A study on interrelations of structural systems and main planning considerations in contemporary supertall buildings

Hüseyin Emre Ilgın

Faculty of Built Environment, School of Architecture, Tampere University, Tampere, Finland

Abstract

Purpose – The aim of the study is to provide a comprehensive understanding of interrelations of structural systems and main planning considerations in supertall buildings (\geq 300 m).

Design/methodology/approach – Data were collected from 140 contemporary supertall towers using the case study method to analyze structural systems in the light of the key design considerations to contribute to the creation of more viable supertall building projects.

Findings – Central core typology, outriggered frame system, composite material and tapered prismatic and free forms were the most preferred features in supertall building design. Shear walled frame and tube systems occurred mostly in the 300–400 m height range, while outriggered frame systems were in the range of 300–600 m in height. Asia, the Middle East and North America mainly preferred outriggered frame systems, followed by tube systems. Considering the building function and form, the most preferred structural system in each of these groups was outriggered frame system, while mixed-use function stood out in all structural systems.

Originality/value – To date, there has been no comprehensive study in the literature of the interrelations of structural systems and important planning considerations in the design of contemporary supertall towers through a large set of study samples. This critical issue was multidimensionally explored in this paper in light of 140 detailed case studies of supertall buildings around the world.

Keywords Supertall building, Interrelations, Structural system, Building height, Building form, Core planning, Structural material

Paper type Research paper

1. Introduction

The increasing rate of urbanization in recent years, along with the race to win the title of the tallest building, has seen an accelerating trend in the construction of supertall buildings around the world, especially in developing economies (Al-Kodmany, 2012, 2018a; Gabel, 2016; Gerges *et al.*, 2017; Ilgm, 2021a). The world continues to witness an explosion of growth in the number of skyscrapers above 200 m with record-breaking completions for three consecutive years (2014–2016), and an over 400% increase in the total number of such towers in the 21st century (Gabel, 2018; Khallaf and Khallaf, 2021). According to the Council on Tall Buildings and Urban Habitat (CTBUH) database (CTBUH, 2022), the number of supertall buildings under construction and completed in the last decade is close to 250. The rapidly increasing global

International Journal of Building Pathology and Adaptation Emerald Publishing Limited 2398-4708 DOI 10.1108/IJBPA-12-2021-0172

© Hüseyin Emre Ilgin. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http:// creativecommons.org/licences/by/4.0/legalcode

Structural systems and planning considerations

Received 30 December 2021 Revised 20 January 2022 28 February 2022 Accepted 3 March 2022 IJBPA

demand for supertall buildings in the world brings up the parameters that play a critical role in the design and implementation of these giant projects as in the cases of Burj Khalifa (Dubai, 828 m) (Figure 1a) (Abdelrazaq, 2010), Merdeka PNB118 (Kuala Lumpur, under construction) (Figure 1b) (Fender *et al.*, 2016), Shanghai Tower (Shanghai, 2015) (Figure 1c) (Wu *et al.*, 2019) and One Vanderbilt Avenue (New York, 2020) (Figure 1d) (Klemperer, 2015).

Since a supertall building is feasible by the structure itself, the structural system is the most important design parameter, and many planning criteria depend on the structural

(a)

(b)

(c)

Note(s): (a) Burj Khalifa (source: Wikipedia); (b) Merdeka PNB118 (source: Wikipedia); (c) Shanghai Tower (source: Wikipedia); (d) One Vanderbilt Avenue (source: Percival Kestreltail/Wikipedia)

Figure 1. Contemporary supertall building examples system in terms of its performance (Ilgin, 2018). The selection of an optimal building structural system is also critical to improving building construction (Chakraborty *et al.*, 2020; Zhong *et al.*, 2022). Structural systems play a key role in determining a cost-effective supertall building form. Moreover, the structural cost of tall buildings can constitute approximately 30% of the total construction cost, and this cost increases as the building rises (Almusharaf and Elnimeiri, 2010; Wang *et al.*, 2017; Mubarek *et al.*, 2019; Elmousalami, 2019). Due to the current trend of the pluralistic architectural style, the structural systems have become more diverse and have somehow lost their natural logic, adapting to the formatting predetermined by the architect (Ali and Al-Kodmany, 2012). The style and aesthetics of the buildings are integrally related to the horizontal and vertical configurations.

It should be noted here that many studies in the literature raise concerns about the sustainability and ecological dimensions of construction projects (e.g. Chakraborty et al., 2016: Swei et al. 2017: Kumar and Gururai, 2019: Opoku, 2019: Elhegazy et al. 2021a) including supertall towers (e.g. Yeang, 2008; Al-Kodmany, 2018b, c; Borrallo-Jiménez et al., 2020; Zhang, 2020). According to Al-Kodmany (2018b, c), these buildings have elements that threaten their social, economic and environmental sustainability. In this sense, from a social perspective, supertall buildings can cause social isolation due to their vertical composition and therefore are generally not assessed suitable for raising children and family life. They are also thought to be self-referential and vertically stratified objects devoid of cultural and social references to their surroundings (Scheeren, 2014; Henn and Fleischmann, 2015; Safarik, 2016). From an economic point of view, supertall towers are costly to build due to their complex structure and their mechanical and electrical systems (Delong and Wamelink, 2008). In addition, far greater amounts of materials and energy, and far greater amounts of embodied energy, must be involved in their construction and operation than in low-rise buildings (Ali and Al-Kodmany, 2012). From an environmental perspective, the construction and maintenance of supertall buildings generate large amounts of carbon dioxide emissions (Dong et al., 2015; Gan et al., 2017). It should also be underlined here that building management, evaluating its performance and assessing tenant satisfaction are key components of achieving more sustainable skyscrapers (Safarik *et al.*, 2016).

Although there are many studies on tall and supertall building structural systems in the literature (e.g. Ali and Moon, 2007; Taranath, 2016; Ali and Moon, 2018; Fu, 2018), limited studies examine the relationship between the structural system and other design parameters. Among these studies, Sev and Özgen (2009) analyzed the space efficiency in 10 high-rise office buildings from Turkey and the world in the light of various parameters such as leasing depth, gross and net floor areas, core integrity, structural material, floor-to-floor height and structural system. Elnimeiri and Almusaraf (2010) scrutinized the historical development of the relationship between the structural system and tall building form. Alaghmandan *et al.* (2014) examined architectural and structural trends in the design of tall buildings through 73 case studies. Ilgm (2021b) focused on space efficiency in 44 contemporary supertall office buildings with the main architectural material), while Ilgm (2021c) studied space efficiency in 27 contemporary supertall residential buildings with the same parameters. On the other hand, Ilgm *et al.* (2021) analyzed the contemporary trends in main architectural and structural design considerations and several corresponding interrelations through 93 case studies.

To date, there has been no comprehensive study in the literature of the interrelations of structural systems and important planning considerations in the design of contemporary supertall towers through a large set of study samples. This critical issue was multidimensionally explored in this paper in light of 140 detailed case studies of supertall buildings around the world.

In this study, besides giving general information (building name, country and city, height, number of storys, completion date, function), key planning considerations (core design,

building forms, structural systems and structural materials) and interrelations of the structural system and main design considerations including building height, location, function, building form and structural material were analyzed. By doing so, this paper, which reveals the current state of the art of supertall applications, is believed to provide insight into making more viable design decisions for future supertall towers.

The remainder of this paper was structured as follows. First, an explanation of the materials and methods used in the study was provided. This was followed by results of interrelations of structural system and main planning considerations. Finally, discussion and conclusions were presented, with research limitations and suggestions for future studies.

2. Materials and methods

In this study, the case study method was employed to collect and consolidate information about contemporary supertall buildings to examine the interrelationships of structural systems and major planning considerations. This method is a widely used approach in built environment assessments, where projects are identified and documented for quantitative and qualitative data through in-depth literature review (Kuzmanovska *et al.*, 2018).

In this paper, the following parameters, which have an important role in the planning of supertall buildings and are associated with the structural system, were discussed: (1) building height, (2) location, (3) building function, (4) building form and (5) structural material.

Cases which included 140 supertall buildings in a variety of countries [78 from Asia (58 from China), 31 from the Middle East (22 from Dubai, the United Arab Emirates), 20 from North America (14 from the United States), 7 from Russia, 2 from Australia, 1 from South America (Chile), 1 from Europe (UK)]. Appendices 1 and 2 show detailed information of 140 contemporary supertall towers.

Functionally supertall buildings are divided into single-use or mixed-use. In supertall tower design, hotels, residential buildings and offices are considered as the primary functions in this paper.

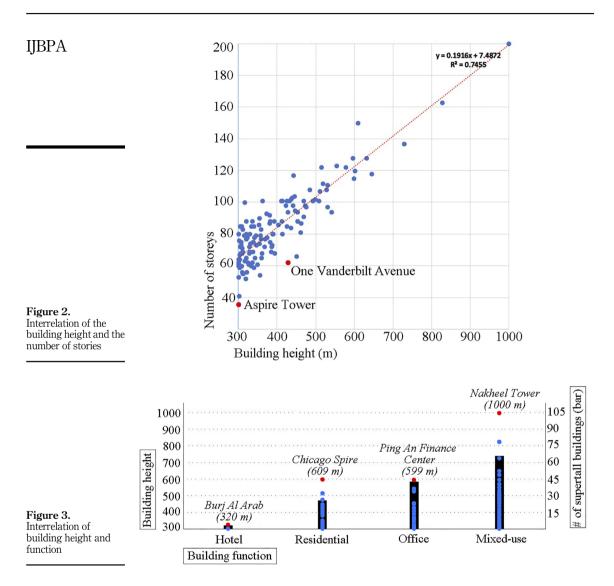
Based on the CTBUH database (CTBUH, 2022), a single-use building is considered a building where 85% or more of its total height is devoted to a single function, whereas a mixeduse building is assumed to contain two or more functions, occupying a significant part of the total area of the tower in this study. It was also assumed that a supertall building is equal to and higher than a 300 m building (CTBUH, 2022). Additionally, the following core classification of Ilgm *et al.* (2021) was used because of its more comprehensive structure in the literature (e.g. Trabucco, 2010; Oldfield and Doherty, 2019): (1) central core (central and central split), (2) atrium core (atrium and atrium split), (3) external core (attached, detached, partial split and full split) and (4) peripheral core (partial peripheral, full peripheral, partial split and full split).

Furthermore, compared to other studies in the literature (e.g. Al-Kodmany and Ali, 2016; Szolomicki and Golasz-Szolomicka, 2019), the following forms of classification were used in this study (Ilgm *et al.*, 2021): (1) prismatic, (2) setback, (3) tapered, (4) twisted, (5) leaning/tilted and (6) free forms.

Since it is more comprehensive than the existing structural system classification in the literature (e.g. Gunel and Ilgın, 2007; Gunel and Ilgın, 2014a, b; Taranath, 2016; Ali and Moon, 2018), the author used the following classification for supertall buildings (Ilgın *et al.*, 2021):

- shear-frame system consisting of shear wall/truss and frame with subsets of shear trussed frame and shear walled frame;
- (2) mega core system consisting of a mega core with much larger cross-sections than normal, running continuously along the height of the building as a main load-bearing element;

- (3) mega column system consisting of mega columns or shear walls with much larger cross-sections than normal, running continuously along the height of the building as main load-bearing elements;
- (4) outriggered frame system consisting of at least one-story deep outriggers added to shear-frame system;
- (5) tube system:
 - framed-tube system consisting of closely spaced exterior columns with spandrel beams at the facade,
 - trussed-tube system consisting of exterior columns with exterior multistory braces,
 - bundled-tube system consisting of a combination of more than one tube; and
- (6) buttressed core system, an advanced "shear wall system," consisting of shear walls directly supporting the central core.


In this article, the following classification was used for structural materials for supertall building construction: (1) steel, (2) reinforced concrete and (3) composite. Considering vertical structural members – columns, beams, shear trusses, shear walls and outriggers – as the main structural elements, "composite" referred to the buildings in which some structural elements were made of reinforced concrete and other structural elements were made of steel, or to those in which some structural elements were made of both structural steel and concrete together or to both the first and the second categories (e.g. Chen, 2021; Elhegazy *et al.*, 2021b).

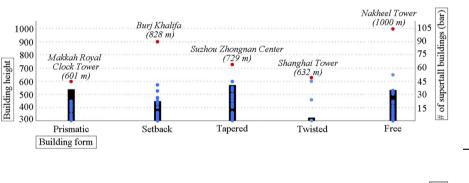
3. Results

Figure 2 shows the relationship between the building height and the number of storys of supertall towers examined. As seen in the red trendline in Figure 2, it can be said that there is a directly proportional relationship between the height of the building and the number of storys.

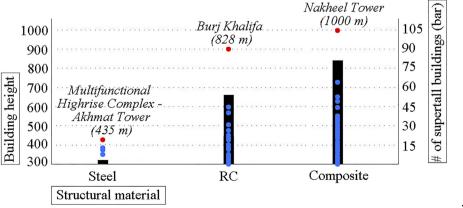
It is worth noting here that a building can also have symbolic functions besides its main function(s), which is divided into regular floors with typical floor heights. This could make the building an outlier, as in the case of the 36-story, 300 m high Aspire Tower (see Figure 2) comprising both hotel and office functions. The tower, which resembles a hand holding a flaming torch, became the most important symbol of the 15th Asian Games held in Qatar in 2006 (Chikaher and Hirst, 2007; Gunel and Ilgin, 2014b). Similarly, as in the 62-story, 427 m high One Vanderbilt Avenue in New York, a part of a supertall building may have been designed not for purely human occupation in the form of an office, hotel or residence, but for other purposes, such as an observation deck on the upper floors (Klemperer, 2015). This approach can also make the building an outlier (see Figure 2).

Additionally, in Figures 3–5, the bars demonstrate the total number of supertall buildings (right axis of the chart) by function, form and structural material, respectively, while dots correspond to the heights of supertall buildings (left axis of the chart) by function, form and structural material, respectively. As seen in Figure 3, building functions other than hotel either reached the level of megatall buildings (≥ 600 m) or were very close to it, while megatall building limit exceeded in all building forms as shown in Figure 4. Considering the wind loads that become more critical as the building height increases (e.g. Wang and Ni, 2022), the aerodynamic efficiency of the tapered, setback, free and twisted forms may have contributed to the skyscrapers built with these forms to break through the megatall height limits (Ilgm and Günel, 2007; Sharma *et al.*, 2018; Ilgm and Gunel, 2021; Li *et al.*, 2022; Mandal *et al.*, 2022). As highlighted in Figure 5, many composite buildings were built beyond the megatall building height. This can be explained by the superiority of composite structure, which

combines the advantages of both materials, such as the high strength of steel and the rigidity and fire resistance of reinforced concrete (e.g. Du *et al.*, 2022). Megatall limit was exceeded only with the Burj Khalifa (Figure 1a) as reinforced concrete, and these structures were generally built in the range of 300–600 m. At the Burj Khalifa, high-performance, highstrength concrete with strengths of up to 80 MPa may have contributed significantly to the tower's attainment of this extraordinary height (Weismantle *et al.*, 2007; Aldred, 2010). On the other hand, the tallest building in steel was 435 m in the study sample.

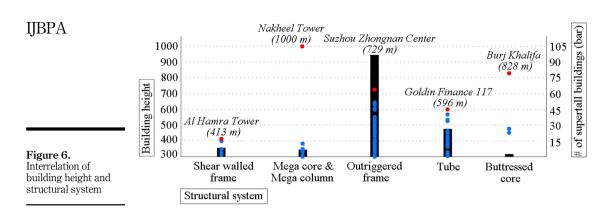

3.1 Interrelations of structural system and main planning considerations

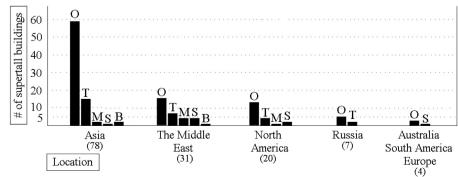
Interrelations of structural system and main planning considerations associated with it, such as building height, location, building function, building form and structural material, were

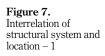

examined in this section. Since the most used core typology by a wide margin (>96%) in the study sample was the central core, no analysis was made on this issue.

3.1.1 Interrelation of structural system and building height. In Figure 6, the bars demonstrate the total number of supertall buildings (right axis of the chart) by structural system, while dots correspond to the heights of supertall buildings (left axis of the chart) with such a structural system.

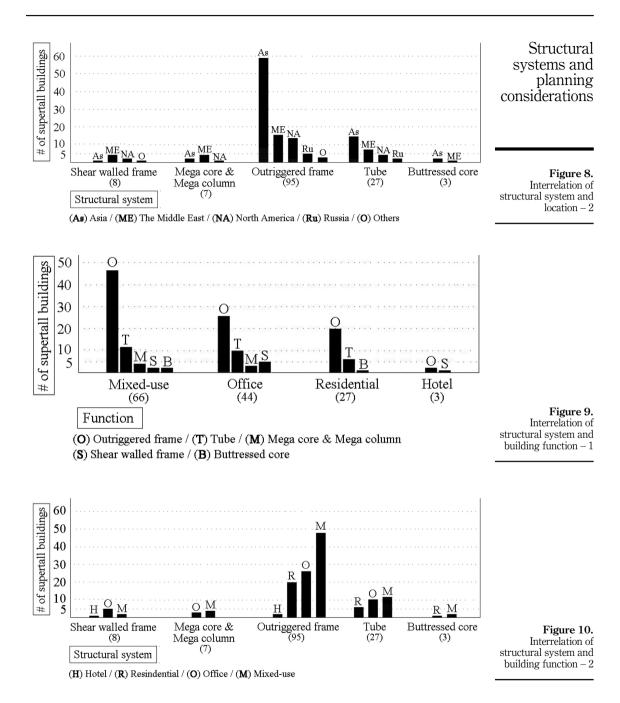
Shear walled frame systems occurred 92% in the 300–400 m height range, and only Al Hamra Tower, whose height exceeds 400 m, was built with this system. According to the study example, buttressed core systems were rarely preferred in supertall building construction, but Burj Khalifa (Figure 1a), the world's tallest completed building, was built with a buttressed core system. Outriggered frame systems with a ratio of 95% were in the height range of 300–600 m, while only 5 of them can be called megatall towers (≥600 m). By January 2022, 9 of the 10 tallest buildings completed in the CTBUH database (CTBUH, 2022) used an outriggered frame system: Shanghai Tower with 128-storys and 632 m height (Figure 1c), Makkah Royal Clock Tower with 120-storys and 601 m height, Ping An Finance Center with 115-storys and 599 m height, Lotte World Tower with 123-storys and 554 m height, One World Trade Center with 94-storys and 541 m height, Guangzhou CTF Finance Centre with 111-storys and 530 m height, Tianjin CTF Finance Centre with 97-storys and 530 m height. Tube systems, which occurred at a rate of 59%, were in the height range of 300–400 m; only 4 of them exceed 500 meters. In the sample group, while frame-tube system





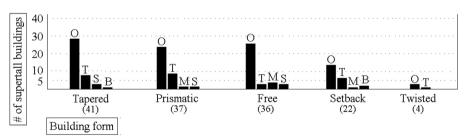


was preferred most (63%) among tube systems, trussed-tube system was employed in Goldin Finance 117 with 596 m height, the tallest building in which the tube system was used.


3.1.2 Interrelation of structural system and location. Figures 7 and 8 show the interrelation of structural system and location. Asia preferred outriggered frame system in a wide margin (76%), followed by tube system with a ratio of 18%. Similarly, the Middle East and North America utilized outriggered frame systems mostly, with ratios of 48 and 65%, respectively. As the number of supertall buildings in the sample group was relatively small in Russia (7 cases) and the remaining locations (4 cases), it was difficult to establish a scientific relationship between structural system and location.

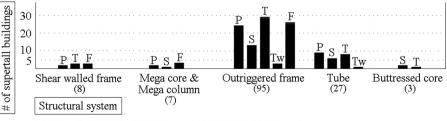
3.1.3 Interrelation of structural system and building function. Figure 9 compares the use of alternative structural systems for a given building function. Although outrigger frame system was the most preferred structural system in all building functions, followed by tube system apart from hotel function, outrigger frame system's dominance became more pronounced (>70%) especially in mixed-use development. On the other hand, Figure 10 compares the use of alternative functions for a given structural system. While mixed-use function stood out in all structural systems except shear walled frame, this situation became even more evident in outriggered frame systems. Since the number of buildings with buttressed core system and hotel function was very few, deriving a correlation between structural system and building function of those buildings was likely to be inaccurate.

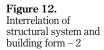
(O) Outriggered frame / (T) Tube / (M) Mega core & Mega column / (S) Shear walled frame / (B) Buttressed core

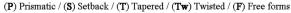

3.1.4 Interrelation of structural system and building form. Figure 11 compares the use of alternative structural systems for a given building form. Even though outrigger frame system was the most used structural system in all building forms, followed by tube system

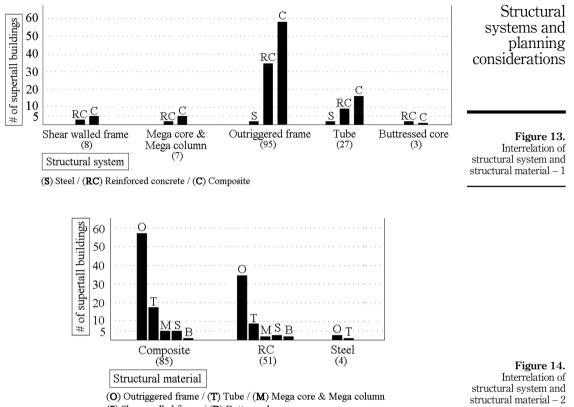
apart from free form, outrigger frame system's dominance became more pronounced especially in tapered and free forms (>70%). On the other hand, Figure 12 compares the use of alternative building forms for a given structural system. While tapered, free and prismatic forms were preferred in outriggered frame systems; prismatic, tapered and setback forms were employed in tube systems according to the order of frequent use. Since the number of buildings with twisted form and buttressed core was very low, it did not seem possible to establish a relationship between the building form and structural system of those buildings.

3.1.5 Interrelation of structural system and structural material. Figures 13 and 14 show the interrelation of structural system and structural material. As seen in Figure 13, composite was the most preferred material, followed by reinforced concrete, in all types of structural systems except buttressed core system. When the subject was considered in terms of structural material classification, outriggered frame system was the most preferred structural system in terms of all types of materials, followed by tube system. Since the number of buildings made of steel and with buttressed core system was very few, deriving a correlation between structural systems and structural materials of those buildings was likely to be inaccurate.


4. Discussion and conclusions


The results obtained in this study showed similarities and dissimilarities with other studies in the literature (e.g. Oldfield and Doherty, 2019; Ilgm *et al.*, 2021). In this paper, central core arrangement was the most used typology, as noted in similar studies (Oldfield and Doherty, 2019; Ilgn, 2021b, c; Ilgm *et al.*, 2021). Among the 140 supertall towers, tapered, prismatic and free forms were the most frequent, and this finding was verified by the findings in the studies of Ilgm *et al.* (2021) on 93 supertall towers, Ilgm (2021b) on 44 supertall office buildings and Ilgm (2021c) on 27 supertall residential towers. In terms of structural systems, outriggered frame system was mainly used in supertall buildings, which confirmed the findings of other studies such as Ilgm *et al.* (2021), Ilgm (2021b) and Ilgm (2021c), while the use of composite




Figure 11. Interrelation of structural system and building form – 1

 $(O) \ \text{Outriggered frame} \ / \ (T) \ \text{Tube} \ / \ (M) \ \text{Mega core} \ \& \ \text{Mega column} \ / \ (S) \ \text{Shear walled frame} \ / \ (B) \ \text{Buttressed core} \ (D) \ \text{Outriggered frame} \ / \ (D) \ \text{Shear walled frame} \ / \ (D) \ (D)$

⁽S) Shear walled frame / (B) Buttressed core

was more prevalent than steel and reinforced concrete as in the studies of Ilgm *et al.* (2021) and Ilgm (2021b).

Regarding the interrelations of the structural system and the main planning considerations associated with it, this study analyzed building height, location, building function, building form and structural material to provide an introductory design guide for key construction professionals in supertall building projects. Shear walled frame and tube systems mostly occurred in the 300–400 m height range, while outriggered frame systems were primarily in the height range of 300–600 m. Asia, the Middle East and North America mainly preferred outriggered frame systems, followed by tube systems, in supertall building construction. Similarly, considering building function and building form, outrigger frame system was the most prevalent structural system in all building function and form groups. Additionally, mixed-use function came to the fore in all structural systems except shear walled frame. On the other hand, while tapered, free and prismatic forms were preferred in outriggered frame systems, prismatic, tapered and setback forms were employed in tube system and structural material, composite was the most used material, followed by reinforced concrete, in all structural systems except buttressed core system.

It is also worth noting that supertall buildings have come under serious criticism that they are unsustainable in many ways, including social, financial and ecological considerations.

Solutions to these important issues should be considered from the initial planning phase of supertall towers. In this context, architects should be aware that the design of these gigantic projects, like many other complex structures, is a multidimensional issue that requires interdisciplinary collaboration and high-level teamwork.

In this paper, through 140 supertall cases, main design considerations (i.e. core planning, building forms, structural systems and structural materials) and interrelations of structural system and main design considerations (i.e. building height, location, building function, building form and structural material) were analyzed.

In conclusion, the results obtained in this study on interrelations of structural systems and main planning considerations in contemporary supertall buildings are expected to provide design guidelines for key professional stakeholders such as architects, engineers and developers.

The empirical data presented in this paper are limited to buildings taller than or equal to 300 meters. Additional categorization levels for 140 supertall buildings in the study sample set especially relatively may give biased results for a small number of building groups such as hotel function buildings and steel buildings; it was emphasized that, where appropriate, it would probably be inaccurate to extract correlations from these building groups. However, considering the significantly increasing number of buildings in the scope of this study in the last decade, it can be foreseen that there will be a sufficient number of buildings in subcategories in the near future.

In addition, buildings below 300 m can also be included in the study sample to create a sufficient number of subcategories. On the other hand, as innovative structural systems are developed for the next generation of sustainable, ultra-tall buildings and megastructures, the relationships between the structural system and other design parameters may change, which will require further research. In particular, future research should delve deeper into the structural system-sustainability relationship of supertall towers, and in this context, supertall timber building projects may come to the fore (Johnson *et al.*, 2014; Foster and Ramage, 2017; Ramage *et al.*, 2017).

References

- Abdelrazaq, A. (2010), "Design and construction planning of the Burj Khalifa, Dubai, UAE", In Structures Congress 2010, pp. 2993-3005, doi: 10.1061/41130(369)270.
- Al-Kodmany, K. (2012), "The logic of vertical density: tall buildings in the 21st century city", International Journal of High-Rise Buildings, Vol. 1 No. 2, pp. 131-148.
- Al-Kodmany, K. (2018a), "Skyscrapers in the twenty-first century city: a global snapshot", *Buildings*, Vol. 8 No. 12, p. 175, doi: 10.3390/buildings8120175.
- Al-Kodmany, K. (2018b), "Chapter 3: unsustainable tall building developments", in *The Vertical City: A Sustainable Development Model*, WIT Press, Southampton, UK.
- Al-Kodmany, K. (2018c), "The sustainability of tall building developments: a conceptual framework", *Buildings*, Vol. 8 No. 1, p. 7, doi: 10.3390/buildings8010007.
- Al-Kodmany, K. and Ali, M.M. (2016), "An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems", *International Journal of High-Rise Buildings*, Vol. 5 No. 4, pp. 271-291, doi: 10.21022/IJHRB.2016.5.4.271.
- Alaghmandan, M., Bahrami, P. and Elnimeiri, M. (2014), "The future trend of architectural form and structural system in high-rise buildings", *Architecture Research*, Vol. 4 No. 3, pp. 55-62, doi: 10. 5923/j.arch.20140403.01.
- Aldred, J. (2010) "Burj Khalifa a new high for high-performance concrete", Proceedings of the Institution of Civil Engineers. Civil Engineering, Vol. 163 No. 2, pp. 66-73, doi: 10.1680/cien.2010. 163.2.66.

IJBPA

- Ali, M.M. and Al-Kodmany, K. (2012), "Tall buildings and urban Habitat of the 21st century: a global perspective", *Buildings*, Vol. 2 No. 4, pp. 384-423, doi: 10.3390/buildings2040384.
- Ali, M.M. and Moon, K.S. (2007), "Structural developments in tall buildings: current trends and future prospects", Architectural Science Review, Vol. 50 No. 3, pp. 205-223, doi: 10.3763/asre.2007.5027.
- Ali, M.M. and Moon, K.S. (2018), "Advances in structural systems for tall buildings: emerging developments for contemporary urban giants", *Buildings*, Vol. 8 No. 8, p. 104, doi: 10.3390/ buildings8080104.
- Almusharaf, A.M. and Elnimeiri, M. (2010), "A performance-based design approach for early tall building form development", CAAD - Cities – Sustainability, 5th International Conference Proceedings of the Arab Society for Computer-Aided Architectural Design, (ASCAAD 2010), ISBN [978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50.
- Borrallo-Jiménez, M., LopezdeAsiain, M., Herrera-Limones, R. and Arcos, M.L. (2020), "Towards a circular economy for the city of seville: the method for developing a guide for a more sustainable architecture and urbanism (GAUS)", *Sustainability*, Vol. 12 No. 18, p. 7421, doi: 10. 3390/su12187421.
- Chakraborty, D., Elzarka, H. and Bhatnagar, R. (2016), "Generation of accurate weather files using a hybrid machine learning methodology for design and analysis of sustainable and resilient buildings", *Sustainable Cities and Society*, Vol. 24, pp. 33-41, doi: 10.1016/j.scs.2016.04.009.
- Chakraborty, D., Elhegazy, H., Elzarka, H. and Gutierrez, L. (2020), "A novel construction cost prediction model using hybrid natural and light gradient boosting", *Advanced Engineering Informatics*, Vol. 46, doi: 10.1016/j.aei.2020.101201.
- Chen, J. (2021), "Study on the joint mechanical properties of steel structure buildings", *International Journal of Building Pathology and Adaptation*, Vol. 39 No. 4, pp. 655-665, doi: 10.1108/IJBPA-07-2020-0055.
- Chikaher, G. and Hirst, J. (2007), "Aspire tower, Doha, Qatar", The Arup Journal, Vol. 42 No. 2, pp. 3-13.
- CTBUH (2022), Council on Tall Buildings and Urban Habitat, Illinois Institute of Technology, S.R. Crown Hall, Chicago, IL, USA, available at: https://www.ctbuh.org (accessed 17 January 2022).
- DeJong, P. and Wamelink, J.W.F. (2008), "Building cost and eco-cost aspects of tall buildings", in S.N. (Ed.), CTBUH 8th World Congress 2008, the United Arab Emirates, Dubai, pp. 1-10, 2008.
- Dong, Y.H., Jaillon, L.C., Chu, P. and Poon, C. (2015), "Comparing carbon emissions of precast and castin-situ construction methods - a case study of high-rise private building", *Construction and Building Materials*, Vol. 99, pp. 39-53, doi: 10.1016/j.conbuildmat.2015.08.145.
- Du, Y., Gao, D., Chen, Z., Zheng, Z. and Wang, X. (2022), "Behaviors of FRP confined rectangular concrete-filled thin-walled steel tubular stub columns using high-strength materials under axial load", *Composite Structures*, Vol. 280, 114915, doi: 10.1016/j.compstruct.2021.114915.
- Elhegazy, H., Badra, N., Haggag, S.A. and Rashid, I.A. (2021a), "Implementation of the neural networks for improving the projects' performance of steel structure projects", *Journal of Industrial Integration and Management: Innovation and Entrepreneurship*, pp. 1-20, doi: 10. 1142/S242486222150025.
- Elhegazy, H., Chakraborty, D., Elzarka, H., Ebid, A.M., Mahdi, I.M., Haggag, S.Y.D. and Rashid, I.A. (2021b), *Journal of Asian Architecture and Building Engineering*, Vol. ahead-of-print (ahead-ofprint), pp. 1-13, doi: 10.1080/13467581.2020.1838288.
- Elmousalami, H.H. (2019), "Intelligent methodology for project conceptual cost prediction", *Heliyon*, Vol. 5 No. 5, e01625, doi: 10.1016/j.heliyon.2019.e01625.
- Elnimeiri, M. and Almusharaf, A. (2010), "The interaction between sustainable structures and architectural form of tall buildings", *International Journal of Sustainable Building Technology* and Urban Development, Vol. 1 No. 1, pp. 35-41, doi: 10.5390/SUSB.2010.1.1.035.
- Fender, K., Ramstedt, P., Mahmud, A.T. and Terenzio, D. (2016), "Merdeka PNB 118 case study: adding value to the growing city", *Conference proceeding, Cities to Megacities: Shaping Dense Vertical Urbanism*, pp. 528-537.

- Foster, R.M. and Ramage, M.H. (2017), "Briefing: super tall timber oakwood tower", Proceedings of the Institution of Civil Engineers, Construction Materials, Vol. 170 No. 3, pp. 118-122, doi: 10. 1680/jcoma.16.00034.
 - Fu, F. (2018), Design and Analysis of Tall and Complex Structures, Butterworth-Heinemann, Elsevier, Oxford; Cambridge.
 - Gabel, J. (2016), "The skyscraper surge continues, the 'year of 100 supertalls.", *CTBUH Journal*, No. 1, pp. 38-45.
 - Gabel, J. (2018), "Tall trends: quantifying the skyscraper phenomenon", E3S Web of Conferences, Vol. 33, p. 1012, doi: 10.1051/e3sconf/20183301012.
 - Gan, V.J., Chan, C., Tse, K., Lo, I.M. and Cheng, J.C. (2017), "A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters", *Journal of Cleaner Production*, Vol. 161, pp. 663-675, doi: 10.1016/j.jclepro.2017.05.156.
 - Gerges, M., Mayouf, M., Rumley, P. and Moore, D. (2017), "Human behaviour under fire situations in high-rise residential building", *International Journal of Building Pathology and Adaptation*, Vol. 35 No. 1, pp. 90-106, doi: 10.1108/IJBPA-09-2016-0022.
 - Gunel, M.H. and Ilgun, H.E. (2014a), Yüksek Bina: Taşıyıcı Sistem ve Aerodinamik Form, METU Faculty of Architecture Press, Ankara, Turkey, ISBN: 978-975-429-278-7 (in Turkish).
 - Gunel, M.H. and Ilgin, H.E. (2014b), *Tall Buildings: Structural Systems and Aerodynamic Form*, Routledge, London; New York, NY.
 - Gunel, M.H. and Ilgun, H.E. (2007), "A proposal for the classification of structural systems of tall buildings", *Building and Environment*, Vol. 42 No. 7, pp. 2667-2675, doi: 10.1016/j.buildenv.2006. 07.007.
 - Henn, M. and Fleischmann, M. (2015), "Novel high-rise typologies-towards vertical urbanism", in Proceedings of the CTBUH 2015 New York Conference, New York, USA, 26-30 October 2015.
 - Ilgin, H.E. (2018), "Potentials and limitations of supertall building structural systems: guiding for architects", PhD Dissertation, Department of Architecture, Middle East Technical University, Ankara, Turkey.
 - Ilgin, H.E. and Günel, M.H. (2007), "The role of aerodynamic modifications in the form of tall buildings against wind excitation", *METU Journal of the Faculty of Architecture*, Vol. 24 No. 2, pp. 17-25.
 - Ilgin, H.E. (2021), "A search for A New tall building typology: structural hybrids", LIVENARCH VII Livable Environments and Architecture 7th International Congress OTHER ARCHITECT/ URE(S), September 28-30, Trabzon, Turkey, Vol. 1, pp. 95-107.
 - Ilgin, H.E. (2021b), "Space efficiency in contemporary supertall office buildings", Journal of Architectural Engineering, Vol. 27 No. 3, 4021024, doi: 10.1061/(ASCE)AE.1943-5568.0000486.
 - Ilgın, H.E. (2021c), "Space efficiency in contemporary supertall residential buildings", Architecture, Vol. 1 No. 1, pp. 25-37, doi: 10.3390/architecture1010004.
 - Ilgin, H.E. and Gunel, M.H. (2021), "Contemporary trends in supertall building form: aerodynamic design considerations", *Livenarch VII Livable Environments and Architecture 7th International Congress Other Architect/Ure(S)*, September 28-30, Trabzon, Turkey, Vol. 1, pp. 61-81.
 - Ilgin, H.E., Ay, B.Ö. and Gunel, M.H. (2021), "A study on main architectural and structural design considerations of contemporary supertall buildings", *Architectural Science Review*, Vol. 64 No. 3, pp. 212-224, doi: 10.1080/00038628.2020.1753010.
 - Johnson, B., Horos, D. and Baker, W. (2014), "Timber tower research project", *Structure Magazine*, pp. 22-23, March 2014 available at: https://www.structuremag.org/wp-content/uploads/C-StrucSustain-Johnson-Mar141.pdf (accessed 17 January 2022).
 - Khallaf, R. and Khallaf, M. (2021), "Classification and analysis of deep learning applications in construction: a systematic literature review", *Automation in Construction*, Vol. 129, 103760, doi: 10.1016/j.autcon.2021.103760.

IJBPA

- Klemperer, J. (2015), "Urban density and the porous high-rise: the integration of the tall building in the city - from China to New York", *International Journal of High-Rise Buildings*, Vol. 4 No. 2, pp. 135-142, doi: 10.21022/IJHRB.2015.4.2.135.
- Kumar, P.S. and Gururaj, S. (2019), "Conceptual cost modelling for sustainable construction project planning - a Levenberg - Marquardt neural network approach", *Applied Mathematics and Information Sciences*, Vol. 13 No. 2, pp. 201-208, doi: 10.18576/amis/130207.
- Kuzmanovska, I., Gasparri, E., Monne, D.T. and Aitchison, M. (2018), "Tall timber buildings: emerging trends and typologies", in *Proceedings of the 2018 World Conference on Timber Engineering* (WCTE 2018), Seoul, South Korea, 20-23 August 2018.
- Li, Y., Song, Q., Li, C., Huang, X. and Zhang, Y. (2022), "Reduction of wind loads on rectangular tall buildings with different taper ratios", *Journal of Building Engineering*, Vol. 45, 103588, doi: 10. 1016/j.jobe.2021.103588.
- Mandal, S., Dalui, S.K. and Bhattacharjya, S. (2022), "Wind-induced effect on different corner positions of corner-modified irregular plan-shaped tall building", in Maity, D., Patra, P.K., Afzal, M.S., Ghoshal, R., Mistry, C.S., Jana, P. and Maiti, D.K. (Eds), *Recent Advances in Computational and Experimental Mechanics, Lecture Notes in Mechanical Engineering*, Springer, Singapore, Vol. 1.
- Mubarak, M., Abdullah, A., Azmeri, A. and Hayati, Y. (2019), "Cost estimation of structural components of a building by considering the seismic load on different regions", Advances in Civil Engineering, Vol. 2019, doi: 10.1155/2019/7357913.
- Oldfield, P. and Doherty, B. (2019), "Offset cores: trends, drivers and frequency in tall buildings", *CTBUH Journal*, No. 2, pp. 40-45.
- Opoku, A. (2019), "Sustainable development, adaptation and maintenance of infrastructure", International Journal of Building Pathology and Adaptation, Vol. 37 No. 1, pp. 2-5, doi: 10. 1108/IJBPA-02-2019-074.
- Ramage, M., Foster, R., Smith, S., Flanagan, K. and Bakker, R. (2017), "Super tall timber: design research for the next generation of natural structure", *The Journal of Architecture*, Vol. 22 No. 1, pp. 104-122.
- Safarik, D. (2016), "The other side of tall buildings: the urban Habitat", *CTBUH Journal*, No. 1, pp. 20-25.
- Safarik, D., Ursini, S. and Wood, A. (2016), "Megacities: setting the scene", *CTBUH Journal*, No. 4, pp. 30-39.
- Scheeren, O. (2014), "Space formations", in Proceedings of the CTBUH 2014 Shanghai Conference Proceedings, Shanghai, China, 16-19 September 2014, pp. 67-74.
- Sev, A. and Ozgen, A. (2009), "Space efficiency in high-rise office buildings", METU Journal of The Faculty of Architecture, Vol. 26 No. 2, pp. 69-89, doi: 10.4305/METU.JFA.2009.2.4.
- Sharma, A., Mittal, H. and Gairola, A. (2018), "Mitigation of wind load on tall buildings through aerodynamic modifications: review", *Journal of Building Engineering*, Vol. 18, pp. 180-194, doi: 10.1016/j.jobe.2018.03.005.
- Swei, O., Gregory, J. and Kirchain, R. (2017), "Construction cost estimation: a parametric approach for better estimates of expected cost and variation", *Transportation Research Part B*, Vol. 101, pp. 295-305, doi: 10.1016/j.trb.2017.04.013.
- Szolomicki, J. and Golasz-Szolomicka, H. (2019), "Technological advances and trends in modern highrise buildings", *Buildings*, Vol. 9 No. 9, p. 193-, doi: 10.3390/buildings9090193.
- Taranath, B.S. (2016), Structural Analysis and Design of Tall Buildings: Steel and Composite Construction, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2016.
- Trabucco, D. (2010), "Historical evolution of the service core", CTBUH Journal, No. 1, pp. 42-47.
- Wang, Y. and Ni, Y. (2022) "Full-scale monitoring of wind effects on a supertall structure during six tropical cyclones", *Journal of Building Engineering*, Vol. 45, 103507, doi: 10.1016/j.jobe.2021. 103507.

- Wang, W.-C., Bilozerov, T., Dzeng, R.-J., Hsiao, F.-Y. and Wang, K.-C. (2017), "Conceptual cost estimations using neuro-fuzzy and multi-factor evaluation methods for building projects", *Journal* of Civil Engineering and Management, Vol. 23 No. 1, pp. 1-14, doi: 10.3846/13923730.2014.948908.
- Weismantle, P.A., Smith, G.L. and Sheriff, M. (2007), "Burj Dubai: an architectural technical design case study", *The Structural Design of Tall and Special Buildings*, Vol. 11 No. 4, pp. 335-360, doi: 10.1002/tal.427.
- Wu, J., Xu, H. and Zhang, Q. (2019), "Dynamic performance evaluation of Shanghai Tower under winds based on full-scale data", *The Structural Design of Tall and Special Buildings*, Vol. 28 No. 9, e1611, n/a, doi: 10.1002/tal.1611.
- Yeang, K. (2008), "Ecoskyscrapers and Ecomimesis: new tall building typologies", in *Proceedings of the CTBUH 2008 8th World Congress*, Dubai, The United Arab Emirates, 3-5 March 2008.
- Zhang, K. (2020), "Energy-saving parameterized design of buildings based on genetic algorithm", International Journal of Building Pathology and Adaptation, Vol. 38 No. 5, pp. 785-795, doi: 10. 1108/IJBPA-05-2019-0050.
- Zhong, S., Elhegazy, H. and Elzarka, H. (2022), "Key factors affecting the decision-making process for buildings projects in Egypt", *Ain Shams Engineering Journal*, Vol. 13 No. 3, 101597, doi: 10. 1016/j.asej.2021.09.024.

Appendix 1

#	Building name	Country	City	Height (meters)	# of storeys	Completion date	Function
1	Nakheel Tower	UAE	Dubai	1,000	200	NC	M (H/R/ O)
2	Burj Khalifa	UAE	Dubai	828	163	2010	O) M (H/R/ O)
3	Suzhou Zhongnan Center	China	Suzhou	729	137	NC	M (H/R/ O)
4	Merdeka PNB118	Malaysia	Kuala Lumpur	644	118	UC	M (H/O)
5	Shanghai Tower	China	Shanghai	632	128	2015	M (H/O)
6	Chicago Spire	USA	Chicago	609	150	NC	R
7	Makkah Royal Clock Tower	Saudi Arabia	Mecca	601	120	2012	M (H/R)
8	Ping an Finance Center	China	Shenzhen	599	115	2017	Ο
9	Goldin Finance 117	China	Tianjin	596	128	OH	M (H/O)
10	Entisar Tower	UAE	Dubai	577	122	OH	M (H/R)
11	Lotte World Tower	South Korea	Seoul	554	123	2017	M (H/R/ O)
12	One World Trade Center	USA	New York	541	94	2014	Ó
13	Guangzhou CTF Finance Centre	China	Guangzhou	530	111	2016	M (H/R/ O)
14	Tianjin CTF Finance Centre	China	Tianjin	530	97	2019	M (H/O)
15	CITIC Tower	China	Beijing	528	108	2018	0
16	Evergrande Hefei Center 1	China	Hefei	518	112	OH	M (H/R/ O)
17	Pentominium Tower	UAE	Dubai	515	122	OH	Ŕ
							(continued)

IJBPA

Table A1. Contemporary supertall buildings considered in this study

#	Building name	Country	City	Height (meters)	# of storeys	Completion date	Function	Structural systems and
18	Busan Lotte Town Tower	South Korea	Busan	510	107	NC	M (H/R/ O)	planning considerations
19 20	TAIPEI 101 Greenland Jinmao International Financial Center	Taiwan China	Taipei Nanjing	508 499	101 102	2004 UC	0 M (H/O)	
21	Shanghai World Financial Center	China	Shanghai	492	101	2008	M (H/O)	
22	International Commerce Centre	China	Hong Kong	484	108	2010	M (H/O)	
23	Wuhan Greenland Center	China	Wuhan	475	97	UC	M (H/R/ O)	
24	Central Park Tower	USA	New York	472	98	2020	R	
25	Chengdu Greenland Tower	China	Chengdu	468	101	UC	M (H/O)	
26	R&F Guangdong Building	China	Tianjin	468	91	OH	M (H/R/ O)	
27	Lakhta Center	Russia	St. Petersburg	462	87	2019	Ó	
28	Vincom Landmark 81	Vietnam	Ho Chi Minh City	461	81	2018	M (H/R)	
29	Changsha IFS Tower T1	China	Changsha	452	94	2018	M (H/O)	
30	Petronas Twin Tower 1	Malaysia	Kuala Lumpur	452	88	1998	0	
31	Petronas Twin Tower 2	Malaysia	Kuala Lumpur	452	88	1998	0	
32	Zifeng Tower	China	Nanjing	450	66	2010	M (H/O)	
33	The Exchange 106	Malaysia	Kuala Lumpur	446	95	2019	0 ` ´	
34	Marina 106	UAE	Dubai	445	104	OH	R	
35	World One	Mumbai	India	442	117	NC	R	
36	KK 100	China	Shenzhen	441	98	2011	M (H/O)	
37	Guangzhou International Finance Center	China	Guangzhou	438	103	2010	M (H/O)	
38	Multifunctional Highrise Complex– Akhmat Tower	Russia	Grozny	435	102	OH	M (R/O)	
39	111 West 57th Street	USA	New York	435	84	UC	R	
40	Chongqing Tall Tower	China	Chongqing	431	101	OH	M (H/R/ O)	
41	Haikou Tower 1	China	Haikou	428	94	OH	M (H/R/ O)	
42	One Vanderbilt Avenue	USA	New York	427	62	2020	Ŏ	
43	Marina 101	UAE	Dubai	425	101	2017	M (H/R)	
44	432 Park Avenue	USA	New York	425	85	2015	R	
45	Trump International Hotel and Tower	USA	Chicago	423	98	2009	M (H/R)	
46 47	Al Hamra Tower Princess Tower	Kuwait UAE	Kuwait City Dubai	413 413	80 101	2011 2012	O R	
				-			(continued)	Table A1.

IJBPA

Table A1.

#	Building name	Country	City	Height (meters)	# of storeys	Completion date	Function
48	Two International Finance Center	China	Hong Kong	412	88	2003	0
49	LCT The Sharp Landmark Tower	South Korea	Busan	411	101	2019	M (H/R)
50	Guangxi China Resources Tower	China	Nanning	402	86	2020	M (H/O)
51	China Resources	China	Shenzhen	393	68	2018	0
52	23 Marina	UAE	Dubai	392	88	2012	R
53	CITIC Plaza	China	Guangzhou	390	80	1996	0
54	Dynamic Tower	UAE	Dubai	388	80	NC	M (H/R)
55	Shum Yip Upperhills Tower 1	China	Shenzhen	388	80	2020	M (H/O)
56	30 Hudson Yards	USA	New York	387	73	2019	0
57	PIF Tower	Saudi Arabia	Riyadh	385	72	ATO	Õ
58	Shun Hing Square	China	Shenzhen	384	69	1996	0
59	Autograph Tower	Indonesia	Jakarta	382	75	UC	M (H/O)
60	Burj Mohammed Bin Rashid	UAE	Abu Dhabi	381	88	2014	R
61	Guiyang World Trade Center Landmark Tower	China	Guiyang	380	92	UC	M (H/O)
62	Elite residence	UAE	Dubai	380	87	2012	R
63	Central Plaza	China	Hong Kong	374	78	1992	0
64	Federation Tower	Russia	Moscow	373	93	2016	M (R/O)
65	Golden Eagle Tiandi Tower A	China	Nanjing	368	77	2019	M (H/O)
66	Bank of China Tower	China	Hong Kong	367	72	1990	0
67	St. Regis Chicago	USA	Chicago	362	101	2020	M (H/R)
68	Almas Tower	UAE	Dubai	360	68	2008	0 ` ´
69	Hanking Center Tower	China	Shenzhen	359	65	2018	0
70	Greenland Group Suzhou Center	China	Suzhou	358	77	UC	M (H/O)
71	Sino Steel International Plaza T2	China	Tianjin	358	83	OH	0
72	II Primo Tower 1	UAE	Dubai	356	79	UC	R
73	Emirates Tower One	UAE	Dubai	355	54	2000	0
74	OKO–Residential Tower	Russia	Moscow	354	90	2015	M (H/R)
75	Raffles City Chongqing T4N	China	Chongqing	354	74	2019	M (H/O)
76	The Torch	UAE	Dubai	352	86	2011	R
77	Spring City 66	China	Kunming	349	61	2019	0
78	The Center	China	Hong Kong	346	73	1998	0
79	Neva Towers 2	Russia	Moscow	345	79	2020	R
80	ADNOC Headquarters	UAE	Abu Dhabi	342	65	2015	0
81	One Shenzhen Bay Tower 7	China	Shenzhen	341	78	2018	M (H/R/ O)
							(continued)

#	Building name	Country	City	Height (meters)	# of storeys	Completion date	Function	Structural systems and
82	Comcast Technology Center	USA	Philadelphia	339	59	2018	M (H/O)	planning considerations
83	LCT The Sharp Residential Tower A	Korea	Busan	339	85	2019	R	
84	Mercury City Tower	Russia	Moscow	338	75	2013	M (R/O)	
85	Hengqin International Finance Center	China	Zhuhai	337	69	2020	M (R/O)	
86	Tianjin World Financial Center	China	Tianjin	337	75	2011	0	
87	Wilshire Grand Center	USA	Los Angeles	335	62	2017	M (H/O)	
88	DAMAC heights	UAE	Dubai	335	88	2018	R	
89	Shimao International Plaza	China	Shanghai	333	60	2006	M (H/O)	
90	LCT The Sharp Residential Tower B	Korea	Busan	333	85	2019	R	
91	China World Tower	China	Beijing	330	74	2010	M (H/O)	
92	Hon Kwok City Center	China	Shenzhen	329	80	2017	M (R/O)	
93	3 World Trade Center	USA	New York	329	69	2018	0	
94	Keangnam Hanoi Landmark Tower	Vietnam	Hanoi	328	72	2012	M (H/R/ O)	
95	Golden Eagle Tiandi Tower B	China	Nanjing	328	68	2019	0	
96	Salesforce Tower	USA	San Francisco	326	61	2018	0	
97	Deji Plaza	China	Nanjing	324	62	2013	M (H/O)	
98	Q1 Tower	Australia	Gold Coast	322	78	2005	R	
99	Burj Al Arab	UAE	Dubai	321	56	1999	H	
100 101	Nina Tower Sinar Mas Center 1	China China	Hong Kong Shanghai	320 320	80 65	2006 2017	M (H/O) O	
101	Palace Royale	Mumbai	India	320 320	88	OH	R	
102	53 West 53	USA	New York	320 320	88 77	2019	R	
103	New York Times Tower	USA	New York	319	52	2015	0	
105	Chongqing IFS T1	China	Chongqing	316	63	2016	M (H/O)	
106	Australia 108	Australia	Melbourne	316	100	2020	R	
107	Mahanakhon	China	Bangkok	314	79	2016	M (H/R)	
108	CITIC Financial Center Tower 1	China	Shenzhen	312	-	UC	M (R/O)	
109	Bank of America Plaza	USA	Atlanta	312	55	1992	0	
110	Shenzhen Bay Innovation and Technology Centre Tower 1	China	Shenzhen	311	69	2020	0	
111	Menara TM	Malaysia	Kuala Lumpur	310	55	2001	0	
112	Ocean Heights	UAE	Dubai	310	83	2010	R	
113	Pearl River Tower	China	Guangzhou	309	71	2013	0	
114	Fortune Center	China	Guangzhou	309	68	2015	Õ	
115	Emirates Tower Two	UAE	Dubai	309	56	2000	Н	
							(continued)	Table A1.

IJBPA		
	#	Building name
	116	Guangfa Securities Headquarters
	117	The One
	118	Burj Rafal
	110	A (7)
	119	Amna Tower
	120	Noora Tower
	101	The Chevel

#	Building name	Country	City	Height (meters)	# of storeys	Completion date	Function
116	Guangfa Securities Headquarters	China	Guangzhou	308	60	2018	0
117 118	The One Burj Rafal	Canada Saudi	Toronto Riyadh	308 307	85 68	UC 2014	R M (H/R)
119 120 121	Amna Tower Noora Tower The Shard	Arabia UAE UAE UK	Dubai Dubai London	307 307 306	75 75 73	2020 2019 2013	R R M (H/R/
122 123	Cayan Tower Northeast Asia Trade Tower	UAE South Korea	Dubai Incheon	306 305	73 68	2013 2011	O) R M (H/R/ O)
124	35 Hudson Yards	USA	New York Citv	304	72	2019	0) M (H/R)
125 126 127 128	Baiyoke Tower II One ManhaTan West Two Prudential Plaza Jiangxi Nanchang Greenland Central	Thailand USA USA China	Bangkok New York Chicago Nanchang	304 303 303 303	85 67 64 59	1997 2019 1990 2015	H O O O
129	Plaza, Parcel A Jiangxi Nanchang Greenland Central Plaza, Parcel B	China	Nanchang	303	59	2015	0
130 131	Leatop Plaza Kingdom Centre	China Saudi Arabia	Guangzhou Riyadh	303 302	64 41	2012 2002	O M (H/R/ O)
132	Capital City Moscow Tower	Russia	Moscow	301	76	2010	R
133 134	Supernova Spira Al Wasl Tower	India UAE	Noida Dubai	300 300	80 64	UC UC	M (H/R) M (H/R/ O)
135 136 137	Torre Costanera Abeno Harukas Shimao Riverside Black D2b	Chile Japan China	Santiago Osaka Wuhan	300 300 300	62 60 53	2014 2014 UC	M (H/O) M (H/O) M (H/O)
138 139 140	Block D2b Aspire Tower NBK Tower Golden Eagle Tiandi Tower C	Qatar Kuwait China	Doha Kuwait City Nanjing	300 300 300	36 61 60	2007 2019 2019	M (H/O) O O

Note(s): "M" indicates mixed-use; "H" indicates hotel use; "R" indicates residential use; "O" indicates office use; "UAE" indicates the United Arab Emirates; "UC" indicates under construction; "NC" indicates never completed; "OH" indicates on hold

Table A1.

Appendix 2

#	Building name	Core type	Building form	Structural system	Structural material	
1	Nakheel Tower	Central	Free	Mega column	Composite	
2	Buri Khalifa	Central	Setback	Buttressed core	RC	
3	Suzhou Zhongnan Center	Central	Tapered	Outriggered	Composite	
0	Cabiloa Bilongilair Comol	contrat	rapered	frame	composite	
4	Merdeka PNB118	Central	Free	Outriggered	Composite	
				frame		
5	Shanghai Tower	Central	Twisted	Outriggered	Composite	
6	Chicago Spire	Central	Twisted	frame Outriggered	RC	
0	emerge spire	contrai	1 motod	frame		
7	Makkah Royal Clock Tower	Central	Prismatic	Outriggered frame	Composite	
8	Ping an Finance Center	Central	Tapered	Outriggered	Composite	
0	Thig an Finance Center	Central	Tapereu	frame	Composite	
9	Goldin Finance 117	Central	Tapered	Trussed-tube	Composite	
10	Entisar Tower	Central	Setback	Framed-tube	RC	
11	LoTe World Tower	Central	Tapered	Outriggered	Composite	
			-	frame	-	
12	One World Trade Center	Central	Tapered	Outriggered frame	Composite	
13	Guangzhou CTF Finance Centre	Central	Setback	Outriggered	Composite	
10	Guangzhou err i manee eentre	Central	Octoach	frame	composite	
14	Tianjin CTF Finance Centre	Central	Tapered	Framed-tube	Composite	
15	CITIC Tower	Central	Free	Trussed-tube	Composite	
16	Evergrande Hefei Center 1	Central	Free	Outriggered	Composite	
10		Central	1100	frame	Composite	
17	Pentominium Tower	Central	Free	Outriggered	RC	
				frame		
18	Busan LoTe Town Tower	Central	Free	Outriggered	Composite	
19	TAIDEL 101	Central	Ener	frame	Commonito	
19	TAIPEI 101	Central	Free	Outriggered frame	Composite	
20	Greenland Jinmao International	Central	Tapered	Outriggered	Composite	
20	Financial Center	Central	rapered	frame	Composite	
21	Shanghai World	Central	Tapered	Outriggered	Composite	
21	Financial Center	Central	Tapereu	frame	Composite	
22	International Commerce Centre	Central	Tapered	Outriggered	Composite	
22	International Commerce Centre	Central	Tapered	frame	Composite	
23	Wuhan Greenland Center	Central	Tapered	Buttressed core	Composite	
24	Central Park Tower	Central	Setback	Outriggered	RC	
<u> </u>	Contrait Tark Tower	Central	oetbach	frame	ne	
25	Chengdu Greenland Tower	Central	Tapered	Outriggered	Composite	
20	energeu oreentana rower	Central	rupereu	frame	composite	
26	R&F Guangdong building	Central	Setback	Outriggered	Composite	
-				frame	T	
27	Lakhta Center	Central	Twisted	Outriggered	Composite	Table A2.
				frame		Supertall buildings by
28	Vincom Landmark 81	Central	Setback	Bundled-tube	Composite	core type, building
					-	form, structural system
					(continued)	and structural material

IJBPA

#	Building name	Core type	Building form	Structural system	Structural material
29	Changsha IFS Tower T1	Central	Prismatic	Outriggered frame	Composite
30	Petronas Twin Tower 1	Central	Setback	Outriggered	RC
31	Petronas Twin Tower 2	Central	Setback	Outriggered	RC
32	Zifeng Tower	Central	Free	Outriggered frame	Composite
33	The Exchange 106	Central	Tapered	Outriggered frame	Composite
34	Marina 106	Central	Prismatic	Framed-tube	RC
35	World one	Central	Setback	Buttressed core	RC
36	KK 100	Central	Free	Framed-tube	Composite
37	Guangzhou International Finance Center	Central	Tapered	Outriggered frame	Composite
38	Multifunctional Highrise Complex – Akhmat Tower	Central	Tapered	Framed-tube	Steel
39	111 West 57th Street	Peripheral	Setback	Outriggered frame	RC
40	Chongqing Tall Tower	Central	Tapered	Outriggered frame	Composite
41	Haikou Tower 1	Central	Tapered	Outriggered frame	Composite
42	One Vanderbilt Avenue	Central	Tapered	Outriggered frame	Composite
43	Marina 101	Central	Prismatic	Framed-tube	RC
44	432 Park Avenue	Central	Prismatic	Framed-tube	RC
45	Trump International Hotel and Tower	Central	Setback	Outriggered frame	RC
46	Al Hamra Tower	Central	Free	Shear walled frame	Composite
47	Princess Tower	Central	Prismatic	Framed-tube	RC
48	Two International Finance Center	Central	Setback	Outriggered frame	Composite
49	LCT The Sharp Landmark Tower	Central	Prismatic	Outriggered frame	RC
50	Guangxi China Resources Tower	Central	Tapered	Outriggered frame	Composite
51 52	China Resources Tower 23 Marina	Central Central	Tapered Prismatic	Framed-tube Outriggered	Composite RC
52	25 Mai ma	Central	THSHIAUC	frame	ĸc
53	CITIC Plaza	Central	Prismatic	Shear walled	RC
54	Dynamic Tower	Central	Free	Mega core	RC
55	Shum Yip Upperhills Tower 1	Central	Prismatic	Outriggered frame	Composite
56	30 Hudson Yards	Central	Tapered	Outriggered	Steel
57	PIF Tower	Central	Free	Trussed-tube	Composite
58	Shun Hing Square	Central	Free	Outriggered frame	Composite
59	Autograph Tower	Central	Prismatic	Outriggered frame	Composite

Table A2.

(continued)

#	Building name	Core type	Building form	Structural system	Structural material	Structural systems and
60	Burj Mohammed Bin Rashid	Central	Free	Outriggered frame	RC	planning considerations
61	Guiyang World Trade Center Landmark Tower	Central	Tapered	Framed-tube	Composite	
62	Elite Residence	Central	Prismatic	Framed-tube	RC	
63	Central Plaza	Central	Prismatic	Trussed-tube	Composite	
64	Federation Tower	Central	Free	Outriggered frame	Composite	
65	Golden Eagle Tiandi Tower A	Central	Tapered	Outriggered frame	Composite	
66	Bank of China Tower	Central (split)	Setback	Trussed-tube	Composite	
67	St. Regis Chicago	Central	Free	Outriggered frame	RC	
68	Almas Tower	Central	Free	Outriggered frame	Composite	
69	Hanking Center Tower	External	Tapered	Trussed-tube	Steel	
70	Greenland Group Suzhou Center	Central	Free	Outriggered frame	Composite	
71	Sino Steel International Plaza T2	Central	Prismatic	Framed-tube	Composite	
72	II Primo Tower 1	Central	Prismatic	Outriggered frame	RC	
73	Emirates Tower One	Central	Prismatic	Mega column	Composite	
74	OKO-Residential Tower	Central	Free	Outriggered frame	RC	
75	Raffles City Chongqing T4N	Central	Tapered	Outriggered frame	Composite	
76	The Torch	Central	Prismatic	Outriggered frame	RC	
77	Spring City 66	Central	Free	Outriggered frame	Composite	
78	The Center	Central	Prismatic	Mega column	Composite	
79	NEVA TOWERS 2	Central	Prismatic	Outriggered frame	RC	
80	ADNOC Headquarters	External	Prismatic	Shear walled frame	RC	
81	One Shenzhen Bay Tower 7	Central	Tapered	Outriggered frame	Composite	
82	Comcast Technology Center	Central	Setback	Trussed-tube	Composite	
83	LCT The Sharp Residential Tower A	Central	Prismatic	Outriggered frame	RC	
84	Mercury City Tower	Central	Setback	Framed-tube	RC	
85	Hengqin International Finance Center	Central	Free	Outriggered frame	Composite	
86	Tianjin World Financial Center	Central	Tapered	Outriggered frame	Composite	
87	Wilshire Grand Center	Central	Tapered	Outriggered frame	Composite	
88	DAMAC Heights	Central	Tapered	Outriggered frame	RC	
89	Shimao International Plaza	Central	Free	Mega column	Composite	
90	LCT The Sharp Residential Tower B	Central	Prismatic	Outriggered frame	RC	
					(continued)	Table A2.

BPA	#	Building name	Core type	Building form	Structural system	Structural material
	91	China World Tower	Central	Tapered	Outriggered frame	Composite
	92	Hon Kwok City Center	Central	Prismatic	Outriggered frame	Composite
	93 94	3 World Trade Center Keangnam Hanoi Landmark Tower	Central Central	Setback Setback	Trussed-tube Outriggered frame	Composite RC
	95	Golden Eagle Tiandi Tower B	Central	Tapered	Outriggered frame	Composite
	96	Salesforce Tower	Central	Tapered	Shear walled frame	Composite
	97	Deji Plaza	Central	Prismatic	Outriggered frame	Composite
	98	Q1 Tower	Central	Prismatic	Outriggered frame	RC
	99	Burj Al Arab	Central	Free	Shear walled frame	Composite
	100	Nina Tower	Central	Prismatic	Outriggered frame	RC
	101	Sinar Mas Center 1	Central	Free	Outriggered frame	Composite
	102	Palace Royale	Central	Prismatic	Outriggered frame	RC
	103 104	53 West 53 New York Times Tower	Peripheral Central	Tapered Prismatic	Framed-tube Outriggered frame	RC Steel
	105	Chongqing IFS T1	Central	Prismatic	Outriggered frame	Composite
	106	Australia 108	Central	Free	Outriggered frame	RC
	107	Mahanakhon	Central	Free	Outriggered frame	RC
	108 109 110	CITIC Financial Center Tower 1 Bank of America Plaza Shenzhen Bay Innovation and Technology Centre Tower 1	Central Central Central	Tapered Setback Prismatic	Framed-tube Mega column Framed-tube	Composite Composite Composite
	111	Menara TM	Central	Free	Outriggered frame	RC
	112	Ocean Heights	Central	Tapered	Outriggered frame	RC
	113	Pearl River Tower	Central	Free	Outriggered frame	Composite
	114	Fortune Center	Central	Free	Outriggered frame	Composite
	115	Emirates Tower Two	Atrium	Prismatic	Outriggered frame	RC
	116	Guangfa Securities Headquarters	Central	Tapered	Outriggered frame	Composite
	117	The One	Central	Prismatic	Outriggered frame	Composite
	118	Burj Rafal	Central	Prismatic	Outriggered frame	Composite

Table A2.

(continued)

#	Building name	Core type	Building form	Structural system	Structural material	Structural systems and
119	Amna Tower	Central	Prismatic	Outriggered frame	RC	- planning considerations
120	Noora Tower	Central	Prismatic	Outriggered frame	RC	
121	The Shard	Central	Tapered	Shear walled frame	Composite	
122	Cavan Tower	Central	Twisted	Framed-tube	RC	
123	Northeast Asia Trade Tower	Central	Tapered	Outriggered frame	Composite	
124	35 Hudson Yards	Central	Setback	Outriggered frame	RC	
125	Baiyoke Tower II	Central	Setback	Outriggered frame	RC	
126	One ManhaTan West	Central	Tapered	Shear walled frame	Composite	
127	Two Prudential Plaza	Central	Setback	Outriggered frame	RC	
128	Jiangxi Nanchang Greenland Central Plaza, Parcel A	Central	Free	Outriggered frame	Composite	
129	Jiangxi Nanchang Greenland Central Plaza, Parcel B	Central	Free	Outriggered frame	Composite	
130	Leatop Plaza	Central	Prismatic	Trussed-tube	Composite	
131	Kingdom Centre	Central	Free	Shear walled frame	RC	
132	Capital City Moscow Tower	Central	Free	Outriggered frame	RC	
133	Supernova Spira	Central	Prismatic	Outriggered frame	RC	
134	Al Wasl Tower	Central	Free	Outriggered frame	Composite	
135	Torre Costanera	Central	Tapered	Outriggered frame	RC	
136	Abeno Harukas	Central	Setback	Outriggered frame	Composite	
137	Shimao Riverside Block D2b	Central	Tapered	Outriggered frame	Composite	
138	Aspire Tower	Central	Free	Mega core	RC	
139	NBK Tower	Central	Free	Outriggered frame	Composite	
140	Golden Eagle Tiandi Tower C	Central	Tapered	Outriggered frame	Composite	
Note	e(s): "RC" indicates reinforced concr	ete				Table A2.

Corresponding author

Hüseyin Emre Ilgın can be contacted at: emre.ilgin@tuni.fi

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com