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Rintasyövän ensisijainen hoito on kasvaimen poisto rinnan säästävällä leikkauksella, jolloin on tärkeää 

saavuttaa riittävä tervekudosmarginaali. Riittämätön marginaali lisää syövän uusimisen riskiä ja johtaa usein 
uusintaleikkaukseen. Erilaisia menetelmiä leikkauksen aikaiseen marginaalin arviointiin on kehitelty, mutta ne 
ovat olleet suorituskyvyltään tai kustannustehokkuudeltaan puutteellisia. Menetelmä, jolla koko marginaali 
saataisiin arvioitua reaaliajassa, auttaisi kasvaimen optimaalisessa poistossa. 

Differentiaali-ionimobiliteettispektrometria (DMS) on nopea ja edullinen teknologia, jolla analysoidaan 
kaasuseoksia. Kaasumolekyylit ionisoidaan ja erotellaan korkeajännitteisen, epäsymmetrisesti muuttuvan 
sähkökentän avulla. Kaasun molekulaarinen koostumus esitetään dispersiokuvana, jonka tulkintaan käytetään 
tekoälyä. DMS-teknologiaa voidaan käyttää kudostunnistukseen. Kudosta poltetaan sähköveitsellä tai laserilla 
ja muodostuva palokaasu analysoidaan. DMS-teknologialla voidaan erottaa terve kudos ja syöpäkudos. 

DMS-teknologian soveltuvuutta kudostunnistukseen on aiemmin tutkittu käyttämällä ihmisperäisiä 
syöpänäytteitä, joiden koostumus on heterogeeninen ja syöpäsolukonsentraatio vaihteleva. On siten ollut 
epäselvää, kuinka paljon syöpäsoluja syöpäkudoksen tunnistamiseen tarvitaan. Tässä tutkimuksessa haluttiin 
selvittää DMS:n syöpäsolujen havaitsemiskynnys. Tutkimuksessa käytettiin laserpohjaista automatisoitua 
tietokoneohjattua DMS-järjestelmää, viljeltyjä BT-474 rintasyöpäsoluja sekä ihmisen kohdun 
myoomakasvaimista valmistettua homogeenista matriisia Myogeelia. 

Tutkimusta varten valmistettiin näytteitä, jotka sisälsivät vaihtelevia määriä rintasyöpäsoluja sekä 
vakiomäärän Myogeelia. Syöpäsolukonsentraatiot vaihtelivat välillä 3.7–37 000 solua/μl. Nollanäytteenä toimi 
pelkkä Myogeeli ilman syöpäsoluja. Näytteet pipetoitiin kuoppalevyihin. Näytteitä poltettiin laserilla ja 
palokaasu ohjattiin DMS-laitteeseen. Syöpäsolujen havaitsemiskynnys arvioitiin kouluttamalla 
binaariluokittelijoita erottamaan syöpäsoluja sisältävä näyte nollanäytteestä. Binaariluokittelijoina käytettiin 
lineaarista erotteluanalyysia, lineaarista tukivektorikonetta, radiaalista tukivektorikonetta ja 
konvoluutioneuroverkkoja. Kaikki luokittelijat kykenivät erottamaan konsentraation 3700 solua/μl sekä sitä 
suuremmat konsentraatiot nollanäytteestä. 

Tulokset osoittavat, että laserpohjaisella DMS-järjestelmällä kyetään havaitsemaan pieniä 
syöpäsolumääriä Myogeelista. Sähköveitseen yhdistetyllä DMS-laitteella on potentiaalia toimia syöpäkirurgin 
apuna tervekudosmarginaalin tunnistuksessa ja tässä tutkimuksessa todettu syöpäsolujen havaitsemiskynnys 
on tähän tarkoitukseen riittävä. Lisäksi tämä tutkimusasetelma on tulevaisuudessa käyttökelpoinen eri 
kudostunnistusmenetelmien vertailua ja kalibrointia varten. Laserpohjainen DMS-järjestelmä voisi 
jatkokehityksen jälkeen toimia myös patologin apuvälineenä ihmisperäisten näytteiden analysoinnissa. 
 
Avainsanat: Differentiaali-ionimobiliteettispektrometria; Rintasyöpä; Myogeeli; Leikkausmarginaali; 
Laserpohjainen DMS-järjestelmä (ATLAS) 
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� Low densities of cultured breast cancer cells can be detected from Myogel with DMS.
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a b s t r a c t

The primary treatment of breast cancer is the surgical removal of the tumor with an adequate healthy
tissue margin. An intraoperative method for assessing surgical margins could optimize tumor resection.
Differential ion mobility spectrometry (DMS) is applicable for tissue analysis and allows for the differ-
entiation of malignant and benign tissues. However, the number of cancer cells necessary for detection
remains unknown. We studied the detection threshold of DMS for cancer cell identification with a widely
characterized breast cancer cell line (BT-474) dispersed in a human myoma-based tumor microenvi-
ronment mimicking matrix (Myogel). Predetermined, small numbers of cultured BT-474 cells were
dispersed into Myogel. Pure Myogel was used as a zero sample. All samples were assessed with a DMS-
based custom-built device described as “the automated tissue laser analysis system” (ATLAS). We used
machine learning to determine the detection threshold for cancer cell densities by training binary
classifiers to distinguish the reference level (zero sample) from single predetermined cancer cell density
levels. Each classifier (sLDA, linear SVM, radial SVM, and CNN) was able to detect cell density of 3700 cells
mL�1 and above. These results suggest that DMS combined with laser desorption can detect low densities
of breast cancer cells, at levels clinically relevant for margin detection, from Myogel samples in vitro.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Breast cancer is the leading cause of women's cancer-related
deaths [1]. The cornerstone of breast cancer treatment is tumor
r B.V. This is an open access articl
removal preferably with breast-conserving surgery (BCS), to which
approximately 80% of patients are amenable [2,3]. Achieving
healthy tissue margins is essential, as margin involvement in-
creases the risk of local recurrence [4]. In invasive carcinoma, the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tissue margin is adequate if the ink-marked tissue edge of the
surgical specimen is free from cancer. A 2 mm margin is recom-
mended for ductal carcinoma in situ (DCIS) [2]. In case of margin
positivity, re-excision is usually required [2,4,5]. Approximately
30% of patients treated with BCS require re-excision [6]. However,
re-excisions impair the aesthetic results of BCS [7] and increase the
burden on the health care system.

A tool for margin assessment during surgery could optimize the
resection of the tumor and reduce the incidence of positive mar-
gins. Several methods for intraoperative tissue identification have
been developed, but they suffer from resource intensiveness and
lack of specificity or sensitivity [8]. DCIS poses a specific challenge
as this precursor of invasive cancer grows along the mammary
ducts, and the cancer cell density at the resection margin can be
low. Additionally, the assessment of DCIS with frozen section
analysis can be challenging due to its diffuse growth pattern and
can result in undetected positive margins on the conventional
breast pathology pipeline [9].

Molecular methods for tissue analysis have shown promise.
Most emerging technologies utilize mass spectrometry (MS)
[10e12]. Although MS is unparalleled in accuracy, its use is limited
by its cost and complexity. Differential Mobility Spectrometry
(DMS) is an atmospheric technology in which the gaseous mole-
cules of the sample are filtered, ionized, and derived into a high
voltage asymmetric electric field. The trajectories of the molecules
differ according to their shape, size, and charge. The separated ions
hit a detector plate and lose their charge which induces an electric
current measured by the device. The molecular composition of the
sample is then presented as a dispersion plot. The advantages of
DMS are the low complexity of analysis, easy hardware mainte-
nance, and economic efficiency compared toMS. Our research team
has developed a DMS-based method for tissue analysis, in which
the sampling is conducted by electrocautery or laser evaporation.
The method has demonstrated promising results in studies on
animal tissues, human breast cancer, and brain tumors [13e17].

Although we have demonstrated the ability to differentiate
malignant and benign tissues with DMS, the number of cancer cells
necessary for detection remains undecided. The study of the matter
poses a challenge as the volume of cancer cells in surgical speci-
mens varies between 15% and 95% [18]. In addition, the cell con-
tents of surgical specimens can be little, and the growth patterns of
cells diffuse. The heterogeneous composition of the matrix is also a
significant confounder in ex vivo specimens. An approach that
utilizes cultured cells and a tumor microenvironment (TME)
mimicking matrix is appealing as the matrix remains similar
throughout analysis and the number of cells in the matrix can be
accurately controlled.

The aim of this paper is to determine the detection threshold for
breast cancer cells with laser desorption DMS with a widely char-
acterized breast cancer cell line and a human leiomyoma-based
TME matrix (Myogel). In future, this study design could act as a
reproducible and standardizable means for comparing tissue
analysis methods and their calibration.

2. Materials & methods

2.1. Chemicals and reagents

We purchased the Dulbecco's Modified Eagle's Medium
(DMEM), antibiotic mixture (10 000 U penicillin and 10 mg strep-
tomycin per ml in 0.9% NaCl), 10% Dimethyl Sulfoxide (DMSO),
Dulbecco's Phosphate-buffered saline (DPBS), and aprotinin
(66.7 mg mL�1) from Sigma-Aldrich (St. Louis, MO, USA). Fetal
bovine serum (FBS) was purchased from Gibco (Waltham, Massa-
chusetts, USA). Thrombin (0.6 U mL�1) and fibrinogen (1 mg mL�1)
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were purchased from Merck (Taufkirchen, Germany). Myogel
(1 mg mL�1) was acquired from the University of Oulu (Oulu,
Finland).
2.2. Cell line and Myogel matrix preparation

We utilized the breast cancer cell line BT-474 of which the
intrinsic subtype is Luminal B-like (HER2-positive) [19]. The BT-
474 cells were cultured in DMEM with low glucose and supple-
mented with 10% FBS and an antibiotic mixture. The cells were
incubated in a Thermo Scientific CO2 incubator (37 �C; 5% CO2) and
passaged every 2e3 days. Last, the cultured BT-474 cells were
frozen in 10% DMSO.

Myogel matrix mixture was prepared as previously described by
Salo et al. [20]. The BT-474 cells were defrosted, washed with DPBS,
and centrifuged. We counted the cells (Countess™ automated cell
counter, Invitrogen, cat no C10281) and suspended them with a
culture media to densities ranging between 102 and 106 cells in
each 27 mL sample. The cell densities approximately corresponded
to 3.7e37 000 cells mL�1. We added the Myogel, thrombin, and
aprotinin into these solutions simultaneously, and fibrinogen right
before pipetting as it quickly forms a gel. Finally, each sample
(27 mL) consisted of BT-474 breast cancer cells (102e106 cells per
sample); DMEM (19.5 mL); Myogel (2.65 mL); and the above-
described reagents (4.86 mL). We also prepared a cancer cell-free
Myogel matrix mixture which performed as a zero sample.

The use of human leiomyoma in the preparation of Myogel has
been approved by the Ethics Committees of Oulu University Hos-
pital (statement number 2/2017). All methods were performed in
accordance with the relevant guidelines and regulations.

For this study, we prepared eight custom-made well plates that
each contained 36 wells (3.5 mm � 3.5 mm x 3.0 mm). Of each
prepared cell density, 4e8 samples were pipetted into the wells in
random order (Sartorius Mline® electronic pipette, Sartorius AG,
Germany). In total, we prepared 87 samples. The remaining wells
were filled with agar which produces an unnoticeable DMS
response. These agar samples functioned as a quality control
sample. After sample preparation, the well plates were placed in a
cell culture incubator (37 �C) for 30 min for the Myogel matrix to
solidify. A parafilm was placed on top of each well plate to prevent
sample dehydration, and the samples were frozen (�20 �C).
2.3. Measurement system

The study utilized a custom-built automated tissue laser anal-
ysis system (ATLAS), which has been previously described in detail
by Vehkaoja et al. [21] Contrary to the previous publication, the
DMS sensor utilized in this study was a prototype version of the
IonVision DMS device (Olfactomics Oy, Finland).

ATLAS comprised a height-adjustable sampling stage, laser
evaporator, and the DMS device. Sample evaporation was per-
formed with a computer controlled, 40W,10.6 mm laser cutter (CO2
Laser engraving machine, Vevor, China). We replaced the control
electronics and software of the laser with custom-built hardware
and software to increase the spatial accuracy and reliability of
sampling. Laser sampling was controlled by a graphical user
interface. To control sample humidity and ensure the absence of
volatile contaminants from room air, carrier gas of purified and
humidified pressurized air was continuously directed to the sam-
pling stage through a sampling nozzle. The nozzle created a pro-
tective stream of carrier gas around the sampling area, and upon
sample vaporization, guided the sample gas to the DMS inlet tube.
A schematic representation of the measurement system is intro-
duced in Fig. 1 (see Fig. 2).



Fig. 1. The ATLAS measurement system: A) the graphical user interface; B) the air
humidifier for the carrier gas; C) the sampling platform; and D) the DMS sensor.
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2.4. Sampling

We analyzed each well plate within a period of two months on
separate days to avoid day-wise bias or drift which could affect the
results. Each sample (27 mL) was evaporated four times with the
laser. The laser incisions were in a square shape 1 mm apart from
each other vertically and horizontally. A 2 ns laser pulse was
repeated 120 times with a pulse repetition time set to 98 ns. The
start delay for the measurement was 1 s to account for the transfer
of the sample from the sampling platform to the DMS core. We
Fig. 2. The averaged DMS dispersion plots of the zero sample and the applied cell density lev
especially 105 and 106, there is a visible, pronounced peak at the high USV values between
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implemented a cleansing period of 30 s after each measurement to
reduce the carry-over from consecutive measurements. The
vaporized samples were analyzed at compensation voltage values
from�0.5 to 7 V with increments of 0.107 V, and separation voltage
values of 200e800 V with increments of 15 V. Thus, the resulting
dispersion plots had 2800 features for both the positive and
negative sides, representing the molecular composition of the
sample. With the DMS gap width of the IonVision instrument
(0.25 mm), the voltage values for the compensation field and the
separation field were equal to electric field strengths of
-2e28 kV m�1 and 800e3200 kV m�1, respectively.
2.5. Approximation of cell volume

We approximated the number of breast cancer cells that
reached the DMS analysis computationally. The formula for the
calculation of the volume percentages of breast cancer cells per
well is presented in Table 1. The mean diameter of a viable BT-
474 cell was 14.6 mm. Thus, the mean volume of a BT-474 cell was
1.63� 10�6 mL.We calculated the volume percentage of BT-474 cells
per well as follows: 10n x 1.63 � 10�6 mL x (27 mL)�1 x 100%. The
volume of a laser beam was 0.432 mL (diameter 0.25 mm; height
2.2 mm). Each well was measured four times. The estimated
number of cells that reached the DMS analysis was calculated as
follows: 10n x 4 � 0.432 mL x (27 mL)�1.
els. We plotted only the measurements of the positive ion mode. On high density levels,
2 V and 3 V UCV.



Table 1
The description of samples.

Number of breast cancer cells per
well

Equivalent cell density (cells
mL�1)

Volume percentage of breast cancer cells per well
(%)

Estimated number of cells that reached DMS
analysis

0 0 0 0
102 3.7 0.00064 6
103 37 0.0064 64
104 370 0.064 640
105 3700 0.64 6400
106 37 000 6.4 64 000
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2.6. Statistical analysis

Raw DMS data accumulated from the positive ion mode were
used in the statistical analysis. As the measurements of each well
plate formed a time series, we performed dimension-wise linear
trend removal for each measurement series prior to the statistical
analysis to compensate for sensor drifting.

The statistical analysis was performed with the statistical soft-
ware R [22] in the RStudio environment [23]. In the modelling, we
utilized the R packages pls [24]; sda [25]; e1071 [26]; and keras [27]
with Tensorflow backend [28].

2.6.1. Classification models
We created classification models for each density level and zero

sample. Four different classifiers were employed: shrinkage linear
discriminant analysis (sLDA); support vector machine (SVM) with
linear kernel; SVM with radial kernel; and convolutional neural
networks (CNNs). The lowest cell density that was reliably identi-
fied from the zero sample determined the estimated level of
detection.

In LDA, the linear separability between classes is maximized by
creating new linear combinations of the original data dimensions
and employing a subset of them in the classification model. For
high dimensional data sets, shrinkage regularization is often
required [29]. sLDA has been previously applied in the classification
of DMS data [16,17].

SVMs seek hyperplanes that best separate the classes. The data
points which are the nearest to the hyperplanes are called support
vectors. The hyperplanes are chosen to maximize the gap between
classes defined by the support vectors. If the data is not linearly
separable, it can be transformed to a higher-dimensional space
with the so-called kernel trick, which enables non-linear classifi-
cation [30]. In this study, we utilized both linear SVM and non-
linear SVM with radial kernel.

CNNs are complex non-linear models specialized in the analysis
of image-like data such as dispersion matrices. Neural networks
consist of interconnected layers of computational units, which
produce the target value as a hierarchical function of the inputs.
The network parameters are updated iteratively to match the
model's output to the true classes. Unlike other methods, CNNs can
utilize spatial feature extraction from dispersion matrices [31].
CNNs have proven useful in DMS data analysis provided that the
amount of training data is sufficient. We have piloted the use of
CNNs in DMS data classification [15,32] and regression [33]. In this
study, the CNN comprised two convolutional layers with fifteen and
thirty 5 � 5 and 3 � 3 kernels, respectively, and 2 � 2 max pooling
layers followed by two hidden layers with respective fifty and ten
nodes. Tanh was used as the activation function. L1 regularization,
batch normalization, and dropout with a 0.5 dropout rate were
used to regularize the model.

2.6.2. Cross validation
Cross validation (CV) estimates the generalizability performance

of a statistical model. In CV, the data is divided into k sets, each of
4

which is left out as an unseen test set at a time. The training data is
used to construct a statistical model, whereupon the test data set is
classified with. The results are reported as the combined results of
all test folds.

Typically, CV is performed on randomly divided data sets.
However, if the measurements are not independent, random split
will lead to biased and overly optimistic results. In this study, each
well plate was measured on a separate day and each well was
measured four times repeatedly. The dynamic features related to
measurement day can fluctuate. Therefore, the sample spectra from
each well plate are more likely to resemble each other compared to
those analyzed on a separate occasion. An additional confounding
factor to sample independence is the carry-over of smoke from
subsequent measurements. To reduce the risk of overfitting, we
applied both well-wise and day-wise CV. The cross-validation
methods are illustrated in Fig. 3.

2.6.3. Regression
Regression models a continuous output variable (e.g., density)

as a function of input variables (e.g., the intensity of a DMS
dispersion plot). In this study, we used partial least squares (PLS)
regression tomodel the cellular densities. This is a linear regression
technique in which the data dimensionality is reduced similarly to
in principal component analysis. The application of PLS regression
to DMS data has been described in detail [33]. In this study, the PLS
regression model to predict the cellular density of each sample was
cross-validated over measurement days and wells.

3. Results

We collected data on 348 Myogel-cell-sample measurements.
Of these measurements, 86 were excluded due to air bubble for-
mation during sample preparation; dehydration of the sample; and
technical errors in the measurement device such as faulty disper-
sion plots. Thus, 262 measurements were included in the analysis.
Agar-filled wells were used for calibration and were also excluded.
Due to exclusions, the number of samples from each density level
were not equal. The distribution of measurements according to
measurement day and density level is shown in Table 2.

The threshold for the detection of cancer cells was estimated by
training binary classifiers to distinguish the zero sample from each
cell density. A particular cell density was considered detectable if
the CV classification accuracy exceeded the theoretical no-
information rate with statistical significance. Because the classes
were uneven, the guess level was defined as the correct classifi-
cation rate achieved by assigning all samples to the most prevalent
class.

The classification accuracies and their corresponding McNe-
mar's test p-values are presented in Table 3 and Table 4 and visu-
alized in Fig. 4. As we utilized four models, to achieve a 0.05 false
discovery rate, the cut-off limits for the p-values were Bonferroni
corrected to 0.05/4¼ 0.0125. Omitting sLDA, wewere able to detect
cell densities of 105 cells/27 mL and higher with each classification
model in both CV approaches. The Linear SVM and CNN models



Fig. 3. A) We measured each well four times. B) Day-wise cross-validation (CV): each well plate was measured on a separate day and the data gathered during each day performed
as the test set at a time. C) Well-wise CV: each well was left out as the test set at a time.

Table 2
The distribution of samples according to cell density level and measurement day.

Cell density Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Number (n)

0 0 4 0 0 4 11 12 0 31
102 4 0 4 4 8 11 8 0 39
103 0 4 4 4 2 4 8 8 34
104 16 0 0 16 4 10 11 3 60
105 0 20 4 0 7 7 8 8 54
106 0 4 12 0 8 8 4 8 44
Number (n) 20 32 24 24 33 51 51 27 262
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achieved the respective detection levels of 104 and 103 cells inwell-
wise CV.

Next, we applied PLS regression to predict cancer cell den-
sities. We used a base 10 logarithm of each cell density. The
5

predictions were scaled back to the original scale after analysis.
The PLS regression results are shown in Fig. 5. In general, the
measurements with lower cell densities were predicted close to
the guess level. Even though we observed a slight elevation in



Table 3
The accuracies (Acc) obtained with day-wise cross validation (CV). A statistically significant p-value (P) was determined as the Bonferroni corrected significance level of 0.0125.

Cell density 102 103 104 105 106

Model Acc P Acc P Acc P Acc P Acc P
sLDA 51% 0.80 62% 0.085 66% 0.55 68% 0.22 85% 5.8 � 10�7

Linear SVM 51% 0.80 55% 0.36 77% 0.016 80% 7.7 � 10�4 91% 8.5 � 10�10

Radial SVM 60% 0.27 65% 0.031 74% 0.073 78% 3.8 � 10�3 89% 5.2 � 10�9

CNN 53% 0.73 69% 4.2 � 10�3 69% 0.29 81% 3.2 � 10�4 95% 1.4 � 10�12

Table 4
The accuracies (Acc) obtained with well-wise cross validation (CV). A statistically significant p-value (P) was determined as the Bonferroni corrected significance level of
0.0125.

Cell density 102 103 104 105 106

Model Acc P Acc P Acc P Acc P Acc P
sLDA 57% 0.45 54% 0.45 71% 0.16 81% 3.1 � 10�4 89% 5.2 � 10�9

Linear SVM 54% 0.64 60% 0.13 81% 9.1 � 10�4 92% 2.1 � 10�9 96% 1.1 � 10�13

Radial SVM 61% 0.20 58% 0.19 75% 0.046 87% 1.1 � 10�6 93% 1.4 � 10�11

CNN 51% 0.80 75% 1.1 � 10�4 81% 9.1 � 10�4 88% 2.8 � 10�7 95% 1.4 � 10�12
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the 105 and 106 predictions, these predictions are drawn towards
guess level.
4. Discussion

In this study, we have demonstrated the capability of a laser-
based DMS system to detect breast cancer cells from a Myogel
matrix at density levels that are relevant to surgical margin
detection. We detected cell densities of 3700 cells mL�1 and higher
with DMS. The absolute number of evaporated cells required for
detection was approximately 6400 cells/measurement. We ach-
ieved the highest classification accuracies with SVM and CNN. We
also represented a PLS regression model which correlated to the
cell densities. Convenience is an inherent advantage of DMS anal-
ysis owing to the minimal pre-processing of samples and auto-
mated sampling. The maintenance costs of DMS are low and the
technology is robust.

The cell counts detected in this study correspond to pre-clinical
tumors. Human tumors need neoangiogenesis to grow past the size
of 106 cells and 2mm in diameter. Tumors below this size are rarely
significant unless they secrete hormones [34]. Mammography
screening is the means for breast cancer detection at a pre-clinical
stage [2]. To provide clinical context to tumor size, the sensitivity of
mammography imaging for breast cancer detection increases from
0% to 85%, as the tumor size increases from 2 mm to 20 mm [35].
The highest cell density in our study was 37 000 cells mL�1. These
ranges give a perspective to what constitutes a clinically relevant
number of cancer cells. Moreover, they highlight the fact that the
detection threshold of DMS for breast cancer cells is sufficient for
clinical purposes.

The cell densities analyzed in this study can also be compared
with the number of cancer cells required to grow a tumor in a
murine model. Syngeneic murine models are considered the best
animal models for human breast cancer research [36]. They are
produced by implanting mouse-derived breast cancer cells into
immune competent mice. The number of cells injected to induce
tumor growth typically vary between 104 and 105 [37e42]. We
detected cell densities of 3700 cells mL�1 with DMS. Of this density,
approximately 6400 cells reached DMS analysis. As described
earlier, this number of cells would not be sufficient in growing a
tumor in most syngeneic murine models.

Most previous cell line detection studies have focused on using
MS as the analysis method. Gas-chromatography (GC) and MS
combined with solid-phase microextraction have been used to
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analyze the volatile organic compound (VOC) profiles of breast
cancer cell lines. Several VOC biomarkers indicative of breast cancer
have been found, and benign and malignant cell lines can be
differentiated according to their VOC profiles [43,44]. However,
VOC extraction from cell cultures and GC are time-consuming and
require several steps before MS.

Matrix-assisted laser desorption/ionization time-of-flight MS
(MALDI-TOF MS) has been successfully applied in the character-
ization of variousmammalian cell lines [45e48]. These studies have
applied cell numbers equal to or larger than the two highest den-
sities in our study. In general, the matrix used in MALDI-TOFMS is a
customized a-Cyano-4-hydroxycinnamic acid (HCCA). In contrast,
laser-based DMS does not require a specific matrix. The molecular
composition of Myogel is more complex than that of HCCA, which
results in a more complex background. Moreover, the duration of
the MALDI-TOF MS sample preparation process varied between
2 min and more than 3 h [45,46], while DMS analysis requires
minimal preparation. MALDI-TOFMS is a useful method for cell line
identification, but it is not suitable for ex vivo tissue sample anal-
ysis, whereas DMS could be applied for both purposes.

In a recent study, Abu-Rabie et al. [49] studied rapid evaporative
ionization MS (REIMS) with electrocautery sampling for discrimi-
nating TF1a and Jurkat cell lines (6.7 � 106 cells mL�1). They ach-
ieved a discrimination rate between 94% and 100% in various MS
configurations with leave-one-cell line-out CV. Contrary to the CV
methods in our study, this CV does not take into consideration the
potential drift in the instrumentation. The cell count in the Abu-
Rabie et al. study was double the highest cell count in our study.
This indicates the potential of DMS to provide a more cost-effective
technology with a similar discriminatory capability as the REIMS.

Matrices derived from the mouse Engelbreth-Holm-Swarm
(EHS) sarcoma, such as Matrigel, are widely used in in vitro can-
cer studies. However, the composition of all mouse tumor tissue
homogenates differ from human TME. Myogel is a homogenous
product similar to Matrigel, but it is extracted from human uterus
leiomyoma tissue [20,50]. Thus, its protein composition differs
significantly from the mouse EHS sarcoma derived products.
However, both matrices contain basic extracellular matrix compo-
nents, such as laminin, collagen IV, nidogen and EGF [20]. Myogel
induces migration and invasion of carcinoma cells better than
Matrigel [50e52]. Also, Myogel is reported to affect drug response
in head and neck cancer cell lines significantly more than Matrigel
[53]. Tuomainen et al. [53] reported that the cells cultured on
Myogel reflect the response rates in clinical trials better than



Fig. 4. The classification accuracies obtained with each classification model using A) day-wise cross-validation (CV) and B) well-wise CV. Each classifier had two classes: the cell
density presented on the horizontal axis and the zero level. The colored area represents the guess level (maximum class). The error bars show the lower and upper limits for the
accuracy estimates. The no-information rate and random guess level (50%) are presented to ease comparability of results.
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Matrigel. Our aim was to ensure a reproducible and reliable study
design by using a well-established breast cancer cell line and a
controlled, homogenous matrix derived from human tumor tissue.
These factors help overcome the issue of heterogeneity in human
7

breast cancer tumors obtained from surgical specimens.
The assessment of malignancy has been traditionally based on

microscopic examination of cellular and architectural features of
the tissue [54]. In case of cytology, only cellular features are



Fig. 5. The partial least squares regression results of the predicted cell densities as a boxplot according to A) day-wise cross-validation (CV) and B) well-wise CV.
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available for examination [55]. Thesemethods benefit from fixation
and staining that typically takes days, which makes them unfeasi-
ble for applications that require rapid turnaround times, such as
intraoperative margin evaluation. Frozen section and imprint
cytology are specialized techniques that have been developed to
enable rapid turnaround times of 30 min or less. Still, these
8

methods rely on a subjective interpretation of an expert pathologist
[56]. Molecular assessment by DMS enables a rapid and an
operator-independent way to assess malignancy.

We have previously applied CNNs and PLS regression in the
prediction of phospholipid concentrations from DMS spectra and
demonstrated that biologically relevant changes in lecithin



L. Lindfors, P. Sioris, A. Anttalainen et al. Analytica Chimica Acta 1202 (2022) 339659
concentrations were detectable [33]. This is of interest as differ-
ences in the phospholipid compositions of smoke samples from
healthy and cancerous tissues largely account for their MS identi-
fication [12]. In this study, we applied a more complex study design
and were able to identify very low cancer cell densities from a
cancer cell-free Myogel matrix mixture. These results validate DMS
in the identification of densities relevant to margin detection and
emphasize the feasibility of DMS in future clinical setups.

The limitations of the study should be taken into account. First,
the purpose of this study was proof-of-concept. The number of
independent samples was relatively small, which limits the
generalizability of the results. The three lowest cell densities were
not detectable with DMS, and more data is likely required to
improve the detection of even the highest densities. Also, due to the
prototype nature of the system, a small proportion of samples
needed to be excluded due to the deficiencies in sample prepara-
tion and malfunctions in the DMS analysis. Second, the use of only
one cell line does not comprehensively represent breast cancer,
which is a heterogeneous disease. Last, although Myogel mimics
human TME more precisely than Matrigel, it is also different from a
real human breast cancer microenvironment limiting the general-
izability of these results. Moreover, a larger study sample with even
higher cell number (�107) could have been beneficial in the
assessment of detection levels.

Our future goal is to improve the components of the DMS device
and provide faster and more accurate diagnostics at improved
levels of detection.We aim to study the detection threshold inmore
complex and dynamic TMEs with multiple breast cancer cell lines
to better mimic real-life cancer development. Human uterus
leiomyoma-derived discs have previously been used in 3D cancer
invasion assays [57], and they contain various cell types and matrix
components commonly present in neoplastic stroma [50]. A study
using myoma discs and several breast cancer cell lines could pro-
vide more information about the detection capability of DMS. In
addition, a non-cancerous cell line could be used as a reference
level to study the selectivity of the device.

5. Conclusions

The results demonstrate that a prototype DMS device combined
with laser desorption is an effective method to distinguish low
densities of breast cancer cells from Myogel in vitro. These results
validate the use of DMS for identifying cell densities relevant to
margin detection and emphasize the feasibility of DMS in future
clinical setups. The results suggest that DMS analysis has great
potential for intraoperative surgical margin assessment alongside
MS-based methods. Moreover, laser-based DMS could be applied to
support pathological analysis of ex vivo specimens and for quality
control applications in biotechnology. This study design could act
as a reproducible means to compare tissue analysis methods and
their ability to discriminate between different densities of malig-
nant and benign cells in the future.
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