
WHY IS THIS COURSE PUSHING FUNCTIONAL PROGRAMMING?
– EDUCATING WELLROUNDED WEB DEVELOPERS WITH

FUNCTIONAL JAVASCRIPT

M. Nurminen *

Tampere University
Tampere, Finland

ORCID 0000000176098348
P. Niemelä

Tampere University
Tampere, Finland

ORCID 0000000286739089
H.M. Järvinen

Tampere University
Tampere, Finland

ORCID 0000000300472051

Conference Key areas: Open and Online Teaching and Learning, Integrated learning
environments for the digital native learners

Keywords: Functional programming, online course, web development

ABSTRACT
Imperative, objectoriented, and multiparadigm programming languages are dominant
in higher education. However, the use of functional languages is emerging. In paral
lel, features supporting functional paradigm (FP) have been added to languages tra
ditionally categorized to other paradigms. Students benefit from fluency with several
paradigms. In the studied primary Web Development course, JavaScript was used to
familiarize students with selected features of the FP. The grading of the FP exercises
was automatic. The automatic graders guaranteed the uniformity of feedback, treating
each student’s submissions equally. Exercise graders accepted multiple submissions,
and their feedback suggested code improvements to students. After each of the ten
exercise modules, students (N=257) estimated the topic difficulty and gave feedback.
The postmodule questionnaires emphasized FP topics in particular. The results show
that students are aware of programming paradigms, but more support should be offered
when learning new ones, for instance, having more concrete instructions and handson
videos. The need for more instructions was apparent as, after the course’s FP intro
duction, some students were still easily confused about such abstract FP concepts

*Corresponding author
M. Nurminen
mikko.nurminen@tuni.fi

as ‘functions as firstclass citizens’. However, exercise results showed that students
learned to use the taught FP features. They found them difficult, but for example, the
JavaScript concurrency model was found to be more difficult.

1 INTRODUCTION

Paradigmatic classification of programming languages does not fully capture their multi
paradigm nature if a multiparadigm language is classified under one paradigm. Yet
paradigmatic classification provides ameans to structure a vastly heterogeneous space
of software design and implementation methodologies and their associated program
ming languages [1, 2]. Generalpurpose programming languages have adopted con
cepts that were first introduced in functional programming languages: for example
lambda functions and new immutable data structures have been introduced to C++
and Java [3–6]. In addition, Python and JavaScript (ECMAScript version 6) support
functions as arguments, and currying. These modern multiparadigm languages can
be used to introduce FP features to students. As programming languages are becom
ing multiparadigm in increasing quantities, students should be taught about applying
these paradigms.

JavaScript is used in the industry for implementing Web applications. Learning this lan
guage which is appreciated by potential employers adds to many students’ motivation.
As a side dish for the main course of learning JavaScript, its functional features can be
used to teach functional programming, too.

The context for this work is a basic Web Development course. The course’s intended
learning outcomes would see students be able to design and implement basic Web
server and client applications, and be able to describe and use FP feature presented
during the course. Based on its use in the industry, and its FP features JavaScript
was chosen as the programming language for the course. The course’s JavaScript
exercises included FP tasks. In these FP tasks students designed and implemented
code, approaching the task using the FP paradigm.

At the start of the course students’ understanding of functional programming concepts
was collected with a questionnaire in order to come up with a suitable curriculum along
with fitting learning activities. While the transfer of FP concepts was measured with
the exercises, their retention was captured by a questionnaire aimed at checking the
knowledge they have gained during the course.

Vast majority of the course’s online programming exercises were automatically graded,
a couple used peerreviews to introduce students to other students’ code and giving
useful feedback. Students worked on their code in their own Git repositories. Upon
student submission automatic grader programs wfould clone the students code, run it
against the grader’s test code. After the tests were run, the grader would give students
the points for the exercises, and importantly feedback on how a student could improve
the code they had submitted. For each of the exercises, students had a change to
submit their code multiple times, typically 20 submissions per exercise. This number of
submissions could enable students to use the grader to iteratively improve their code,
as they reflected on the features discussed in the exercise.

2 RELATED WORK

In the functional programming paradigm, functions are pure: pure functions depend

only on their input values, their parameters. Whenever a pure function would receive
the same inputs, its output would consistently remain the same. Pure functions cause
no side effects, such as state changes, where the state is defined as aCartesian product
of the values of all the variables of the program.

In mathematics, functions are also pure. Algebra is the domain of mathematics that
is the most concerned with functions and variables. The transfer between algebraic
constructs and computer science has been found to have favorable effects on learning
in both directions [7, 8]. In their seminal work, ‘How to design programs?’ Felleisen et
al. set guidelines for implementing a program in a reusable and secure manner, the
key feature being purity [9]. Moreover, Design Recipe systematizes problem solving:
a problem is divided into smaller solvable steps, i.e., functions, with a testdriven ap
proach [9]. The use of Design Recipe has proven to foster the right order of operations
and the composition of nested functions. Thus, Felleisen and Krishnamurthi state that
functional programming provides the strongest evidence for the favorable effects on
math skills [10].

Felleisen and Krishnamurthi list FP’s advantages, i.e., more disciplined approach to
problem solving, no sideeffects, and data immutability. These features provide chances
for applying mathematical structures to computer science, which is likely to appeal to
academics and educators in CS field. A stricter FP approach would also foster code
level testability, security, an increased support for distributed and parallel computing,
and largescale development. The value of this approach is understood in the industry,
too.

When looking at the popularity of functional programming languages in the TIOBE
index[11], currently (Mar/2021) the first functional programming language is R in the
13th position, while and MATLAB and functionalflavoured Swift place 18th and 19th,
respectively. However, some useful features of FP have been adopted by languages
traditionally seen as representatives of other paradigms. These features include lamb
das and some monadic structures. Lambdas have been introduced in mainstream lan
guages such as C# (C# v2.0, 2006), PHP (PHP 5.3.0, 2009), C++ (version 11, 2011),
and Java (version 8, 2014), whereas in JavaScript lambdas are inherently builtin to the
structure of the language, thereby existent from the very beginning.

JavaScript has borrowed such FP features from functional Scheme, Scheme being
one of the primary influencers. Thus, JavaScript enables demonstrating ideas from FP.
Students are partly motivated by desire to optimize their skill set for transition to working
life. For the teaching of FP to bear more fruit, we should seek ways to align teaching
with the intentional motivation of students to be easily employable [12] and ways for
lowering the threshold of learning [13].

2.1 JavaScript and functional programming
JavaScript has several features which enable functional programming. One of them is
functions as firstclass citizens: functions are accepted as variables, and as parameters
of other functions. Moreover, JavaScript has a singlethreaded, eventdriven concur
rency model. This enables concurrently executing for example userinitiated events,
network requests, UI rendering, and animations. When developing Web applications
with JavaScript asynchronous processing is a key feature, as there will be delays in the
communication between clients and servers. The concurrency model relies on asyn
chronous callbacks and functions as parameters, i.e., the affordances of functional pro
gramming.

Higherorder functions can be used in JavaScript with, for example, Array’s methods
map(), filter(), and reduce(). ECMAScript version 6 and a great deal of libraries in
JavaScript ecosystem are to some extent based on the ideas of FP.

However, for the majority of students, the move towards FP has proven to be quite a
challenge [14]. This study then aims at improving the comprehension of these difficul
ties, and, ultimately, lowering the learning threshold. Thus, this study asks:

• RQ1: Which programming paradigms were students aware of before WebDev1
course?

• RQ2: Which JavaScript topics, and in particular which FP concepts, were stu
dents struggling with?

• RQ3: What could the course personnel do to make those FP concepts easier to
grasp?

3 RESEARCH CONTEXT

The studied WebDev1 course is a comprehensive introduction to both frontend and
backend web technologies. Frontend technologies comprise of HTML5, CSS, and
JavaScript, whereas backend introduces Node.js. Unlike previous years, the utilization
of Node.js frameworks, such as Express and Handlebars, was omitted. Instead, vanilla
JavaScript approach was used primarily for pedagogical reasons: frameworks come
and go, but HTTP and generic clientserver architecture will stay. The course is targeted
to third and fourthyear students. The prerequisites for this course include three basic
programming courses, and a basic database course. Prerequisites imply that course
participants should have a considerable amount of programming routine, including a
basic understanding of project work, e.g., from using Agile project management.

The study was conducted during the global COVID restrictions, where moving to remote
teaching was a general recommendation. Thus, WebDev1 course replaced previous
lectures with video recordings, and onpremises tutoring with online tutoring sessions.
Students struggling with the exercises or the coursework assignment could get help
during these socalled Kooditorio sessions, which were held in Teams. Kooditorio is
a tutoring practice akin to primetime [15], except voluntary, where teachers and as
sistants answer questions, debug and coimplement students’ code and scaffold them
finalizing their exercises. Outside the set session times, the same Teams channels
functioned as a Q&A discussion board. The students were encouraged to help each
other and respond to these questions, cooperation between students was encouraged
in coursemessages. During exercises and coursework assignment, the discussion was
lively and the channel was extensively used. The assignment was done in pairs that,
preferably, would also foster learning from each other. The earlier study has shown that
earlier social connections primarily guide group formation, while help seeking within the
groups is geared towards students with the most domain knowledge [16]. In this imple
mentation, the groups were formed by course personnel with the help of an algorithm,
which was designed to allocate pairs from students with the same target grades and
performance level, also the responses to a group formation quiz were influential in the
match making.

3.1 Grading
To complete the course, students had to pass weekly exercises, a coursework assign
ment, and an exam. The rounds overlapped so that the next exercise round opened
before the current one closed. The topics consisted of, e.g., HTTP, ClientServer archi
tecture, DOM, Web security, authentication, data persistence, and MVC architecture.
In parallel, a transferral thread of FP was run.

The grading of exercises and the coursework assignment was automated where pos
sible. Without automation, the amount of work would have been enormous, the theo
retical maximum total number of submissions was 205.600. Course personnel of three
could not have assessed this number of submissions manually.

3.2 FP topics in the course content
The imperative paradigm is dominant in the curricula of CS students. This basic Web
Development 1 course (hereafter: WebDev1) might be the first time they are exposed
to FP. For learning functional programming, WebDev1 course sought to act as an easy
starting point: during the course the following aspects of FP were discussed:

• the emphasis on “no side effects” and immutability (const rather than let or var, map() rather than
inplace changes with for loop)

• functions as firstclass citizens

• higherorder functions (Array methods: map(), filter(), and reduce())

• arrow functions.

Listed topics were covered more deeply in materials and exercises. They were comple
mented by a cursory introduction of the following in materials and questionnaires: recur
sion and higherorder functions in general, continuationpassing style, currying, func
tors / monads, and finally railwayoriented programming. Fifth exercise round had exer
cises on the central functional programming practice of avoiding side effects from func
tion calls and the associated immutable data, as well as higherorder Array functions
map,() filter(), and reduce(). The tenth exercise round included discussion in the ma
terials on topics related to functional programming: higherorder functions, recursion,
functors/monads, continuationpassing style, and railwayoriented programming.

In JavaScript, the prominence of functions manifests itself also in handling asynchronic
ity with callbacks; this in contrast to other imperative languages, where functions as
parameters are not so common. The syntax for using asynchronicity in JavaScript
has evolved in steps from callbacks to promises, and finally to async/await. Promises
provide twofold handling options: promise can either resolve or reject. Here again,
functions play the main role, whereas async/await returns to a more conventional con
trol flow. In the scale of one function, async/await behavior is synclike: the magic
happens in the background, where actions do not block the execution of each other.
Asynchronous callbacks and highorder functions force students to practice coding in
a functionoriented manner.

Many software developers start their careers inWeb development. The JavaScript code
that runs in the context of a web browser with the help of a library such as React, pro
vides a learning laboratory for CS students and prepares them for future multiparadigm
challenges. A functional programming library such as Ramda can add a great deal of
functional look and feel to showcase algorithm design in a more declarative and func
tional way. Ramda is suitable for demonstrating sideeffect free algorithm design with

pure and curried functions.

JavaScript can be a good tool for learning and teaching the ideas of functional pro
gramming. Once the teaching of the language constructs is combined with teaching
practices that are not only motivating, but also conceptually rewarding, we may be able
to hit the sweet spot of designing learning solutions.

If JavaScript were taught along with libraries, such as React and Ramda, this might help
the students to grasp the skills required by employers and make the learning curve for
functional programming easier. The React library is considered moderately easy and
therefore may be suitable for teaching [17]. Both libraries promote sideeffect free style
for writing software.

3.3 Method and research instruments
The WebDev1 course will be developed in iteration cycles twice a year. The develop
ment started in 2019 [18]; in 2020, it was continued by the introduction of new auto
graders mainly for static code analysis. Cyclic development with reflective redesign
phases is characteristic of designbased research (DBR) [19] [20] [21]. DBR mandates
a guiding background theory, and this study leans of the previous findings of flipped
learning in the course arrangements [22–24]. On FP, we looked back to research re
porting on courses that applied FP principles.

In DBR, educational solutions are combined with the empirical interventions and proof:
DBR systematizes course development cycle of design, development, enactment, and
analysis [25–27]. Here the cycle represents a course term. The retrospective analysis
inserts requirements into the design of the next implementation [28–30]. The redesign
implies ‘reflective conversation with the situation’ [31], whereby course personnel ob
serves the effects of new arrangements and refines them if necessary.

At the start of the course, the prior knowledge of students was captured using a pre
questionnaire. The questionnaire consisted of 20 Likertscale questions followed by
three openended questions about programming experience and knowledge. The Likert
scale questions corresponded with the topics of each exercise round, complemented
with some additional transversal skills in functional programming. The three open
ended questions were:

• My programming experience in years.

• Programming languages that I know.

• Programming paradigms I am aware of.

Each exercise round was completed with a similar questionnaire collecting students’
open questions, and difficulties with the taught topics.

4 RESULTS AND DISCUSSION

4.1 Students’ awareness of programming paradigms
The data for RQ1 ‘Which programming paradigms were students aware of before the
FP intervention of WebDev1 course?’ was collected as a part of the prequestionnaire.
The mentioned programming paradigms are presented in Table 1. Students could list
any number of paradigms they were aware of. ‘Being aware’ may have been too vague
an expression. Some students listed as much as nine paradigms, it can be assumed
that at least a few of them interpreted the purpose to be to list all the paradigms they

had even some familiarity with. On the other end of the spectrum, 36 students left
the question empty, and additional 12 students answered with a variant of ‘I do not
know any paradigms’. Some students mixed programming languages with program
ming paradigms. When looking at this data, it should be kept in mind that the number
of programming paradigms that exist is not a universallyagreed upon quantity. For
example, procedural programming is a form of imperative programming, and there is
an overlap between logical programming and declarative programming.

Paradigm Mentions (n) Paradigm Mentions (n)
Objectoriented 162 Functional 114
Procedural 47 Imperative 34
Declarative 22 Eventbased 10
Logical 8 Structured 6
Datadriven 2 Reactive 1

Table 1: Mentioned programming paradigms

As expected, the objectoriented paradigm was the most wellknown, being mentioned
by 162 students: first programming courses in Tampere University use objectoriented
programming languages. In contrast, the imperative programming paradigm got only
34 mentions, even if the objectoriented paradigm can be categorized as an imperative
paradigm.

Surprisingly, the functional paradigm got secondmost mentions, with 114 students stat
ing they are aware of it. This was unexpected, as there had not been any functional pro
gramming courses in their curriculum. Functional languages multiparadigm languages
popularity both in and outside academia could be one valid explanation, with possible
contribution by JavaScript. Functional paradigm may be grouped under declarative
paradigms, which itself got 22 mentions.

4.2 Experienced difficulty levels of exercise topics
Students’ answers to questionnaires in each exercise round about the experienced dif
ficulty of the topics discussed used a range from difficult(1) to easy(5). The number of
respondents dropped towards the end. The first topic in the first exercise round ques
tionnaire (Git) received submissions from 227 students, while the last topic in the last
questionnaire (Error handling) received 110. There is a noticeable drop in the number
of students filling questionnaires when exercise rounds moved from ninth data persis
tence exercise round to the tenth which handled MVC and code quality.

Among topics that students felt were the easiest are Git version control (154 viewing
the topic as easy or somewhat easy [67.8%, n=227]), JavaScript’s events (125 [61%,
n=205]), JSON file and data format (105 [57%, n=184]) and LocalStorage API used for
data persistence in the browser(87 [55%, n=157]). These topics come from different
exercise rounds, so the relative ease students felt with the subject matter is not ex
plained by the one or two exercise rounds having a familiar subject matter. While many
of the students studied will have encountered Git and JSON in their earlier courses,
JavaScript events or LocalStorage API were not taught in any earlier course in Tam
pere University.

The most difficult general topics included the REST architecture (76 students regarded
the topic difficult/somewhat difficult [36%, n=209]), spread operator (72 [39%n=186]),
CORS (63 [36%, n=174]), sessions and streams (91 [52%, n=175]). Among asyn
chronous JavaScript topics especially difficult were Promises (83 [47%, n=177]) and
async/await (88 [49%, n=178]). These two asynchronous topics are so fundamental,

that they can be seen as threshold concepts.

Looking at students’ difficulties with FP topics relatively most difficult topics were per
ceived to be: the requirement for function calls to have no side effects (86 students
reporting the topic was difficult or somewhat difficult [36%, n=180]) and the closely
related immutability of the object’s state data (73 [40%, n=183]). Other difficult FP top
ics were functors/monads (48 [43%, n=112]), railway orientedprogramming (46 [41%,
n=111]), and higherorder functions (40 [36%, n=112]).

These terms are part of the knowledge students will require to understand and apply
functional programming in problem solving in the future. That these topics were harder
to grasp comes as no surprise, if we keep in mind that the curriculum is such that they
will take functional programming courses during the next years of their studies.

These answers can be viewed in the context of students’ answers to the prequestionnaire
where 114 students reported being aware of FP. In the same questionnaire the report
edly difficult FP topics are at the same time central to the paradigm. This can be inter
preted to mean that students aware of FP, but were not introduced to FP in the previous
courses. The gentle FP primer offered as part of this course was then well placed to
find an audience that was already aware of the paradigm.

4.3 Peer tutoring and scaffolding
Help seeking during the course was enabled using Teams channels where students
could ask and answer questions. 240 students participated in the discussions, 15 re
ceived extra points ranging from 2 to 5 for being active on the channels. Overall, the
activity points correlated with higher course grades, as all but one of the 15 students
received grade 3 or higher. As these students had answered questions in the channels,
the channels provided peertutoring from more knowledgeable others [32] in comple
ment to scaffold by the course personnel.

The opportunity for earning the extra activity points was made known to students at
the start of the course. Pursuing those extra points might have been a part of what
motivated the active students, but still their efforts enabled other students receive com
petent and timely help. If this would have happened without the extra activity points, is
up to debate.

5 CONCLUSIONS

RQ1: Which programming paradigms were students aware of before the FP inter
vention of WebDev1 course? Several paradigms were mentioned, most frequently
objectoriented and functional paradigms. Students’ answers, however, revealed that
many did not fully understand what a programming paradigm is. This can be seen as
a product of the codefirst approach in the earlier courses. Students can design and
implement code without identifying the underlying paradigms and their pros and cons.
The introduction of prominent paradigms would give them a basic structure for under
standing and classifying programming languages.

RQ2: Which JavaScript topics, and in particular which FP concepts, were stu
dents struggling with? Asynchronous features of JavaScript, using Promises and
async/await, were the most difficult topics, and encountering JavaScript concurrency
model for the first time during this course added to the difficulty. Asynchronous features
are extensively used in modern web development, thus their perception is of pivotal im

portance. Compared with async, FP was considered easier: FP topics were reported
being difficult or only somewhat difficult. The difficult topics included, among others, no
sideeffects, and immutability.

RQ3: What could the course personnel do to make those FP concepts easier to
grasp? The student feedback suggested that the course personnel should create
more concrete examples covering both lecture slides and handson videos. Videos
should be short and tothepoint, and material and attached exercises should flow in
sync. From students’ feedback we could also read that very abstract concepts, such as
the ones borrowed frommathematics, should be properly primed and explained. These
concepts comprise, e.g., higherorder functions and functions as firstclass citizens.
Using JavaScript libraries such as Underscore.js, Ramda and Lodash could be used
for making understanding these concepts easier to see and implement at code level
while using functional programming.

6 FURTHER STUDIES
The results direct the improvements of the course in the next DBR cycle, the main result
being a call for a more concrete FP approach: examples and handson videos could be
elevated with visualizations to demonstrate FP and async principles that were ranked
the most challenging topic. The right rhythm of videos and exercises may be found with
the help of flipped learning research.

Data collected by Learning management system XYZ and GitLab is massive and would
provide material for learning analytics; the results should be accessible for both teach
ers and students. Students could be keen on performance comparisons, though this
might induce unnecessary competition. Comparing students’ performance with their
own earlier performance is safer. Current Learning management system XYZ graders
check code quality and conventions. In addition, a grader visualizing the learning pro
cess would be handy in improving students’ consciousness of their strengths and weak
nesses, preferably with suggestions of exercises to fill the gaps. The anticipated grader
is called a selfreflection grader.

References
[1] Shriram Krishnamurthi and Kathi Fisler. Programming Paradigms and Beyond,

page 377–413. Cambridge Handbooks in Psychology. Cambridge University
Press, 2019. doi: 10.1017/9781108654555.014.

[2] Greg Michaelson. Programming paradigms and computational thinking. 2018.

[3] Jaakko Järvi and John Freeman. C++ lambda expressions and closures. Science
of Computer Programming, 75(9):762–772, 2010.

[4] Zoltán Porkoláb. Immutables in c++: Language foundation for functional pro
gramming. In Central European Functional Programming School, pages 75–110.
Springer, 2015.

[5] Venkat Subramaniam. Functional programming in Java: harnessing the power of
Java 8 Lambda expressions. Pragmatic Bookshelf, 2014.

[6] Dean Wampler. Functional Programming for Java Developers: Tools for Better
Concurrency, Abstraction, and Agility. O’Reilly Media, Inc., 2011.

[7] Emmanuel Tanenbaum Schanzer. Algebraic Functions, Computer Programming,

and the Challenge of Transfer. PhD thesis, Harvard University, the Graduate
School of Education, 2015.

[8] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
Transferring skills at solving word problems from computing to algebra through
Bootstrap. In Proceedings of the 46th ACM Technical symposium on computer
science education, pages 616–621. ACM, 2015.

[9] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi. How to Design Pro
grams, Second Edition. MITPress, 2014. URL http://www.ccs.neu.edu/home/
matthias/HtDP2e/.

[10] Matthias Felleisen and Shriram Krishnamurthi. Viewpoint Why computer science
doesn’t matter. Communications of the ACM, 52(7):37–40, 2009.

[11] TIOBE. TIOBE Index for November 2020, 2020. URL https://www.tiobe.com/
tiobe-index/.

[12] RICHARD M Ryan and Arlen C Moller. Competence as central, but not sufficient,
for highquality motivation. Handbook of competence and motivation: Theory and
application, pages 216–238, 2017.

[13] Michael Grady. Functional programming using JavaScript and the HTML5 canvas
element. Journal of computing sciences in colleges, 26(2):97–105, 2010.

[14] Chris Clack and Colin Myers. The dysfunctional student. In International Sym
posium on Functional Programming Languages in Education, pages 289–309.
Springer, 1995.

[15] Pekka Koskinen, Joni Lämsä, Jussi Maunuksela, Raija Hämäläinen, and Jouni
Viiri. Primetime learning: collaborative and technologyenhanced studying with
genuine teacher presence. International journal of STEMeducation, 5(1):20, 2018.

[16] Mikko Nurminen, Pietari Heino, and Petri Ihantola. Friends and gurus: Do students
ask for help from those they know or those who would know. In Proceedings of
the 17th Koli Calling International Conference on Computing Education Research,
Koli Calling ’17, page 80–87, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450353014. doi: 10.1145/3141880.3141905. URL https:
//doi.org/10.1145/3141880.3141905.

[17] Eric Wohlgethan. Supporting web development decisions by comparing
three major javascript frameworks: Angular, react and vue.js. page 47,
2018. URL https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/
1/BA_Wohlgethan_2176410.pdf.

[18] Pia Niemelä and Mikko Nurminen. Rate your mate for food for thought: Else
where use a grader. In Proceedings of the 12th International Conference on
Computer Supported Education Volume 2: CSEDU,, pages 422–429. INSTICC,
SciTePress, 2020. ISBN 9789897584176. doi: 10.5220/0009564204220429.

[19] Paul Cobb, Jere Confrey, Andrea diSessa, Richard Lehrer, and Leona Schauble.
Design experiments in educational research. Educational Researcher, 32(1):9–
13, 2003. doi: 10.3102/0013189X032001009. URL https://doi.org/10.3102/
0013189X032001009.

http://www.ccs.neu.edu/home/matthias/HtDP2e/
http://www.ccs.neu.edu/home/matthias/HtDP2e/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3141880.3141905
https://doi.org/10.1145/3141880.3141905
https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_2176410.pdf
https://reposit.haw-hamburg.de/bitstream/20.500.12738/8417/1/BA_Wohlgethan_2176410.pdf
https://doi.org/10.3102/0013189X032001009
https://doi.org/10.3102/0013189X032001009

[20] Peter Reimann. Designbased research, pages 37–50. Methodological choice
and design. Springer, 2011.

[21] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark
Guzdial. Identifying design principles for cs teacher ebooks through designbased
research. InProceedings of the 2016 ACMConference on International Computing
Education Research, ICER ’16, pages 191–200, New York, NY, USA, 2016. ACM.
ISBN 9781450344494. doi: 10.1145/2960310.2960335. URL http://doi.acm.
org/10.1145/2960310.2960335.

[22] Erkko Sointu, Laura Hirsto, Mari Murtonen, et al. Transforming higher education
teaching and learning environments–introduction to the special issue. International
Journal of Learning, Teaching and Educational Research, 18(13):1–6, 2019. ISSN
16942493.

[23] Laura Hirsto and S Väisänen. Exploring the experiences of flippedlearning in a
large lecture course in teacher education. In ECER–conference, Dublin, Ireland,
2016.

[24] Pia Niemelä, Aulikki Hyrskykari, Timo Poranen, Heikki Hyyrö, and Juhani Linna.
Flipped Learning With Peer Reviews in the Introductory CS Course. In Assess
ment, Testing, and Measurement Strategies in Global Higher Education, pages
35–58. IGI Global, 2020.

[25] Feng Wang and Michael J Hannafin. Designbased research and technology
enhanced learning environments. Educational Technology Research and Devel
opment, 53(4):5–23, 2005.

[26] Terry Anderson and Julie Shattuck. Designbased research: A decade of progress
in education research? Educational researcher, 41(1):16–25, 2012.

[27] Rikke Ørngreen. Reflections on designbased research. In Human Work Inter
action Design. Work Analysis and Interaction Design Methods for Pervasive and
Smart Workplaces, pages 20–38. Springer, 2015.

[28] The DesignBased Research Collective. Designbased research: An emerging
paradigm for educational inquiry. Educational Researcher, pages 5–8, 2003.

[29] Jan Van den Akker, Koeno Gravemeijer, and Susan McKenney. Introducing ed
ucational design research. In Educational design research, pages 15–19. Rout
ledge, 2006.

[30] Allan Collins. Toward a design science of education. In New directions in educa
tional technology, pages 15–22. Springer, 1992.

[31] Donald A Schön. Designing as reflective conversation with the materials of a
design situation. Knowledgebased systems, 5(1):3–14, 1992.

[32] Lev Semenovich Vygotsky. Mind in society: The development of higher psycho
logical processes. Harvard University Press, 1980.

http://doi.acm.org/10.1145/2960310.2960335
http://doi.acm.org/10.1145/2960310.2960335

	Introduction
	Related work
	JavaScript and functional programming

	Research context
	Grading
	FP topics in the course content
	Method and research instruments

	Results and Discussion
	 Students' awareness of programming paradigms
	Experienced difficulty levels of exercise topics
	Peer tutoring and scaffolding

	Conclusions
	FURTHER STUDIES

