by Nokia and funded by Business Finland.

M. Viitanen, J. Sainio, A. Mercat, A. Lemmetti, and J. Vanne are with Ultra

Video Group, Tampere University, Tampere 33101, Finland. (e-mail:

marko.viitanen@tuni.fi; joose.sainio@tuni.fi; alexandre.mercat@tuni.fi;

ari.lemmetti@tuni.fi; jarno.vanne@tuni.fi).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

2

encoder that will be distributed online under the 3-clause BSD

license at:

https://github.com/ultravideo/uvg266.

To the best of our knowledge, this is the first paper to

describe the implementation details when converting a HEVC

encoder into a VVC encoder. This software case study can also

be applied to hardware encoder implementations [11] and

thereby deploy uvg266 in embedded consumer devices in the

coming years.

The rest of this paper is structured as follow. Section II gives

a comparative overview of the HEVC and VVC standards.

Section III describes the existing VVC implementations.

Section IV introduces our design methodology for HEVC to

VVC encoder conversion and the implementation is detailed in

Section V. Section VI describes the experimental setup and

Section VII reports our results. Finally, Section VIII presents

future work and Section IX concludes the paper.

II. COMPARISON OF VVC AND HEVC CODING TOOLS

Fig. 1 depicts an overview of the VVC encoder architecture.

Both VVC and HEVC encoding processes are based on the

well-known block-based hybrid video coding scheme that is

composed of the following five stages: intra prediction (IP),

motion estimation and compensation (ME/MC) a.k.a. inter

prediction, forward/inverse transform and

quantization (TR/Q), entropy coding (EC), and loop

filtering (LF). In the AI case, the ME/MC stage is omitted.

Table I summarizes the main coding tools of HEVC and

VVC and whether the tool is implemented in uvg266. Generally

speaking, VVC has adopted many new coding tools in each
coding stage. Please refer to VVC algorithm description [12]

and specification [13] by JVET for further information. The

tools included in this work are detailed next.

A. Entropy Coding

HEVC and VVC utilize Context Adaptive Binary Arithmetic

Coding (CABAC) as an entropy reduction tool. It compresses

individual bits according to the context of the bit. VVC adds an

extra field called rate for each context, changing the rate of state

change when a bit is encoded. Thus, how fast the probability of

the symbol is changed depends on the context, which makes

more probable symbols more cost-effective as they can be

coded with fractional bits based on the statistics.

B. Block Structures

The basic block structure has not been changed from that of

the HEVC and the same top-down block splitting mechanisms

are still used. The largest block or the coding tree unit (CTU)

has been increased up to 128×128 luma pixels and the quadtree

splitting can be used in the same way as in HEVC. For the non-

square block splitting after the quadtree, the previous symmetric

motion partitions (SMPs) and asymmetric motion

partitions (AMPs) have been replaced with the new binary and

ternary splits, jointly called multi type tree (MTT), that are

depicted in Fig. 2. Additionally, VVC optionally allows a

separate block structure for chroma channels in intra slices with

chroma separate tree.

C. Intra Prediction

The DC and planar prediction modes are the same as in

HEVC. On the other hand, the amount of angular intra modes

was roughly doubled from 33 to 65. The number of most

probable modes (MPM) has been increased from 3 to 6 but the

selection process is not significantly modified from that of

HEVC. There are, however, potentially more bits to signal.

Position dependent intra prediction combination (PDPC) is

a mandatory intra filter, which is applied for DC, Planar, and

angular intra modes where the filter scale would be non-

negative, without any signaling after the prediction.

D. Transform

The basic transform is largely the same between HEVC and

VVC, except VVC uses discrete cosine transform II (DCT2) for

all coding units (CUs) by default and the maximum size is

increased to 64×64. Additionally, VVC introduces two

additional DCT/discrete sine transform (DST) algorithms,

namely DCT8 and DST7. The selection process for the different

transforms is called multiple transform selection (MTS) with

two available selection modes. Implicit MTS will select the

transforms implicitly for certain blocks effectively adding zero

processing and signaling cost for slight improvement. Explicit

MTS utilizes a search to select between four MTS modes for

each CU, applying DCT8 and DST7 horizontally and vertically

in different combinations.

Transform skip is changed slightly from HEVC to VVC;

transform shift is removed and the coefficient coding is done

using separate contexts.

Finally, VVC introduces Joint Coding of Chroma

Residuals (JCCR) that allows coding chroma residual with only

one set of coefficients that are then used to reconstruct both of

the chroma residuals. For intra CUs, the residuals can have the

same values or one of the residuals can have half of the

intensity.

Fig. 1. Simplified block diagram of a VVC encoder.

Fig. 2. VVC Binary and Ternary partition splits. a) Binary vertical. b) Binary

horizontal. c) Ternary vertical. d) Ternary horizontal.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

3

E. Loop Filtering

Sample adaptive offset (SAO) has been included in VVC

without a change. Deblocking filter has been updated with

boundary handling and 4×4 grid. In addition to the deblocking

and SAO, two new in-loop filters were added in VVC: Adaptive

Loop Filter (ALF) and Luma mapping with chroma

scaling (LMCS).

ALF is a computationally complex filter applied after

Deblock and SAO with 7×7 (luma) or 5×5 (chroma) diamond

filter using 25 classifications applied for each 4×4-pixel block

in the frame.

LMCS maps the pixel values to spread them across the

dynamic range for slight improvement of coding efficiency.

The other part of the tool, chroma scaling, is the same basic

process done for the chroma to compensate for the mapping.

Chroma scaling can be independently disabled.

F. Quantization

The quantization parameter (QP) range has been extended

from 51 to 63. The mapping between luma/chroma and QPs has

been changed from a fixed table to a piecewise linear model,

signaled in sequence parameter set (SPS).

III. OPEN-SOURCE VVC IMPLEMENTATIONS

VVC was developed alongside with the VTM [6] reference

software. VTM is an open-source software containing both

encoder and decoder with all normative coding tools. The focus

of VTM is to serve as a common reference implementation.

Therefore, it provides the best encoding efficiency but its

unoptimized performance is far from real-time.

Fraunhofer HHI has released VTM based VVenC [7] on

Sept. 2020 and switched to 3-clause BSD license on Dec. 2020.

It improves the VTM encoding performance by defining a set

of presets from slower to faster compression, selecting a set of

tools matching the use case, optimizing the coding functions on

algorithmic and instruction set level, and including concurrency

making it 2× to 140× faster than VTM in RA condition while

losing around 0% to 60% in BD-rate, respectively [7].

Finally, there are plans to release x266 [14] as the successor

to the popular x265 HEVC encoder [15]. It can be assumed to

be based on VTM, as x265 was based on the HEVC test

model (HM) [16].

IV. DESIGN APPROACH

A VVC encoder can be defined as an encoder that is able to

produce valid VVC bitstream, i.e., a bitstream decodable by the

TABLE I

MAIN CODING TOOLS OF HEVC, VVC, AND THEIR IMPLEMENTATION STATUS IN UVG266

 HEVC VVC uvg266

Block

partitioning

▪ Coding Tree Unit (CTU) quadtree (QT) structure ▪ CTU quadtree structure with nested multi-type tree QT

 (QT+MTT)

▪ From 64×64 to 8×8 Coding Unit (CU) size ▪ From 128×128 to 4×4 CU size 64×64 to 4×4

 ▪ Chroma separate tree

 ▪ Virtual pipeline data units (VPDUs) ×

Intra prediction

▪ DC, planar ▪ DC, planar ×

▪ 33 directional prediction modes ▪ 65 directional prediction modes ×

 ▪ Wide-angle prediction modes

▪ Linear interpolation ▪ 4-tap interpolation filters (IFs) using 2 sets of filters ×

 ▪ Position-dependent prediction combination (PDPC) ×

 ▪ Multiple reference lines (MRL)

 ▪ Matrix-based intra-picture prediction (MIP)

 ▪ Cross-component linear model (CCLM)

 ▪ Intra sub-partitions (ISP)

Forward/inverse

transform and

quantization

▪ Square transform (up to 32×32) ▪ Square and rectangular transform (up to 64×64) 32×32 to 4×4

▪ Discrete cosine and discrete sine transforms ▪ Multiple transform selection (MTS) ×

 ▪ DCT2 and DST7 ▪ DCT2, DST7, and DCT8 ×

 ▪ Non-separable secondary transform (LFNST)

 ▪ Adaptive chroma QP offset ×

▪ Sign data hiding (SDH) ▪ SDH ×

 ▪ Dependent quantization (DQ)

 ▪ Joint coding of chroma residuals (JCCR) ×

Entropy coding

▪ Context-adaptive binary arithmetic coding (CABAC) ▪ CABAC with multi-hypothesis probability estimates ×

▪ Coefficient group ▪ Additional coefficient group size ×

▪ Reverse diagonal, horizontal and vertical coefficient scan ▪ Reverse diagonal coefficient scan only ×

▪ Improved probability model sections for absolute

transform coefficient levels
×

Loop filtering

 ▪ Luma mapping with chroma scaling (LMCS) ×

▪ Deblocking filter (DF) ▪ Deblocking boundary handling modifications ×

 ▪ Deblocking long filter ×

 ▪ Luma-adaptive deblocking ×

▪ Sample adaptive offset (SAO) ▪ Sample adaptive offset (SAO) ×

 ▪ Adaptive loop filter (ALF) ×

 ▪ Cross-Component ALF (CC-ALF) ×

Parallelization

▪ Slices ▪ Slices ×

▪ Tiles ▪ Tiles

 ▪ Subpictures

▪ WPP with CTU row delay of two CTUs ▪ WPP with CTU row delay of one CTU ×

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

4

reference decoder with the decoded frames having identical

reconstruction in encoder and decoder. Since VVC includes a

plurality coding tools which are not strictly necessary

depending on the use case, it is important to consider the order

of coding tools to implement.

Section IV-A presents the minimum requirements for a VVC

encoder to produce a valid bitstream. However, the coding

efficiency is severely limited, and any encoder aiming for

practical usage should implement significant portion of the

available coding tools. Section IV-B describes the criteria for

the order of selecting tools for implementation and which tools

were selected in this work.

A. Minimum VVC Implementation

The minimum VVC implementation only requires the

following tools:

• Headers: binary coded header network abstraction layer

(NAL) units for SPS, Picture Parameter Set, and the slice

containing info on the used tools and video parameters.

• CABAC: the basic binary coding method, each bit is coded

separately, with a context depending on the usage of the bit

and each bit updating the context to allow following bits to

be code cheaper.

• Intra prediction: a prediction based on the bordering pixels,

must be done in order to get the residual pixel data. Simplest

form is the DC mode containing an average of the bordering

pixels and giving the same value prediction over the whole

block.

• Transform: DCT and DST to transform the residual pixels

to the frequency domain. A simple matrix multiplication is

used with the precalculated matrix matching the block size

and the output is the frequency domain coefficients.

• Quantization: quantize the frequency domain coefficients

using pre-calculated tables.

• Data output: using CABAC, the binarized block data is

pushed to the output by iterating over the coding blocks.

B. Selection Criteria for Coding Tools

Overall, there are two main factors for selecting the tools to

be implemented: 1) the rate-distortion-complexity (RDC)

performance of the tool and 2) the implementation effort. For

1), a way to estimate the RDC performance is to run VTM with

the tool enabled and disabled. Overall, this will give a good

estimate on how the tool might perform in practical encoder. 2)

is largely influenced by how much the tool interacts with other

tools, e.g., ALF is completely separate from rest of the encoding

loop, whereas the MTT influences almost all other tools. This

means that implementing some of the tools can be done at the

same time with different teams whereas others require

coordination to avoid overlap.

Table I tabulates the implementation status of the tools. The

HEVC based tools were selected because they only needed to

be upgraded instead of a brand-new implementation. For the

VVC tools the extra intra modes were implemented since they

do not require a lot of work after updating the prediction

generation. MTS was selected due to its rate-distortion (RD)

performance and JCCR because it largely concerns them same

area of the encoder as MTS. ALF was selected due to the RD

performance and its separation from the encoding loop. LMCS

is another tool selected by being separate from the coding loop,

mapping the pixels before intra predictions and back before

loop filters while providing small RD improvement with small

performance cost.

V. PROPOSED IMPLEMENTATION

The design entry point for our work is the award winning

Kvazaar HEVC encoder [17] due to its optimized coding flow,

threading support, and recently announced permissive 3-clause

BSD-license. VVC conversion is applied resulting in a new

open-source proof-of-concept VVC encoder, uvg266, which is

still able to utilize parts of the optimized coding flow and full

threading of Kvazaar.

Most demanding coding tools of Kvazaar are optimized

using AVX2. A non-negligible part of these optimizations can

be reused for the VVC implementation without changes, as

tabulated in Table II. This reduces the development time for

optimized solution, even with the new tools. Since intra

encoding is needed in all configurations, we start the conversion

considering only the intra tools.

Section V-A considers tools that exist in HEVC and how

they are updated to conform to VVC. Section V-B cover non-

normative tools and Section V-C considers newly added tools

that are implemented into uvg266.

A. Normative Coding Tools Updated from HEVC

1) CABAC

Although the structure and bit-pushing to CABAC are

similar, changes from HEVC are significant enough that most

of the CABAC engine must be rewritten. Context initialization

values need to be replaced with the new arrays. The state is

stored in two 16-bit variables, replacing the one 8-bit variable

in HEVC. Additionally, the state change is now controlled by a

rate variable defined for each context, which in HEVC used to

be a constant global table. CABAC main state does not need to

be changed.

2) Block Structure

VVC introduces the 128×128 CTU size, but 64×64 and

32×32 are still options. Since HEVC uses at maximum 64×64

CTUs, only 64×64 CTUs is consider as a first step in this

conversation. Additionally, since intra CUs can be at maximum

64×64, the benefit of 128×128 CTUs are limited for intra

TABLE II

AVX2 OPTIMIZED PARTS OF KVAZAAR AND THEIR REUSABILITY IN UVG266

Optimized Function Reuse in uvg266

Intra prediction
DC/Planar 100%
Angular 5%

SAD and SATD cost calculation 100%

Transform
DCT2 100%

DST7/DCT8 90%
Transform quantization 95%

Coefficient encoding 50%*
SAO 100%

*Estimate, not implemented yet.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

5

encoding. For the quadtree (QT) structure only the 4×4 CUs

require change, since unlike HEVC where the 4×4 blocks are

Prediction Units (PUs) whereas in VVC they are CUs. The

main change is that the chroma transform unit (TU) is coded

after all of the corresponding luma TUs instead of the first luma

TU.

3) Intra Prediction

DC and planar predictions require no changes and the AVX2

kernels can be used as is. However, the angular AVX2

optimizations have to be rewritten almost completely due to

new algorithm in VVC. Updating the MPM selection is a

straightforward task to implement. The PDPC is also

straightforward to implement since it is essentially just an extra

step in the prediction generation.

4) Transform

Since the DST7 is only used for 4×4 luma CUs in HEVC, the

4×4 DCT2 also exists in HEVC, thus updating to VVC consists

in setting the 4×4 luma transform to DCT2. The 64×64

transforms are optional, and we are yet to implement them.

5) Loop Filtering

Since SAO is identical to HEVC, it does not require any

changes. For deblocking, the 4×4 grid requires some changes

since Kvazaar performs deblocking on CTU basis. The right

and bottom edges of the CTU are deblocked when the following

CTUs are processed to fully utilize the wavefront parallel

processing (WPP). Because the filtering length for larger

blocks exceeds four pixels in VVC, the CTU edge and the last

inner 4×4 CU edges must be deblocked by the following CTUs.

6) Quantization

Increasing the maximum QP value is effortless, since the

underlying formula was not changed. Similarly, the

implementation of the chroma QP scaling only require

implementing the piecewise linear model. The quantization is

optimized with AVX2 kernels in Kvazaar, and they can be

included in uvg266 with minor changes.

B. Non-Normative Coding Tools Updated from HEVC

1) Intra Search

With the angular modes increasing from 33 to 65, the search

itself needed only small changes. For the angular intra modes,

the first version omitted the extra angular modes added in VVC,

where the HEVC modes had to be mapped to correct VVC

modes in the bitstream writing. Supporting all the intra angular

modes needs minor changes in the search loops. Costs are

calculated the same way as in HEVC, so the AVX2-optimized

kernel can be used as is.

2) Rate-Distortion Optimized Quantization (RDOQ)

Since the CABAC contexts and bit coding have changed, the

RDOQ must be adapted to the VVC by addressing the changed

binary output in all the places where bit costs are calculated.

This includes changing the CABAC contexts and adding new

costs for bits that did not exist in HEVC.

C. New VVC Coding Tools

1) Adaptive Loop Filter (ALF)

Although ALF requires more lines of code than most other

tools, it is completely separated from rest of the encoding loop,

thus the implementation is straightforward. ALF filtering is

done for the whole frame and requires analysis data from the

complete frame, which prevents using WPP efficiently.

Therefore, the final bitstream generation has to be moved after

the whole frame is processed. To allow use of WPP and keep

bit estimation accurate for the rate distortion

optimization (RDO) process, the bitstream generation is

simulated during the search process.

2) Luma Mapping with Chroma Scaling (LMCS)

Unlike other in-loop filters, LMCS directly influences the IP,

thus implementing it is more challenging than the other in-loop

filters. However, the implementation of Luma Mapping that is

the first part of the tool is straightforward for AI condition. In

intra coding, the pixels are always in mapped domain after the

parameters are constructed at the start of the frame and pixels

mapped, and only right before LF stage they are reverse

mapped. Chroma Scaling, which is the second part, is applied

to pixels before TR/Q stage and they are scaled back after IQ/IT

stage.

3) Multitype Transform Selection (MTS)

Kvazaar features AVX2 optimized kernels for the DCT2 and

4×4 DST7 transforms. Fortunately, the kernels are designed in

such fashion that providing new coefficients allows using the

kernels for all of the MTS transforms. The MTS search is

implemented to replace the transform depth search since it is

removed in VVC. Finally, moving the transform skip coding to

separate context requires some work but overall, it is pretty

straightforward, since it is mostly similar to normal transform

coefficient coding.

TABLE III

TEST SEQUENCES

Class Format Sequence
Frame

count

Frame

rate

A1

3840×2160

(2160p)

Campfire 300 30 fps

FoodMarket4 300 60 fps

4096×2160 Tango2 294 60 fps

A2
3840×2160

(2160p)

CatRobot 300 60 fps

DaylightRoad2 300 60 fps

ParkRunning3 300 50 fps

B
1920×1080

(1080p)

BasketballDrive 500 50 fps

BQTerrace 600 60 fps

Cactus 500 50 fps

MarketPlace 600 60 fps

RitualDance 600 60 fps

C
832×480

(480p)

BasketballDrill 500 50 fps

BQMall 600 60 fps

PartyScene 500 50 fps

RaceHorses 300 30 fps

D
416×240

(240p)

BasketballPass 500 50 fps

BlowingBubbles 500 50 fps

BQSquare 600 60 fps

RaceHorses 300 30 fps

E
1280×720

(720p)

FourPeople 600 60 fps

Johnny 600 60 fps

KristenAndSara 600 60 fps

UVG

Dataset

3840×2160

(2160p)

Beauty 600 120 fps

Bosphorus 600 120 fps

HoneyBee 600 120 fps

Jockey 600 120 fps

Lips 600 120 fps

ReadySetGo 600 120 fps

ShakeNDry 300 120 fps

YachtRide 600 120 fps

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

6

4) Joint Coding of Chroma Residuals (JCCR)

Although Kvazaar is designed to handle all the channels

separately, adding the consideration for JCCR is

straightforward since only the generation of the combined

residual needs to be added and the RD-cost calculation can be

mostly facilitated by existing functions.

VI. EXPERIMENTAL SETUP

All our experiments were automated using

uvgVenctester [18].

A. Encoder and Coding Conditions

To evaluate the implementation presented in this work, the

proposed uvg266 encoder was first compared with

Kvazaar 2.0 (git hash 54dc87d) [10] that was the latest

available release during our experiments. In addition, uvg266

was benchmarked against HM 16.23 [16]. In the second step,

the performance of uvg266 was evaluated against the existing

VVC encoding solutions VTM 13.2 [6] and VVenC 1.0.0 [19].

The experiments were carried out under the VVC CTC with

the exception of all 10-bit sequences converted to 8-bit because

Kvazaar and uvg266 do not support 10-bit internal bit depth.

The VTM and VVenC encoders were configured to their default

internal 10-bit mode with 8-bit inputs whereas HM, Kvazaar

and uvg266 use 8-bit internal. At this early stage of

development, uvg266 only supports the internal bit depth of 8

bits but will be extended to support higher bit depths in a

forthcoming release.

Encoders adopted the AI condition with the base QP values

of 22, 27, 32, and 37 from the VVC CTC [9]. Under the AI

condition, all frames were encoded as I-frames in display order

without any QP offsets. For the AI condition, the VVC CTC [9]

requires only every eighth frame to be encoded. For a fair

comparison, the same temporal subsampling ratio was used

with HM, Kvazaar, uvg266, and VVenC.

B. Test Sequences

Table III details our test set that features a broad range of

sequence parameters (spatial resolution, frame rate, and bit

depth). It includes all 22 natural full-length 8-bit and 10-bit

YUV420 test sequences defined in the VVC CTC (classes A–

E) [9]. In addition, it was extended with eight 2160p 120fps

sequences from our UVG dataset [20].

C. Quality Metrics

The RD performances are reported in terms of BD-

rates [21], [22], measured with three different objective quality

metrics: peak signal-to-noise ratio (PSNR), Structural

SIMilarity (SSIM) [23], and Video Multimethod Assessment

Fusion (VMAF) [24]. Unlike PSNR and SSIM, VMAF is

primarily intended for measuring quality of videos. Because of

the temporal subsampling, the VMAF results presented in this

paper should not be compared with VMAF results obtained

without temporal subsampling.

D. Complexity Profiling Setup

Table IV details the profiling platform used for the testing.

HM, VTM, and Kvazaar were benchmarked only with single

threaded configuration whereas VVenC and uvg266 were

additionally tested with 8 and 36 threads. Table V tabulates the

parameters used for each encoder in addition to input, resolution,

and QP. The CPU used for the testing has 18 cores with

hyperthreading, but 36-thread results are not expected to scale

much over the physical core count.

VII. PERFORMANCE EVALUATION

The performance evaluation is carried out in the following

four steps.

1) The VVC baseline implementation is compared with the

original Kvazaar HEVC encoder.

2) The impact of each added coding tool is independently

evaluated in relation to the VVC baseline implementation.

TABLE IV

PROFILING PLATFORM FOR COMPLEXITY ANALYSIS

Processor General Purpose Processor 18-core (4.20GHz)

Cache 24.75 MB

SSD 1TB NVMe PCIe Gen 3

RAM 64GB DDR4 3200 MHz

Compiler GCC 7.2.0

Kernel version 64-bit Linux 4.13.0

TABLE V

ENCODING PARAMETERS

Encoder Options

Kvazaar --preset veryslow -p1 --wpp --threads=<Threads>

uvg266
--preset veryslow -p1 --wpp --owf=<Threads> --mts=intra

--alf=full --threads=<Threads>

HM -c encoder_intra_main.cfg --TemporalSubsampleRatio=8

VVenC

-c randomaccess_slower.cfg --IntraPeriod=1 --GOPSize=1

--TemporalSubsampleRatio=8 --WaveFrontSynchro=1

--WppBitEqual=1 -t <Threads> --MaxParallelFrames=1

--AMaxBT=0

VTM -c encoder_intra_vtm.cfg

TABLE VI

VVC BASELINE IMPLEMENTATION OF UVG266 COMPARED WITH SINGLE-

THREADED KVAZAAR

Class
BD-rate Speedup

PSNR SSIM VMAF 1 thr 8 thr 36 thr
HEVC constrained uvg266

A1 0.08% -0.13% -3.59% 0.43× 3.39× 8.51×
A2 -0.79% -0.62% -5.01% 0.44× 3.46× 8.74×
B -0.90% -0.17% -3.08% 0.43× 3.43× 8.70×
C 0.02% 1.59% -3.09% 0.43× 3.43× 8.51×
D 0.82% 2.10% -2.44% 0.43× 3.34× 8.04×
E 0.74% 2.19% -1.75% 0.43× 3.40× 8.52×

UVG -1.11% -0.99% -2.58% 0.43× 3.41× 8.59×
Avg. -0.33% 0.35% -2.97% 0.43× 3.41× 8.53×

uvg266 VVC baseline
A1 -2.28% -2.51% -6.82% 0.40× 3.13× 7.83×
A2 -2.59% -2.45% -7.23% 0.40× 3.19× 8.10×
B -2.48% -1.83% -5.28% 0.40× 3.18× 8.07×
C -1.89% -0.53% -5.45% 0.41× 3.22× 8.02×
D -1.17% -0.08% -5.20% 0.41× 3.13× 7.52×
E -2.51% -1.21% -5.12% 0.41× 3.17× 7.95×

UVG -2.04% -1.89% -4.09% 0.40× 3.12× 7.89×
Avg. -2.10% -1.51% -5.31% 0.40× 3.16× 7.91×

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

7

3) The most efficient coding tool set is evaluated against the

original HEVC encoder.

4) Finally, the proposed solution is compared with the

existing VVC encoding solutions.

The result tables presented in this section include the

averages for each class and across all sequences. Negative BD-

rate values imply better coding efficiency and speedups higher

than 1.0× faster coding speed than the anchor.

A. VVC Baseline Implementation

The VVC baseline implementation of uvg266 is evaluated

with two configurations: HEVC constrained uvg266 and

uvg266 VVC baseline. The former aims to use limited set of

encoding tools of HEVC but encoding a compliant VVC

bitstream. The angular modes are limited to the 33 found in

HEVC in this configuration. The second configuration does not

have this limitation and uses the full 65 angular modes in

addition to DC and Planar.

Table VI presents the results of the two previous

configurations compared with single-threaded Kvazaar used as

an anchor. The HEVC constrained uvg266 results show that the

current implementation is around half the speed of Kvazaar

while providing a similar BD-rate performance. VMAF is an

exception showing 3% improved BD-rate. Using all angular

modes improves in BD-rate the coding efficiency of 1.8%,

1.8%, and 2.4% in PSNR, SSIM, and VMAF, respectively, with

around 7% reduction in coding speed. The results only include

a comparison to single threaded Kvazaar, since uvg266 fully

inherits the scaling capabilities of Kvazaar, as shown by these

results and the performance of Kvazaar [25].

B. New VVC Tools

Table VII tabulates the performance results of each

individual encoding tool implemented in uvg266 compared

with the uvg266 VVC baseline configuration used as an anchor.

TABLE VII

UVG266 IMPLEMENTED TOOLS COMPARED WITH SINGLE-THREADED UVG266 VVC BASELINE

Class

BD-rate Speedup BD-rate Speedup
PSNR SSIM VMAF 1 thr 8 thr 36 thr PSNR SSIM VMAF 1 thr 8 thr 36 thr

ALF Implicit MTS
A1 -3.12% -3.51% 0.44% 0.55× 4.14× 9.63× -1.38% -1.77% 0.43% 0.98× 7.72× 19.44×
A2 -1.25% -1.40% -1.03% 0.63× 4.74× 10.71× -1.03% -1.28% 1.08% 0.99× 7.82× 19.90×
B -3.41% -4.34% -2.73% 0.59× 4.61× 11.57× -0.90% -1.35% 1.13% 0.99× 7.82× 19.90×
C -1.51% -2.34% -1.51% 0.50× 3.87× 9.51× -0.66% -0.65% 3.31% 0.99× 7.76× 19.43×
D -0.60% -0.51% -0.19% 0.30× 2.32× 5.57× -0.42% -0.51% 3.56% 0.99× 7.56× 18.37×
E -3.72% -5.05% -2.31% 0.44× 3.41× 8.53× -2.24% -2.07% 1.19% 0.99× 7.76× 19.56×

UVG -3.70% -4.52% 1.85% 0.57× 4.43× 10.68× -0.60% -1.06% 1.46% 0.98× 7.73× 19.59×
Avg. -2.64% -3.31% -0.48% 0.52× 4.00× 9.67× -0.92% -1.17% 1.76% 0.98× 7.74× 19.47×

 Explicit MTS LMCS

A1 -1.93% -1.78% -1.67% 0.37× 2.93× 7.33× 0.52% 1.46% -2.89% 0.97× 7.79× 18.09×
A2 -1.73% -0.95% -2.10% 0.37× 2.98× 7.48× 0.47% -0.20% 2.90% 0.99× 7.91× 19.37×
B -0.99% -0.28% -1.53% 0.35× 2.85× 7.17× -0.12% -0.13% 0.63% 0.96× 7.69× 19.12×
C -0.92% 0.25% -1.86% 0.35× 2.84× 7.04× 0.51% 0.62% -1.15% 0.94× 7.41× 18.49×
D -0.93% 0.59% -1.96% 0.36× 2.77× 6.76× 0.36% 0.30% 0.14% 0.95× 7.17× 17.71×
E -2.43% -1.19% -2.26% 0.35× 2.76× 6.95× 0.93% 0.99% 0.11% 0.92× 7.30× 17.44×

UVG -0.87% 0.18% -0.25% 0.37× 2.93× 7.36× 1.68% 2.05% 0.86% 0.95× 7.62× 17.89×
Avg. -1.25% -0.28% -1.43% 0.36× 2.87× 7.17× 0.73% 0.87% 0.21% 0.95× 7.56× 18.27×

 JCCR

A1 0.11% 0.11% 0.25% 0.91× 7.17× 18.18× 0
A2 0.01% -0.04% 0.00% 0.92× 7.24× 18.48× -
B 0.09% 0.07% 0.20% 0.93× 7.41× 18.87× -
C 0.10% 0.14% 0.20% 0.94× 7.37× 18.36× -
D 0.13% 0.15% 0.02% 0.94× 7.22× 17.53× -
E 0.19% 0.19% 0.24% 0.93× 7.30× 18.46× -

UVG 0.08% 0.04% 0.08% 0.92× 7.27× 18.52× -

Avg. 0.10% 0.09% 0.13% 0.93× 7.29× 18.38× -

TABLE VIII

UVG266 WITH ALF AND MTS COMPARED WITH SINGLE-THREADED KVAZAAR

Class
BD-rate Speedup

PSNR SSIM VMAF 1 thr 8 thr 36 thr
A1 -6.98% -7.59% -8.23% 0.11× 0.86× 2.05×
A2 -5.40% -4.83% -9.89% 0.12× 0.96× 2.25×
B -6.63% -6.48% -9.44% 0.12× 0.91× 2.28×
C -4.19% -2.69% -8.67% 0.11× 0.85× 2.09×
D -2.57% 0.02% -7.66% 0.08× 0.61× 1.48×
E -8.13% -7.27% -9.27% 0.10× 0.76× 1.92×

UVG -6.17% -5.90% -3.73% 0.11× 0.90× 2.20×
Avg. -5.70% -4.98% -7.48% 0.11× 0.84× 2.07×

TABLE IX

UVG266 WITH ALF AND MTS COMPARED WITH SINGLE-THREADED HM

Class
BD-rate Speedup

PSNR SSIM VMAF 1 thr 8 thr 36 thr

A1 -6.08% -6.63% -10.39% 0.60× 4.66× 11.08×

A2 -3.79% -3.40% -13.78% 0.52× 4.04× 9.47×

B -5.20% -5.10% -10.12% 0.48× 3.78× 9.48×

C -2.64% -0.63% -8.35% 0.36× 2.86× 7.06×

D -1.74% 0.81% -7.88% 0.24× 1.86× 4.48×

E -6.55% -5.64% -8.90% 0.52× 4.00× 10.06×

UVG -5.49% -5.43% -5.98% 0.58× 4.59× 11.27×

Avg. -4.56% -3.84% -8.75% 0.48× 3.75× 9.18×

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

8

ALF doubles the encoding time for 2.6%, 3.3%, and 0.5%

BD-rate improvement with PSNR, SSIM, and VMAF,

respectively. Additionally, since the current implementation of

ALF needs to perform search for the full frame after initial

reconstruction, which requires increasing the number of parallel

frames, which add memory overhead of almost 1MB/CTU or

around 1.5GB for a single 2160p frame. Similarly, the

concurrency scaling decreases slightly because of the increased

number of parallel frames.

Results show that implicit MTS has negligible effect to the

encoding speed, and it improves BD-rate by 1.0% and 1.2%

when measured with PSNR and SSIM but degrades it by 1.6%

with VMAF. Conversely, explicit MTS improves BD-rate with

all metrics, but it also cuts the encoding speed to nearly a third

without affecting the scaling.

LMCS degrades BD-rate with PSNR and SSIM because it is

not yet RD optimized. Nevertheless, the encoding complexity

increase is only around 5% and the VMAF BD-rate

improvement in Class A1 shows that there is potential in the

tool once it is RD optimized. However, LMCS also introduces

a small bottleneck due to the mapping, which slightly decreases

the thread scaling.

Like LMCS, JCCR is not yet RD optimized and degrades

BD-rates by about 0.1% with around 7% increase in complexity

and no decrease in scaling.

C. Proposed uvg266 Configuration

From the experiments of the previous section, the best

encoding efficiency is reached when uvg266 enables ALF and

explicit MTS tools. Table VIII tabulates the comparison

between this proposed configuration and single-threaded

Kvazaar used as an anchor. The results show that uvg266

improves the PSNR, SSIM, and VMAF BD-rates by 5.7%,

5.0%, and 7.5%, respectively. On the other hand, the encoding

speed is reduced to about tenth. However, since the newly

added tools are yet to be optimized, there is much room to

improve the complexity of uvg266, e.g., the complexity of the

new ALF filter can be significantly reduced with an optimized

implementation.

Additionally, uvg266 is evaluated against HM and the results

are shown in Table IX; HM being used as an anchor. These

results show that uvg266 outperform HM even with fairly

limited number of the VVC tools, especially when measured

with VMAF. Moreover, uvg266 is up to 10× faster than HM

using multi-threading.

D. Comparison with Existing VVC Encoders

Table X compares the proposed configuration of uvg266

with single-threaded VTM and multi-threaded VVenC used as

an anchor. Moreover, Table XI tabulates the absolute encoding

speed in frames per second (FPS) for each encoder and

threading.

Since uvg266 does not yet implement all of the existing VVC

tools, it is expected that both VTM and VVenC outperform it.

In fact, they both have around 25%, 30%, and 24% better BD-

rate measured with PSNR, SSIM, and VMAF, respectively.

Nevertheless, uvg266 is over ten times faster with single-

threaded operation and parallelizes better than VVenC. Based

on these results, it is interesting to notice that developing a new

VVC encoder based on a practical HEVC encoder allows to

produce a highly parallel solution even in the early stages of

development.

VIII. FUTURE WORK

In the future, we plan to continue developing uvg266 toward

a complete VVC encoding solution that achieves real-time

coding performance. This development can be roughly split into

following five stages: 1) implementing the rest of the intra

encoding tools, 2) implementing the inter tools,

3) implementing the MTT structure, 4) vectorization of new

tools, and 5) algorithmic optimization and complexity

reduction, e.g., using machine learning. 1) is currently

underway and we have started exploring the inter tools to

start 2). Furthermore, we have started formulated an initial plan

for 3). There are two main points to adding the support for

MTT: dealing with non-square CUs and managing the recursive

splitting. The first step would be to implement a single layer of

MTT splitting to deal with the non-square CUs, which can be

then extended for the full MTT support. Since the

implementation is still in an early stage, 4) and 5) are not yet a

high priority but we will start from tools such as ALF and MTS

that have a high complexity overhead. Finally, the development

of 3) could be directly combine with 5) to use machine learning

for predicting the structure, as was done with Kvazaar in [25].

Additionally, there is opportunities for RD optimization,

especially with LMCS and JCCR, but most other tools should

also have options.

TABLE XI

UVG266, VVENC, AND VTM ENCODING SPEED IN FPS

 uvg266 VVenC VTM

Class 1 thr 8 thr 36 thr 1 thr 8 thr 36 thr 1 thr

A1 0.018 0.140 0.332 0.002 0.013 0.015 0.002

A2 0.014 0.110 0.258 0.001 0.008 0.009 0.001

B 0.051 0.407 1.021 0.004 0.020 0.021 0.004

C 0.170 1.353 3.338 0.014 0.035 0.036 0.013

D 0.425 3.308 7.974 0.049 0.074 0.076 0.043

E 0.146 1.113 2.802 0.014 0.041 0.042 0.012

UVG 0.017 0.137 0.337 0.002 0.012 0.015 0.001

TABLE X

UVG266 WITH MTS AND ALF COMPARED WITH VTM AND VVENC

Class
BD-rate Speedup

PSNR SSIM VMAF 1 thr 8 thr 36 thr
Single-threaded VTM anchor

A1 32.93% 41.32% 36.97% 12.50× 96.97× 230.24×
A2 28.54% 33.85% 24.96% 14.80× 115.94× 272.33×
B 22.22% 26.45% 20.76% 13.98× 110.42× 277.25×
C 25.81% 31.15% 21.08% 13.48× 107.28× 264.67×
D 19.02% 24.04% 16.74% 9.88× 77.01× 185.80×
E 25.27% 29.56% 25.80% 12.61× 96.27× 242.11×

UVG 23.68% 26.23% 27.92% 14.43× 113.96× 279.54×
Avg. 24.67% 29.23% 24.72% 13.10× 102.55× 255.28×

Multi-threaded VVenC anchor
A1 32.25% 39.03% 29.14% 9.83× 12.46× 25.88×
A2 27.74% 31.82% 22.50% 12.04× 14.44× 28.42×
B 22.43% 27.36% 21.32% 11.79× 20.47× 50.02×
C 25.60% 31.76% 21.36% 12.43× 38.61× 93.01×
D 18.92% 25.37% 18.97% 8.71× 45.56× 106.51×
E 25.36% 30.50% 25.64% 10.86× 28.02× 69.30×

UVG 25.57% 28.25% 26.97% 10.46× 12.50× 23.83×
Avg. 25.03% 29.85% 23.85% 10.59× 24.58× 53.65×

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

9

IX. CONCLUSION

This paper introduced the conversion process of the practical

HEVC encoder Kvazaar into the practical VVC intra encoder

called uvg266, which is distributed under the permissive 3-

clause BSD license. The purpose of this paper is to show that

converting an existing HEVC encoder to VVC standard is a

valid approach and allows to reuse part of the coding structure,

optimization, and parallelism of the HEVC implementation. To

conform to the VVC standard, coding tools can be categorized

according to their implementation: 1) the HEVC tools that need

to be entirely rewritten, such as CABAC; 2) the HEVC tools

that can be upgraded with limited effort; and 3) the new VVC

tools that need to be implemented from scratch.

To conclude, our success with the software implementation

shows promise for more generic reuse of the encoder structure

when moving between standards. Moreover, implementing an

encoder in hardware with either hardware description language

or high-level synthesis can also benefit from this approach by

reusing encoder blocks similarly to a software encoder. Overall,

this work aims to close the gap between implementation of

HEVC and VVC encoding standard and accelerate the

deployment of real-time VVC solutions on consumer

electronics.

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Trends, 2017-

2022, Dec. 2018.

[2] ITU, "New ‘Versatile Video Coding’ standard to enable next-

generation video compression," Sept. 2020, [Online]. Available:

https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-

Video-coding-standard-video-compression.aspx.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, "Overview of the

high efficiency video coding (HEVC) standard," IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649–1668.

[4] A. Mercat, A. Mäkinen, J. Sainio, A. Lemmetti, M. Viitanen, and J.

Vanne, "Comparative rate-distortion-complexity analysis of VVC and

HEVC video codecs," IEEE Access, vol. 9, 2021, pp. 67813–67828.

[5] G. Sullivan, "Deployment status of the HEVC standard," document

JVET-V0020, Apr. 2021.

[6] "VVC Reference Software Version 13.2," [Online]. Available:

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-

13.2.

[7] A. Wieckowski, J. Brandenburg, T. Hinz, C. Bartnik, V. George, G.

Hege, C. Helmrich, A. Henkel, C. Lehmann, C. Stoffers, I. Zupancic,

B. Bross, and D. Marpe, "Vvenc: An Open And Optimized Vvc

Encoder Implementation," in Proc. IEEE Int. Conf. Multimedia Expo

Workshops, Shenzhen, China, Jul. 2021.

[8] J. Brandenburg, A. Wieckowski, T. Hinz, and B. Bross, "VVenC

Fraunhofer Versatile Video Encoder," 2020, [Online]. Available:

https://www.digitalmedia.fraunhofer.de/content/dam/dcinema/en/docu

ments/ibc2020/VVenC_Versatile-Video-Encoder_Paper.pdf.

[9] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, "VTM

common test conditions and software reference configurations for SDR

video," document JVET-T2010, Teleconference, Oct. 2020.

[10] Ultra Video Group, "Kvazaar open-source HEVC encoder," [Online].

Available: https://github.com/ultravideo/kvazaar.

[11] P. Sjövall, A. Lemmetti, J. Vanne, S. Lahti, and T. D. Hämäläinen,

"High-level synthesis implementation of an embedded real-time HEVC

intra encoder on FPGA for media applications," Transactions on Design

Automation of Electronic Systems, to be published.

[12] J. Chen, Y. Ye, and S. Kim, "Algorithm description for versatile video

coding and test model 10 (VTM 10)," document JVET-S2002,

Teleconference, Jul. 2020.

[13] J. Chen, Y. Ye, and S. Kim, "Versatile video coding editorial

refinements on draft 10," document JVET-T2001, Teleconference, Oct.

2020.

[14] MulticoreWare, Inc., "Leading next-gen video technologies with

development of open source x266 (VVC) encoding and x266

consortium," [Online]. Available:

https://multicorewareinc.com/video/#x266.

[15] MulticoreWare, Inc., "x265 HEVC encoder / H.265 video codec,"

[Online]. Available:

https://bitbucket.org/multicoreware/x265/downloads.

[16] "HEVC Reference Software Version 16.23," [Online]. Available:

https://vcgit.hhi.fraunhofer.de/jct-vc/HM/-/tags/HM-16.23.

[17] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, "Kvazaar 2.0: fast

and efficient open-source HEVC inter encoder," in Proc. ACM

Multimedia Syst. Conf., Istanbul, Turkey, Jun. 2020.

[18] J. Sainio, A. Mercat, and J. Vanne, "uvgVenctester: open-source test

automation framework for comprehensive video encoder

benchmarking," in Proc. ACM Multimedia Syst. Conf., Istanbul,

Turkey, Jun. 2021.

[19] "Fraunhofer Versatile Video Encoder (VVenC) v1.0.0," [Online].

Available: https://github.com/fraunhoferhhi/vvenc/tree/v1.0.0.

[20] A. Mercat, M. Viitanen, and J. Vanne, "UVG dataset: 50/120fps 4K

sequences for video codec analysis and development," in Proc. ACM

Multimedia Syst. Conf., Istanbul, Turkey, May 2020, pp. 297–302.

[21] G. Bjøntegaard, "Improvements of the BD-PSNR model," document

VCEG-AI11, Berlin, Germany, Jul. 2008.

[22] ITU-T and ISO/IEC JTC 1, "Working practices using objective metrics

for evaluation of video coding efficiency experiments," document ITU-

T HSTP-VID-WPOM and ISO/IEC DTR 23002-8, 2020.

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

quality assessment: from error visibility to structural similarity," IEEE

Trans. Image Process., vol. 13, no. 4, Apr. 2004, pp. 600–612.

[24] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara,

"Toward a practical perceptual video quality metric," Jun. 2016,

[Online]. Available: http://techblog.netflix.com/2016/06/toward-

practical-perceptual-video.html.

[25] A. Mercat, A. Lemmetti, M. Viitanen, and J. Vanne, "Acceleration of

Kvazaar HEVC intra encoder with machine learning," in Proc. IEEE

Int. Conf. Image Processing, Taipei, Taiwan, Sept. 2019.

Marko Viitanen (Member, IEEE) received

the M.Sc. degree in information technology

from the Tampere University of

Technology, Tampere, Finland in 2017. He

is currently working towards his Ph.D.

degree at Tampere University (TAU),

where he is working as a Doctoral

Researcher as a part of Ultra Video
Group (UVG).

His research activities include HEVC/VVC video coding,

360/VR video capturing and compression, as well as

customized transmission systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227

10

Joose Sainio (Member, IEEE) received the

M.Sc. degree in information technology

from the Tampere University of

Technology, Tampere, Finland, in 2018. He

is currently pursuing the Ph.D. degree with
UVG.

He has been a part of UVG, since 2016.

His research interests include HEVC/VVC

video coding, in particular enabling real-

time encoding. He has experience in both hardware acceleration

and more traditional optimization methods. Additionally, he has

some familiarity with perceptual video coding and rate control.

Alexandre Mercat (Member, IEEE)
received the M.Sc. and Ph.D. degrees in

electrical and computer engineering from

the Institut National des Sciences

Appliquées (INSA) of Rennes, Rennes,

France, in 2015 and 2018, respectively.

He has been a Postdoctoral Researcher

with Computing Sciences, Tampere

University (TAU), Tampere, Finland, since

2018. His research interests include implementation of image

and signal processing applications in many-core embedded

systems, real-time implementations of the new generation video

coding standards, complexity-aware video coding, machine

learning, approximate computing, power consumption, and

digital systems design.

Ari Lemmetti (Member, IEEE) received

the M.Sc. degree in information technology

from Tampere University, Tampere,

Finland, in 2021.

He is a Researcher at Tampere

University, Tampere, Finland, and a

member of Ultra Video Group since 2014.

His research interests include HEVC and VVC video

compression, rate-distortion-complexity optimization, and

parallel computing.

Jarno Vanne (Member, IEEE) received the
M.Sc. degree in information technology

and the Ph.D. degree in computing and

electrical engineering from the Tampere

University of Technology (TUT), Tampere,

Finland, in 2002 and 2011, respectively.

He is currently an Associate Professor with

the Unit of Computing Sciences, Tampere

University, Tampere. He is also the founder

and a leader of the Ultra Video Group that is also the leading

academic video coding group in Finland. He has been the

project manager for 22 international/national research projects.
He is the author of over 80 peer-reviewed scientific

publications. His research interests include HEVC/VVC video

coding, ML-powered video coding, immersive 3D/360 media

processing for extended reality (XR), volumetric video capture

and coding, vision-based environment perception in

autonomous vehicles and drones, hybrid human–machine

vision, remote machine control over 5G, telepresence, hardware

accelerated video coding, video annotation, and virtual traffic

simulation environments.

