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A B S T R A C T   

Contamination detection in drinking water is crucial for water utilities in terms of public health; however, 
current online water quality sensors can be unresponsive to various possible contaminants consisting of par
ticulate and dissolved content or require a constant supply of reagents and sample preparation. We used a two- 
line test environment connected to a drinking water distribution system with flow-imaging particle counters and 
conventional sensors to assess their responses to the injection of contaminants into one line, including storm
water, treated wastewater, wastewater, well water, and Escherichia coli, while simultaneously measuring re
sponses to normal water quality fluctuations in the other line. These water quality fluctuations were detected 
with all of the conventional sensors (except conductivity) and with 3 out of 5 of the size- and shape-derived 
particle classes of the flow-imaging particle counter. The flow-imaging particle counter was able to detect all 
of the studied contaminants, e.g. municipal wastewater at 0.001% (v/v), while the oxidation–reduction potential 
sensor outperformed other conventional sensors, detecting the same wastewater at 0.03% (v/v). The presence of 
particles less than 1 µm in size was shown to be a generic parameter for the detection of particulates present in 
the studied contaminants; however, they manifested a considerable response to fluctuations which led to lower 
relative response to contaminants in comparison to larger particles. The particle size and class distributions of 
contaminants were different from those of drinking water, and thus monitoring particles larger than 1 µm or 
specific particle classes of flow-imaging particle counter, which are substantially more abundant in contaminated 
water than in pure drinking water, can improve the detection of contamination events. Water utilities could 
optimize contamination detection by selecting water quality parameters with a minimal response to quality 
fluctuations and/or a high relative response to contaminants.   

1. Introduction 

Contamination in drinking water can cause public health and eco
nomic consequences. Such contamination can occur in the production 
and distribution stages of the water supply via various pathways, 
including raw water quality impairments (Whelton et al., 2015), treat
ment deficiencies (Rhoads et al., 2017), and failures in the distribution 
system (DS) (Besner et al., 2011). Examples of contamination pathways 
include wastewater discharge or surface runoff entering the raw water 
source (Larsson et al., 2014; Mellou et al., 2014), treated wastewater 
entering the DS from a cross-connection (Laine et al., 2011), and 
wastewater, surface runoff, or groundwater in the proximity of drinking 

water infrastructure of low physical integrity, intruding into the DS 
when pressure transients are present (Besner et al., 2011). The 
contamination is likely to increase particulate and dissolved content in 
the contaminated water. To prevent these external contaminants from 
reaching water consumers, an early warning system (EWS) can be 
established that utilizes online water quality sensors and algorithms to 
detect contamination among normal water quality variations in the DS 
(Liu et al., 2015). 

Conventional online water quality sensors used in water treatment 
plant process monitoring, and also considered for routine DS monitoring 
as well as for EWS, measure parameters such as turbidity, conductivity, 
chlorine concentration, and pH (Liu et al., 2014). Even though the 
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performance of conventional online water quality sensors has been 
deemed sufficient for EWS (Liu et al., 2016), many of these sensors, such 
as those for measuring pH and conductivity, are more likely to detect 
dissolved than particulate contaminants. In addition, conventional on
line water quality sensors cannot determine the characteristics of par
ticulate content. For example, turbidity is a sum parameter for 
particulate content, but it does not provide information on the number 
of particles, their size distribution, or whether they are microbes or 
chemical precipitates (Pronk et al., 2007). 

Since many potential contamination scenarios in DS include particles 
such as microbes and chemical precipitates or their aggregates, the need 
for accurate and reliable particulate monitoring is evident. For that 
reason, the recent emergence of optical, counting-based online tech
nologies has been studied for their capacity to monitor suspended par
ticles at high frequency in DS, including online flow cytometry (Safford 
and Bischel, 2019) and online flow-imaging-based particle counting 
(Højris et al., 2018, 2016). Flow imaging involves the capture of images 
of flowing water at a certain volume through a microscope and data 
analysis methods to analyze the images for the size and form of particles 
(Ripple and DeRose, 2018). On the other hand, flow cytometry forces 
suspended particles, pre-stained with reagents, into a single file and 
measures the scattered light and/or fluorescence with a laser beam 
(Safford and Bischel, 2019). Comparing these two technologies, selec
tive staining in flow cytometry requires reagents and incubation and can 
be used to qualitatively distinguish cells and their viability and activity 
among other particulate material (Safford and Bischel, 2019), while 
flow imaging can be used to estimate the total cell count (TCC) by 
classifying particles according to their morphology in addition to par
ticle size distribution with no additional reagents or sample preparation 
(staining and incubation) (Højris et al., 2016). Thus, flow imaging is 
expected to result in less frequent maintenance and higher measurement 
frequency. For instance, Højris et al. (2016) presented an online 
flow-imaging method based on dark-field microscopy that classifies 
particle images into abiotic particles and bacteria. The present study 
introduces a novel online flow-imaging particle counter based on lens
less digital inline holographic microscopy (DIHM), which classifies 
particles by machine-learned features not typical in drinking water and 
by their size. When compared to conventional microscopy using a 
magnifying objective, lensless DIHM allows much larger water volumes 
to be measured because of the considerably larger field of view and 
depth of field of a single image and the ability to take images in rapid 
succession in a flow cell arrangement (Ozcan and McLeod, 2016; Xu 
et al., 2001). 

EWS require information on the detection performance of sensors to 
set correct levels of alarm. The development of contamination detection 
methods typically occurs using pilot-scale test environments in which 
contaminants are injected into drinking water without the risk of 
contaminating the DS. These studies commonly use tap water as a source 
of drinking water. However, drinking water quality normally varies in a 
DS and may result in fluctuations in a signal of a measured parameter 
(Hall et al., 2007), which should be taken into account by determining a 
baseline signal. Pilot-scale studies reduce the presence of these quality 
fluctuations by pre-collecting water in large tanks (> 1000 L) before 
conveying it to the test environment (Dejus et al., 2018; Ikonen et al., 
2017) or recirculating the water to establish a stable baseline (Hall et al., 
2007; Helbling and VanBriesen, 2008). McKenna et al. (2008) suggested 
that the water quality fluctuations in similar pilot-scale test environ
ments may be considerably smaller than the quality fluctuations in the 
actual DS, thereby possibly overestimating sensor performance in 
contaminant detection in natural conditions. 

The present study considered the water quality changes arising both 
from injected contaminants and from normal water quality fluctuations 
in a DS by monitoring the water quality simultaneously from two 
identical measurement lines. By subtracting the response of the sensors 
in the line measuring normal water quality fluctuations (later referred to 
as “reference line”) from that of the sensors in the line measuring 

injected contaminants (later referred to as “contamination line”), the 
water quality change caused by the contaminant alone was obtained. 
The aim of the present study was to evaluate the responses of a novel 
flow-imaging particle counter and conventional water quality sensors to 
fluctuating drinking water quality and real-life contaminants including 
stormwater, treated wastewater, wastewater, and well water in addition 
to Escherichia coli (E. coli), in the DS. An ideal sensor would have a far 
greater response for a real contamination than for normal water quality 
fluctuations; thus, the secondary aim was to study whether particle 
characteristics can be utilized to improve contamination detection. Due 
to the vast amount of recorded data, the present work highlights the 
most considerable observations by examples. 

2. Materials and methods 

2.1. Test environment 

The test environment was connected via a tap to the drinking water 
DS at Tampere University, Hervanta Campus (Tampere, Finland). In this 
test environment, eight sets of contaminant injections, referred to as 
contamination experiments, were introduced to drinking water by 
means of a continuously running test environment in the study period, 
namely summer and autumn 2020 (Jun 2nd – Jul 16th, Sep 21st – Nov 
26th). The water mainly originated from the Rusko surface water 
treatment plant (produces ca. 13 million m3 annually) operated by 
Tampere Water, which uses Lake Roine as a raw water source. The 
treatment plant is approximately 2 km away from the university. The 
variation in drinking water quality in 24-hour periods on the contami
nation experiment days is shown in Table 1. The free chlorine concen
tration varied between 0.19 and 0.31 mg/L. 

The test environment consisted of a contamination line and reference 
line, both including a feed container (10 L, polypropylene) and a mixing 
container (diameter 110 mm, height 600 ±3 mm, polypropylene), fol
lowed by a line for the flow-imaging particle counter and light-scattering 
particle counter (contamination line only) and a sensor rack for the 
conventional online water quality sensors (diameter 50 mm, poly
propylene) (Fig. 1). In the mixing container, the drinking water was 
mixed with the selected contaminant or reference feed during the 
contamination experiments while including an air gap to prevent 
backflow and an air hole to maintain atmospheric pressure in the con
tainers. The reference feed was drinking water, except in the E. coli 
experiment, in which drinking water diluted phosphate buffered saline 
(PBS) was used instead. 

Between the contamination experiments, only the drinking water 
flowed through the mixing containers. Water flowed gravitationally out 
of the mixing containers since the water level in the containers was 
approximately 245 cm higher than the end of the effluent tube in the test 
environment. The water level of the mixing containers was held constant 
by water level sensors that were connected to a control system based on 
a microcontroller (Leonardo, Arduino, USA) and electric solenoid valves 
(Geoline MY18 40 bar, Tecomec, Italy). The flow in the lines was 
adjusted to approximately 5500 mL/min via a half-inch manual ball 
valve. The flow was measured by ultrasound flow sensors (UF08B, 
Cynergy3, UK). During the contaminant injections, the contaminant and 
reference feeds were injected into the corresponding mixing containers 
by a single peristaltic pump (tube inner diameter, 3.1 mm) at 300 mL/ 
min. The retention time from the feed containers to the sensors was 
approximately 1 min, as confirmed by injecting sodium chloride from 
the feed container and monitoring the increase of conductivity (results 
not shown), thus minimizing the warming of the drinking water. The test 
environment was qualified by determining the efficient mixing for 
particles up to 6 µm in size and ensuring that the contamination and 
reference line had similar TCC concentration prior to the contamination 
experiments (for details, see S1 Text S1-S2). 
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2.2. Contamination experiments 

In the eight contamination experiments, each with a single 
contaminant and varying concentrations, five different types of con
taminants including non-artificial contaminants (stormwater, treated 
wastewater, wastewater and well water) and a reference microbial 
contaminant (E. coli), were injected into the drinking water (Table 1). 
The non-artificial contaminants were filtered prior to injections through 
100 µm nylon filters to homogenize them and avoid clogging the flow- 
imaging and light-scattering particle counter. The stormwater was 
sampled from a stormwater pipe, at the edge of a suburban area (Her
vanta, Tampere, Finland), after rain in June. The incoming wastewater 
and effluent were 24-hour composite samples collected from a munic
ipal wastewater treatment plant (Viinikanlahti, Tampere). The well 
water, meant for watering plants, was sampled in the proximity of an 
allotment garden in Tampere, Vuores. E. coli (strain MG1655) was pre
pared by cultivating cells overnight in Lysogeny broth medium supple
mented with 0.4% glucose. The cells were collected by centrifugation 
and thereafter washed and resuspended in PBS buffer (pH 7.4). The 
solution of approximately 1.2 * 109 cells/mL (optical density at 600 nm 
= 4) was vortexed gently before use. All of the contaminant samples 
were stored in the dark at 4 ◦C. The contamination experiments with 
each contaminant consisted of a set of 3–6 target concentrations, which 
included a range of supposedly undetectable concentrations in the low 
end and concentrations causing particle counter saturation in the high 
end (for details see Table S1). The target concentrations varied from the 
0.0000083% v/v (100 cells/ml) of E. coli to the 3% v/v of treated 
wastewater B. Excluding the well water experiment, the experiments 
were performed stepwise: after a 29–35 min of injection, the injection 
pump was turned off for a period of 12–85 min. The well water exper
iment consisted of a single injection in which the well water concen
tration was increased after a period of time in the test environment by 
gradually increasing the well water concentration in the feeding 
container. All of the experiments were performed between 8 and 16 
o’clock on working days to ensure the presence of water quality 
fluctuations. 

On the day of the experiments, the filtered contaminants were 
diluted with the drinking water sampled from the same laboratory on 
the previous day and transferred to the feed containers no more than 60 
min before the corresponding injection. This drinking water used for the 
dilution of the contaminants and as the reference feed was stored in 
tightly closed plastic containers at room temperature. Storing drinking 
water overnight reduced the free chlorine concentration by as much as 

by half, but its use in contaminant dilution did not impact the free 
chlorine concentration of the reference line during the experiments 
(approximately 5% of the water in both lines was feed). In addition, 
diluting the contaminant with the sampled drinking water decreased the 
chlorine concentration of the contaminant feed since chlorine oxidized 
the natural organic matter and microbes of the contaminant before the 
diluted contaminant was injected. These issues were considered un
avoidable for two reasons. First, sampling dilution water during the 
experiments would have forced the use of dilution water with a possible 
high particle concentration due to water quality fluctuations. Second, 
the removal of chlorine from the sampled drinking water by volatiliza
tion into the air was considered too time-consuming. The chlorine was 
deliberately removed from the test environment in the E. coli experiment 
by dissolving approximately 0.3 g/L of sodium thiosulfate pentahydrate 
into the dilution water. 

2.3. Online instrumentation 

The online instrumentation of the study consisted of two types of 
particle counters and four conventional online water quality sensors as 
described in Table 2. The studied particle counters included a flow- 
imaging particle counter (A development version of Qumo water qual
ity monitoring station, Uponor Corporation, Finland) and a light- 
scattering particle counter (OLS50P water with scattered light sensor 
SLS-25/25, PAMAS Partikelmess- und Analysesysteme GmbH, Ger
many), which worked as a reference particle counter to gain knowledge 
of particle concentrations and size distributions during the experiments. 
The conventional water quality sensors, later referred to as the sensors, 
included turbidity (Turbimax CUS51D), free chlorine (Memosens 
CCS51D), conductivity (Memosens CLS82D), and pH/ORP (Memosens 
CPS16D) sensors, all from Endress+Hauser, Switzerland. The placement 
of sensors and particle counters in the test environment is shown in 
Fig. 1. 

During the study period, the maintenance of sensors and particle 
counters was instrument-specific. The flow cells of the flow-imaging 
particle counters were periodically flushed, except on the experiment 
days, and their windows were cleaned when deemed necessary by the 
inspection of the image quality. The light-scattering particle counter 
typically encountered clogging after running for 5–7 days, which 
resulted in zero responses in all channels. This was overcome by feeding 
1 M of hydrochloric acid into the particle counter until the responses 
were stabilized. Before connecting the online particle counter back to 
the test environment, milli-Q water was fed into the particle counter for 

Table 1 
Characteristics of effluent of the test environment prior to the contamination experiments (i.e. drinking water) and characteristics of filtered contaminants. The 
drinking water characteristics of the eight contamination experiments are shown as the mean range. The characteristics of the filtered contaminants and Escherichia coli 
(E. coli) are shown as means with standard deviations.  

Studied water Sample storing 
time (days) 

pH Oxidation reduction 
potential (mV) 

Conductivity 
(µS/cm) 

Turbidity 
(NTU) 

Total suspended 
solids (mg/L) 

Dissolved organic 
carbon (mg/L) 

Total cell 
count (cells/ 
mL) 

Drinking water 0 7.79–8.22 582–719 150.3–157.4 0.05–0.24 n.d. 1.6–2.8 8300 - 81,000 
Stormwater A 1 6.71 ±

0.01 
n.d. 134.1 ± 0.3 77.20 ±

1.43 
29 ± 2 40.9 ± 1.2 n.d. 

Stormwater B 8 7.11±0.01 356±3 120.1 ± 0.1 68.47 ± 9 18 ± 1 n.d. n.d. 
Treated 

wastewater A 
0 7.81 ±

0.02 
325±3 970.7 ± 1.5 1.69 ± 0.03 n.d. 13.4 ± 0.2 n.d. 

Treated 
wastewater B 

0 7.71 ±
0.00 

223±9 951.0 ± 0.0 3.89 ± 0.13 4 ± 0.4 9.6 ± 0.1 2 200 000 ±
41 000 

Wastewater A 0 7.53 ±
0.02 

n.d. 755.7 ± 1.53 117.90 ±
0.6 

164 ± 9 50.4 ± 8.5 24 000 000 ±
4 900 000 

Wastewater B 1 7.59 ±
0.02 

118±16 855.0 ± 1.4 140.42 ±
0.4 

168 ± 14 42.8 ± 0.6 38 000 000 ±
6 200 000 

Well water 1 6.93 ±
0.01 

122±4 631.5 ± 2.1 121.86 ±
0.77 

24 ± 2 22.6 ± 0.5 5 500 000 ±
410 000 

E. coli 29 7.4* n.d. n.d. n.d. n.d. n.d. 1 200 000 
000* 

n.d. = not determined, *see the preparation method. 
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at least 10 min. The conventional sensors were mechanically cleaned at 
the same time when the test environment was maintained. All of the 
sensors used factory calibration during the measurement periods. 

Turbidity results were later calibrated based on the turbidity of grab 
samples prior to the data analysis due to wall scattering issues observed 
in the 50 mm sensor rack. The sensor measurements were manually 
processed, and the observed measurement artifacts due to faulty sensors 
or test environment maintenance were removed from the figures. When 
the measurement artifacts were present during an experiment, a corre
sponding sensor was completely left out from figures and further 
analysis. 

The operating principle of the flow-imaging particle counter is 
shown in Fig. 2. The water flows through a transparent flow channel. 
Directly on one of the windows of the flow channel is an image sensor, 
which is illuminated from the other side by a diverging beam from a 
pulsed diode laser (wavelength 405 nm). The particles suspended in the 
water scatter the light forward in an expanding cone. The scattered light 
interferes with the unscattered light and forms holograms on the image 
sensor. The images are captured continuously, and the particle holo
grams are detected, counted, and analyzed to classify the particles by the 
software embedded in the particle counter. 

The software used internally literally thousands of measurement 
channels, but for simplicity, we reported the particle data collected into 
six measurement channels: N, B, C, F, Small, and Large, expressed as 
particles/mL Fig. 2. N-particles represent the total concentration of 
particles. Small (approx. < 1 µm) and Large (approx. > 2 µm) particle 
classifications resulted from estimating the particle size by the ampli
tude of the hologram and by comparison with the light-scattering par
ticle counter. The B, C, and F classifications resulted from a hybrid 
machine-learning model combining several deep neural networks 
trained on data obtained prior to the contamination experiments with 
stormwater (Uponor R&D, unpublished). 

Since the B, C and F classifications stem from neural networks, their 
properties cannot easily be described in terms of usual morphological 
parameters. However, sample images of the particles are shown in S2 
Figure S8 and some practical descriptions are given below. B-particles 
are larger than a few micrometers and tend to be irregularly shaped. 
They are often found in pipe sediment set loose by, for example, sudden 
flow changes in DS (Uponor R&D, unpublished). F-particles are fiber- 
like, i.e., they are much longer than they are wide. C-particles do not 
appear in normal pipe sediment and are more indicative of particles in 
stormwater or wastewater (Uponor R&D, unpublished). Due to proper
ties of the classification algorithm used at the time of the experiments, a 
given particle can in principle belong simultaneously to C and either B or 
F classes, since the C classification results from a different algorithm 
than the B and F classifications. In addition, a particle in the Large class 
can simultaneously belong to any of B, C or F classes. 

2.4. Analyses 

To determine the water quality similarity in the contamination and 
reference lines on the days of the experiments, drinking water grab 

Fig. 1. Schematic representation of the test environment. The mixing container 
lid was a 3D-printed piece containing four holes for the air, drinking water, feed 
water and water level float sensor. The light-scattering particle counter (P1) 
and flow-imaging particle counter (P2) were installed after individual valves. 
The flowmeter (F) was installed prior to the sensor rack which included the 
turbidity (S1), free chlorine concentration (S2), conductivity (S3), and pH/ORP 
(S4) sensors. 

Table 2 
Online instrumentation and their characteristics in the study. The measuring interval was 3 min for the flow-imaging particle counter, 1 min for the light-scattering 
particle counter and 10 s for the conventional sensors. The inflow to the flow-imaging particle counter was 50–100 mL/min (measured volume > 2 mL, typically ~15 
mL in 3 min) while that to the light-scattering particle counter was 10 mL/min (measured volume 10 mL).  

Instrument Measuring principle Measuring range Maximum measured error/accuracy 

Flow-imaging particle counter Digital holographic microscopy 0.7–100 µm, 6 measurement channels n.a. 
Light-scattering particle 

counter 
Light-scattering 0.5–20 µm, 8 size channels; 0–13 000 particles/ 

ml 
7.8% (coincidence rate in max particle 
concentration) 

Conductivity Potentiometric 1 µS/cm – 500 mS/cm <= 4% 
Free chlorine concentration Amperometric 0–20 mg/L +- 2% 
Oxidation reduction potential Potentiometric, Ag/AgCl reference 

electrode 
− 1500–1500 mV +- 5 mV 

Turbidity Nephelometric 0.000–4000 NTU < 2% or 0.1 FNU 
pH Potentiometric, Ag/AgCl reference 

electrode 
1–12 +- 0.028 pH 

Temperature Platinum resistance − 5–120 ◦C n.a. 

n.a. = not available. 
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samples were characterized for pH, oxidation–reduction potential 
(ORP), turbidity, conductivity, free chlorine concentration, and dis
solved organic carbon (DOC). The grab samples of drinking water were 
taken in 500–1000 mL Pyrex bottles from the effluent tube in the test 
environment simultaneously from both lines no more than two hours 
prior to the first contaminant injection. These were stored in the dark at 
4 ◦C and analyzed in two steps. First, pH and free chlorine were analyzed 
immediately after sampling. Second, ORP, conductivity, turbidity and 
DOC were analyzed within six hours of sampling. 

ORP and pH were analyzed with a WTW pH 315i using WTW Sentix 
41 and SI Analytics Blueline 31 RX electrodes, respectively. Conduc
tivity measurements were performed with a WTW inoLab Cond Level 1 
with a WTW TetraCon 325 electrode and turbidity measurements were 
performed with a WTW Turb 555. For free chlorine, a DPD reagent 
(Hach DPD Free Chlorine Reagent for 10 mL samples) was mixed with a 
10 mL drinking water sample and measured by a Hach DR1900 portable 
spectrophotometer. DOC was measured according to EN 1484 1997 with 
a Shimadzu TOC-VCPH instrument. 

The characterization of filtered contaminants included the same 
aforementioned analyses as those for drinking water and, in addition, 
the filtered contaminants including stormwater, treated wastewater, 
wastewater and well water were analyzed for total suspended solids 
(TSS) according to standard procedure EN 872 2005 (filters, Whatman 
GF/C 1.2 µm) within 24 h from the first injection. 

2.5. Signal-to-noise ratio of online measurements 

The water quality signals of all of the sensors and particle counters 
were analyzed to assess sensor/class responses (later referred to as 
sensor responses) caused by the contaminant injections and to deter
mine a limit of detection (LOD) for each sensor. The analysis consisted of 
calculating a mean difference of sensor response between a period of 
contaminant injection (a period in which the feed pump was on) and a 
period of a selected baseline. The mean difference was used in two 
methods. In the first method, a relative difference was calculated by 
dividing the difference by the mean of a selected baseline response to 
make it comparable between sensors/classes. The linearity of the rela
tive difference in comparison to contaminant concentration was evalu
ated by calculating the linear regression coefficients of determination 
(R2) using Python (v. 3.8.3) library Scikit-learn (v. 0.23.1) and its Lin
earRegression class. In the second method, the mean difference was 
extended to a signal-to-noise ratio (SNR) by dividing the resulting dif
ference by the standard deviation of the selected baseline response 
(Szabo et al., 2008). Unlike Szabo et al. (2008), the baseline sensor 
response was selected via two approaches: (1) a corresponding reference 

line sensor response during each injection was used for the flow-imaging 
particle counter and conventional water quality sensors; (2) a contam
ination line sensor response after each experiment, namely 18–21 
o’clock, was used to evaluate the first approach and to compare the 
responses of the flow-imaging and light-scattering particle counters. An 
SNR depicts a standardized and unitless difference of a sensor response. 
A positive SNR indicates that sensor response increases due to contam
inant injection, whereas a negative SNR indicates that sensor response 
decreases due to contaminant injection. The following representation 
was used in this study: 

SNR =
μcont − μref

σref
(1)  

where μcont is the mean of the sensor response caused by contaminant 
injection in the contamination line, μref is the mean of the selected 
baseline sensor response and σref is the standard deviation of the selected 
baseline sensor response. For example, Eq. (1) results in an SNR of 3 if 
the difference, μcont − μref , is 3*σref . 

Even though the same water was fed into the contamination line and 
the reference line, the sensor responses were occasionally different due 
to apparent differences in sensor quality (for example ORP in Fig. 3), 
which are related to sensor accuracy (Table 2). This led to occasionally 
absolute SNR values of 3 in the control periods (no contaminant, 18–21 
o’clock) (for details, see Table S4), which was overcome by selecting a 
conservative LOD value |SNR| = 10. To assume the identical baseline 
fluctuations for both lines, the sensor and flow-imaging particle counter 
responses of both lines were subsequently adjusted to the same initial 
level based on the sensor responses 20 min prior to the first injection of 
an experiment. 

2.6. The relative proportions of particle classes and sizes 

The relative proportions of different particle classes of the flow- 
imaging particle counter and size classes of the light-scattering parti
cle counter for the different contaminants were determined as follows. 
First, the absolute concentration differences between the contamination 
and reference line (or the reference period for the light-scattering in
strument) were determined at one of the higher concentrations of the 
experiment, but not always the highest concentration to avoid artefacts 
due to saturation of the instruments. Then, the baseline-subtracted 
concentrations were divided by that of the summary class of the in
strument, namely, N or Total, to obtain the relative proportions of the 
particle classes. 

For drinking water, the relative proportions of particle classes and 

Fig. 2. The measurement and data processing principle of the flow-imaging particle counter.  
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sizes were calculated from data collected at the experiment site during 
the first experiment period (Jun 2nd – Jul 16th, 2020). For the flow- 
imaging particle counter, the reference line instrument was used, 
while the only light-scattering particle counter available to us was 
installed in the contamination line. For every time point of this six-week 
data, the particle (size) class concentrations were divided by the 
respective summary class (N or total) to obtain the relative particle 
proportions. From this proportion data, the 25th and 75th percentiles 
were calculated. Since the light-scattering instrument was in the 
contamination line, the raw data also included the contamination pe
riods, washings of the systems etc. We estimated that these exceptional 
times represented much less than 25% of the total measurement time 
and chose a safe upper limit of 75th percentile in order to obtain normal 
limits of fluctuation not affected by the known contaminations. 

3. Results and discussion 

3.1. Normal water quality fluctuations 

In the present study, normal water quality fluctuations were 

determined for the 24-hour periods on the experiment days in order to 
separate the response to contaminants from the response to normal 
water quality fluctuations. These fluctuations were assessed for the flow- 
imaging particle counter and conventional water quality sensors. 

The concentration of particles was higher during working hours 
(7–18 o’clock), especially in the morning, than at other times of the day, 
which was assumed to be caused by the rapid increase in water demand 
in the DS and surrounding property. For example, in Fig. 3, the total 
number of particles (N-particles) and Small particles measured by the 
flow-imaging particle counter fluctuate strongly in both lines also when 
contaminants are not added, especially between 7 and 18 o’clock. The 
N-particles in the reference line between 7 and 18 o’clock had a mean of 
1367 mL− 1 (39% std, n = 220); whereas, outside of these hours, the 
mean was 822 mL− 1 (11% std, n = 254). In contrast, B, C, F and Large 
particle concentrations fluctuated visibly considerably less than N-par
ticle concentrations(Fig. 3). Similarly, the light-scattering particle 
counter in the contamination line outside the contaminant additions 
recorded considerably larger concentration fluctuations for particles up 
to 1—2 µm than for the larger ones (Fig. 3, middle column). 

The fluctuations in water quality measured by of the conventional 

Fig. 3. The measurement data for the wastewater B experiment. The flow-imaging particle counter (left column) and conventional sensors (right column) measured 
both lines simultaneously whereas the light-scattering particle counter (middle column) measured only the contamination line. The horizontal axes depict the time in 
the format ’month-day hour’. 
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sensors, except for turbidity and conductivity, started around 7 o’clock 
and continued until midnight. Typically, free chlorine concentration and 
ORP fluctuations manifested a similar trend: They decreased from 
midnight to the morning hours and then increased until achieving a peak 
value between 9 and 18 o’clock. The pH was typically inversely pro
portional to the free chlorine concentration and ORP. Temperature 
fluctuations were occasionally very similar to free chlorine concentra
tion, ORP, and pH (Fig. 3). Turbidity fluctuations were similar to the 
particle concentration fluctuations. Conductivity showed no daily fluc
tuations; typically, it showed an increasing/decreasing trend. 

Daily fluctuations of water quality in a DS are known to be related to 
varying water demand since the alternating high flow during the day 
and low flow during the night may lead to the mobilization and accu
mulation of particulate material in pipes (Nescerecka et al., 2014; Prest 
et al., 2016; Sunny et al., 2020). In addition, the changes in the residence 
time in a DS may lead to varying temperatures, chlorine concentrations, 
pH, etc., in a DS, which likely explain the observed occasional similarity 
between temperature, free chlorine, ORP and pH fluctuations. Other 
explanations for the origins of water quality fluctuations include 
changes on water supply operation and maintenance and construction 
work in the water supply (Prest et al., 2016). The observed quality 
fluctuations in the present study were most likely related to the water 
demand of the property and the DS, indicating that the fluctuations were 
not caused by sensor artifacts or produced from the test environment in 
which the water flow was gravitational and constant. 

3.2. Sensor responses to wastewater and detection limits 

Contamination detection of the flow-imaging particle counter and 
conventional sensors was studied in the presence of normal water 
quality fluctuations by injecting different contaminants in various con
centrations into one line of the continuously running test environment 
and analyzing simultaneously collected measurement data from both 
contamination and reference line. As discussed in Section 3.1, water 
quality fluctuations were present on all experiment days, as detected 
with all particle counters and sensors except for conductivity. The sensor 
responses to the contaminants were sudden positive (particle concen
trations, turbidity) or negative (free chlorine concentration, ORP, pH) 
shifts to a new range, which lasted until the contaminant left the test 
environment (Fig. 3). 

The magnitudes of the shifts caused by contaminant injections were 
determined as the relative differences between the contamination and 
reference lines, which were calculated by dividing the difference be
tween contamination and reference line by the reference line value for 
all contaminants (Table S3). To evaluate how identical the two similar 
sensors/flow-particle counters performed in the two lines, the relative 
differences were calculated for the control period between 18 and 21 
o’clock (marked as 0 mg/L concentration) in which no contaminant was 
injected. Wastewater experiment B was selected as an example to 
illustrate the differences in sensor responses due to the high particulate 
and dissolved content of the wastewater compared to the drinking water 
(Table 1). The high particulate content in the wastewater increased the 

Fig. 4. Relative differences in the sensor responses of flow-imaging particle counter and conventional sensors to addition of wastewater concentrations in Waste
water B experiment. The relative difference was determined by dividing the difference of the contamination and reference line responses by the reference line 
response. The coefficient of determination (R2) shows how well the observed values (o) are replicated by the linear model (–). 
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particle concentration and turbidity of the water in the contamination 
line. Thus, the relative differences were positive and increased linearly 
with wastewater concentration (R2 = 0.878–0.999) (Fig. 4). By far, the 
steepest slope of the linear fit is observed for F- and C- particles, followed 
by Large and B- particles, while the relative responses of N (total) and 
Small particles and turbidity are substantially weaker. As seen in Fig. 3 
and discussed in more detail in Section 3.4, very few F- and C- particles 
normally are present in drinking water, however, they do exist in 
wastewater, making the relative difference large. In contrast, due to a 
high number of small particles in drinking water, the relative increase in 
N, Small and turbidity caused by the contamination is considerably 
smaller. 

Contrary to parameters measuring the particle content directly, free 

chlorine concentration and ORP decreased linearly with wastewater 
concentration (R2 = 0.962–0.997). This is attributed to the particulate 
content of the wastewater consuming the free chlorine (ORP is a chlo
rine concentration surrogate) and the 5-fold lower ORP value of the 
wastewater compared to that of the drinking water (Table 1). The sen
sors for temperature, pH, and conductivity did not respond to the 
wastewater injection at the studied concentrations. 

The difference between the contamination and reference line re
sponses were extended to take into account the magnitude of normal 
water quality fluctuations by determining a signal-to-noise ratio (SNR), 
which was calculated by dividing the mean difference between the 
contamination line and reference line by the standard deviation of the 
reference line. SNR was used to determine the limit of detection value 

Fig. 5. Selected flow-imaging particle counter 
class (purple) and conventional sensor (green) 
responses in relation to the contaminant con
centrations in all of the contamination experi
ments. The responses were determined as 
signal-to-noise ratios (SNRs), which describes 
the number of times the response exceeded the 
standard deviation of the reference line. The 
limit of detection value was set to |SNR| = 10 
(black). Note that the vertical and horizontal 
axes start with a linear range which changes to 
a logarithmic range. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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(LOD) of the classes/sensors for a contaminant concentration by setting 
the LOD to |SNR| = 10, which indicates the response of ten times the 
standard deviation of the reference line. Even though the relative re
sponses were typically linear (Fig. 4) after the LOD had been exceeded 
(Fig. 5, wastewater B), the SNR responses varied due to normal water 
quality fluctuations. To demonstrate the importance of taking normal 
water quality fluctuations into account in order to avoid overestimating 
the detection performance of difference classes/sensors, SNRs were 
determined by using the reference line as a baseline and using a period 
of 18–21 o’clock of the contamination line when no contaminants were 
injected as a baseline. The utilization of the reference line showed, for 
example, that the 0.01% wastewater B injection increased the mean N- 
particles by 2173 particles/mL (90%) (Fig. 4) in the flow-imaging par
ticle counter in contamination line compared to that of the reference 
line. However, the corresponding standard deviation of the reference 
line (440 particles/mL) varied due to water quality fluctuations. Thus, 
the SNR was 5, remaining below the LOD (for all contaminants and in
jections, see Table S2–S4). In contrast, using only the contamination 
line data and thus the baseline period outside the working hours (a mean 
of 18–21 o’clock in the contamination line), can result in too optimistic 
LOD, shown as an increase in the mean N-particles in the contamination 
line by 3813 particles/mL (486%), with an SNR of 94 (for all contami
nants and injections, see Table S5–S7). Due to the high standard devi
ation of the N-particles in the reference line during the injections, the 
SNR surpassed the LOD only for the highest concentration (0.03%) 
(Table S4), while the baseline period using only contamination line data 
indicated that even the 0.001% wastewater B injection was detectable 
(Table S7). 

The use of the reference line in the test environment allowed for the 
analysis of sensor performance, mimicking realistic conditions such as 
those in DS. In comparison, previous pilot-scale drinking water 
contamination detection studies have concentrated on eliminating 
normal water quality fluctuations by recirculating drinking water 
(Besmer et al., 2017; Hall et al., 2007; Helbling and VanBriesen, 2008; 
Szabo et al., 2008) in the test environment rather than determining 
sensor performance in the presence of fluctuations. In an actual EWS, a 
reference line is not available and a baseline period must be estimated 
based on the already measured data; however, the present study high
lighted that normal water quality fluctuations should be considered in 
improving contamination detection. 

3.3. Impact of contaminants and their characteristics to sensor responses 
and detection limits 

To investigate the flow-imaging particle counter and conventional 
sensor responses to different contaminants in the presence of normal 
water quality fluctuations, a total of 33 injections with eight contami
nants were analyzed for the absolute values of SNRs. The classes of flow- 
imaging particle counter and turbidity were selected to analyze the re
sponses to the particle content of contaminants. As a simplified illus
tration, Fig. 5 shows only the classes of Small, Large and C-particles (for 
all particle classes, see Table S4). The Small particles (< 1 µm) of the 
flow-imaging particle counter detected all of the studied contaminants 
by the criterion that SNR exceeded 10 (Fig. 5), similarly than the N- 
particles (total). In turn, the Large particles (> 2 µm) detected all of the 
studied contaminants except for the reference microbial contaminant 
(E. coli) by the criterion that SNR exceeded 10 (Fig. 5). The C-particles 
showed similar response to Large particles, however, the number of C- 
particles in the studied contaminants were considerably smaller than 
that of Large particles (see for example, Fig. 3). In addition, LOD was not 
exceeded for well water and E.coli contaminants. The particle classes are 
discussed in more detail in Section 3.4. The turbidity sensor could detect 
contamination for one of the highest suspended solid (TSS) concentra
tions of all of the injections based on the contaminant concentration 
(0.5% stormwater A). In this case TSS of stormwater was 29 mg/L on 
average (Table 1), resulting in a 0.15 mg/L TSS concentration in the 

water flowing through the contamination line. Moreover, the LOD 
almost (9.4) exceeded the 0.1% wastewater B injection, which lead to 
0.16 mg TSS/L. For these two injections, the Small and Large particles 
exceeded the LOD in a 2–10-fold lower contaminant concentration with 
up to a 11-fold higher SNR in comparison to those of turbidity. Turbidity 
was not measured for the other high TSS concentration injections, 
namely, 3% treated wastewater B and 0.5% well water (Table S1). 

The sensors responding to the consumption of chlorine, i.e., free 
chlorine concentration and ORP, can be considered as measuring both 
dissolved content as well as particulate content indirectly when the 
particulate content is assumed to consist of microorganisms or particu
late organic matter, both of which are oxidized by chlorine. The free 
chlorine sensor could detect the highest concentrations of the filtered 
contaminant types (stormwater, treated wastewater, wastewater and 
well water) as indicated by exceeding the LOD for all of them except for 
the stormwater (0.5% stormwater B; SNR: 9.2) (Fig. 5). The LOD of the 
ORP sensor was up to 4 times lower than those of the free chlorine 
sensor. 

In addition to ORP and free chlorine, the dissolved content in the 
contaminants was measured by conductivity and pH sensors. The con
ductivity responded to one of the highest dissolved solid concentrations 
(measured as conductivity) in drinking water of all of the injections, 
based on the contaminant concentration (0.3% treated wastewater A) 
and the contaminant conductivity (971 µS/cm). The response of pH 
sensor to contaminants did not exceed the LOD in these experiments. 

The Small particle class was able to detect E. coli (Fig. 5), which was 
not possible for the conventional sensors tested. Previous studies (Hall 
et al., 2007; Ikonen et al., 2017) have suggested that turbidity responds 
to E.coli concentrations 1.6–10-fold higher than those in the present 
study, indicating that the sensitivity of the turbidity and other conven
tional sensors for detecting individual microorganisms from drinking 
water is one-thousandth of the sensitivity of the flow-imaging particle 
counter. The concentrations of E. coli in the present study are very high 
in comparison to typical drinking water quality guideline of 1 cells/100 
mL and the studied particle counters cannot separate bacteria from other 
particles. In this respect flow cytometry outperforms particle counters. 

The conventional sensors typically exceeded the LOD only at the 
highest studied contaminant concentrations or not at all, which in
dicates that higher contaminant concentrations would have been needed 
to determine LOD for conventional sensors. In the literature, for 
example, Szabo et al. (2008) injected 0.8% (v/v) unchlorinated sec
ondary effluent from the wastewater treatment plant, with characteris
tics likely similar to treated wastewater A and B in the present study, 
into the pilot-scale test environment running chloraminated drinking 
water (2 mg/L), which resulted in the following relative responses and 
SNRs: conductivity 3.7% (SNR: 28.4), ORP 4.8% (SNR: 6.2), pH 0.5% 
(SNR: 7.2), and turbidity 116% (SNR: 23.1). The conductivity response 
was in line with that in the present study (treated wastewater A), while 
the turbidity response was considerably higher, which might be related 
to the selection of the baseline period or to the performance of the in
dividual sensors. The low response of the ORP compared to the re
sponses of the present study might have resulted from the chloraminated 
drinking water, in which the free chlorine is not present. Even though 
ORP has been considered to be a surrogate for the free/total chlorine 
concentration (Hall et al., 2007), the high SNR values of the ORP in the 
present study compared to those of the free chlorine suggest that the 
other dissolved constituents also play a role. The ORP had a relatively 
slow response to the contaminants compared to other sensors. For 
example, S2 Figure S5 shows that the reference line had not returned to 
the normal level after injecting 0.1% wastewater A + 0.3 g/L thiosulfate, 
thus leading to an ORP value below the LOD. 

The responses of different sensors and particle counters to contami
nants in drinking water are heavily dependent on the characteristics of 
the drinking water (chlorination, water source, treatment process) and 
contaminants as well as fluctuations in the quality of drinking water. In 
general, the particle content of the drinking water is strictly regulated. 
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For instance, the Drinking Water Directive (European Union, 2020) 
regulates the effluent water of drinking water plants. Thus, the reference 
value of the treatment plants producing over 10000 m3/day is set to 0.3 
NTU in 95% of the samples, and none to exceed 1 NTU. On the other 
hand, the dissolved content of the drinking water is not considered a 
threat to public health similar to that of pathogens, and it varies more 
except in terms of chlorine concentration and pH, which are used to 
maximize the effectiveness of disinfection and reduce the pipe corrosion. 
Even though the ORP and conductivity sensors seem to respond 
considerably to contaminants in drinking water, they might not be 
suitable sensors for all kinds of DS. To illustrate, drinking water deriving 
from several water sources results in a high ORP and conductivity 
fluctuations depending on in what ratios water is fed to DS. However, in 
the studied DS, the conductivity did not fluctuate, while other sensors 
and the most classes of particle counters did, thus making conductivity 
suitable option for an EWS. The sensor selection for an EWS should be 
conducted based on the comparison of existing water quality data as 
well as preliminary online measurements in which the sensor responses 
to normal fluctuations are determined for different sensors. The present 
study showed that the use of conventional sensors for detecting con
taminants from drinking water might still be convenient in applications 
in which sensitivity is not the highest priority. 

3.4. The different particle classes as indicators for contamination 

Since the flow-imaging particle counter classifies the particles in 
drinking water into six classes, namely, N, B, C, F, Small, and Large 
(Fig. 2), based on particle characteristics such as size and shape, the 
effect of particle class onto detection performance was further studied. 

It was illustrated in Fig. 4 and discussed in Section 3.2 that in 
wastewater B experiment, the relative responses of the flow-imaging 
particle counter classes (C, F, B, Large) were considerably larger than 
those of the N- or Small particles. The light-scattering particle counter 
results corroborated this observation by recording substantially greater 
relative increases in the concentrations of larger particles (>1600% for 
particles > 1 µm) than those of small particles (<270% for particles < 1 
µm), using the 0.03% (v/v) injection as an example (Table S6). This 

result was quite general: during injections with stormwater, treated 
wastewater and wastewater, the relative increases of the particles larger 
than 1 µm, as measured with the light-scattering particle counter, and 
the B-, C-, F-, and Large particles of the flow-imaging particle counter 
(Table S3), were manifold compared to the relative increases of parti
cles smaller than 1 µm and the N-, Small particles. At most concentra
tions with stormwater and treated or untreated wastewater, the C- 
particles showed the greatest relative concentration changes of all flow- 
imaging particle classes. With well water and E. coli, however, the 
largest relative changes were observed for the Small particles at most 
concentrations. 

To understand why the relative concentrations of certain particle 
classes increase more rapidly than others when a contaminant is added, 
it is useful to compare the relative compositions of the contaminant and 
drinking water. In Fig. 6, the relative abundances of particle classes, 
characterized by both the flow imaging and light-scattering particle 
counters, are shown for the studied contaminants. In essence, Fig. 6 
shows the resulting relative particle class or size distribution if the 
contaminant were injected to ultrapure water with no particles at all. 
This facilitates comparison between the different contaminants. More
over, Fig. 6 shows the limits of normal fluctuation of drinking water 
shown as a shading between the 25th and 75th percentiles. 

The key to understanding Fig. 6 is to look whether the relative pro
portion of a particle class in a contaminant is considerably above the 
normal range of pure drinking water. If so, that particle class may be a 
good indicator for that contaminant. The above condition was true for 
stormwater, treated wastewater and wastewater with particle classes B, 
C, F and Large and for particle sizes larger than 1 µm. Well water and 
E. coli particle class distributions were different by having substantially 
higher proportion of Small particles and lower proportion of B-, C-, F- 
and Large particles than the other contaminants. With the light- 
scattering particle counter, the distinction was less clear, but still 
apparent, well water and E. coli have a high proportion of the smallest 
particles and a very low proportion of particles larger than 5—10 µm. 

The SNR did not generally follow the same trend as the relative in
crease. For the flow-imaging particle counter using the reference line as 
a baseline, only in the following cases was the SNR higher for a specific 

Fig. 6. The relative particle class/size distribution of the studied contaminants and drinking water determined by the flow-imaging particle counter (left) and the 
light-scattering particle counter (right). The drinking water particle size distribution was calculated from the period Jun 2nd – Jul 16th, 2020 and is shown as the blue 
shading spanning the 25th and 75th percentiles. Since even the 75th percentile was 0 for the C and F classes and for particle sizes larger than 10 µm, the shading 
cannot be shown on the logarithmic proportion scale. The particle sizes on the right indicate the lower bound of the size bin. For example, 0.5 means particles 
0.5—0.7 µm, and 2 means particles 2—5 µm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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particle class than for both the N and Small particles: Stormwater B 
(0.1%, 0.25%) (C-particles), wastewaters A and B (C, Large and B par
ticles) (Table S4). For the light-scattering particle counter, the SNR for 
particles larger than 1 µm was higher than that for particles smaller than 
1 µm in the following cases: stormwater A and B, wastewater A (>5 µm) 
and wastewater B. (Table S7). The reason for the apparent discrepancy 
between the relative concentration increase and the SNR may lie in the 
statistics. Large particles were quite rare both in the reference line or 
during baseline measurement, and during the rather dilute contamina
tions. Therefore, the standard deviation in the denominator of the SNR 
equation (Eq. (1)) is relatively large compared with the absolute con
centration difference, making the SNR smaller. The SNRs at all 
contaminant concentrations are listed in Table S4 for the flow-imaging 
particle counter and conventional sensors, and in Table S7 for the light- 
scattering particle counter, and are shown graphically for selected pa
rameters in Fig. 5. From that data it can be gleaned, for example, that in 
most cases for stormwaters, treated wastewaters and wastewaters, 
whenever the SNR for N- or Small particles exceeded 10, so did also the 
SNR for B-, C- or Large particles. 

To illustrate the feasibility of machine-learned particle classes, 
namely, B, C, and F, their contamination detection performance was 
further analyzed. Although the relative proportion of B-particles was 
considerably higher than that of C-particles for all the studied contam
inants (Fig. 6), the C-particles may be a better contamination indicator, 
since also pure drinking water contains B-particles. The B-particles 
might represent sediment particles that occasionally detach and are 
transported in a DS. Curiously, the well water was visually rusty and 
contained a considerable number of B particles (Fig. 6). The high content 
of iron and manganese was confirmed by laboratory analyses (results 
not shown). The fiber-like F-particles were still substantially rarer than 
C-particles in the studied stormwater, wastewater and treated waste
water contaminants (Fig. 6), which limited their usefulness as generic 
contamination indicator. However, the distinct shape of F-particles may 
help to identify certain types of contaminants. 

Recent research on drinking water contamination monitoring has 
mainly focused on online microbial monitoring (Besmer et al., 2017; 
Favere et al., 2021); however, a particle size range of 1–8 µm has been 
proposed for detecting contaminants in general in DS (Ikonen et al., 
2017). Microbial content tends to fluctuate due to varying hydraulic 
conditions, water temperature, water source, and treatment (Prest et al., 
2016), which was shown in the present study to be true also for particle 
sizes smaller than 10 µm. The present study suggests that the relative 
proportion of larger particles in pure drinking water is low based on the 
particle concentration observation of six weeks (Fig. 6), where 75% of 
the time less than 0.7% of particles were in size range 1—2 µm, less than 
0.2% 2—5 µm, and less than 0.02% larger than 5 µm. On the smaller end 
of the size spectrum, 75% of the time more than 90% of particles were in 
size range 0.5—0.7 µm and more than 4.4% between 0.7 and 1 µm. 
Comparing relative particle size distributions obtained using different 
instruments may not be straightforward, if the LOD (smallest detectable 
particle size) or the size bins differ. With this in mind, the above finding 
generally agrees with observations from various Danish drinking water 
DSs, in which less than 0.1% of particles were larger than 5 µm (Højris 
et al., 2016), probably due to downstream water treatment processes 
such as sand filtration and activated carbon filtration as mentioned in 
Section 3.3. However, the larger particles in DSs have been observed in 
more downstream locations (Prest et al., 2021; Verberk et al., 2006) and 
they have been associated with discoloration events (Vreeburg et al., 
2008). Since the test environment of the present study was located only 
two kilometers away from the treatment plant, the observed fluctuations 
of larger particles may be less than those of further down the DS. For 
future studies, it might be useful to determine if the particle classes of 
the flow-imaging particle counter could also detect discoloration events. 

To distinguish real contamination events from normal water quality 
fluctuations, in general, one should select parameters that have a high 
relative response to contaminants and a low response to normal water 

quality fluctuations. An ideal parameter candidate has a response pro
portional to the contaminant concentration (for the sensor in the 
contamination line) and a flat profile otherwise (Fig. 3 and 
Table S2–S7). The C- and F-particle classes of the flow-imaging particle 
counter, and classes for particles larger than 10 µm (light-scattering 
particle counter) seem to be most specific to contamination by storm
water and wastewater. The Small and N-particle classes and those per
taining to particles smaller than 2 µm are catch-all parameters that 
responded to the studied contaminants in addition to normal fluctua
tions. The B-particle class was hypothesized to be associated with sedi
ment particles, that may be regarded as an indicator for non-harmful 
discoloration events and not actual contamination. Of the conventional 
water quality sensors, only conductivity was relatively immune to 
normal quality fluctuations, but it only responded strongly to treated 
wastewater. For parameters that respond to both contaminants and 
normal fluctuations, one needs to utilize detection algorithms that are 
able to eliminate the effect of normal water quality fluctuations; how
ever, normal water quality fluctuations can be somewhat irregular due 
to their nature, which can in turn lead to false alarms in an EWS. 

4. Conclusions  

• The simultaneous and continuous baseline measurements during 
contaminant injections made it possible to separate sensor responses 
caused by contaminants from those caused by normal water quality 
fluctuations present in a DS. Not taking into account normal quality 
fluctuations may lead to overestimating a sensor’s capability to 
detect contaminants.  

• Normal water quality fluctuations impacted the responses of the 
particle classes N, Small, Large, B of the flow-imaging particle 
counter, particle size classes less than 10 µm of the light-scattering 
particle counter as well as the conventional sensors except 
conductivity.  

• Particle classes C and F of the flow-imaging particle counter and 
particle sizes >10 µm of the light-scattering particle counter were 
relatively immune to normal water quality fluctuations, in addition 
to that they had a high relative response to contaminations with 
stormwater and wastewater.  

• Small particle class of the flow-imaging particle counter and the < 1 
µm classes of the light-scattering particle counter detected all the 
studied contaminants, including those with an especially high con
tent of small particles (well water and E. coli), however, they were 
susceptible to normal water quality fluctuations. 

• ORP, which responded both to dissolved and particulate contami
nants, detected the presence of all of the studied contaminants, 
except E. coli. 
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Helenius, J., Hänninen, M.L., Maunula, L., Mustonen, J., Kuusi, M., Collin, P., 
Korpela, M., Kuusela, A.L., Mustajoki, S., Oksa, H., Räsänen, S., Uotila, T., Katto, T., 
2011. An extensive gastroenteritis outbreak after drinking-water contamination by 
sewage effluent, Finland. Epidemiol. Infect. 139, 1105–1113. https://doi.org/ 
10.1017/S0950268810002141. 

Larsson, C., Andersson, Y., Allestam, G., Lindqvist, A., Nenonen, N., Bergstedt, O., 
Institute of Biomedicine, D. of I.M., Institutionen för biomedicin, avdelningen för 
infektionssjukdomar, 2014. Epidemiology and estimated costs of a large waterborne 
outbreak of norovirus infection in Sweden. Epidemiol. Infect. 142, 592–600. https:// 
doi.org/10.1017/S0950268813001209. 

Liu, S., Che, H., Smith, K., Chang, T., 2015. A real time method of contaminant 
classification using conventional water quality sensors. J. Environ. Manage. 154, 
13–21. https://doi.org/10.1016/j.jenvman.2015.02.023. 

Liu, S., Che, H., Smith, K., Chen, L., 2014. Contamination event detection using multiple 
types of conventional water quality sensors in source water. Environ. Sci. Process. 
Impacts 16, 2028–2038. https://doi.org/10.1039/c4em00188e. 

Liu, S., Li, R., Smith, K., Che, H., 2016. Why conventional detection methods fail in 
identifying the existence of contamination events. Water Res. 93, 222–229. https:// 
doi.org/10.1016/j.watres.2016.02.027. 

McKenna, S.A., Wilson, M., Klise, K.A., 2008. Detecting changes in water quality data. 
J. /Am. Water Work. Assoc. 100, 74–85. https://doi.org/10.1002/j.1551- 
8833.2008.tb08131.x. 

Mellou, K., Katsioulis, A., Potamiti-Komi, M., Pournaras, S., Kyritsi, M., Katsiaflaka, A., 
Kallimani, A., Kokkinos, P., Petinaki, E., Sideroglou, T., Georgakopoulou, T., 
Vantarakis, A., Hadjichristodoulou, C., 2014. A large waterborne gastroenteritis 
outbreak in central Greece, March 2012: challenges for the investigation and 
management. Epidemiol. Infect. 142, 40–50. https://doi.org/10.1017/ 
S0950268813000939. 

Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., Hammes, F., 2014. Biological instability 
in a chlorinated drinking water distribution network. PLoS One 9, e96354. https:// 
doi.org/10.1371/journal.pone.0096354. 

Ozcan, A., McLeod, E., 2016. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18, 
77–102. https://doi.org/10.1146/annurev-bioeng-092515-010849. 

Prest, E.I., Hammes, F., van Loosdrecht, M.C.M., Vrouwenvelder, J.S., 2016. Biological 
stability of drinking water: controlling factors, methods, and challenges. Front. 
Microbiol. 7 https://doi.org/10.3389/fmicb.2016.00045. 

Prest, E.I., Schaap, P.G., Besmer, M.D., Hammes, F., 2021. Dynamic hydraulics in a 
drinking water distribution system influence suspended particles and turbidity, but 
not microbiology. Water (Switzerland) 13. https://doi.org/10.3390/w13010109. 

Pronk, M., Goldscheider, N., Zopfi, J., 2007. Particle-size distribution as indicator for 
fecal bacteria contamination of drinking water from karst springs. Environ. Sci. 
Technol. 41, 8400–8405. https://doi.org/10.1021/es071976f. 

Rhoads, W.J., Garner, E., Ji, P., Zhu, N., Parks, J., Schwake, D.O., Pruden, A., 
Edwards, M.A., 2017. Distribution system operational deficiencies coincide with 
reported Legionnaires’ Disease clusters in Flint, Michigan. Environ. Sci. Technol. 51, 
11986–11995. https://doi.org/10.1021/acs.est.7b01589. 

Ripple, D.C., DeRose, P.C., 2018. Primary determination of particle number 
concentration with light obscuration and dynamic imaging particle counters. J. Res. 
Natl. Inst. Stand. Technol. 123 https://doi.org/10.6028/jres.123.002. 

Safford, H.R., Bischel, H.N., 2019. Flow cytometry applications in water treatment, 
distribution, and reuse: a review. Water Res. 151, 110–133. https://doi.org/ 
10.1016/j.watres.2018.12.016. 

Sunny, I., Husband, P.S., Boxall, J.B., 2020. Impact of hydraulic interventions on chronic 
and acute material loading and discolouration risk in drinking water distribution 
systems. Water Res. 169, 115224 https://doi.org/10.1016/j.watres.2019.115224. 

Szabo, J., Hall, J., Meiners, G., 2008. Sensor response to contamination in 
choloraminated drinking water. J. /Am. Water Work. Assoc. 100, 33–40. https://doi. 
org/10.1002/j.1551-8833.2008.tb09606.x. 

Verberk, J.Q.J.C., Hamilton, L.A., O’Halloran, K.J., Van Der Horst, W., Vreeburg, J., 
2006. Analysis of particle numbers, size and composition in drinking water 
transportation pipelines: results of online measurements. Water Sci. Technol. 
https://doi.org/10.2166/ws.2006.902. 

Vreeburg, J.H.G., Schippers, D., Verberk, J.Q.J.C., van Dijk, J.C., 2008. Impact of 
particles on sediment accumulation in a drinking water distribution system. Water 
Res. 42, 4233–4242. https://doi.org/10.1016/j.watres.2008.05.024. 

Whelton, A.J., McMillan, L.K., Connell, M., Kelley, K.M., Gill, J.P., White, K.D., Gupta, R., 
Dey, R., Novy, C., 2015. Residential tap water contamination following the freedom 
industries chemical spill: perceptions, water quality, and health impacts. Environ. 
Sci. Technol. 49, 813–823. https://doi.org/10.1021/es5040969. 

Xu, W., Jericho, M.H., Meinertzhagen, I.A., Kreuzer, H.J., 2001. Digital in-line 
holography for biological applications. Proc. Natl. Acad. Sci. U. S. A. 98, 
11301–11305. https://doi.org/10.1073/pnas.191361398. 

M. Koppanen et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.watres.2022.118149
https://doi.org/10.3389/fmicb.2017.01900
https://doi.org/10.1016/j.watres.2010.10.035
https://doi.org/10.2166/ws.2018.039
https://doi.org/10.1016/j.watres.2021.117387
https://doi.org/10.1002/j.1551-8833.2007.tb07847.x
https://doi.org/10.1002/j.1551-8833.2007.tb07847.x
https://doi.org/10.1016/j.watres.2008.03.009
https://doi.org/10.1016/j.watres.2008.03.009
https://doi.org/10.1038/srep23935
https://doi.org/10.2166/h2oj.2018.014
https://doi.org/10.1016/j.jenvman.2017.04.090
https://doi.org/10.1016/j.jenvman.2017.04.090
https://doi.org/10.1017/S0950268810002141
https://doi.org/10.1017/S0950268810002141
https://doi.org/10.1017/S0950268813001209
https://doi.org/10.1017/S0950268813001209
https://doi.org/10.1016/j.jenvman.2015.02.023
https://doi.org/10.1039/c4em00188e
https://doi.org/10.1016/j.watres.2016.02.027
https://doi.org/10.1016/j.watres.2016.02.027
https://doi.org/10.1002/j.1551-8833.2008.tb08131.x
https://doi.org/10.1002/j.1551-8833.2008.tb08131.x
https://doi.org/10.1017/S0950268813000939
https://doi.org/10.1017/S0950268813000939
https://doi.org/10.1371/journal.pone.0096354
https://doi.org/10.1371/journal.pone.0096354
https://doi.org/10.1146/annurev-bioeng-092515-010849
https://doi.org/10.3389/fmicb.2016.00045
https://doi.org/10.3390/w13010109
https://doi.org/10.1021/es071976f
https://doi.org/10.1021/acs.est.7b01589
https://doi.org/10.6028/jres.123.002
https://doi.org/10.1016/j.watres.2018.12.016
https://doi.org/10.1016/j.watres.2018.12.016
https://doi.org/10.1016/j.watres.2019.115224
https://doi.org/10.1002/j.1551-8833.2008.tb09606.x
https://doi.org/10.1002/j.1551-8833.2008.tb09606.x
https://doi.org/10.2166/ws.2006.902
https://doi.org/10.1016/j.watres.2008.05.024
https://doi.org/10.1021/es5040969
https://doi.org/10.1073/pnas.191361398

	An online flow-imaging particle counter and conventional water quality sensors detect drinking water contamination in the p ...
	1 Introduction
	2 Materials and methods
	2.1 Test environment
	2.2 Contamination experiments
	2.3 Online instrumentation
	2.4 Analyses
	2.5 Signal-to-noise ratio of online measurements
	2.6 The relative proportions of particle classes and sizes

	3 Results and discussion
	3.1 Normal water quality fluctuations
	3.2 Sensor responses to wastewater and detection limits
	3.3 Impact of contaminants and their characteristics to sensor responses and detection limits
	3.4 The different particle classes as indicators for contamination

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References


