
HAVING IT ALL: AUTOGRADERS REDUCE WORKLOAD YET INCREASE THE
QUANTITY AND QUALITY OF FEEDBACK

M. Nurminen ∗

Tampere University
Tampere, Finland

ORCID 0000000176098348
P. Niemelä

Tampere University
Tampere, Finland

ORCID 0000000286739089
H.M. Järvinen

Tampere University
Tampere, Finland

ORCID 0000000300472051

Conference Key Areas: Open and Online Teaching and Learning, Integrated learning environments for
the digital native learners

Keywords: Online assessment, automatic grading, online course, web development

ABSTRACT

Due to COVID19, teaching has moved online at an accelerated pace, and this movement will partially be
permanent. Online teaching implies an automatic assessment of exercises. Using automated grading,
the studied web development course (N=257) managed to serve students promptly and increase the
amount of feedback received by students even if the number of submissions increased remarkably.

Automatic graders guaranteed the uniformity of feedback, equal treatment, and most importantly, re
duced the routine work of the personnel. Being less burdened, the course personnel could concentrate
on assisting students in online discussion channels, where discussions were targeted for the students
needing more help and support. Compared with previous manually assisted course implementations, the
workload moved from ”in situ” to prior to the course, where the most laborious part was the design of the
exercises and the implementation of automatic graders. The amount of work for grading the exercises
and assignment was decreased by about 70 per cent.

In the graders, the feedback given by them is of paramount importance and should suggest necessary
improvements. The graders enforced good coding conventions and other targets set for the code (e.g.,
maintainability and accessibility). In some cases, this feedback was modified during the course based
on the difficulties experienced to give more targeted advice. Automatic grading provided a way for stu
dents to iteratively improve their code based on the feedback. The software and methods used in this
course could be applied to such other courses and domains, where automatic grading is considered
helpful.

∗Corresponding author
M. Nurminen
mikko.nurminen@tuni.fi

1 INTRODUCTION

The International Association of Universities (IAU) studied the impacts of COVID19 on higher education
institutions (HEIs) and reports about remarkable changes worldwide, e.g.: 59% of HEIs have ceased all
oncampus teaching, and twothirds of them reported replacing classroom teaching with online distance
teaching. While acknowledging the difficulties of these transitions, the study findings highlight the op
portunities afforded by “more flexible learning possibilities, exploring blended and hybrid learning, and
mixing synchronous learning with asynchronous learning.” [1] The effects of COVID19 may not be only
temporary, but are anticipated to alter educational practices permanently.

Even before the pandemic, the trend had been in the direction of online education and larger student
groups. For example, in 2019, the Finnish Ministry of Education set a goal of utilising digital environments
and artificial intelligence in learning on a larger scale [2]. In the studied Web programming course,
hereafter WebDev1, the goal legitimized the effort to make all the exercises automatically graded. In
the previous course implementation, the grading of weekly exercises was already automatized. In this
implementation, the effort was made to automate the grading of the assignment and exam as well.

In online learning, students often need to be more autonomous, as scaffolding from the course personnel
is only available in online forums. Lecture slides and links to internet materials were provided. Also short
handson and lecture videos were created – short, because cutting the material in shorter portions has
proven to increase student engagement in the earlier studies [3–5]. While adherents of ‘flipped learning’
promote shortening videos with one voice, other details are still under debate, such as, which length then
is the most optimal (according to Bergmann five minutes [4]), and whether the same size fits all (males
and students with learning disabilities tend to favor shorter videos [5]).

Programming exercises need to be designed and instructed so that a student can do them with as little
additional support from the course personnel as possible. In addition to wellstructured exercise instruc
tions, exercise graders should provide sufficient feedback for students. In order to cover most potential
error sources in student’s code and to give proper, actionable feedback for fixing them, grader’s code
may be manyfold compared with the student’s submission. Often the code for an exercise’s grader
would have several hundreds of lines of code, whereas complete student submission to the exercise
could be well under a hundred.

In this article, we compare the time required by automatic vs. manual grading, and discuss the effect the
automatic grading had on students’ code quality. We also compare the course’s processes and tools to
those used in the software industry, as a way of validating these choices.

2 RELATED WORK

Peer reviews and automatic grading are two of the methods which have been studied for lessening the
personnel’s workload on courses with scarce resources. In an earlier implementation of the WebDev1,
automatic grading was used in the first half of the course and peerreviews in the latter. In the course’s
postsurvey, students’ attitudes towards automatic grading were more positive than for peerreviews.
[6]

Obviously, manual grading requires more teaching resources if the number of students increases [7].
However, teaching resources are not that easily available, and if inexperienced TAs are extensively used,
the quality of feedback and the variety in given points start to increase, leading to unequal treatment of
students. In their study, Leite et al. claim that students who received human feedback perform slightly
better than those who receive automatic feedback [8]. Quiz and exam results, and course grades showed
human feedback led to better conceptual understanding and better performance overall. As a result, the
study deduces that humanprovided feedback about the relation of the syntax and logic in students’ code
could be a primary mechanism for human feedback to improve learning outcomes.

Software quality is a widely studied field, Boehm et al. formed the Software Quality Characteristics
Tree from the related terms [9]. Related to software quality, the feedback given to the student’s code
submissions can affect their learning negatively or positively, positively if it helps them on their path
to good performance and better code quality.[10] Feedback in the teaching of programming has been
studied earlier, for example Stegeman et al. suggested a rubric for feedback [11], as do Marceau et al.
when studying the effects error messages had on learning[12]. The effect of the feedback on the software
quality in the context of a university programming course. There is a tension in teaching programming in
university: how much of the teaching should concentrate on the pure theory, and how much time should
be given to teaching practical programming skills.[13], usually students prefer to rapidly learn coding

skills which lead to employment. This tension can partly be eased by selecting tools and processes for
the course which are already in use in the industry.

Plussa development has been paralleled with a study of different exercise and assessment methods and
their pedagogical value. In addition to autograding, various learning activities such as visualizations of
different algorithms [14, 15] and runtime behaviour [16] have been on focus. Runtime visualizations
illustrate, e.g., call stack and heap behavior while executing code (e.g., Annotation editor exercise about
recursion). Visualizations are an apt tool for lowering the threshold of difficult topics, and, e.g., WebDev1
exploited Loupe event loop visualization in internalizing the JavaScript concurrency model. However,
visualization systems are often shortlived research prototypes where the user controls the program
animations [17]. Yet these comprehension aids are good for novices, but more advanced students, such
as in WebDev1, do not need toys but real tools for gaining experience. The writers demonstrate the utility
of GitLab as a dissemination and grading tool in integration with Plussa learning management system
[18]. Since GitLab also provides some DevOps capabilities, WebDev1 aimed at acquainting students
with these DevOps practises, i.e., to teach GitOps on the side. GitOps could be further extended with
Kubernetes, which would provide a fullyfledged automated orchestration solution for the courses of
Web&Cloud domain [19].

Inspired by the earlier studies, we set the following RQs:

1. How do the TAs workload and the intensity of work differ in automatically graded courses when
compared to those that are manually graded?

2. How does autograding affect the quality of code?

3. Are the course’s processes and tools similar to ones used in the industry?

3 RESEARCH CONTEXT

WebDev1 provided a comprehensive introduction to both frontend and backend web technologies:
frontend technologies consist of HTML5, CSS, and JavaScript, whereas the backend introducesNode.js.
Unlike previous years, the utilization of Node.js frameworks, such as Express and Handlebars, was omit
ted. Instead, the vanilla JavaScript approach was used primarily for pedagogical reasons: frameworks
come and go, but HTTP and generic clientserver architecture will stay. The course is targeted to third
and fourthyear students. The prerequisites for this course include three basic programming courses,
and a basic database course. Prerequisites imply that course participants should have a considerable
amount of programming routine, including a basic understanding of project work, e.g., Agile project man
agement.

The WebDev1 course will be developed in iteration cycles twice a year. The development started in the
20192020 academic year [6]. In the next academic year, it was continued by the introduction of auto
graders for assignment containing both unit tests but substantially more static code analysis. Cyclic
development with reflective redesign phases is characteristic of designbased research (DBR) [20] [21]
[22]. DBRmandates a guiding background theory, and this study leans on the previous findings of flipped
learning in the course arrangements [23–25]. In DBR, educational solutions are combined with the em
pirical interventions and proof: DBR systematizes course development cycles of design, development,
enactment, and analysis [26–28]. Here the cycle represents a course term. The retrospective analysis
inserts requirements into the design of the next implementation [29–31]. The redesign implies ‘reflective
conversation with the situation’ [32], whereby course personnel observe the effects of new arrangements
and refine them if necessary.

The study was conducted during the global COVID restrictions, where moving to remote teaching was
a general recommendation. Thus, WebDev1 course replaced previous lectures with video recordings
and onpremises tutoring with online tutoring sessions. Students struggling with the exercises or the
coursework assignment could get help during these socalled Kooditorio sessions, which were held in
Teams. Kooditorio is a tutoring practice akin to primetime [33], except voluntary, where teachers and
assistants answer questions, debug and coimplement students’ code and scaffold them finalizing their
exercises.

3.1 Tools used: Plussa and Gitlab

Learning management system Plussa was used during the course [34] to host course materials such as
slides, exercises and videos. The videos handled the subject matters of the week, and were largely based
on the lecture slides. A few selected topics were introduced by visiting lectures, such as accessibility

https://acos.cs.aalto.fi/kelmu-editor?content=jsvee%7Cjsvee-csharp%7Crekursio
https://acos.cs.aalto.fi/kelmu-editor?content=jsvee%7Cjsvee-csharp%7Crekursio
http://latentflip.com/loupe

and security. For some weeks there were also handson videos, which demonstrated using specific
technologies. Personnel were inspired by the principles of flipped learning, where short videos and
related exercises take turns.

In addition to Plussa, Gitlab is a central tool throughout the course. Gitlab functions as a normal version
control system, but also provides means for project management and DevOps. The course personnel
create students’ and groups’ Git projects to Gitlab using an inhouse tool named Repolainen. Plussa
submissions are done by giving the GitLab URL of one’s repository. Repolainen is also in charge of
communication with other systems, such as Gitlab, or SonarQube static code analysis.

The creation of the student repositories is done at the beginning of the course, group repositories are
created after group formation. To create them, Repolainen is fed a list of students, or group’s members.
Course personnel are given maintainer level permissions, students are granted developer permissions.
CI pipeline was introduced to the students, as they will go deeper into DevOps in their further studies.
Gitlab CI pipelines are configurable with the .gitlabci.yml file. This file could be edited by the student
groups in their own repository. Exercise instructions were either in Plussa or in the Git upstream reposi
tory, sometimes in both. The ‘course upstream’ is a Gitlab repository for pulling only. Course personnel
maintain the upstream, new instructions and possible file skeletons are released at the beginning of each
exercise round.

The assignment started with the creation of GitLab group repositories. Gitlab Issue Board was recom
mended as a tool for project management to coordinate tasks. The Issue Board provides a Kanbanlike
issue management view, where issues can be moved in steps from the backlog, to the ‘Doing’ and fi
nally to the ‘Closed’ board. These moves inform other group members not to touch ongoing work. A
couple of Plussa exercises were used to orient students in using the Issue Board. In the assignment
instructions, the required documentation included an appropriate use of issues: groups were advised to
list user stories as issues, and assign tasks in the Gitlab Issue Board. All in all, when correctly applied,
issues provided a panoptic view of the progress of each group.

3.2 Automatic grading

To complete the course, students had to pass weekly exercises, a coursework assignment, and an exam.
Themaximum course grade was five: +1 for weekly exercises, +2 for assignment, +2 for the exam.

The grading of exercises and the coursework assignment was automated where possible. Without au
tomation, the amount of work would have been enormous, the theoretical maximum total number of
submissions was 205.600. Course personnel of three could not have assessed this number of submis
sions manually. Maximum number of submissions Nsubs. can be calculated using equation 1:

Nsubs. = Nstudents ×Nmodules ×Nexercises/module ×Nsubs./exercise

= 257× 10× 8× 10 = 205.600
(1)

The level of automation has increased remarkably during successive course implementations: in 2019
half of the course was autograded [6]; in 2020 everything but documentation and ‘UI wow’ were auto
graded.

For the coursework assignment students were paired, which resulted in 257/2 = 129 groups. In 2020,
the groups implemented online shops. Exercise rounds eight through ten comprised the mandatory
part of the assignment: having passed the tenth exercise round students received a passing grade for
the coursework assignment. Then students chose either to accept this result or to continue to higher
grades. This can be interpreted as a partial application of flipped assessment [35]: students can ‘select’
the grade they are after. Level1 implied a grade one for the assignment. The level 1 assessment was
fully automated including Mocha tests and JSDoc linting. Level2, in turn, implied a grade of two, and
also contained parts left for course personnel to assess manually, such as the quality of documentation
and the usability and prestige of UI, the socalled ‘UI wow’. Level2 cumulatively adds more automatic
tests to Level1, with automatic graders for functional programming, eslinting, static code analysis with
SonarQube, and coverage.

Fig.2 illustrates the process of autograding. Process starts when a student commits code to Gitlab,
and then submits their Gitlab URL on an exercise page in Plussa. As a system, Plussa divides into
two parts, both run as Docker containers: Plussa frontend “runaplusfront container in the picture”, and
MOOC grader, “runmoocgrader”. Plussa frontend provides the UI, and maintains a grade repository.

Figure 1: The interplay of Plussa, GitLab and Repolainen in auto-grading

MOOC grader, in turn, provides the exercises and takes care of grading. It launches temporary Docker
containers that are started only to perform the grading. In Fig.2, ESLint, functional programming, or
Mocha graders are examples of such graders. Usually, the grader clones a student’s git repository and
executes the grading as instructed in a shell script.

Since testing was not particularly central in the course curriculum, most of the tests were given to students
purposebuilt to familiarize with Mocha and its execution; respective Plussa graders ran the same tests.
In local tests, students received the same feedback as given by the Plussa graders, which decreased
the number of needed submissions. Running the tests locally gave students a view of how their work
would be graded in Plussa.

3.3 Method and research instruments

We looked at how the feedback from the automatic graders affected the quality of students’ code, as
evident from the number and type of errors reported by the automatic graders. The tools and processes
selected for the course were evaluated by comparing them with those reported in StackOverflow’s De
veloper Survey (SODS)[36] with about 65,000 responses from software developers from 186 countries,
and JetBrains’ The State of Developer Ecosystem (JBSODE) survey of 19,696 developers[37].

4 RESULTS AND DISCUSSION

4.1 Comparison ofworkworkload and intensity between auto vsmanually assessed course

The answer to this RQ can be estimated based on the current automaticallygraded WebDev1 course
implementation, and previous manually graded basic web programming courses. On the current im
plementation, practically everything was automated, including the grading of the exercises, group as
signment, and the exam in Plussa. Personnel worked on the design and implementation of these. The
current course had 50 automatically graded exercises with graders, and 9 graders for the assignment.
When an estimated 12 hours on average was spent on the design and implementation of a grader, the
total hours were 59 * 12h = 708h. This course implementation featured newly designed graders, and in
future implementations these can be used as the basis for creating others, thus reducing the required
time.

Based on similar earlier courses in Tampere University, when manually grading and giving feedback a TA
could use an estimated 15 minutes per exercise, and 1 hour in grading assignment. In manual grading,
the number of students becomes significant: the course’s assignment stage was participated in by 173

students in 85 groups. For the exercises the required TA work time for grading and feedback would
equal 0.25h * 50 exercises * 173 students = 2165,2h. Grading the group assignment would take 1h *
85 groups = 85h. The combined time consumed is 2247,5h. Thus, the time required for manual grading
is far greater than for creating the automatic graders (708h). It is resourcewise a sound decision to
automatically grade as many exercises as possible.

4.2 How does autograding affect the quality of code?

The assignment complied with the principles of flipped assessment [35], where students may select a
harder assignment if they estimate themselves to be competent enough. Students could choose between
No assignment, Level1 or 2. Fig. 2 illustrates the graders colorcoded into Level1 (cyan) and Level
2 (blue) graders. Each passed level improves grade with +1. Level1 was tried by 126 students (for
reference, 157 concluded the course). By far the most frequent was mocha unit test grader. ‘No pass’
in mocha led to giving up the assignment and filtered submitters for later jsdoc and final1 graders. Final
graders ‘final1’ and ‘final2’ combined separate graders of respective levels and executed all tests in a
sequence. This prevented the manipulation of a submission: e.g., ‘pass’ could be ensured only with a
selected functionality, and after the pass, the quality of code could again be compromised.

After the final1 grader, there was no use to continue without passing Level1, thus, in the transfer to Level
2, the number of students decreased by half. Most of the Level2 submitters were testing with eslint first.
Besides being the first in the list, eslint or linting in general is utilized in other courses as well, so many
students are familiar with it and its functionality as a grader is straightforward. Gradual improvement
is evident based on the students’ submissions. The first submission was often very buggy, almost like
going on a fishing expedition. Once students got a grasp of what is the spirit of a game and how exactly
the grading is done, the errors converged to zero quite rapidly. Characteristic of the error hunt was a
nonstop process, where subsequent submissions followed each other at high frequency.

px

Figure 2: Auto-grading and provided error and warnings

Table 1 illustrates the most common error and warning types in a descending order of occurrences.
Here, the most common eslint errors, such as strict comparison and semicolon issues could be focused
on more thoroughly during the lessons based on the analysis. In addition, warnings expose defects with
asyncawait in combination with arrow functions.
4.3 Are the course’s processes and tools similar to ones used in the industry?

In both SODS (69.7%) and JBSODE (70%), JavaScript was the most commonly used programming
language. On the SODS list of most liked programming languages, JavaScript is in the tenth position in
the rankings of most used languages, TypeScript which builds on JavaScript was in second place. In the
rankings of languages developers would like to work with, JavaScript was in second place, TypeScript
being fourth. So, the language selection of the course gave students experience with languages they
will likely use in the future, as current developer preferences can determine the languages selected for
upcoming projects. In SODS the category of ‘Other frameworks, libraries, and tools’, Node.js is ranked
as the most desired future tool. MongoDB fares well in the category of ‘Databases’ coming third in ‘the
most used’ ranking.

Table 1: The occurrences of errors and warnings in a detail

grader cat type val

mocha
765

jsdoc
NoPrb 49

Err Missing JSDoc @param response description. 10

Err Missing JSDoc @returns description. 6

Err Missing JSDoc @param request description. 4

Err Invalid JSDoc @returns type Object; prefer: ob-
ject.

4

Err Missing JSDoc @param userId description. 3

Err Invalid JSDoc @param currentUser type Object;
prefer: obj

3

Err Invalid JSDoc @param userData type Object; pre-
fer: object

1

Err Missing JSDoc @param password description. 1

Err Missing JSDoc @param filePath description. 1

Err Invalid JSDoc @param user type Object; prefer:
object.

1

Warn The type ’http’ is undefined. 69

Warn Missing JSDoc @returns declaration. 29

Warn There must be a newline after the description of
the JSD

19

Warn Missing JSDoc comment. 14

Warn Invalid JSDoc tag (preference). Replace return JS-
Doc ta

10

Warn Expected JSDoc block to be aligned. 8

Warn Missing JSDoc @param response type. 2

final1
322

heroku
84

eslint
NoPrb 9

Err Expected ’===’ and instead saw ’==’. 5

Err Missing semicolon. 5

Err Expected ’!==’ and instead saw ’!=’. 5

Err Global variable leak, declare the variable if it is
inte..

1

Err Identifier ’currentuser′isnotincamelcase. 1

Err Unexpected var, use let or const instead. 1

Warn A space is required after ’,’. 35

Warn There should be no space before ’,’. 15

Warn Async arrow function has no ’await’ expression. 8

Warn Missing space after =>. 3

Warn Use an object spread instead of ‘Object.assign‘
eg:

3

Warn Missing space before =>. 3

Warn Async function has no ’await’ expression. 2

cov
200

FP
NoPrb 95

Err Unallowed use of ‘for‘ loop 9

a11y
NoPrb 137

SQ
209

final2
121

Gitrelated collaboration tools were ranked high in ‘Collaboration tools’ in SODS, with GitHub being top
ranked and GitLab fifth for ‘professional developer’ respondents. DuringWebDev1 students used Git and
GitLab extensively, so they gathered valuable experience with version control and issue management.
Further, WebDev1 encouraged students to experiment with DevOps by creating and assigning issues
and running a CI pipeline. In SODS half of the respondents see DevOps as ‘extremely important’, and that
their organization has at least one person working on DevOps, while in JBSODE half of the respondents
were involved in DevOps to some extent. While WebDev1’s DevOps treatment was quite light, students
acquired knowledge and experience with the basics of DevOps.

5 CONCLUSIONS

In WebDev1, autograding decreased the effort spent with routine tasks by 70%, yet the amount of
feedback, the consistency of it, and submissions made by students all increased. By examining the
submissions, the improvement of code quality was obvious: most students kept iterating till theymanaged
to pass both the functional tests and static analysis of the code. The pass was rewarded with a better
grade that being allegedly the major motivation. However, compared with “blackbox assessment” done
by the personnel (or a peer), incremental improvement of code, where students are in control of the
process, can be seen as the source of empowerment. In addition, the grading system used complies
with the DevOps practices of industry, therefore training students better for their future and increasing
their employability. Having it all done – faster and better than expected – the course personnel can
rejoice all their way till welldeserved summer holidays.

6 FURTHER STUDIES

Data collected by Plussa and GitLab is massive and would provide material for learning analytics; the
results should be accessible for both teachers and students. Students could be keen on performance
comparisons, though this might induce unnecessary competition. Comparing students’ performance to
their own earlier performance is safer. Current Plussa graders check code quality and conventions. In
addition, a grader visualizing the learning process would be handy in improving students’ conscious

ness of their strengths and weaknesses, preferably with suggestions of exercises to fill the gaps. The
anticipated grader is called a selfreflection grader.

Another interesting research path would be investigating the most pedagogically fruitful way of combin
ing automatic grading and the teaching and support provided by the course personnel. While automatic
grading was shown to be effective and also sensible resourcewise, during course implementations nu
merous students have expressed their need for support from the course personnel, and time saved with
automatic grading could enable giving this support. Here Teams channels were useful in studentpeer
and studentteacher interactions. But especially during the current COVID pandemic, which places more
psychological strain on students, designbased research course design process should integrate student
support to the design phase with instructional design. As an example, one aspect of the course this inte
gration could improve is teacherstudent communication. Currently the interaction strategy on the course
is focused on selecting the appropriate tools, such as Teams channels or emails. How these tools are
used: what is communicated, using which tool, and by whom is often decided in ad hoc manner. A more
structured approached would make communication during implementations more predictable.

References

[1] Giorgio Marinoni, Hilligje Vant Land, and Trine Jensen. The impact of covid19 on higher education
around the world. IAU Global Survey Report, 2020.

[2] Korkeakoulutuksen visio 2030, 2019. URL https://minedu.fi/
korkeakoulutuksen-ja-tutkimuksen-visio-2030.

[3] Fiona Saunders, Sandor Gellen, Jack Stannard, Colin McAllisterGibson, Lisa Simmons, and Andy
Gibson. Educating the netflix generation: Evaluating the impact of teaching videos across a science
and engineering faculty. 2020.

[4] Jonathan Bergmann and Aaron Sams. Flip your classroom: Reach every student in every class
every day. International Society for Technology in Education, 2012.

[5] Krista Slemmons, Kele Anyanwu, Josh Hames, Dave Grabski, Jeffery Mlsna, Eric Simkins, and
Perry Cook. The impact of video length on learning in a middlelevel flipped science setting: im
plications for diversity inclusion. Journal of Science Education and Technology, 27(5):469–479,
2018.

[6] Pia Niemelä and Mikko Nurminen. Rate your mate for food for thought: Elsewhere use a grader.
In Proceedings of the 12th International Conference on Computer Supported Education Volume
2: CSEDU,, pages 422–429. INSTICC, SciTePress, 2020. ISBN 9789897584176. doi: 10.5220/
0009564204220429.

[7] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das, Amey Karkare, and Arnab
Bhattacharya. Automatic grading and feedback using program repair for introductory programming
courses. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’17, page 92–97, New York, NY, USA, 2017. Association for Computing
Machinery.

[8] Abe Leite and Saúl A. Blanco. Effects of human vs. automatic feedback on students’ understanding
of ai concepts and programming style. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE ’20, page 44–50, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450367936.

[9] Barry W Boehm, John R Brown, and Mlity Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference on Software engineering, pages 592–605, 1976.

[10] John Hattie and Helen Timperley. The power of feedback. Review of Educational Research, 77(1):
81–112, 2007.

[11] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. Designing a rubric for feedback on code
quality in programming courses. 2016.

[12] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Measuring the effectiveness of error
messages designed for novice programmers. In Proceedings of the 42nd ACM Technical Sym
posium on Computer Science Education, SIGCSE ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

https://minedu.fi/korkeakoulutuksen-ja-tutkimuksen-visio-2030
https://minedu.fi/korkeakoulutuksen-ja-tutkimuksen-visio-2030

[13] OiliHelena Ylijoki. Akateemiset heimokulttuurit ja yliopistoyhteisön itseymmärrys. Tiedepolitiikka:
Edistyksellinen tiedeliitto ry: n julkaisu 23 (1998): 3, 1998.

[14] Ville Karavirta and Clifford A Shaffer. Creating engaging online learning material with the jsav
javascript algorithm visualization library. IEEE Transactions on Learning Technologies, 9(2):171–
183, 2015.

[15] Artturi Tilanterä et al. Towards automatic advice in visual algorithm simulation. 2020.

[16] Teemu Sirkiä. Jsvee & kelmu: Creating and tailoring program animations for computing education.
Journal of Software: Evolution and Process, 30(2):e1924, 2018.

[17] Juha Sorva, Jan Lönnberg, and Lauri Malmi. Students’ ways of experiencing visual program
simulation. Comput. Sci. Educ., 23(3):207–238, 2013. doi: 10.1080/08993408.2013.807962. URL
https://doi.org/10.1080/08993408.2013.807962.

[18] Lassi Haaranen and Teemu Lehtinen. Teaching git on the side: Version control system as a course
platform. In Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education, pages 87–92, 2015.

[19] Andrea Lucioli. Cloud Native DevOps with Kubernetes and GitOpsa powerfull approach to Contin
uous Development using Infrastructure as Code. 2020.

[20] Paul Cobb, Jere Confrey, Andrea diSessa, Richard Lehrer, and Leona Schauble. Design experi
ments in educational research. Educational Researcher, 32(1):9–13, 2003.

[21] Peter Reimann. Designbased research, pages 37–50. Methodological choice and design. Springer,
2011.

[22] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and Mark Guzdial. Identify
ing design principles for cs teacher ebooks through designbased research. In Proceedings of the
2016 ACM Conference on International Computing Education Research, ICER ’16, New York, NY,
USA, 2016. ACM.

[23] Erkko Sointu, Laura Hirsto, Mari Murtonen, et al. Transforming higher education teaching and
learning environments–introduction to the special issue. International Journal of Learning, Teaching
and Educational Research, 18(13):1–6, 2019. ISSN 16942493.

[24] Laura Hirsto and S Väisänen. Exploring the experiences of flippedlearning in a large lecture course
in teacher education. In ECER–conference, Dublin, Ireland, 2016.

[25] Pia Niemelä, Aulikki Hyrskykari, Timo Poranen, Heikki Hyyrö, and Juhani Linna. Flipped Learning
With Peer Reviews in the Introductory CS Course. In Assessment, Testing, and Measurement
Strategies in Global Higher Education, pages 35–58. IGI Global, 2020.

[26] Feng Wang and Michael J Hannafin. Designbased research and technologyenhanced learning
environments. Educational Technology Research and Development, 53(4):5–23, 2005.

[27] Terry Anderson and Julie Shattuck. Designbased research: A decade of progress in education
research? Educational researcher, 41(1):16–25, 2012.

[28] Rikke Ørngreen. Reflections on designbased research. In Human Work Interaction Design.
Work Analysis and Interaction Design Methods for Pervasive and Smart Workplaces, pages 20–
38. Springer, 2015.

[29] The DesignBased Research Collective. Designbased research: An emerging paradigm for edu
cational inquiry. Educational Researcher, pages 5–8, 2003.

[30] Jan Van den Akker, Koeno Gravemeijer, and Susan McKenney. Introducing educational design
research. In Educational design research, pages 15–19. Routledge, 2006.

[31] Allan Collins. Toward a design science of education. In New directions in educational technology,
pages 15–22. Springer, 1992.

[32] Donald A Schön. Designing as reflective conversation with the materials of a design situation.
Knowledgebased systems, 5(1):3–14, 1992.

https://doi.org/10.1080/08993408.2013.807962

[33] Pekka Koskinen, Joni Lämsä, Jussi Maunuksela, Raija Hämäläinen, and Jouni Viiri. Primetime
learning: collaborative and technologyenhanced studying with genuine teacher presence. Interna
tional journal of STEM education, 5(1):20, 2018.

[34] V. Karavirta, P. Ihantola, and T. Koskinen. Serviceoriented approach to improve interoperability of e
learning systems. In 2013 IEEE 13th International Conference on Advanced Learning Technologies,
2013.

[35] M Toivola. Käänteinen arviointi. Helsinki: Edita, 2019.

[36] StackOverflow. Stackoverflow developer survey 2020, 2021. URL https://insights.
stackoverflow.com/survey/2020. [Online; accessed 20April2021].

[37] JetBrain. The state of developer ecosystem 2020, 2021. URL https://www.jetbrains.com/lp/
devecosystem-2020/. [Online; accessed 20April2021].

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://www.jetbrains.com/lp/devecosystem-2020/
https://www.jetbrains.com/lp/devecosystem-2020/

	Introduction
	Related work
	Research context
	Tools used: Plussa and Gitlab
	Automatic grading
	Method and research instruments

	Results and Discussion
	Comparison of work workload and intensity between auto- vs manually assessed course
	How does auto-grading affect the quality of code?
	Are the course's processes and tools similar to ones used in the industry?

	Conclusions
	FURTHER STUDIES

