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1 Introduction 

In some situations, when a steel beam is protected with intumescent 

coating, the profile cannot be covered on all sides. The Eurocode in-

troduces some methods for calculating the bending and shear re-

sistances of steel beams with non-uniform temperature gradients. 

Unfortunately, they are all for passive fire protection methods, and 

none of the protection cases apply to a beam with an unprotected 

flange [1]. 

Different ways to calculate the thermal conductivity of intumescent 

coating have been developed. Equivalent thermal conductivities 

have been studied in [2-7], where the foaming of the coating is  

modelled excplicitly. Effective thermal conductivity, where the 

expansion of the coating is calculated into the conductivity, has been 

modelled by [8], [9] and [3]. Finally, constant thermal conductivities 

have been researched by [10], [11] and [12]. 

The behaviour of steel columns in non-symmetrical fire has been 

studied by [13] and [14], and concrete filled steel tube columns in 

non-symmetrical fire were researched by [15-18]. Additionally, 

Schaumann et al. [19] have studied the temperature behaviour of a 

steel beam, which is protected by intumescent coating, but supports 

a trapezoidal steel sheet, which partially inhibits the coatings 

expansion. None of these examples include both the thermal and 

structural analysis of a partially protected steel profile. The studies 

done by Hautala et al. [20] and Kangashaka [21] presented in this 

paper aim to remedy this. 

The profiles studied in this paper are IPE 200 and HEA 200. Three 

levels of fire protection are simulated for each profile; a fully 

protected, a partially protected, and an unprotected case. In the 

partially protected case the upper surface of the top flange is left 

unprotected. With each level of fire protection bending, shear, and 

torsion resistances are determined. From these results the effect of 

partial protection are compared to the protected and unprotected 

cases as a function of time. The simulations are done with ANSYS 

Workbench 19.2 [22]. 

2 The FEM-models 

2.1 Material models and fire model 

The effective thermal conductivity of the intumescent coating was 

calculated by dividing the equivalent thermal conductivity by Schau-

mann et al. [2] by a thermal expansion factor. The expansion factor 

(Figure 1) is the ratio between the thickness of the coating at time i 

and the original thickness [2]. The equivalent thermal conductivity is 

given in Equation (1) as  
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Figure 1: Thermal expansion factor of intumescent coating as a function of temper-

ature [2, Fig. 3a] 

𝜆𝑒𝑞 = 𝜓(𝜆𝑝 + 4𝜎𝜃𝐼𝐶
3 𝑑𝑝) + (1 − 𝜓)𝜆𝐼𝐶 ,  (1) 

In which λeq is the equivalent thermal conductivity [W/(mK)], ψ is the 

porosity [-], λp is the thermal conductivity of the trapped gas inside 

the pores [W/(mK)], σ is the Stefan-Boltzmann constant [W/(m2K4)], 

θIC is the temperature of IC [K], dp is the diameter of the pores [m], 

and λIC is the thermal conductivity of IC at room temperature 

[W/(mK)]. The pore size is set to dp = 1.2 mm [2], and they are as-

sumed to contain nitrogen. According to Tabeling [23] λIC = 0.45 

W/(mK). The porosity of the coating is calculated according to Equa-

tion (2) as 

𝜓(𝜃) =
𝛼−1

𝛼
 ,    (2) 

where α is the thermal expansion factor [- ]. The effective thermal 

conductivity λeff  of the intumescent coating is calculated as  

 𝜆𝑒𝑓𝑓 =
𝜆𝑒𝑞

𝛼
 ,    (3) 

where λeq is the equivalent thermal conductivity [W/(mK)] and α is 

the thermal expansion factor [-]. The density is ρIC = 1400 kg/m3, and 

the specific heat of the coating was defined according to Figure 2 [2]. 

 

Figure 2: Specific heat of intumescent coating [2, Fig. 3b] 

The specific heat, thermal conductivity, Young’s modulus Ea, yield 

strength fy of steel S 355 are from [1], as well as its temperature in-

dependent density ρa = 7850 kg/m3. Steel is assumed to be linear 

elastic with linear strain hardening material. Tangent modulus is cal-

culated as Ea/100 [24]. Poisson’s ratio is υa = 0.3 [25]. 

The fire model used in the simulations is the ISO-834 standard fire 

curve, the coefficient of heat transfer by convection being αc = 25 

W/(m2K) [27]. The emissivities are εIC = 0.8 for the intumescent coat-

ing [23], and εa = 0.7 for the unprotected steel surface [1]. 

 

2.2 Simulated models for bending, shear and torsion 

A cantilever beam is used to model the bending, shear and torsion 

resistances. To determine the resistances, a fixed rotation or dis-

placement was introduced at the free end of the beam, and the re-

sistance was calculated from the beam’s moment or force reaction 

at the supported end. In the bending model, the rotation φz (Figure 

3a) around the z-axis was introduced, for the torsion model the ro-

tation φx (Figure 3c) was around the x-axis, and in the shear model a 

displacement v (Figure 3b) in y-direction was used. In the torsion 

model, warping of the profile should be taken into account depend-

ing on the case, and in the current study, the warping is restrained in 

both ends of the model. For bending and torsion cases, the length L 

of the beam is 0.02 m. In case of shear resistance, the length must be 

so short that it eliminates the effect of the bending moment on the 

shear failure of the beam. This was checked using Equation 4 (when 

M =FL, and Q = F at the support). 

 
𝜎𝑎𝑣𝑔

𝜏𝑎𝑣𝑔
∗ 100% =

𝑀∗𝑧

2∗𝐼𝑦

𝐴

𝑄
∗ 100% =

𝐹𝐿𝑧𝐴

2𝐼𝑦𝐹
∗ 100% =

𝐿𝑧𝐴

2𝐼𝑦
∗ 100% , (4) 

where σavg is the average bending stress on the cross section [Pa], τavg 

is the average shear stress on the cross section [Pa], M is the maxi-

mum bending moment of the beam [Nm], z is the longest distance 

between the neutral axis and an edge of the cross section [m], A is 

the area of the beam cross section [m2], Iy is the second moment of 

the cross-section [m4] and Q is the maximum shear force of the beam 

[N]. Choosing L = 10 mm the ratio is below 10 % for both IPE 200 

(7.3 %) and HEA 200 (6.9 %). 

 

Figure 3: Mechanical models for a) bending, b) shear, and c) torsion 

For each loading case (bending, shear, torsion) three models are 

made, a fully protected, a partially protected, and an unprotected 

model. The ISO-834 fire curve is applied on the beams, and a thermal 

analysis is performed. After this, the temperature gradients of each 

beam at heating times t = 0 s, 300 s, 450 s, 600 s, 900 s, 1200 s, 

1500 s, 1800 s, 2100 s, 2400 s, 2700 s, 3000 s, 3300 s and 3600 s 

are used as body loads in structural analyses to determine the re-

sistances at different heating times for each level of fire protection. 
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Each model comprises of two bodies, one for the steel profile and the 

other for the intumescent coating. Since the mechanical behavior is 

not of interest, the intumescent coating body is suppressed during 

the structural analyses. For each of the loading cases one end of the 

beam is supported so that the translation and rotation degrees-of-

freedom are fixed. In the models for bending, translation is set to 

zero at the free end along the z-axis, and rotation is not allowed 

around the x- and y-axes. In the free end of the shear models, rota-

tion is suppressed around all axes, and translation along the z-axis. 

In the torsion models, neither rotation nor translation was re-

stricted at the free end. A rotation or a displacement is applied on 

the beams, which linearly changes from 0 to 0.6 degrees, or 0 to 0.06 

mm during 0.6 s. The resulting moment or force reaction at the sup-

port are measured as a function of time. Additionally, for bending 

the plastic strain at the flanges, for shear the plastic strain at the 

web, and for torsion the plastic strain of the beam is measure as a 

function of time. Finally, the moment or force reaction is plotted as 

a function of the rotation or displacement. In the shear model for the 

partially protected HEA 200 at heating times 600 s, 900 s, 1200 s, 

1500 s and 1800 s the beam was loaded for longer, since the plastic 

strain did not begin until after 0.6 s. 

2.3 Elements and meshing 

The elements used in this study are SOLID70 for thermal analysis 

and SOLID185 for structural analysis. The mesh size was deter-

mined from a sensitivity analysis (Figure 4). It was carried out by 

comparing the bending results of a fully protected IPE 200 beam at 

a heating time 1800 s. The mesh sizes were 1 mm, 2 mm, 3 mm, 

4 mm, and 5 mm. The difference in results between 5 mm/4 mm 

meshing was significantly larger than between other meshes, which 

yielded relatively similar differences. Therefore, meshing size of 

4 mm was chosen. Since none of the loads on the beams varied along 

the beams’ lengths, there is only one element across the beam 

length. The meshes of the beams are depicted in Figures 5 and 6. 

 

 

Figure 4: The differences in bending moment between consequent mesh sizes 

 

Figure 5: The finite element mesh for IPE 200 

 

Figure 6: The finite element mesh for HEA 200 

2.4 Validation of thermal simulation models 

In their work, Schaumann et al. simulated the expansion of the intu-

mescent coating and used the equivalent thermal conductivity [2]. 

The proposed simulation method was validated using their data, as 

well as test data from Tabeling [23]. They are shown in Figure 7. It 

also shows the ISO-834 fire curve and the temperature of the fur-

nace in the Tabeling tests. 
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Figure 7: Validation of the model against data from previous research 

As can be seen, the curves of the data from this study closely follow 

the data from previous studies. The maximum difference in temper-

ature between the data from Schaumann et al. [2] and the proposed 

method with standard fire is 88.3 °C, and between the tests by 

Tabeling [23] and the proposed method with furnace fire it is 

57.8 °C. The data can be assumed to validate the IPE 200 models, 

and since the profiles are so similar, the HEA 200 models are also 

validated. 

3 Results 

3.1 Temperatures 

The results of the thermal analyses of the IPE 200 models are de-

picted in Figure 9. The temperature is shown as a function of time on 

the top flange (A), a quarter of the beam’s height from the top (B), a 

quarter of the beam’s height from the bottom (C), and the bottom 

flange (D) for all three levels of fire protection. These locations are 

shown in Figure 8. 

 

Figure 8: Locations of the points on the cross section 

 

Figure 9: Temperatures of the IPE 200 beam at different locations on the cross sec-

tion (A-D) and the ISO-834 fire curve 

The curves for the unprotected beam and fully protected beam stay 

relatively still regardless of the location on the cross section. How-

ever, the curve for the partially protected beam shifts quite signifi-

cantly depending on the location. As can be seen, at the bottom 

flange the temperatures of the partially and fully protected beams 

are practically the same. When moving from the bottom (D) towards 

the top flange (A), the temperature curve starts to better resemble 

the curve of the unprotected beam. Even though the IPE 200 beam 

heats up slightly faster, the temperature curves of IPE 200 and HEA 

200 are so similar in shape, that the HEA 200 temperatures are not 

shown here.  

3.2 Bending resistance 

As mentioned earlier, the moment reactions of the supported end of 

the beam are plotted as a function of rotation. For the fully pro-

tected, partially protected, and unprotected IPE 200 beams they are 

shown in Figures 10, 11 and 12, respectively. From these curves the 

bending resistance at a certain heating time is read when the plastic 

strain reaches 0.2 %. These resistances are plotted as a function of 

heating time in Figure 13. The same is done for the HEA 200 beam, 

and the results are shown in Figure 14. To compare the results, the 

halving times (the time it takes for the resistance to reduce 50 %) of 

the resistances are shown in Table 1. 

 

Figure 10: Bending moment in relation to rotation for a fully protected IPE 200 

beam 
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Figure 11: Bending moment in relation to rotation for a partially protected IPE 200 

beam 

 

Figure 12: Bending moment in relation to rotation for an unprotected IPE 200 

beam 

 

Figure 13: Bending moment resistance as a function of heating time for an IPE 200 

beam. The results from previous research by Hautala et al. [20] are also included 

 

Figure 14: Bending moment resistance as a function of heating time for an HEA 200 

beam 

 

 

 

 

Table 1: Comparison of the halving times of bending resistances for IPE 200 and 

HEA 200 

Fire protection IPE 200 

halving 

times 

HEA 200 

halving 

times 

Differences 

in halving 

times 

 Min min min 

Fully protected 31.7 36.6 4.9 

Partially protected 17.2 17.2 0.0 

Unprotected 10.2 11.8 1.6 

The difference in halving times between the fully protected beams 

follows from the fact that the IPE 200 beam heats up faster. How-

ever, the difference disappears when examining the partially pro-

tected beams. The partially protected beams heat up faster than the 

fully protected beams, and since the HEA 200 beam has larger 

flanges than the IPE 200 beam does, the increase in heating speed is 

also larger.  

3.3 Shear resistance 

Similarly to bending, the force reactions are plotted as a function of 

displacement for all three fire protection levels and for both beam 

types. From these curves, the shear force resistances are read when 

the plastic strain reaches 0.2 %, and they are plotted as a function of 

heating time (Figures 15 and 16). The halving times of the shear re-

sistances are once again compared in Table 2. 

 

Figure 15: Shear force resistance as a function of heating time for an IPE 200 beam 

 

Figure 16: Shear force resistance as a function of heating time for an HEA 200 

beam 
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Table 2: Comparison of the halving times of shear resistances for IPE 200 and HEA 

200 

Fire protection IPE 200 

halving 

times 

HEA 200 

halving 

times 

Differences 

in halving 

times 

 Min min min 

Fully protected 29.3 33.8 4.5 

Partially protected 15.1 16.5 1.4 

Unprotected 9.2 9.9 0.7 

As for bending, the difference between the halving times of the fully 

protected beams is quite large because IPE 200 is heating up faster. 

However, the halving times of the partially protected beams are no 

longer the same. This is likely due to the fact that shear is manly car-

ried by the web of the cross section. 

3.4 Torsion resistance 

Finally, the torsion resistance curves as a function of heating time 

are plotted as before. They are presented in Figure 17 and 18. The 

halving times are compared in Table 3. 

 

Figure 17: Torsion moment resistance as a function of heating time for an IPE 200 

beam 

 

Figure 18: Torsion moment resistance as a function of heating time for an HEA 200 

beam 

 

 

 

 

 

Table 3: Comparison of the halving times of torsion resistances for IPE 200 and 

HEA 200 

Fire protection IPE 200 

halving 

times 

HEA 200 

halving 

times 

Differences 

in halving 

times 

 min min min 

Fully protected 31.5 36.3 4.8 

Partially protected 17.7 19.4 1.7 

Unprotected 10.1 11.7 1.6 

Once again, the difference between the halving times of the fully 

protected beams is explained with the fact that the IPE 200 is heat-

ing up faster. After this, however, the differences for partially pro-

tected and unprotected beams are rather similar. After the increase 

in heating speed caused by removing the intumescent coating from 

the upper flange, it seems that the shape of the cross section affects 

the halving time more than the higher and more even temperature 

distribution caused by removing all intumescent coating. Since the 

torsion modulus of the HEA 200 beam is higher, its halving times are 

also higher. 

4 Conclusions 

In this study, the effect of partial fire protection on the bending, 

shear and torsion resistances of IPE 200 and HEA 200 beams in a 

standard fire was studied. Based on previous studies partially pro-

tected beams have lower resistances than fully protected beams, 

but their resistances do not decrease quite as quickly as those of un-

protected beams.  In this paper it was found that the halving times of 

the partially protected beams were several minutes longer than 

those of the unprotected beams. The proposed method provides in-

formation on the performance of partially protected structures 

more broadly, and can thus be used in design universally, and not 

just in designing cantilever beams. Therefore, the advantage pro-

vided by partial protection should be utilized when designing the 

fire performance of structures. 
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