
Platforms for Serverless at Edge: A Review

Nabil El Ioini1, David Hästbacka2, Claus Pahl1, and Davide Taibi2

1 Free University of Bozen-Bolzano. Bolzano. Italy
2 Tampere University. Tampere. Finland

nabil.elioini@unibz.it; claus.pahl@unibz.it;

david.hastbacka@tuni.fi;davide.taibi@tuni.fi

Abstract. The continuous demand for low latency, high reliability, and
context-aware content has pushed the existing computational models to
their limit. The cloud with its infinite resources can accommodate many
of the existing scenarios, however, as new scenarios emerge in the IoT
area, the cloud falls short. In this context, the Edge Computing model
emerged as an extension to the cloud in support of low latency and high-
performance applications, by placing part of cloud resources at the edge
of the network, in close proximity to the data sources and applications.
The goal of Edge Computing is to provide the same level of abstraction at
the cloud but in a local context. However, since Edge Computing inherits
many of the benefits provided by the cloud, it also inherits some of its
drawbacks. One such limitation is the management overhead needed to
set-up and continuously configure the Edge Computing applications. In
the cloud space, this problem has been addressed using a new paradigm
called serverless technology. Similarly, in the Edge Computing, few at-
tempts are being developed to bring the concept of Serverless Computing
at the edge. In this paper, we survey the main edge computing platforms
that provide support for serverless computing comparing their charac-
teristics and identifying issues and research directions.

Keywords: Serverless · Edge Computing · FaaS

1 Introduction

Edge computing, the new buzzword, has been gaining a lot of traction from the
developers and industry. Companies are now interested to improve the perfor-
mance of their systems or to reduce costs, by moving the computations closer to
the data or by serving customers with servers closer to their locations. One major
use case of edge computing is IoT applications [5, 9]. In industrial production,
there are uses such as condition monitoring and general production monitoring
that would benefit from processing the often huge amounts of sensor data closer
to the source [6]. Similarly in video streaming applications, it would be beneficial
to offload services to nearby edge computing units [7].

Together with Edge computing, serverless computing (also known as Function-
as-a-Service or FaaS) is now getting more and more interest from companies.



2 N. El Ioini et al.

Cloud vendors such as AWS and Microsoft have hyped serverless almost every-
where, from practitioners’ conferences to local events, to blog posts. However,
serverless is not just about the hype but has several benefits that enable com-
panies to reduce costs and to focus more on the business logic of applications.

Different providers are now combining the power of edge with the operational
easiness of serverless providing platforms for deploying serverless functions. The
adoption of serverless computing on edge nodes might help to reduce the com-
putational time, and reduce network-related costs [13][11][8][2][3].

However, in this fast-growing market, it is still not clear how to benefit of
the serverless capabilities on edge platforms, and especially how the available
solutions on the market allow us to abstract from the hardware used at the edge
using containers or serverless functions at the edge.

In order to help practitioners, and stimulate the discussion on this topic, we
aim at comparing the most common edge platforms that provide serverless sup-
port, discussing pros, cons and highlighting open issues and research directions.
Therefore, the main contributions of this work are:

– A list of the most common edge platforms that support serverless functions
– Comparison of the main characteristics of the platforms
– Identification of open issues and research directions

The results can be useful to the research community and to practitioners
that can easily compare the different features of the platforms and understand
how to better select edge platforms that support serverless.

The remainder of this paper is structured as follows. Section 2 introduces the
background of Serverless and Edge Computing. Section 3 describes and compares
the selected edge-computing platforms. Section 4 discusses the results and iden-
tify open issues and research directions. Finally, Section 5 draws conclusions and
highlight future works.

2 Background

In this Section, we introduce the two main technologies subject of this review,
namely Serverless technology and Edge Computing.

2.1 Serverless

A few years ago, most companies were entirely responsible for the operations
of their server-side applications, then the cloud enabled companies to outsource
part of the operations, renting virtual machines by the hour and paying as much
concern to how much electricity our systems require as to how to use a mobile
phone. However, the software systems remain as servers—discrete components
that require allocation, provisioning, setting up, deploying, shutting down, ... In
2012 [10], developers started thinking about operating their systems instead of
operating their servers, considering applications as workflows, distributed logic,
and externally managed data stores. This way of working can be considered



Platforms for Serverless at Edge: A Review 3

”serverless”, not because no servers are running, but because developers do not
need to think about them anymore.

In serverless, the cloud provider dynamically allocates and provisions servers.
The code is executed in almost-stateless containers that are event-triggered,
and ephemeral (may last for one invocation), and fully managed by the cloud
provider [10].

However, the term serverless can be misleading. Serverless covers a wide range
of technologies, that can be grouped into two categories: Backend-as-a-Service
(BaaS) and Functions-as-a-Service (FaaS).

Backend-as-a-Service enables to replace server-side components with off-
the-shelf services. BaaS enables developers to outsource all the aspects behind a
scene of an application so that developers can choose to write and maintain all
application logic in the frontend. Examples are remote authentication systems,
database management, cloud storage, and hosting.

An example of BaaS can be Google Firebase, a fully managed database that
can be directly used from an application. In this case, Firebase (the BaaS ser-
vices) manages data components on our behalf.

Function-as-a-Service is an environment within which is possible to run
the software. Serverless applications are event-driven cloud-based systems where
application development relies solely on a combination of third-party services,
client-side logic, and cloud-hosted remote procedure calls [1].

FaaS allows developers to deploy code that, upon being triggered, is executed
in an isolated environment. Each function typically describes a small part of
an entire application. The execution time of functions is typically limited (e.g.
15 minutes for AWS Lambda). Functions are not constantly active. Instead,
the FaaS platforms listen for events that instantiate the functions. Therefore,
functions must be triggered by events, such as client requests, events produced
by any external systems, data streams, or others. The FaaS provider is then
responsible to horizontally scale function executions in response to the number
of incoming events.

Serverless applications can be developed in several contexts while, because
of its limitations, it might have some issues in other contexts. As an example,
long-running functions, such as machine learning training or long-running al-
gorithms might have timeout problems, while constant workloads might result
in higher costs compared to indefinitely running on-demand compute services
like virtual machines or container run-times. Even if serverless is a very recent
topic, researchers already investigated several aspects, such as patterns [12] anti-
patterns [10], problems and issues [1].

2.2 Edge Computing

The increasing demand for computation, storage, and network resources are
some of the most evident challenges for cloud providers and mobile network
operators. Optimizing data traffic has a direct effect on the reliability and quality
of services. The cloud has served this purpose for years, however, when it comes
to IoT, the claud falls short. The high number of IoT devices plugged in day



4 N. El Ioini et al.

induces high traffic load, which can have a negative effect on the whole network.
As a result, Edge Computing has emerged to address these issues, by placing
part of the cloud resources (e.g., computation, storage, logic) closer to the edge
of the network, which allows faster and more context-dependent data analysis
and storage.

In terms of implementation, Edge Computing is composed of a set of nodes,
each supports different computation, storage, and network requirements. Differ-
ent flavors of Edge Computing networks exist, which are similar to what the
cloud provides already. Private Edge Computing consists of a private network of
Edge Computing nodes managed by a single organization. Public Edge Comput-
ing, allows customers to deploy their services on top of a managed infrastructure,
and Hybrid Edge Computing, which combines the two previous types.

3 The Serverless Edge Computing Platform

As of today number of Edge Computing platforms has emerged. Some platforms
have been developed for specific purposes, such as increasing the performance
of HTTP requests and web content delivery, other platforms are targeted to
IoT, while others are generic and usable in different contexts. In this section
we introduce some of the most used platforms, considering Content Delivery
Network platforms and IoT platforms.

3.1 Content Delivery Network Platforms

Content Delivery Network or or Content Distribution Network (CDN) is a net-
work of servers geographically distributed, with the goal of providing high avail-
ability and performance by distributing the service closer to the users. CDNs
is a very old approach, introduced in the late 1990s to reduce internet bottle-
necks [4]. CDN is now frequently adopted by media companies and e-commerce
to increase the performances of different services such as video streaming, soft-
ware downloads, web, and many other systems. Several CDN providers recently
saw the potential benefits of providing serverless support in their nodes, enabling
not only the caching of the web content on their nodes, but also to providing
computational capabilities in their nodes, with the serverless technology. In this
Section, we compare six CDN platforms that allow developing serverless func-
tions on their edge nodes (Table 1).

Akamai Edge

Akamai3 is one of the leading content delivery network (CDN) providers
worldwide. Akamai provides a distributed platform consisting of more than
60,000 servers deployed over 70 countries. Akamai manages more than 15% of
the web content. As part of the provided services, a dedicated edge platform

3 https://www.akamai.com/us/en/products/performance/serverless-computing-
edgeworkers.jsp



Platforms for Serverless at Edge: A Review 5

called Edgeworkers has been developed. The main goal of edge workers is to al-
low cloud platforms to provide personalized business logic at the edge to support
context aware services and at the same time reduce services latency. In this con-
text, serverless functions can be customized and deployed closer to the customer
infrastructure. Developers can take advantage of the wide network managed by
Akamai to have control over where the functions are needed and what type of
customization is needed to improve user experience in terms of performance and
content.

IBM Edge Functions

Edge Functions on IBM Cloud Internet Services (CIS)4 supports serverless
computing at the edge closer to end-users across 180+ global network points of
presence. As an example, it is designed to be able to pre-process HTTP requests
and post-process responses e.g. for personalized user experience or improved API
responsiveness. It is based on ”isolates” that run on the V8 engine thus limiting
the development to JavaScript.

Cloudflare

Cloudflare5 is a CDN provider, with the main focus on performances. Cloud-
flare handles nearly 10% of the Internet HTTP requests, with peaks of more than
25 trillion monthly requests through their network. Cloudflare provides servers
in 154 locations around the world.

Similarly to Akamai, it provides workers (cloudflare workers) that enable
developers to run JavaScript code as serverless functions on the edge nodes, while
it controls the location of the edge nodes depending on the request locations.

Cloudfront

Cloudfront6 is a CDN that acts as a distributed cache for web applications,
part of the Amazon Web Services (AWS) offer. Cloudfront fetches files from
their source location (”origin” in CloudFront terms) and places the copies of the
files in different edge locations across the Americas, Europe, Asia, Africa, and
Oceania. It enables to deploy serverless functions in its edge nodes, using the
AWS ”Lambda@Edge” functions enabling to run business logic, implemented in
the functions.

Differently from Akamai and Cloudflare, it enables us to deploy functions in
several languages.

Edjx

4 https://cloud.ibm.com/docs/infrastructure/cis?topic=cis-edge-functions
5 https://www.cloudflare.com/learning/serverless/glossary/what-is-edge-computing
6 https://aws.amazon.com/cloudfront/



6 N. El Ioini et al.

Edjx7 is a distributed edge computing platform. Combining packed as small
microservers, container technology, and blockchain, Edjx can deliver a rich en-
vironment for developers to write, test and deploy serverless functions at the
edge. The main target of Edjx is IoT applications with high bandwidth and low
latency requirements. Using blockchain, Edjx provides a Pay as you go model
resources provisioning. Two main components make up the Edjx infrastructure:

– EDJX Nanoserver Infrastructure: it represents the hardware back-end of the
system. It is composed of a set of lightweight servers that can be deployed
as edge nodes. The servers are packed as small form factor with an Intel i7
CPU, 16 GB of RAM and 1 TB of storage.

– EDJX Serverless Edge: it represents the software component to manage the
serverless functions lifecycle and orchestration. Since Edge Computing nodes
need to collaborate in order to deliver services, the platform creates a peer-
to-peer network among all the participating nodes.

Edjx promise is to make the deployment process transparent to the develop-
ers. The platform handles the process of locating the closest node to the user
and deploy the serverless functions. To securely access services and data records,
Edjx relies on Chainyard8 to deliver a blockchain based distributed serverless ap-
plications.

Stackpath

Stackpath9 is a general-purpose cloud-based CDN with edge nodes in the
whole world except Canada, Russia and Africa. The Stackpath serverless script-
ing engine is built on the Chrome V8 JavaScript Engine providing support for
JavaScript. However, it enables also us to use WebAssembly supporting addi-
tional language support such as PHP, C, C++, Go, Python, Perl, Rust, and
more.

3.2 IoT platforms

Internet of Things (IoT) platforms include connectivity, management, and pro-
gramming mean for running various devices or things as part of Internet appli-
cations. In their simplest form, IoT devices transmit some sensor readings but as
more advanced they include various functionalities such as preprocessing of sen-
sor data or actuating with the physical world. These advanced IoT devices can
thus be seen as an extension of the Internet-based application system including
application software connecting with both cloud and edge components.

AWS IoT Greengrass

7 https://edjx.io
8 https://chainyard.com/
9 https://www.stackpath.com/products/edge-computing/serverless-scripting/



Platforms for Serverless at Edge: A Review 7

Table 1. Comparison of the CDN platforms

CDN Platforms with Serverless support
Features Akamai Cloudflare Stackpath CloudFront Edjx IBM Edge

Functions
Nuclio

Support of
AI on the
edge

X X X

Availability Globally Globally Limited Globally Limited Globally Limited
Supported
platforms
(edge
hardware)

Akamai
nodes

Cloudflare
nodes

Stackpath
nodes

AWS nodes nanoservers IBM centers Portable
across
con-
strained
devices

Supported
Languages

JavaScript JavaScript multiple
languages

multiple lan-
guages

multiple
languages

JavaScript multiple
lan-
guages

Cost model Pay as you go hosting
cost

License Proprietary Open
source

AWS IoT Greengrass10 is Amazon’s extension of the cloud to the edge of the
network and physical devices. Greengrass has been designed from the beginning
for use in the user’s own hardware while using the same cloud management
mechanisms, analytics, and durable storage. Regarding serverless Greengrass is
well known for its capability to execute AWS Lambda functions and in most
cases, they can be the same as those run in the cloud. The Lambdas that can
be run on Greengrass edge devices can be implemented in several programming
languages and the edge software platform can be installed on platforms including
x86-64, ARMv8, ARMv7 and also as Docker containers.

Azure IoT Edge

Azure IoT Edge11 is Microsoft’s edge computing and IoT Hub cloud exten-
sion for the physical devices of the user. IoT Edge supports several Linux versions
and Windows 10 or Windows Server 2019 on their Tier 1 level and multiple other
operating systems including virtual machines as Tier 2 level supported. X86-64
as well as 32-bit and 64-bit ARM architectures are supported. In terms of server-
less functionality, it allows the containerization of Azure Functions developed in
multiple programming languages to be deployed on IoT Edge devices. It is worth
noting that IoT Edge software is free and open source.

Fogflow

Fogflow12 is an edge computing framework designed to automate and opti-
mize IoT services orchestration. It leverages three types of context to provide
unique context-driven feature, i) System context: it relies on geo-distributed ser-
vices to make sure that resources are available where needed, ii) Data context:

10 https://aws.amazon.com/greengrass/
11 https://docs.microsoft.com/en-us/azure/iot-edge/
12 https://github.com/smartfog/fogflow



8 N. El Ioini et al.

it uses a unified data model to detect relations between tasks in order to op-
timize task flows, and iii) Usage context: orchestration decisions can be based
on user-specific rules and thresholds. In Fogflow, the flow of execution can span
across multiple Edge Computing nodes depending on the different combinations
of aforementioned types of context (e.g., two services located in different areas
and the second service relies on the first service output). To facilitate services
migration, Docker containers are used to package services logic and all its de-
pendencies. On top of Fogflow, serverless functions can be deployed. Fogflow
support serverless function by:

– invoking serverless function once the input data are available
– automatically managing scalability of instances (e.g., create new instances)
– automatically locating the best Edge Computing node (i.e., closer to the

data producer or data consumer) to deploy serverless functions.

Nuclio

Nuclio13 is a serverless framework focusing on high data, I/O and compute
intensive workloads. The framework supports a wide range of data sources and
supports CPU and GPU execution modes. One of the main goals of Nuclio is to
provide an open environment that allows easy portability and rapid deployment
time. It supports most popular data science tools such as Jupyter and kubeflow,
which increases deplyment automation. Nuclio has been used predominantly in
IoT scenarios where IoT data can be analyised closer to the data sources.

OpenWhisk-Light

The standard OpenWhisk14 is an open-source initiative for distributed server-
less execution of functions in response to various events. OpenWhisk-Light15 is a
runtime with the standard OpenWhisk API for local or edge execution also sup-
porting resource-constrained devices while maintaining a centralized OpenWhisk
cloud instance as a master repository and catalog of its actions (i.e. functions).
It supports the execution of OpenWhisk actions developed using multiple pro-
gramming languages and can be deployed on the edge as Docker containers. It
has also been demonstrated working on devices as constrained as a Raspberry Pi
which makes it a candidate for IoT edge devices. It is based on an open source
licensing similar to the original OpenWhisk.

4 Discussion

Serverless on the edge is not yet mature, and different solutions have been pro-
posed on the market. On one side, existing Edge providers are extending their

13 https://nuclio.io
14 https://openwhisk.apache.org
15 https://github.com/kpavel/openwhisk-light



Platforms for Serverless at Edge: A Review 9

Table 2. Comparison of the IoT platforms

IoT platforms with serverless support
Features AWS GreenGrass Azure IoT FogFlow OpenWhisk-

Light
Nuclio

Support of
AI on the
edge

X X X X X

Availability Globally Globally Limited Limited Limited
Supported
platforms
(edge hard-
ware)

Hardware support-
ing docker Contain-
ers

Tier 1: Hardware
supporting con-
tainers. Tier 2:
Hardware sup-
porting virtual
machines.

hardware sup-
porting docker
containers.

Multiple con-
tainer frame-
works. Demon-
strated for
limited oper-
ation also in
Raspberry Pi

Portable
across con-
strained
devices

Supported
Languages

multiple languages multiple lan-
guages

multiple lan-
guages

multiple lan-
guages

multiple
languages

Cost model Pay as you go Private setting private or
hosting
cost

License Proprietary Open source

offers providing serverless support on their edge nodes. On the other side, new
serverless-specific edge platforms have been introduced in the last years.

Existing edge platforms often enable only to deploy functions written with a
limited set of languages. As an example, the traditional CDN platforms enable to
write Javascript code on their edge nodes, while new platforms enable developers
to use different languages.

IoT applications with more advanced processing on the edge device or edge
of the network could significantly benefit from the serverless paradigm and es-
pecially the management and deployment of versions across fleets of devices. In
addition to traditional sensor data processing, video or image-based processing
as well as distributed AI-based inference are expected to be application areas of
interest.

For IoT targeted solutions it seems that Microsoft with its IoT Edge is striv-
ing for a more open platform compared to AWS Greengrass. Both platforms
support different hardware and installation on own equipment but the biggest
difference is in Microsoft IoT Edge open source licensing that enables companies
to use and extend their open source components on local hardware. Microsoft
also supports an open ecosystem through the Azure Marketplace, e.g. acquiring
solutions developed by others and deploying on the edge. Both of the platforms,
however, rely heavily on their cloud service counterparts increasing the vendor
lock-in. The OpenWhisk-Light is a fully open source alternative that offers sim-
ilar features but with less tooling and support. As a consequence, however, it
requires management of the OpenWhisk cloud counterpart to which the edge
component is an extension of.

4.1 Open Issues

This work enabled us to identify a set of open issues:



10 N. El Ioini et al.

– Vendor Lock-In Commercial serverless platforms require to write functions
that use the infrastructure provided, increasing vendor lock-in. As an exam-
ple, an application developed with Greengrass would require a major effort
to be deployed in Azure IoT. Currently, no frameworks allow to use hybrid
clouds and to write generic functions that could be deployed in different
ecosystems.

– Lack of decision frameworks to understand when is beneficial or not to use
serverless on edge

– Lack of best practices, patterns and anti-patterns for creating serverless ap-
plications on the edge.

We believe that research community should help practitioners to understand
how to create serverless functions on the edge that could be deployed every-
where, and provide guidelines, including validated patterns and anti-patterns
for creating serverless applications on the edge.

5 Conclusion

In this paper we described the most common platforms for Serverless in Mobile
Edge Computing.

Some of the selected platforms are targeted to specific purposes such as IoT,
while others are specifically targeting Content Delivery Network (CDN). More-
over, it is interesting to note that several CDN providers that offered edge sup-
port for increasing the performances of web systems recently introduced the
possibility to deploy code as serverless functions, enabling to compose dynamic
web pages on the edge, but also to run part of the business logic.

As future work, we are planning to investigate the usefulness of serverless on
edge computing, with a special focus on the identification of benefits and issues
in this context and supporting companies to understand when it is beneficial to
adopt it, and when it would be better to use different solutions.

References

1. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless computing:
Current trends and open problems. In: Research Advances in Cloud Computing
(2017)

2. Baresi, L., Mendonça, D.F.: Towards a serverless platform for edge computing. In:
2019 IEEE International Conference on Fog Computing (ICFC). pp. 1–10. IEEE
(2019)

3. Cheng, B., Fuerst, J., Solmaz, G., Sanada, T.: Fog function: Serverless fog com-
puting for data intensive iot services. In: 2019 IEEE International Conference on
Services Computing (SCC). pp. 28–35. IEEE (2019)

4. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl,
B.: Globally distributed content delivery. IEEE Internet Comput-
ing 6(5), 50–58 (Sep 2002). https://doi.org/10.1109/MIC.2002.1036038,
https://doi.org/10.1109/MIC.2002.1036038



Platforms for Serverless at Edge: A Review 11

5. Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., Imran, M.: The role of edge com-
puting in internet of things. IEEE Communications Magazine 56(11), 110–115
(November 2018). https://doi.org/10.1109/MCOM.2018.1700906

6. Hästbacka, D., Halme, J., Larranaga, M., More, R., Mesiä, H., Björkbom,
M., Barna, L., Pettinen, H., Elo, M., Jaatinen, A., Hoikka, H.: Dy-
namic and flexible data acquisition and data analytics system soft-
ware architecture. In: 2019 IEEE SENSORS. pp. 1–4 (Oct 2019).
https://doi.org/10.1109/SENSORS43011.2019.8956662

7. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Distributed resource al-
location in blockchain-based video streaming systems with mobile edge comput-
ing. IEEE Transactions on Wireless Communications 18(1), 695–708 (Jan 2019).
https://doi.org/10.1109/TWC.2018.2885266

8. Nastic, S., Rausch, T., Scekic, O., Dustdar, S., Gusev, M., Koteska, B., Kostoska,
M., Jakimovski, B., Ristov, S., Prodan, R.: A serverless real-time data analyt-
ics platform for edge computing. IEEE Internet Computing 21(4), 64–71 (2017).
https://doi.org/10.1109/MIC.2017.2911430

9. Ning, H., Li, Y., Shi, F., Yang, L.T.: Heterogeneous edge computing open platforms
and tools for internet of things. Future Generation Computer Systems 106, 67 –
76 (2020). https://doi.org/https://doi.org/10.1016/j.future.2019.12.036

10. Nupponen, J., Taibi, D.: Serverless: What it is, what to do and what not to do. In:
IEEE International Conference on Software Architecture (ICSA 2020) (03 2020)

11. Palade, A., Kazmi, A., Clarke, S.: An evaluation of open source server-
less computing frameworks support at the edge. In: 2019 IEEE World
Congress on Services (SERVICES). vol. 2642-939X, pp. 206–211 (July 2019).
https://doi.org/10.1109/SERVICES.2019.00057

12. Taibi, D., El Ioini, N., Pahl, C., Schmid Niederklfler, J.R.: Serverless cloud comput-
ing (function-as-a-service) patterns: A multivocal literature review. International
Conference on Cloud Computing and Services Science (CLOSER2020) (2020)

13. White, G., Cabrera, C., Palade, A., Clarke, S.: Augmented reality in iot. In: Liu,
X., Mrissa, M., Zhang, L., Benslimane, D., Ghose, A., Wang, Z., Bucchiarone, A.,
Zhang, W., Zou, Y., Yu, Q. (eds.) Service-Oriented Computing – ICSOC 2018
Workshops. pp. 149–160. Springer International Publishing, Cham (2019)


