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ABSTRACT
Astrocytes are involved in the information propagation in the brain
by interacting with neurons. Computational modeling helps to
study the underlying mechanisms for this communication deeply.
In this work, we aimed to analyze how the number of astrocytes and
the resulting astrocytic network structure affects neuronal activity.
Therefore, we conducted in vitro experiments with microelectrode
arrays and simulations with our previously published computa-
tional neuron-astrocyte network model side-by-side. In those, we
included neuronal cultures without supplemented astrocytes and
three conditions with co-cultures where different amounts of astro-
cytes were added. We then conducted a cross-correlation analysis
between the single-channel spike trains and a graph analysis, which
included the mean degree, mean shortest path, and the number of
nodes, based on the highly correlated channels. Furthermore, we
combined the cross-correlation network analysis of the simulated
data and the structure of the astrocyte topology. Our experimental
results showed that the spike rate was very variable and higher
in cultures without added astrocytes than overall in co-cultures.
In the co-cultures, the activity was elevated with an increasing
number of astrocytes. Additionally, the spike rate was correlated
with the mean degree of the neuronal network. This correlation
was smaller with larger numbers of astrocytes in the culture. The
simulations showed that the most active neurons were localized
in the center of the network, which were, however, not always
the most connected ones. The astrocytic activation was mainly
driven by the vicinity to highly active neurons rather than from
the activation through gap junctions. To conclude, the co-cultures
with added astrocytes showed stabilization of neuronal activity.
Furthermore, increasing the number of astrocytes led to a higher

neuronal activity, indicating a feedback excitation loop between
astrocytes and neurons.
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1 INTRODUCTION
In the field of Molecular Communications, biophysical interactions
between cells are modelled as a communication system [10, 17,
18]. In the brain, astrocytes and neurons form tight networks and
exchange information. Neurons and astrocytes communicate in
a close feedback loop, which serves as a mechanism for synaptic
activity regulation. Astrocytes play an essential role in controlling
neuronal activity, and their impairment can lead to neurological
diseases. For example, astrocyte dysfunctions have been found
in epilepsy, Alzheimer’s disease, brain tumors, major depressive
disorder, and Down syndrome [5].

Computational models are used to understand biophysical path-
ways and to support experiments. Various types of astrocyte models
with different levels of details – from subcellular to network level –
have been developed to study intra- and intercellular mechanisms
of astrocytes and their communication to neurons [reviewed in
12]. For example, Amiri et al. [1] introduced a model including 50
pyramidal neurons, 50 interneurons and 50 astrocytes. Inhibitory
and excitatory neurons were linked in pairs to their neighbors and
one astrocyte. The latter also was connected with one neighbor-
ing astrocyte via gap junctions (GJs). With the model, the authors
demonstrated that increasing the astrocytic coupling strength to
the excitatory and inhibitory neurons resulted in decreased syn-
chronized neuronal oscillations.
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In this work, we explored how astrocytes affect neuronal network
activity using a multi-modal analysis comprised of both in vitro and
computational modeling. For that, we recorded neuronal activity
from neuronal cultures without added astrocytes as well as neuron-
astrocytes co-cultures plated on microelectrode arrays (MEAs). The
co-cultures were composed of different neuron-astrocyte ratios
to study how the amount of astrocytes affects neuronal activity.
Moreover, we aimed to study how the astrocytic network topology
influences the activity. For this, we used a mathematical neuron-
astrocyte network model developed by Lenk et al. [10, 11] and
Genocchi et al. [7]. To understand the role of neuron-astrocyte con-
nection in both experimental and simulation data, we performed a
graph analysis based on the correlations between the spike trains
from selected neurons as well as on the simulated astrocytic topol-
ogy. Molecular Communications seek efforts that unite the analysis
of intercellular communication mechanisms. Our model that ana-
lyzes different brain cell types within the same graph analysis on
network structure and activity contributes to that work.

2 BACKGROUND AND RELATEDWORK
Biological relevance. The intercommunication between neuronal

networks and astrocytes regulates cognitive functions [14]. A pre-
and a postsynaptic neuron can be enwrapped by an astrocyte and
build together the so-called tripartite synapse (Fig. 1) [2]. Triggered
by incoming action potentials, the presynaptic neuron releases neu-
rotransmitters like glutamate to the synaptic cleft. Glutamate binds
to the metabotropic glutamate receptors (mGluR) at the astrocyte’s
cell membrane. Consequently, inositol 1,4,5-trisphosphate (IP3) is
released from the endoplasmic reticulum followed by calcium (Ca2+)
elevations in the cytosol. The increasing Ca2+ levels trigger the
opening of further IP3 channels leading to a Ca2+-induced Ca2+
release (CICR). Linked with the Ca2+ elevations is a release of glio-
transmitters like glutamate, D-serine, or adenosine triphosphate
(ATP) [3, 13]. Astrocytes diffuse gliotransmitters and IP3 with a
short-distance communication through GJs [14]. Thus, astrocytic
network connectivity is crucial for activity control and network
synchronization.

Computational network model. Recently, we have published a
neuron-astrocyte network model called INEXA [7, 10, 11], which
represents a computational equivalent of in vitro neuron-astrocyte
co-cultures on MEAs. The neurons can be either excitatory or in-
hibitory. The astrocytes are connected to the excitatory synapses
and to neighboring astrocytes by GJs. In this framework, astrocytes
control the neuronal activity of the connected synapse through
local calcium dynamics and the uptake and release of excitatory
and inhibitory gliotransmitters. Local astrocytic calcium dynamics
are summed into global calcium dynamics, simulating the calcium
wave propagation through GJs. The novelty of the INEXA model
was the simulation of the communication between astrocytes and
neurons in a biophysically plausible network topology. In Lenk et al.
[11], we investigated the influence of different ratios of astrocytes
on neuronal network activity. The results showed that astrocytes
stabilize neuronal activity with a delicate balance between exci-
tation and inhibition. In Genocchi et al. [7], we further explored
the role of GJ coupling on this balancing effect. Our simulation re-
sults indicated that a highly coupled astrocytic network was more
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Figure 1: Schematic of a pre- and a postsynaptic neuron and
an adjacent astrocyte. Figure adapted from Lenk et al. [11].

effective in decreasing the spike rate of the neurons compared to
the networks with fewer GJs on average. In Lenk et al. [10], we ex-
tended the network from a planar topology to a 3D network model
and simulated different astrocytic network topologies modifying
the maximum distance between astrocytes. The results from the
analysis of the 3D network revealed that larger connection dis-
tances between astrocytes centralized the information flow in the
astrocytic network.

Molecular communications in neuron-astrocyte networks. An ef-
fort to describe the communication pathways between neurons and
astrocytes from the viewpoint of Molecular Communications has
also been made. In Valenza et al. [18], the authors implemented a
network communication model between artificial spiking neurons
and astrocytes. The tripartite synapse was described as a nonlinear
transistor-like model. Their model showed that the presence of
astrocytes in the network created subgroups of neurons with poly-
chronic activity. This particular pattern of activity is considered to
be the basis of the network memory. In Taynnan Barros et al. [17],
communication in different types of cells has been studied. The au-
thors considered excitable cells (smooth muscle cells), non-excitable
cells (epithelial cells), and hybrid cells (astrocytes). The communi-
cation in this model happens through Ca2+ signaling through GJs.
Their results highlight that the complex intracellular behavior as
well as the size and structure of connections between the cells (i.e.,
GJ coupling) can impact the communication performance in the
different models.

3 METHODS
Cell culturing. Co-cultures were established by combining rat

primary cortical astrocytes (N7745100; Thermo Fisher Scientific)
and primary rat cortex neurons (A1084001; Thermo Fisher Sci-
entific) at specified ratios. Astrocytes, before MEA plating, were
cultured until confluency and subsequently treated with Cytosine
b-D-arabinofuranoside (ara-c; C1768; 2.5 𝜇M; Sigma-Aldrich) for
five days to terminate further astrocyte proliferation. On the day of
MEA plating, neurons and astrocytes were centrifuged and counted
as stated in the Thermo Fisher Scientific protocols. The number of
neurons was always kept constant (80,000 neurons per MEA). The
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number of astrocytes per MEA was adjusted to achieve different
neuron-astrocyte co-culture ratios. The co-culture ratios used were
90:10, 80:20, and 70:30 percent, where the first number represents
the percentage of plated neurons and the second number percent-
age of plated astrocytes. In addition to co-cultures, cultures with
only neurons (NS) were prepared without any separately added
astrocytes. Half the volume of the medium was refreshed every 2-3
days and always completely refreshed after MEA recordings (see
next paragraph). Neuron-astrocyte co-cultures were cultured in
neurobasal plus medium supplemented with 2% B-12 Plus supple-
ment, 1% P/S, 1% GlutaMAX, and 1% sodium pyruvate. NS cultures
were cultured in the cell culture media as suggested in the Thermo
Fisher Scientific protocols.

MEA preparation and recording. The day before cell plating, all
sterilized MEAs (n=28) were coated with Poly-D-Lysine (0.1mg/ml;
Thermo Fisher Scientific) for 1 hour. The MEAs were washed three
times with ultrapure water, dried, and incubated with laminin
(L2020; 20 𝜇g/ml; Sigma-Aldrich) overnight at +4 °C. The following
day, laminin was aspirated just before the plating. MEAs used in this
study were either standard or thin 60-electrode MEAs (60MEA200/
30iR; Multi Channel Systems MCS GmbH, Reutlingen, Germany).
Raw signals were recorded at 28 days in vitro (DIV) at a sampling
rate of 25 kHz for 5minutes using a MEA2100-System and the Multi
Channel Experimenter software. The raw signals were filtered and
sorted with a tool called Wave Clus for MATLAB (R2009b or higher)
[4]. We used a second-order bandpass elliptic filter in the range of
300 - 3000 Hz. Positive and negative spikes were detected when they
exceeded the threshold of ±5𝜎 , where 𝜎 is the standard deviation
of the filtered signal.

Neuronal and neuron-astrocyte network simulations. Planar neu-
ronal and neuron-astrocyte networks were simulated using the
INEXA model [11]. The use of a planar network topology better
resembles the in vitro cell distribution on a MEA. To reproduce
the experimental setup, we simulated topologies with 250 neurons
(200 excitatory and 50 inhibitory) without any astrocytes and with
different numbers of astrocytes to reflect the plated ratios (i.e., ratio
90:10, 28 astrocytes; 80:20, 62 astrocytes; 70:30, 107 astrocytes). For
each simulated culture, we ran 10 simulations. The simulated time
was 5 minutes.

Neuronal and astrocytic activity analysis. The sorted signals and
the simulated spike trains were further analyzed with a MATLAB
tool [19] that uses a network-wide cumulative moving average
(CMA) algorithm [9]. We analyzed the spike rate (SR; spikes per
minute) and burst rate (BR; bursts per minute) of the recorded and
simulated signals. Single-channel SR and BR of the experimental
data were then averaged for eachMEA. To simulate the capturing of
the neuronal activity on an MEA, we randomly selected 64 neurons
in the surroundings of the virtual electrode positions. SR and BR
of the selected neurons were then determined for the simulated
MEA channels. Additionally, we calculated how many times each
astrocyte entered the active state during the 5 minutes simulated
time. The astrocytes are considered active when the astrocytic
intracellular Ca2+ overcome a certain threshold and elicit the release
of gliotransmitters.

Statistical analysis. Statistical analysis was conducted either in
MATLAB or GraphPad Prism (v.9). Firstly, to compare the different
experimental and simulated co-cultures, we used a Mann-Whitney
u test, and the test was considered significant for p < 0.05, where p is
the probability to obtain results in the tail of the results distribution.
A small p-value rejects the null-hypothesis. Secondly, to analyze
the correlation between SR or BR and the features from the graph
analysis in the experimental data (see paragraph Graph analysis),
we used Pearson’s correlation coefficient R. To further test the linear
dependence between SR and the degree, we conducted a linear
regression analysis (fitlm-function in MATLAB). The regression
parameter r2 represents the fraction of data in accordance with
the applied regression model. The statistical significance of the
regression analysis was tested with a Student’s t-test, and the test
was considered significant for p < 0.05.

Thirdly, to analyze the underlying network structure of the cul-
tures on the MEAs, we conducted a pairwise cross-correlation anal-
ysis in MATLAB between binary encoded spike trains of each MEA
channel. We created a correlation matrix based on the pairwise cor-
relation values and normalized the matrix by the maximum of all
correlation values. We then thresholded the correlation at a value
of > 0.65 to consider only the channel pairs with a high positive
correlation. We applied the same approach to the selected simulated
neuronal spike trains (see paragraph Neuronal and astrocytic
activity analysis).

Graph analysis. To analyze the structure of the experimental and
simulated networks, we conducted an undirected graph analysis
on the binary encoded spike trains in MATLAB to measure the
network structure of the culture. For this, we evaluated the mean
degree of the network, the number of nodes in the network, and the
mean shortest path. The edges in this analysis are defined as the
connections between the channels (in the experiments) or neurons
(in the simulations) with cross-correlation value > 0.65. Nodes were
defined as those channels or neurons with at least one edge to
another channel or neuron. For the simulated network, we also
analyzed the astrocytic structural network by calculating the mean
degree and the mean shortest path based on the astrocytic network
topology. In this context, the edges were the simulated GJs between
astrocytes. Furthermore, we combined the graph analysis from the
astrocytic and neuronal networks for the simulated data with the
activity analysis (i.e., spike rate).

4 RESULTS
Lower spike rate (SR) and burst rate (BR) in co-cultures. The exper-

imental data showed a higher SR in the NS cultures compared to the
co-cultures. Even though only the pairwise comparison between
NS and 90:10 was statistically significant (p = 0.028), the lower
mean SR for the MEAs with astrocytes was noticeable (Fig. 2A).
Simulated data of NS also showed a higher SR compared to the
simulations with astrocytes comprised in the network (Fig. 2F). In
this case, the pairwise differences in SR were significant for NS
vs. 90:10 (p = 0.003) and NS vs. 80:20 (p = 0.0015). Pairwise t-tests
between the experimental and simulated data resulted in no statis-
tical difference (NS, p = 0.67; 90:10, p = 0.17; 80:20, p = 0.08; 70:30,
p = 0.83).
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Figure 2: Analysis of the neuronal data. Spike rate (A,F) and burst rate (B,G) as well as the number of nodes (C,H), the mean
degree (D,I) and the mean shortest path (E,J) of the experimental data (top panel) and simulated data (bottom panel) for the
four culture ratios. Statistical significance: * p<0.05; ** p<0.01; **** p<0.0001.

The mean BR was decreased for all co-cultures compared to NS
(Fig. 2B and G). However, those differences were not statistically
significant for the experimental data, while they were significant for
the simulated data (NS vs. 90:10, p = 0.0027; NS vs. 80:20, p < 0.0001;
NS vs. 70:30, p = 0.027). In general, the NS population exhibited
very high variability in the experimental data (Fig. 2A and B). In the
simulated data, the addition of astrocytes in the network increased
the variability of the SR and BR (Fig. 2F and G). The results from the
experimental data and the simulations were in similar ranges – the
pairwise t-tests gave statistical difference only for the culture ratio
80:20 (NS, p = 0.96; 90:10, p = 0.31; 80:20, p = 0.003; 70:30, p = 0.70).

Graph analysis of the neuronal activity. The graph analysis on
the experimental data showed that the NS networks created from
the binary encoded spike trains have a higher number of nodes
compared to the co-cultures (NS vs. 90:10, p = 0.005; NS vs. 80:20,
p = 0.19; NS vs. 70:30, p = 0.03) (Fig. 2C). The number of nodes in the
simulated data did not exhibit differences between the culture ratios
(Fig. 2H). The simulations reproduced the experimental results for
NS but not for the co-cultures. In fact, pairwise comparison between
the number of nodes was statistically different for 90:10 and 70:30
(NS, p = 0.94; 90:10, p < 0.0001; 80:20, p = 0.08; 70:30, p = 0.002).

The mean degree was lower in the co-cultures compared to NS
in the experimental data (NS vs. 90:10, p = 0.006; NS vs. 80:20,
p = 0.28; NS vs. 70:30, p = 0.03) (Fig. 2D). The experimental data

indicated more variability in the mean degree of the NS than in the
co-cultures. The simulated data did not show significant differences
between the cultures (Fig. 2I). The degree values were in the same
ranges for the experimental and simulated data for NS and 80:20
but were, however, statistically different for 90:10 and 70:30 (NS,
p = 0.65; 90:10, p = 0.0.003; 80:20, p = 0.99; 70:30, p = 0.03).

The mean shortest path for the experimental data was in the
same range for NS and the co-cultures, with a tendency to increase
with an increasing number of astrocytes in the culture (Fig. 2E). In
the simulated data, a decrease in the mean shortest path for the
simulated co-cultures was observable (Fig. 2J). Overall, the mean
shortest path of the simulated data was slightly higher than the
experimental results, and it was statistically different in all the
culture ratios except 70:30 (NS, p = 0.03; 90:10, p = 0.0002; 80:20,
p = 0.0002; 70:30, p = 0.08).

SR and BR correlation with the graph analysis features of the ex-
perimental data. The Pearson’s correlation R between the SR and
the mean degree was R = 0.57 for the NS, R = 0.03 for the 90:10,
R = 0.35 for the 80:20, and R = 0.27 for the 70:30 cultures (Fig. 3).
The circle diameter represents the degree importance calculated
based on the cross-correlation values of the incoming connections.
In addition, the linear regression analysis showed that a good agree-
ment between the linear regression and the data was found only for
NS, while for the co-cultures the r2 returned very low values (NS:
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r2 = 0.38, p < 0.0001; 90:10: r2 = 0.0008, p = 0.829; 80:20: r2 = 0.12,
p < 0.0001; 70:30: r2 = 0.07, p = 0.012).

Graph analysis of the astrocyte topology. For the simulations, we
conducted a graph analysis based on the topology of the astrocytes
to combine these results with the graph analysis based on the cross-
correlation analysis of the simulated neuronal networks. The mean
degree and mean shortest path of the astrocytes increased with the
number of astrocytes in the network (Fig. 4A and B). All the pairwise
differences between the simulated co-cultures were statistically
significant (p < 0.0001). The astrocytic activation, expressed as how
many times an astrocyte entered the active state during the time of
the simulation, instead did not show any differences between the
three different simulated co-cultures (Fig. 4C).

Network response to astrocyte influence. For the simulated data,
we plotted the structural network based on the graph analysis for
the neuronal data with the relative SR of each of the 64 selected
neurons indicated by the color bar ranging from blue to green
(Fig. 5). The neurons with higher SR are not always those with a
higher amount of connections but more centered in the network.
The radius of the dot represents the degree of the neurons. The
connections here are not the synapses between the neurons but the
connections based on the cross-correlation analysis.

To analyze the effect of the astrocytes, we combined the topology
network of the astrocytes with the connections determined by the
cross-correlation of the binary encoded neuronal activity (Fig. 5).
The diamonds represent the astrocytes with their connections, i.e.,
GJs, and the color of the diamond indicates how many times the
astrocyte has been in the active state during the simulation. The
dimension of the diamonds reflects the degree of the astrocyte.
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the mean number of times an astrocyte entered the active
state. The results show the average of the features for the
astrocytes in the simulated network. The simulations were
repeated ten times for each co-culture. **** p < 0.0001.

5 DISCUSSION AND CONCLUSION
Astrocytes have proved to communicate with the neurons and
to control the neuronal activity [1–3]. Computational models of
astrocytes and neurons can help to highlight the pathway through
which this communication happens [12]. Previously, we developed a
computational neuron-astrocyte network model called INEXA [11].

In the present work, we aim to analyze how the number of astro-
cytes and the resulting astrocytic network topology affect neuronal
network activity. In the brain, individual areas contain different ra-
tios of neurons and astrocytes [8] and varying numbers of synapses
ensheathed by astrocytes [6]. To validate the aim, we ran in vitro
experiments with MEAs and simulations with the INEXA model
side-by-side. We included neuronal cultures without supplemented
astrocytes and co-cultures added with different amounts of astro-
cytes in both setups. Our results from the experimental data show
that NS cultures exhibited a high variability which might be due
to different maturation stages within those cultures [15, 16]. Com-
pared to the NS cultures, the neuron-astrocyte co-cultures exhibit a
lower SR and BR. With our simulations, we can replicate similar SR
and BR. Also, the nodes and degree analysis based on the neuronal
cross-correlation analysis shows a lower amount of nodes and a
lower mean degree for the co-cultures than NS cultures. During the
spike sorting of the MEA recordings, we realized that the cultures
containing more astrocytes have smaller amplitudes of the action
potentials. This might have led to underestimating the spike num-
ber (which is beyond the scope of this paper). It is an interesting
feature to be investigated in the future.

The Pearson’s correlation and linear regression analysis of the
experimental data reveals that the SR is correlated with the mean
degree for NS and that the correlation coefficient 𝑅 decreased for
the co-cultures. These results indicate that the number of astrocytes
in the network affects neuronal activity. Since it is very challeng-
ing to experimentally study the effect of the astrocytic topology
and activation on neuronal network activity, we used our computa-
tional model to overcome this limitation. Our results from the graph
analysis of the astrocytic network topology show that the mean
degree, which represents the number of GJs, and the mean shortest
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Figure 5: Combination of astrocytic network effect and the neuronal activity network for the simulated data. The 64 selected
neurons are shown as dots. The neuronal connections based on the cross-correlation are shown in solid blue lines (edge weight
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(low) to green (high). The astrocytes are shows in diamond shape and their gap junctions as dot-dashed red lines. The astrocyte
activation defines howmany times that particular astrocyte got activated; the color bar ranges from red (low) to yellow (high).
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path increased when increasing the number of astrocytes in the
network. Instead, the astrocytic activation does not differ between
the simulated co-cultures showing that the activation through GJs
had a low effect. The astrocytes redistribute the resources (i.e., glu-
tamate and IP3) through the GJs, and they get activated based on
these resources. Thus, the more GJs an astrocyte has, the less the
distribution has activating effect on the connected astrocytes. This
behavior might be indicated by the higher variability in the acti-
vation for 90:10. Instead, the variability in the astrocyte activation
of the 70:30 culture can be explained by a higher input from the
neurons.

To study how the astrocytes locally affect neuronal activity, we
combine the cross-correlation-based graph analysis with the astro-
cyte topology and activation. Highly spiking neurons in our simu-
lated networks are localized in the network center and only slightly
depend on the degree. These results from the simulations are fol-
lowing the results from the correlation analysis of the experimental
data. The activation of the astrocytes was mainly co-localized with
the highly spiking neurons but not dependent on the astrocyte
mean degree. However, the increase of neuronal SR with higher
numbers of astrocytes seems to depend on the astrocyte mean de-
gree. These results are in accordance with [10] and [7]. In previous
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publications, we found that hub astrocytes with a high number of
GJs lead to higher SR [7] and centralize the neuronal activity [10].
Also, our results show a feedback communication with neurons
and a preferential inhibition in less connected networks.

SOFTWARE AND DATA AVAILABILITY
The code and the resulting data used in this study can be found at
https://github.com/barbara-ge/ACM-NanoCom2021. The MATLAB
code for the published INEXA model [11] is available in a pub-
licly accessible repository: https://github.com/kerstinlenk/INEXA_
FrontCompNeurosci2020. The code for the burst analysis tool is
stored at https://doi.org/10.5281/zenodo.3883622.
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