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Abstract— Providing truly ubiquitous connectivity requires
development of low Earth orbit (LEO) satellite Internet, whose
theoretical study is lagging behind network-specific simulations.
In this paper, we derive analytical expressions for the down-
link coverage probability and average data rate of a massive
inclined LEO constellation in terms of total interference power’s
Laplace transform in the presence of fading and shadowing, ergo
presenting a stochastic geometry-based analysis. We assume the
desired link to experience Nakagami-m fading, which serves to
represent different fading scenarios by varying integer m, while
the interfering channels can follow any fading model without
an effect on analytical tractability. To take into account the
inherent non-uniform distribution of satellites across different
latitudes, we model the LEO network as a nonhomogeneous
Poisson point process with its intensity being a function of
satellites’ actual distribution in terms of constellation size, the
altitude of the constellation, and the inclination of orbital planes.
From the numerical results, we observe optimum points for
both the constellation altitude and the number of orthogonal
frequency channels; interestingly, the optimum user’s latitude
is greater than the inclination angle due to the presence of
fewer interfering satellites. Overall, the presented study facilitates
general stochastic evaluation and planning of satellite Internet
constellations without specific orbital simulations or tracking data
on satellites’ exact positions in space.

Index Terms— Massive communication satellite networks, low
Earth orbit (LEO) internet constellations, interference, coverage
probability, average achievable data rate, stochastic geometry,
Poisson point process.

I. INTRODUCTION

RECENT advances towards 6th generation (6G) wireless
networks require progression and development of non-

terrestrial networks to provide seamless connections with high
transmission capacity [1]–[4]. Among non-terrestrial networks,
low Earth orbit (LEO) satellite Internet constellations have
gained increasing popularity as they provide global connectiv-
ity for unserved or underserved regions, where the deployment
of terrestrial networks is not feasible or economically reason-
able [5], [6]. Deploying thousands of satellites will ensure that
every single person or appliance on Earth could be connected
and no location is left in outage.
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While the performance of many LEO constellations
(e.g., Starlink, OneWeb, Kuiper) has been evaluated through
network-specific simulations to put the commercial plans for-
ward, a general scientific understanding of their performance
is limited in the open literature. Conventional simulation-based
studies are restricted to few number of satellites with determin-
istic locations which is not capable of evaluating the general
performance of a massive satellite network consisting of
thousands of satellites. Moreover, in most of the literature, the
coverage regions are assumed to have fixed circular footprints,
while selecting smaller inclination angles and simultaneous
consolidated operation of several LEO networks render a not-
so-regular Voronoi tessellation.

In this paper, downlink coverage probability and aver-
age data rate of inclined LEO constellations are analyzed
under general shadowing and fading propagation models. The
satellites’ positions are assumed to be distributed as a non-
homogeneous Poisson point process (NPPP), which models
the satellites distribution across varying latitudes precisely
by setting the intensity function to be the actual density of
satellites in an actual constellation.

A. Related Works

The literature around LEO networks is mostly limited
to deterministic and simulation-based analyses. In [7], the
performance of two different LEO constellations was sim-
ulated assuming specific constellation sizes. The probability
of average call drop and the distribution of the number of
handoffs were studied for the Iridium constellation in [8].
A deterministic model to characterize the visibility time of one
LEO satellite was presented in [9]. Since the model in [9]
is not valid for any arbitrarily located user, authors in [10]
contributed statistical analysis of coverage time in a mobile
LEO constellation. In [11], a LEO-based Internet-of-Things
architecture was presented so as to supply network access for
devices distributed in remote areas.

Stochastic geometry is an area of mathematics, which
deals with the study of random objects on Euclidean space.
In the area of telecommunication, stochastic geometry has
been extensively utilized to model, evaluate, and develop
the wireless communication networks with irregular topolo-
gies [12]–[14], especially for two-dimensional (planar) ter-
restrial networks [12]–[20]. Various studies in stochastic
geometry modeling of multi-tier and cognitive networks were
reviewed in [15]. Observations in [16] have shown that the
Poisson point process (PPP) and a regular grid model provide
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lower and upper bounds on the network performance metrics,
respectively, with the same deviation from the actual network
performance. The research in [17] and [18], being an extension
to [16], modeled a multi-tier network considering the limita-
tions for the achievable quality-of-service. The coverage of
uplink was studied in [19] assuming base stations and devices
are distributed as independent PPPs.

The application of stochastic geometry to three-dimensional
wireless networks has gained remarkable attention in the
literature [21], [22]. In [21], a PPP model was applied to
model and analyze the coverage in three-dimensional cellular
networks. Since the PPP, despite providing tractable analysis,
is not accurate when applied to networks with limited nodes
in a finite area [23], a binomial point process (BPP) can
be utilized instead to capture the characteristics of such
networks [24], [25]. A finite network of unmanned aerial
vehicles was modeled as a BPP in [22] and [26]. In [24]
and [27], a planar network with an arbitrary shape was studied
assuming the transmitter is positioned at a fixed distance. The
results were then generalized in [20], by using two protocols
for selecting the transmitter.

On the literature around the LEO satellite networks, the
analysis is limited to few number of satellites with known loca-
tions and/or coverage spots. In [28], with tools from stochastic
geometry, authors have developed a method to characterize the
magnitude of Doppler shifts in a LEO network. Resource con-
trol of a satellite–terrestrial network was investigated in [29],
in order to minimize the outage probability and maximize the
data rate. Focusing on only a single spotbeam, the hybrid
satellite–terrestrial network supporting 5G infrastructure has
been presented in [30] and [31]. In [32], the outage probability
of a satellite-based Internet-of-Things, in which LEO satellites
relay uplink data to ground stations, is derived in closed
form by assuming a low number of satellites at deterministic
locations.

Recently, more research on LEO networks using stochastic
geometry has started emerging. The generic coverage and rate
analysis of satellite networking have been formulated in our
study [33], by modeling the satellites as a BPP on a spherical
shell and using the tools from stochastic geometry, without
considering any deterministic model of orbits. However, the
approach used in [33] is unable to include the varying density
of satellites over different latitudes, except through numerical
computations, to adjust the performance deviation in the actual
and the uniformly modeled constellations. In fact, in practical
constellations, the satellites are not evenly distributed across
different latitudes [34], i.e., as the user gets farther from
the equator towards the poles, more satellites are visible to
it. In [34], we derived a mathematical expression, named as
effective number of satellites, based on the actual constellation
geometry to compensate for the performance mismatch caused
by non-uniform distribution of satellites on the orbital shell.

The satellites’ positions are modeled as a nonhomogeneous
Poisson point process (NPPP) in [35] to analyze the coverage
and rate of a noise-limited interference-free LEO network.
Utilizing NPPP not only enables us to tractably analyze
the LEO network performance, but also models the actual
distribution of satellites precisely by setting its intensity to

be the physical density of satellites along different latitudes.
Similar contributions on performance evaluation of a LEO
network were also presented in [36] using a homogeneous PPP
without considering the varying density of satellites on differ-
ent latitudes. The results were then used in [37] to optimize
the constellation altitude.

The work in [38] characterizes the distance distribution in
two different communication links in a LEO satellite network:
link between a user on Earth and the nearest satellite to it
and the link between a satellite and its nearest neighboring
satellite. Unlike in [33], the satellites are assumed to be
placed at different known altitudes, i.e., on multiple orbital
shells. Stochastic geometry and the results from [38] were
then utilized in [39] to obtain the downlink probability of
coverage for a LEO network, where satellite gateways act as
relays between the satellites and users on Earth. An uplink
communication scenario was characterized by considering
interfering terrestrial transmitters in [40].

This paper, unlike our prior works [33], [34], adopts non-
homogeneous Poisson point process to model the satellites’
locality, for which the varying density along different latitudes
is embedded in the PPP’s intensity function. Moreover, a more
general fading model, i.e., Nakagami-m, transceivers’ antenna
patterns, and shadowing attenuation due to the blockage of
the signals by obstacles surrounding the user, are considered in
our analysis. This paper also includes interference analysis in a
generic form which was neglected in [35] and the performance
metrics are evaluated in terms of the Laplace function of
interference.

B. Contributions and Paper Organization

We model the satellites’ positions in a LEO network as
a nonhomogeneous PPP which facilitates not only using the
tools from stochastic geometry, but also capturing the exact
characteristics of the actual constellations, i.e., the uneven dis-
tribution of satellites across different latitudes. Unlike in [33],
[34], and [39], by selecting the intensity of NPPP to fit
the actual distribution of satellites on an orbital shell, there
is no mismatch between the performance of theoretical sto-
chastic constellations and actual deterministic LEO networks.
We derive the intensity of NPPP in closed form in terms of
the constellation parameters: the total number of satellites,
altitude of the constellation, latitude of the satellites, and the
inclination of the orbits. The model is extensible to develop
an analysis on satellite-to-satellite communication, similar to
what was proposed in [41] for three-dimensional wireless
sensor networks.

As the main contributions, we utilize stochastic geometry
to formulate the coverage and average achievable rate of a
user served by a LEO constellation in terms of the derivative
of Laplace transform of interference power.1 Our derivations
do not rely on exact location of every single satellite and are
applicable for performance analysis of any given constellation

1Thus, the present study, unlike the preliminary results presented in [35]
that are limited to the special case of scheduling an orthogonal channel for
every satellite, includes the cumulative interference from all other satellites
that are visible to the user and share the same channel.
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as long as the constellation parameters are known. Modeling
the satellites’ locality as a NPPP, the analytical expressions
obtained from a stochastic constellation geometry can be par-
ticularly used to analyze the actual deterministic constellations.

In propagation modelling, unlike most of literature on this
topic, we take into account the effect of shadowing caused by
the presence of the obstacles surrounding the user. To retain
analytical tractability and still cover different fading scenarios,
we assume Nakagami-m fading with integer m as well as
shadowing with any desired distribution for the propagation
model of desired links.2 For interfering signals, any arbitrarily
distributed fading and shadowing can be considered, since the
analytical tractability is unaffected. Frequency reuse has been
also taken into account by randomly assigning the frequency
channels to the satellites. Random channel assignment pre-
serves the tractability of our analytical derivations since it can
be modeled by thinning the original nonhomogeneous Poisson
point process.

In this paper, antenna pattern, despite the conventional
approach, is formulated and included in the performance
analysis by representing the antenna gain as a function of the
relative distances between the user and the satellites. Finally,
we evaluate two critical performance metrics, i.e., coverage
and data rate, in terms of several key design parameters, such
as altitude of the constellation and the number of frequency
channels. From the numerical results, we are able to observe
optimal points for these parameters for some specific network
setup. Counter-intuitively, the user which resides in higher
latitudes, away from the constellation borders, has the best
performance due to existence of fewer interfering satellites
in that region. Some constellation design guidelines, e.g.,
on orbital inclination and altitude, are also provided through
the numerical results.

The remainder of this paper is organized as follows.
Section II describes the system model and the mathematical
preliminaries for modeling a LEO network as a NPPP. The
main outcome of this study, which is the derivation of analyti-
cal expressions for downlink coverage probability and average
achievable rate of a terrestrial user, is presented in Section III,
which involves also the analysis of the Laplace transform of
interference power. We provide numerical results in Section IV
for the verification of our derivations and studying the effect of
key system parameters such as the size of the constellation and
its altitude as well as the channel parameters on the network
performance. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

In this section, first, we present the characteristics and
geometries of actual low Earth orbit satellite constellations.
Next, we will introduce the mathematical preliminaries for
modeling the actual network as a stochastic point process.

A. Actual Inclined Constellations

As shown in Fig. 1, we consider a LEO communica-
tion satellite constellation consisting of N satellites launched

2Varying the value of m, we are able to control the multi-path fading
severity. For instance, m = 1 corresponds to Rayleigh fading environment
while m → ∞ represents non-fading channels.

Fig. 1. A constellation in an example case of N = 400 satellites flying on
ι = 53◦ inclined orbits. The borders of two spherical caps above the user are
shown: the outer one covers all visible satellites to the user while the inner
one is empty of satellites and the serving satellite is located on its border.

uniformly on circular orbits with inclination angle, ι, and
altitude that is denoted by rmin — the subscript indicates
the minimum possible distance between a satellite and a
ground user (as measured at the zenith). Satellites’ spherical
coordinates in terms of their latitude and longitude are denoted
by (φs, λs).

A user terminal is located on any specific latitude, denoted
by φu, on the surface of Earth that is approximated as a perfect
sphere with radius r⊕ ≈ 6371 km. Satellites rising above the
horizon at an angle of θs ≥ θmin are the only ones capable of
transmitting signals to the users. As such, rmax refers to the
maximum distance at which a satellite and a user are able to
communicate (and it occurs when θs = θmin), and

rmax

r⊕
=

√
rmin

r⊕

(
rmin

r⊕
+ 2

)
+ sin2(θmin) − sin(θmin). (1)

In this paper, the serving satellite is the one with the shortest
distance to the user. We perform frequency reuse by assum-
ing K , with K ≤ N , orthogonal frequency channels available
for the network. The satellites are distributed randomly among
the channels, which potentially causes co-channel interference
to the user from N

K − 1 satellites which share the same
frequency channel. All satellites on the same channel that are
elevated above the horizon to an angle of θs ≥ θmin cause
interference to reception of the user.

The variables R0 and Rn, n = 1, 2, . . . , N , represent the
distances from the user to the serving satellite and the other
interfering satellites, respectively, while H0 and Hn denote
the corresponding channel gains to model fading. Shadowing
effect is modeled by random variables Xn, n = 1, 2, . . . , N ,
correspondingly. It is worth noting that losses caused by
near-ground obstacles in the last few meters of the signal
path, named as excess path loss in [36], can be approxi-
mated by properly setting the shadowing distribution and its
corresponding parameters. On the other hand, our analysis
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is also capable of including the effect of elevation angle on
the shadowing by expressing it as a function of the relative
distances between the user and the satellites. However, in this
paper, we do not explicitly formulate that to simplify the
expressions. Obviously, Hn = Xn = 0 if Rn > rmax for some
n = 0, 1, . . . , N . The attenuation due to atmospheric gases is
insignificant for frequencies below 20 GHz (at least, or even
at higher bands below the oxygen absorption peak at 60 GHz)
[42, Fig. 10], which is the practical range for downlink LEO
communication in well-known constellations [43].

For the serving channel, we adopt Nakagami-m fading
which will enable not only to consider a wide range of
multi-path fading conditions but also to maintain the tractabil-
ity of our derivations. On the other hand, for the interfering
channels, we consider arbitrary fading distributions since they
have no effect on the tractability of our analysis and, hence
there is no need to limit our results to some specific fading
models. Following the same logic, we also obtain more
general results by assuming arbitrarily distributed shadowing
for all — the serving and the interfering — channels.

To simplify notation, when NI > 0, we let indices n =
1, 2, . . . , NI correspond to those NI ≤ N/K − 1 satellites
with θs ≥ θmin that cause co-channel interference. The user
and the satellites are equipped with directional antennas having
gains denoted by Gu(θu) and Gs(θn), respectively, while θu

and θn are the angles between the line-of-sight path and their
corresponding antennas’ boresight. We assume that the user’s
antenna boresight is directed towards the sky, perpendicular
to Earth’s surface, and the satellites’ antennas’ boresight
always radiates towards the center of Earth. When all antennas
have symmetrical radiation patterns, using the law of cosines,
we obtain θu and θn as

θu(Rn) = π − cos−1

(
r2
⊕ + R2

n − (r⊕ + rmin)2

2r⊕Rn

)
(2)

and

θn(Rn) = cos−1

(
R2

n − r2
⊕ + (r⊕ + rmin)2

2Rn (r⊕ + rmin)

)
, (3)

respectively. As can be seen from (2) and (3), the antennas’
radiation patterns are one-to-one functions of the relative
distances between the user and the satellites. Thus, in the
rest of this paper, we will denote the user’s and the satellites’
antenna gains directly as Gu(Rn) and Gs(Rn), respectively,
and Gt(Rn) = Gu(Rn)Gs(Rn) is the overall antenna gain.

According to the described model, the signal-to-
interference-plus-noise ratio (SINR) of the link is given
by

SINR =
ptGt(R0)H0X0R

−α
0

I + σ2
, (4)

where pt is the transmit power of satellites, the constant
σ2 is the additive noise power, the parameter α is a path
loss exponent, which should be set to α = 2 for satellite
communication since the signal travels through free space for

most of its path, and

I �
NI∑

n=1

ptGt(Rn)HnXnR−α
n (5)

is the cumulative interference power from all NI other satel-
lites above the user’s horizon that share the same frequency
channel with the serving satellite. The distance from the user
to its nearest satellite is

R0 = min
n=1,2,...,Nvis

Rn, (6)

where Nvis is a variable representing the number of visible
satellites to the user (cf. the outer cap in Fig. 1).

B. Nonhomogeneous PPP Model

In the constellation described earlier, the satellites appear
unevenly along the lines of latitudes, which means, e.g., that
there are more visible satellites for a user located close to
inclination limits than for one on equatorial region. In order
to model the latitude-dependent distribution of satellites,
we assume that the satellites are distributed according to a
nonhomogeneous PPP, ξ, on a spherical surface with radius
r⊕ + rmin. The NPPP is characterized with its intensity,
δ(φs, λs), which varies according to the satellites’ latitude
(and/or longitude).

By the definition of a NPPP, the number of points in some
bounded region A of the orbital shell is a Poisson-distributed
random variable denoted by N . Thereby, the probability to
have n satellites in A is given by

Pn (A) � P (N = n)

=
1
n!

(∫∫
A

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

)n

× exp
(
−

∫∫
A

δ(φs, λs) (rmin + r⊕)2 cos(φs) dφsdλs

)
,

(7)

where δ(φs, λs) is the intensity function of nonhomogeneous
PPP at latitude φs and longitude λs. Based on the given system
model, A is the spherical cap where viewable satellites to
the user exist (cf. the outer one in Fig. 1), with surface area(
δπ

(
r2
max − r2

0

))
/(1 − rmin

r⊕+rmin
) (See [33, Appendix A]).

In order to precisely model a LEO network as a NPPP,
we first need to characterize the intensity function based on the
actual physical network as follows. The preliminaries obtained
herein will be used shortly towards contributing expressions
for probability of coverage and average achievable rate.

Lemma 1: When satellites are distributed uniformly on low
circular orbits with the altitude, rmin, and the inclination
angle, ι, the intensity function of the nonhomogeneous PPP
is a function of latitude, φs, only and given by

δ(φs) =
N√

2π2(rmin + r⊕)2
· 1√

cos(2φs) − cos(2ι)
, (8)

and we can denote δ(φs, λs) = δ(φs) since it does not depend
on λs, for φs ∈ [−ι, ι].

Proof: The intensity function is equivalent to the actual
density of the satellites on an orbital shell element created by
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TABLE I

SUMMARY OF MATHEMATICAL NOTATION

spanning the azimuthal angle from 0◦ to 360◦ on the orbital
shell at latitude φs, that is calculated as

δ(φs) =
NfΦs(φs) dφs

2π(rmin + r⊕)2 cos(φs) dφs
, (9)

which is the ratio of the number of satellites resided on the
surface element to the element’s area. Substituting the proba-
bility density fΦs(φs) of random latitude Φs [34, Lemma 2]
completes the proof. �

If the intensity of satellites is simplistically presumed to be
uniform all over the orbital shell, it can be written as follows.

Lemma 2: When satellites are uniformly distributed on a
sphere, the point process turns into a homogeneous Poisson
point process with a constant intensity given by

δ =
N

4π(rmin + r⊕)2
, (10)

which does not depend on latitudinal/longitudinal parameters.
Thus, for the special case when satellites are distributed

uniformly on the orbital shell, by substitution from Lemma 2,
the probability given in (7) can be expressed in closed form
as

Pn (A)=
1
n!

(
N

(
r2
max−r2

min

)
4r⊕ (r⊕+rmin)

)n

exp

(
−N

(
r2
max−r2

min

)
4r⊕ (r⊕+rmin)

)
.

(11)

III. PERFORMANCE ANALYSIS

In this section, we focus on the performance analysis of a
LEO satellite network in terms of coverage probability and
data rate of a user in an arbitrary location on Earth. We utilize
stochastic geometry in order to formulate coverage probability
and rate as a function of the network and the propagation para-
meters. Two main components of our analytical derivations
are the distribution of the distance to the nearest satellite and
the Laplace function of interference which will be presented
throughout this section.

A. The Distance to the Nearest Satellite

In this paper, the serving satellite is assumed to be the
nearest one to the user. Therefore, an important parameter
for coverage and rate analysis is the probability density
function (PDF) of the distance to the nearest satellite, R0,
which is given as follows.

Lemma 3: The PDF of the serving distance R0, when the
satellites are distributed according to a nonhomogeneous PPP
with a latitude-dependent intensity, δ(φs), is

fR0 (r0)

= 2r0

(
rmin

r⊕
+ 1

)
exp(−γ(r0))

∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs)

× cos(φs)√
cos2(φs − φu) − cos2(φ0)

dφs, (12)

where

γ(r0) = 2(rmin + r⊕)2

×
∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs) cos(φs) cos−1

(
cos(φ0)

cos(φs − φu)

)
dφs

(13)

and φ0 is the polar angle difference between the serv-
ing satellite and the user which is given by φ0 =
cos−1

(
1 − r2

0−r2
min

2(rmin+r⊕)r⊕

)
. Equation (12) is valid for φ0 ≥

|φu| − ι and r0 ∈ [rmin, 2r⊕ + rmin] while fR0 (r0) = 0
otherwise.

Proof: See Appendix A. �
We validate the PDF of the serving distance given in

Lemma 3 (lines) by Monte Carlo simulations (markers) in
Fig. 2. As shown in the figure, for larger number of satellites,
it is more likely that the serving distance has a value close
to the constellation altitude. The PDF becomes more uniform
and its maximum point diverges from the constellation altitude
for fewer number of satellites. For user’s latitudes greater than
the inclination angle, e.g., φu = 65◦ in the figure, the serving
distance has a value greater than the altitude depending the
constellation size and its altitude.

When the density of satellites is presumed to be uniform,
i.e., it is not a function of latitude, the PDF of the serving
distance can be obtained in closed form as follows.

Lemma 4: The PDF of the serving distance R0 when the
satellites are distributed uniformly with constant intensity
given in Lemma 2 is

fR0 (r0)=
Nr0

2r⊕(rmin + r⊕)
exp

(
−N

(
r2
0−r2

min

4(rmin+r⊕)r⊕

))
(14)

for r0 ∈ [rmin, 2r⊕ + rmin] while fR0 (r0) = 0 otherwise.
Proof: In this proof, the same principles are used as in

Lemma 3. However, the integration from a constant density
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Fig. 2. PDF of the serving distance, R0, given in Lemma 3, for rmin =
500 km, ι = 53◦ , and θmin = 10◦. The lines and the markers show the
theoretical and simulation results, respectively.

over the cap sphere will reduce to a simple expression. Thus,
FR0 (r0) = 1 − exp

(
−N

(
r2
0−r2

min
4(rmin+r⊕)r⊕

))
. Calculating the

derivative of the CDF w.r.t. r0 completes the proof. �
The PDF of the serving distance is also derived in [33]

assuming satellites are uniformly distributed as a BPP. It is
worth noting that the Taylor series expansion of Lemma 4
and the serving distance distribution given in [33, Lemma 2]
are the same for the first two terms. The difference between
the serving distance in a uniformly distributed constellation
given in [33] and the homogeneous Poisson point process in
Lemma 4 is insignificant since the argument of exponential

function in (14), i.e., N
(

r2
0−r2

min
4(rmin+r⊕)r⊕

)
, is small.

B. Coverage Probability and Average Data Rate

The coverage probability is the probability that the SINR
at the receiver is higher than the minimum SINR required
to successfully transmit the data. The coverage probability is
defined as

Pc (T ) � P (SINR>T )=P

(
ptGt(R0)H0X0R

−α
0

I + σ2
> T

)
,

(15)
where T is the SINR threshold.

Using the above definition, we express the coverage proba-
bility of a user in the following theorem.

Theorem 1: The coverage probability for an arbitrarily
located user under a Nakagami fading serving channel while
both shape parameter and rate parameter of gamma distrib-
ution3 are m0, is

Pc (T ) � P (SINR > T )

=
∫ rmax

rmin

∫ ∞

0

fX0(x0)fR0 (r0)

[
e−sσ2

m0−1∑
k=0

∑k
l=0

(
k
l

)(
sσ2

)l(−s)k−l ∂k−l

∂sk−l LI(s)
k!

]
s=

m0T rα
0

ptGt(r0)x0

dx0dr0,

(16)

3Channel gain, being the square of Nakagami random variable, follows a
gamma distribution.

where the PDF fR0 (r0) is given in Lemma 3 (or Lemma 4),
fX0(x0) is the PDF of X0 and LI (s) is the Laplace transform
of interference power I calculated in the next section.

Proof: See Appendix B. �
Let us then move on the average achievable data rate

(in bit/s/Hz), which is the ergodic capacity for a fading
communication link derived from Shannon-Hartley theorem
normalized to unit bandwidth. The average achievable rate is
defined as

C̄ � 1
K

E [log2 (1 + SINR)] . (17)

Unlike for the coverage probability, frequency reuse affects the
average rate in two opposite directions. One direction is the
improvement in SINR due to the reduction in the number of
interfering satellites which use the same channel. The other
direction which results in lower data rate is induced by a
reduction in the availability of the frequency band shared
among a group of satellites.

In the following theorem, we calculate the expression for
the average rate of a user over Nakagami fading serving chan-
nel. The interfering channel gains may follow any arbitrary
distribution.

Theorem 2: The average data rate of an arbitrarily located
user under a Nakagami fading serving channel and any
fading or shadowing distribution for interfering channels is
given by

C̄ =
1

K

� rmax

rmin

� ∞

0

� ∞

0

fX0(x0)fR0 (r0)

�
e−sσ2

m0−1�
k=0

�k
l=0

�
k
l

� �
sσ2
�l

(−s)k−l ∂k−l

∂sk−l LI(s)

k!

�
s=

m0(2t−1)rα
0

ptGt(r0)x0

dtdx0dr0,

(18)

where m0 is the parameter of Nakagami fading, and LI(s)
will be given in Lemma 5 and its corresponding corollaries,
which cover some special cases.

Proof: See Appendix C. �

C. Interference Analysis

In this subsection, we derive the Laplace function of inter-
ference which is a key element of the performance expressions
in Theorems 1 and 2. We, first, obtain the expression consider-
ing a general propagation model which means that no assump-
tion is made regarding the specific expressions of fXn(xn) and
fHn(hn).

Lemma 5: When the server is at distance r0 ≥ rmin
from the user and interfering channels experience an arbi-
trary distributed fading, the Laplace transform of random
variable I is

LI(s) � EI

�
e−sI

	
=

∞�
n=0

Pn (A (rmax) −A (r0))

×

� rmax

r0

� ∞

0

LHn(sptGt(rn)xnr−α
n )fXn(xn)fRn|R0(rn|r0)dx0drn

�n

,

(19)

where

fRn|R0(rn|r0) =
dγ(rn)/drn

γ(rmax) − γ(r0)
(20)
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is the probability density function of the distance from any
visible satellite to the user conditioned on the serving dis-
tance [33, Lemma 3]. The parameter A (rmax) represents the
spherical cap where all satellites that can be viewed by the
user exist while A (r0) is the cap above the user, empty of
satellites and with the serving satellite on its border (base of
the cap). The function fXn(xn) denotes the shadowing PDF
for the nth interfering channel.

Proof: See Appendix D. �
In the special cases, where channels experience Nakagami

fading without any shadowing, Lemma 5 can be reduced into
the following corollary. The expression thereof is obtained by
substituting the Laplace function of a gamma random variable,
i.e., LHn(z) = mmn

n

(mn+z)mn , where mn stands for both shape
parameter and rate parameter of gamma distribution for the
nth link.

Corollary 1: When the interfering channels experience only
Nakagami fading (no shadowing), the Laplace function of
interference can be written as

LI(s) =
∞∑

n=0

Pn (A (rmax) −A (r0))

×
(∫ rmax

r0

mmn
n

(mn + sptGt(rn)r−α
n )mn

fRn|R0(rn|r0)drn

)n

,

(21)

where A (rmax) and A (r0) are the visible cap and the null
cap above the user, respectively. The PDF fRn|R0(rn|r0) is
given in (20), and mn is the Nakagami fading parameter for
nth link.

When the intensity of the PPP is presumed to be con-
stant (regardless of the latitude), the Laplace function can
be obtained from the following corollary by simply sub-
stituting γ(·) in (20) by the product of the density in
Lemma 2 and the surface area of the spherical cap formed
by the distance between the user and the given interfering
satellite.

Corollary 2: The Laplace function of interference when
the satellites are distributed uniformly with constant inten-
sity, and their channels experience Nakagami fading, is
given by

LI(s)

=
∞∑

n=0

1
n!

(
N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)

×
(∫ rmax

r0

∫ ∞

0

2rnmmn
n fX0(x0)

(r2
max−r2

0) (mn+sptGt(rn)r−α
n )mn

dx0drn

)n

,

(22)

where fXn(xn) is the PDF of the shadowing compo-
nent and mn is the fading parameter for Nakagami
fading.

The following corollary presents the Laplace function of
interference in closed-form, under the assumptions given in
Corollary 2 and additionally excluding shadowing from the
propagation model.

Corollary 3: Assuming constant antenna gains, the Laplace
function of interference, when the satellites are distrib-
uted uniformly with constant intensity and their chan-
nels experience only Nakagami fading (no shadowing), is
given by

LI(s)

=
∞∑

n=0

1
n!

(
N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)

× 1
(r2

max−r2
0)

[
r2
max 2F1

(
− 2

α
, mn;

α−2
α

;− sptGtr
−α
max

mn

)n

−r2
0 2F1

(
− 2

α
, mn;

α − 2
α

;− sptGtr
−α
0

mn

)n
]
, (23)

where 2F1 (·, ·; ·; ·) is the Gauss’s hyper-geometric function
and mn is the fading parameter.

Finally, using the function given in [44, Eq. 9.100] and
substitution from special parameter values, the above can be
reduced to elementary functions. For instance, when m = 1
and α = 2, we have

LI(s)

=
∞∑

n=0

1
n!

(
N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)n

exp

(
− N

(
r2
max − r2

0

)
4r⊕ (r⊕ + rmin)

)

×
(

1 +
sptGt

(r2
max − r2

0)
ln

(
k + r2

0

k + r2
max

))
. (24)

To perform frequency reuse, we assign each satellite randomly
and independently to a particular frequency channel. There-
fore, the satellites assigned to each of the orthogonal frequency
channels form a thinned version of the original PPP with
intensity δ(φs)/K . Since thinning preserves the Poisson point
process according the thinning theorem of PPP [13], we can
take into account the effect of frequency reuse by substitu-
tion δ(φs) → δ(φs)/K in Laplace function of interference
(in Lemma 5 or the corresponding corollaries). Since the
same frequency channel is used by the user and its near-
est satellite, the frequency reuse has no effect on the
original value of intensity that is used to obtain the
PDF of the distance from the user to the server in
Lemma 3.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to study the
effect of different network parameters on coverage proba-
bility and average data rate using the analytical expressions
obtained in Section III. The performance of the network
is evaluated in terms of satellite altitude and the number
of orthogonal frequency channels, which provides important
guidelines into the satellite network design. Furthermore, our
analytical derivations are all verified through Monte Carlo
simulations.

We consider the large-scale attenuation with path loss
exponent α = 2, and the small-scale Nakagami-m fad-
ing with integer m ∈ {1, 2, 3}. The choice of the fading
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Fig. 3. Theorem 1 verification with simulations when φu = 25◦ ,
ι = 53◦, m ∈ {1, 2, 3}, and θmin = 10◦. The lines and the markers
show the theoretical and simulation results, respectively.

parameter corresponds to several cases when a dominant
line-of-sight component is not available for the user due
to being in highly dense urban areas or at higher latitudes
compared to the inclination limits. We assume lognormal
shadowing which is represented as X0 = 10X0/10 such
that X0 has a normal distribution with mean μs = 0 and
standard deviation σs = 9 dB. Thus, the PDF of lognormal
shadowing is

fX0(x0)=
10

ln(10)
√

2πσsx0

exp

(
−1

2

(
10 log10(x0)−μs

σs

)2
)

.

(25)

The number of orthogonal channels is set to K = 10 in all
the numerical results unless otherwise stated. We assume
ideal isotropic antennas for the satellites as well as the user.
The equivalent isotropic radiated power (EIRP) and the noise
power are set to 40 dBm, and -103 dBm, respectively. The
operating frequency is assumed to be 2 GHz. For the reference
simulations, satellites are placed uniformly on orbits centered
at Earth’s center with radius r⊕ + rmin.

Figure 3 verifies our derivations given in Theorem 1 for
53◦ inclined orbits and a user located at 25◦ latitude. The
total number of satellites and constellation altitude are cho-
sen to be 2000 and 500 km, respectively. As shown in
the figure, the markers that depict the Monte Carlo sim-
ulation results are completely matched with the lines that
represent our theoretical expressions. Shadowing, as a ran-
dom phenomenon, may cause an increase or decrease in
the received SINR at the user’s place. As a result, a vary-
ing effect of shadowing on the coverage probability can
be observed for different SINR threshold values in Fig. 3.
Obviously, this behaviour is thoroughly affected by the
mean and variance of lognormal shadowing. Larger values
of m correspond to higher elevation angles and, conse-
quently, less multi-path distortion, which result in slightly

Fig. 4. Theoretical coverage probability on different users’ latitudes,
T = 5 dB, rmin = 500 km, ι = 53◦ , m = 2, and θmin = 10◦ . The
expression given in Theorem 1 is used to plot this figure.

better coverage, but shadowing masks the effect of fading at
large.

The effect of user’s latitude on coverage probability is
depicted in Fig. 4 for K = 10 and 50. The coverage probability
when satellites form a NPPP with intensity given in Lemma 1
is shown by solid lines. Since the intensity increases as the
user moves to higher latitudes, the performance becomes more
unreliable due to increase in the density of satellites that share
the same frequency channel with the user’s serving satellite.
When the user is in higher latitudes than the constellation
inclination limits, the coverage probability starts increasing
due to the reduction in the number of visible interferers.
The coverage reaches its maximum at about 66◦ where the
serving satellite is the only visible satellite to the user, i.e.,
the performance becomes noise-limited. For latitudes larger
than 66◦, the coverage converges to zero quickly, since there
are no satellites above horizon to serve the user. When the
intensity of satellites is selected according to Lemma 2, the
coverage probability remains constant (dashed lines) all over
the Earth for any latitude.

Figure 5 illustrates the probability of coverage at different
altitudes. For all propagation environments, the coverage prob-
ability increases to reach its maximum value as the altitude
increases which is then followed by a decline due to the rise
in the number of visible interfering satellites. The optimum
altitude for φu = 0◦ is slightly larger than φu = 25◦, the
reason being that the intensity of satellites, and consequently
the number of interferers, is higher at upper latitudes. When
the user’s latitude is set to φu = 65◦, which means that the
user is located out of the constellation borders (φu > ι = 53◦),
a larger altitude is crucial for the constellation so that the user
can be served by a satellite within its visible range. As a result,
for altitudes lower than about 400 km, no visible satellite
is available to serve the user which results in zero coverage
probability.

Several constellation design guidelines can be extracted
from Figs. 4 and 5, e.g., regarding the orbital inclination and
altitude. The inclination angle does not need to be necessarily
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Fig. 5. Effect of altitude on coverage probability when T = 5 dB, φu =
{0◦, 25◦, 65◦}, ι = 53◦ , m = 2, and θmin = 10◦. The expression given in
Theorem 1 is used to plot this figure.

TABLE II

MINIMUM CONSTELLATION SIZE TO PROVIDE 90% COVERAGE
PROBABILITY IN DIFFERENT CITIES

greater than the maximum latitude of the intended service
area and it may even result in better performance for some
latitudes out of the constellation’s borders as long as there are
visible satellites to the user. On the other hand, increasing
the inclination angle to avoid outage on higher latitudes
necessitates more satellites to maintain the same density and,
consequently, the same performance all over the service area.
Similar compromise should be also considered for the altitude.
Higher altitudes provide better chance of visibility for the
users. However, the overall performance is degraded due to
larger path attenuation at those altitudes.

Besides from the performance evaluation, the derivations
in Theorems 1 and 2 can be utilized to determine differ-
ent constellation parameters for a desired performance cri-
terion. For instance, in Table II, we illustrate the minimum
number of satellites needed to provide a coverage proba-
bility of at least 0.9 for a noise-limited LEO network in
three different cities. The inclination angle is assumed to
be 53◦. As the user gets closer to the inclination limits
(53◦), fewer satellites can provide the desired performance.
Moreover, a larger constellation size is required for higher
altitudes in order to compensate for the greater path loss.
For Helsinki, being on a higher latitude than the inclina-
tion angle, more satellites are required to achieve the same
performance.

Figure 6 verifies the derivations for average data rate of a
user at the latitude of 25◦. As shown in the figure, the simu-
lation results are perfectly in line with theoretical expressions

Fig. 6. Theorem 2 verification with simulations when φu = 25◦ , ι = 53◦,
m ∈ {1, 2, 3}, and θmin = 10◦ . The lines and the markers show the
theoretical and simulation results, respectively.

Fig. 7. Data rate on different users’ latitudes, K = 10, rmin = 500 km,
ι = 53◦ , m = 2, and θmin = 10◦ . The expression given in Theorem 2 is
used to plot this figure.

in Theorem 2. The disparate behaviour of the curves is caused
by the two opposite effects of frequency reuse on the average
achievable rate. As the number of frequency bands increases,
the total number of interfering satellites on the same frequency
band declines which results in an increase in the data rate.
On the other hand, by increasing the number of frequency
channels, the bandwidth shared among a group of satellites is
reduced. An increase in the plot is observed at first as a result
of the decrease in interference received power, followed by a
drop which is due to comprising only 1

K of frequency band.
Figure 7, as a counterpart for Fig. 4, illustrates the variation

of data rate over different latitudes when the intensity of
Poisson point process is chosen to be according to Lemma 1
or, for comparison, Lemma 2. With intensity being as in
Lemma 1, data rate varies over the different user’s latitudes
as shown in Fig. 7. For 53◦ inclined orbits, there is a minor
decline in data rate which is followed by a sharp rise due to
a decrease in the number of visible interfering satellites when
the user leaves the inclination limits.
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Fig. 8. Effect of altitude on data rate when K = 10, φu = {0◦, 25◦, 65◦},
ι = 53◦ , m = 2, and θmin = 10◦. The expression given in Theorem 2 is
used to plot this figure.

The effect of altitude on data rate is depicted in Fig. 8 for
K = 10. Similar to Fig. 5, from the minimum altitude at
which the user is able to visit at least one satellite, the data
rate increases rapidly until reaches a maximum point. After
the maximum point, the data rate decreases more slowly due
to the increase in the number of interfering satellites as well
as satellites being at a farther distance from the user. The
altitude which maximizes the data rate varies with the user’s
latitude and, obviously, it has similar value which results in
the maximum coverage probability.

V. CONCLUSION

In this paper, a generic approach to obtain the analytical per-
formance of a massive low Earth orbit network was presented
by modeling the satellites’ locations as a nonhomogeneous
Poisson point process and utilizing the tools from stochastic
geometry. The density of the nonhomogeneous Poisson point
process is derived from the actual geometry of the constella-
tion which enables us to take into account the non-uniform
distribution of satellites across different latitudes. Our next
step was to apply this model to derive analytical expressions
for the coverage probability and average data rate of an
arbitrarily located user in terms of the distribution of fading
and shadowing as well as the Laplace function of interference.
From the numerical results, we concluded that, depending on
the shadowing parameters, the effect of shadowing on the
network performance is ambivalent. Furthermore, we showed
how the analytical results allow one to find — without involved
orbital simulations — optimum values for altitude, the number
of orthogonal frequency channels, and user’s latitude which
result in the largest coverage and/or throughput, given the
constellation parameters.

APPENDIX A
PROOF OF LEMMA 3

For a NPPP, the CDF of R0 can be written as

FR0 (r0) = 1 − P(R0 > r0) = 1 − P(N = 0), (26)

where P(N = 0) is the void probability of PPP in A(r0) that
can be obtained from (7) by setting n = 0. According to (7),
by integrating from the intensity over the spherical cap above
the user, we have

FR0 (r0)

=1−exp

(
−
∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

β(φs)δ(φs) (rmin+r⊕)2 cos(φs)dφs

)

(a)
= 1−exp

(
− 2 (rmin + r⊕)2

∫ min(φu+φ0,ι)

max(φu−φ0,−ι)

δ(φs) cos(φs)

× cos−1

(
cos(φ0)

cos(φs − φu)

)
dφs

)
, (27)

where β(φs) is the longitude range inside the spherical
cap above the user at latitude φs. Equality (a) follows
from substitution of β(φs) using the basic geometry. Tak-
ing the derivative of (27) with respect to r0 completes
the proof of Lemma 3. Note that for φ0 ≤ |φu| − ι
the CDF given in (27) is zero since the spherical cap
formed by polar angle φ0 above the latitude φu is much
farther from the constellation’s borders to contain any
satellite.

APPENDIX B
PROOF OF THEOREM 1

To obtain the expression given (16), let us begin with the
definition of coverage probability:

Pc (T ) = ER0 [P (SINR > T |R0)]

=
∫ rmax

rmin

P (SINR > T |R0 = r0) fR0 (r0) dr0

=
∫ rmax

rmin

P

(
ptGt(r0)H0X0r

−α
0

I + σ2
> T

)
fR0 (r0) dr0

=
∫ rmax

rmin

EI

[
P

(
H0X0 >

Trα
0

(
I + σ2

)
ptGt(r0)

) ∣∣∣∣I > 0

]

×fR0 (r0) dr0. (28)

Since satellites with elevation angles smaller than θmin are
not visible to the user, the integral has an upper limit.
Then

Pc (T )

(a)
=

∫ rmax

rmin

EI

[∫ ∞

0

fX0(x0)

(
1−FH0

(
Trα

0

(
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)
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))]

×fR0 (r0) dx0dr0

(b)
=
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) (
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(29)

The substitution in (a) follows from the product distribution
of two independent random variables, (b) follows from the
distribution of gamma random variable H0 (being the square
of the Nakagami random variable), and (c) is calculated by
applying the incomplete gamma function for integer values of
m0 to (b).

APPENDIX C
PROOF OF THEOREM 2

Most of the steps in derivation of the data rate expression,
given in Theorem 2, are similar to those given in Appendix B.
According to the definition of the average data rate given in
(17), we have

C̄ = EI,H0,X0,R0 [log2 (1 + SINR)]

=
∫ rmax

rmin

EI,H0,X0

[
log2

(
1+
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0
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)]
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∫ ∞
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∫ ∞
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2t − 1

))]

× fR0(r0) dtdr0 (30)

where (a) follows form the fact that for a positive random
variable X , E [X ] =

∫
t>0 P (X > t) dt. Thus, we have

C̄
(a)
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∫ ∞
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(31)

Similar to the proof of Theorem 1, (a) follows from the product
distribution of two independent random variables, (b) follows
from the gamma distribution of serving channel gain H0, and
(c) is calculated by applying the incomplete gamma function
for integer values of m0 to (b).

APPENDIX D
PROOF OF LEMMA 5

In this appendix, we derive the expression for Laplace
function of interference assuming arbitrary distributions for
fading and shadowing. Let us start with the definition of
Laplace function for random variable I which is

LI(s) � EI

[
e−sI

]

= EN ,Rn,Xn,Hn

⎡
⎣exp

⎛
⎝−s
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n∈ξ\{s}
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⎠
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⎡
⎣ ∏
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n

)⎤⎦ .

(32)

Due to i.i.d. distribution of Hn and Xn as well as their
independence from N and Rn, we have

LI(s)

= EN ,Rn

⎡
⎣ ∏

n∈ξ\{s}
EXn,Hn

[
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)]⎤⎦
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(a)
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[ ∏
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[
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n

)]
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]
, (34)

where (a) is obtained by taking the expectation over the
random variable Rn conditioned on R0. Then

LI(s)
(b)
=
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×
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(−sptGt(rn)HnXnr−α
n

)]

×fRn|R0(rn|r0)drn

)n
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(c)
=

∞∑
n=0

Pn (A (rmax) −A (r0))

×
(∫ rmax

r0

∫ ∞

0

LHn

(
sptGt(rn)xnr−α

n

)

× fXn(xn)fRn|R0(rn|r0)dx0drn

)n

, (35)

where A (rmax) −A (r0) indicates the region above the user
where satellites which are more distanced from the user than
the serving satellite exist, (b) is obtained by taking the average
over the Poisson random variable N , and applying the law of
total expectation on independent random variables Hn and Xn

results in (c).
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