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ABSTRACT 

The human genome is constantly changing due to natural mutations and 

environmental exposure. As these changes accumulate over our lifetime, it increases 

the likelihood of the creation of cells that proliferate uncontrollably and ultimately 

invade surrounding tissue and the blood circulation or the lymphatic system. This 

type of malignant neoplasm, more commonly known as cancer, is a disease that either 

directly or indirectly affects the majority of the population as one of the leading 

causes of death. Cancer is a versatile disease that can affect practically any part of the 

body. Depending on the tissue of origin and the aggressiveness of the malignancy, 

the treatment options, prognosis and mortality rates can vary significantly. In general, 

the role of cancer as a cause of death is constantly increasing, and despite significant 

global financial investments and decades of research, new and better methods of 

treatment and diagnosis are in continuous demand.  

One particular area that requires more attention and innovation is the surgical 

treatment of solid cancers. The general aim of surgical treatment is to remove all 

malignant cells from the patient’s body – that is to say, to achieve a negative surgical 

margin. The resected tumour has a negative margin, when the outermost surface area 

has no cancerous cells. However, in a considerable number of surgeries, the removal 

is incomplete. The resulting residual cancer almost always triggers additional 

treatment steps, which often involve a reoperation. The need for a reoperation is a 

major detriment for the well-being of the patient, and the added healthcare costs are 

substantial. If the number of avoidable reoperations could be halved from their 

current level, the saving potential in annual global healthcare costs would already be 

measured in billions of dollars.  

The reason why the problem of reoperations persists despite the notable financial 

incentives lies in the difficulty of discriminating malignant tissue from benign, 

especially during a surgical procedure. The molecular contents that define the 

structure and function of a cell are different depending on the organ of origin, and 

similar differences are also present between malignant and benign cells. The 

biomolecules that enable the identification of the types of tissues are called 

biomarkers, and the research on this area has revealed hundreds of proteins, fatty 
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acids and metabolic products that exhibit differences in quantities based on tissue 

malignancy. However, the variation of specific marker molecules is often high, and 

the molecular differences rarely translate into clear macroscopic differences. This 

means that visual assessment of the margin between benign and cancerous tissue is 

extremely challenging. Still, almost all surgeons rely only on visual assessment and 

palpation in cancer surgeries. The challenge of complete excision is further 

accentuated by the current resection guidelines that instruct surgeons to preserve as 

much non-cancerous tissue as possible. This aim and its subjective execution lead not 

only to high variation in positive margin rates between institutions and regions, but 

also to a high number of required reoperations in general. To reduce the reoperations 

caused by positive surgical margins, several technologies have been studied and 

introduced to aid in intraoperative tissue identification, but the clinical adoption has 

been limited due to various impeding factors involved in their use. 

In this thesis, a concept that could potentially be used in the assessment of the 

intraoperative surgical margin is introduced through five scientific publications that 

concentrate on the evolution and feasibility of the technology in tissue identification. 

The basis of the technology is the measurement of surgical smoke with differential 

mobility spectrometry (DMS). DMS is a measurement technology that provides 

information on the molecular content of a gaseous sample in atmospheric pressure by 

means of ionisation and subsequent differentiation of the ions in a high-strength 

asymmetric electric field. DMS is comparable to mass spectrometry (MS), and even 

though the analytical performance of MS is better, the reduced complexity, smaller 

size and lower cost of DMS make it an advantageous option. DMS has been used as 

a standalone measurement instrument in many types of general gas measurement 

applications and in some biomedical applications, such as breath analysis, but the 

context of use has always permitted a controlled environment and a relatively long 

measurement duration. Thus, the real-time application of surgical smoke 

measurement requires additional hardware and parameter optimisation. In addition, 

raw DMS measurement data do not provide directly quantifiable information on 

certain biomolecules, but rather a comprehensive spectrum of all contents in the 

sample combined. This means that the interpretation and identification of tissue type 

from the DMS output spectra is not trivial and involves a high number of dimensions 

that are most effectively analysed by means of machine learning. The 

interdisciplinary aspects of the system and their combined function and performance 

in tissue identification are the focus of this thesis. 
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In the first three publications included in the thesis, the focus was on studying the 

overall feasibility of tissue identification and its possibilities with animal tissues and 

clinically relevant breast cancer samples. The results in laboratory conditions with 

controlled sampling were promising, and the diagnostic performance demonstrated 

the potential of the technology in tissue identification. In Publication IV, the system 

was modified to accommodate real-time measurements and to relay the classification 

information immediately after the measurement. The results demonstrated the 

feasibility of real-time tissue identification with the system, albeit in laboratory 

conditions and in a porcine model. In the final study, a prototype system was used 

intraoperatively during breast cancer surgeries. The results of this study were not 

comparable to the laboratory results in respect to diagnostic performance but 

indicated that the system can be adapted to the surgical workflow with minimal 

intrusiveness to provide information on the operated tissue. 

Overall, the results of this study indicate that a DMS-based tissue identification 

system has the potential to be used in real-time applications to identify tissue types 

with adequate diagnostic performance. With further development, the system 

presented in this thesis could fulfil the need for a surgical margin assessment device 

that would reduce avoidable reoperations of solid cancers and thus protect the well-

being of cancer patients. 
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TIIVISTELMÄ 

Perimämme muuttuu jatkuvasti luonnollisten mutaatioiden sekä ulkoisten tekijöiden 

vaikutuksesta. Muutosten kumuloituessa elämämme aikana hallitsemattomasti 

jakaantuvien ja ympäröiviin kudoksiin sekä lymfaattiseen järjestelmään ja 

verenkiertoon tunkeutuvien solujen syntymisen todennäköisyys kasvaa. Tämän 

tyyppistä pahanlaatuista solukasvua kutsutaan syöväksi. Syöpä vaikuttaa joko 

suoraan tai epäsuorasti suurimpaan osaan ihmisistä yhtenä yleisimmistä kuolinsyistä. 

Syöpä on monimuotoinen tauti, joka voi syntyä käytännössä mihin kehon osaan 

tahansa. Riippuen syövän kohdekudoksesta ja kasvun aggressiivisuudesta 

mahdolliset hoitomuodot, selviytymisennusteet ja kuolleisuus vaihtelevat 

huomattavasti. Yleisesti syövän rooli kuolinsyynä kuitenkin korostuu jatkuvasti, ja 

huomattavasta rahallisesta panostuksesta ja vuosikymmenten tutkimustyöstä 

huolimatta uusille ja paremmille hoito- ja diagnosointimenetelmille on jatkuva tarve.  

Kiinteiden syöpien leikkaushoito on yksi erityisalue, joka hyötyisi uusista, hoitoa 

tehostavista innovaatioista. Syövän leikkaushoidossa on yleisesti tavoitteena poistaa 

kasvain elimistöstä täydellisesti ja täten saavuttaa negatiivinen tervekudosmarginaali. 

Huomattavassa osassa syöpäleikkauksia poisto on kuitenkin epätäydellinen. Tällöin 

potilaaseen jääneet syöpäsolut vaativat jatkohoitotoimenpiteitä, joihin yleensä 

sisältyy myös syövän uusintaleikkaus. Uusintaleikkauksen tarve on erittäin 

vahingollista potilaan yleiselle hyvinvoinnille ja tuo mukanaan huomattavia 

lisäterveydenhuoltokustannuksia. Jos vältettävissä olevien uusintaleikkausten määrä 

voitaisiin puolittaa nykyisestä, säästöjä mitattaisiin jo miljardeissa. 

Selkeästä säästöpotentiaalista huolimatta syöpien turhat uusintaleikkaukset ovat 

edelleen ratkaisematon ongelma johtuen etenkin leikkauksenaikaisista haasteista 

erottaa hyvänlaatuinen kudos pahanlaatuisesta. Solujen rakenteen ja toiminnan 

määräävä molekulaarinen sisältö eroaa riippuen solujen syntykudoksesta, ja 

samankaltaisia eroja havaitaan myös pahanlaatuisten ja hyvänlaatuisten solujen 

välillä. Biomolekyylejä, jotka mahdollistavat kudostyyppien erojen havaitsemisen, 

kutsutaan biomarkkereiksi tai bioilmaisimiksi, ja tutkimuksissa onkin löydetty satoja 

proteiineja, rasva-aineita ja aineenvaihduntatuotteita, joiden pitoisuus solussa 

vaihtelee hyvänlaatuisen ja pahanlaatuisen kudoksen välillä. Tiettyjen 
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biomarkkereiden pitoisuuksien vaihteluvälit hyvänlaatuisissa ja pahanlaatuisissa 

kudoksissa ovat kuitenkin erittäin suuria, ja molekyylitason erot kudosten välillä 

aiheuttavat harvoin selkeää makroskooppisesti näkyvää muutosta. Siksi 

syöpäkudoksen ja tervekudoksen välisen rajan silmämääräinen arvioiminen on 

erittäin haastavaa. Silti lähes kaikki syöpäkirurgit käyttävät ainoastaan visuaalista 

arviointia ja tunnustelua operaatiotilanteessa. Lisää haasteellisuutta syövän 

kokonaispoistoon tuovat myös nykysuositukset, joiden mukaan syövän ympäriltä 

poistetun tervekudoksen määrä pyritään minimoimaan. Tämä tavoite ja rajan 

subjektiivinen arviointi johtavat suureen hajontaan eri maiden ja sairaaloiden 

positiivisten marginaalien määrissä sekä yleisesti korkeaan uusintaleikkausten 

määrään. Positiivisista tervekudosmarginaalilöydöksistä johtuvia uusintaleikkauksia 

on pyritty vähentämään tutkimalla ja ottamalla käyttöön useita erilaisia 

leikkauksenaikaista kudostunnistusta auttavia menetelmiä, mutta niiden kliininen 

käyttö on ollut rajallista johtuen kunkin menetelmän rajoitteista ja haitoista. 

Tässä väitöskirjassa esitellään kudostunnistusjärjestelmä, jota voidaan 

mahdollisesti tulevaisuudessa hyödyntää leikkauksenaikaisessa 

tervekudosmarginaalin arvioinnissa. Järjestelmän kehitystä ja soveltuvuutta 

kudostunnistukseen tarkastellaan viiden osatyön kautta. Järjestelmä pohjautuu 

sähkökirurgiassa tuotetun kudossavun mittaamiseen liikkuvuuserospektrometrialla 

(differential mobility spectrometry, DMS). DMS on normaali-ilmanpaineessa 

toimiva mittausteknologia, joka tuottaa informaatiota kaasumaisen näytteen 

molekulaarisesta rakenteesta erottamalla ionisoidut molekyylit toisistaan 

voimakkaassa, epäsymmetrisesti muuttuvassa sähkökentässä. DMS vertautuu 

massaspektrometriaan (MS) mutta on analyyttiseltä suorituskyvyltään sitä heikompi. 

DMS-teknologian etuna on kuitenkin sen yksinkertaisuus, pienempi koko sekä 

pienemmät kustannukset MS-teknologiaan verrattuna. DMS-teknologiaa on aiemmin 

käytetty itsenäisenä mittausmenetelmänä erilaisissa kaasumittaussovelluksissa sekä 

biolääketieteellisessä käytössä muun muassa hengitysilman mittaamiseen. Nämä 

sovellukset ovat kuitenkin aina sallineet kontrolloidun ympäristön ja suhteellisen 

pitkän mittauksen keston. Siksi reaaliaikainen DMS-pohjainen sovellus vaatii 

ympärilleen lisälaitteistoa ja järjestelmän parametrien optimointia. Lisäksi DMS-data 

ei suoraan tuota määrällistä tietoa näytteessä olevista biomolekyyleista vaan luo 

pikemminkin kokonaiskuvan näytteen sisältämien aineiden seoksesta. Spektrin 

tulkinta ja kudostyypin määritys ei siis ole suoraviivaista, ja yhdestä näytteestä 

saatavan suuren datamäärän vuoksi analysointi soveltuu parhaiten 

koneoppimismenetelmille. Järjestelmän poikkitieteellinen näkökulma sekä 
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kokonaisuuden toiminnan ja suorituskyvyn tutkiminen kudostunnistuksessa ovat 

tämän väitöskirjan pääsisältö. 

Väitöskirjan kolmessa ensimmäisessä osatyössä tavoitteena oli tutkia menetelmän 

soveltuvuutta kudostunnistukseen eläinkudosnäytteillä sekä ihmisen 

rintasyöpänäytteillä. Tulokset laboratorio-olosuhteissa hallitulla näytteentuotolla 

olivat lupaavia, ja diagnostinen suorituskyky osoitti teknologian potentiaalin 

kudostunnistuksessa. Neljännessä osatyössä laitteistoa muokattiin mahdollistamaan 

reaaliaikaiset mittaukset sekä luokittelutuloksen esitys välittömästi mittauksen 

jälkeen. Tulokset osoittivat, että järjestelmä soveltuu reaaliaikaiseen 

kudostunnistukseen vähintään eläinnäytteillä laboratorio-olosuhteissa. Viidennessä 

osatyössä järjestelmää käytettiin rintasyöpäleikkauksissa. Diagnostisen 

suorituskyvyn osalta tulokset eivät olleet vertailukelpoisia laboratoriotutkimuksiin, 

mutta tutkimus osoitti, että järjestelmän integroiminen osaksi syöpäkirurgiaa 

onnistuu käyttäjiä häiritsemättä ja että se pystyy tuottamaan informaatiota leikatusta 

kudoksesta operaation aikana. 

Kokonaisuudessaan väitöskirjatutkimuksen tulokset osoittavat DMS-pohjaisen 

kudostunnistusjärjestelmän potentiaalin ja soveltuvuuden reaaliaikaiseen käyttöön 

riittävällä diagnostisella suorituskyvyllä. Tulevaisuudessa tässä työssä esitetty 

järjestelmä voi jatkokehityksen jälkeen toimia syöpäkirurgin apuna 

tervekudosmarginaalin tunnistuksessa ja auttaa suojelemaan syöpäpotilaiden 

hyvinvointia vähentämällä tarpeettomia syövän uusintaleikkauksia. 
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1 INTRODUCTION 

Cancer accounts for approximately every sixth death in the world [1]. It has remained 

one of the leading causes of mortality in the world despite decades of research and 

massive monetary investment. Although the prognosis of many cancer types has 

improved and continues to improve, the most recent global statistics indicate that the 

role of cancer as a cause of death will only increase in the future as the global life 

expectancy is also rising [2]. This ensures that the development of new treatment and 

diagnostic methods for cancer will remain one of the most relevant topics in the field 

of medical technology. 

Surgery is an important treatment method for many solid cancers, and for some 

cancer types, such as early-stage breast cancer, it is nearly always part of the primary 

treatment [3,4]. The goal of surgical treatment is to remove the cancerous mass as 

comprehensively as possible without compromising vital structures. Furthermore, as 

the survival rate of cancer patients is constantly improving and patients often live for 

decades after the surgical operation, an ever-increasing emphasis is also being placed 

on the functional and aesthetic outcomes of surgery, in consideration of the quality 

of life and overall health of the patient [5–7]. In the case of breast cancer, improved 

cosmetic outcomes are associated with smaller resection volumes [8]. Thus, the 

removal of benign tissue surrounding the cancer should be minimized. However, due 

to the widespread and irregular nature of cancer, it is often difficult to assess 

accurately where the cancer ends and benign tissue begins, especially during a 

surgical procedure. This can lead to an incomplete removal of the cancer – i.e., a 

positive surgical margin – which in turn can lead to recurrence and a reoperation [9]. 

The average rate of reoperations for breast cancer is approximately 20%, but it can 

vary significantly from less than 10% to more than 50%, depending on the region and 

cancer type [10,11]. The failure to remove the cancer completely in one operation is 

an important issue, since the need to go through additional surgery can be devastating 

for the cancer patient in terms of both physical and mental well-being [7,12]. In 

addition, every reoperation adds to the total healthcare costs [13]. 

Due to the incentives of overall health and economics, tools and methods to 

improve intraoperative surgical margin assessment have been introduced in recent 
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years. However, these methods have not yet fully spread to wider clinical use due to 

them being inaccurate, slow, inconvenient to use or too expensive. For a method to 

be widely accepted as an aid in margin detection, it needs to fit the workflow of a 

surgeon or a pathologist, provide fast and accurate results, and be cost-effective for 

the hospital. 

This thesis presents the concept and realisation of a system in which the negative 

aspects of the current auxiliary methods are overcome or mitigated by means of tissue 

identification from surgical smoke by differential mobility spectrometry (DMS). 

DMS is a measurement technology that utilises a high-frequency asymmetric electric 

field to separate ionised molecules to provide a spectrum of the molecular content of 

a gaseous sample. DMS has previously been used in medical research, for example, 

to identify diseases from human breath samples or bodily fluids [14,15], but this 

thesis presents the first studies where the technology was used for tissue identification 

in a surgical application. 

1.1 Objective 

The objective of this thesis is to introduce a concept for a new in vitro medical device 

that could be used for tissue identification in a clinical environment. More 

specifically, the aim of the research that is presented in the thesis is to determine 

whether clinically relevant tissue types can be accurately discriminated from each 

other based on surgical smoke by using a DMS-based system in a surgical setting. In 

the thesis, the technological progression of the system is explained, starting from its 

use in animal tissue studies in a laboratory environment and concluding with its 

realisation as a medical research device in an actual surgical setting. The ultimate 

objective is ambitious, and to accomplish it, the feasibility and the key limitations of 

the system regarding sample acquisition and duration need to be studied and resolved. 

This is accomplished through five scientific publications, each of which aims to 

resolve a research question related to the measurement system. The research 

questions are as follows:  

I. Is DMS analysis of surgical smoke a feasible method for ex vivo tissue 

identification in a porcine model? 

II. Can DMS-based ex vivo tissue identification be utilised with clinically 

relevant human breast tissue? 
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III. Is DMS-based ex vivo tissue identification feasible as an imaging 

method for pathological applications? 

IV. Can DMS-based tissue identification be performed rapidly enough to 

enable intraoperative use? 

V. Is DMS-based tissue identification feasible in a surgical setting? 

The publications and their findings serve a specific purpose to build up the 

researched system to make it suitable for its intended application of surgical margin 

assessment and to point out the shortcomings and challenges that the method exhibits. 

Firstly, in Publication I, the focus is put on the overall feasibility of tissue 

identification from surgical smoke by DMS. Publication II further expands on the 

study of feasibility to prove the clinical relevance of the system by identifying benign 

and malignant human breast tissue. The purpose of Publication III is to explore 

whether the DMS-based tissue identification could also be incorporated in pathology 

and thus expand the application area of the methodology. The focus of Publication 

IV is in the speed of analysis and the requirements for the system that are needed to 

accommodate real-time use. Lastly, Publication V concentrates on the performance, 

usability aspects and limitations of the system in a clinical environment and in vivo 

use. 

1.2 Contribution 

The main scientific contribution of this thesis is the translational research regarding 

the feasibility of tissue identification with a novel application that combines sensor 

technology, data science and clinical medicine. The research culminates with the 

realisation of a prototype system that allows for tissue identification based on DMS 

analysis of surgical smoke. The properties of the device are introduced in each phase 

of the development trajectory. The benefits and limitations of the system are 

discussed and compared to competing methods. Data analysis methods to enable the 

deduction of tissue types through raw DMS data are also discussed and evaluated. 

Although the system presented in this thesis is not yet applicable to widespread 

clinical practice, the technology has the potential to provide a significant positive 

societal impact by improving the treatment of solid cancers in the future. 
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1.3 Structure 

In this thesis, the information of five scientific journal publications is expanded upon 

and presented in the following chapters: Literature review and background, 

Theoretical background, Materials and methods, Results and discussion, and 

Conclusions.  
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2 LITERATURE REVIEW AND BACKGROUND 

In this chapter, the basis of the medical problem of assessing the surgical margin in 

cancer is introduced alongside publications that illustrate the importance of resolving 

the related issues. This chapter also includes a thorough review of the current methods 

that aim to help in the margin assessment and explains their benefits and 

disadvantages. The development of a device for surgical use that would overcome 

the issues of the current methods requires a multidisciplinary approach. To 

understand the measurement quantities and their connection to the tissue type, some 

background on medical biology is needed. Furthermore, the measurement principle 

itself requires an understanding of the fundamentals of differential mobility 

spectrometry. In addition, the means of translating the measured DMS data back to a 

tissue type involve some of the core methods of machine learning. These topics are 

also introduced in this chapter. 

2.1 Biological foundation 

Mutations within our genome are rare and occur naturally at an estimated rate of three 

nucleotides (out of three billion) per cell division [16]. Mutations can also occur due 

to external factors, such as ultraviolet radiation from sunlight or tobacco smoke, that 

cause damage to the deoxyribonucleic acid (DNA) strands in our cells. Despite the 

damage, multiple repair mechanisms in the replication and transcription of DNA are 

able to effectively limit the number changes in the genome to an acceptably low level 

[17]. In addition, some mutations that pass through the repair mechanism alter the 

cell in a way that causes it to not survive long enough to cause any additional issues. 

Still, during our lifetime and several cell generations, the number of random 

mutations is constantly accumulating, and the older we get, the more likely they are 

to cause issues [18]. Most often, the mutations have little to no effect on the health or 

function of an organism, but when the mutations happen in certain parts of the 

genome, the so-called proto-oncogenes or tumour suppressor genes, the result of the 

mutation can cause a cell to gain an ability that promotes abnormal cell behaviour or 

the loss of a function that suppresses such behaviour. These changes in the cell 

functionality are the root cause of cancer [19].  
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Cancer describes a disease in which the accumulation of mutations in the DNA 

causes the cell survival and proliferation of tissue to become uncontrollable [19]. In 

cancer, the normal apoptosis, i.e. controlled cell death, can be inhibited by the 

downregulation of, for example, the p53 gene, which causes the cells to survive and 

multiply for longer than they normally would [20]. However, the excessive survival 

and proliferation alone do not constitute cancer. If the mutated cell and its progeny 

lack the ability to invade the surrounding tissues and do not spread through the blood 

circulation or the lymphatic system, the abnormal tissue growth is categorized as a 

neoplasm or a benign tumour. Benign tumours are extremely common and can 

manifest as, for example, moles or fibroids. In this case, the prognosis is often 

unaffected, and removal of the tumour is not necessarily even needed. Nevertheless, 

benign tumours have the potential to progress to a malignant form and thus function 

as a precursor for cancer. The phases of tumour progression are illustrated in Figure 

1. 

 

Figure 1. A simplified example of tumour progression. 
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The schematic representation of tumour progression in Figure 1 is simplified, and, 

in reality, there can be several substages of mutations and the division between a 

benign and malignant tumour is not always straightforward. A relevant example of 

this is ductal carcinoma in situ (DCIS), a type of neoplasm that is considered 

malignant, even though the growth is localised to the mammary ducts. DCIS is a 

disease that has seen a significant increase in incidence over the last three decades. 

In the 1980s, the disease was a mere curiosity in the statistics, but currently 

approximately 20%–35% of all breast cancers are diagnosed as DCIS [21]. The 

radical increase in the incidence is due to cancer screening becoming more common. 

In terms of its biological properties, DCIS is heterogeneous and difficult to categorize 

appropriately. Furthermore, while the disease itself has a good prognosis, it already 

contains almost all of the genetic instabilities that enable its progression. The aspects 

surrounding its evolution to an invasive carcinoma, such as the proportion of cases 

and progression timelines and mechanisms, are still largely unknown [22]. In 

addition, because DCIS grows inside the ducts, it is hard to assess the tumour during 

surgery, since it is not macroscopically visible and is rarely palpable [23]. The 

inherent complexity, elusiveness in a physical examination and unpredictability of 

progression are the reasons why the early and accurate diagnosis of DCIS is crucial 

and why the disease encapsulates the need for improved methods and research in 

cancer diagnosis and surgical treatment. 

However, DCIS is only one example of the diversity of cancer types. Cancer can 

originate from practically any organ and cell type, and the differences in their origin 

and distinctive traits affect their incidence, prognosis and treatment options [1,2]. For 

example, in some cases of leukaemia, i.e. cancers that originate from blood-forming 

tissue, the surgical excision of a distinct tumour mass is not possible, and the 

treatment is primarily medication-based. On the other hand, for most solid tumours, 

surgical treatment is an effective treatment method that cannot be replaced with 

medication (i.e. chemotherapy) alone since, the blood circulation through the tissue 

is impaired. Despite the different approaches and vast variety of cancers, malignant 

tumours share similar traits in terms of their cellular structure and metabolism. 

2.1.1 Biomarkers 

Each cell type has a characteristic molecular signature, which defines its structure 

and function. Almost the entirety of the dry mass of any cell comes from four types 

of organic molecules: nucleic acids, carbohydrates, proteins and lipids [24]. 
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However, their relative abundance in normal tissue cells varies depending on the 

degree of differentiation of the cell and the tissue type. For example, in adipose tissue, 

the mass of a fully differentiated cell consists primarily of lipids, whereas in skeletal 

muscle, water and proteins are the dominating molecules [25]. Similar, albeit less 

profound, differences exist between malignant and benign cells, even when they 

originate from the same tissue. This is partly explained by the fact that, in cancer 

cells, the degree of cell differentiation is not as straightforward as in benign cells and 

they can, in fact, even de-differentiate to resemble a non-differentiated cell [26]. In 

general, the more differentiated a cancer cell is – that is to say the more it resembles 

a surrounding normal healthy cell – the better the prognosis [26]. In cancer cells, the 

characteristic biomolecules that differ in their content or relative abundance from 

benign cells are what enable the identification of the disease and can thus be 

considered cancer biomarkers [27]. Biomarkers in cancer can be identified 

throughout their progression from normal healthy tissue to malignancy. Based on 

their type, biomarkers are sometimes complemented with the terms genetic, 

molecular and metabolic. For example, known tumour-suppressing genes or proto-

oncogenes can be considered genetic biomarkers. One example of a genetic 

biomarker is the BRCA1 gene, where an abnormality leads to the development of 

breast cancer by the age of 80 in approximately 72% of cases [28]. The gene 

maintains the normal repairing process of DNA by encoding the breast cancer type 1 

protein, which in itself can be considered a molecular biomarker. The depleted 

expression of the protein leads to abnormal cellular responses to damaged DNA, and 

among numerous other effects, this increases the synthesis of certain lipids (specific 

examples can be found in Table 1, p. 30) [29]. The overabundance of lipids, then, can 

be considered a metabolic biomarker. Thus, the same mutation can lead to multiple 

different ways of identifying its existence by utilising different biomarkers (Figure 

2). 

 

Figure 2. Types of biomarkers. 
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While the term biomarker can be used to describe any biomolecule that can be 

objectively measured and used to indicate normal biological or pathological 

processes or the risk to develop a disease, the majority of hypothesized and studied 

biomarkers are not approved for clinical use [30]. For example, the number of 

proteins that are approved by the US Food and Drug Administration as biomarkers 

for cancer is limited, even though studies have listed thousands of proteins that have 

exhibited a clear link to hundreds of different cancers [31,32]. The rigorous process 

of providing statistically significant evidence of the connection between a certain 

biomolecule and its relative abundance in cancer is time-consuming and taxing on 

resources. Furthermore, specific threshold limits that separate cancer from benign 

tissue with adequate sensitivity and specificity are not easily determined for a single 

biomolecule. Thus, modern biomarker research has focused on finding a connection 

to cancer based on a combination of biomolecules so that the diagnosis relies on a 

more comprehensive set of relevant biomolecules rather than a singular threshold 

value [33]. The scientific fields in biology that have been described with the 

collective term omics have been at the forefront of discovering new potential 

biomarkers for cancer. Omics comprises the disciplines that study the possible 

sources of biomarkers, such as proteins (proteomics), genes (genomics) or metabolic 

products (metabolomics). Omics is also relevant in this thesis, since the proposed 

measurement system is designed to measure the vaporised cell contents that contain 

these biomolecules and their degradation products. By basing the tissue identification 

on the normal metabolites of the cell that are present in every cell type, the system 

cannot measure one definitive marker that would automatically determine the 

malignancy or type of the tissue. Rather, the differentiation comes from the relative 

abundances of these substances and the resulting differences in their molecular 

fingerprint. The lack of specific markers creates an overlap between the measured 

outputs of analysed tissues, which can limit the differentiation capability. On the 

other hand, the general nature of the utilized biomarkers does not restrict the method 

to a single use case, since almost all cancers exhibit a specific metabolic abnormality.  

2.1.2 Warburg effect 

The genetic and molecular biomarkers that are connected to different types of cancers 

are rarely the same, and it is obvious that, for example, a biomarker called “prostate 

specific antigen” is clinically relevant in the screening and indication of prostate 

cancer but has no value in the treatment or diagnosis of, for instance, brain cancer. 

However, a certain metabolic pathway that was discovered almost a century ago has 
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been proven to be very generalizable to all kinds of malignant tumours. The pathway 

in question is called the Warburg effect, named after its discoverer [34].  

The Warburg effect describes a metabolic abnormality in which a cell favours a 

more inefficient pathway to produce energy, even when normal metabolism is not 

restricted by the lack of oxygen in the cell. More specifically, the cells that exhibit 

the Warburg effect produce most of their energy units, adenosine 5′-triphosphates, 

through aerobic glycolysis instead of normal mitochondrial oxidative 

phosphorylation, even though the resulting energy yield is approximately nine times 

lower [35]. Due to the Warburg effect, cancer cells can have a significantly increased 

glucose uptake and subsequent lactate production. Figure 3 shows a simplified 

depiction of the phenomenon. 

 

Figure 3. The Warburg effect. 
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Unlike Warburg himself hypothesised, this abnormal behaviour does not transpire 

due to cell respiratory damage, but rather since it seems to be beneficial for the 

proliferation and survival of the cell [36,37]. There are still unanswered questions 

regarding the reasons for and benefits of the Warburg effect for cancer cells, but it 

has been theorised that the high rate of glycolysis and the resulting excess of 

glycolytic intermediate products prime the cell to activate biosynthetic pathways to 

accommodate for the rapid proliferation, when required [37,38]. Thus, cancer cells 

can prioritise the accumulation of biomass over efficient energy production [35]. It 

has also been suggested that the Warburg effect can explain all or most of the 

hallmarks of cancer, such as the invasiveness, inhibited apoptosis and the 

uncontrolled proliferation [39]. That being said, some studies contradict this and 

indicate that the Warburg effect is not universal to all cancer cell lines and the current 

understanding is that the diversity of metabolic activity is what actually benefits the 

rapid proliferation of cancer cells [37,40]. Although the Warburg effect and its extent 

in cancer cells is not yet fully understood, it is likely a significant contributing factor 

for the irregular molecular composition of cancer cells. The over-abundance of the 

intermediate products of biomolecules, such as amino acids, nucleic acids and lipids, 

arguably suggests the increased biosynthesis of some of these molecules [41]. In fact, 

several lipids and lipoproteins have been shown to be upregulated (or downregulated) 

in various types of cancers [42]. This type of change in the relative abundance of the 

biomolecules can make cancer tissue identifiable at a molecular level. As an example, 

studies have shown that the content profiles of the cell membranes of different 

cancerous cell lines are very similar for many specific phospholipids [43]. 

Phospholipids are biomolecules that are important in forming the cell membranes and 

make up approximately 3% of the total mass of a mammalian cell [44]. They consist 

of two fatty acid chains that form a hydrophobic tail and of a hydrophilic head 

comprising a glycerol group, phosphate group and a small polar group, such as serine 

or choline. Due to the possible variation in the length of the fatty acid hydrocarbon 

chains, in the number of double bonds and in the polar head group, cell membranes 

can consist of as many as 500–1000 different phospholipid species [45]. Table 1 

shows the relative fold change of some of these phospholipids, along with certain 

sphingolipids, between normal and cancerous breast tissue. The abundance of all 

measured lipids, except for sphingomyelins, was increased in tumour tissue in the 

presented groups in the referenced study, where the comparison was made between 

normal ductal breast tissue and breast cancers [46]. 
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Table 1. Comparison of lipid groups in cancerous and normal breast tissue 

[46]. N refers to the number of different species from a certain group. 

Lipid class Lipid group N 

Fold change for 

tumour vs normal 

tissue 

Phospholipids 

Phosphatidylcholines 23 2.85–34.30 

Phosphatidylethanolamines 18 2.87–75.06 

Phosphatidylinositols 2 3.32–10.34 

Sphingolipids 

Sphingomyelins 8 0.50–6.36 

Ceramides 2 2.31–5.62 

Glucosylceramides 4 2.40–11.63 

 

However, as stated before, the difference in a few selected biomarkers might not 

be the best basis for tissue identification due to the difficulty in determining fixed 

threshold levels for benign and malignant tissue. For example, the menstruation cycle 

can create variability in the lipid metabolism of normal benign breast cells [47]. In 

breast cancer cells, the grade (i.e. degree of differentiation) of the tumour, hormone 

receptor status and some medications can affect metabolism and the lipid 

composition [46,48]. In addition, the total lipid content of cells has been shown to 

vary significantly and increase the closer the cells are to the edge of the tumour [49]. 

Similar behaviour has even been reported in peritumoral benign tissue [49,50]. This 

type of variation in specific biomolecules supports the idea that more effective tissue 

identification could be achieved by analysing the full molecular fingerprint or other 

more general properties of the sample rather than concentrating on specific 

biomarkers. 

2.2 Surgical margin assessment 

The metabolic and cellular biomarkers between cancerous and benign tissue can 

enable the differentiation of the tissues, especially when there is a possibility for 

microscopic examination. However, at a macroscopic level, the differences are not 

always clear and a visual examination and palpation alone do not necessarily suffice. 
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Still, in the surgical treatment of cancer, the success of removing the entirety of the 

tumour mass is often entirely dependent on the experience and visual assessment of 

the operating surgeon and guidance from imaging performed prior to surgery. The 

aim of the surgeon is generally to excise the malignant tissue with minimal damage 

to the patient and the surrounding benign tissue. Therefore, the operation becomes an 

optimisation problem, where the measure of success is defined through the benign 

tissue that surrounds the excised tumour, i.e. the surgical margin or resection margin. 

To define the adequacy and categorisation of surgical margins, there are several 

dedicated regional and international guidelines for different types of cancers and their 

respective tumour grades [51–53], but, in general, the outcome of surgical margin 

assessment can be considered binary. In a setting where the tumour has not infiltrated 

vital structures and can be completely removed, the margin is defined as positive, if 

there are cancer cells near or within the border of the excised tumour, and as negative 

or clear, if the tumour is surrounded by a certain width of benign tissue in all 

directions [54,55]. If a negative margin cannot be achieved, the risk of cancer 

recurrence through residual cancer cells is elevated and additional treatment is 

required [54]. The additional treatment often involves a reoperation, which adds to 

the total healthcare costs and burdens the patient, which is why negative margins are 

a central aim in surgical treatment.  

 The importance of negative margins and their accuracy is accentuated in the case 

of breast cancer. The reason for this is that breast cancers can often be removed in 

their entirety unlike, most brain cancers, for example, that infiltrate the benign tissue 

more unpredictably, resulting in a more sporadic shape and a standard of care that 

emphasises minimizing the functional deficit of the patient over clear surgical 

margins [56,57]. In addition, breast cancer is the most common cancer type in 

women, and the primary treatment of breast cancer almost always consists of surgical 

treatment, unless the cancer has progressed to a terminal stage [3,4]. In numbers, this 

translates to over two million cases per year, most of which are treated with surgery 

[1,58]. Furthermore, the prognosis for early-stage breast cancer is extremely good, 

with over 90% of the patients alive after five years from diagnosis [59]. This means 

that most of the patients have a long life ahead of them after cancer surgery, which 

increases the importance of the cosmetic and functional outcomes of the resection 

due to their direct impact on the quality of life and overall health of the patient [5,6]. 

Studies have also shown that smaller resection volumes result in better cosmetic 

outcomes and that the full removal of the breast, i.e. mastectomy, does not improve 

the prognosis or decrease the morbidity compared to breast-conserving treatment 
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[8,60–62]. Therefore, surgical margin optimisation is particularly relevant for breast 

cancers.  

For invasive breast cancer, the current European and American guidelines 

regarding surgical margins define a negative margin with the “no ink on tumour” rule 

[4,9,63]. This means that if the outer surface of the resected tumour has no cancer 

cells that are visible in a histopathological examination after the administration of a 

special ink that stains the cells, the margin is deemed negative. In the case of DCIS, 

a negative margin requires no cancer cells to be present within a 2 mm distance from 

the edge [64]. However, the width of the realised margin is always decided by the 

operating surgeon, and since it is hard to assess the margin visually during the 

surgery, some surgeons prefer to be safe and leave a much larger margin, while others 

try to spare as much benign tissue as possible [65]. As both approaches have their 

risks and benefits, the personal preference of a surgeon is justifiable, but the 

guidelines aim to offer a balanced decision point between minimizing the probability 

of recurrence and the unnecessary loss of benign tissue. A generalized depiction of 

the optimisation problem related to surgical margins is presented in Figure 4. 

 

Figure 4. The balancing act of surgical margins. The dark red shape 

represents the tumour, and the yellow shape represents the surrounding 

benign tissue being removed. The background colours represent favourable 

(green) and unfavourable (red) outcomes. 
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Differences in the experience, technical skill and personal preferences of surgeons 

likely explain the varying rate of reoperations among institutions and regions due to 

positive margins in breast cancer surgery. In Europe and the USA, the goal for the 

rate of reoperations has been stated as being 10% and less than 20%, respectively 

[66,67]. However, based on multiple studies, the reported rates vary from less than 

10% to more than 50% [68–71]. The high reoperation rate due to positive margins in 

some institutions is a significant issue, since reoperations are a detriment to the 

patients and healthcare system in many ways. The need for a reoperation can worsen 

the prognosis due to delays in starting adjuvant chemotherapy [12]. In addition, the 

reoperation can cause severe stress and worry for the patient and increase the 

cosmetic damage [7]. Reoperations also add to the total healthcare costs of the 

treatment, and studies have shown that each reoperation can add a cost of several 

thousands of euros [13]. In a Canadian study, it was estimated that a reduction in the 

reoperation rate from 23% to 10% would bring a saving of USD 1055 per patient and 

an annual savings of USD 1.9 million in the region of British Columbia alone [72]. 

If similar reduction could be achieved globally, the estimated maximum annual 

savings would be over USD 3 billion. 

The research community and medical device developers have acknowledged the 

importance and challenges of acquiring clear surgical margins, and a number of 

devices to aid in margin assessment have thus emerged in recent years. However, the 

currently existing methods have minor or major issues that have prevented them from 

becoming widespread among medical experts or researchers. An American study 

reported that, despite the clear demand for lowering the rate of reoperations, any type 

of intraoperative pathologic margin assessment is conducted by less than 22% of 

surgeons, and only 3% utilise a margin assessment device [11]. 

2.2.1 Overview of margin assessment methods 

The poor utilisation rate of intraoperative margin assessment tools is universal. Even 

the methods that have been accepted as standard of care in some facilities the US 

have achieved limited national adoption, with a utilisation rate of only a few percent 

among surgeons [11]. A gross examination by visual inspection and palpation is the 

most widely used method because of its simplicity. However, the method suffers from 

poor diagnostic performance, as exemplified by a retrospective study that reported a 

sensitivity of 49% and specificity of 83% [73]. Besides gross examination, most 

surgeons rely only on surgical margin assessment performed after the surgery with 
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the gold standard of a histopathological analysis by a surgical pathologist. The 

process involves the fixation, sectioning, staining by haematoxylin and eosin, and 

microscopic visual assessment of the resected tumour. The process is time-

consuming, and even though the results are accurate, the final information of possible 

margin positivity is not often available until several days after the surgery. This 

means that fast corrective action is no longer possible, and a positive or close finding 

often results in a reoperation. 

To keep the high diagnostic accuracy of histopathological evaluation while still 

retaining the possibility of intraoperative assessment, a method known as frozen 

section analysis (FSA) was proposed as early as over a century ago, and it is still in 

use as standard of care in its birth institution (Mayo Clinic, USA) [74,75]. In FSA, 

the resected tumour is sectioned into small pieces, which are snap-frozen, stained and 

delivered for pathological analysis while the patient is under anaesthesia. Based on 

two separate meta-analyses, FSA has a reported sensitivity of 81%–86% and 

specificity of 95%–97%, and it has been shown to reduce reoperation rates from 

55.3% to 19.3% in a one-year surveillance study [76–78]. However, for an 

intraoperative method, the analysis is relatively slow, adding a delay of 20–30 

minutes to the surgery [79]. In addition, the method is resource-intensive, since it 

requires laboratory space and trained personnel for the sectioning and analysis. 

Furthermore, the frozen sectioning can cause damage to the tissue, making traditional 

post-operative analysis more difficult [80]. Also, a comprehensive microscopic 

analysis is impossible to conduct while the patient is anesthetised, meaning that only 

a small fraction of the margin is assessed intraoperatively. 

A more comprehensive pathological method for intraoperative margin analysis is 

imprint cytology. In imprint cytology, the surface on each side of the resected tumour 

is pressed against glass slides, which are then fixed and stained. The method is based 

on the idea that only the malignant cells adhere to the slides, while the benign adipose 

tissue will not leave an imprint [81]. The diagnostic performance of the method is 

good, with a reported sensitivity of 91% and specificity of 95% in a meta-analysis 

[76]. However, the method requires an expert cytologist for the analysis, and the 

delays in the operation are more than ten minutes. In addition, atypical cells that are 

not malignant but adhere to the cytology slides impede the diagnosis, further 

emphasising the required experience and expertise of the cytologist [82,83]. While 

the method has its issues, imprint cytology has been reported to lower reoperation 

rates from 26% to 4% in a systematic review [79]. It has also been shown that 
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combining imprint cytology with FSA mitigates the respective downsides of both 

methods and reduces the positive margin rate even further [84].   

Still, regardless of the means of implementation, pathological methods for 

intraoperative margin assessment are always relatively slow and resource-intensive. 

Therefore, other methods have been suggested and implemented in clinical practice. 

For example, various intraoperative imaging methods have been adapted to the 

surgical workflow at some capacity. Specimen radiography is one of the most 

common methods and is used in, for example, breast cancer operations in Finland. In 

specimen radiography, the resected tumour is x-ray imaged, after which the image is 

assessed by a radiologist. Depending on whether the x-ray imaging is done in the 

operating room by means of digital specimen radiography or more traditionally in a 

separate radiology laboratory, the duration of the analysis is approximately one 

minute or more than twenty minutes, respectively [85]. Specimen radiography has 

been shown to reduce the rate of positive margins, but, overall, it suffers from poor 

diagnostic performance, with a reported sensitivity of 53% and specificity of 84% in 

meta-analyses [76,86,87]. 

Another imaging method for intraoperative margin assessment is high-frequency 

ultrasound imaging. In this method, the resected tumour is imaged from all sides by 

an ultrasound probe in the operating room environment, and additional resections are 

made if the sonographic margin is positive [88]. Compared to pathology, the analysis 

is faster, but the assessment is still traditionally carried out ex vivo (outside the 

patient) [89]. This means that the analysis requires an additional tool and that the 

orientation of the tumour in respect to the resection area must be accurately indicated 

with guidewires or markings. In a meta-analysis, the sensitivity of the method was 

reported to be 59% and specificity 81% [76]. Besides specimen radiography and 

intraoperative ultrasound, some less common imaging methods, such as magnetic 

resonance imaging and nuclear medicine have, also been applied to margin 

assessment, but the high resource needs and long duration of the analysis have limited 

their use, even in the research field [90,91].  

Several optical methods have been introduced to and adopted in clinical practice. 

The optical methods can be used to cover the whole specimen at the expense of spatial 

resolution, or they can focus on selected areas, which, in turn, decreases the 

comprehensiveness of the margin analysis. Optical imaging can provide information 

on the resection surface, but the penetration depth of photons at optical wavelengths 

is shallow, meaning that deeper structures cannot be imaged [92]. An example of 

whole specimen optical imaging is photoacoustic tomography, in which nanosecond 
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laser pulses are emitted to a resected tumour, which causes a differential expansion 

of molecules, such as lipids, within the tissue and creates ultrasonic signatures that 

can be imaged [92]. The diagnostic performance of photoacoustic tomography has 

been promising, with reported results of over 90% for both sensitivity and specificity 

at their best, but the results have high variance depending on the interpreter [92,93]. 

Similar results have also been achieved with other whole specimen optical imaging 

methods, such as fluorescence imaging [94]. As for optical imaging methods 

designed for the assessment of smaller areas of the sample, optical coherence 

tomography and Raman spectroscopy are examples that have been studied in the 

context of margin assessment. In optical coherence tomography, near-infrared light 

is used to create high-resolution (2-10 µm) images of the tumour surface at a depth 

of approximately 2 mm, based on reflected light from the tissue [95,96]. Raman 

spectroscopy, on the other hand, relies on detecting differing molecular vibrations 

from the tissue after excitation with monochromatic light [92]. Both methods have 

resulted in good diagnostic performance in tissue differentiation, with reported 

sensitivity and specificity of around 90% [97,98]. However, much like other optical 

methods, their widespread use in intraoperative margin assessment in clinical care 

has been limited due the downsides of the methods. The most pressing issues with 

optical methods in intraoperative margin detection are the need for an experienced 

interpretation of the imaging results, a limited imaging depth and, in most cases, the 

requirement of ex vivo analysis and the associated delays. 

Among the device-based margin assessment methods, radiofrequency 

spectroscopy has perhaps been the most successful in entering clinical practice. The 

MarginProbe™ device based on this method has been approved for clinical use in the 

USA and the EU, among other regions. The method relies on detecting differences in 

the electrical properties of resected tissue surfaces with a hand-held probe. The 

structural and molecular differences in benign and malignant tissues affect the 

electromagnetic scattering, absorbance and reflectance of the tissue and can be 

detected with radiofrequency spectroscopy [99]. The expected duration of the margin 

examination is within the range of a few minutes but depends on the thoroughness of 

the analysis and the surface area of the tumour. The downsides of the method are its 

reliance on ex vivo analysis with a separate tool and the relatively poor reported 

diagnostic performance with an average sensitivity of 70% and specificity of 59% 

[76]. Even with the suboptimal diagnostic performance, radiofrequency spectroscopy 

has been reported to lower reoperation rates in randomized trials [99,100]. However, 

at least in one retrospective study, a statistically significant improvement could not 

be inferred [11]. 
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2.2.2 Molecular margin assessment methods 

Among the surgical margin assessment methods, the subgroup that utilises molecular 

detection bears the most relevance to the approach proposed in this thesis. The 

operation principle of these methods is rooted in the cellular and molecular 

differences between cancer and benign tissue and in the detection of these substances 

with high-precision instruments, or, more specifically, mass spectrometers (MS). 

Mass spectrometry (MS) relies on the ionisation of gas-phase analytes and the 

separation and detection of the analyte ions based on their mass-to-charge ratio. MS 

is a versatile and accurate analysis method that can produce quantifiable information 

on the molecules that are present in the sample [101]. 

MS has been utilised as a measurement technology in intraoperative tissue 

identification with various sampling methods. One of the newer methods, introduced 

in 2017, utilises water (or other biocompatible solvent) droplets (4–20 µl) to extract 

biomolecules from the tissue surface by a specialised sampling probe [102]. After 

contact with the tissue, the droplet is extracted into an MS instrument by its vacuum 

for molecular analysis. The system, named MasSpec pen, is fast, with one 

measurement taking only approximately ten seconds. The performance in the ex vivo 

identification of various cancer types from benign tissue has also been very high, with 

results for sensitivity and specificity being generally well over 90% [102,103]. The 

technology has also been piloted in intraoperative use for in vivo analysis, but the 

diagnostic performance was not reported in the study [104]. As its advantage, the 

method does not damage the analysed tissue at all. Still, the need for a separate probe 

reduces the compatibility with normal surgical workflow. However, in robot-assisted 

surgery, as an additional drop-in probe, the system could bring added value without 

limiting the workflow, and it has been piloted in a porcine model as a part of 

automated surgery with excellent results as regards tissue identification [105]. 

MS-based intraoperative tissue identification has also been utilised in methods 

that rely on the ablation of tissue with a laser probe. The introduced methods differ 

slightly in terms of their operation principle, but, for example, carbon dioxide lasers 

and solid-state lasers with nano- and picosecond pulsing have been used [106–108]. 

Commonly, the laser wavelength in the methods has been in the mid-infrared (3–6 

µm) range to optimise tissue absorbance. The tissue damage due to the laser ablation 

is somewhat dependent on the specifications, but, in general, the methods are 

minimally destructive, with the depth and diameter of the sampling area being less 

than one millimetre [108,109]. The methods are relatively fast, with irradiation times 

of approximately 10 seconds for the areas of interest. The tissue identification results 
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with the laser-based methods have been over 95% for specificity and sensitivity in 

the benign versus malignant tissue setting, and the methods have even demonstrated 

their capability in cancer grade and subtype identification [110,111]. However, as 

with the MasSpec pen, the need for an additional probe in the laser ablation methods 

is a disadvantage in terms of usability. 

One MS-based method that can be incorporated into the normal surgical workflow 

is rapid evaporative ionization mass spectrometry (REIMS). REIMS has been in 

research use for more than a decade, and while it was initially conceived for the 

purpose of ex vivo and in vivo tissue identification in the field of medicine, the 

application area of the method has expanded even to agriculture and the food industry 

[112–114]. The operation principle of REIMS is similar to the system introduced in 

this thesis, as it uses an energy instrument to produce a gaseous sample material that 

is subsequently delivered to a gas analyser. Most commonly, the energy instrument 

used with the method is standard electrosurgery. As the method has been researched 

for several years, tissue identification results for various cancers have been reported, 

including liver, skin, cervical, rectal and breast cancers [115–119]. In general, the 

results have been excellent, with sensitivities and specificities nearing 100%, 

especially in ex vivo studies. In vivo diagnostic results are rarely reported and do not 

reach the level of the ex vivo results [116,118]. One likely reason is the difficulty in 

intraoperative annotation and the resulting weak labels for samples. REIMS analysis 

is fast, with a duration of less than three seconds from sample introduction to result 

presentation [119,120]. Compared to the other MS-based methods, REIMS is 

destructive by nature, since it is directly connected to the surgical incision, but the 

method itself does not cause any additional tissue damage. Figure 5 shows some of 

the different MS-based sampling methods along with their characteristics. 
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Figure 5. Sampling characteristics of intraoperative tissue identification 

methods based on mass spectrometry (MS). 

The MS-based methods are an efficient way to identify tissue malignancies due to 

their extreme precision to detect trace amounts of biomolecules that are integral to 

the formation of cancer. In all of the methods, the observed key difference between 

cancerous and benign tissue in the published studies has been observed in the relative 

abundance of different lipids, such as phospholipids and triglycerides [102,106–

108,119]. Thus, the methods rely on the inherent and generalisable metabolic traits 

of cancer, such as the Warburg effect. One REIMS study has even shown that the 

identification of breast cancer is possible by training a classification model with the 

MS features of skin cancer [121]. The general nature of the identification and 

simultaneous utilisation of signals from several biomolecules increase the number of 

potential applications and are one reason for the high diagnostic performance. 

Although all of the methods based on MS are accurate and their use is either 

minimally intrusive or fits perfectly in the surgical workflow, MS is a high-end 

analysis device that requires a high vacuum to function. This serves as an inhibiting 

factor for widespread use of the methods. Mass spectrometers have high initial and 

upkeep costs (up to USD 1 million and 10% of purchase price annually), and their 

maintenance requires an educated expert [122]. In addition, MS devices require 

frequent, even day-to-day, calibration and tuning, and specific reference libraries 

[123]. High-end MS instruments are also large (> 1 m3, > 150 kg), which makes their 

relocation and overall implementation in operating rooms more difficult. However, 

as research instruments, the potential of MS-based methods in tissue identification is 

unmatched. 
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Overall, the field of intraoperative tissue identification has seen various innovative 

solutions that have produced promising results in scientific studies. Still, the clinical 

adoption of these methods has been limited, and a real breakthrough method that 

could resolve the issues of the current technologies is yet to emerge. The DMS-based 

solution presented in this thesis aims to fulfil this need. For comparison, Table 2 

presents the strengths and weaknesses of selected methods for intraoperative margin 

detection. Emphasis must be placed on the fact that the values in Table 2 represent 

the subjective assessment of the author, based on the research literature reviewed at 

the time of writing this thesis, and can be disputable in some parts. 
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Table 2. Comparison of selected intraoperative margin assessment methods. 

Method Time Area 
Compatibility 

with workflow 

Performance 

(3 x in Total) 

Resource 

needs 
Size 

Clinical 

adoption 
Total 

Visual 

examination and 

palpation 

3 3 3 1 (3) 3 3 3 21 

Frozen section 

analysis 
0 0 0 3 (9) 0 0 2 11 

Imprint cytology 0 1 0 3 (9) 0 0 2 12 

Specimen 

radiography 
0 0 0 1 (3) 0 0 3 6 

Ultrasound 

imaging 
1 2 1 1 (3) 1 2 2 12 

Optical methods 1 2 1 3 (9) 1 2 2 17 

Radiofrequency 

spectroscopy 
1 2 1 1 (3) 3 3 2 15 

MasSpec pen 2 3 2 3 (9) 2 1 0 19 

Laser ablation 

MS methods 
2 3 2 3 (9) 2 1 0 19 

REIMS 3 3 3 3 (9) 2 1 1 22 

DMS-based 

method (current) 
2 3 3 1 (3) 3 2 0 16 

DMS-based 

method (aim) 
3 3 3 3 (9) 3 3 3 27 

Time: Result from examined area; 3 = less than 5 seconds, 2 = less than 15 seconds, 1 = less than 5 minutes, 0 = more 

than 5 minutes. Area: Percentage of margin assessed in intended use; 3 = 100%, 2 = more than 50%, 1 = more than 10 

%, 0 = less than 10%. Compatibility with workflow: 3 = requires no additional procedures, 2 = requires an additional 

tool (in vivo), 1 = requires an additional tool (ex vivo analysis), 0 = requires transfer of specimen outside operating room. 

Performance (valued as three times as important as other metrics): 3 = diagnostic accuracy > 90%, 2 = diagnostic 

accuracy > 80%, 1 = diagnostic accuracy > 60%, 0 = diagnostic accuracy < 60%. Resource needs: 3 = no additional 

personnel needed, low-maintenance; 2 = no additional personnel needed, high-maintenance; 1 = result interpretation needs 

specific training or additional personnel; 0 = need for separate laboratory analysis. Size: 3 = standard operating room 

instrument or smaller (e.g., surgical evacuator or energy surgery unit), 2 = larger than two standard operating room 

instruments, 1 = larger than three standard operating room instruments, 0 = need for separate facility. Clinical adoption: 

3 = in standard clinical use worldwide, 2 = in clinical use in some institutions, 1 = in commercial research use, 0 = only 

used by one or few research groups. 

 



 

42 

2.3 Surgical smoke 

As described earlier, the assessment of surgical margins is integral to the treatment 

of solid tumours, and new technological solutions for the problem could be beneficial. 

However, to increase the likelihood of clinical adoption, the assessment method 

should be compatible with the surgical workflow. This means that an ideal auxiliary 

system for margin assessment should utilise information that is produced naturally 

during every surgery. This can be achieved by means of analysing of surgical smoke. 

Surgical smoke is created as a by-product in all energy instrument surgeries. Surgical 

energy instruments are based on heating the target tissue with, for example, 

electromagnetic radiation (laser), ultrasound-induced mechanical vibration or 

electricity. The energy modality has been shown to affect the particle size and 

composition of the produced surgical smoke due to differences in the amount of 

transferred energy and subsequent temperature elevation [124–126]. The system 

presented in this thesis has thus far only been used to analyse surgical smoke 

produced by standard monopolar electrosurgery but will likely be validated for other 

energy instruments as well, since their role in general and cancer surgery will increase 

in the future [127]. 

Standard electrosurgery, also known as diathermy, is routinely used in the 

excision of solid tumours. In electrosurgery, alternating current with a frequency 

between 200 kHz and 3.3 MHz evaporates tissue to form an incision or coagulates 

the tissue to achieve haemostasis [128]. Evaporation occurs, when the operated tissue 

is rapidly heated by an electrical arc with a continuous sinusoidal waveform and 

roughly 1 kV peak-to-peak voltage. In standard electrosurgical units, this is usually 

achieved with the cut mode. In the coagulation mode (often shortened to coag), the 

voltage is higher, approximately 3–5 kV peak-to-peak, and it is conducted to the 

tissue with a low duty cycle. As a result, the temperature increase in the tissue is 

higher and the thermal spread wider, and, in addition to tissue evaporation, the non-

vaporised tissue forms a charred black layer onto its immediate surface, i.e., 

fulgurates. If the surgical electrode forms direct contact with tissue, the temperature 

elevation is slower, and with a short exposure, the tissue does not evaporate but rather 

desiccates, meaning that the cells essentially dry out without extensive molecular 

decomposition. The result of electrosurgical cuts can also be affected by modifying 

the speed of incisions and by blending the cutting modes by altering the duty cycle 

and output voltage [128,129]. Figure 6 depicts different cutting modes and their 

respective characteristics. The mode of electrosurgery has been shown to affect the 

composition of surgical smoke in previous REIMS measurements, with the cut mode 
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producing higher signal peaks for phospholipids and the coagulation mode producing 

higher peaks for triglycerides [130]. In the research presented in this thesis, the 

electrosurgery mode was kept consistently in cut mode to minimize sampling-related 

variations in the feasibility studies, but further research is required to validate the 

method for different modes. 

 

Figure 6.  Standard electrosurgery practices and their effect on tissue. 

The surgical smoke formed in electrosurgery is harmful for the operating room 

staff through the inhalation of the produced particulate matter [131,132]. There are 

not many comprehensive studies regarding the general composition of electrosurgical 

smoke, but it has been stated that 5% of the smoke consists of vaporised cellular 

content possibly including structural biomolecules, blood, viruses and bacteria, and 

the remaining 95% is water or steam [133]. Of the vaporised cellular contents of 

surgical smoke, some studies have concentrated on determining the components that 

are critical to occupational safety and harmful to inhale [134–136]. In these studies, 

carcinogenic volatile organic compounds (VOCs), such as benzene, toluene and 

xylene, have been shown to be abundant in surgical smoke. Due to the safety concerns 

regarding surgical smoke, the emphasis on removing it from the vicinity of hospital 

staff has increased, and it has been recommended that smoke evacuation should be 

implemented as standard practice in all smoke-producing energy instrument 

operations [137]. This, in turn, would increase the applicability of surgical-smoke-

based tissue identification to include a wider range of cancer surgeries. 
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2.4 Differential mobility spectrometry 

To identify tissues based on surgical smoke, measuring of the molecular content of 

the vaporised tissue is a viable option. MS has been shown to be applicable as a 

measurement instrument, but its complexity, size and high initial and upkeep costs 

hinder or prevent its clinical adoption. The complexity of MS devices is mainly a 

result of the need for a vacuum in which a gaseous substance can be directly ionised 

and measured based on its mass and charge [101]. In atmospheric pressure, gas-phase 

analytes can be measured based on their ion mobility that represents the speed with 

which an ionised sample swarm travels in a carrier gas in an electric field [138]. Ion 

mobility spectrometry (IMS) considers the shape, size and charge of the sample 

molecules and thus provides partly complementary information compared to MS. 

However, the resolving power of IMS technology (in the range of ~101–102) is several 

magnitudes lower than that of MS (depending on the operation principle ~104–105) 

[139]. The resolving power measures the capability of an instrument to distinguish 

adjacent signal peaks (i.e., ions with a similar collisional cross section in IMS or ions 

with similar mass in MS) from each other [140]. In practical terms, this means that 

MS is far more effective in separating distinct signal peaks from complex sample 

matrices, while in IMS different ions can form clusters with similar mobility 

properties that will more easily overlap in the produced output data. The signal peaks 

are also wider in IMS than in MS. This difference is mainly explained by the fact 

that, due to the vacuum in MS, diffusion does not broaden the trajectory of ion 

packets, as it does in IMS [139]. The vacuum also explains the difference in the 

clustering of ion species, since the cluster-forming interactions with the analyte and 

a carrier gas are absent in MS. To compensate for the clustering of ion species in 

atmospheric pressure, and to increase the ion separation, a technology was introduced 

by a Russian research group in the 1980s (and made globally public in the 1990s after 

the Cold War) [141]. They found out that the mobility of an ion swarm is nonlinearly 

dependent on the strength of the imposed electric field and that the phenomenon can 

be effectively utilised in separation by subjecting the ion swarms to a radiofrequency 

(> 200 kHz) asymmetric electric field. This technology is known as differential 

mobility spectrometry (DMS), often also referred to as field asymmetric ion mobility 

spectrometry (FAIMS). 

The operating principle of DMS instruments can be divided into three main 

entities: ionisation, filtration and detection. The ionisation of the gas sample can be 

achieved in multiple ways and with different ionisation energies which affect the total 

ion yield and what substances are ionised [142]. Common means for ionisation are 
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Ultraviolet lamps (low ionisation energy, ~10 eV), radioactive isotopes (medium or 

high energy depending on the source, keV–MeV range), corona discharge (high 

ionisation energy, MeV range), and x-ray sources (medium ionisation energy, keV 

range). Especially with medium and high ionisation energies, the analyte ions are not 

normally the primary ion species in the ionised gas. Instead, due to the extreme 

abundance of carrier gas molecules compared to the analyte molecules, almost all 

ions are initially so-called reactant ions that transfer their charge to the analyte 

molecules through chemical ionisation due to collisions after the ionisation [138]. 

When the carrier gas is air, the positive reactant ions are primarily protonated water 

clusters (H+(H2O)n) and the negative reactant ions are deprotonated water clusters 

(O2
-(H2O)n). The role of water as a reactant ion makes humidity an important factor 

in the measurements, since the amount of reactant ions is directly linked to it. In a 

complex sample, the analyte molecules compete for the charge transfer, and, in 

addition to the abundance of a specific analyte, the proton (or electron) affinity of the 

substance is an integral factor. Proton affinity describes the heat energy associated 

with the removal of a proton from a molecule, expressed as kJ/mol [143]. The higher 

the affinity, the more prone the molecule is to ionise through chemical interactions, 

i.e. collisions with ions with lower affinity, in the ionisation process. If air is used as 

the carrier gas, molecules with a lower proton affinity than water will not be detected, 

since the charge transfer in the collisions favours the substance with the highest 

affinity. In a situation where the abundance of different analyte molecules (with 

higher affinity than water) is similar, each analyte molecule group can collide with 

reactant ions (or rarely with each other) and form distinct ion peaks in the output 

[144]. However, the differentiation of substances diminishes if the sample has a very 

large concentration of some molecules with high proton affinity. As an example, the 

proton affinity of water has been shown to increase in relation to humidity as the size 

of the water molecule clusters increase [145]. In extreme moisture, the proton affinity 

of water can be so high that the molecules “steal” all the charge and cause a situation 

in which other analyte molecules stay neutral and do not reach the detector, resulting 

in only a single signal peak in the spectrum [144,146]. In a simplified setting, in 

normal humidity (and in the positive polarity) with one measured substance in a 

carrier gas, a neutral analyte molecule (M) first forms an intermediate adduct ion as 

a result of a collision with a reactant ion (H+(H2O)n). This intermediate product is 

stabilized by dissociation back to the reactants, or by the displacement of water, 

which produces a protonated monomer and neutral water (Equation 1). If the sample 

concentration is high enough, the protonated monomer can be accompanied by 

another sample neutral molecule to form a proton-bound dimer (Equation 2) [146]. 
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In theory, trimers and tetramers can also be formed, but their lifetime after the 

ionisation region is too short for them to reach the detector, as they more easily 

dissociate back to their reactants [138]. An example of how the reactant ion peak 

(RIP), protonated monomer and proton-bound dimer are seen in the DMS output in a 

simple measurement of 1-butanol is demonstrated in Figure 7. 

𝑀 + 𝐻+(𝐻2𝑂)𝑛 ↔ 𝑀𝐻+(𝐻2𝑂)𝑛 ↔ 𝑀𝐻+(𝐻2𝑂)𝑛−𝑥 + 𝑥𝐻2𝑂 (1) 

𝑀𝐻+(𝐻2𝑂)𝑛 + 𝑀 ↔ 𝑀2𝐻
+(𝐻2𝑂)𝑛−𝑥 + 𝑥𝐻2𝑂 (2) 

 

 

Figure 7. DMS measurement of 1-butanol at a concentration of 40 parts-

per-billion (volume) showing the formation of characteristic ion peaks. The 

ion peaks are formed with different separation voltage (USV) and 

compensation voltage (UC) pairs and produce a pA-range current that is 

represented as colours in the plot. In this image, the current is presented as 

cube root values to enhance peak visibility 

After the analyte ions are formed, they are subjected to an asymmetric 

radiofrequency electric field in the DMS filter region, where the strength of the field 

alternates between high (> 20000 V/cm) and low (~ -2000 V/cm) with a duty cycle 

of 5%–30%, so that the integral is zero [147,148]. Each ion swarm that enters the 

DMS filter region can be thought to have a certain mobility coefficient (K) that 

depicts their drift velocity (v) in an electric field (E) [139]: 
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𝐾 =
𝑣

𝐸
(3) 

The drift velocity of a measured ion swarm depends on the pressure (P) and 

temperature (T) inside the DMS filter region, which is why a normalised form of the 

mobility coefficient is often used, when describing and comparing ion mobilities. 

This so-called reduced mobility coefficient (K0) is normalised to a standard pressure 

of 760 torr and temperature of 273 K as follows: 

𝐾0 = 𝐾
𝑃

760

273

𝑇
(4) 

The mobility depends on the collisional cross section and charge of the ion 

species, and, as such, similar mobility values between different ion species are 

possible. However, the mobility coefficient does not remain constant, and it changes 

based on a nonlinear ion-specific characteristic function (α(E/N)). This phenomenon 

is utilised in the rapidly changing electric field of the DMS filter region. The field-

dependent mobility (K(E/N)) can be equated as: 

𝐾 (
𝐸

𝑁
) = 𝐾0 (1 + 𝛼 (

𝐸

𝑁
)) (5) 

The field dependence is notated as (E/N), since the motion of ions is affected by 

the combination of the strength of the field (E) and the neutral molecule density (N). 

The movement of ions is increased along with increasing E, but, conversely, the 

losses in kinetic energy increase with a higher N due to increased collisions [149]. 

The α(E/N) function of an ion species is a complex phenomenon, but it can be 

explained by the clustering of an analyte with carrier gas molecules (or added dopant) 

[150]. As an example, species with a positive change in the α(E/N) function in 

increasing field strength can form a cluster (e.g., MH+(H2O)n) with a certain 

collisional cross section in a low field. Then, in a high field, as a result of increased 

kinetic energy and the resulting energetic collisions with neutrals, the vibrational 

energy of the ion cluster increases, and this disperses the cluster. As a result, the 

collisional cross section of the analyte ion is reduced, which, in turn, increases its 

mobility. When the strength of the field is lowered again, the cluster re-forms [151]. 

A depiction of this phenomenon is shown in Figure 8. As this alternation of a low 

and high field is repeated, the net movement of the analyte is positive compared to 

its movement in a standard low field. It is worth noting that the field dependence can 

also be negative, which holds true especially for proton-bound dimers and large ion 

species. This is likely because the decrease in the collisional cross section due to 

declustering is not enough to compensate for the increased number of collisions in a 
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high field that reduce the kinetic energy of the analyte. Thus, these types of ions 

actually move faster in low fields [151]. Either way, ion species that could have 

similar trajectories in a constant field can be separated in DMS due to this 

phenomenon. 

 

Figure 8. Depiction of an ion species (M) with positive field-dependent 

mobility. In a high electric field (E/N), the collisional cross section of the 

analyte cluster is reduced, and its mobility (K) increases. 

If the DMS filter region would be governed by the alternating electric field alone, 

only ions that have no field dependence would be able to pass, as their net movement 

does not change in relation to the field alternation. To selectively measure field-

dependent ions as well, a direct current electric field is imposed to the filter region to 

change the trajectory of those ion species that would otherwise neutralise as they 

collide with the filter electrodes [152]. A compensation field of only a small fraction 

of the strength of the alternating field is enough to correct the trajectories of the ion 

species affected by the field dependence. The strength of the compensation field is 

dependent on the compensation voltage, UC (or VC), and is usually in the range of 

approximately -15 V to 15 V, compared to the separation field voltage, USV (or VRF), 

values of 200 V to 1000 V. By altering the UC value, ion species that have a positive 

or negative α(E/N) will reach the detection area, where they will produce a current 

signal in the range of pA upon impact with a detector plate. In the detection area, an 

electric field created by positive and negative bias voltages (VB+ and VB-, typical 

values ± 3 V) drive the ions to the detector plates. A schematic representation of the 

structure of the main entities and operation principle of a DMS instrument is depicted 

in Figure 9. 
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Figure 9. The operation principle of DMS. The filter dimensions and 

ionisation source (Americium-241) are based on the DMS used in the thesis 

research. Only ions with a net mobility of zero will reach the detector area 

where an electric field created by bias voltages (VB+ and VB-) force the ions to 

a detector plate. 

By systematically measuring different pairs of UC voltages and the asymmetric 

electric field maximum voltages (USV), all ion species of the sample can ideally be 

measured in one measurement sweep to produce a comprehensive view of the 

molecular mixture of the sample gas. Typically, this is the way to produce the output 

of a DMS measurement in the form of a dispersion plot. However, the measurement 

of all UC-USV voltage pairs is not ideal, especially if the allotted measurement time is 

limited. Each measured voltage pair adds tens of milliseconds to the total 

measurement duration, but some parts of the dispersion plot do not contain 

information on the measured sample [148]. At low USV field voltages, the change 

between a high and low field is not enough to disperse the ion clusters, and, as a 

result, the only visible signal peak is seen at compensation voltages near zero. On the 

other hand, at high USV voltages, the dispersion of the species increases, but, at the 

same time, the increased movement towards the filter walls and the resulting 

neutralisation diminish the total yield of ions that manage to pass through the filter 

intact. This means that the signal-to-noise ratio is much lower with high USV values. 

Additionally, most substances do not have a higher positive α(E/N) than water, 

meaning that the area “beneath” the reactant ion peak is almost always devoid of 

information (if the carrier gas is air without additional dopants). The same applies to 

the area located to the left from the characteristic peak for proton-bound dimers and 

other heavy ion clusters, since substances with a lower negative α(E/N) are non-

existent. Figure 10 highlights the information areas of the dispersion plot in an 
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example measurement of α-pinene, which is a natural hydrocarbon with various 

pharmacological effects and potential clinical applications [153]. 

 

Figure 10. A dispersion plot of α-pinene with areas of no information 

darkened. The colours in the plot represent the number of ions that produce 

the measured pA-range current, with certain compensation voltage (UC) and 

separation voltage (USV) values. 

DMS as a technology is more robust than MS. Individual instruments can retain 

their functionality without major maintenance or calibration for several years, which 

is why the technology has been used for air quality monitoring in space stations and 

submarines [154]. In biomedicine, DMS has been utilised in, for example, the 

identification of bacteria and in breath analysis [14,155,156]. DMS has also been 

shown to be applicable to quantifying a mixture of phospholipids, lecithin, in 

controlled measurement conditions [157]. Still, the translation of a DMS spectrum 

into definitive molecules or compounds gets increasingly complicated in 

heteromolecular media due to the increased degrees of freedom through molecular 

interactions that affect the field dependence of the ion swarm and that are hard to 

model or simulate [158,159]. Thus, when considering the biomolecules that are at the 

forefront in tissue identification, there has not been extensive research in the use of 

DMS alone in proteomics or metabolomics. However, DMS has been used together 

with MS in these applications [160,161]. Because DMS can be thought of as a filter 
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that only allows ion swarms with a certain electric field dependence (α(E/N)) to pass, 

the separation capability of MS systems can be greatly increased if the technologies 

are used in tandem. In addition, the identification of isomers and other molecules with 

a similar mass but a different structure is possible, if DMS is used prior to MS. The 

added detection capability functions well in omics applications, but clinical 

applications would benefit greatly from the exemption of a mass analyser due to the 

reduced cost, size and complexity. However, since DMS is not equipped for the 

analysis of specific molecules similarly to MS, if the application is solely dependent 

on the output of a DMS device, the data analysis methods to be applied require careful 

consideration. 

2.5 Data analysis 

The DMS output spectrum is a representation of the measured gas sample, but 

especially in a heterogeneous sample matrix, the subtle differences in the spectra are 

not always clear upon visual inspection. Therefore, identification through machine 

learning methods from the values of the DMS output data can be a more viable option. 

Machine learning is used to find generalizable patterns from (especially 

multidimensional) data and utilising these patterns to predict the type or class of new 

data [162]. In the studies presented in this thesis, the analysed data entailed the DMS 

dispersion plots that were produced for each sample. This means that the measured 

current signal with each UC-USV pair was treated as a separate input variable in the 

data analysis and classification. 

Data can be separated into different groups using labelled or unlabelled data. If 

unlabelled data are used, the aim is to find features that create separability within the 

dataset without specific training, reinforcement or information regarding the true 

class or type of the samples [163]. Clustering methods in which samples are grouped 

together based on similarity of the data features are an example of this type of 

unsupervised learning. In the studies presented in this thesis, unsupervised learning 

was not extensively utilised. Still, it could be useful in DMS-based tissue imaging in 

pathological applications to highlight grossly distinct areas based on their smoke 

profile, without training a model or labelling, as demonstrated in Publication III. 

However, to assign a class and explicitly predict the type of operated tissue, 

supervised learning is needed. In supervised learning, a classification (or a 

regression) model is trained with example data to learn a function that transforms 

numerical input data to a categorical output [164]. 
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An example of a supervised classification method is linear discriminant analysis 

(LDA), which was utilised in regularised form in all publications presented in this 

thesis. In LDA, two or more known groups are separated by a linear decision 

boundary (or boundaries) in such a way that the variation within the group is 

minimised and the between-group variance is maximised [165]. Mathematically 

expressed, the principle of LDA for a two-class problem is to find a projection vector, 

�⃗⃗� , to maximise the value of a criterion function, 𝐽(�⃗⃗� ): 

𝐽(�⃗⃗� ) =
�⃗⃗� 𝑡𝑆𝐵�⃗⃗� 

�⃗⃗� 𝑡𝑆𝑊 �⃗⃗� 
, (6) 

where 𝑆𝐵  represents the between-class scatter matrix and 𝑆𝑊 represents the 

within-class scatter matrix of the data. The solution vector that optimizes the function 

is called the Fisher’s linear discriminant and can be expressed as: 

�⃗⃗� = 𝑆𝑊
−1(𝑚1 − 𝑚2), (7) 

where 𝑚1 and 𝑚2 are the sample means for the separable classes. The Fisher’s 

linear discriminant thus presents a linear function that maximises the distance 

between class means and minimises the variance within the classes. In LDA, the 

additional assumption is made that the data are normally distributed and that the 

classes share a common covariance matrix. For a simple setting of two-dimensional 

data and two separable classes, the decision boundary for class separation is a normal 

of the Fisher’s linear discriminant to which the projection of the data points produces 

maximum separability. A visual depiction of this situation is presented in Figure 11. 

If the data has three dimensions or has been reduced to such, the decision boundary 

is a two-dimensional plane [166]. For higher-dimensional data, such as the DMS data 

in this thesis, the decision boundaries are also higher-dimensional planes, and, as 

such, cannot be easily represented visually. 
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Figure 11. Simplified illustration of linear discriminant analysis in a two-

dimensional feature space. 

It can be beneficial to reduce data dimensionality to highlight informative areas in 

the feature space and to improve the classification performance by removing 

redundant or noisy features that contain no information and add no value to class 

separation [167]. To reduce the data dimensions, a process called forward sequential 

feature selection (FSFS) was utilised in Publications II, III and IV. In FSFS, the 

features of the data are selected one by one in the order of increasing classification 

accuracy [168]. In practice, this means that the feature selection algorithm explores 

the emptied feature space and first selects the feature that produces the highest 

classification accuracy for a given model. After the first selection, another feature is 

selected with the same principle. This process is continued until a stopping criterion 

is met, which can be defined as a specific number of features selected or a point where 

significant improvement in classification is not achieved with further feature 

additions [169]. 
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In addition to LDA and FSFS, in Publication IV, convolutional neural network 

(CNN) analysis was experimented. Since then, CNN has also been used in the 

prediction of lecithin concentration from DMS data [157]. CNN is a more complex 

supervised learning method that is especially utilised in image classification [170]. 

Since the output of DMS measurements can be presented as a two-dimensional 

dispersion matrix that can be interpreted as an image with distinct peak shapes and 

intensities, CNN provides a feasible alternative to the analysis of DMS data. In 

principle, CNN is a specialised case of an artificial neural network that loosely 

mimics the function of the human visual cortex, with large numbers of interconnected 

neuron layers that transform the input data to a categorical output by assigning and 

adjusting weighing coefficients for the features of data based on a training set. Before 

the neuron layers, however, the data in CNN is first passed through convolutional 

layers that basically function as a filter for the raw (visual) data to extract high-level 

two-dimensional features (e.g., peak edges) [171]. Due to its complexity and 

extensiveness of parametrisation possibilities, the training of CNN models can be 

computationally demanding and slow, and it often requires a large amount of training 

data. However, rather than treating each feature as independent, CNN considers the 

continuous structure of the data and can be used to model nonlinear phenomena. 

Thus, with a sufficient amount of training data, CNN is likely to outperform the 

simpler methods in terms of classification performance, especially in complex 

classification problems [157,172].  

The classification performance of a machine learning model is traditionally 

measured with classification accuracy, which expresses the percentage of correctly 

classified samples of a test set or sets. In a diagnostic setting with only two separable 

classes, sensitivity and specificity are also often used as performance metrics. 

Sensitivity describes the fraction of positive samples that have been correctly 

identified, whilst specificity does the same for the negative samples [173]. In 

addition, positive predictive value (PPV) and negative predictive value (NPV) are 

used as metrics to assess the value of the corresponding test result to a clinician, since 

they account for the prevalence of the tested condition [174]. A more detailed 

representation of the classification performance can be given in the form of a so-

called confusion matrix. A confusion matrix presents the classification results in two 

dimensions, so that the true and predicted classes are presented by table rows and 

columns [175]. Table 3 shows an example confusion matrix for a diagnostic setting, 

with the formulas for the diagnostic metrics also provided. 
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Table 3. An example confusion matrix for a diagnostic setting for the 

identification of malignant samples with formulas for sensitivity, specificity, 

positive predictive value (PPV) and negative predictive value (NPV). 

  Predicted class  

  Malignant Benign  

A
ct

u
a
l 

cl
a

ss
 Malignant 

98  

True positives (TP) 

2  

False negatives (FN) 

Sensitivity = 

TP/(TP+FN) 

= 98% 

Benign 
6  

False positives (FP) 

94  

True negatives (TN) 

Specificity = 

TN/(TN+FP) 

= 94% 

  
PPV =  

TP/(TP+FP) ≈ 94% 

NPV =  

TN/(TN+FN) ≈ 98% 
 

The performance of a classification model in a binary setting can also be examined 

with a so-called receiver operating characteristic (ROC) analysis, as in Publication 

II. ROC depicts the relationship between the specificity and sensitivity of a model by 

plotting the true positive rate, which is an another term for sensitivity, as a function 

of the false positive rate [176]. The false positive rate portrays the probability of a 

false positive and its value can be written as 1-true negative rate (i.e. 1-specificity). 

Classification models assign a class to a new sample based on the features learned 

from the training data. Based on the similarity of the sample compared to the training 

data, classification models also produce a posterior probability score for the 

prediction, which basically shows the perceived certainty (probability) of the sample 

belonging to a certain class. The ROC curve can be produced based on these scores. 

In a standard situation where a sample is equally likely to belong to either the positive 

or the negative class, the threshold level for the posterior probability score for 

assigning a class is 0.5. As an example, if the classification model produces a score 

of 0.57 for the prediction of malignant tissue, the displayed classification result is 

malignant. However, the threshold level can be adjusted if, for example, the 

sensitivity of the diagnosis is deemed more important than the specificity. This can 

be of value, when the class sizes are significantly unequal. In ROC analysis, the 

resulting true positive and false positive rates with different threshold levels are 

plotted as a curve and often accompanied by the value for the area under the curve 

(AUC) to give a numerical value for the performance [177]. In the ideal case of a 
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perfect classification model that detects every positive (and negative) sample without 

fail, the ROC curve will form a rectangle with an area of 1, since all predictions will 

be correct regardless of the threshold selection. If each negative sample receives a 

higher posterior probability score than the positive samples, then every sample will 

be misclassified and the AUC will be zero. An example ROC curve drawn from the 

breast cancer data used in Publication II is presented in Figure 12, alongside the 

values for the posterior scores and their corresponding metrics. 

 

Figure 12. An example receiver operating characteristic (ROC) curve for 

DMS-based identification of breast cancer. If the threshold for assigning the 

positive class to a sample based on the posterior probability score would be 

below 0.2437 and above 0.2428, as indicated with the red line, all 

predictions above the line would be malignant. This would increase the 

sensitivity to 92.45% but decrease the specificity to 71.21%. The ROC curve 

shows all possible discretised results of the threshold variation. 

When presenting any of the metrics for classification performance in a supervised 

model, it is crucial to disclose the details of the datasets for which the results hold 

true. The importance of transparency is due to a phenomenon called overfitting. Since 

a supervised model is trained with a certain dataset, the predictions it performs are 

based on the exact properties of that particular dataset, even if some of those 

properties are not descriptive of the true class differences but only exhibit noise or 

otherwise random variation [178]. Therefore, if the same dataset would be used as an 

input for the classification, the result could be 100% correct. However, this says 

nothing of the model’s capability to predict new data, which is why a process known 

as cross-validation is often used.  
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In cross-validation, part of the same dataset is excluded from the training process 

and used as a test dataset containing data points that are essentially new to the model. 

Commonly, cross-validation is performed by splitting the dataset multiple times with 

different (yet equal-sized) sample partitions for training and testing, which are done 

separately for each split. The classification performance is then reported as the 

average of the classification with each partition to give an estimate of the performance 

for the classification problem [179]. Often, the dataset is randomly partitioned into k 

folds, where k is a natural number – for example, 5 or 10. A special case of k-fold 

cross-validation is leave-one-out cross-validation (LOOCV), where each sample is 

used as a test set in turn. LOOCV is computationally more demanding, since the 

training phase must be carried out as many times as there are samples in the dataset, 

but the method can be useful if the dataset is limited in size and it is not possible to 

gather more data to use as a separate test set. However, the problem with reporting 

cross-validated results lies in the fact that the data within a certain set is rarely 

independent. For example, a certain set of data could be measured on the same day 

in similar environmental conditions, samples can come from the same source (e.g., 

patient), and/or the measurement instrument could have some contamination or 

baseline signal during the measurements.  

All of these factors could affect the measurement result. Therefore, a model can 

be overfitted to features of the training data that do not, in reality, describe the 

differences between the classes and still yield good results with random split cross-

validation. With fully independent testing datasets, overfitting can be more 

effectively distinguished, and the reported result will reflect the generalisability of 

the performance better. As such, completely separate independent test data are always 

preferred and should be standard practice, when presenting classification results 

[180,181]. However, especially with small sample sizes, LOOCV or k-fold cross-

validation are also sometimes used, even though they are susceptible to producing 

over-optimistic results. Examples of this can be found in some of the studies that 

report the tissue identification performance of current margin assessment 

technologies [106,109,125,182]. The same applies for the studies presented in this 

thesis, which is why overfitting and its proper mitigation are aspects that could have 

been improved upon in the study design of the research in this thesis. 
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3 MATERIALS AND METHODS 

The focus of this thesis is the utilisation and development of the DMS-based tissue 

analysis system from preliminary proof-of-concept animal studies to the first pilot 

study in an operating room. During each phase, the system was gradually improving 

to facilitate the real-time analysis of tissues in vivo. This chapter explains the 

technical evolution of the system and the research setup for each publication. The 

main aspects of the research setup in each phase are listed in Table 4 at the end of 

this chapter. 

3.1 Porcine tissue identification 

After conceptualising the idea of a DMS-based tissue analysis system, the aim of the 

first research setup was to provide proof that the concept works. For this purpose, ten 

landrace pig tissue types were obtained from a slaughterhouse (Paijan tilateurastamo, 

Urjala, Finland). All tissues, except muscle and fat from flank pieces, were offal and 

would have been disposed of as waste. The tissues were kept in a freezer at -18 °C 

and thawed before the measurements. The choice to use porcine tissue in the 

feasibility testing of the system was mainly based on the availability of the material 

and ethical considerations. However, porcine tissues are also a relatively good 

substitute for human samples, due to their similar anatomy, physiology and 

metabolism [183,184]. Presumably, these similarities also extend to their properties 

regarding tissue evaporation and coagulation. 

The tissues were measured in three phases. In the first phase, ten samples from 

five tissue types (lung, liver, fat, skeletal muscle and renal cortex) were measured 

during one measurement session. In the second phase, five more tissues (cardiac 

muscle, tongue, skin as well as grey and white matter of the brain) were added, and 

each tissue was sampled 60 times, resulting in 600 measurements. In the third phase, 

the remaining tissue pieces from the renal cortex, skeletal muscle and fat were 

measured during one session to form a small testing set with 10 samples from each 

tissue. The tissues in the first study were measured with the first iteration of the 

system. In its infancy, the system was only the sum of its parts without much 
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consideration for the appearance or optimal function. Nonetheless, all the parts of the 

first system functioned as the core in future system iterations as well. The 

measurement system can be divided into three parts: tissue sampling, surgical smoke 

sample pre-processing and DMS measurement. 

The tissue was sampled by an electrosurgical instrument (blade: HF 9805-24, 

HEBUmedical GmbH, Germany; power source: Itkacut 350 MB, Innokas Medical 

Oy, Finland) that was attached to a modified 3D printer platform (REPRAP, Mendel 

Prusa i3 kit, KitPrinter3D, Spain), where the filament extruder was replaced with the 

electrosurgical blade. This allowed XYZ-directional control of the surgical 

instrument. The sampling was controlled by a graphical user interface (GUI) coded 

with MATLAB (The MathWorks Inc., USA) that allowed for the creation of 

automated incision sequences with fixed cut durations and depths. The sampling 

stage created the tissue smoke that was then filtered and diluted in the sample pre-

processing stage. The filter removed large contaminating particulate matter from the 

smoke sample and the dilution decreased the sample concentration in order to prevent 

measurement saturation. After the sample pre-processing, the smoke was measured 

with the DMS (ENVI-AMC®, Environics Oy, Finland). Together, the sampling 

stage, pre-processing stage and the DMS formed the automatic tissue analysis system 

(ATAS). The first iteration of the ATAS is illustrated in Figure 13. 

 

Figure 13. The first iteration of the automatic tissue analysis system. A) 

Electrosurgical unit. B) Tissue sample. C) Sampling platform. D) Surgical 

evacuator. E) Corona discharge filter. F) Dilution system using purified and 

dried dilution air. G) ENVI-AMC® differential mobility spectrometer. 

Modified and reprinted with permission from Springer Nature: Springer 

Nature, Annals of Biomedical Engineering, Tissue Identification in a 

Porcine Model by Differential Ion Mobility Spectrometry Analysis of 

Surgical Smoke, Anton Kontunen et al., Copyright © 2018, Biomedical 

Engineering Society. 
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Most parts of the first ATAS system were commercial devices chained together, 

but the filter was custom-built with the requirements of a real-time tissue analysis 

system already in mind. The simplest and most inexpensive solution for removing 

the large particulate matter could have been to use glass fibre filters, but the resulting 

particulate residue in the filters and pressure differences would likely have caused 

issues with carry-over residue and sample flow dynamics [185]. Thus, an electric 

filter based on a corona discharge was incorporated in the system. The electric filter 

consisted of a needle electrode in high potential (~5 kV) and a grounded copper 

casing. The principle of operation relied on the ionisation of the initial sample stream, 

after which the ionised particles would migrate towards the grounded casing. After 

neutralisation, large particulate matter would travel to a waste outlet while smaller 

molecules would enter a sample outlet located at the root of the needle electrode. The 

filter was conceptualised, simulated and tested before the research presented in this 

doctoral thesis, and measurements conducted for a master’s thesis work revealed that 

the filtration efficiency was at least 99.99% for particulate matter with a diameter of 

7 nm to 10 µm [186]. This infers that the harmful airborne substances, such as 

potential soot particles, bacteria and viruses, are extremely effectively removed from 

the measured sample [187]. Therefore, the electric filter was considered an important 

aspect of the measurement system to prevent contamination, and the core design was 

maintained in all iterations of the tissue analysis system.  

Another integral part of the system that would remain unchanged throughout the 

thesis research is the ENVI-AMC DMS device. Its DMS filter channel is 0.25 mm 

high, and the device can create a 250 kHz separation field with strengths of 10–80 

Townsend (Td). Td is commonly used when discussing DMS, since the unit also 

takes into account the number of neutral molecules in the electric field, i.e. E/N [188]. 

One Townsend equals 10-17 V/cm2, so the field strengths of 10–80 Td in standard 

conditions (20 °C,  atmospheric pressure) and with, for example, 2.5 × 1019 neutral 

molecules in a cubic centimetre can thus be written as 2500–20,000 V/cm. The 

compensation field produced by the ENVI-AMC device can be between -1.5 Td to 

1.5 Td. In the device user interface, the field strengths are controlled by setting a 

starting and stopping value for the compensation and separation field voltages. In 

addition, the number of increments for both fields is selected. This results in one full 

measurement containing a selected number of successively measured UC-USV voltage 

pairs that together form the dispersion matrix. 
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In the first study, the compensation voltage was incrementally increased 

from -0.8 V to 9 V in 40 steps and the separation voltage from 440 V to 770 V in 4 

steps. This resulted in a relatively small dispersion matrix of 160 values (per ion 

polarity). The voltage limits were chosen based on the assumption that those areas in 

the dispersion plot were most likely to contain the relevant information as described 

in Section 2.3. The low resolution was due to the required, relatively short sampling 

time. The electrosurgical smoke was produced for approximately five seconds per 

cut, so the measurement duration had to be limited. Longer cuts were not considered, 

since the amount of surgical smoke with the five-second automated cut was already 

substantial enough to cause a significant carry-over signal that required a three-

minute waiting period between the measurements. In the first study without prior 

information on the classification performance, the decision was made to include the 

measurement of both polarities, even though this increased the measurement time to 

a total of 12 seconds, since both polarities could not be measured simultaneously with 

the ENVI-AMC. 

The 160 values from both polarities were used as the data features to classify the 

tissue types. The classification models were created with MATLAB using the 

Statistics and Machine Learning Toolbox function for LDA (fitcdiscr) with 

regularisation. In LDA analysis, the assumption is made that the discriminated 

populations share a common covariance matrix. The covariance matrix can be 

modified with a regularisation term, so that the sample-based estimate of the 

covariance matrix is replaced with an estimate that lessens the importance of 

individual features [189]. Regularisation is often mandatory for DMS data because if 

each value in the spectra is used as a predictor in a model, the number of dimensions 

can, in some cases, exceed the number of observations, and, in addition, the features 

can be correlated or completely non-informative. This means that the prerequisite of 

a common covariance matrix is not achieved and non-regularised LDA cannot be 

used [190]. The decision to use (regularised) LDA was based on exploratory analysis 

of preliminary DMS data where it produced the highest classification accuracies in 

tissue identification, when compared to other supervised classification methods, such 

as k-nearest neighbours and support vector machines. LDA has also been successfully 

utilised with IMS and DMS data for the detection of prostate cancer and 

gastrointestinal diseases from urine samples [191,192]. In addition, LDA has been 

extensively utilised in REIMS studies and shown to outperform several other 

classification methods in discriminating cancer from benign samples based on MS 

data from blood serum [193–195]. The performance of the LDA classification models 

used in the different phases of the measurements in Publication I were evaluated with 



 

62 

LOOCV or 10-fold cross-validation, or by holding out 30% of the data as test 

samples. 

3.2 Breast cancer identification 

The next step in the research was to test the system with clinically relevant tissues. 

Since breast cancer surgery is one of the main application areas for the proposed 

margin assessment system, human breast samples were chosen as the material for the 

proof-of-concept study. With the approval of the Ethical Committee of Tampere 

University Hospital (code R17007), refrigerator-stored 4 mm punch biopsy samples 

of breast cancer and benign tissue collected from a total of 21 patients were used as 

sample material. The total number of analysed measurements was 304 (106 

malignant, 198 benign). Since the biopsy samples were much smaller in size than the 

tissue pieces used in the first study, the sampling process needed to be refined. Instead 

of placing the samples directly on the sampling platform and producing line incisions 

to create the tissue smoke, an aluminium well-plate that would help to position the 

samples for more controlled and sparing point-like sampling was used. The well plate 

kept the small samples in place and enabled the creation of an automatic measurement 

sequence with pre-determined distances between the samples.  

Other parts of the system used in the breast cancer study had some alterations 

compared to the first study as well. More specifically, the pre-processing stage of 

ATAS was modified by adding a stainless-steel sample chamber for the filtered and 

diluted smoke. The chamber allowed for a longer measurement of the sample through 

a controlled release of smoke with proportional valves. This enabled the acquisition 

of higher-resolution DMS spectra from the tissue samples. The aim was to highlight 

the areas of interest in the spectra between malignant and benign samples more 

accurately. Furthermore, after the initial study with porcine tissues, the negative 

dispersion plots were not utilised, since the acquisition of the negative spectra with 

the DMS instrument would have doubled the measurement time. Even though this 

meant that potential identifiable molecular features could be lost, the classification 

performance with only the positive spectra was shown to be similar to the 

performance with both polarities in previous measurements with porcine tissues. This 

suggested that, at least in the porcine tissue identification, the differentiable features 

that manifest in the positive spectra are sufficient for achieving good classification 

performance. In addition to the inclusion of the sample chamber and exclusion of the 

negative spectra, the pneumatic lines of the system were shortened to reduce the 
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carry-over effect by limiting the available adhesion area for the gas molecules. The 

sample pre-processing unit was also packaged into a box, rather than being a scattered 

set of pressure ejectors, valves and tubing as before. An illustration of the ATAS used 

in Publication II is presented in Figure 14. The system used in the breast cancer 

identification was also utilised to identify different types of brain cancers 

successfully, as reported in a separate publication [196]. 

 

Figure 14. The second iteration of the automatic tissue analysis system. A) 

Electrosurgical unit. B) Sampling platform. C) Sample well plate. D) 

Surgical evacuator. E) Sample pre-processing unit. G) ENVI-AMC® 

differential mobility spectrometer. Reprinted with permission from Elsevier: 

Elsevier, European Journal of Surgical Oncology, Identification of breast 

tumors from diathermy smoke by differential ion mobility spectrometry, 

Maiju Sutinen et al., Copyright © 2018 Elsevier Ltd, BASO ~ The 

Association for Cancer Surgery, and the European Society of Surgical 

Oncology. All rights reserved. 

The modified ATAS enabled the acquisition of a dispersion plot with 1620 UC-

USV pairs for each measured sample. The limits of the compensation and separation 

voltages were kept the same as in Publication I (-0.8–9 V and 440–770 V, 

respectively), but the number of steps was increased to 90 for compensation voltage 

and 18 for separation voltage. The DMS measurement duration was approximately 

one minute, after which the sample chamber was cleansed with purified air for an 

additional minute. The data produced in the measurements were again classified by 

first using LDA with 10-fold cross-validation and then separately by training a model 

with 70% of the data and holding out 30% as test samples. However, as an addition 

to the data analysis, FSFS was also implemented in MATLAB to study how many 

features of the spectra are needed to identify the tissue types. The feature selection 

was repeated 1000 times with different cross-validation partitions to ensure that the 
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features selected in the process were not a result of random noise in the features. A 

ROC curve was also plotted to further illustrate the diagnostic performance of the 

LDA classification with the features selected with FSFS. 

3.3 Tissue imaging 

After the proof-of-concept study for ex vivo tissue identification by means of DMS 

analysis of surgical smoke with breast cancer tissue was completed, the aim was to 

expand the application field of the tissue analysis system and test its function in tissue 

imaging. This meant that the focus of the development would not be in improving the 

system towards surgical use. Instead, the focus was on proving that DMS-based tissue 

identification could also work in pathological applications. Molecular tissue imaging 

is a field that is dominated by MS analysis [197–199]. However, as with the surgical 

application, DMS could provide a more inexpensive, more maintainable and simpler 

solution than MS. The aim in DMS-based tissue imaging would specifically be to 

complement traditional histopathological analysis by providing an overview of the 

tissue and to pinpoint potential areas of malignancy that would then be subjected to 

further analysis. 

Since the acquisition of full pathological slides of clinically relevant tissues was 

not feasible for a proof-of-concept application of an experimental method, the 

decision was made to return to slaughterhouse offal of porcine tissue for the 

measurements. This time, the tissue types were lung, renal cortex, renal pelvis, liver, 

grey matter, white matter, skeletal muscle and adipose tissue. The tissues were frozen 

and prepared into 3 mm thick slices prior to the measurements. Compared to the first 

study, the measurement protocol was more refined. Overall, the number of 

measurements was higher, and the order of measured tissues was randomised to the 

extent that was possible. However, since the main aim of the study was to image the 

tissue slices, consecutive measurements of the same tissue slice was a practical 

necessity. The imaging was conducted by measuring a sequence of 100–400 point 

incisions (depth 3 mm) per tissue slice. The total number of analysed measurements 

after the exclusion of saturated measurements and uncertain annotations was 3418. 

The measurement system used in the study was similar in function to the ATAS 

in the first study, but the tubing lengths were minimized by placing the sample pre-

processing unit directly on top of the ENVI-AMC and thus providing a direct sample 

line from the filter to the DMS. The sample chamber from Publication II was 

removed. This was due to the time constraints of producing the tissue images with 
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hundreds of cuts. If each measurement were made every two minutes as in 

Publication II, the applicability of the system in pathological analysis would be 

difficult to argue, since a comprehensive tissue image would take hours. Furthermore, 

even though the high resolution likely works best in the exploratory analysis of tissue-

specific features in the DMS spectra, the higher resolution also adds to the number 

noisy and redundant features, since the ENVI-AMC is not capable of a selective 

measurement of UC-USV pairs. Therefore, the resolution was lowered by reducing the 

steps for compensation voltage to 25 and for separation voltage to 8, resulting in a 

dispersion plot of 200 values. The lower limit of the separation voltage was set to 340 

V instead of 440 V, since FSFS analysis of previous samples indicated that 

informative areas regarding tissue classification could also be found with lower 

separation voltages. In addition, the upper limit of the compensation voltage was 

lowered from 9 V to 5 V, since analysis of previous measurements indicated that the 

informative value was scarce in the higher UC-values. With this parametrisation, one 

DMS measurement took approximately 6 seconds, after which a waiting time of 10–

30 seconds was implemented to reduce the carry-over signal. The waiting times were 

based on the degree of contamination that was typical of different types of tissue 

based on previous particulate measurements [132]. One minor change was also made 

to the electrosurgical blade by sharpening it to a needle-like shape to enable more 

accurate point sampling. The ATAS used in Publication III is depicted in Figure 15. 

 

Figure 15. The third iteration of the automatic tissue analysis system. A) 

Sampling platform. B) Tissue slice. C) Electrosurgical unit. D) Sample pre-

processing unit. E) ENVI-AMC differential mobility spectrometer (DMS). F) 

Surgical vacuum. G) Monitor showing the dispersion plot of a sample point. 

H) Computer for data-analysis and visualization of the DMS data. Reprinted 

with permission from Elsevier: Elsevier, Experimental and Molecular 

Pathology, Differential mobility spectrometry imaging for pathological 

applications, Kontunen et al., Copyright © 2020 Elsevier Inc. All rights 

reserved. 
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Even though the system itself was not significantly altered in relation to the 

previous studies, the data analysis was expanded upon with the introduction of K-

means clustering. K-means clustering is an unsupervised method that aims to separate 

the measurement data into K groups based on how close the features are in relation 

to each other, without prior knowledge of the classes or their number of 

measurements [200]. In addition to the unsupervised clustering, another addition to 

the data analysis was the utilisation of the posterior probability scores of the LDA 

classification in the visualisation of the results in the form of tissue maps. In practice, 

this meant that a measured sample slice containing two macroscopically distinct 

tissue types was photographed and the photograph was overlaid with a heatmap 

representation of the probability of each sample point belonging to a certain class. 

The measured samples were classified similarly to the previous studies by using 10-

fold cross-validated LDA models. Before the classification, the data was offset- 

corrected and transformed with the common logarithm to even out the signal 

intensities in high and low USV values. The classification was first performed for 

macroscopically heterogeneous tissues in a binary setting to test the tissue imaging 

capability, after which all samples were grouped and classified to provide a general 

overview of the classification performance of multiple tissues. Finally, FSFS was 

carried out 1000 times for each tissue type in a binary setting (target tissue vs other 

tissues) to study the tissue-specific features in the DMS spectra. 

3.4 Real-time tissue identification 

The final intermediate phase before the operating room pilot was aimed to improve 

the speed of the analysis and to test the tissue discrimination performance of the 

system without standardised cuts. This entailed that ATAS would be replaced with 

human-controlled sampling. The sampling was designed to resemble actual surgery 

with 1–3-second cuts in either skeletal muscle or adipose tissue in random order. The 

tissues were frozen and thawed prior to the measurements. The waiting time between 

the cuts was kept at approximately 10 seconds. The goal was to receive representative 

smoke samples from both tissues rather than to minimise the waiting time. In total, 

1059 samples were measured over a period of six measurement days by three 

different people. An additional validation dataset of 100 samples was also measured 

4 months after the initial set. Between the sets, there was a blockage inside the 

pneumatics of the DMS, which required the disassembly and reassembly of the DMS 

core. 
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In general, the measurement system used in the study evolved from the previous 

versions. The sample pre-processing unit was modified most significantly compared 

to the previous studies to accommodate the real-time analysis. First, heating of the 

filter and the sample lines inside the unit was implemented by placing the parts in a 

wooden box that was heated to 70 °C from the inside by a resistive heating element. 

Elevated temperature was deemed necessary to minimise the carry-over signal from 

successive measurements. In a separate study, it was shown that the recovery time of 

a pneumatic system is proportional to the temperature of the sample lines [201]. The 

length of the sample lines was minimised even further than previously to reduce the 

available adsorption area. 

Additionally, the electric filter was modified from a passive element to a 

functional part of the dilution. This was achieved by adding measurement electrodes 

inside the copper casing to produce a current signal which was proportional to the 

smoke intake due to the impact of particulate matter ionised by the corona discharge. 

Based on the current signal, an electric proportional valve that controlled the amount 

of clean air was adjusted with a proportional-integral-derivative (PID) feedback loop. 

PID is a common control method that aims to stabilise a system to a target value with 

minimal overshoot, delay and oscillation, using three types of controllers [202]. In 

practice, this meant that the current measurement from the corona discharge filter had 

a baseline value that functioned as the target for the PID control. After sample 

introduction, the current value changed, which caused the proportional valve to let 

more dilution air into the filter in order to return the filter to its baseline state. The 

aim of the dilution control was to keep the smoke sample concentration as constant 

as possible, despite the variations in tissue material and human-controlled sampling. 

Another addition to the system was the measurement of the electrosurgical current 

with a plastic-encased inductive coil. The induced current created by the 

electrosurgical cuts was used as a trigger signal for the DMS measurement. The 

values for the DMS measurement were kept the same as in Publication III, which is 

to say that the compensation voltage sweep was set to -0.8–5 V in 25 steps and the 

separation voltage sweep to 340–770 V in 8 steps. In this study, the DMS data were 

also analysed directly after the measurements. The on-line analysis was performed 

for the validation set. The measured DMS data were stored in a cloud storage and 

analysed with a Raspberry Pi computer (Raspberry Pi Foundation, UK) that was 

connected to an external monitor. In the computer, an LDA classification model 

trained with the 1059 samples of the first dataset assigned a class to a new 

measurement from the validation dataset and presented the classification result 
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alongside the posterior probability for the classification to the user. The whole 

process from the activation of the electrosurgical instrument to the presentation of the 

result lasted approximately 9 seconds. The real time tissue analysis system is 

presented in Figure 16. 

 

Figure 16. The fourth iteration of the tissue analysis system capable of real-

time analysis. A) Diathermy instrument with the attached 3-metre-long 

suction tube. B) Tissue specimen on top of the dispersive electrode. C) 

Sample pre-processing unit with the corona discharge filter (C1), PID-

controlled proportional valve (C2), ejector dilution (C3), and an inductive 

coil to detect the diathermy current (C4). D) ENVI-AMC DMS sensor. E) 

Smoke evacuator. F) Diathermy unit. G) Surgical user interface. Reprinted 

with permission from IEEE: IEEE Sensors Journal, Real Time Tissue 

Identification From Diathermy Smoke by Differential Mobility Spectrometry, 

Kontunen et al., Copyright © 2021, IEEE. 

In terms of data analysis, this was the first study in which the LDA analysis was 

complemented with another supervised learning method, CNN. In addition, the data 

were offset-corrected and normalised. The initial set of 1059 samples were classified 

with a 10-fold cross-validated LDA and CNN models. The validation set was then 

classified using the initial set as training data with both methods. However, due to the 

poor performance of the CNN, additional training data of 1240 samples was added to 

see if the performance could be improved. However, the additional training data was 
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not gathered by hand in this study, but rather with ATAS for Publication III. This 

also presented the possibility to study how comparable the sampling methods are in 

terms of classification. LDA classification was also conducted on FSFS-selected 

features to demonstrate the performance in a substantially lower feature space. 

3.5 Intraoperative tissue identification 

After the studies in laboratory conditions had produced sufficient proof that the 

concept of tissue identification from surgical smoke works, in vivo tissue 

identification was the next step. In terms of the research setup, the final study was 

also the most ambitious. The real-time tissue analysis system was tested in a clinical 

trial with 20 breast cancer patients with approval from the local Ethics Committee of 

Tampere University Hospital (code R17096). The system was not yet used to guide 

the surgery in any way or to provide feedback to the operating surgeon. Instead, the 

aim was to study whether the system could be safely implemented in a normal 

surgical workflow without delaying or disturbing the operating room staff. Another 

goal of the research was to study the tissue identification performance with in vivo 

benign tissues. Analysis of malignant tissue was excluded from the study plan, since 

the inherent goal of cancer operations is to cut around the tumour without making 

contact. This means that the sample size for malignant tissue would ideally be zero 

or very low. Thus, there would not be sufficient data for training a classification 

model. 

The measurement system used in the study was similar to the one used in 

Publication IV. The only hardware differences were the devices used for the smoke 

evacuation (SafeAir® Smoke Evacuator compact, Stryker Corp, USA) and 

electrosurgery (Berchtold Elektrotom 530 Electrosurgical Unit, Stryker Corp, USA). 

On-line analysis was also omitted because it was not possible to create a classification 

model for the in vivo tissues in advance. The adaptive dilution functionality of the 

electric filter was also omitted as a risk mitigation measure due to the discovery that, 

in the long term, there were stability issues with the control and, as a result, the 

dilution did not always function as intended. The system used in the operating room 

is depicted in Figure 17. 
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Figure 17. The final iteration of the real-time tissue analysis system in an 

operating room environment. 1) Surgical smoke is produced by the 

diathermy instrument. 2) Induced current from the dispersive electrode 

triggers the measurement. 3) Surgical smoke sample is taken into the pre-

processing unit for particle filtering and dilution. 4) The filtered sample is 

measured by the DMS sensor, and the result is stored in the internal memory 

of the system. The duration of one measurement loop is approximately 10 

seconds. 

While the system remained largely the same as in the previous study, the rest of 

the research setup was almost completely changed. The annotation of tissues could 

no longer rely on careful planning and purposeful incisions on certain tissues. The 

aim was to minimise the disturbance to the surgeries, which meant that there was no 

control over the sampling. Instead, the annotation of tissue types for classification 

required a novel approach, which relied on capturing the full operation with a head-

mounted camera (Pupil Core, Pupil Labs GmbH, Germany), worn by the surgeon. 

The video data from the surgeries was cut into a separate clip for each DMS 
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measurement and overlaid with the measurement data of the induced diathermy 

current and DMS spectrum. In total, this resulted in 1131 video clips. Out of these 

clips, 72 were then viewed individually by three surgeons, who formed their separate 

opinion on the operated tissue according to an annotation protocol. This approach 

was used to study the inter-rater agreement of the annotations. The subset size was 

determined with statistical power calculations. The annotation protocol determined 

the possible tissue classes as skin, fat, glandular tissue, connective tissue, muscle, 

blood and empty. After each individual had annotated the subset of clips, the inter-

rater agreement was estimated with the Fleiss’ kappa, which is commonly used, 

especially in psychometric studies, to provide a numerical estimate on the degree of 

agreement [203,204]. Here, the aim was to assess the reliability of the perceived 

ground-truth for the classification. After the group subset annotation, the remaining 

video clips were annotated by only one person. 

Besides Fleiss’ kappa, a new addition to the data analysis of the study was the 

one-sample t-test analysis of the duration of surgeries to see whether the duration 

when using the system was statistically different from the institutional average. 

Additionally, the DMS spectra among different tissues were examined with the 

Kolmogorov-Smirnov test to see if there are statistically significant differences in the 

dispersion plots. The DMS resolution was kept the same as in Publication IV 

(compensation voltage sweep was set to -0.8–5 V with 25 steps and separation 

voltage sweep to 340–770 V with 8 steps). The classification of the DMS data was 

performed with LDA. After the exclusion of erroneous or non-annotatable 

measurement files, the total number of classifiable measurements was 611. The three 

main reasons for the extensive exclusion of measurements were corruption of the 

video data in two surgeries, non-annotatable video data and insufficient sampling. 

The classification models were cross-validated with the leave-one-patient-out 

method to get a realistic general estimation of the tissue identification performance 

with in vivo benign tissues. In addition, the classification performance for each 

individual surgery was evaluated with LOOCV LDA to study the variation of the 

performance between surgeries. 

Despite the many differences in the materials and methods in each study presented 

in this thesis, they create a natural continuum of development and evolution for the 

tissue identification system. A summary of the general aspects of the research setups 

for each study are presented in Table 4. 
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Table 4. Overview of the research setups of the studies presented in this 

thesis. 

Study Material & N System DMS resolution Duration Data analysis 

I 

Porcine tissue  

(10 types) 

N = 700 

(60+600+40) 

Autosampler, 

Particle 

filtration, 

Fixed dilution 

UC: -0.8–9 V,  

40 steps 

USV: 440–700 V, 

4 steps 

Total: 320 values 

(160×2) 

Measurement: 

12 s 

Cleansing:  

180 s 

Total:  

192 s 

LDA  

(LOOCV, 10-fold 

CV, and holdout 

set) 

II 

Human breast 

tissue  

(ex vivo) 

N = 304 

Autosampler, 

Particle 

filtration,  

Fixed dilution, 

Sample 

chamber 

UC: -0.8–9 V,  

90 steps 

USV: 440–700 V,  

18 steps 

Total: 1620 values 

Measurement: 

60 s 

Cleansing:  

60 s 

Total:  

120 s 

LDA  

(10-fold CV and 

holdout set) 

FSFS 

ROC 

III 

Porcine tissue, 

(8 types) 

N = 3418 

Autosampler, 

Particle 

filtration, 

Fixed dilution, 

Needle 

electrode 

UC: -0.8–5 V,  

25 steps 

USV: 340–740 V,  

8 steps 

Total: 200 values 

Measurement:  

6 s 

Cleansing:  

10–30 s 

Total:  

16–36 s 

K-means 

clustering LDA 

(10-fold CV) 

FSFS 

IV 

Porcine tissue,  

(2 types) 

N = 1159 

(1059+100) 

Freehand, 

Particle 

filtration, 

Adaptive 

dilution 

UC: -0.8–5 V, 

25 steps 

USV: 340–740 V, 

8 steps 

Total: 200 values 

Measurement:  

9 s 

Cleansing:  

9 s 

Total:  

18 s 

LDA 

CNN 

(10-fold CV and 

an external test 

set) 

FSFS 

V 

Human breast 

tissue 

(in vivo) 

N = 611 

Freehand, 

Particle 

filtration, 

Fixed dilution 

UC: -0.8–5 V, 

25 steps 

USV: 340–740 V, 

8 steps 

Total: 200 values 

Measurement: 

10 s 

Cleansing: 

varying 

Total:  

varying 

LDA 

(LOOCV and 

leave-one-patient-

out) 

One sample t-test 

Kolmogorov-

Smirnov 

Fleiss’ Kappa 
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4 RESULTS AND DISCUSSION 

The results in each study provided insight into the performance of the tissue analysis 

system and highlighted potential areas of improvement. In this chapter, the main 

results and their key implications are presented. In addition, the limitations of each 

study are discussed. 

4.1 Porcine tissue studies 

The results of the porcine tissue studies illustrated the potential of the system in terms 

of tissue identification. The system used in the first study was unrefined in terms of 

tubing lengths, sampling and the overall placement of the parts. This resulted in the 

need to implement a substantial waiting period of approximately 3 minutes to cleanse 

the system before a new measurement could be made. Still, in the first study, the 

classification accuracies for porcine tissues were promising. For the initial test set of 

ten samples from five tissues measured in one sitting, the LOOCV LDA classification 

accuracy was 93%. When the number of classes was expanded to ten in the second 

phase, the classification accuracy was 95% with 10-fold cross-validation and 93% 

with the 70–30 holdout method. In phase III with an additional ten samples from four 

tissue types, the classification accuracy was 95%. For a proof-of-concept study, these 

numbers seemed exceptionally good. However, it is worth noting that the study 

design and analysis in Publication I were suboptimal in terms of the generalisability 

of the results. The results from the classification of phase II in Publication I are 

especially problematic, since sample randomisation was not considered, thus 

resulting in an overly optimistic interpretation. This was discussed in Publication III 

and partly corrected in the study design. Still, LOOCV and 10-fold cross-validation 

were a poor choice of methodology from the author’s part, which must be addressed. 

As discussed in the theoretical background section, by selecting the cross-validation 

partitions randomly from within measurement sets that are not completely 

independent, the possible variations in the measurement conditions and their effect 

on the measurement results are included in both the training and the test sets, which 

means that the results are biased and do not provide an accurate estimation of the 

performance of the system for fully independent new data. The descriptions of the 
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methodology of Publications I, II and III provide information on the utilised cross-

validation method but do not properly address the issues of generalisability. In 

Publications IV and V, the data analysis and classification were better executed in 

this regard. 

In Publication III, the results for the classification of the tissues that had 

macroscopically distinct tissue types enabled the imaging of the tissues with adequate 

accuracy using the posterior probability scores. Thus, the concept of a pathological 

imaging was demonstrated. Measurements made on flank pieces were most 

successfully classified as skeletal muscle and intramuscular fat, with an accuracy of 

91.8%. Grey and white matter in brain samples were also identified with over 90% 

accuracy. The worst classification performance was observed with renal cortex and 

renal pelvis tissue, with an accuracy of 70.9%. Example illustrations of tissue 

imaging based on the classification scores are presented in Figure 18. 

 

Figure 18. Tissue imaging. A) Porcine flank sample. B) Porcine brain 

sample. C) Porcine kidney sample. Reprinted with permission from Elsevier: 

Elsevier, Experimental and Molecular Pathology, Differential mobility 

spectrometry imaging for pathological applications, Kontunen et al., 

Copyright © 2020 Elsevier Inc. All rights reserved. 
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The tissue imaging with K-means clustering was not as accurate as with LDA, but 

even with the unsupervised clustering, the created images resembled the actual 

measured tissue, especially in the flank pieces. Overall, the misclassifications in the 

binary setting can be partly due to the depth of the sampling. Some of the 3-

millimetre-deep automated cuts may have inadvertently vaporised both tissues, thus 

creating a mixed signal. Also, one likely reason for the poor performance in the 

kidney classification was the difficulty in sampling the renal pelvis. Some of the cuts 

made onto renal pelvis tissue vaporised the tissue effectively, but some cuts only 

made the needle electrode stick to the sample without effective vaporisation. This 

likely created high within-class variation in the DMS responses. Furthermore, when 

considering an actual pathological application, the achievable spatial resolution of 1 

mm with the needle electrode is not enough. To image microscopic tumours, µm-

scale spatial resolution is needed. Another issue with the presented method was its 

destructiveness. In order for the technology to be used for pathological analysis as is, 

duplicate tissue slice samples from the same area would be required. One would be 

used for the ATAS analysis and the other for more accurate histopathological 

analysis. This would obviously decrease the usability of the method. However, all of 

these problems related to the sampling could be overcome with minimally destructive 

laser ablation similar to the MS-based cancer margin assessment methods. With laser 

sampling, the spatial resolution, tissue damage, and smoke contamination could be 

minimised, and it is likely that the classification results would also improve. 

The 8-class classification results in Publication III revealed that the results 

presented in Publication I were likely overly optimistic. The overall accuracy was 

81%. The FSFS analysis revealed that distinct features in the DMS spectra can be 

used to identify the different tissue types. On average, the number of features selected 

to identify the tissues was 8. This means that the majority of the spectrum features 

are, in fact, redundant in terms of information content and that if the DMS device 

itself would not require the systematic measurement of all UC-USV pairs between 

certain limit values, the DMS measurement could be made significantly faster, 

without compromising the identification performance. This same result could be 

inferred from the FSFS results in Publication IV, where the classification with the 

FSFS-selected features were in fact slightly better (93.2%) than with the full spectra 

(93.1%). 

In Publication IV, the problem was simplified to a binary classification of skeletal 

muscle and adipose tissue, since the focus of the study was more on the overall 

feasibility of real-time tissue analysis. The classification results with both LDA 
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(93.1%) and CNN (93.2%) were good in the 10-fold cross-validated initial set of 1059 

samples. However, the CNN classification performance dropped to guess level 

(50%), when the independent validation set was used as the test set. This implies that 

the CNN model was heavily overfitted to the features found in the initial dataset. The 

most probable reason as to why the classification failed completely with CNN was 

the disassembly and reassembly of the DMS sensor core due to the physical blockage 

in the pneumatics. It is likely that the tightness of the screws or electrode placements 

were altered ever so slightly after the reassembly, which could have had a small 

impact on the produced dispersion plots that was amplified by the overfitting CNN 

model. As a simpler linear model, the LDA model trained with the initial set was 

more robust as regards the potential change, and when it was used as the real-time 

classification model during the measurement of the validation set, the achieved 

classification accuracy was 87%. Another interesting aspect of the results in 

Publication IV were the classification performances with the models trained with 

additional data that were not comparable in terms of the sampling method. When the 

ATAS data for muscle and fat from Publication III were added for model training, 

the CNN’s classification accuracy of the validation set was 88% and the LDA 

achieved a classification accuracy of 96%. These results illustrate the importance of 

having training samples that are measured in as varied circumstances as possible. 

This way, the features that generalise to the classification problem are truly indicative 

of the class differences rather than the environmental conditions. All in all, the results 

in Publication IV demonstrate, albeit in a simplified setting, that intraoperative tissue 

identification is possible with the proposed system. 

Even though some of the presented results suffered from poor generalisability due 

to the lack of external validation datasets, the aim of identifying porcine tissues based 

on the DMS measurement of surgical smoke was achieved. The porcine tissues used 

in the studies were frozen in a normal freezer prior to analysis, which also potentially 

decreases the generalisability of the results, since slow freezing has been shown to 

cause myofibrillar damage and decrease the water holding capacity of porcine tissue 

[205]. Still, the tissues were typically not stored for more than a couple of weeks 

before measurements, so it is likely that extensive lipid oxidation did not take place 

and that the molecular content of the tissues remained comparable to fresh tissues. In 

earlier MS studies regarding animal tissue identification from surgical smoke, the 

molecular differences have been attributed to various lipid species and their 

degradation products [194,206]. However, lipids only account for approximately 5% 

of the dry mass of mammalian cells [44]. The relative abundance of proteins, 

carbohydrates and water also vary among tissue types and contribute to the molecular 
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structure [25,207]. The DMS spectrum of the vaporised tissue entails these 

differences and forms a view of the mixture of ion species that are present in the 

sample. The analytical performance of DMS is at a lower level compared to MS, but 

the studies presented in this thesis indicate that accurate differentiation of the tissue 

types is possible. Table 5 provides a summary of the tissue identification results, their 

key implications and the main limitations of the porcine tissue studies. 

 

Table 5. Tissue identification results for the porcine tissue studies. 

Study Classification accuracy 
Key finding or 

implication 
Main limitations 

I 

Phase I: 93% 

Phase II: 95% 

Phase III: 95% 

Operation principle is 

feasible 

Rudimentary system, 

lack of sample randomisation 

(especially in phase II), 

no independent validation dataset 

III 

Binary classification of 

heterogeneous tissues:  

71%–92% 

Full set: 

81% 

Imaging of heterogeneous 

tissues is feasible 

Low spatial resolution, 

duration, 

destructiveness, 

no independent validation dataset 

IV 

Initial set with cross-

validation: 

LDA: 93%; CNN: 93% 

With FSFS: 

LDA: 93% 

Independent test set: 

LDA: 87%; CNN: 50% 

With additional training: 

LDA: 96%; CNN: 88% 

Real-time tissue 

identification is feasible 

Simplified classification setup, 

ENVI-AMC 
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4.2 Human breast cancer studies 

The first study with fresh breast cancer samples, presented in Publication II, was 

successful in demonstrating the feasibility of clinically relevant tissue identification 

with the DMS-based system. The 10-fold cross-validated LDA model reached a mean 

classification accuracy of 86.5%, with a sensitivity of 80.1% and specificity of 89.9% 

for the binary classification of malignant and benign tissues. The malignant tissues 

were also classified based on cancer type into ductal, lobular and invasive 

micropapillary carcinoma with an accuracy of 80.2%. In addition, FSFS was 

performed for the DMS data. As in the porcine tissue studies, the feature selection 

again demonstrated that a similar level of classification performance (82.4%) can be 

achieved by using only a fraction of the features in the dispersion plot (7 out of 1620). 

This again highlighted the need for a DMS system that would allow the measurement 

of only selected pairs of UC and USV voltages. Especially in this study, where the 

measurement of the spectra lasted for approximately one minute, the time saved by 

measuring only the FSFS-selected features would have been substantial. The ROC 

curve plotted of the classification further demonstrated the performance. It is worth 

noting that the confidence intervals are quite wide, meaning that the performance has 

some variation depending on the cross-validation partitions. Also, the lack of a 

completely independent validation set means that the results are not guaranteed to 

fully generalise to new data. In addition, the system used in the study was still 

somewhat unreliable, which caused erroneous measurements that needed to be 

discarded. Still, as the first study in breast tissue identification, the results were 

promising. 

In this respect, the classification results from the final study were disappointing. 

While there were statistically significant differences between the spectra of the tissue 

types, the classification accuracy with leave-one-patient-out cross-validated LDA 

model was only 44% for four tissue types. Also, the LOOCV LDA for each surgery 

separately revealed significant variation in the classification accuracy, with a range 

of 37%–100%. The most likely reasons for the poor classification performance were 

the delays in the DMS measurement and challenges in the annotation of the tissues. 

In some cases, the focus of the video was off, or the operation area was obscured by 

hands, blood or the bright operating room lighting. Annotation based on video data 

is of course much more unreliable than histopathological analysis, or even visual 

examination in a controlled laboratory environment. Therefore, the samples for the 

classes that the machine learning models consider to be absolute ground truths can 

be mislabelled. To study the annotation process, the inter-rater agreement was 
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estimated for three annotators using the Fleiss’ kappa metric. Based on the metric, 

the agreement could be interpreted as “Moderate”, which infers that, while the 

annotators agreed on some labels, much of the process was prone to subjective 

interpretation. The delay in the start of the DMS measurement likely caused some 

degree of uncertainty in the assessment of the annotators. Therefore, in this study, the 

decision to use ENVI-AMC as the DMS device was questionable. The device was a 

prototype initially designed for clean room monitoring, and it was not designed for 

rapid measurements. This became apparent upon discovering a software bug that 

caused part of the measurement data to be corrupted if the duration of the 

measurement was shortened too much. To ensure that all measurement data were 

valid, the delay between the trigger signal and the measurement could not be 

removed. In the other studies, the limitations of the DMS system were not as crucial, 

and, in retrospect, the system was in fact very reliable throughout all of these 

measurements. 

Still, in hindsight, it can be argued that the operating room trial was conducted too 

early in the development of the system and that it would have been better to wait until 

a more suitable sensor was available. Also, the results would likely have been better, 

if the surgeon had been instructed to purposefully operate certain types of tissues at 

some points, but this would have gone against the aim of minimising the disturbance 

to the normal surgical workflow. Another addition that could have improved the 

classification results is environmental control. The temperature and humidity 

between the surgeries varied, which likely influenced the measured outputs. 

However, despite the poor classification results, the study was an important step 

forward, since it highlighted the areas of improvement that were still needed. 

Furthermore, the study provided positive results in terms of the applicability of the 

system to a normal surgical workflow. There was no effect on the complication rate 

or the duration of the surgeries when the system was used. All in all, the human 

sample studies were not as successful as the porcine tissue studies in demonstrating 

the capability of the system in tissue identification. Table 6 provides a summary of 

the results from the human tissue measurements. 
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Table 6. Tissue identification results for the breast cancer studies. 

Study Main results Key finding or implication Main limitations 

II 

Malignant vs. benign:  

classification accuracy = 87%,  

sens = 80%, spec = 90% 

With FSFS:  

classification accuracy = 82% 

AUC: 0.90 

Cancer type classification:  

classification accuracy = 80% 

Technology is clinically 

feasible in terms of ex vivo 

tissue identification 

performance 

Moderately frequent 

system malfunctions, 

no independent 

validation dataset 

V 

LDA classification accuracy, 

Leave-one-patient out: 44% 

LOOCV: 37%–100% 

Inter-rater agreement in annotation: 

Moderate 

Causes complications: No 

Causes delays: No 

Technology is not ready for 

in vivo use, but the system is 

applicable to the surgical 

workflow 

Uncertainty in 

reference labelling, 

ENVI-AMC, 

delays, 

environmental 

variation was not 

compensated or 

controlled 

 

The molecular composition of surgical smoke between cancerous and benign 

tissue has been shown to differ in MS studies, especially in terms of phospholipids 

and triglycerides [107,108,119]. The underlying premise of the differences in 

metabolism between benign and malignant tissue, including the Warburg effect that 

generalises to almost every type of cancer, can at least partly explain the root cause 

of the differences in the molecular profile between cancerous and benign tissue. With 

DMS analysis, the determination of certain metabolites from a complex matrix is not 

feasible, which creates a degree of uncertainty for the identification of the samples. 

In the future, it will be vital to test the tissue identification simultaneously with the 

DMS-based system and a scientifically validated reference method, such as REIMS. 

Only then can conclusive evidence be provided that the DMS-based method can 

compete in the field of (intraoperative) tissue identification. Currently, the DMS-

based technology is in a state where the preliminary results have been promising but 

the maturity of the technology is not yet at a level that enables its utilisation in clinical 

practice. The next major steps forward include the accurate compensation of the 

environmental conditions that would enable stable sample humidity and a DMS 

sensor that could measure selected UC-USV pairs rapidly. 
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5 CONCLUSIONS 

This thesis presented five main research questions. These questions were answered 

through the studies presented in the thesis, and in five publications. The final 

compiled conclusions to the presented research questions are as follows: 

I. Is DMS analysis of surgical smoke a feasible method for ex vivo tissue 

identification in a porcine model? 

• Yes. The classification accuracies achieved with porcine tissues in the first 

study show that DMS-based analysis of tissue smoke can be used to 

identify normal porcine tissue types in laboratory conditions. However, the 

limitations of the study need to be acknowledged, and the numerical results 

presented originally in Publication I can be viewed as overly optimistic. 

II. Can DMS-based ex vivo tissue identification be utilised with clinically relevant 

human breast tissue? 

• Yes. The diagnostic performance measures achieved in the second study 

with histologically verified benign and malignant human breast samples 

demonstrate that DMS-based analysis of tissue smoke can be used to 

identify breast malignancies in laboratory conditions. The reported results 

in Publication II can be partially overly optimistic due to a lack of 

independent validation dataset, but, overall, the performance shows 

promise towards a clinical application. 

III. Is DMS-based ex vivo tissue identification feasible as an imaging method for 

pathological applications? 

• Yes. The DMS measurement of surgical smoke and the subsequent 

classification scores enable the imaging of heterogeneous tissues. With the 

further improvements to the system presented in Publication III regarding 

spatial resolution and duration of analysis, and with validation with 

clinically relevant tissues, the technology could be implemented as a 

complimentary method to guide histopathological analysis. 
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IV. Can DMS-based tissue identification be performed rapidly enough to enable 

intraoperative use? 

• Yes. The measurements and classification results in Publication IV 

demonstrate that tissue identification, at least in a simplified laboratory 

setting, can be done within a timeframe that allows intraoperative use for 

tissue identification. However, for improved applicability to the surgical 

workflow, the delays in measurement and analysis need to be decreased 

further. 

V. Is DMS-based tissue identification feasible in a surgical setting? 

• Not yet. The results achieved in Publication V were not comparable to 

previous results obtained in laboratory conditions in terms of diagnostic 

accuracy, and the system would not be reliable enough to aid in margin 

assessment. The difficulties in intraoperative tissue annotation and the long 

delays between subsequent measurements due to suboptimal sensor 

hardware are a likely explanation for the poor results. Further 

technological development is required to fix the limitations regarding 

sensor hardware, environmental control and the reliability of the 

annotation in the study, after which the research question should be 

revisited to provide a conclusive answer. 

Overall, despite the inconclusive answer to the last research question and some 

over-optimistic result representation due to the lack of external validation datasets in 

the published work, the research presented in this thesis was successful in providing 

positive answers to the original research questions. The development of a DMS-based 

tissue identification system saw significant leaps forward towards potential 

commercialisation. However, the technology is not yet mature enough to be 

implemented in clinical practice. In particular, the research demonstrated the need for 

a rapid DMS sensor that would be capable of measuring selected voltage pairs. Even 

with a new sensor, the roadmap towards a fully realised medical device has many 

technological obstacles to overcome, but the research in this thesis demonstrated that 

DMS analysis of surgical smoke has true potential to be developed into a helpful tool 

in cancer margin assessment and pathological applications. In its ideal future form, 

the technology presented in this thesis could save millions of people from avoidable 

cancer reoperations and billions of dollars in healthcare costs. 
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2. Abstract and key terms 
 

Electrosurgery is widely used in various surgical operations. When tissue is cut with 
high-frequency current, the cell contents at the incision area evaporate and together 
with water and possible soot particles, form surgical smoke. The smoke contains cell 
metabolites, and therefore, possible biomarkers for cancer or bacterial infection. Thus, 
the analysis of surgical smoke could be used in intraoperative medical diagnostics. 
We present a method that can be used to detect the characteristics of various tissue 
types by means of differential ion mobility spectrometry (DMS) analysis of surgical 
smoke. We used our method to test tissue identification with ten different porcine 
tissues. We classified the DMS responses with cross-validated linear discriminant 
analysis models. The classification accuracy in a measurement set with ten tissue 
types was 95%. The presented tissue identification by DMS analysis of surgical smoke 
is a proof-of-concept, which opens the possibility to research the method in diagnosing 
human tissues and diseases in the future. 

Key terms: FAIMS, electrosurgery, LDA, VOC 

Abbreviations: differential ion mobility spectrometry (DMS), high-field asymmetric 
waveform ion mobility spectrometry (FAIMS), linear discriminant analysis (LDA), rapid 
evaporative ionization mass spectrometry (REIMS), mass spectrometry (MS), leave-
one-out cross-validation (LOOCV), automatic tissue analysis system (ATAS), voltage 
amplitude of the asymmetric waveform (VRF), voltage of the DC compensation field 
(VC), volatile organic compound (VOC) 
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3. Introduction 
 

Electrosurgery, also known as diathermy, is one of the most common energy-based 
surgical methods2. In electrosurgery, high-frequency (200 kHz – 3.3 MHz) alternating 
current (AC) is conducted to the patient by either a monopolar or bipolar electrode10. 
Depending on the properties of the AC signal, the electrosurgical instrument can either 
cut (high voltage, continuous waveform) or coagulate (low voltage, pulsed waveform) 
the tissue. Especially in the cut mode, the surgical electrode vaporizes the cell 
contents and produces surgical smoke. 

Surgical smoke primarily consists of water, but the organic matter of the cells is also 
simultaneously evaporated20. This means that surgical smoke carries information 
about the excised tissue in the form of possible biomarkers or tissue-specific 
metabolites. Metabolites can be used to differentiate the type and state of tissues, as 
proven by Schäfer et al., who introduced a method for analyzing the surgical smoke 
created in electrosurgery in 200916. Since then, the method has been extensively 
studied for numerous medical and food industry applications3,4,18,21. For example, in 
the most recent publication regarding ex vivo breast cancer identification from benign 
breast tissue, the method achieved 93.4% sensitivity and 94.9% specificity18. Although 
the results have been excellent in terms of diagnostic properties, the method has still 
not spread to clinical use. One reason for this is perhaps that the Rapid Evaporative 
Ionization Mass Spectrometry (REIMS) relies on the use of an expensive mass 
spectrometer (MS), which together with the Intelligent Knife (also known as iKnife) 
sampling system used in the studies can cost several hundred thousand dollars. Other 
potential factors hindering the clinical use are regulatory approvals and lack of 
evidence in large cohorts of heterogeneous tissues. In addition, the miniaturization of 
high-performance MS is challenging, making its use in an operating room problematic 
due to space constraints. 

Despite its limitations, a system like the REIMS, which could accurately detect the 
excised tissue type during surgery, would be in high demand in the healthcare market. 
For example, in breast cancer surgeries, reoperations due to residual tumor tissue 
caused by errors in cancer margin detection are common and add to the total 
healthcare costs significantly13. The current gold standard for intraoperative cancer 
margin evaluation is histopathological examination from a frozen section. The 
examination is expensive, and it disrupts the flow of the operation, since the operating 
staff and anesthetized patient are forced to wait for the results for tens of minutes.  

Besides the REIMS system, other methods that aim to help in intraoperative cancer 
margin detection have been introduced. One example of a commercially available 
device is the MarginProbe (Dune Medical Devices Ltd, Caesarea, Israel), which uses 
Radio-Frequency Spectroscopy to assess the differences in breast tissue1. In a recent 
study, the use of the MarginProbe lowered the number of reoperations by 61%9. 
However, using an additional tool during surgery means that the flow of the operation 
is disturbed. 

To create a system that does not affect the workflow of the surgeon, we propose tissue 
analysis by Ion Mobility Spectrometry (IMS). IMS is a method similar to MS, but the 
main difference is that while MS requires a vacuum to operate, IMS operates in 
atmospheric pressure. This means that in IMS, the molecules of the medium collide 
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with the measured target ions7. Additionally, in contrast to MS, which separates 
molecules according to their mass and charge, IMS separates molecules based on 
their ion mobility, which is a combination of the electrical charge and the shape of a 
molecule. Furthermore, IMS devices are not only considerably cheaper and more 
compact than MS devices, they are also easier to produce and maintain. The main 
downside of IMS compared to MS is its inferior resolving power, which is due to the 
fact that it operates in atmospheric pressure. The resolving power can be considered 
as the capability of the device to differentiate overlapping ion peaks in the output 
spectrum.  

To increase the resolving power, IMS technology has been developed further with the 
introduction of Differential Ion Mobility Spectrometry (DMS), also known as High-field 
Asymmetric Waveform Ion Mobility Spectrometry (FAIMS)7. In DMS, the use of a 
radio-frequency (RF) waveform orthogonal to the sample flow is used to further 
separate the sample molecules. This increases the resolving power beyond the 
capabilities of traditional IMS, but it is still significantly lower than in MS devices7,22. 
Despite its inferior resolving power, DMS is a tempting alternative to the cumbersome 
MS due to its simplicity, lower cost, and size. To our knowledge, there are no 
publications about the use of IMS or DMS methods to analyze surgical smoke. 

In this study, we introduce a DMS-based tissue analysis system and evaluate its 
applicability in the discrimination of porcine tissues based on smoke created in 
electrosurgery. Since the availability and ethical considerations limit the use of human 
tissues, we considered porcine tissue as the most suitable alternative sample material 
for this proof-of-concept study.  
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4. Materials and Methods 

 

Study Material 

We obtained the tissues of a Finnish landrace pig (Sus scrofa domesticus) from a 
slaughterhouse (Paijan Tilateurastamo, Urjala, Finland). The tissues were 
slaughterhouse offal including tongue, lungs, kidneys, heart, liver, skeletal muscle, 
skin with subcutaneous fat, and brains. After transportation in a thermally insulated 
container, we stored the fresh tissue samples in a freezer at -18 °C. We froze the 
tissues to prevent tissue degradation during the research. We conducted the 
measurement phases in four weeks. Before each measurement set, we individually 
thawed the tissue samples and placed them on the measurement platform for analysis 
at room temperature. In long measurement sets (>30 min), the sample pieces were 
moisturized with de-ionized water using a spray bottle. The tissue samples were all 
from the same single animal except for the brains, since they were too small to 
accommodate all 60 cuts. In total 14 porcine brains were required for the 
measurements of gray and white matter. 

Measurement Protocol 

We conducted the tissue identification measurements in three phases: 

Phase I: We selected five histologically distinct tissue types (skeletal muscle, fat, renal 
cortex, liver and lung). We performed ten electrosurgical cuts to each tissue in non-
randomized order, resulting in fifty measurements. We also conducted ten ‘’empty’’ 
cuts, in which we turned on the knife without it touching any tissue and measured the 
DMS response. We added the empty cuts to the first measurement set to ensure that 
each tissue produced a measurable output response that could be distinguished from 
the baseline response. The total number of cuts in the pilot phase was chosen so that 
it would be possible to conduct the pilot phase in one working day. A schematic of the 
cutting protocol can be seen in Figure 1. 

Phase II: We extended the series to ten anatomically distinct tissue types (gray and 
white matter of the brain, liver, skeletal muscle, subcutaneous fat, lung, renal cortex, 
skin, tongue and cardiac muscle). We conducted sixty cuts per tissue for a total of 600 
measurements. A picture of a piece of skeletal muscle after the phase II 
measurements can be seen in Figure 2. 

Phase III: We used the remaining tissue material from phase II to further validate the 
results from the previous phases by analyzing a set of four tissues (renal cortex, fat, 
skeletal muscle and liver). We conducted this additional small set in order to account 
for the possible inter-day variability of measurement conditions in the second phase.  
We conducted ten cuts per tissue in a randomized order for a total of forty 
measurements. The number of cuts was limited by the amount of available sample 
material left after phase II. 
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Figure 1. The order of the cuts in phase I. The empty cuts were made 
consecutively after the tissue cuts. 

 

Figure 2. A piece of skeletal muscle after the measurement sequence of 60 cuts 
in phase II. The order of the cuts followed a similar pattern as shown in Figure 1.  

The Measurement System 

The measurement system we developed in this study can be divided into three distinct 
functional modules: automated electrosurgical sampling, sample modification 
(filtration and dilution), and sample detection by the ENVI-AMC® DMS device 
(Environics Oy, Finland). Due to the combination of the (semi-)automatic sampling 
system and its end-purpose, we have called our system the automatic tissue analysis 
system (ATAS). 

The surgical device in the electrosurgical sampling stage of the ATAS was a medical 
grade system Itkacut 350MB (Innokas Medical Oy, Finland). The device worked with 
constant voltage without impedance compensation, which influenced the choice for 
the nominal cutting power. We selected the cutting power for the measurements with 
the aim of producing enough surgical smoke regardless of the tissue impedance. In 
the preliminary testing, it seemed that the subcutaneous fat in particular did not 
produce measurable concentrations of smoke with the traditionally used low cutting 
powers (~40 W). In order to obtain surgical smoke from all tissues, we chose 120 W 
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as the nominal cutting power of the surgical electrode. The electrode was a standard 
monopolar knife electrode (HF 9805-24, HEBUmedical GmbH, Germany). 

The electrode was controlled by a customized computerized numerical control (CNC) 
device (REPRAP Mendel Prusa i3 kit, KitPrinter3D, Spain) that we steered with a 
graphical user interface (GUI) created with the MATLAB GUI development 
environment. The GUI-controlled CNC device helped in creating a standardized and 
stable research and development model for the measurements. Thus, the depth and 
duration of the electrosurgical cuts could be accurately controlled. Each cut was 
approximately 4 mm deep and 5 mm long, but due to the heterogeneity of the pieces 
of tissue, some slight variation in height was unavoidable.  

To keep the height of the cuts from varying due to the position of the knife, the 
electrosurgical instrument was fixed to the frame of the CNC device with a polylactic 
acid (PLA) holder, which in turn was connected to a medical grade surgical evacuator 
(SURTRON® EVAC, LED SpA, Italy) by TYGON® R-3603 Laboratory Tubing (6.4×9.6 
mm, Saint-Gobain, France). We used a power level of 5 for the surgical evacuator, 
which corresponded to an airflow of approximately 12 l/min according to 
measurements we performed with Gilian Gilibrator-2 NIOSH Primary Standard Air 
Flow Calibrator (Sensidyne, Schauenburg International GmbH, Germany). All 
subsequent flow rates were also measured with the Gilibrator. 

Part of the airflow that went towards the surgical evacuator was guided to the particle 
filtration unit by a two-fold dilution system that we constructed with M/58112/09 
vacuum pump ejectors (Norgen Finland Oy, Finland). We placed the ejectors to the 
system so that they created a negative pressure which split the sample flow before it 
entered the surgical evacuator. The side flow entered the filtration unit with a flow rate 
of 3 l/min.  

The filtration unit was a newly-patented (patent pending) corona discharge filter. The 
corona filter was especially applicable in this research due to its ability to effectively 
filter out the harmful nanoscale and microscale particles in the surgical smoke (viruses, 
bacteria, and soot) without causing changes to the measurement dynamics of the 
system through pressure differences, which would be the case for example with glass 
fiber filters6. The filtration unit and the two-fold dilution system were connected to each 
other with Polytetrafluoroethylene (PTFE) tubing. 

Even when the large particle contaminants were removed with the filtration unit, the 
sample concentration of the surgical smoke was often too high for the DMS sensor. 
Thus, we adjusted the dilution system so that the initial sample smoke was diluted with 
purified dry air at a ratio of approximately 1:800 before entering the ENVI-AMC® DMS 
device.  

In the DMS device, the sample molecules first react with the so-called reactant ions 
created by an Americium-241 (241Am) isotope and then enter a drift chamber as 
sample ions. In the drift chamber, the sample ions are subjected to a radio-frequency 
asymmetric electric field and a superimposed direct current (DC) voltage electric field7. 
Depending on the values of both the voltage amplitude of the asymmetric waveform 
(VRF) and the voltage of the DC compensation field (VC), sample ions with certain 
mobility characteristics will reach a detector plate, which creates a pA-range electric 
current signal upon impact. The commonly used output response of the impact 
spectrum, a dispersion plot, presents the current signals with different values for VRF 
(y-axis) and VC (x-axis) as a color map. In a way, the dispersion plot can be considered 
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as the ‘smell fingerprint’ of the measured sample. In this study, we produced the 
dispersion plots by increasing the value for VC from -0.8 V to 9.0 V with 40 equal 
increments and by increasing the amplitude of VRF from 440 V to 770 V with four equal 
increments. This means that the resolution for the dispersion plots was 160 (40×4) 
pixels. The distance between the electrodes that form the electric field in the ENVI-
AMC® is 0.25 mm, so the VRF values correspond to electric field strengths of 1.76 
MV/m to 3.08 MV/m. Figure 3 shows example dispersion plots for liver, lung, and 
subcutaneous fat. 

 

Figure 3. Example dispersion plots for liver, lung, and subcutaneous fat. 

 

With the chosen field strengths and increments, the DMS measurement for both 
positive and negative ions took a total of 12 seconds per cut, after which the device 
cleaned itself with the dilution air for three minutes before the next measurement. This 
prevented any carry-over from the previous sample. A schematic representation of the 
measurement system and an example of an output dispersion plot from skeletal 
muscle tissue can be seen in Figure 4. 

 

Figure 4. The measurement system. A) The Itkacut 350 MB electrosurgical unit. 
B) Tissue sample on the XYZ-stage of the C) CNC device. D) SURTRON® EVAC 
surgical evacuator. E) The filtration device. F) The dilution system. G) ENVI-AMC® 

differential ion mobility spectrometer. 
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Classification models 

After each measurement set, we classified the different tissue types based on their 
DMS response with cross-validated linear discriminant analysis (LDA) models created 
in MATLAB (The MathWorks Inc., U.S.A). LDA is a common way to classify multi-
dimensional data and it is based on reducing the dimensionality of the data by feature 
projection14. For the results in phases I and III, we cross-validated the LDA model with 
leave-one-out cross validation (LOOCV). For the phase II results, due to the high 
number of samples (600), we validated the classification model for the ten tissue types 
with 10-fold cross-validation. The LOOCV method is not recommended for large 
datasets, since the resulting training set would be almost identical with the full data 
set8. An additional validation model using 70 % of the data as training data and the 
remaining 30 % as test data was also done for the phase II results. This type of a hold-
out method with 70-30 ratio for validation is a simple way to mitigate the overfitting 
bias in classification models, and has been commonly used in clinical studies12.  
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5. Results 
 

The results from the three measurement phases were the following: 

Phase I: The five tissues were discriminated from each other and from the empty 
samples with a classification accuracy of 93%. One renal cortex sample was 
misclassified as liver and three liver samples were classified as renal cortex. All the 
other samples were correctly classified. The confusion matrix is presented in Table 1. 

Phase II: The ten tissues were discriminated from each other with a classification 
accuracy of 95% by the 10-fold cross-validation model (with LOOCV, the classification 
accuracy was 97%). Tongue, renal cortex and skeletal muscle were most commonly 
misclassified. The confusion matrix is presented in Table 2. In addition to the 10-fold 
cross-validated results shown in Table 2, we used the phase II dataset to conduct 
additional validation by using 70% of the dataset to produce a classification model to 
discriminate the remaining 30%. The model achieved a classification accuracy of 93%. 
The confusion matrix for this additional model is presented in Table 3. 

Phase III: The classification accuracy for the 40 measurements with four tissue types 
was 95%. One renal cortex sample was classified as skeletal muscle and one skeletal 
muscle sample was classified as liver. The confusion matrix for phase III results can 

be found in Table 4. 

 

 

 

Table 1. The confusion matrix for the LDA+LOOCV classification model in phase 
I.* 

Tissue SM SF RC Li Lu E 

Skeletal muscle (SM) 10 0 0 0 0 0 

Subcutaneous fat (SF) 0 10 0 0 0 0 

Renal cortex (RC) 0 0 9 1 0 0 

Liver (Li) 0 0 3 7 0 0 

Lung (Lu) 0 0 0 0 10 0 

Empty (E) 0 0 0 0 0 10 

 

 
* LDA+LOOCV refers to leave-one-out cross-validated linear discriminant analysis. 
The true class of the samples is presented by the rows and the predicted class by 
the columns. All subsequent Tables are presented similarly. 
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Table 2. The confusion matrix for the 10-fold cross-validated LDA classification 
model in phase II. 

Tissue GM WM Li SM SF Lu RC S T CM 

Gray matter (GM) 60 0 0 0 0 0 0 0 0 0 

White matter (WM) 1 59 0 0 0 0 0 0 0 0 

Liver (Li) 1 0 59 0 0 0 0 0 0 0 

Skeletal muscle (SM) 0 0 0 56 1 1 2 0 0 0 

Subcutaneous fat (SF) 0 0 0 0 60 0 0 0 0 0 

Lung (Lu) 0 0 0 0 0 55 2 0 3 0 

Renal cortex (RC) 0 0 0 2 0 3 52 0 2 1 

Skin (S) 0 0 0 0 0 0 1 58 1 0 

Tongue (T) 0 0 0 0 0 0 6 1 52 1 

Cardiac muscle (CM) 0 0 0 0 0 0 0 0 0 60 

 

Table 3. The confusion matrix for 30% of phase II samples with the LDA 
classification model trained with 70 % of phase II data. 

Tissue GM WM Li SM SF Lu RC S T CM 

Gray matter (GM) 18 0 0 0 0 0 0 0 0 0 

White matter (WM) 0 18 0 0 0 0 0 0 0 0 

Liver (Li) 1 0 16 0 0 1 0 0 0 0 

Skeletal muscle (SM) 0 0 0 16 2 0 0 0 0 0 

Subcutaneous fat (SF) 0 0 0 0 18 0 0 0 0 0 

Lung (Lu) 0 0 0 0 0 16 1 0 1 0 

Renal cortex (RC) 0 0 0 0 0 0 16 0 2 0 

Skin (S) 0 0 0 0 0 0 0 18 0 0 

Tongue (T) 0 0 0 0 0 3 1 0 14 0 

Cardiac muscle (CM) 0 0 0 0 0 0 0 0 0 18 

 

Table 4. The confusion matrix for the LDA+LOOCV classification model in phase 
III. 

Tissue RC SF SM Li 

Renal cortex (RC) 9 0 1 0 

Subcutaneous fat (SF) 0 10 0 0 

Skeletal muscle (SM) 0 0 9 1 

Liver (Li) 0 0 0 10 
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6. Discussion 
 

Findings and Impact 

Our results demonstrate that differential ion mobility analysis of surgical smoke can be 
used to differentiate healthy porcine tissues with high levels of accuracy. This finding 
opens up the possibility of developing an inexpensive surgical method that could be 
used for the near real-time assessment of tissues during electrosurgery, particularly 
cancer surgery. However, even though porcine tissues are a good analog for human 
tissues15, in order to evaluate the clinical relevance of the technology, the findings 
need to be confirmed with healthy and diseased human tissues. In addition, the 
measurement system needs to be developed further and key ion spectrum features 
studied, before the method could be used in real-time analysis. 

Limitations 

The key limitations of our study are 1) shortcomings in the tissue specimens that limit 
the generalizability of the results, 2) variation in sampling and external conditions that 
may cause negative or positive bias to the results, 3) carry-over and the limited 
resolution of the dispersion plots that prevent real-time use in the current state of 
development. 

The anatomical and mechanical variation of the tissues is also a probable cause for 
misclassifications. The mechanical heterogeneity of the samples with varying 
thickness resulted in slight variations in the cut, which changed the smoke 
concentration and thus, the dispersion plot. Anatomical heterogeneity is demonstrated 
in Figure 2 where a streak of fat is visible between muscle fibers and part of the cuts 
have partially hit this streak instead of pure muscle. The effect of tissue heterogeneity 
will be diminished as the database for the ion spectra of the tissues grows. When the 
properties of the ion spectra are mapped in future studies, the classification can be 
made by using the constant key features, which allows for more variation in the rest of 
the ion spectrum.  

Furthermore, depending on the tissue, dispersion plots from frozen samples may differ 
slightly from fresh tissues. In our separate, preliminary experiments with porcine 
muscle tissue, there was no notable difference between the dispersion plots of fresh 
and frozen tissues. To generalize the results to all fresh tissues, the effect of 
preservation on the samples and dispersion plots needs to be explored. 

Even though we standardized the electrosurgical cut, the heterogeneity of the samples 
led to variation in smoke concentration. This may have led to the differentiation of 
some tissues by the concentration of smoke rather than tissue-specific characteristics 
in the dispersion plots. In contrast to quantitative MS, the dispersion plot of the DMS 
is qualitative in nature and does not explicitly identify the detected ions or ion clusters. 
However, during cancer surgery, the qualitative classification of the tissue into either 
healthy or cancerous is sufficient for the surgeon. In the future, the concentration of 
smoke should be controlled to reduce bias from sampling.  

The properties of the electrosurgical device may also have an effect. The device that 
was used in this study does not feature impedance compensation. This resulted in 
smoke intensity variation between the cuts, which was countered by using an 
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exceptionally high cutting power that might also affect the composition of the smoke, 
and thus the DMS response. To generalize the results to correspond with clinical use, 
the effect of the cutting power and impedance compensation in relation to the DMS 
response need to be studied further.  

Additional research is also needed to find the optimal resolution for the dispersion plot. 
Even though the classification results were good, the DMS sweep resolution of 160 
pixels is probably too low to accurately convey all the characteristic dispersion plot 
features of the different tissue types. The low resolution of the sweeps is a direct result 
of our current sampling method. In our measurements, surgical smoke was only 
produced during the 5 seconds of cutting, so a compromise in the resolution was 
needed for the DMS to match the sampling time. Low resolution is, however, only a 
problem in the research and development phase of the system, since the dispersion 
plots of the tissues are still unknown. In the future, effort should be made to increase 
the resolution. Higher resolution would enable researchers to more accurately study 
the characteristic features of the dispersion plots that are responsible for differentiating 
between tissues. After these features have been mapped, the DMS sweep can be 
concentrated on the key areas, and the measurement time will decrease to a point 
where it can be performed in 1–3 seconds.  

Another issue that needs to be solved is carry-over. In this study, the carry-over was 
mitigated by a three-minute cleaning time between each cut, but a surgeon trying to 
distinguish tissue in the operating theatre needs a near-real-time response. This 
means that in order for the system to be clinically applicable, the carry-over needs to 
be controlled by other means. 

In addition, the experimental set-up in phase II may have been subject to positive bias 
from the daily variations in the measurement conditions as the measurements had to 
be spread over several days. The absolute humidity and ambient temperature were 
monitored and no large shifts (>2 °C for temperature or >0.6 g/m3 for humidity) were 
observed between the measurement days, but slight variations did occur. This 
possible variation only occurred in phase II, since the other phases were conducted in 
a single run of measurements during the same day. 

The validation model for the phase II results (Table 3) also has potential for bias, since 
the measurements come from the same animal (except the brain tissues) and are 
spatially from a limited area. More studies are needed to conclusively prove that these 
results can be generalized to tissues from different pigs. 

Analysis of the Results 

In previous studies, porcine and other animal tissues have been identified based on 
surgical smoke, but the methods used have relied on complicated, expensive and 
bulky MS technology5,16. The specific molecular features that allow REIMS to 
differentiate porcine tissue have not been published. However, in a recent publication 
on the potential of using REIMS in food fraud cases3, the method achieved 100% 
accuracy in determining the species that the tissue originated from. In addition, REIMS 
has also been used to differentiate cancerous and healthy tissue from the same organ, 
with above 95% sensitivity and specificity4. Therefore, we can assume that its 
performance in porcine tissue type identification will be as good as that, if not better. 
The classification results gained in this study are comparable and promising, when 
taking into account that the measurement system can still be considered an early 
phase prototype. 
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With the prototype system, the DMS responses for each tissue were different enough 
to enable high classification accuracy even at the low resolution of 160 pixels. This is 
partly explained by the different electrical properties of the tissues that lead to changes 
in the concentration of the smoke17. This phenomenon is in line with the water content 
of tissues23. However, many of the tissues (lung, liver, muscle, tongue) have similar 
water content, thus other factors are likely to contribute to the discrimination. REIMS 
studies have shown that the organic matter in the smoke from biological tissues 
primarily consists of various lipids (e.g. fatty acids and phospholipids) and the products 
of their thermal degradation5. These lipids are particularly common in the cell wall 
structures, which differ between tissue types. Even the tissues that are similar on an 
anatomic level such as muscle tissues (myocytes in tongue, skeletal muscle, and 
cardiac muscle) or neural tissues (neural cells in white matter and gray matter) exhibit 
different lipid profiles, which can be detected in the composition of the smoke11. 

In addition to the differences in smoke composition, and lipids, other molecules explain 
some of the characteristics in the dispersion plots as well as some of the 
misclassifications. The DMS responses for liver and renal cortex seemed to be mostly 
concentrated in the region of heavy volatile organic compounds (VOCs), reflected in 
the dispersion plots as the dominance of the ion peak at VC = 0 (Figure 3). Especially 
in phase I, the liver and renal cortex were partly classified as each other. The 
misclassifications and abundant heavy VOCs can be due to metabolic waste 
compounds, such as bilirubin in liver and various bodily toxins in kidneys.  

Aside from the liver and renal cortex in phase I, the most common misclassifications 
(especially in phase II) were between the tongue and renal cortex. According to 
chemical analysis of normal human tissues, the general composition of kidney and 
muscle tissue is very similar23. There is no comprehensive data on the molecular 
composition of porcine tissues. An extensive database on mouse tissue compositions 
did not yield findings relevant to our work19. The lack of relevant data on human and 
animal tissues with molecular profiling methods, such as MS or nuclear magnetic 
resonance, highlights the need for more of such studies on normal tissues.  

Even though the tissue biology can partly explain the classification results, the 
limitations of the system and the variability of the tissue material also have to be 
considered. Some of the misclassifications are due to the variation within the class 
responses. Physical or anatomical heterogeneity and blood vessels most probably 
caused some tissue classes to exhibit higher variations in their ion spectrums. This, 
combined with the relatively low resolution, made the prediction for the classification 
model much more difficult. 

Conclusions 

We have shown that the DMS-driven differentiation of porcine tissues based on 
surgical smoke is possible. This study is a first step towards a novel method for 
surgical smoke analysis, which can foreseeably be used to discriminate between 
malignant and benign human tissue in the future. However, when interpreting the 
results, the limitations of the study need to be acknowledged. The system itself 
requires improvements, and additional testing using various tissue materials is 
needed. In addition, the method’s capacity to differentiate between diseased and 
healthy human tissue still has to be proven. 

Almost all types of electrosurgically operated cancers can provide material for new 
research advancements. Further reliable and satisfactory results can eventually lead 
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to the commercialization of the method. The low cost and simplicity of the DMS could 
make the method accessible for global clinical use. 
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a b s t r a c t

Introduction: Breast cancer is the most frequent cancer in women worldwide. The primary treatment is
breast-conserving surgery or mastectomy with an adequate clearance margin. Diathermy blade is used
extensively in breast-conserving surgery. Surgical smoke produced as a side product has cancer-specific
molecular features. Differential mobility spectrometry (DMS) is a rapid and affordable technology for
analysis of complex gas mixtures. In our study we examined surgical smoke from malignant and benign
breast tissue created with a diathermy blade using DMS.
Material and methods: Punch biopsies of 4mm diameter from breast cancer surgical specimens were
taken during gross dissection of fresh surgical specimen and placed in a well plate. The measurement
system is a custom-built device called automatic tissue analysis system (ATAS) based on a DMS sensor.
Each specimen was incised with a diathermy blade and the surgical smoke was analyzed.
Results: We examined 106 carcinoma samples from 21 malignant breast tumors. Benign samples
(n¼ 198) included macroscopically normal mammary gland (n¼ 82), adipose tissue (n¼ 88) and
vascular tissue (n¼ 28). The classification accuracy when comparing malignant samples to all benign
samples was 87%. The sensitivity was 80% and the specificity was 90%. The classification accuracy of
carcinomas to ductal and lobular was 94%, 47%, respectively.
Conclusions: Benign and malignant breast tissue can be identified with ATAS. These results lay foun-
dation for intraoperative margin assessment with DMS from surgical smoke.
© 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical

Oncology. All rights reserved.

Introduction

Breast cancer is the most frequent cancer among women; it
affects nearly 1.7 million women worldwide each year and is the
fifth most common cause of cancer death in women [1]. The sur-
gical treatment of breast cancer consists of the removal of the tu-
mor by either breast-conserving surgery or mastectomy,
accompanied with sentinel node biopsy and in select cases,

removal of the axillary lymph nodes [2]. According to recent data,
60% of breast cancer is treated with breast-conserving surgery,
while 80% of breast cancer patients are eligible to breast-
conserving surgery, suggesting that although patient choice and
logistics affect the choice of treatment, the practice may still be too
radical [3,4]. Acquiring adequate margin clearance is a key chal-
lenge in breast-conserving surgery. A positive margin increases the
risk of local recurrence in both invasive breast cancer and ductal
carcinoma in situ (DCIS), warranting reoperation [5,6]. According to
the Society of Surgical Oncology guidelines on margins in breast-
conserving surgery, no ink on tumor consensus appears adequate
for stage I and II invasive breast cancer, but for DCIS use of 2mm
margin should be the standard [7,8]. According to recent data, up to
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30% of patients requires reoperation due to inadequate clearance
margins after breast-conserving surgery [9e11]. No-ink-on-tumor
consensus has led to a decrease in reoperation rates and an in-
crease in the popularity of breast-conserving surgery [9].

Due to costs associated with reoperations, several methods have
been developed for the intraoperative evaluation of margins. An
intraoperative histological examination of resected tissue by frozen
section analysis can be used in suspicious areas but the entire
surgical margin cannot be evaluated [12]. The diagnostic accuracy
of frozen section analysis is good [13] and routine use of frozen
section analysis in breast-conserving surgery has been shown to
significantly reduce the reoperation rate [12,14]. Imprint cytology
of specimen surfaces has been shown to have the highest perfor-
mance in evaluating surgical margins of breast cancer patients [15].
The challenges of frozen section analysis include the added dura-
tion and disruption of the operation, transportation of samples and
the costs of the contribution of the pathologist.

Severalmethods are being developed for assessing breast cancer
margins intraoperatively in vivo or ex vivo besides imaging and
histological assessment. Use of radiofrequency (RF) spectroscopy
analysis for the detection of surgical margins (MarginProbe®) might
reduce the number of reoperations due to inadequate clearance
margins [16,17]. In the study by Schnabel et al. the sensitivity and
specificity of the device were 75% and 46%, respectively [17].
However, RF spectroscopy disrupts the workflow of the surgeon
and might compromise the orientation of the tumor leading to
challenges in re-excision. Specimen radiography is used especially
for nonpalpable tumors and can be a factor to consider for pre-
dicting tumor margins [18]. Intraoperative ultrasound can offer
additional information on surgical margins in breast-conserving
surgery [19]. Breast specimen radiography and large specimen
MRI can offer additional information on the diameter of the inva-
sive carcinoma, but for example the detection of DCIS is challenging
[20]. Optical coherence tomography (OCT) has shown potential for
intraoperative margin assessment in breast-conserving surgery
with a sensitivity varying from 100% to 58.8% and specificity from
82% to 81% in studies [21,22].

Electrosurgery is used extensively in breast surgery [23]. It cuts
tissues by heat-induced evaporation, producing surgical smoke
[24]. Rapid evaporative mass spectrometry (REIMS) studies show
that the molecular composition of surgical smoke has cancer-
specific features with an accuracy of over 95% for discriminating
malignant tissues from benign ones [25,26]. Currently, the disad-
vantage of mass spectrometry technology is the excessive cost and
complexity, preventing adoption outside research facilities. Differ-
ential mobility spectrometry (DMS) or synonymous field asym-
metric ion mobility spectrometry (FAIMS) have been extensively

studied in medical applications [27]. DMS is a variant of ion
mobility spectrometry: a stream of gas is first ionized, then an
asymmetric radiofrequency electric field is applied to the sample
gas, enabling the differentiation and filtering of ions to discriminate
and analyze themolecular composition of the sample and present it
as a dispersion plot. The advantage of DMS is its lower cost,
complexity and maintenance requirements compared to systems
based on mass spectrometry. We have demonstrated that DMS
discriminates porcine tissues by surgical smoke [28]. To date, there
is no data on discrimination of benign and malignant tissues.

In our study we examined surgical smoke created with a
diathermy blade using DMS. We analyzed fresh malignant breast
tissue, normal mammary gland and adipose tissue ex vivo. Our goal
was to demonstrate the capability of DMS in this application,
paving way for real-time margin assessment.

Material and methods

Study material

This study has been approved by the Ethical Committee of
Tampere University Hospital (TAUH) (code R17007). The tissue
material consisted of breast cancer surgical specimens of which
surgery were performed in TAUH and Hatanp€a€a County Hospital
between June 2017 and November 2017. All patients included in the
study underwent standard diagnostic workup and pre-operative
tumor board. Tissue samples were collected by two breast pathol-
ogists (J.H. and T.T.) from Fimlab Laboratories, which is the principal
pathology laboratory in the TAUH region.

Punch biopsies of 4mm diameter were taken during the gross
dissection of fresh surgical specimen. Tissues included in the study
were: palpable breast carcinoma preliminarily assessed as clinical
tumor stage (cT)� cT2, macroscopically normal mammary gland
>2 cm apart from the malignant tumor, fat and vascular structures.
Several samples, usually five, were taken from each category per
patient. Vascular specimens were collected only when clearly
visible on grossing. The accuracy of sample site for cancerous punch
biopsies were histologically verified in 20 cases (Fig.1). The samples
were covered with a gauze moisturized with saline to prevent
dehydration and stored at þ4 �C until analysis at Tampere Uni-
versity of Technology within the same or following day in most
cases. For the analysis, a custom-made well plate was made to
control the sampling process.

The well plate contained 40 rounded wells (5.5mm diameter,
5.75mm depth). To prevent the diathermy knife from short-
circuiting due to direct contact with the well plate, the wells
were covered with a thin protective layer of agar. Agar was a suit-
ablematerial for the protective layer, since it produces unnoticeable
DMS response, when subjected to electrosurgery. The surgical
smoke analyses were performed in random order. Measurements of
poor quality due to incomplete production of smoke, defective
sample preprocessing or malfunctions in the DMS analysis were
excluded from the study. The selection criteria for technically failed
measurements are presented in Fig. 2. The number of measured
and excluded samples for eachmeasurement day can be seen in the
supplementary material (Table S1). The full reports of the cases
(structured histopathology report and a prognostic panel including
estrogen receptor (ER), progesterone receptor (PgR), Ki-67, Her2
IHC and dual ISH) were gathered from patient records after
analysis.

Measurement system

The measurement system used in this study is an advanced
model of a custom-built device that we have previously described

Abbreviations

RF Radiofrequency
OCT Optical coherence tomography
REIMS Rapid evaporative mass spectrometry
DMS Differential mobility spectrometry
FAIMS Field asymmetric ion mobility spectrometry
ATAS Automatic tissue analysis system
LDA Linear discriminant analysis
FSFS Forward sequential feature selection
10-f-CV 10-fold cross validation
ROC Receiver operating characteristic
AUC The area under the curve
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as the automatic tissue analysis system (ATAS). The system com-
prises a computer-controlled electrosurgical sampling stage, a gas
sample pre-processing unit, and the ENVI-AMC® DMS device
(Environics Oy, Finland) [28].

In this study, the DMS analysis produced an output dispersion
plot of 1620 values that represent the ion spectrum of the measured
surgical smoke sample. A schematic illustration of the measure-
ment system and an example output dispersion plot are presented
in Fig. 3.

Sampling protocol
Each samplewas cut individually in an automatedmeasurement

sequence. The depth (3mm) and duration (1.5 s) of the electro-
surgical cut was kept constant to stabilize the concentration of the
created surgical smoke. The duration of DMSwas 1min, after which
the system cleaned itself with dried purified air for another minute
to prevent carry-over in the subsequent measurement.

Classification models and statistical analysis

The DMS data from the measured surgical smoke was processed
with cross-validated linear discriminant analysis (LDA) classification
algorithms created inMATLAB (TheMathWorks Inc., U.S.A). The basic
principle of LDA classification is presented in the supplementary
material (Fig. S1). The LDA classificationmodels were cross-validated
with 10-fold cross validation (10-f-CV). To exclude the possible
overfitting bias from the classification, an additional holdout classi-
fication with randomly selected 70% of the data used as the train set
and the remaining 30% used as the test set, was also conducted.

The LDA classification of the samples was first done by using the
full raw data matrix (1620 values) of the dispersion plots. The
analysis was continued with a process called forward sequential
feature selection (FSFS) to locate the key areas in the dispersion plots
of the tissue types. In FSFS, subsets of the data matrices are selected
until the classification accuracy does not improve significantly by
the addition of new features [29]. A block diagram explaining the
principle of FSFS is presented in the supplementary material
(Fig. S2). The most relevant pixels in the dispersion plots were
chosen for further analysis by performing 1000 cycles of FSFS each
with new dataset partitions for 10-f-CV.

Fig. 1. Histological examination (hematoxylin and eosin staining) of cancerous tissue to verify the placement of punch biopsies taken. Scale bar presented on the lower right corner.

Fig. 2. Exclusion criteria of all analyzed samples.
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Using the FSFS-selected features, a receiver operating charac-
teristic (ROC) curve was also plotted to visualize the diagnostic
properties of the differentiation of carcinoma and all measured
benign tissues. The ROC curve was plotted using the bootstrap
method with 1000 repetitions.

Results

Characteristics of study samples

In total we examined 106 surgical smoke samples from 21 ma-
lignant breast tumors and 198 samples from benign tissues
including macroscopically normal mammary gland (n¼ 82), adi-
pose tissue (n¼ 88) and vascular tissue (n¼ 28). No benign breast
tumors were included in the study. Clinical characteristics of car-
cinomas are presented in Table 1. Histopathological analysis was
done for all tumors.

Classification results

With the raw data, our 10-f-CV LDA model achieved a classifi-
cation accuracy of 86.5% when comparing carcinoma samples to all
benign samples. The sensitivity was 80.1% and specificity 89.9%. The
results of the binary classification are presented in Table 2. With the
holdout method, the classifier achieved an overall classification
accuracy of 84.9%, a sensitivity of 77.1% and a specificity of 89.1%. In
total, wemeasured 350 samples, out of which 304 were used in the
final analysis. The exclusion criteria for the raw data can be seen in
Fig. 2.

The classification accuracy of breast cancer to ductal (n¼ 69),
lobular (n¼ 32) and invasive micropapillary (n¼ 5) was 94%, 47%,
and 100%, respectively. The total classification accuracy by cancer
type was 80.2%. The confusion matrix of the classification results is
presented in the supplementary material (Table S2).

After the breast cancer classification with all 1620 pixels of the
dispersion plot, the thousand FSFS cycles were performed. The
process revealed that by average, 7 pixels from the dispersion plot
were used in the feature selective classification of carcinoma and
benign tissues. The average classification accuracy was 82.4% with a
standard deviation of 1.8%.With the sevenmost frequently selected
pixels, a ROC curve for the classification between carcinomas and
benign tissue was plotted (Fig. 4). The area under the curve (AUC)
value for the classification was 0.895 with 95% confidence bounds
of 0.850 and 0.923.

Discussion

DMS coupled with ATAS achieves high performance in
discrimination of benign and malignant breast tissue. The analysis
of raw DMS data achieved a high discrimination rate of 86.5%.
Similar performancewas retainedwith only seven selected features
of the dispersion plots and with the holdout validation. These re-
sults demonstrate the feasibility of intraoperative margin assess-
ment with DMS from surgical smoke.

The inherent advantage of surgical smoke analysis is that if the
surgeon uses electrocautery to excise the whole tumor, the whole

Fig. 3. The ATAS measurement system.A) The Itkacut 350MB electrosurgical unit. B) CNC device. C) Tissue samples in the custom-made well plate. D) SURTRON® EVAC surgical
evacuator. E) The sample pre-processing unit. G)ENVI-AMC® differential ion mobility spectrometer.

Table 1
Summary of clinical characteristics (n¼ 21).

Characteristics Number of patients Percentage (%)

Tumour type Ductal 14 66.7
Lobular 6 28.6
Invasive micropapillary 1 4.8

Histological grade 1 5 23.8
2 10 47.6
3 6 28.6

Tumour sizea T1c (1e2 cm) 3 14.3
T2 (2e5 cm) 14 66.7
T3 (>5 cm) 4 19.0

Nodal status Negative 11 52.4
Positive 9 42.9
Unknown 1

HER2 Negative 18 85.7
Positive 3 14.3

ERb Negative 1 4.8
Low 0 0
Positive 20 95.2

PgRc Negative 4 19.0
Low 4 19.0
Positive 13 61.9

Ki67 index Low (�20%) 13 61.9
High (>20%) 8 38.1

DCIS Present 8 38.1
Not present 13 61.9

a Greatest dimension.
b ER denotes estrogen receptor status: positive > 20%, low 1e10% and

negative< 1%.
c PgR denotes progesterone receptor status: positive >20%, low 1e10% and

negative <1%.

Table 2
The diagnostic table for the classification of malignant and benign breast tissues.
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surface of the cavity is sampled without additional stages in the
surgery. Furthermore, the orientation is easy to maintain and real-
time analysis would allow the surgeon to excise positive margins
accurately without resorting to larger resections such as shaving
the whole cavity.

The performance of ATAS is close to the reported performance of
REIMS, which achieved sensitivity and specificity of 100% in a
proof-of-principle study with 16 patients. The discrimination
seems to result from different glycerophospholipid profiles [26].
Although the performance of REIMS is impressive, the costs and
maintenance needs of mass spectrometry technology remain a
major obstacle for clinical adoption. As a more economical option,
DMS may achieve the optimal compromise of cost and
performance.

Our results compare favorably to existing margin assessment
methods. RF spectroscopy, which has been shown to reduce the re-
excision rate in breast-conserving surgery in two studies [16,17],
has shown comparable performance in detection of benign breast
tissue and carcinoma with a sensitivity and specificity of 90% and
91%, respectively [30]. RF spectroscopy can cover an area large
enough to be practical but can currently only be performed ex vivo,
leading to challenges of accurate orientation of the resected tumor.
If the margin is positive, a larger re-excision is needed to achieve
negative margins because the orientation of elastic breast tissue is
difficult to maintain. OCT has been applied for intraoperative breast
cancermargin evaluationwith a sensitivity of 100% and a specificity
of 82% [21]. It yields a histologic view of the tissue, which requires
human interpretation and thus significant training for the surgeon.
Nolan et al. addressed this issue by developing a decision support
system for studying axillary lymph nodes in breast cancer surgery
with a low sensitivity of 58.8% and mediocre specificity of 81.4%
[22]. The results imply that in skilled hands, the specificity of OCT is
similar to ATAS. However, the results concerning the sensitivity of
OCTare inconclusive. Both RF and OCT require an additional stage of
analysis in the surgery, which prolongs the anesthesia and in-
terrupts the workflow.

Our protocol was designed to minimize bias. In addition to
cancerous tissue, benign samples were collected from the patients
as reference. Samples were collected within hours of the operation,
stored fresh and analyzed shortly after gathering. The collection of
samples was done by two experienced pathologists. The analysis of
surgical smoke was done in a standardized pattern in a controlled

environment. Hence, the analyses done on separate occasions are
comparable and the risk for day-to-day bias is low. Punch biopsies
of cancerous tissue were histologically verified in 20 cases. Biopsies
from one large lobular carcinoma (T3) were not verified, but due to
the macroscopic extend of the carcinoma it is likely that all punch
biopsies consisted of cancerous tissue. From the 20 carcinomas that
were histologically verified, punch biopsies from 18 cases consisted
entirely of cancerous tissue. Punch biopsies from two carcinomas
were only partially cancerous tissue in the histological assessment:
in total 10 punch biopsies classified as malignant tissue may
contain benign tissue. When the samples from the unverified
lobular carcinoma and the samples from the two carcinomas of
which punch biopsies were only partially cancerous tissues were
excluded from the study, the accuracy (87%), sensitivity (84%) and
specificity (89%) remained unchanged suggesting insignificant bias.
Therefore, the samples remained included in the study. Benign
punch biopsies were not histologically verified. However, all benign
punch biopsies were collected by experienced pathologists by
macroscopic judgement from a distance of 2 cm from the tumor.
Should some of the benign contain malignant tissue, it would cause
negative bias and would underestimate the performance of DMS.

All carcinomas that were preliminarily assessed as clinical tu-
mor stage were included in the study. Despite the preliminary
estimation a portion of tumors were classified as pT1c (n¼ 4). One
of the tumors was micropapillary carcinoma and consequently the
number of micropapillary carcinoma samples analyzed was small
compared to other carcinomas. Micropapillary and ductal carci-
noma samples were analyzed on the same day: all micropapillary
samples were classified correctly and only one ductal carcinoma
sample was classified as invasive micropapillary. The performance
of the classification could be more balanced with additional mea-
surements to strengthen classification of carcinomas by their key
features or by separating the benign classes. Weighting coefficients
could also be implemented for further improving the diagnostic
properties.

Even though the results of this study were comparable to pre-
vious studies, limitations of the design must be acknowledged. The
key issues in the study were the challenges relating to the function
of the ATAS system, variations in the study material, and the
duration of the measurements. The system-related limitations led
to occasional failed measurements that could not be used in the
result analysis. The causes for failed measurements were 1) sample
adherence to the diathermy, which prevented smoke production, 2)
data communication delay between the sampling system, and 3)
malfunctions of the pre-processing unit or the DMS device. Even
with the exclusion of technically failed measurements, responses of
especially vascular tissue specimens exhibited high variation. The
heterogeneity of the tissue pieces and the resulting variation in the
dispersion plots can explain the relatively low sensitivity of the
binary classification. In our classification models, the benign tissue
class was heterogenous with distinct dispersion plots from adipose
tissue, macroscopically normal mammary gland and vascular tis-
sue. This makes the classification criteria more complex and re-
duces the performance in small samples. The dispersion plots of the
malignant tissues were more homogenous, leading to a more uni-
form malignant class. In addition, the benign class consisted of
almost twice as many samples compared to the malignant class,
which may bias the classification algorithm to favor the larger
group in unsure cases, resulting in high specificity, but low
sensitivity.

In this pilot study with the focus on the proof-of-concept, we
used a high-resolution dispersion plot and a long cleaning period to
maximize the data from the samples. This results in 1-min duration
of the measurement with an additional 1-min for cleaning period.
However, the FSFS classification models revealed that the whole

Fig. 4. ROC curve with pointwise 95% confidence bounds for the classification of
malignant and benign breast tissue with FSFS-selected features.
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spectrum of 1620 pixels is needlessly large for accurate differenti-
ation of carcinoma and benign breast tissues. By concentrating on
the selected areas of the dispersion plot, the combined measure-
ment and recovery time is reduced to seconds, making it feasible
for real-time use. This model will be validated in future work,
taking a step further towards the intraoperative cancer margin
analysis.

Conclusions

The results demonstrate the ability of DMS to differentiate
malignant and benign breast tissues based on surgical smoke in a
laboratory setting. In the future, a rapid analysis model should be
validated and the automatic tissue analysis system should be
further developed for robust operation.
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A R T I C L E I N F O

Keywords:
Differential ion mobility spectrometry
Diathermy
Imaging
Mass spectrometry
Tissue mapping

A B S T R A C T

Pathologic examination of clinical tissue samples is time consuming and often does not involve the compre-
hensive analysis of the whole specimen. Automated tissue analysis systems have potential to make the workflow
of a pathologist more efficient and to support in clinical decision-making. So far, these systems have been based
on application of mass spectrometry imaging (MSI). MSI provides high fidelity and the results in tissue identi-
fication are promising. However, the high cost and need for maintenance limit the adoption of MSI in the clinical
setting. Thus, there is a need for new innovations in the field of pathological tissue imaging. In this study, we
show that differential ion mobility spectrometry (DMS) is a viable option in tissue imaging. We demonstrate that
a DMS-driven solution performs with up to 92% accuracy in differentiating between two grossly distinct animal
tissues. In addition, our model is able to classify the correct tissue with 81% accuracy in an eight-class setting.
The DMS-based system is a significant innovation in a field dominated by mass-spectrometry-based solutions. By
developing the presented platform further, DMS technology could be a cost-effective and helpful tool for au-
tomated pathological analysis.

1. Introduction

The aim of oncologic surgery is to remove the tumour with adequate
healthy tissue margin (Orosco et al., 2018). The assessment of margins
and precise histological diagnosis is also the main goal of a pathologist.
Since the processing of the tissue specimen as well as the microscopic
assessment are largely manual processes, the capacity of a single pa-
thologist is limited, and it is impractical to analyse the removed tumour
tissue completely. Instead, the pathologic-anatomical diagnosis is set by
investigating only selected sections of the tissue, risking false negatives,
especially in intraoperative frozen section analysis and imprint cytology
(Esbona et al., 2012; Tucker, 2012).

In order to increase the accuracy and to streamline the work of the
pathologist, image recognition solutions have been developed for
screening the histologic slides (Komura and Ishikawa, 2018; Nature,

2017). Although these solutions clearly hold promise, they rely on
conventional fixation and staining and thus potentially automate only a
part of the workflow. A method capable of analysing tissue with
minimal preparation would allow efficient and complete assessment of
histological specimens without unacceptable overhead for the pa-
thology laboratory. Such a method would be especially useful as an
orthogonal supporting method for histopathology rather than its re-
placement. The results gained from a more spatially comprehensive, but
potentially less accurate analysis could be used to pinpoint areas for a
more specific microscopic examination. This could be achieved by
creating a so-called tissue map that highlights the points of interest or
types of tissues before the gold standard analysis.

Tissue mapping with molecular methods is an approach that has
seen extensive use in basic science and pharmacologic research. These
solutions mostly rely on Mass spectrometry imaging (MSI), more
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specifically on matrix-assisted laser desorption ionization (MALDI),
secondary ion mass spectrometry (SIMS), desorption electrospray io-
nization (DESI), and rapid evaporative ionization mass spectrometry
(REIMS) (Golf et al., 2015; Veselkov et al., 2014). These methods have
been shown to be accurate in tissue identification and a widespread
adoption in clinical setting has been speculated (Veselkov et al., 2014).
Except for MALDI, these systems do not require extensive pre-proces-
sing of the samples and provide molecular data that may be easier for
machine learning algorithms to utilize than complex histologic views
(Golf et al., 2015; Veselkov et al., 2014). However, the adoption rate of
MSI is limited by the high cost of the systems and their upkeep. More
cost-effective analysis methods are required before MSI could be con-
sidered for widespread clinical use. (Golf et al., 2015; Veselkov et al.,
2014)

Differential ion mobility spectrometry (DMS) is an analytical tech-
nique related to mass spectrometry. The key difference is that DMS does
not require a high vacuum to function, although many commercial
sensors that are primarily intended to act as a pre-filtering stage for
mass spectrometry or mobile use, operate slightly below atmospheric
pressure to improve signal intensity and to reduce the energy con-
sumption of the system (Nazarov et al., 2006). However, some stand-
alone DMS sensors, such as the one used in this study, can even operate
in atmospheric pressure, resulting in good reliability, ease of main-
tenance, more robust and simpler sampling, and lower costs, while
maintaining sufficient performance. Ion mobility spectrometry has been
shown to have various applications in the medical field (Chouinard
et al., 2016; Covington et al., 2015; Kabir and Donald, 2017), but its use
has not yet spread to pathology. We have previously shown that DMS
coupled with a diathermy blade is a viable technology in tissue iden-
tification (Kontunen et al., 2018; Sutinen et al., 2019). In our studies,
we were able to identify various porcine tissues with over 95% classi-
fication accuracy and human breast malignancies and control tissues
with over 85% accuracy. The automatic tissue analysis system (ATAS)
was developed to automate sample analysis and data collection. How-
ever, the previous systems were not suitable for high-throughput ana-
lysis due to slow sampling rate. We modified the system to enable
higher throughput and resolution. Additionally, we created a method
for the generation of topographical data that enables mapping of spe-
cimens in a manner analogous to large-format histology. As a relatively
inexpensive technology, DMS has the potential to bring molecular
tissue imaging to wider use.

In this proof-of-concept study, we present a cost-efficient system for
automated histopathological tissue mapping using DMS technology and
machine learning. We also demonstrate, how the visual output data of
the analysis system could be superimposed on a tissue image in a future
pathological application.

2. Materials and methods

Fresh tissue samples of a Finnish landrace pig (Sus scrofa domesticus)
were obtained from a slaughterhouse (Paijan tilateurastamo, Urjala,

Finland) and immediately stored in a freezer at −18 °C. The tissues
included in this study were lungs, kidneys, liver, brain, and flank that
had clear areas skeletal muscle and adipose tissue. The brains that were
used in the measurements were gathered from 5 pigs, but all other
tissues came from a single animal. The tissues were slaughterhouse offal
and commercial meat products. Therefore, no approval from the ethical
committee was needed for the study. Prior to analysis, the tissue sam-
ples were cryosectioned into 3 mm thick sample slices with a meat
slicing machine (Prego P119, Inbound, Finland) and placed on a pro-
tective agar plate that produces no significant signal, even if the dia-
thermy blade evaporates part of it.

2.1. ATAS

The agar plate was positioned on the sampling platform of the ATAS
system. The platform consisted of a modified 3D printer, in which the
printer bed functioned as the dispersive electrode for the diathermy
knife that was controlled by the graphical user interface of the printer.
The sampling platform along with the subsequent parts of the ATAS
system have been used and described in detail in our previous studies
(Kontunen et al., 2018; Sutinen et al., 2019). In short, a 3D-printer-
mounted diathermy blade is used to cut a tissue sample resulting in
surgical smoke that is filtered and diluted in the sample pre-processing
unit, after which it is measured with the DMS. The DMS device used in
this study was the ENVI-AMC DMS sensor (Environics Oy, Finland),
which is capable of detecting low parts-per-billion concentrations of
gaseous substances. The device is 178 mm high, 440 mm wide, and
517 mm deep, which equals to roughly the same size as a standard
surgical smoke evacuator. The sensor separates the sample ions by an
asymmetric square waveform that has a duty cycle of 5% and frequency
of 250 kHz. The strength of the separation field can be varied between
10 and 80 Townsend (Td) with a resolution of less than 0.01 Td. A more
in-depth description of the technical details of the DMS sensor can be
found in a dedicated publication (Anttalainen et al., 2018).

A schematic representation of the ATAS used in this study is shown
in Fig. 1. The main difference compared to the previous system (Sutinen
et al., 2019) is that the diathermy blade was modified to a needle shape
to allow for increased spatial resolution. There was also no sample
chamber inside the sample pre-processing unit that would accom-
modate a longer measurement duration for the DMS device. The DMS
was set to sweep the compensation voltage (x-axis in the output dis-
persion plot) from −0.8 V to 5.0 V with 25 increments and the wa-
veform amplitude voltage (y-axis in the output dispersion plot) from
340 V to 740 V with 8 increments. This resulted in a more sensible
timeframe for the imaging of the full tissue slice, but also in a relatively
low DMS measurement resolution (25 × 8 = 200 pixels) for each
sample point in the tissue matrix.

The dimensions of a tissue matrix were set with the graphical user
interface of the printer. Generally, the ATAS was set to analyse the
tissue slice with a 1–2 mm spatial resolution between each sample point
in x and y directions. The incision depth of the needle blade was set to

Fig. 1. The automatic tissue analysis system (ATAS)
system for tissue imaging in a pathological applica-
tion. A) 3D printer-based sampling unit. B) Tissue
slice on the sampling platform. C) Standard dia-
thermy unit. D) Sample pre-processing unit. E) ENVI-
AMC differential mobility spectrometer (DMS). F)
Surgical vacuum. G) Monitor showing the dispersion
plot of a sample point. H) Computer for data-analysis
and visualization of the DMS data.
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3 mm, so that the depth of the cut would match or only slightly exceed
the full depth of the tissue slice. To prevent carry-over signal from the
cut of the preceding sample point, a waiting duration of 10–30 s after
each cut, was also set. The waiting duration was dependent on the
analysed tissue type, with liver requiring the longest time and muscle
the shortest time. The waiting times were empirically set, so that the
accumulation of the surgical smoke signal was not visible in the spec-
trum regardless of the number of consecutive cuts. With these mea-
surement settings, a matrix consisting of 100 sample points was ana-
lysed by the ATAS in approximately 25–75 min.

2.2. Measurement protocol

Prior to analysis, the tissue samples were photographed from a
distance of approximately 10 cm using a macro lens (HD MACRO,
BLACKEYE, Eye Caramba Oy, Finland) attached to a mobile phone
(iPhone 6, Apple Inc., USA). After performing the measurement set to
produce a tissue matrix as previously described, the sample was pho-
tographed again (Fig. 2). These photographs were used to annotate
each pixel of the tissue matrix. Due to the size of the needle blade, some
cuts evaporated the tissue from areas where the tissue type was difficult
to determine macroscopically. Thus, only a portion of the points were
confidently annotatable, and these points were independently marked
as such. Clear macroscopic histological heterogeneity was observed in
kidneys, brains and flank. The tissues therein were identified as renal
cortex and renal pelvis in the kidneys; grey matter and white matter in
the brains; and skeletal muscle and intermuscular fat in the flank. All
cuts to liver and lung tissues were annotated as such due to their
macroscopic homogeneity. All tissues were measured during a period of
1.5 months, with emphasis on minimizing any sources of bias produced
by the measurement protocol. This means that the tissue types were
measured on several different days and in varying consecutive orders.

2.3. Data analysis and statistical tools

Statistical analyses and classifications were primarily done in
MATLAB (version R2017b, The MathWorks Inc., Natick, USA).
Additional models were also tested with a number of open source
packages written for Python (version 3.6.6). The Python classification
algorithms were implemented using scikit-learn (version 0.20.0)
(Pedregosa et al., 2011). Visualizations were created using MatPlotLib
(version 2.2.2) and Seaborn (version 0.9.0). Exploratory analyses were
performed in Jupyter Notebooks.

2.4. Data

The complete dataset consists of 4742 DMS spectra in vector form,
which has 200 dimensions, where each element is a 16-bit value that
signifies the signal output of the ion detector with the corresponding
DMS voltages. Each DMS spectrum represents one point in a tissue
analysis matrix. Based on the DMS spectra, we derived a novel para-
meter, chemical stress (CS), to monitor the signal intensities of the DMS
measurements. The CS value was defined as the quotient of the amount
of heavy volatile organic compounds (i.e. signal in the bottom left of a
DMS dispersion plot) to the amount of reactant ions (i.e. signal in the
bottom centre of a DMS dispersion plot). A CS value of 3.0 was used as a
cut-off value differentiating a saturated sample from a non-saturated
one. In addition to the saturated samples, a software defect in the ENVI-
AMC spectrometer resulted in a number of corrupted spectra that could
not be used in the result analysis. Furthermore, in order to ensure the
quality of the labelling, all uncertain labels were excluded, resulting in
the final dataset of 3418 samples, which was used to train and validate
the classification models.

2.5. Data pre-processing

Before configuring and training the classification models, the raw
data vectors from each sample were adjusted to have only positive real
numbers by offset correction. In addition, a common logarithm was
calculated of every dimension. The logarithmic representation of the
data was done to emphasize the information otherwise lost due to the
prominence of high-intensity peaks in the ion spectrum. In other words,
the logarithmic pre-processing evened out the disproportion of signal
intensity changes between the DMS spectra and made the smaller
changes in the key parts of the spectra more pronounced. After the pre-
processing steps, the data were analysed in three phases.

2.6. Analysis

2.6.1. Phase I: Internal classification and clustering
The most important future application of the ATAS is automated

tumour margin detection as previously described. Hence, we in-
vestigated to which extent our system is able to distinguish different
tissues within the tissue slice samples. Macroscopically distinguishable
tissue types were easy to identify in the flank, kidneys and brain, and
thus these tissues were investigated in phase I.

The classification algorithms in this phase were based on linear
discriminant analysis (LDA) models that have also been successfully
utilized in previous studies (Kontunen et al., 2018; Sutinen et al., 2019).
Models for the internal classification of flank, kidneys, and brain were

Fig. 2. Examples of images used to annotate tissues. A picture taken from a porcine brain sample before automatic tissue analysis system (ATAS) tissue mapping (left)
and after the full matrix of 100 sample points with 2 mm spatial resolution for additional clarity (right).
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created by utilizing the corresponding subgroups of the full data set that
had only the sample points of each target tissue. For the internal clas-
sification of flank, the size of the data was 1240 samples (721 samples
of skeletal muscle and 519 samples of intermuscular fat); for kidneys
822 samples (631 samples of renal cortex and 191 samples of renal
pelvis); and for brains 470 samples (227 samples of grey matter and 243
samples of white matter). All models were 10-fold cross-validated (10-f-
CV) to alleviate overfitting.

In addition to the LDA classification, K-means clustering was also
used in the data analysis for individual tissue slices, to see if an un-
supervised method could be used in DMS-based tissue mapping. K-
means is a clustering method, where the algorithm tries to iteratively
find centres of data groups with the shortest (Euclidian) distances to the
data points surrounding it, when K, the number of the groups, is known
(Jin and Han, 2010). The K-means clustering could be a well-suited
method to produce tissue maps without prior training or annotation of
any of the sample points in the tissue matrix.

2.6.2. Phase II: 8-class classification
Even though tissue imaging by unsupervised K-means clustering

might be possible, supervised classification by a pre-trained model most
often yields better results. In order to test the limits of our classification
system, we aimed to create a model that is, after training, able to
identify any of the used tissues without prior knowledge of the sample.
The model was trained by using the full dataset of 3418 samples from
the 8 tissue types and the classification method used was LDA with 10-f-
CV.

2.6.3. Phase III: identifying key features for classification
The key features of the ion spectrum for the classification of the

tissues were searched by forward sequential feature selection (FSFS).
The function of FSFS is to determine the most relevant pixels of the
dispersion plot in the classification of certain groups. The selection of
the relevant features starts with a blank vector, for which the algorithm
first adds the feature that yields the best classification result. After this,
the FSFS algorithm continues to search for features that further improve
the result, until a stopping criterion is met (Wang et al., 2017). In
practice, this means that the FSFS algorithm adds features to be used in
the classification, until the addition of new features no longer improves
the classification result significantly. The FSFS process was executed by
classifying each target tissue in a binary setting against all other tissues,
in order to find the significant features that explain their differentiation
with LDA classification. Since there is some variation in the DMS out-
puts of even the same tissues, it is not certain that the results of a single
FSFS are generalizable to represent the features of the tissue con-
clusively. In other words, the results are affected by the structure of the
training data, which changes if cross-validation is used. Thus, the FSFS
process was repeated 1000 times for each tissue, to trace the features
that are not heavily dependent on the cross-validation partitions (i.e.
chosen in the majority of FSFS cycles).

3. Results

3.1. Internal classification and clustering

The internal differentiation of tissues in flank, kidneys, and brains
was tested with the unsupervised 2-means clustering and the trained
LDA models. The binary K-means clustering results for a porcine flank
tissue matrix can be seen in Fig. 3, along with example dispersion plots
for skeletal muscle and intermuscular fat. It is apparent from the figure
that while the K-means clustering can differentiate the majority of the
areas with intermuscular fat and skeletal muscle, the produced tissue
map is not perfect. The mapping results were similar for all tissue slices,
indicating that the pathological mapping with unsupervised clustering
of DMS data is not yet a completely viable option.

With the supervised LDA models, the cross-validated accuracy score

(mean and standard deviation of 100 CV repetitions) for intermuscular
fat and skeletal muscle was 91.8% ± 0.3% (n = 1240),
70.9% ± 1.5% (n = 470) for white and grey matter, and
90.8% ± 0.5% (n = 822) for renal cortex and renal pelvis.

The models trained for internal classification of porcine flank,
kidney or brains, can be used to create a more accurate map of the
sample points of a new tissue slice, than with unsupervised methods.
The posterior probability values that the LDA classifier produces, can be
used to represent the certainty of the classification and can be visua-
lized as a colour-coded heatmap, where each pixel represents one
sample point in the tissue matrix. While this method has little value
with the tissues that have clear macroscopic areas that can be identified
with the bare eye, the method could be utilized to guide a more focused
sampling in pathological screening of clinically relevant tissues, where
the visually apparent differences are not as profound. Furthermore, in a
potential future application, the classification heatmap could be over-
laid on top of an RGB-image of the tissue slice, thus making the inter-
pretation of the areas even more intuitive for a pathologist performing
histological analysis. This idea is demonstrated in Fig. 4.

3.2. 8-class classification

The eight tissues were identified with a mean accuracy score of
81.4% ± 0.2% (n= 3418). Skeletal muscle was correctly classified in
approximately 90% of the cases, whereas only 72% of renal pelvis was
correctly identified. The classification accuracy of the rest of the tissues
fall between these ranges. Detailed results are presented as a confusion
matrix in Table 1.

3.3. Identification of key features for classification

The results of the FSFS for each tissue type indicated that the mo-
bility spectra of the tissue smoke contain certain key features that the
classification algorithms can use to identify the type. The type-specific
features for each tissue are presented in Fig. 5. The number of features
found by FSFS was dependent on the tissue being classified, but on
average, 8 features were found until the stopping criterion was met.

4. Discussion

In this study we demonstrated a DMS-based automated tissue ana-
lysis system that is capable of topographic mapping of tissue specimens.
With further development, this technology could potentially support
pathologists in their analysis and decision-making. We achieved suffi-
cient spatial resolution for tissue types which would also allow the
detection of margins of a macroscopic tumour. It is noteworthy that
these results were gained with a prototype system that can be sig-
nificantly improved in terms of analysis time and resolution with future
iterations of the device. In a future application, the tissue map resulting
from the ATAS analysis could guide a pathologist to take specific areas
under closer microscopic assessment. This would require two planar
samples from the same area, due to the destructiveness of the analysis
method, which is also the case with other current molecular mapping
methods, such as MALDI, DESI, or REIMS.

The classification accuracy did not reach the results obtained in
prior MSI-driven studies. However, this was expected, given the sim-
plicity of our system. Even in an intraoperative setting with clinically
relevant tissues, REIMS identification studies have produced classifi-
cation accuracies that are consistently over 90% (Balog et al., 2013;
Phelps et al., 2018; St John et al., 2017). Furthermore, the results and
figures presented in the article describing the pathological application,
indicate classification accuracies of 100% with animal tissues (Golf
et al., 2015). The difference between our results and the MSI studies is
likely partially explained by technical factors. The specimens exhibited
some variation and nonuniformity in the height and surface flatness
that in turn led to variations in signal smoke concentration and signal
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intensities that were not yet compensated in the measurement protocol
or system structure. Additionally, day-to-day variation was apparent in
the measurements that could be explained by changes in environment
factors such as ambient air temperature and humidity. Furthermore,
mass spectrometers have higher resolving power that likely enables
them to detect features that are not sufficiently separated by DMS.

In practice, the performance difference of classification accuracy of
81% as compared to 95–100% achieved by mass spectrometry systems
means that in its current form, the system would require a confirmative
test, such as a histologic slide. Since the classification algorithm can be
weighted to prioritize high sensitivity or specificity by sacrificing the
other, it would be worthwhile to tailor it to meet the demands of the
application. In case of cancer specimens, it would be useful to weight
the algorithm for high negative likelihood for cancer where it could be
used to screen the specimens that are currently omitted from histolo-
gical assessment due to resource constraints.

The intensity of the evaporated tissue matter proved to be one of the
most significant factors in tissue classification. In addition, we observed
a daily drift in the intensity of the measurements that we compensated
by adjusting the dilution of the sample flow. The goal was to prevent
the saturation of measurements, since the DMS responses became
identical (i.e. saturated) in high signal intensities. These problems re-
quire further research in order to 1) uncover the cause of daily drift in
signal intensity, 2) discover the optimal threshold of signal intensity
and 3) create a dynamic dilution system resulting in optimal tissue
differentiation preserving the intrinsic signal intensity of a given tissue.

Besides the intensity of the measurements, z-directional tissue
overlap potentially affected the results. The blade was set to cut 3 mm
in depth in order to produce enough surgical smoke for the detector.
The suboptimal classification results in the brain are most likely ex-
plained by the overlapping of cortical tissue; it is likely that during the
3 mm vertical movement, both grey and white matter were evaporated
and detected by the sensor. This indicates that the method is best suited

for planarly uniform tissue samples. Same extent of overlapping is not
present in the kidneys or the flank but may explain some mis-
classifications within these subgroups.

We were able to identify features of the spectrum with FSFS that
differentiate the tissues with relatively high accuracy despite the long-
term drift and variation within tissue matrices. Certain features were
always present, while others appeared only in a subset of spectrums
indicating overfitting rather than a true discriminative feature. Some of
the found features reside in the upper area of the DMS dispersion plot
that has a lower signal-to-noise ratio. The noise in these areas may have
a significant detrimental effect on classification performance and may
explain part of the misclassifications.

The average number of features found with FSFS was 8, and the
maximum number of features in any of the cycles was 39. Given that
the full dispersion spectrum has 200 pixels, the distinguishing features
account for less than 20% of the spectrum. We speculate that ATAS-
based tissue imaging could be accelerated significantly by focusing the
DMS sweep only on areas with high importance in tissue identification.
However, this is not possible with the DMS device used in this study or
any other commercially available DMS.

4.1. Limitations

Although the overall classification results were promising, a sig-
nificant day-to-day bias was discovered. Even though we strived to
eliminate all confounding factors, we were unable to completely control
the ambient humidity or changes in the compressed air network of the
laboratory. This highlights the need to introduce controls such as cali-
bration to improve the repeatability of the system and to mitigate the
external factors that affect the output of the DMS device.

In addition to the changes in the DMS output dispersion plots over
time, it is possible that the Linear Discriminant model suffers from
overfitting resulting in optimistic classification accuracy. It is possible

Fig. 3. K-means clustering for skeletal muscle (red) and intermuscular fat (yellow) and an example dispersion plot from both tissues. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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that, the tissue-wise classification results are affected by daily varia-
tions in the measurement conditions to some extent. However, because
the sample randomization and circulation between measurement days

were taken into consideration, it is more likely that the bias produced
by daily variations is rather negative than positive in this study. This is
also evident from the fact that we failed to achieve the classification
accuracy of our previous study, where we identified 10 different por-
cine tissues with 95% classification accuracy (Kontunen et al., 2018). In
the previous porcine tissue article, we speculated that the results of the
second phase of the study might be overly optimistic, since the mea-
surement protocol in that particular phase was not designed optimally
and enabled day-to-day bias to some extent. The results gained in this
study with better study design and varying sample material between all
measurement days, indicate that our previous results were indeed
partly biased.

Even though the study design in this research was properly exe-
cuted, the system was not fully optimized to prevent carry-over, which
led to relatively long delays that could be shortened by simple mod-
ifications to the system design. By minimizing the tubing lengths in all
parts of the system and by optimizing the smoke sampling process, the
creation of an even larger tissue matrix in significantly less time would

Fig. 4. Linear discriminant analysis (LDA) classification heatmap projected on top of an imaged tissue slice with 100 sample points (10 × 10 matrix with 2 mm
spatial resolution for clarity). A) Porcine flank sample. The heatmap illustrates the classification certainty of each sample point. A completely red pixel indicates that
the model classifies the sample point as muscle with 100% certainty, whereas a completely yellow pixel indicates the equivalent for fat. B) Porcine brain sample,
where the heatmap illustrates areas of white matter (white), and grey matter (black). C) Porcine kidney sample, where the heatmap illustrates areas of renal pelvis
(white), and renal cortex (dark brown). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
A confusion matrix for a 10-fold cross-validated linear discriminant analysis
(LDA) classification model. SM = skeletal muscle, IF = intermuscular fat,
RC = renal cortex, RP = renal pelvis, GM = grey matter, WM= white matter.
Rows represent the true class and columns represent the predicted class.

SM 584 39 34 11 0 1 45 7
IF 47 438 7 6 0 0 17 4
RC 9 2 542 27 4 1 19 27
RP 1 10 46 128 0 1 3 2
GM 0 0 3 0 155 58 2 9
WM 0 8 5 0 53 168 0 9
Lung 6 8 59 5 1 0 416 4
Liver 0 4 27 1 0 1 2 352

SM IF RC RP GM WM Lung Liver
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be feasible.
The maximal resolution of the tissue matrices was limited by phy-

sical dimensions of the needle-like cutting blade. Although the imaging
resolution of 1 mm is sufficient in postoperative margin detection, it is
naturally unable to detect microscopic tumours of smaller diameter.
This limits the diagnostic capability of the system and is a target for
improvement. In order to improve the spatial resolution, the tissue
evaporation could be done with a high-power laser, which would en-
able μm-scale distances between the sample points, rather than the
current mm-scale distances. Laser ablation would also potentially be
better in controlling the depth of the tissue evaporation, thus reducing
the effect of the simultaneous evaporation of the tissues in the z-di-
rection that has a negative effect on the classification results and an-
notation certainty, as hypothesized in this study.

5. Conclusions

We have shown that DMS-driven tissue imaging is possible with
moderate resolution using an animal model. This is a novel discovery in
a field dominated by MSI-driven solutions and is a step towards clinical
applications. The technology could be used as a supportive method to
guide pathological analysis. However, the limitations of this study need
to be resolved before a commercial or independently usable research
device would be feasible. In addition, the capability of detecting pa-
thological tissue and the accuracy of tumour margin detection needs to
be investigated further.
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Abstract 
 

Current methods for intraoperative surgical margin assessment are inadequate in terms of diagnostic accuracy, ease-of-

use, and speed of analysis. Molecular analysis of tissues could potentially overcome these issues. A system based on 

differential ion mobility spectrometry (DMS) analysis of surgical smoke has been proposed as one potential method, but 

to date, it has been able to function in a relatively slow and heavily controlled manner that is inadequate for clinical use.   

In this study, we present an integrated sensor system that can measure a surgical smoke sample in seconds and relay the 

information of the tissue type to the user in near real time in simulated surgical use. The system was validated by 

operating porcine adipose tissue and muscle tissue. The differentiation of these tissues based on their surgical smoke 

profile with a cross-validated linear discriminant analysis model produced a classification accuracy of 93.1% (N = 

1059). The measurements were also classified with a convolutional neural network model, resulting in a classification 

accuracy of 93.2%. These results indicate that the DMS-based smoke analysis system is capable of rapid tissue 

identification from surgical smoke produced in freehand surgery. 

 

 

1. Introduction 

 

Surgical removal of the tumor mass is the mainstay of treatment in most solid cancers. Incomplete removal predisposes 

the patient to local recurrence of the tumor [1]. The goal is to remove the tumor with a margin of healthy tissue. 

Excessive removal of healthy tissue is associated with cosmetic or functional deficit and conservation of as much 

healthy tissue as possible is recommended. In the case of breast cancer, this is illustrated by the preference of 

lumpectomy (partial removal of the breast) over mastectomy (total removal of the breast) [2]. After the surgery, 

microscopic examination of the removed specimen is conducted to assess margin clearance. In 20–30% of cases, 
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cancerous tissue is found in or close to the tissue margin, often necessitating a reoperation, which negatively impacts 

patient’s quality of life and yields extra costs [3]–[6]. This results in a growing need to create a tool for intraoperative 

tissue analysis that could reduce reoperations. 

Currently, intraoperative margin monitoring is commonly conducted by imaging of the removed specimen, or by 

manual palpation and preoperative marking of the tumor using radiological guidance. However, certain subtypes cannot 

be identified by manual palpation. In these cases, microscopic analysis of frozen tissue sections or cytology smears have 

been shown to be effective but they are time consuming and expensive  [7]–[9]. Optical coherence tomography (OCT) is 

a novel method that produces a microscopic view on the margin without preparation, but the interpretation of the output 

requires the expertise of a pathologist [10], [11]. 

Radiofrequency spectroscopy (RFS) detects cancerous tissue in the margin by assessing the dielectric properties of the 

specimen. The method has already been approved for clinical practice but has not gained wide acclaim due to poor 

specificity and difficulties orientating the positive finding, since the examination has to be performed ex vivo on 

removed tumor outside the patient [12].  

Mass-spectrometry(MS)-based methods take tissue analysis from microscopic visual assessment to the analysis of the 

molecular composition of the tissues. Rapid evaporative ionization mass spectrometry (REIMS) is an experimental but 

promising technology that analyzes the surgical smoke that evaporates from the tissues that are cut during 

electrosurgical removal of the tumor [13], [14]. REIMS studies have demonstrated differences in the relative abundance 

of triglycerides and certain phospholipids, such as phosphatidylcholines and phosphatidylethanolamines between 

malignant and benign tissues. The proposed underlaying mechanism between these differences is the Warburg effect that 

has been well documented in various cancers [15]. REIMS is capable of differentiating benign and cancerous tissues at 

high accuracy within seconds during the surgery, thereby not interrupting the procedure or causing challenges in tumor 

orientation. Other MS-based methods include, SpiderMass, Picosecond InfraRed Laser Mass Spectrometry (PIRL-MS), 

and MasSpec pen [16]–[19]. SpiderMass and PIRL-MS use laser excitation to produce the gas phase sample, whereas in 

MasSpec pen, a water droplet is used to extract molecules from the target tissue sample. Research with these methods 

has been promising. Moreover, they are non-destructive by nature. However, the instruments disrupt the normal 

workflow of the surgeon by requiring an additional tool to be used during the surgery. All these technologies are 

hindered by their large physical size and the high cost of MS instrumentation. 

In contrary to MS, our method is based on the usage of more affordable, almost maintenance free, differential 

mobility spectrometry (DMS) technology, in which gaseous compounds can be differentiated by their ion mobility 

characteristics in an asymmetrical electric field. Our previous research has demonstrated the potential of the DMS-based 

automatic tissue analysis system (ATAS) in the classification of healthy tissues, breast cancer and brain cancer [20]–

[22]. In ATAS, the tissue sample is cut by controlling the electrosurgical knife with a modified 3D printer. 

When the tissues are sampled with the ATAS, the electrosurgical cuts are standardized (depth, duration), thus 

stabilizing the smoke sample concentration [20]. However, as we intend to move towards the surgical application, the 

system needs to be able to function robustly with varying sampling conditions with close resemblance to a clinical 

situation and application. Therefore, ATAS needs to be replaced with handheld instrumentation. This in turn leads to 

technical requirements for the system that demand innovative engineering solutions and extensive modifications to the 

system compared to previously published methodology.   

In this study, we introduce a tissue analysis system compliant with operation room workflow and standard 
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electrosurgical systems. We also describe its key engineering novelties, which include a heating solution to minimize 

contamination, an adaptive electric filter, a method to detect the induced diathermy current in order to time the 

measurement, and a surgical user interface. Furthermore, we evaluate the applicability of the system in the near real time 

discrimination of two porcine tissues by using machine learning methods and employ convolutional neural networks in 

the analysis of DMS data. The DMS-based sensor system and its technical advancements introduced in this study mark a 

potential breakthrough for a clinical application. 

 

 

2. Materials and methods 
 

a) Study material 
 

The specimens used in this study were fresh commercial meat products that had distinctive areas of skeletal muscle 

tissue and adipose tissue as seen in Fig. 1. The use of human tissues in a proof-of-concept study is not justified due to 

the scarceness of the material and ethical aspects. Therefore, we chose to use porcine tissue samples (porcine flank) to 

demonstrate the function of the system. Another reason is that the tissues found in flank are operated in almost every 

electrosurgical procedure, due to them being in the way or around the target tissue, for example in cancer surgeries, 

which makes their identification clinically relevant.  

 

 
Figure 1. Porcine flank sample with macroscopically visible areas of skeletal muscle tissue and adipose tissue. 

 

 

b) Measurement system and operation principle 
 

The measurement system comprises an electrosurgical knife, surgical smoke evacuator, sample-preprocessing unit, 

and a DMS sensor. Fig. 2 shows a schematic representation of the measurement system with a pneumatic diagram of the 

sample-preprocessing unit. Fig 3. shows the measurement system in a laboratory setting. 
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Figure 2. A stylized depiction of the measurement system with a pneumatic schematic of the sample pre-processing unit. A: 
Diathermy instrument with the attached 3-meter-long suction tube. B: Tissue specimen on top of the dispersive electrode. C: 
Sample pre-processing unit with the corona discharge filter (C1), PID-controlled proportional valve (C2), ejector dilution (C3), 
and an inductive coil to detect the diathermy current (C4). D: ENVI-AMC DMS sensor. E: Smoke evacuator. F: Diathermy unit. 
G: Surgical user interface. 

 

 

 

 
Figure 3. The measurement system in a laboratory setting. 

 

 

In this study, the surgical cuts were generated by a monopolar knife electrode (A. in Fig. 2, HF 9805-24, 

HEBUmedical GmbH, Germany) attached to a diathermy unit (F. In Fig. 2, Itkacut 350MB, Innokas Medical Oy, 

Finland). The diathermy unit was set to operate at a nominal power of 40 W in 100% cut mode. The surgical smoke 

created during the cuts was collected by a three-meter-long suction tube (Handle aspiration kit, LED SpA, Italy) 

attached to the side of the diathermy instrument. From the side of the instrument, the smoke sample travelled to a T-

junction that split the sample flow into two streams that led to a surgical smoke evacuator (E. in Fig. 2, SURTRON® 

EVAC, LED SpA, Italy) and the custom-built sample pre-processing unit (C. in Fig. 2).  

The sample pre-processing unit of the current system has important additions and improvements compared to the 

previously described ATAS system [20], [21]. The main function of the pre-processing unit is to filter and dilute the 

smoke sample. However, previous studies have shown that the carry-over signal from preceding measurements is a 

problem when conducting rapid consecutive measurements. Therefore, the sample line in the pre-processing unit of the 

improved system was minimized to 75 cm to decrease the available scent adsorption area. In addition, the sample line 

was heated by a resistive cable heater and enclosed in a wooden box made from 4 mm thick birch plywood that keeps 

the sample pneumatics at elevated temperature (70°C), allowing for shorter recovery time due to reduced condensation 
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and scent adherence, and increased desorption of the scent molecules from the tubing. In theory, a higher temperature 

would work even better in mitigating the carry-over phenomenon, but 70°C was chosen as the limit to ensure that the 

electronic components within the pre-processing unit do not malfunction due to excessive heating. 

Besides the integrated heating and minimized sample travel length, the main technical novelty of the pre-processing 

unit is an improved dilution system that controls the smoke sample intake based on the concentration. The adaptive 

dilution system is built around a filtration solution (C1 in Fig. 2) that utilizes a corona discharge to remove particulate 

matter from the sample stream. A schematic representation of the filter is presented in Fig. 4. The discharge is created by 

applying a 5 kV voltage to the center electrode, while keeping the copper casing at ground potential. This ionizes the 

smoke sample and forces the particulate matter to the casing, from where it continues to a waste stream. 

 

 
   Figure 4. Corona discharge particulate filter. 

 

 

In addition to removing large particles from the sample stream, the new filter measures the amount of the particulate 

matter. The inner wall of the filter contains electrodes, which produce a current signal, when the ionized particulate 

matter reaches the surface. The smoke concentration depends on how long or deep the electrosurgical cut is. The sample 

is mixed with dilution air. Diluted concentration is regulated with a proportional-integral-derivative (PID) feedback-

controlled valve (C2 in Fig. 2). PID is a widely used control method, where a deviation of a desired setpoint is corrected 

by using three corrective terms in unison to achieve minimum overshoot and delay in reaching the desired output values. 

In terms of the real time tissue analysis system, this means that when particulate matter causes a current signal deviation 

in the filter, the PID-controlled valve tries to actively compensate the change by increasing the amount of dilution air 

without overdiluting the sample. We have previously studied that even with similar cutting parameters, the amount of 

particulate matter is highly dependent on the tissue type [23]. This means that an adaptive dilution system is a useful 

solution to ensure that the DMS measurement does not saturate regardless of the tissue type or cutting conditions. 

In addition to the adaptive dilution system, the sample pre-processing unit has a Raspberry Pi 7” Touch Screen 

Display (Raspberry Pi Foundation, UK) that relays information to the user about the electrical current signal of both the 

corona filter and the diathermy knife. The signal from the knife is monitored by an induction coil (C4 in Fig. 2) wrapped 

around the cable of the dispersive electrode (B. in Fig. 2). The monitoring of the induced cutting current was utilized in 

the synchronization of the DMS measurement with the smoke production. In other words, the DMS measurement was 

triggered, when the current of the electrosurgical knife was above a fixed threshold that was exceeded only upon contact 

with tissue material. 

The DMS sensor used in the study is an Envi-AMC® spectrometer (D. in Fig. 2) manufactured by Environics Oy, 

Finland. The sensor is capable of parts-per-billion-level detection of gaseous substances and operates with separation 
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fields between 10 to 80 Townsend (Td) with <0.01 Td resolution. The waveform is created with a field-effect transistor 

based half-bridge with 250 kHz operating frequency resulting in a square waveform. The waveform is run with 5 % duty 

cycle. The compensation field can be varied between ±1.5 Td with resolution <0.001Td. The DMS filter is arranged 

from three planar plates forming two identical channels, both with channel height of 0.25 mm, width of 6 mm and length 

of 16 mm [24]. 2.8 liters per minute sample flow rate is created with a venture nozzle, driven by clean pressurized air. 

Sample is drawn untreated into the DMS filter via Am-241, 5.92 MBq ionization chamber. The residence time in the 

ionization area is about 16 ms and in the DMS filter about 1 ms. Filtered ions are collected with three sequentially 

arranged electrodes. The collection field is adjusted to collect most of the ions with the middlemost and the largest of the 

collection electrodes. The measurement is controlled by a LUA-language script, which allows detailed control for each 

of the measurement parameters such as flow, frequency, duty cycle, separation field settings, compensation field 

settings, signal noise filtering and selection of ion polarity. The operation principle of the DMS sensor is illustrated in 

Fig. 5. 

 

 

 
Figure 5. The operation principle of the ENVI-AMC® spectrometer. The black arrows represent the incoming gas sample 
molecules, and the colored lines represent sample ions that diverge in the DMS filter based on their differential mobility 
characteristics. 

 

 

The result of a DMS measurement can be represented as a colored 2D image (i.e. dispersion plot), where the color 

represents the number of ions that reach the detector with different DMS filter separation and compensation voltage 

values. All DMS data in this paper were measured with the following settings: Positive ion mode was used, the 

compensation voltage sweep (x-axis in the dispersion plot) was set from -0.8 V to 5 V with 25 steps, and the separation 

voltage sweep (y-axis in the dispersion plot) was set from 340 V to 740 V with 8 steps. With these settings, the 

measurement duration was approximately 5 seconds. 

After the DMS measurement of a smoke sample is finished, the data is stored to a Microsoft® Azure (Microsoft, 

U.S.A) cloud storage for possible offline analysis. The measurement data is also transferred to a Raspberry Pi computer 

(Model 3B). The computer has a linear discriminant analysis (LDA) classification model that is used to classify the 

newly measured data. LDA has been used as the primary classification method in our previous studies with good results 

and it has also been used, for example, in the REIMS studies [20], [21]. LDA classification is computationally simple 

and the result is produced in milliseconds. The classification script of the real time system was written in Python. 

The Raspberry Pi computer that is used for online classification also displays the result in an attached monitor that 

functions as the surgical user interface (UI). The surgical UI (G. in Fig. 2) can be set to display the result of the LDA 

classification as the predicted tissue type alongside the posterior probability of the prediction. In other words, the UI can 

tell the surgeon how certain the model is of its prediction. This enables a more nuanced assessment of the operated tissue 

than a completely binary statement. In addition, the results of the previous classifications can be displayed with a graph, 

making following the analysis much easier. 
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The whole process from the tissue evaporation by freehand surgery to displaying the classification result in the 

surgical UI takes approximately 9 seconds. After the result is displayed, the process can start again, when the trigger 

level for the diathermy current exceeds the threshold level (i.e. the knife is in contact with the tissue). Fig. 6 shows the 

operation principle of the system in the form of a flowchart. 

 

 

 
Figure 6. Flowchart of the operation principle of the real time tissue analysis system. 

 

 

c) Measurement protocol and tissue sampling 
 

The measurement protocol was designed to resemble the use of diathermy in surgical practice as closely as possible. 

An experienced consultant surgeon (N. Oksala) participated in the design and implementation of the protocol. The 

protocol consisted of three steps: 1. A fresh tissue specimen was placed on the dispersive electrode of the diathermy 

unit; 2. The tissue specimen was incised for 1–3 seconds with the diathermy instrument. Each incision triggered a DMS 

measurement of the surgical smoke. 3. A recovery period of approximately 10 seconds was taken to reduce carry-over.  

The process steps 2. and 3. were repeated until no uncut surface area was available. This equated to approximately 

150-200 incisions per specimen. At the end of the measurement session, the specimen was disposed, and the dispersive 

electrode was cleaned with isopropanol. 



 

8 
 

In total, 1159 freehand smoke samples (580 to skeletal muscle and 579 to adipose tissue) from seven specimens were 

measured. Out of the 1159 samples, 1059 were used for classification model training and internal validation and 100 

were used for external validation. To reduce operator-dependent and temporal bias, the sample cuts were made by three 

operators over a period of seven measurement days. 

 

d) Data analysis and classification 
 

The features of the DMS data can be presented as color-coded pixels in the two-dimensional dispersion plot, where 

the color represents the 16-bit signal intensity value. In this respect, the DMS output dispersion plots can be considered 

as images that depict the chemical fingerprint of a substance, which means that image recognition methods are a viable 

option for the analysis and classification of DMS data. Thus, in addition to the simple LDA classification, we tested 

convolutional neural networks (CNN) for the classification of the tissue smoke data.  

Data produced with the system were analyzed offline with MATLAB (Version R2017b, The MathWorks Inc., U.S.A). 

Before classification, the values of the DMS data were offset-corrected to have only positive values and normalized 

between 0 to 1. The offline models were implemented to have more numerical data of the performance of the 

classification models than what was used in the real time classification. The CNNs were created using the mxnet 

package for R (R Core Team, 2018). The CNNs consisted of two convolutional and two fully connected layers. The 

architectural and regularization parameters were chosen based on a grid search and heuristic testing. The same data was 

used in the hyper-parameter selection and is reported as 10-fold cross-validated (10-f-CV) results, which may have 

caused some positive bias in the results. To our knowledge, there are no previous publications, where CNNs have been 

used for DMS data.    

For the performance evaluation with the training data, the models were 10-fold cross validated. In addition to the 

internal cross-validation, the LDA classification model was validated with an independent data set that was measured 

four months after the training data. The external validation with the independent test set was deemed necessary in order 

to assess the effect of long-term variation in the produced DMS outputs on classification performance. The classification 

results of the test set were analyzed both with the Raspberry embedded real time model, and offline after the sampling. 

The test set consisted of 100 cuts (50 skeletal muscle and 50 adipose tissue).  

Further analysis of the DMS data and its features for classification were also explored by utilizing a process called 

forward sequential feature selection (FSFS). FSFS is an iterative process that aims to find the most significant features 

for the differentiation of the classes by selecting the features one-by-one until the classification performance does not 

significantly improve [25]. The feature selection for the LDA classification model was repeated 1000 times with 

different 10-fold cross-validation partitions to ensure that the selected features would not be dependent on the training 

set. 

 

 

3. Results 
 

The data analysis from the metadata of the DMS measurements revealed that the median time between cuts with the 

freehand sampling was 18 seconds (median absolute deviation 4.4 seconds). The median time is twice as long as the 
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minimum time for consecutive measurements, since the point of the training data was to get good representative samples 

of both tissues, rather than trying to minimize the analysis time.  

In internal validation, the mean classification accuracy of the 10-f-CV LDA model was 93.1%, with sensitivity of 

91.5% and specificity of 94.7%. The CNN model produced a mean cross-validated classification accuracy of 93.2%, 

with sensitivity of 91.9% and specificity of 94.5%. The results and the internal validation are presented in Table I as 

confusion matrices, where the true class is represented in the rows and predicted class in the columns. 

In terms of external validation with the independent set, the accuracy of the real time classification was 87.0%, with 

sensitivity being 80.0% and specificity being 94.0%. This means that out of the 100 test samples 13 were misclassified 

by the real time Python model during freehand sampling. A confusion matrix of the real time classification along with 

the associated offline CNN classification is presented in Table II. The classification of the independent data set with the 

CNN model produced a 50.0% classification accuracy with all predictions being muscle tissue, i.e. sensitivity 100.0% 

and specificity 0%. 

Due to the guess level predictions produced by the CNN model in the external validation, the training set of the model 

was increased with 1240 samples (721 samples of skeletal muscle and 519 samples of adipose tissue) that were not 

measured by freehand surgery, but instead with the ATAS system in a different study. This increased the robustness of 

the model and resulted in a classification accuracy of 88.0%, with sensitivity of 100.0%, and specificity of 76.0%, with 

the independent test set. When the additional data was also used for the training of the LDA model, the classification 

accuracy in offline analysis increased to 96.0%, with sensitivity of 100.0% and specificity of 92.0%. Table III shows the 

confusion matrices of the external validation with the CNN and LDA models trained with additional data. 

The 1000 FSFS cycles with the original 1059 sample data set yielded a median number of 10 selected features from 

the full spectrum. By using these features for classification of the tissue types, the cross-validated mean classification 

accuracy was 93.2%, with sensitivity of 95.9% and specificity of 90.4%. The ten selected features that explain the 

differences in the spectra of muscle tissue and adipose tissue the most, are presented in Fig. 7, along with example 

outputs produced by both tissues. 

 

 
Table 1. 

Classification results with 10-fold cross validation. The true class is in rows and the predicted class in columns 

 
 
Table 2. 

Classification results with the independent external test set. The true class is in rows and the predicted class in columns 
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Table 3. 

Classification results with the independent external test set with models that were trained with additional data. True class is in rows 
and predicted class in columns 

 
 

 

 

 
Figure 7. Example dispersion plot of muscle tissue (left), adipose tissue (center), and ten features selected in the FSFS process for 
the classification of the tissues (right). Vrf is the DMS separation voltage and Vc is the DMS compensation voltage. 
 

 

 

4. Discussion 
 

a) Findings and impact 
 

Our results show that the latency, classification accuracy and reliability of our freehand-operated tissue analysis 

system are acceptable and pave way towards clinical validation of the technology. The study works as a proof-of-

concept for previously unexplored application of rapid DMS-based tissue identification. However, some limitations that 

hinder the integration of the system to a clinical setting still remain to be resolved. 

 

b) Limitations 
 

As this study focused on describing the technical novelty of the improved surgical system, we cannot emphasize the 

clinical relevance of the identification results and their impact. However, the simplified binary setting works as a 

promising surrogate for a real surgical situation since the intended application of the system would be to differentiate 

malignant and benign tissues in a similar manner. In addition, muscle and adipose tissue are usually the most prominent 

types of healthy tissue surrounding tumors, which makes their identification relevant.  

In the intended final surgical application, one of the most desired attributes of the system is minimal analysis time, so 

that the surgeon can perform the operation without disturbances in the workflow. The current minimum interval between 

the DMS measurements, approximately 9 seconds, should be improved in order to make the assessment of the resection 
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line easier. With this respect, our system is still inferior to the current MS-based solutions. With REIMS, the time 

between the start of the cut to displaying the result is reported to be less than two seconds [13]. The limiting factor for 

the measurement duration in our system is the ENVI-AMC DMS. As most DMS devices are not designed to perform 

rapid measurements, but rather to monitor ambient air quality, the measurements require a full sweep of voltage values 

and cannot be concentrated on some key areas of the spectrum. Currently, the only way to decrease the measurement 

time is to decrease the resolution or the spectrum window size, which will decrease the classification performance. 

Even in the task of a rather simple classification between skeletal muscle and intermuscular fat, the system failed to 

achieve 100% accuracy. This presents a clear area for improvement regarding the diagnostic properties of the system. 

However, the main reason for the misclassification can be traced back to the variability on the external measurement 

conditions that affect the DMS output. Especially the changes in environmental humidity and temperature can cause 

differences between the spectra in terms of offsets, signal intensities, and even feature positions. This is apparent in the 

CNN results of the independent data set, which were at guess level. To account for the variability of the measured 

outputs over time, a calibration protocol with a known control substance should be created in future studies. 

The reference annotation of the tissue specimens was conducted by macroscopic examination and it is possible that a 

subset of the muscle specimens contained significant amount of fat that may impair the results. However, the effect is 

likely small, and the risk of overoptimistic results is low. 

In addition, due to a physical blockage in the airways of the DMS device that occurred between the measurements of 

the training data and the independent test set, the DMS core circuit boards were disassembled, cleaned, and reassembled 

before measuring the independent test set. The reassembly might have caused some change in the measurement output. 

 

c) Analysis of the Results 
 

Besides pointing out the significant negative effect of long-term output drift of the DMS device to classification 

accuracy, the CNN and LDA results showed that the performance of the classification model is largely dependent on the 

size and variability of the training set. Even with data that were not produced by freehand surgery, the classification 

performance for the independent data set increased with both models, when the size of the training set was increased. 

Furthermore, the CNN model was particularly affected by the added training data, since the classification accuracy 

increased from guess level prediction to 88%, i.e. the number of misclassifications was decreased by 76%. This is 

perhaps expected, since neural networks are highly dependent on the amount of training data and they are most effective 

in applications, where the size of the training set can be millions of samples [26]. However, these results present 

interesting research questions regarding the optimal data analysis of this type of DMS data that should be answered in 

future studies. 

Another aspect that needs further exploration is the effect of carry-over signal to classification performance. While the 

integrated heating of the sample pre-processing unit and PID-controlled dilution systems were implemented and reduced 

the overall recovery time of the system, residual scent of previous measurements can accumulate and slowly release 

from the altogether 3-meter-long tubing before the pre-processing unit. The carry-over signal might explain part of the 

misclassifications in this study. However, in similar applications based on MS, the study groups have been able to get 

near perfect classification results with rapid measurements [14], [19], indicating that the possible carry-over signal can 

be distinguished from the relevant information of a new sample, at least in MS-based solutions. 
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The relevant information of the samples can be considered the key features that enable the differentiation based on the 

DMS spectra. However, some areas of the spectra do not yield any significant information regardless of the measured 

substance, but contain electronic noise derived from the DMS hardware. In other words, the spectra contain changes that 

are not related to the tissue type and thus including them as training data for the classifier can predispose the model to 

overfitting and reduce the generalizability. Much like in our previous study with breast cancer samples, the FSFS results 

revealed that the acquisition of the full DMS spectrum from each smoke sample is redundant in terms of classification 

accuracy [21]. In this study, by selecting only 5% (10/200) of the features, the classification accuracy increased by one 

decimal compared to the classification with the full spectrum. This means that if the DMS device would allow for 

selection of specific waveform voltage and compensation voltage values instead of full sweeps, the measurement time 

could be significantly shortened, while retaining similar, or even better, performance. This, in turn, would lead to better 

applicability of the system to the intended real time surgical use. 

Since the aim of the system is qualitative assessment of tissue type and extensive libraries for DMS are not available, 

the direct identification of the measured molecules is not required. However, the features selected by the FSFS are 

indicative of the cellular content differences between muscle and fat. The water content between the tissues is different 

and this can be seen in the selected features in the rightmost selected features that are in line with the so-called reactant 

ion peak. The selected features on the left side of the spectra derive from differences in heavier molecules such as lipids 

and their degradation products. 

 

5. Conclusion 
 

We have shown that fast tissue identification during freehand diathermy cutting based on diathermy smoke analysis by 

DMS is possible. In addition to the previously used LDA classification, we employed a CNN model that has potential to 

improve with the addition of new data. In terms of diagnostic accuracy and overall performance, the DMS-based system is 

not yet capable of producing results that would compete with the MS-based systems, but its simplicity and robustness partly 

compensate its limitations. The difficulties associated with freehand smoke sampling have been mostly overcome with 

engineering solutions and the system will continue to improve with further research. In future studies, the performance of 

the system will be tested in a surgical setting with clinically relevant human tissues and the following results will determine 

the feasibility of the technology in clinical use. 
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ABSTRACT The increasing number of breast cancer survivors and their longevity has emphasized the
importance of esthetic and functional outcomes of cancer surgery and increased pressure for the surgical
treatment to achieve negative margins with minimal removal of healthy tissue. Surgical smoke has been
successfully utilized in tissue identification in laboratory conditions by using a system based on differential
mobility spectrometry (DMS) that could provide a seamless margin assessment method. In this study,
a DMS-based tissue analysis system was used intraoperatively in 20 breast cancer surgeries to assess its
feasibility in tissue identification. The effect of the system on complications and duration of surgeries was
also studied. The surgeries were recorded with a head-worn camera system for visual annotation of the
operated tissue types to enable classification of the measurement files by supervised learning. There were
statistically significant differences among the DMS spectra of the tissue types. The classification of four
tissue types (skin, fat, glandular tissue, and connective tissue) yielded a cross-validated accuracy of 44%
and exhibited high variation between surgeries. The low accuracies can be attributed to the limitations and
uncertainty of the visual annotation, high-within class variance due to the heterogeneity of tissues as well as
environmental conditions, and delays of the real-time analysis of the smoke samples. Differences between
tissues encountered in breast surgery were identified and the technology can be implemented in surgery
workflow. However, in its current state, the DMS-based system is not yet applicable to a clinical setting to
aid in margin assessment.

INDEX TERMS Biomedical engineering, biomedical measurement, breast cancer, differential mobility
spectrometry, supervised learning, surgical instruments, surgical margin, surgical smoke.

The associate editor coordinating the review of this manuscript and

approving it for publication was György Eigner .

I. INTRODUCTION
Breast cancer is the most common cancer affecting
more than two million women worldwide annually [1].
The prognosis of early-stage breast cancer is good – more
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than 90% of the patients are alive five years after diagno-
sis [2], [3] Thus, besides oncological outcome, esthetic and
functional outcomes are becoming increasingly important for
patients as a factor of quality of life and overall health [4], [5].

As tumors are found earlier and smaller, and larger tumors
may be operated utilizing oncoplastic methods, more patients
are likely to receive breast conserving therapy, a combina-
tion of breast conserving surgery (BCS) and whole breast
irradiation to eradicate any microscopic residual disease. The
majority of breast cancers are treated with breast conserving
therapy in Europe [6] and the United States [7].

The aim of BCS is to remove the tumor with histologically
negative margins. According to current guidelines, a negative
margin is defined as no ink on tumor for invasive carcinoma
and 2 mm histological margin for ductal carcinoma in situ
(intraductal carcinoma, DCIS) [8]–[11]. Although acceptable
margins are narrow, the tumor is resected with larger margins,
due to unevenness of the tumor borders and inability to
assess borders intraoperatively. Positive histological margin
increases the risk of local recurrence [11] and reoperation
is recommended to obtain negative margins. The average
reoperation rate is approximately 20% but it varies widely
from less than 10% [12] to more than 60% [13] between
surgeons, facilities, and cancer types [14]–[18]. Reopera-
tions may worsen the prognosis by delaying adjuvant ther-
apy [19], cause psychological stress, and impair the cosmetic
outcome of the treatment [20]. Reoperations are also asso-
ciated with higher incidence of post-operative wound com-
plications [21] and increased economic burden [22]. On the
other hand, patients with smaller excision volumes have
improved cosmetic outcomes compared to larger excision
volumes [20], [23].

The resection volumes and margins can be optimized by
intraoperative margin assessment. The surgical specimen can
be assessed by x-ray (specimen radiography) or ultrasound to
ensure that the radiologically visible tumor has been removed
with sufficient radiological margins. They enable the assess-
ment of radiologically visible borders, but not microscopic
borders. Microscopic assessment is traditionally carried out
by frozen section analysis or imprint cytology of the resection
margins. Both techniques are time-consuming and resource-
intensive, and their use is limited [24]. A solution based on
Radiofrequency spectroscopy has been approved by the Food
and Drug Administration to provide intraoperative evaluation
of the tissue at the edges of excised breast tissue. The device
measures the local electrical properties of breast tissue, which
differ between normal and malignant tissue [25] and pro-
vides a positive or negative reading for each measurement
taken [26]. It has been shown to reduce reoperation rates [27]
but has not reached wide clinical adoption [13].

Experimental methods based on optical imaging and
mass spectrometry (MS), have shown promise in terms of
applicability for intraoperative margin detection. Among
the optical methods, optical coherence tomography and
photoacoustic tomography have achieved sensitivities of
over 90% [28], [29]. Their shortcomings are the expertise

needed for image interpretation and reliance on ex vivo anal-
ysis of the specimen. MS analyzes the molecular content of
the specimen. SeveralMS-based techniques have consistently
exhibited classification accuracies of 90% in tissue identi-
fication and detection of different cancer types [30]–[33].
Of these methods, Rapid evaporative ionization mass spec-
trometry (REIMS), which is based on MS analysis of sur-
gical smoke, has been the most extensively studied, and it
has been proven to be capable of real time analysis in in
vivo studies [34]. The cost, complexity and large physical
size limit the clinical applicability of MS-based methods.
Differential mobility spectrometry (DMS) is a technology
that separates gaseous substances at a molecular level by
ionizing the sample at atmospheric pressure, after which the
sample ions are separated andmeasured based on their mobil-
ity characteristics in an asymmetrical high voltage electric
field [35]. Due to its freedom from the requirement of a
vacuum, and less complex design, DMS sensors are more
affordable and smaller than MS instruments, which improves
their adaptability to a clinical setting.

In previous studies, DMS-based tissue identification from
surgical smoke has been tested in laboratory conditions,
where the classification with several porcine tissues has
yielded accuracy results of over 90% [36]–[38]. In a labora-
tory study on human breast cancer identification, the DMS-
based method achieved a classification accuracy of 87 %
between benign and malignant tissues [39]. While these
results are promising, the applicability and performance of
the technology has not yet been demonstrated in vivo in a clin-
ical setting. The effect of variation in environmental factors
and sampling in clinical use on the method remains unknown.
The establishment of sufficient dataset from positive mar-
gins in vivo would require a significant number of patients
as intentional creation of positive margins is not ethically
feasible in human studies and the positive margin rate in
our institution is around 10%. Additionally, the annotation
of tissues in intraoperative use is not trivial and requires
innovative approaches. For these reasons, with a pilot study
of 20 patients, we concentrated on the feasibility of use of the
introduced technology and its abilities to identify benign tis-
sues, rather than its margin assessment performance. We also
demonstrate a novel, minimally intrusive, intraoperative tis-
sue annotation method based on video footage captured from
the point of view of the operating surgeon.

II. METHODS
A. PATIENTS AND CLINICAL DATA
This was a prospective single-arm first-in-human single-
center study performed between 9th of October and 26th of
November 2019 at Tampere University Hospital, Finland.
In this study, the operating surgeon was blinded from the
measurement results and the measurements were not used to
assess the margins or guide the operation. Ethical approval
was obtained from the local Ethics Committee of Tampere
University Hospital (code R17096). The study was conducted
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in accordance with the World Medical Association’s Decla-
ration of Helsinki. Informed consent was obtained from all
patients in written. Inclusion criteria included patients over
18 years recently diagnosed with any histological type of
invasive breast cancer or DCIS or atypical ductal hyperplasia
and who were eligible for BCS. Patients with impalpable
lesions underwent ultrasound- or mammography-guided wire
localization preoperatively. All breast and axillary operations
were performed by two experienced breast-cancer-dedicated
plastic surgeons. Operations were carried out following the
national guideline [40], which is in line with international
European andNorth American guidelines [8], [10], [11], [41].
The removed breast tissue was assessed grossly in case of pal-
pable lesions and via specimen radiography if the tumor was
localized with a wire. Additional breast tissue was removed
if a positive margin was suspected.

Patient data was collected from electronic health records
and operation times obtained from operation room manage-
ment system. Histological data was gathered from struc-
tured histopathology report. Tumor volume was calculated
using the diameter of the tumor (in cm) as mentioned in the
pathology report and assuming spherical shape. Total resec-
tion volume (TRV) was calculated using three dimensions
of the surgical specimen and assuming ellipsoidal shape.
The optimal resection volume (ORV) was defined as the
spherical volume of the tumor itself with an added 1.0 cm
margin of healthy breast tissue. The method was adapted
from the study by Krekel et al. [18]. Oncoplastic reduction
mammoplasties were discarded from volumetric calculations
because excessive amount of breast tissue is excised due to
operation technique rather than to remove the tumor with
adequate margins. The time from the first incision to closure
and total operation room time of the surgeries were compared
to institutional averages by one sample t-test.

B. MEASUREMENT SYSTEM
Automatic tissue analysis system (ATAS), previously
described in Kontunen et al. 2021 [38], was used in the study.
The function of ATAS is based on a surgical smoke pre-
processing unit and a DMS sensor. The system can, with
minor modifications, be attached to any commercially avail-
able diathermy units and smoke evacuation devices. In short,
the operation principle of ATAS is as follows: 1) Surgeon
operates tissue with a diathermy instrument. 2) Induced cur-
rent from the dispersive electrode of the diathermy system is
measured by an encased induction coil. If the induced current
exceeds a pre-determined threshold, the system interprets
that tissue has been cut and triggers a DMS measurement.
3) A small fraction of the surgical smoke sample that is evac-
uated from the surgical area is taken into the pre-processing
unit where it is diluted and filtered by an electric filter to
remove contaminating particulate matter. 4) The filtered sam-
ple is measured by the DMS sensor (ENVI-AMC, Environics
Oy, Finland) approximately five seconds after the trigger
signal has been received. The measurement data are stored
to the local database of the system, after which the process

(starting from step 1) can repeat for a subsequent measure-
ment. In this study, the operating surgeon was blinded from
the measurement results and the measurements were not used
to assess the margins or guide the operation.

The duration of the DMS measurement is approximately
5 seconds, which means that together with the start delay of
5 seconds, the minimum time for one measurement cycle is
10 seconds. As its output, the system produces ameasurement
file that contains the DMS measurement data, the diathermy
current measurement data, and current measurement data
from the electric filter. The system and its simplified oper-
ation principle are depicted in Fig. 1. For a more in-depth
description and schematic representations of the measure-
ment system, the reader is referred to Kontunen et al. [38].
The diathermy power unit that was used alongside the sys-
tem was a Berchtold Elektrotom 530 Electrosurgical Unit
(Stryker Corp, USA) and the surgical smoke evacuator was
a SafeAir R© Smoke Evacuator compact (Stryker Corp, USA)
that was operated at a power setting of 7/10 and in continuous
evacuation mode.

FIGURE 1. Simplified operation principle of the measurement system
(left) and the measurement system in an operation room (right).
1) Surgical smoke is produced by the diathermy instrument. 2) Induced
current from the dispersive electrode triggers the measurement.
3) Surgical smoke sample is taken into the pre-processing unit for
particle filtering and dilution. 4) The filtered sample is measured by the
DMS sensor, and the result is stored to internal memory. The duration of
one measurement loop is approximately 10 seconds.

C. ANNOTATION SYSTEM AND STATISTICAL TOOLS
The result of the smoke sample measurement was not inter-
preted in real time in this study, since the study functioned
as a pilot for in vivo DMS-based tissue identification, and
thus a pre-trained model for tissue classification was not
available. Instead, the data produced during the surgeries
was annotated and classified post-operatively based on video
footage of the operation. Each surgery was recorded by
a head-mounted camera (Pupil Core, Pupil Labs GmbH,
Germany) that was worn by the operating surgeon [42]. The
video footage recorded by the camera was stored locally to a
dedicated mobile device (Motorola XT1929-8 Moto Z3 Play,
Motorola, USA) during the surgery, from which the footage
was transferred to an encrypted hard disc drive for storage
and later data analysis.

The statistical analysis was done in R software
environment [43], integrated development environment
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RStudio [44], and Matlab (version R2019a, MathWorks,
USA). Before tissue annotation, the raw video data was also
processed with Matlab. The video footage was synchronized
with the measurement data by creating an individual video
clip for each measurement based on the recorded time labels.
In addition, each clip was also overlayed with the graphs and
DMS spectrum of the corresponding measurement to aid in
the timing for the annotation of the samples. An example still
image of a video clip that was used in tissue annotation is
presented in Fig. 2.

FIGURE 2. Still image of a video file that was used in tissue annotation.
The DMS spectrum of the measurement is overlayed in the bottom right
corner and the current of the electric corona filter and the measured
induction current from the dispersive diathermy electrode can be seen in
the upper right corner. The round dot in the incision area is from the gaze
tracking feature of the Pupil core camera.

D. ANNOTATION WORKFLOW
In total, the number of individual video clips was 1131. Due
to the high amount of annotatable data, the totality of the
video material was annotated by only one medical expert.
To investigate the potential subjectivity of only one observer,
the inter-rater agreement in the video-based annotation was
studied with a subset of the measurement data.

The annotation based on the video footage was initially
tested by observing two surgeons as they viewed and anno-
tated 30 samples of a randomly selected operation. Without
specific instructions, the variation between the annotators was
high in terms of terminology, assigned class and determi-
nation of sufficient sample. Thus, a protocol for the video
annotation for the full data set was made.

According to the protocol, the viewer should assign the
type of the measured tissue, when the DMSmeasurement was
initiated, i.e., approximately five seconds after the trigger sig-
nal has been received. In an annotatable video clip, this was
indicated by the appearance of the spectrum to the lower right
corner (Fig. 2). The possible assigned tissue classes were
determined as: skin, fat, glandular tissue, connective tissue,
muscle, blood, and empty (i.e., no cutting occurs during DMS
measurement). In addition, the protocol stated that the viewer
should evaluate the sufficiency of the smoke sample and add
notes regarding possible irregularities. The visual sufficiency
estimate was included in the protocol as a possible exclusion

criterium for final analysis. Table 1 shows an example output
of the annotation process for four measurements.

TABLE 1. Example annotations.

The efficiency of the annotation protocol in terms of
inter-rater agreement was estimated by the Fleiss’ kappa
metric [45]. In practice, this means that a randomly selected
statistically sufficient portion of the measurement footage
was annotated by three individuals, after which the Fleiss’
kappa was calculated for the annotation matrix to see the rate
of agreement. The power calculations were done by utilizing
the R package kappaSize by Rotondi [46]. The sample size
for the inter-rater agreement was based on a power calculation
with the following parameters: the null hypothesis (kappa0)
for the kappa test was set to 0.01, the alternative hypothesis
(kappa1) to 0.2, the type I error rate (alpha) to 0.001, and the
desired level of statistical power (power) to 0.95. The antic-
ipated prevalence of different classes (props) was estimated
based on already completed annotations by one observer.

E. DATA ANALYSIS
The full annotation data from one observer was utilized in
further statistical analysis and tissue classification. How-
ever, additional data curation was deemed necessary due
to the highly variable nature of the diathermy activations
during surgery and failed measurements. In the first two
surgeries, the surgical evacuator was operated with the max-
imum power, but the pressure ejector system in the sam-
ple pre-processing unit was not optimized to overcome the
suction, i.e., the entirety of the smoke went to the surgical
evacuator. In operations 13 and 14, the video data was not
saved due to a malfunction in the process of saving the data to
the memory card of the mobile device from the Pupil camera
system. The exclusion criteria are presented in Fig. 3. After
all exclusion steps, the number of measurement files was 611
(fat, N = 395; glandular tissue, N = 129; skin, N = 52;
connective tissue, N = 35).
The final DMS measurement files were classified with

a regularized linear discriminant analysis (LDA). LDA
is a relatively simple supervised method that tries to
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FIGURE 3. The exclusion criteria for the DMS measurement data.

maximize class separation based on a linear projection of the
feature space [47]. LDA assumes equal covariance between
the classes and the class of a sample is determined based on
its distance from the class mean after the linear projection.
LDA has previously been used both in MS and DMS-based
tissue classification [34], [39]. In this study, the classification
was done based on the DMS spectra that consisted of the
measured values of positive ions. Each spectrum was mea-
sured with the DMS compensation field voltages of −0.8 V
to 5 V, in 25 steps and separation field voltages of 340 V
to 740 V, in 8 steps, resulting in 200 values for each DMS
measurement. The classification performance was analyzed
with leave-one-surgery-out cross-validation to alleviate over-
fitting. However, due to the unbalanced ratio between the
tissue types and variation between surgeries, each surgery
was also classified individually using leave-one-sample-out
cross-validation.

To further analyze the differences between the DMS spec-
tra of the tissue types, the distributions of the dispersion
plot values were subjected to the Kolmogorov-Smirnov test
to identify features that are statistically different among the
classes [48]. The statistical significance was determined at a
significance level of 0.05 and the p-values were Bonferroni-
corrected by the number of dimensions (200). This means that
a p-value of 0.00025 was considered statistically significant.

III. RESULTS
A total of 20 women were operated. A summary of demo-
graphic data and clinical characteristics are depicted in
Table 2. Four patients (20%) underwent lumpectomy, ten
patients (50%) level 1 oncoplastic breast conserving surgery,

one patient (5%) oncoplastic breast conserving surgery com-
bined with reduction mammoplasty of the healthy breast,
and five patients (25%) oncoplastic reduction mammoplasty
combined with reduction mammoplasty of the healthy breast.
Surgeon 1 operated 13 (65%) patients and surgeon 2 seven
(35%) patients. Average operating time from skin incision
to skin closure and total operation room time were similar
to the institutional average (Table 2) as determined by the
one sample t-test, which produced p-values that indicated no
statistically significant difference between the means.

On histopathological analysis, all but one patient had
sufficient histological margins both from invasive ductal car-
cinoma (IDC) and DCIS. One patient, diagnosed preoper-
atively with 8 mm grade 1 pure DCIS, had DCIS grade 1
sized 11 mm with positive lateral margin on histopatholog-
ical analysis. The patient had re-resection and final patho-
logical analysis revealed 6 mm more of DCIS grade 1 but
the margins were sufficient. One patient had a diagnosis of
2 mm pleomorphic lobular carcinoma in situ (LCIS) on final
histopathological analysis, although preoperative diagnosis
had been DCIS grade 3, and smallest lateral 1 mm margin
was accepted. Therefore, reoperation rate was 5%. Exclud-
ing oncoplastic reduction mammoplasties the average lateral
margin on histopathological analysis was 16.4 mm from IDC
and 11.5 mm from DCIS. Anterior and posterior margins
were sufficient in all cases. The extent of lateral margin
widths is further depicted in Table 3. Excluding oncoplastic
reduction mammoplasties, the amount of tissue removed was
49.3 cm3 on average, when 24.2 cm3 would have been theo-
retically optimal if 1 cmmacroscopic margins were used. The
TRV:ORV-ratio was thus, on average, 2.0.

Closest lateral tumor margin from both invasive and intra-
ductal carcinoma (all tumors), from invasive ductal carci-
noma (IDC) and from pure ductal carcinoma in situ (DCIS)
or DCIS component of invasive carcinoma. DCIS includes
one patient with pleomorphic lobular carcinoma in situ.
Patients receiving oncoplastic reduction mammoplasty were
excluded.

A. COMPLICATIONS
One patient (5%) suffered wound infection and dehiscence
postoperatively. The patient was treated conservatively in
outpatient setting and received oral antibiotics. One patient
(5%) had a small hematoma that required one postopera-
tive puncture. One patient out of 18 (5.6%), who underwent
sentinel lymph node biopsy, suffered lymphedema of the
ipsilateral arm. The patient received both physical therapy
and compression garment.

B. INTER-OBSERVER AGREEMENT
From the total of 1131 annotatable video files, the inter-rater
agreement assessment was done with a subset of 72 files. For
these files, the three observers annotated the samples to five
classes as instructed. The inter-rater agreement results based
on the Fleiss’ kappa metric are presented in Table 4.
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TABLE 2. Summary of patient demographics and clinical characteristics.

C. CLASSIFICATION
The leave-one-patient-out cross-validated LDA classification
of the accepted dataset produced a mean classification accu-
racy of 44.3% for four tissue types (skin, fat, glandular, and
connective tissue). The results of the leave-one-sample-out

cross-validated LDA classification of each surgery are pre-
sented in Table 5.

Pair-wise comparison between tissue classes revealed
statistically significant differences between fat and the
other tissue types, and between skin and glandular tissue.
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TABLE 3. Closest lateral tumor margins.

TABLE 4. Fleiss’ kappa for the inter-rater agreement of three observers
and 72 samples.

However, there were no statistically significant difference in
the features between glandular and connective tissue, or skin
and connective tissue. The differing dispersion plot features
along with an example DMS dispersion plot are highlighted
in Fig. 4.

IV. DISCUSSION
The study showed that DMS can be implemented into the
surgical workflow and demonstrated differences between sig-
nals from different tissues. The classification accuracy in
this study did not reach the level of laboratory-based ex
vivo studies [34], [38]. This underlines the challenges of
macroscopic annotation of tissues and the importance of rapid
measurement speed to obtain reliable results.

FIGURE 4. An average DMS spectrum of fat alongside features of the
spectra that have a statistically significant difference between the tissue
classes.

We identified statistically significant different features
between the spectrums ofmost tissue types. Themost relevant
is the difference between glandular and fat tissue that are
met concurrently in areas that are also prone to positive
margins. Despite differences in spectra, there was wide vari-
ation in classification accuracy, ranging from 37% to 100%.
The overall classification result with leave-one-surgery-out
cross-validation was 44% with four tissue types. The leave-
one-sample-out cross-validated results for each individual
surgery showed that there is high variance in the classification
accuracy between surgeries. This is largely explained by the
varying number of accepted measurements between the surg-
eries and the annotated tissue classes. The highest accuracy
was naturally acquired in surgeries, where the number of
classes was two or three, since the classification problem was
simplified. Studies on MS-based methods have approached
the classification problem differently and the in vivo results
are often not reported in terms of diagnostic accuracy, but
rather as comparisons and statements that in vivoMS spectra
were successfully acquired and that they resemble the ex
vivo measurements [32], [34], [49]. However, in a recent
REIMS study, a diagnostic accuracy of 90% was reported
for binary in vivo classification of diseased and non-diseased
rectal tissues in transanal minimally invasive surgery [33].
Thus, even though the studymaterial and setting are different,
it is apparent that the diagnostic performance of DMS in its
current form does not match that ofMS devices. However, the
DMS sensor that was used in this study, is a prototype device
that was initially designed for longer term monitoring of
volatile organic and inorganic compounds, rather than rapid
measurements of surgical smoke. By optimizing the sensor
hardware for the specific medical application, better results
could likely be achieved.

As the DMS-based system is ultimately intended for intra-
operative margin assessment, it makes sense to compare it
to techniques already available. Specimen radiography is
widely used for documenting the removal of the targeted
lesion but is conducted ex vivo and cannot be utilized
continuously during the surgery. It also does not clearly
improve the rates of reoperation for positive margins [50].
Ultrasound improves situational awareness of the surgeon
and significantly reduces margin involvement and excision
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TABLE 5. The leave-one-sample-out classification results for each surgery.

volumes in palpable and non-palpable tumors [51]–[53].
However, only half of the nonpalpable lesions can be
visualized by ultrasound [54]. The use of intraoperative
pathology requires pathology expertise intraoperatively and
does not provide continuous feedback [50], [55]. Radiofre-
quency spectroscopy is fast (appr. 5–7 minutes), can be used
by the surgeon and has achieved more than 50% reduc-
tion of reoperation rates for both invasive and intraductal
carcinoma [26], [56]. Its shortcoming is the need for an addi-
tional probe during resection and a disruption of workflow to
examine the resected tissue during the operation.

There remains a need for a reliable, fast, and cost-effective
method for intraoperative assessment of surgical margins to
reduce the rate of reoperations, excised breast volumes and

mastectomy rates. An ideal device is coupled to the resection
tool so that there is no interruption to standard workflow.
It should detect cancer cells in real time guiding the resection
in vivo and offer the surgeon the possibility to alter tissue
excision. Moreover, it should be cost-effective and affordable
globally. DMS-based system functioned reliably throughout
the twenty surgeries. The malfunctions faced were all related
to human errors or annotation system. The overall response
of the operation room staff towards the system was positive.
However, the noise of the pump system in the sample pre-
processing unit was criticized by persons who were in close
vicinity of the device during the operations. The system was
placed near the patients’ legs next to the surgical evacuator
and diathermy unit, and while the size in its current state was
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larger than the other instruments, the placement, preparation
for use, and moving of the system between surgeries did not
cause significant delays compared to normal operations.

The reoperation rate in our study was relatively low at 5%,
but is in line with studies from another Finnish breast surgery
unit [12], [57]. A study by Krekel et. al showed that TRV in
BCS was median 2.5 times higher than would have theoreti-
cally been necessary to achieve sufficient margins [18]. In our
series of lumpectomies and level 1 oncoplastic procedures
the TRV:ORV ratio was 2.0, suggesting that low reoperation
rate may at least partly be due to aggressive resections. The
volume of excised tissue and the esthetic outcome of the oper-
ation are inversely proportional and excision volumes exceed-
ing 50–85 cm^3 anticipate a cosmetic failure of BCS [23],
[58]–[60]. On average, the resection volumes in this study
remained under this threshold. Rate of surgical site infections
and wound complications after breast cancer surgery vary
from less than 5% to more than 30% depending on timing
and definition [21], [61], [62]. In our series, the rate of
infection or wound complications (5%), was similar to other
studies [63], [64].

The reasons for the relatively low tissue classification
results can be partially attributed to annotation. Firstly, the
visual annotation of tissues based on video footage does not
provide as definitive ground truth of the tissue class as histol-
ogy does. There was a delay of 5 seconds between the recep-
tion of the trigger signal from the diathermy knife and the
start of the DMS measurement, and the measurement itself
took 5 seconds, meaning that the recorded signal represents
the average of tissues operated in the period, which in some
cases included more than one tissue. We found moderate
agreement between the three annotators [65]. The inter-rater
agreement is similar to grading of breast cancers according
to histology [66]. This means that while there is a relative
agreement of the tissue types that were operated in this study,
a substantial degree of uncertainty remains, limiting the per-
formance of the classifier as some samples are likely classi-
fied incorrectly by the annotator, giving inconsistent signals
to the classification algorithm. This is a universal problem
to methods that rely on machine learning, and we encourage
authors to assess and report inter-observer agreements.

In addition to annotation, tissue heterogeneity and envi-
ronmental factors are likely to play a role in the classifica-
tion accuracy. We noted significant heterogeneity within the
tissue classes and the issue has also been reported in other
studies. For example, a recent REIMS study has shown that
the molecular profile of stromal tissue is highly dependent
on the distance from the tumor [67]. This means that by
limiting the class division to four general classes, the clas-
sification problem suffers from high within-class variance,
which ultimately affects the classification performance, when
the DMS profiles of different classes share characteristics.
The high within-class variance due to the tissue heterogene-
ity, further complicate the classification, when the number of
available training samples is low. Due to the nature of the
surgeries, some of the tissue classes are more common than

others, which leads to disproportion between the classes and
insufficiency of training samples to create a fully generaliz-
able model. In addition, the regularized LDA classification
might not be the optimal method for the identification of the
tissues due to its simplicity, even though it has previously
performed well in a more controlled setting. More complex
and robust machine learning methods such as convolutional
neural networks, could better compensate the heterogeneity
of the samples and changes in environmental conditions, and
work better if the number of training samples were increased
to several thousands.

An additional source of within-class variance is the varia-
tion of environmental conditions between measurement days.
The day-to-day variation has proven to be a limitation for
the DMS-based system in previous studies, where the gen-
eralizability of the classification models has decreased, if the
environmental conditions have varied between measurement
sets [37], [38]. The operation roomwas assumed to be a more
controlled environment in terms of humidity and temperature
than a standard research lab. However, in this study, the vari-
ance in the operation room relative humidity was surprisingly
high, ranging from 12% to 37% between operation days. The
values do not match the recommendations of international
standards. For example, the American Institute of Archi-
tects guidelines for Design and Construction of Hospital and
Health Care Facilities recommend that the relative humidity
should be between 30% to 60% [68].

To our knowledge, this was the first time a head-mounted
system with gaze-tracking was used intraoperatively in oper-
ation room setting to help annotate operated tissues. The
system provided a minimally intrusive method to record
surgeries and although gaze-tracking was not used in the
analysis of data, it could, in the future, be used to audit
and study the work of different surgeons with varying lev-
els of experience to see if their concentration on the oper-
ation area has variation and if there are general aspects
in the operation room environment that can distract the
operation.

In the future, emphasis should be placed on higher sam-
pling frequency and annotation and enhanced control of envi-
ronmental factors to reduce the day-to-day variation. With
optimized hardware we expect significantly improved perfor-
mance that could challenge that of MS. The improved system
should subsequently be validated in a larger clinical trial,
where a classification model for positive margins could also
be created. If the performance matches or exceeds previous
ex vivo results [39], the technology could be implemented to
clinical practice to aid in margin assessment and to reduce
avoidable reoperations.

V. CONCLUSION
In this study, we demonstrated the feasibility of intraoperative
DMS-based tissue identification for the first time. We iden-
tified significant differences between the tissues operated
during breast surgery. The use of the device did not prolong
operation times or add complications. The results in tissue
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identification do not yet warrant the use of the technology in
a clinical application. There are multiple technical aspects of
the system that can be improved, most significant of which is
the measurement delays that can be overcomewith a purpose-
built DMS sensor that is better suited for real time mea-
surements. In the future, the video-based annotation process
should also be improved as the current inter-rater agreement
was only moderate and likely had a significant decreasing
effect on the classification accuracy.
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