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Abstract—Versatile Video Coding (VVC/H.266) is an emerging 

successor to the widespread High Efficiency Video 

Coding (HEVC/H.265) and is shown to double the coding 

efficiency for the same subjective visual quality. Nevertheless, 

VVC still adopts the similar hybrid video coding scheme as HEVC 

and thereby sets the scene for reusing many HEVC coding tools 

and techniques as is or with minor modifications. This paper 

explores the feasibility of developing a practical software VVC 

intra encoder from our open-source Kvazaar HEVC encoder. The 

outcome of this work is called uvg266 VVC intra encoder that is 

distributed under the same permissive 3-clause BSD license as 

Kvazaar. uvg266 inherits the optimized coding flow of Kvazaar 

and all upgradable Kvazaar intra coding tools, but it also 

introduces basic VVC intra coding tools not available in HEVC. 

To the best of our knowledge, this is the first work to describe the 

implementation details of upgrading an HEVC encoder to a VVC 

encoder. The rapid development time with promising coding 

performance make our proposal a viable approach over the 

encoder development from scratch.  

 
Index Terms—Code reuse, encoder implementation, High 

Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), 

video codec. 

 

I. INTRODUCTION 

UR modern society is surrounded by a myriad of media 

applications where digital video is of the essence. This 

trend has resulted in snowballing growth of video data that has 

been estimated to account for 82% of all global IP traffic [1]. 

On top of that, the current growth rate of video shows no signs 

of deceleration thanks to an increasing plurality of new products 

and services that continuously seek for enhanced consumer 

experience. 

Over the last three decades, ISO/IEC MPEG and ITU-T 

VCEG have released a series of international video coding 

standards to mitigate the phenomenal growth of video 

transmission and storage requirements. The latest standard, 

Versatile Video Coding (VVC/H.266), was ratified in 2020 [2] 

as the successor to the famous High Efficiency Video 

Coding (HEVC/H.265) [3]. VVC aims for 50% higher coding 

efficiency for the same subjective visual quality but the coding 

gain does not come without the added computational 

complexity as VVC is found to be from 7.4× up to 34.0× as 

complex as HEVC [4].  

HEVC has been adopted for more than 2 billion devices and 

around 50% of broadcast and video streaming professionals are 

already using it [5]. Hence, it is likely that VVC will also gain 

a firm foothold this decade, though efficient encoder 

implementations will be key to its wider success.  

Currently, there are two well-known open-source VVC 

encoders: VVC test model (VTM) [6] and Fraunhofer Versatile 

Video Encoder (VVenC) [7]. VTM is the VVC reference 

encoder that implements all normative VVC coding tools, but 

it is not designed for practical encoding. VVenC is an optimized 

implementation of VVC encoder for practical encoding, but it 

is currently unable to reach real-time coding speed [8].  

Altogether, there are three conceivable approaches to 

developing a practical VVC encoder: 1) implementing an 

encoder from scratch; 2) optimize VTM as is the case with 

VVenC; or 3) converting a practical HEVC encoder into a VVC 

encoder. Starting the encoder from scratch allows for 

customized data structures but it tends to be the most time-

consuming approach as a complete encoder can take more than 

hundred thousand lines of code. On the other hand, optimizing 

VTM easily requires design compromises that could result in 

suboptimal performance due to legacy of standardization 

process, e.g., no attention was paid on parallelization. This 

paper focuses on the third option. VVC can be considered a 

superset of HEVC, so reusing the optimized coding flow, tool, 

and techniques can improve productivity without performance 

compromises. 

VVC encoders can be developed and benchmarked under the 

following four VVC common test conditions (CTC) [9]: all 

intra (AI), low delay P (LDP), low delay B (LDB), and random 

access (RA). AI coding is the simplest of these cases as it only 

includes spatial prediction and therefore all frames are 

independent of each other. LDP adds unidirectional temporal 

prediction and LDB bidirectional temporal prediction. Finally, 

RA allows encoding the frames in an arbitrary order. This paper 

only considers AI condition due to its simplicity. Efficient intra 

encoding tools are also vital in the other conditions. 

This paper introduces a step-by-step workflow to upgrade an 

HEVC encoder to a VVC intra encoder. Kvazaar HEVC 

encoder [10] is used as a design entry point for this study. First, 

we make Kvazaar intra coding tools compatible with VVC and 

then we include a carefully selected set of new VVC tools based 

on their estimated performance impact and implementation 

effort. The outcome of this work is called uvg266 VVC intra 
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encoder that will be distributed online under the 3-clause BSD 

license at: 

 

https://github.com/ultravideo/uvg266. 

 

To the best of our knowledge, this is the first paper to 

describe the implementation details when converting a HEVC 

encoder into a VVC encoder. This software case study can also 

be applied to hardware encoder implementations [11] and 

thereby deploy uvg266 in embedded consumer devices in the 

coming years.  

The rest of this paper is structured as follow. Section II gives 

a comparative overview of the HEVC and VVC standards. 

Section III describes the existing VVC implementations. 

Section IV introduces our design methodology for HEVC to 

VVC encoder conversion and the implementation is detailed in 

Section V. Section VI describes the experimental setup and 

Section VII reports our results. Finally, Section VIII presents 

future work and Section IX concludes the paper. 

II. COMPARISON OF VVC AND HEVC CODING TOOLS 

Fig. 1 depicts an overview of the VVC encoder architecture. 

Both VVC and HEVC encoding processes are based on the 

well-known block-based hybrid video coding scheme that is 

composed of the following five stages: intra prediction (IP), 

motion estimation and compensation (ME/MC) a.k.a. inter 

prediction, forward/inverse transform and 

quantization (TR/Q), entropy coding (EC), and loop 

filtering (LF). In the AI case, the ME/MC stage is omitted.  

Table I summarizes the main coding tools of HEVC and 

VVC and whether the tool is implemented in uvg266. Generally 

speaking, VVC has adopted many new coding tools in each 
coding stage. Please refer to VVC algorithm description [12] 

and specification [13] by JVET for further information. The 

tools included in this work are detailed next. 

A. Entropy Coding 

HEVC and VVC utilize Context Adaptive Binary Arithmetic 

Coding (CABAC) as an entropy reduction tool. It compresses 

individual bits according to the context of the bit. VVC adds an 

extra field called rate for each context, changing the rate of state 

change when a bit is encoded. Thus, how fast the probability of 

the symbol is changed depends on the context, which makes 

more probable symbols more cost-effective as they can be 

coded with fractional bits based on the statistics. 

B. Block Structures 

The basic block structure has not been changed from that of 

the HEVC and the same top-down block splitting mechanisms 

are still used. The largest block or the coding tree unit (CTU) 

has been increased up to 128×128 luma pixels and the quadtree 

splitting can be used in the same way as in HEVC. For the non-

square block splitting after the quadtree, the previous symmetric 

motion partitions (SMPs) and asymmetric motion 

partitions (AMPs) have been replaced with the new binary and 

ternary splits, jointly called multi type tree (MTT), that are 

depicted in Fig. 2. Additionally, VVC optionally allows a 

separate block structure for chroma channels in intra slices with 

chroma separate tree. 

C. Intra Prediction 

The DC and planar prediction modes are the same as in 

HEVC. On the other hand, the amount of angular intra modes 

was roughly doubled from 33 to 65. The number of most 

probable modes (MPM) has been increased from 3 to 6 but the 

selection process is not significantly modified from that of 

HEVC. There are, however, potentially more bits to signal. 

Position dependent intra prediction combination (PDPC) is 

a mandatory intra filter, which is applied for DC, Planar, and 

angular intra modes where the filter scale would be non-

negative, without any signaling after the prediction.  

D. Transform 

The basic transform is largely the same between HEVC and 

VVC, except VVC uses discrete cosine transform II (DCT2) for 

all coding units (CUs) by default and the maximum size is 

increased to 64×64. Additionally, VVC introduces two 

additional DCT/discrete sine transform (DST) algorithms, 

namely DCT8 and DST7. The selection process for the different 

transforms is called multiple transform selection (MTS) with 

two available selection modes. Implicit MTS will select the 

transforms implicitly for certain blocks effectively adding zero 

processing and signaling cost for slight improvement. Explicit 

MTS utilizes a search to select between four MTS modes for 

each CU, applying DCT8 and DST7 horizontally and vertically 

in different combinations. 

Transform skip is changed slightly from HEVC to VVC; 

transform shift is removed and the coefficient coding is done 

using separate contexts. 

Finally, VVC introduces Joint Coding of Chroma 

Residuals (JCCR) that allows coding chroma residual with only 

one set of coefficients that are then used to reconstruct both of 

the chroma residuals. For intra CUs, the residuals can have the 

same values or one of the residuals can have half of the 

intensity. 

 
Fig. 1. Simplified block diagram of a VVC encoder. 

 

 
Fig. 2. VVC Binary and Ternary partition splits. a) Binary vertical. b) Binary 

horizontal. c) Ternary vertical. d) Ternary horizontal. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146016, IEEE
Transactions on Consumer Electronics

TCE-2021-10-0227 

 

3 

E. Loop Filtering 

Sample adaptive offset (SAO) has been included in VVC 

without a change. Deblocking filter has been updated with 

boundary handling and 4×4 grid. In addition to the deblocking 

and SAO, two new in-loop filters were added in VVC: Adaptive 

Loop Filter (ALF) and Luma mapping with chroma 

scaling (LMCS). 

ALF is a computationally complex filter applied after 

Deblock and SAO with 7×7 (luma) or 5×5 (chroma) diamond 

filter using 25 classifications applied for each 4×4-pixel block 

in the frame. 

LMCS maps the pixel values to spread them across the 

dynamic range for slight improvement of coding efficiency. 

The other part of the tool, chroma scaling, is the same basic 

process done for the chroma to compensate for the mapping. 

Chroma scaling can be independently disabled. 

F. Quantization 

The quantization parameter (QP) range has been extended 

from 51 to 63. The mapping between luma/chroma and QPs has 

been changed from a fixed table to a piecewise linear model, 

signaled in sequence parameter set (SPS).  

III. OPEN-SOURCE VVC IMPLEMENTATIONS 

VVC was developed alongside with the VTM [6] reference 

software. VTM is an open-source software containing both 

encoder and decoder with all normative coding tools. The focus 

of VTM is to serve as a common reference implementation. 

Therefore, it provides the best encoding efficiency but its 

unoptimized performance is far from real-time. 

Fraunhofer HHI has released VTM based VVenC [7] on 

Sept. 2020 and switched to 3-clause BSD license on Dec. 2020. 

It improves the VTM encoding performance by defining a set 

of presets from slower to faster compression, selecting a set of 

tools matching the use case, optimizing the coding functions on 

algorithmic and instruction set level, and including concurrency 

making it 2× to 140× faster than VTM in RA condition while 

losing around 0% to 60% in BD-rate, respectively [7]. 

Finally, there are plans to release x266 [14] as the successor 

to the popular x265 HEVC encoder [15]. It can be assumed to 

be based on VTM, as x265 was based on the HEVC test 

model (HM) [16]. 

IV. DESIGN APPROACH 

A VVC encoder can be defined as an encoder that is able to 

produce valid VVC bitstream, i.e., a bitstream decodable by the 

TABLE I 

MAIN CODING TOOLS OF HEVC, VVC, AND THEIR IMPLEMENTATION STATUS IN UVG266 

 HEVC VVC uvg266 

Block 

partitioning 

▪ Coding Tree Unit (CTU) quadtree (QT) structure ▪ CTU quadtree structure with nested multi-type tree  QT 

    (QT+MTT)  

▪ From 64×64 to 8×8 Coding Unit (CU) size ▪ From 128×128 to 4×4 CU size 64×64 to 4×4 

 ▪ Chroma separate tree  

 ▪ Virtual pipeline data units (VPDUs) × 

Intra prediction 

▪ DC, planar ▪ DC, planar × 

▪ 33 directional prediction modes ▪ 65 directional prediction modes × 

 ▪ Wide-angle prediction modes  

▪ Linear interpolation ▪ 4-tap interpolation filters (IFs) using 2 sets of filters × 

 ▪ Position-dependent prediction combination (PDPC) × 

 ▪ Multiple reference lines (MRL)  

 ▪ Matrix-based intra-picture prediction (MIP)  

 ▪ Cross-component linear model (CCLM)  

 ▪ Intra sub-partitions (ISP)  

Forward/inverse 

transform and 

quantization 

▪ Square transform (up to 32×32) ▪ Square and rectangular transform (up to 64×64)  32×32 to 4×4 

▪ Discrete cosine and discrete sine transforms  ▪ Multiple transform selection (MTS) × 

   ▪ DCT2 and DST7    ▪ DCT2, DST7, and DCT8 × 

 ▪ Non-separable secondary transform (LFNST)  

 ▪ Adaptive chroma QP offset × 

▪ Sign data hiding (SDH) ▪ SDH × 

 ▪ Dependent quantization (DQ)  

 ▪ Joint coding of chroma residuals (JCCR) × 

Entropy coding 

▪ Context-adaptive binary arithmetic coding (CABAC) ▪ CABAC with multi-hypothesis probability estimates × 

▪ Coefficient group ▪ Additional coefficient group size  × 

▪ Reverse diagonal, horizontal and vertical coefficient scan ▪ Reverse diagonal coefficient scan only × 

 
▪ Improved probability model sections for absolute 

transform coefficient levels 
× 

Loop filtering 

 ▪ Luma mapping with chroma scaling (LMCS) × 

▪ Deblocking filter (DF) ▪ Deblocking boundary handling modifications × 

 ▪ Deblocking long filter × 

 ▪ Luma-adaptive deblocking × 

▪ Sample adaptive offset (SAO) ▪ Sample adaptive offset (SAO) × 

 ▪ Adaptive loop filter (ALF) × 

 ▪ Cross-Component ALF (CC-ALF) × 

Parallelization 

▪ Slices ▪ Slices × 

▪ Tiles ▪ Tiles  

 ▪ Subpictures   

▪ WPP with CTU row delay of two CTUs ▪ WPP with CTU row delay of one CTU × 
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reference decoder with the decoded frames having identical 

reconstruction in encoder and decoder. Since VVC includes a 

plurality coding tools which are not strictly necessary 

depending on the use case, it is important to consider the order 

of coding tools to implement.  

Section IV-A presents the minimum requirements for a VVC 

encoder to produce a valid bitstream. However, the coding 

efficiency is severely limited, and any encoder aiming for 

practical usage should implement significant portion of the 

available coding tools. Section IV-B describes the criteria for 

the order of selecting tools for implementation and which tools 

were selected in this work. 

A. Minimum VVC Implementation 

The minimum VVC implementation only requires the 

following tools: 

• Headers: binary coded header network abstraction layer 

(NAL) units for SPS, Picture Parameter Set, and the slice 

containing info on the used tools and video parameters. 

• CABAC: the basic binary coding method, each bit is coded 

separately, with a context depending on the usage of the bit 

and each bit updating the context to allow following bits to 

be code cheaper. 

• Intra prediction: a prediction based on the bordering pixels, 

must be done in order to get the residual pixel data. Simplest 

form is the DC mode containing an average of the bordering 

pixels and giving the same value prediction over the whole 

block. 

• Transform: DCT and DST to transform the residual pixels 

to the frequency domain. A simple matrix multiplication is 

used with the precalculated matrix matching the block size 

and the output is the frequency domain coefficients. 

• Quantization: quantize the frequency domain coefficients 

using pre-calculated tables. 

• Data output: using CABAC, the binarized block data is 

pushed to the output by iterating over the coding blocks. 

B. Selection Criteria for Coding Tools 

Overall, there are two main factors for selecting the tools to 

be implemented: 1) the rate-distortion-complexity (RDC) 

performance of the tool and 2) the implementation effort. For 

1), a way to estimate the RDC performance is to run VTM with 

the tool enabled and disabled. Overall, this will give a good 

estimate on how the tool might perform in practical encoder. 2) 

is largely influenced by how much the tool interacts with other 

tools, e.g., ALF is completely separate from rest of the encoding 

loop, whereas the MTT influences almost all other tools. This 

means that implementing some of the tools can be done at the 

same time with different teams whereas others require 

coordination to avoid overlap. 

Table I tabulates the implementation status of the tools. The 

HEVC based tools were selected because they only needed to 

be upgraded instead of a brand-new implementation. For the 

VVC tools the extra intra modes were implemented since they 

do not require a lot of work after updating the prediction 

generation. MTS was selected due to its rate-distortion (RD) 

performance and JCCR because it largely concerns them same 

area of the encoder as MTS. ALF was selected due to the RD 

performance and its separation from the encoding loop. LMCS 

is another tool selected by being separate from the coding loop, 

mapping the pixels before intra predictions and back before 

loop filters while providing small RD improvement with small 

performance cost. 

V. PROPOSED IMPLEMENTATION 

The design entry point for our work is the award winning 

Kvazaar HEVC encoder [17] due to its optimized coding flow, 

threading support, and recently announced permissive 3-clause 

BSD-license. VVC conversion is applied resulting in a new 

open-source proof-of-concept VVC encoder, uvg266, which is 

still able to utilize parts of the optimized coding flow and full 

threading of Kvazaar.  

Most demanding coding tools of Kvazaar are optimized 

using AVX2. A non-negligible part of these optimizations can 

be reused for the VVC implementation without changes, as 

tabulated in Table II. This reduces the development time for 

optimized solution, even with the new tools. Since intra 

encoding is needed in all configurations, we start the conversion 

considering only the intra tools. 

Section V-A considers tools that exist in HEVC and how 

they are updated to conform to VVC. Section V-B cover non-

normative tools and Section V-C considers newly added tools 

that are implemented into uvg266. 

A. Normative Coding Tools Updated from HEVC 

1) CABAC 

Although the structure and bit-pushing to CABAC are 

similar, changes from HEVC are significant enough that most 

of the CABAC engine must be rewritten. Context initialization 

values need to be replaced with the new arrays. The state is 

stored in two 16-bit variables, replacing the one 8-bit variable 

in HEVC. Additionally, the state change is now controlled by a 

rate variable defined for each context, which in HEVC used to 

be a constant global table. CABAC main state does not need to 

be changed. 

2) Block Structure 

VVC introduces the 128×128 CTU size, but 64×64 and 

32×32 are still options. Since HEVC uses at maximum 64×64 

CTUs, only 64×64 CTUs is consider as a first step in this 

conversation. Additionally, since intra CUs can be at maximum 

64×64, the benefit of 128×128 CTUs are limited for intra 

TABLE II 

AVX2 OPTIMIZED PARTS OF KVAZAAR AND THEIR REUSABILITY IN UVG266 

Optimized Function Reuse in uvg266  

Intra prediction 
DC/Planar 100%  
Angular 5%  

SAD and SATD cost calculation 100%  

Transform 
DCT2 100%  

DST7/DCT8 90%  
Transform quantization 95%  

Coefficient encoding 50%*  
SAO 100%  

*Estimate, not implemented yet. 
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encoding. For the quadtree (QT) structure only the 4×4 CUs 

require change, since unlike HEVC where the 4×4 blocks are 

Prediction Units (PUs) whereas in VVC they are CUs. The 

main change is that the chroma transform unit (TU) is coded 

after all of the corresponding luma TUs instead of the first luma 

TU. 

3) Intra Prediction 

DC and planar predictions require no changes and the AVX2 

kernels can be used as is. However, the angular AVX2 

optimizations have to be rewritten almost completely due to 

new algorithm in VVC. Updating the MPM selection is a 

straightforward task to implement. The PDPC is also 

straightforward to implement since it is essentially just an extra 

step in the prediction generation. 

4) Transform 

Since the DST7 is only used for 4×4 luma CUs in HEVC, the 

4×4 DCT2 also exists in HEVC, thus updating to VVC consists 

in setting the 4×4 luma transform to DCT2. The 64×64 

transforms are optional, and we are yet to implement them. 

5) Loop Filtering 

Since SAO is identical to HEVC, it does not require any 

changes. For deblocking, the 4×4 grid requires some changes 

since Kvazaar performs deblocking on CTU basis. The right 

and bottom edges of the CTU are deblocked when the following 

CTUs are processed to fully utilize the wavefront parallel 

processing (WPP). Because the filtering length for larger 

blocks exceeds four pixels in VVC, the CTU edge and the last 

inner 4×4 CU edges must be deblocked by the following CTUs. 

6) Quantization 

Increasing the maximum QP value is effortless, since the 

underlying formula was not changed. Similarly, the 

implementation of the chroma QP scaling only require 

implementing the piecewise linear model. The quantization is 

optimized with AVX2 kernels in Kvazaar, and they can be 

included in uvg266 with minor changes. 

B. Non-Normative Coding Tools Updated from HEVC 

1) Intra Search 

With the angular modes increasing from 33 to 65, the search 

itself needed only small changes. For the angular intra modes, 

the first version omitted the extra angular modes added in VVC, 

where the HEVC modes had to be mapped to correct VVC 

modes in the bitstream writing. Supporting all the intra angular 

modes needs minor changes in the search loops. Costs are 

calculated the same way as in HEVC, so the AVX2-optimized 

kernel can be used as is. 

2) Rate-Distortion Optimized Quantization (RDOQ) 

Since the CABAC contexts and bit coding have changed, the 

RDOQ must be adapted to the VVC by addressing the changed 

binary output in all the places where bit costs are calculated. 

This includes changing the CABAC contexts and adding new 

costs for bits that did not exist in HEVC. 

C. New VVC Coding Tools 

1) Adaptive Loop Filter (ALF) 

Although ALF requires more lines of code than most other 

tools, it is completely separated from rest of the encoding loop, 

thus the implementation is straightforward. ALF filtering is 

done for the whole frame and requires analysis data from the 

complete frame, which prevents using WPP efficiently. 

Therefore, the final bitstream generation has to be moved after 

the whole frame is processed. To allow use of WPP and keep 

bit estimation accurate for the rate distortion 

optimization (RDO) process, the bitstream generation is 

simulated during the search process. 

2) Luma Mapping with Chroma Scaling (LMCS) 

Unlike other in-loop filters, LMCS directly influences the IP, 

thus implementing it is more challenging than the other in-loop 

filters. However, the implementation of Luma Mapping that is 

the first part of the tool is straightforward for AI condition. In 

intra coding, the pixels are always in mapped domain after the 

parameters are constructed at the start of the frame and pixels 

mapped, and only right before LF stage they are reverse 

mapped. Chroma Scaling, which is the second part, is applied 

to pixels before TR/Q stage and they are scaled back after IQ/IT 

stage. 

3) Multitype Transform Selection (MTS) 

Kvazaar features AVX2 optimized kernels for the DCT2 and 

4×4 DST7 transforms. Fortunately, the kernels are designed in 

such fashion that providing new coefficients allows using the 

kernels for all of the MTS transforms. The MTS search is 

implemented to replace the transform depth search since it is 

removed in VVC. Finally, moving the transform skip coding to 

separate context requires some work but overall, it is pretty 

straightforward, since it is mostly similar to normal transform 

coefficient coding. 

TABLE III 

TEST SEQUENCES 

Class Format Sequence 
Frame 

count 

Frame 

rate 

A1 

3840×2160 

(2160p) 

Campfire 300 30 fps 

FoodMarket4 300 60 fps 

4096×2160 Tango2 294 60 fps 

A2 
3840×2160 

(2160p) 

CatRobot 300 60 fps 

DaylightRoad2 300 60 fps 

ParkRunning3 300 50 fps 

B 
1920×1080 

(1080p) 

BasketballDrive 500 50 fps 

BQTerrace 600 60 fps 

Cactus 500 50 fps 

MarketPlace 600 60 fps 

RitualDance 600 60 fps 

C 
832×480 

(480p) 

BasketballDrill 500 50 fps 

BQMall 600 60 fps 

PartyScene 500 50 fps 

RaceHorses 300 30 fps 

D 
416×240 

(240p) 

BasketballPass 500 50 fps 

BlowingBubbles 500 50 fps 

BQSquare 600 60 fps 

RaceHorses 300 30 fps 

E 
1280×720 

(720p) 

FourPeople 600 60 fps 

Johnny 600 60 fps 

KristenAndSara 600 60 fps 

UVG 

Dataset 

3840×2160 

(2160p) 

Beauty 600 120 fps 

Bosphorus 600 120 fps 

HoneyBee 600 120 fps 

Jockey 600 120 fps 

Lips 600 120 fps 

ReadySetGo 600 120 fps 

ShakeNDry 300 120 fps 

YachtRide 600 120 fps 
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4) Joint Coding of Chroma Residuals (JCCR) 

Although Kvazaar is designed to handle all the channels 

separately, adding the consideration for JCCR is 

straightforward since only the generation of the combined 

residual needs to be added and the RD-cost calculation can be 

mostly facilitated by existing functions. 

VI. EXPERIMENTAL SETUP 

All our experiments were automated using 

uvgVenctester [18]. 

A. Encoder and Coding Conditions 

To evaluate the implementation presented in this work, the 

proposed uvg266 encoder was first compared with 

Kvazaar 2.0 (git hash 54dc87d) [10] that was the latest 

available release during our experiments. In addition, uvg266 

was benchmarked against HM 16.23 [16]. In the second step, 

the performance of uvg266 was evaluated against the existing 

VVC encoding solutions VTM 13.2 [6] and VVenC 1.0.0 [19].  

The experiments were carried out under the VVC CTC with 

the exception of all 10-bit sequences converted to 8-bit because 

Kvazaar and uvg266 do not support 10-bit internal bit depth. 

The VTM and VVenC encoders were configured to their default 

internal 10-bit mode with 8-bit inputs whereas HM, Kvazaar 

and uvg266 use 8-bit internal. At this early stage of 

development, uvg266 only supports the internal bit depth of 8 

bits but will be extended to support higher bit depths in a 

forthcoming release.  

Encoders adopted the AI condition with the base QP values 

of 22, 27, 32, and 37 from the VVC CTC [9]. Under the AI 

condition, all frames were encoded as I-frames in display order 

without any QP offsets. For the AI condition, the VVC CTC [9] 

requires only every eighth frame to be encoded. For a fair 

comparison, the same temporal subsampling ratio was used 

with HM, Kvazaar, uvg266, and VVenC. 

B. Test Sequences 

Table III details our test set that features a broad range of 

sequence parameters (spatial resolution, frame rate, and bit 

depth). It includes all 22 natural full-length 8-bit and 10-bit 

YUV420 test sequences defined in the VVC CTC (classes A–

E) [9]. In addition, it was extended with eight 2160p 120fps 

sequences from our UVG dataset [20].  

C. Quality Metrics 

The RD performances are reported in terms of BD-

rates [21], [22], measured with three different objective quality 

metrics: peak signal-to-noise ratio (PSNR), Structural 

SIMilarity (SSIM) [23], and Video Multimethod Assessment 

Fusion (VMAF) [24]. Unlike PSNR and SSIM, VMAF is 

primarily intended for measuring quality of videos. Because of 

the temporal subsampling, the VMAF results presented in this 

paper should not be compared with VMAF results obtained 

without temporal subsampling. 

D. Complexity Profiling Setup  

Table IV details the profiling platform used for the testing. 

HM, VTM, and Kvazaar were benchmarked only with single 

threaded configuration whereas VVenC and uvg266 were 

additionally tested with 8 and 36 threads. Table V tabulates the 

parameters used for each encoder in addition to input, resolution, 

and QP. The CPU used for the testing has 18 cores with 

hyperthreading, but 36-thread results are not expected to scale 

much over the physical core count. 

VII. PERFORMANCE EVALUATION 

The performance evaluation is carried out in the following 

four steps.  

1) The VVC baseline implementation is compared with the 

original Kvazaar HEVC encoder. 

2) The impact of each added coding tool is independently 

evaluated in relation to the VVC baseline implementation. 

TABLE IV 

PROFILING PLATFORM FOR COMPLEXITY ANALYSIS 

Processor General Purpose Processor 18-core (4.20GHz) 

Cache 24.75 MB 

SSD 1TB NVMe PCIe Gen 3 

RAM 64GB DDR4 3200 MHz 

Compiler GCC 7.2.0 

Kernel version 64-bit Linux 4.13.0 

 
 

TABLE V 

ENCODING PARAMETERS 

Encoder Options 

Kvazaar --preset veryslow -p1 --wpp --threads=<Threads> 

uvg266 
--preset veryslow -p1 --wpp --owf=<Threads> --mts=intra 

--alf=full --threads=<Threads> 

HM -c encoder_intra_main.cfg --TemporalSubsampleRatio=8 

VVenC 

-c randomaccess_slower.cfg --IntraPeriod=1 --GOPSize=1 

--TemporalSubsampleRatio=8 --WaveFrontSynchro=1 

--WppBitEqual=1 -t <Threads> --MaxParallelFrames=1 

--AMaxBT=0 

VTM -c encoder_intra_vtm.cfg 

 

 

TABLE VI 

VVC BASELINE IMPLEMENTATION OF UVG266 COMPARED WITH SINGLE-

THREADED KVAZAAR 

Class 
BD-rate Speedup 

PSNR SSIM VMAF 1 thr 8 thr 36 thr 
HEVC constrained uvg266 

A1 0.08% -0.13% -3.59% 0.43× 3.39× 8.51× 
A2 -0.79% -0.62% -5.01% 0.44× 3.46× 8.74× 
B -0.90% -0.17% -3.08% 0.43× 3.43× 8.70× 
C 0.02% 1.59% -3.09% 0.43× 3.43× 8.51× 
D 0.82% 2.10% -2.44% 0.43× 3.34× 8.04× 
E 0.74% 2.19% -1.75% 0.43× 3.40× 8.52× 

UVG -1.11% -0.99% -2.58% 0.43× 3.41× 8.59× 
Avg. -0.33% 0.35% -2.97% 0.43× 3.41× 8.53× 

uvg266 VVC baseline 
A1 -2.28% -2.51% -6.82% 0.40× 3.13× 7.83× 
A2 -2.59% -2.45% -7.23% 0.40× 3.19× 8.10× 
B -2.48% -1.83% -5.28% 0.40× 3.18× 8.07× 
C -1.89% -0.53% -5.45% 0.41× 3.22× 8.02× 
D -1.17% -0.08% -5.20% 0.41× 3.13× 7.52× 
E -2.51% -1.21% -5.12% 0.41× 3.17× 7.95× 

UVG -2.04% -1.89% -4.09% 0.40× 3.12× 7.89× 
Avg. -2.10% -1.51% -5.31% 0.40× 3.16× 7.91× 
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3) The most efficient coding tool set is evaluated against the 

original HEVC encoder. 

4) Finally, the proposed solution is compared with the 

existing VVC encoding solutions. 

The result tables presented in this section include the 

averages for each class and across all sequences. Negative BD-

rate values imply better coding efficiency and speedups higher 

than 1.0× faster coding speed than the anchor.  

A. VVC Baseline Implementation  

The VVC baseline implementation of uvg266 is evaluated 

with two configurations: HEVC constrained uvg266 and 

uvg266 VVC baseline. The former aims to use limited set of 

encoding tools of HEVC but encoding a compliant VVC 

bitstream. The angular modes are limited to the 33 found in 

HEVC in this configuration. The second configuration does not 

have this limitation and uses the full 65 angular modes in 

addition to DC and Planar. 

Table VI presents the results of the two previous 

configurations compared with single-threaded Kvazaar used as 

an anchor. The HEVC constrained uvg266 results show that the 

current implementation is around half the speed of Kvazaar 

while providing a similar BD-rate performance. VMAF is an 

exception showing 3% improved BD-rate. Using all angular 

modes improves in BD-rate the coding efficiency of 1.8%, 

1.8%, and 2.4% in PSNR, SSIM, and VMAF, respectively, with 

around 7% reduction in coding speed. The results only include 

a comparison to single threaded Kvazaar, since uvg266 fully 

inherits the scaling capabilities of Kvazaar, as shown by these 

results and the performance of Kvazaar [25]. 

B.  New VVC Tools 

Table VII tabulates the performance results of each 

individual encoding tool implemented in uvg266 compared 

with the uvg266 VVC baseline configuration used as an anchor.  

TABLE VII 

UVG266 IMPLEMENTED TOOLS COMPARED WITH SINGLE-THREADED UVG266 VVC BASELINE 

Class 

BD-rate Speedup BD-rate Speedup 
PSNR SSIM VMAF 1 thr 8 thr 36 thr PSNR SSIM VMAF 1 thr 8 thr 36 thr 

ALF Implicit MTS 
A1 -3.12% -3.51% 0.44% 0.55× 4.14× 9.63× -1.38% -1.77% 0.43% 0.98× 7.72× 19.44× 
A2 -1.25% -1.40% -1.03% 0.63× 4.74× 10.71× -1.03% -1.28% 1.08% 0.99× 7.82× 19.90× 
B -3.41% -4.34% -2.73% 0.59× 4.61× 11.57× -0.90% -1.35% 1.13% 0.99× 7.82× 19.90× 
C -1.51% -2.34% -1.51% 0.50× 3.87× 9.51× -0.66% -0.65% 3.31% 0.99× 7.76× 19.43× 
D -0.60% -0.51% -0.19% 0.30× 2.32× 5.57× -0.42% -0.51% 3.56% 0.99× 7.56× 18.37× 
E -3.72% -5.05% -2.31% 0.44× 3.41× 8.53× -2.24% -2.07% 1.19% 0.99× 7.76× 19.56× 

UVG -3.70% -4.52% 1.85% 0.57× 4.43× 10.68× -0.60% -1.06% 1.46% 0.98× 7.73× 19.59× 
Avg. -2.64% -3.31% -0.48% 0.52× 4.00× 9.67× -0.92% -1.17% 1.76% 0.98× 7.74× 19.47× 

 Explicit MTS LMCS 

A1 -1.93% -1.78% -1.67% 0.37× 2.93× 7.33× 0.52% 1.46% -2.89% 0.97× 7.79× 18.09× 
A2 -1.73% -0.95% -2.10% 0.37× 2.98× 7.48× 0.47% -0.20% 2.90% 0.99× 7.91× 19.37× 
B -0.99% -0.28% -1.53% 0.35× 2.85× 7.17× -0.12% -0.13% 0.63% 0.96× 7.69× 19.12× 
C -0.92% 0.25% -1.86% 0.35× 2.84× 7.04× 0.51% 0.62% -1.15% 0.94× 7.41× 18.49× 
D -0.93% 0.59% -1.96% 0.36× 2.77× 6.76× 0.36% 0.30% 0.14% 0.95× 7.17× 17.71× 
E -2.43% -1.19% -2.26% 0.35× 2.76× 6.95× 0.93% 0.99% 0.11% 0.92× 7.30× 17.44× 

UVG -0.87% 0.18% -0.25% 0.37× 2.93× 7.36× 1.68% 2.05% 0.86% 0.95× 7.62× 17.89× 
Avg. -1.25% -0.28% -1.43% 0.36× 2.87× 7.17× 0.73% 0.87% 0.21% 0.95× 7.56× 18.27× 

 JCCR  

A1 0.11% 0.11% 0.25% 0.91× 7.17× 18.18× 0 
A2 0.01% -0.04% 0.00% 0.92× 7.24× 18.48× - 
B 0.09% 0.07% 0.20% 0.93× 7.41× 18.87× - 
C 0.10% 0.14% 0.20% 0.94× 7.37× 18.36× - 
D 0.13% 0.15% 0.02% 0.94× 7.22× 17.53× - 
E 0.19% 0.19% 0.24% 0.93× 7.30× 18.46× - 

UVG 0.08% 0.04% 0.08% 0.92× 7.27× 18.52× - 

Avg. 0.10% 0.09% 0.13% 0.93× 7.29× 18.38× - 

 

TABLE VIII 

UVG266 WITH ALF AND MTS COMPARED WITH SINGLE-THREADED KVAZAAR 

Class 
BD-rate Speedup 

PSNR SSIM VMAF 1 thr 8 thr 36 thr 
A1 -6.98% -7.59% -8.23% 0.11× 0.86× 2.05× 
A2 -5.40% -4.83% -9.89% 0.12× 0.96× 2.25× 
B -6.63% -6.48% -9.44% 0.12× 0.91× 2.28× 
C -4.19% -2.69% -8.67% 0.11× 0.85× 2.09× 
D -2.57% 0.02% -7.66% 0.08× 0.61× 1.48× 
E -8.13% -7.27% -9.27% 0.10× 0.76× 1.92× 

UVG -6.17% -5.90% -3.73% 0.11× 0.90× 2.20× 
Avg. -5.70% -4.98% -7.48% 0.11× 0.84× 2.07× 

 

TABLE IX 

UVG266 WITH ALF AND MTS COMPARED WITH SINGLE-THREADED HM  

Class 
BD-rate Speedup 

PSNR SSIM VMAF 1 thr 8 thr 36 thr 

A1 -6.08% -6.63% -10.39% 0.60× 4.66× 11.08× 

A2 -3.79% -3.40% -13.78% 0.52× 4.04× 9.47× 

B -5.20% -5.10% -10.12% 0.48× 3.78× 9.48× 

C -2.64% -0.63% -8.35% 0.36× 2.86× 7.06× 

D -1.74% 0.81% -7.88% 0.24× 1.86× 4.48× 

E -6.55% -5.64% -8.90% 0.52× 4.00× 10.06× 

UVG -5.49% -5.43% -5.98% 0.58× 4.59× 11.27× 

Avg. -4.56% -3.84% -8.75% 0.48× 3.75× 9.18× 
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ALF doubles the encoding time for 2.6%, 3.3%, and 0.5% 

BD-rate improvement with PSNR, SSIM, and VMAF, 

respectively. Additionally, since the current implementation of 

ALF needs to perform search for the full frame after initial 

reconstruction, which requires increasing the number of parallel 

frames, which add memory overhead of almost 1MB/CTU or 

around 1.5GB for a single 2160p frame. Similarly, the 

concurrency scaling decreases slightly because of the increased 

number of parallel frames.  

Results show that implicit MTS has negligible effect to the 

encoding speed, and it improves BD-rate by 1.0% and 1.2% 

when measured with PSNR and SSIM but degrades it by 1.6% 

with VMAF. Conversely, explicit MTS improves BD-rate with 

all metrics, but it also cuts the encoding speed to nearly a third 

without affecting the scaling.  

LMCS degrades BD-rate with PSNR and SSIM because it is 

not yet RD optimized. Nevertheless, the encoding complexity 

increase is only around 5% and the VMAF BD-rate 

improvement in Class A1 shows that there is potential in the 

tool once it is RD optimized. However, LMCS also introduces 

a small bottleneck due to the mapping, which slightly decreases 

the thread scaling. 

Like LMCS, JCCR is not yet RD optimized and degrades 

BD-rates by about 0.1% with around 7% increase in complexity 

and no decrease in scaling. 

C. Proposed uvg266 Configuration 

From the experiments of the previous section, the best 

encoding efficiency is reached when uvg266 enables ALF and 

explicit MTS tools. Table VIII tabulates the comparison 

between this proposed configuration and single-threaded 

Kvazaar used as an anchor. The results show that uvg266 

improves the PSNR, SSIM, and VMAF BD-rates by 5.7%, 

5.0%, and 7.5%, respectively. On the other hand, the encoding 

speed is reduced to about tenth. However, since the newly 

added tools are yet to be optimized, there is much room to 

improve the complexity of uvg266, e.g., the complexity of the 

new ALF filter can be significantly reduced with an optimized 

implementation.  

Additionally, uvg266 is evaluated against HM and the results 

are shown in Table IX; HM being used as an anchor. These 

results show that uvg266 outperform HM even with fairly 

limited number of the VVC tools, especially when measured 

with VMAF. Moreover, uvg266 is up to 10× faster than HM 

using multi-threading. 

D. Comparison with Existing VVC Encoders 

Table X compares the proposed configuration of uvg266 

with single-threaded VTM and multi-threaded VVenC used as 

an anchor. Moreover, Table XI tabulates the absolute encoding 

speed in frames per second (FPS) for each encoder and 

threading.  

Since uvg266 does not yet implement all of the existing VVC 

tools, it is expected that both VTM and VVenC outperform it. 

In fact, they both have around 25%, 30%, and 24% better BD-

rate measured with PSNR, SSIM, and VMAF, respectively. 

Nevertheless, uvg266 is over ten times faster with single-

threaded operation and parallelizes better than VVenC. Based 

on these results, it is interesting to notice that developing a new 

VVC encoder based on a practical HEVC encoder allows to 

produce a highly parallel solution even in the early stages of 

development. 

VIII. FUTURE WORK 

In the future, we plan to continue developing uvg266 toward 

a complete VVC encoding solution that achieves real-time 

coding performance. This development can be roughly split into 

following five stages: 1) implementing the rest of the intra 

encoding tools, 2) implementing the inter tools, 

3) implementing the MTT structure, 4) vectorization of new 

tools, and 5) algorithmic optimization and complexity 

reduction, e.g., using machine learning. 1) is currently 

underway and we have started exploring the inter tools to 

start 2). Furthermore, we have started formulated an initial plan 

for 3). There are two main points to adding the support for 

MTT: dealing with non-square CUs and managing the recursive 

splitting. The first step would be to implement a single layer of 

MTT splitting to deal with the non-square CUs, which can be 

then extended for the full MTT support. Since the 

implementation is still in an early stage, 4) and 5) are not yet a 

high priority but we will start from tools such as ALF and MTS 

that have a high complexity overhead. Finally, the development 

of 3) could be directly combine with 5) to use machine learning 

for predicting the structure, as was done with Kvazaar in [25]. 

Additionally, there is opportunities for RD optimization, 

especially with LMCS and JCCR, but most other tools should 

also have options.  

TABLE XI 

UVG266, VVENC, AND VTM ENCODING SPEED IN FPS 

 uvg266 VVenC VTM 

Class 1 thr 8 thr 36 thr 1 thr 8 thr 36 thr 1 thr 

A1 0.018 0.140 0.332 0.002 0.013 0.015 0.002 

A2 0.014 0.110 0.258 0.001 0.008 0.009 0.001 

B 0.051 0.407 1.021 0.004 0.020 0.021 0.004 

C 0.170 1.353 3.338 0.014 0.035 0.036 0.013 

D 0.425 3.308 7.974 0.049 0.074 0.076 0.043 

E 0.146 1.113 2.802 0.014 0.041 0.042 0.012 

UVG 0.017 0.137 0.337 0.002 0.012 0.015 0.001 

 

TABLE X 

UVG266 WITH MTS AND ALF COMPARED WITH VTM AND VVENC  

Class 
BD-rate Speedup 

PSNR SSIM VMAF 1 thr 8 thr 36 thr 
Single-threaded VTM anchor 

A1 32.93% 41.32% 36.97% 12.50× 96.97× 230.24× 
A2 28.54% 33.85% 24.96% 14.80× 115.94× 272.33× 
B 22.22% 26.45% 20.76% 13.98× 110.42× 277.25× 
C 25.81% 31.15% 21.08% 13.48× 107.28× 264.67× 
D 19.02% 24.04% 16.74% 9.88× 77.01× 185.80× 
E 25.27% 29.56% 25.80% 12.61× 96.27× 242.11× 

UVG 23.68% 26.23% 27.92% 14.43× 113.96× 279.54× 
Avg. 24.67% 29.23% 24.72%  13.10× 102.55× 255.28× 

Multi-threaded VVenC anchor 
A1 32.25% 39.03% 29.14% 9.83× 12.46× 25.88× 
A2 27.74% 31.82% 22.50% 12.04× 14.44× 28.42× 
B 22.43% 27.36% 21.32% 11.79× 20.47× 50.02× 
C 25.60% 31.76% 21.36% 12.43× 38.61× 93.01× 
D 18.92% 25.37% 18.97% 8.71× 45.56× 106.51× 
E 25.36% 30.50% 25.64% 10.86× 28.02× 69.30× 

UVG 25.57% 28.25% 26.97% 10.46× 12.50× 23.83× 
Avg. 25.03% 29.85% 23.85% 10.59× 24.58× 53.65× 
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IX. CONCLUSION 

This paper introduced the conversion process of the practical 

HEVC encoder Kvazaar into the practical VVC intra encoder 

called uvg266, which is distributed under the permissive 3-

clause BSD license. The purpose of this paper is to show that 

converting an existing HEVC encoder to VVC standard is a 

valid approach and allows to reuse part of the coding structure, 

optimization, and parallelism of the HEVC implementation. To 

conform to the VVC standard, coding tools can be categorized 

according to their implementation: 1) the HEVC tools that need 

to be entirely rewritten, such as CABAC; 2) the HEVC tools 

that can be upgraded with limited effort; and 3) the new VVC 

tools that need to be implemented from scratch.  

To conclude, our success with the software implementation 

shows promise for more generic reuse of the encoder structure 

when moving between standards. Moreover, implementing an 

encoder in hardware with either hardware description language 

or high-level synthesis can also benefit from this approach by 

reusing encoder blocks similarly to a software encoder. Overall, 

this work aims to close the gap between implementation of 

HEVC and VVC encoding standard and accelerate the 

deployment of real-time VVC solutions on consumer 

electronics. 
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