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Abstract

We study observer-based dynamic stabilization of a one-

dimensional wave equation with boundary control and dis-

tributed observation. The control system we consider is

exponentially stabilizable but not exponentially detectable.

Consequently, exponential energy decay is not achievable

with dynamic output feedback. As our main result we design

an observer-based controller which achieves rational decay of

energy for a class of initial conditions. The controller design

relies on helpful results on polynomial stability of semigroups

generated by block operator matrices.

1 Introduction

In this article we design an observer-based stabilizing
controller for a one-dimensional controlled wave equa-
tion with boundary control and distributed observation.
Due to the type of measurement, the controlled PDE is
not exponentially detectable, and therefore the degree
of stability is crucially limited in the sense that dynamic
exponential stabilization is not possible. The model we
consider is

wtt(ξ, t) = wξξ(ξ, t), ξ ∈ (0, 1)(1a)

wt(0, t) = 0, wξ(1, t) = u(t)(1b)

w(ξ, 0) = w0(ξ), wt(ξ, 0) = w1(ξ)(1c)

y(t) =

∫ 1

0

wt(ξ, t)c(ξ)dξ(1d)

with a given c(·) ∈ L2(0, 1). The total energy of the
wave system is defined as

E(t) =
1

2

(∫ 1

0

|wt(ξ, t)|2dξ +

∫ 1

0

|wξ(ξ, t)|2dξ
)
.

We consider stabilization of (1) in the sense that
E(t) → 0 as t → ∞. Instead of exponential stabiliza-
tion, we design an observer-based dynamic controller
that achieves polynomial stability [1, 3] and rational con-
vergence of energy for a class of initial conditions of the
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system and the controller. The controller design and
stability results are based on standard Luenberger ob-
server construction and subsequent analysis of the poly-
nomial stability of the closed-loop system.

Dynamic stabilization of boundary controlled one-
dimensional wave equations has been studied in sev-
eral references in the case of exponential closed-loop
stability, most notably using backstepping [11, 8], ob-
server design [9], and Active Disturbance Rejection
Control [6]. Strong asymptotic stabilization using dy-
namic controllers has been studied extensively in [5],[12,
Ch. 6] for a very general class of infinite-dimensional
systems. For wave equations, strong dynamic stabiliza-
tion has also been considered in [7, 10]. In addition,
polynomial stability of semigroups generated by block
operator matrices has been studied previously in [13].

The structure of the paper is as follows. In Sec-
tion 2 we present the observer-based controller for (1)
and state the main results. The proofs of the main
theorems are presented in Section 3, and in Section 4
we demonstrate our results with numerical simulations.
Section 5 contains concluding remarks.

If X and Y are Banach spaces and A : X → Y
is a linear operator, we denote by D(A), N (A) and
R(A) the domain, kernel and range of A, respectively.
The space of bounded linear operators from X to Y
is denoted by L(X,Y ). If A : X → X, then σ(A) and
ρ(A) denote the spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is
R(λ,A) = (λ−A)−1. The inner product on a Hilbert
space is denoted by 〈·, ·〉. Throughout the paper we
denote H1

l (0, 1) = {x ∈ H1(0, 1) | x(0) = 0 } and
H1
r (0, 1) = {x ∈ H1(0, 1) | x(1) = 0 }.

2 Dynamic Polynomial Stabilization

The controller we propose is of the form

ŵtt(ξ, t) = ŵξξ(ξ, t)(2a)

− γc(ξ)
∫ 1

0

[ŵt(r, t)− wt(r, t)] c(r)dr,

ŵt(0, t) = 0, ŵξ(1, t) = −βŵt(1, t)(2b)

ŵ(ξ, 0) = ŵ0(ξ), ŵt(ξ, 0) = ŵ1(ξ)(2c)

u(t) = −βŵt(1, t)(2d)



with γ > 0 and β > 0. Our main result, stated be-
low in Theorem 2.1, shows that the controller achieves
asymptotic decay of the energy E(t), and that under the
additional assumption (3) on c(·) in (1d) the energy of
the classical solutions of the controlled system decay at
a specific rational rate. This rate is determined by the
behaviour of the Fourier coefficients of c(·) through (3).
It follows from the theory of strongly continuous semi-
groups that the condition (3) is also necessary for the
decay rate in Theorem 2.1. Due to the lack of expo-
nential detectability it is in fact impossible to achieve
an energy decay rate which would be applicable for all
(w0, w1)T and (ŵ0, ŵ1)T in H1(0, 1)× L2(0, 1), and in-
stead the precise rate of E(t)→ 0 depends on the initial
conditions. It should be noted that the displacement
w(·, t) is not required to converge to zero as t→∞.

Theorem 2.1. If c(·) ∈ L2(0, 1) is such that
〈c(·), sin(π(k − 1/2)·)〉L2 6= 0 for all k ∈ N, then with
the controller (2) the energy of the mild solution of (1)
satisfies E(t) → 0 as t → ∞ for any initial conditions
w0, ŵ0 ∈ H1(0, 1) and w1, ŵ1 ∈ L2(0, 1).

If in addition there exist α,mα > 0 such that

|〈c(·), sin(π(k − 1/2)·)〉L2 |2 ≥ mαk
−α, ∀k ∈ N,(3)

then there exist M, t0 > 0 such that for all initial con-
ditions w1, ŵ1 ∈ H1

l (0, 1), w0, ŵ0 ∈ H2(0, 1) satisfying
w′0(1) = ŵ′0(1) = −βŵ1(1) we have

E(t) ≤ M

t2/α

(
‖w′′0‖2L2 + ‖w′1‖2L2

+ ‖ŵ′′0 − w′′0‖2L2 + ‖ŵ′1 − w′1‖2L2

)
for all t ≥ t0.

The wave equation (1) can be written in the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X(4a)

y(t) = Cx(t)(4b)

on X = L2(0, 1) × L2(0, 1) with state x(t) =
(wt(·, t), wξ(·, t))T and

A =

[
0 ∂ξ
∂ξ 0

]
, C =

[
C0, 0

]
, B =

[
B0

0

]
D(A) =

{
(x1, x2)T ∈ H1(0, 1)×H1(0, 1)

∣∣
x1(0) = x2(1) = 0

}
where B0 = δ1(·) ∈ (H1

l (0, 1))∗ and B∗0f = f(1) for
f ∈ H1

l (0, 1), and C0f = 〈f, c〉L2 . The expressions
of B and B∗ and the characterization of D(A) can
be derived as shown in [16, Sec. 10.1]. The operator
B ∈ L(C, X−1) is admissible and C ∈ L(X,C). Note
that D(A) = H1

l (0, 1)×H1
r (0, 1).

Similarly, with the choice of the state x̂ = (ŵt, ŵξ)
T

the controller (2) can be written as

˙̂x(t) = (A+BK)x̂(t) + LC(x̂(t)− x(t))(5a)

u(t) = Kx̂(t), x̂(0) = x̂0(5b)

where L = −γC∗ ∈ L(C, X) and K = −βB∗, and
where B∗ =

[
B∗0 , 0

]
∈ L(H1

l (0, 1) × H1(0, 1),C) is

the extension of B∗ =
[
B∗0 , 0

]
∈ L(D(A),C). The

extension is compatible in the sense of [15, Def. 5.1.1].
The operators (A + BK)|X and A + LC generate
semigroups TK(t) and TL(t), respectively, on X. The
former is exponentially stable [4], and the latter is
either strongly or polynomially stable depending on
the properties of the function c(·) (see the proof of
Theorem 2.2 for details). Because of its structure,
the stabilizing controller (2) is formally based on the
Luenberger observer for (4). The closed-loop dynamics
are determined by

d

dt

[
x(t)
x̂(t)

]
=

[
A BK
−LC A+BK + LC

] [
x(t)
x̂(t)

]
.

If we apply an invertible change of coordinates
(x(t), x̂(t))T → (x(t), x̂(t)− x(t))T we arrive at

d

dt

[
x(t)

x̂(t)− x(t)

]
=

[
A+BK BK

0 A+ LC

] [
x(t)

x̂(t)− x(t)

]
.

Since the states of (4) and (5) are given by x(t) =
(wt(·, t), wξ(·, t))T and x̂(t) = (ŵt(·, t), ŵξ(·, t))T and
E(t) = 1

2‖x(t)‖2, Theorem 2.1 follows from the follow-
ing abstract stability result. The theorem also shows
that if c(·) is such that (3) holds, then the observation
error ‖x̂(t) − x(t)‖ converges at a rational rate for a
suitable set of initial conditions.

Theorem 2.2. If c(·) ∈ L2(0, 1) is such that
〈c(·), sin(π(k − 1/2)·)〉L2 6= 0 for all k ∈ N, then for
all x(0), x̂(0) ∈ X
‖x(t)‖ → 0, ‖x̂(t)− x(t)‖ → 0, as t→∞.

If in addition there exist α,mα > 0 such that (3)
holds then the controller achieves polynomial closed-loop
stability and there exist M, t0 > 0 such that∥∥∥∥[ x(t)
x̂(t)− x(t)

]∥∥∥∥≤ M

t1/α
(‖Ax0 +BKx̂0‖+‖A(x̂0 − x0)‖)

for t ≥ t0 and for all initial states x0, x̂0 ∈ H1(0, 1) ×
H1(0, 1) satisfying x0 − x̂0 ∈ D(A) and Ax0 +BKx̂0 ∈
X.

Remark 1. If the boundary condition wt(0, t) = 0 is
replaced with wξ(0, t) = 0, the undamped system has a
second order eigenvalue at λ = 0. This eigenvalue would
need to be factored out of the state space of the control
system, since such an eigenspace cannot be stabilized
with rank one control and observation operators.



3 Proofs of the main results

We begin by proving Theorem 2.2.
Proof of Theorem 2.2. We have σ(A) = {iπ(k −
1/2)}k∈Z and the orthonormal eigenvectors of A are
given by φk = (sin(π(k − 1/2)·), cos(π(k − 1/2)·))T for
all k ∈ Z. The pair (C,A) is approximately controllable
if Cφk 6= 0 for all k ∈ Z, which is equivalent to the
property that 〈c(·), sin(π(k−1/2)·)〉L2 6= 0 for all k ∈ N.
Under this assumption the semigroup TL(t) generated
by A + LC with L = −γC∗ is strongly stable [2,
Cor. 3.2]. The pair (A,B) is exactly controllable,
and the semigroup TK(t) generated by (A + BK)|X is
exponentially stable [4].

Denote AK = A+BK and AL = A+ LC. We will
next show that the semigroup Tc(t) generated by

Ac =

[
AK BK
0 AL

]
D(Ac) =

{
(x1, x2)T ∈ D(B∗)×D(A)

∣∣∣
Ax1 +BK(x1 + x2) ∈ X

}
on X × X is strongly stable. The operator K is
admissible for AL by [16, Thm. 5.4.2] and

Tc(t) =

[
TK(t) S(t)

0 TL(t)

]
,

where

S(t)x2 =

∫ t

0

TK(t− s)BKTL(s)x2ds, ∀x2 ∈ D(AL).

For the strong stability of Tc(t) it is sufficient to show
that there exists MS ≥ 0 such that for all x2 ∈ D(AL)
we have ‖S(t)x2‖ ≤ MS‖x2‖ and ‖S(t)x2‖ → 0 as
t → ∞. The admissibilities of B and K imply that
there exist κB , κK > 0 such that for all x2 ∈ D(AL),
f ∈ L2(0, 1) and t ∈ [0, 1]

∥∥∥∥∫ t

0

TK(t− s)Bf(s)ds

∥∥∥∥ ≤ κB‖f‖L2(0,1),

‖KTL(·)x2‖L2(0,1) ≤ κK‖x2‖.

Let x2 ∈ D(AL) with ‖x2‖ = 1 and t > 0 be arbitrary,
and denote t = n + t0 for some n ∈ N0 and t0 ∈ [0, 1).
Let M1,M2, ω > 0 be such that ‖TK(t)‖ ≤ M1e

−ωt

and ‖TL(t)‖ ≤ M2 for all t ≥ 0. If we denote g(k) =
‖TL(k)x2‖X for k ∈ N0, then ‖KTL(·)TL(k)x2‖L2(0,1) ≤

κKg(k) and∥∥∥∥∫ t

0

TK(t− s)BKTL(s)x2ds

∥∥∥∥
≤
∥∥∥∥∫ t0

0

TK(t0 − r)BKTL(r)TL(n)x2dr

∥∥∥∥
+

n−1∑
k=0

∥∥∥∥TK(t− k − 1)

∫ 1

0

TK(1− r)BKTL(r)TL(k)x2dr

∥∥∥∥
≤ κB‖KTL(·)TL(n)x2‖L2(0,1)

+ κB

n−1∑
k=0

‖TK(t− k − 1)‖‖KTL(·)TL(k)x2‖L2(0,1)

≤ κBκK
(
g(n) +M1e

ω
n−1∑
k=0

e−ω(n−k)g(k)

)
.

Since g(k) ≤ M2‖x2‖ = M2 for all k, the upper
bound is uniformly bounded with respect n, and since
x2 ∈ D(AL) with ‖x2‖ = 1 was arbitrary, we have
supt≥0‖S(t)‖ < ∞. Since g(k) → 0 as k → ∞, the
upper bound also converges to zero as n→∞, and this
together with the uniform boundedness of ‖S(·)‖ and
denseness of D(AL) implies that that ‖S(t)x2‖ → 0 as
t→∞ for all x2 ∈ X.

We will now show that if the additional condi-
tion (3) is satisfied, then the semigroup Tc(t) is poly-
nomially stable. For this it is sufficient to show that
iR ⊂ ρ(Ac) and ‖R(iω,Ac)‖ = Mc(1 + |ω|α) for some
Mc > 0 [3]. Under the condition (3) we have from [14,
Thm. 6.3] that the semigroup generated by AL is
polynomially stable, and in particular ‖R(iω,AL)‖ =
ML(1 + |ω|α) for some ML > 0. For ω ∈ R we have
iω ∈ ρ(AK)∩ ρ(AL) and the resolvent operator of Ac is
given by

R(iω,Ac) =

[
R(iω,AK) R(iω,AK)BKR(iω,AL)

0 R(iω,AL)

]
.

Since TK(t) is exponentially stable and B is admissible,
there exists M1 > 0 such that ‖R(iω,AK)‖ ≤ M1 and
‖R(iω,AK)B‖ ≤ M1 for all ω ∈ R. In addition, since
K is AL-admissible and TL(t) is uniformly bounded,
the resolvent identity KR(iω,AL) = KR(iω + 1, AL) +
KR(iω + 1, AL)R(iω,AL) implies that there exists M2

such that ‖KR(iω,AL)‖ ≤ M2(1 + ‖R(iω,AL)‖) for
all ω ∈ R. Thus for any x = (x1, x2) ∈ X × X
with ‖x‖2 = ‖x1‖2 + ‖x2‖2 = 1 we have (denoting
RK = R(iω,AK) and RL = R(iω,AL) for brevity)

‖R(iω,Ac)x‖2 =

∥∥∥∥[RKx1 +RKBKRLx2
RLx2

]∥∥∥∥2
= ‖RKx1 +RKBKRLx2‖2 + ‖RLx2‖2

≤ 2‖RK‖2 + 2‖RKB‖2M2
2 (1 + ‖RL‖)2 + ‖RL‖2



which implies ‖R(iω,Ac)‖ = Mc(1 + |ω|α) for some
Mc > 0.

Finally, by [3, Thm. 2.4] the resolvent estimate
‖R(iω,Ac)‖ = Mc(1 + |ω|α) shows that there exists
M̃, t0 > 0 such that for every t ≥ t0∥∥∥∥[ x(t)

x̂(t)− x(t)

]∥∥∥∥ =

∥∥∥∥Tc(t) [ x0
x̂0 − x0

]∥∥∥∥
≤ M̃

t1/α

∥∥∥∥Ac [ x0
x̂0 − x0

]∥∥∥∥ .
This together with boundedness of LC and the invert-
ibility of A implies the decay rate in the statement of
the theorem. �
Proof of Theorem 2.1. The first claim follows directly
from the first part of Theorem 2.2, and we will now
show that the rational decay rate of E(t) follows from
the second part. By Theorem 2.2 we clearly have a
rational decay rate for E(t) = 1

2‖x(t)‖2 for all initial
states such that (x0, x̂0 − x0) ∈ D(Ac), where

D(Ac) =
{

(x1, x2)T ∈ XB ×D(A)
∣∣∣

Ax1 +BK(x1 + x2) ∈ X
}

with XB := D(A) +R(A−1B). As in [16, Sec. 10.1], by
construction of the system (4) and [16, Rem. 10.1.5] we
have that the element xB = A−1B ∈ X is the unique
solution (f1, f2)T ∈ H1

l (0, 1)×H1(0, 1) of the boundary
value problem

f ′2(ξ) = 0, f ′1(ξ) = 0,

f1(0) = 0, f2(1) = −1,

i.e. xB = (0,−1)T . This (or alternatively [16, Rem.
10.1.3]) also implies that XB = H1

l (0, 1)×H1(0, 1).
Recall x0 = (w1(·), w′0(·))T and x̂0 =

(ŵ1(·), ŵ′0(·))T . We have (x0, x̂0 − x0)T ∈ D(Ac)
if and only if x0 ∈ XB = H1

l (0, 1) × H1(0, 1),
x̂0 − x0 ∈ D(A) = H1

l (0, 1)×Hr(0, 1) and

Ax0 +BKx̂0 ∈ L2(0, 1)× L2(0, 1).(6)

The first requirements are satisfied if and only if
w1, ŵ1 ∈ H1(0, 1) and w0, ŵ0 ∈ H2(0, 1) are such that

w1(0) = 0,

ŵ1(0) = w1(0) = 0,

ŵ′0(1) = w′0(1).

Finally, since x0 ∈ XB , we can write x0 = x1 +A−1Bu0
where x1 = (w1(ξ), w′0(ξ) − w′0(1))T ∈ D(A) and u0 =
−w′0(1). Now (6) becomes

L2 × L2 3 Ax0 +BKx̂0 = Ax1 +B(u0 +Kx̂0),

which is satisfied if and only if u0 = −Kx̂0 = βŵ1(1),
i.e., if w′0(1) = −βŵ1(1). These are precisely the
conditions in Theorem 2.1.

The decay rate in Theorem 2.1 now follows from
Theorem 2.2 since E(t) = 1

2‖x(t)‖2, and

‖A(x̂0 − x0)‖2 = ‖ŵ′′0 − w′′0‖2L2 + ‖ŵ′1 − w′1‖2L2

‖Ax0 +BKx̂0‖2 = ‖Ax1‖2 =

∥∥∥∥A [ w1(·)
w′0(·)− w′0(1)

]∥∥∥∥2
= ‖w′′0‖2L2 + ‖w′1‖2L2 .

�

4 Numerical Example

In this section we illustrate the performance of the
controller with a numerical simulation. We consider a
system with an output profile function c(ξ) = 10(1− ξ)
and stabilization parameters β = 0.5 and γ = 1. For
this function c(·) we can explicitly compute

〈c(·), sin((k − 1/2)π·)〉L2 = 10 · (k − 1/2)π + (−1)k

π2(k − 1/2)2

and thus (3) holds for α = 2 and for some mα > 0.
Theorem 2.1 therefore implies that the controller (2)
will achieve strong closed-loop stability and the energy
of the solution will converge at a rational rate E(t) ∼ 1/t
for all initial states w1, ŵ1 ∈ H1

l (0, 1), w0, ŵ0 ∈ H2(0, 1)
satisfying w′0(1) = ŵ′0(1) = −0.5ŵ1(1). Note that
these conditions are especially satisfied for functions
w1, ŵ1 ∈ H1

l (0, 1), w0, ŵ0 ∈ H2(0, 1) satisfying w′0(1) =
ŵ′0(1) = ŵ1(1) = 0. For more general initial states
the energy E(t) still converges to zero as t → ∞, but
the convergence does not have a guaranteed asymptotic
rate.

For the simulation, the wave equations (1) and (2)
were approximated using a truncated eigenfunction
expansion associated to the unstable system (1). The
number of modes included in the approximation was
N = 40. The numerical simulations were completed in
Python using the NumPy and SciPy libraries.

Figure 1 depicts the energy of the solution associ-
ated to the initial conditions

w0(ξ) = ξ(3ξ/2− 1)(7a)

w1(ξ) = sin(2πξ)(7b)

ŵ0(ξ) =
1

14
(sin(7(1− ξ))− sin(7))(7c)

ŵ1(ξ) = ξ(2− ξ),(7d)

which satisfy the conditions for E(t) ∼ 1/t. The
behaviour of the controlled wave profile w(·, t) and the
displacement error ŵ(·, t) − w(·, t) of the observer are
depicted in Figure 2.
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Figure 1: Energy E(t) for the initial conditions (7) and
a curve M̃/t.
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Figure 2: Wave profile w(ξ, t) (top) and observation
error ŵ(ξ, t) − w(ξ, t) (bottom) for the initial condi-
tions (7).

5 Conclusions

In this paper we have designed a dynamic output
feedback controller for a one-dimensional wave equation
with boundary control and distributed observation.
We have shown that energy of the controlled system
decays at a rational rate provided that the Fourier
coefficients of the function c(·) determining the output
measurement (1d) satisfy an additional condition. The
analysis of the spectrum of the closed-loop system shows
that the exponent of this decay rate in Theorem 2.1
cannot be improved. In addition, due to the lack of
exponential closed-loop stability, it is only possible to
present decay rates that hold for specific classes of
initial conditions, and there is no decay rate which
would be applicable for general inital data (w0, w1)T

and (ŵ0, ŵ1)T in H1(0, 1)× L2(0, 1).
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