

Open-source RTP Library for End-to-End Encrypted

Real-Time Video Streaming Applications

Joni Räsänen, Aaro Altonen, Alexandre Mercat, and Jarno Vanne

Tampere University, Tampere, Finland

{joni.rasanen, alexandre.mercat, jarno.vanne}@tuni.fi

Abstract— Information security has become a key success

factor for streaming media applications that are increasingly

vulnerable to wiretapping, message forgery, data tampering,

hacking, and other possible cyberattacks. This paper addresses

the existing security risks in real-time video streaming by

introducing a new security extension to our uvgRTP open-

source Real-time Transport Protocol (RTP) library. The

proposed solution improves content integrity and privacy by

adopting Secure RTP (SRTP) and Zimmermann RTP (ZRTP)

for media End-to-End Encryption (E2EE). These new security

mechanisms make uvgRTP the first open-source library that

supports on-the-fly encrypted AVC, HEVC, and VVC video

streaming. Our performance results on Intel Core i7-4770

processor show that uvgRTP is able to transport encrypted 8K

VVC video at up to 187 fps and 8K HEVC video at up to 120 fps

over a 10 Gbps Local Area Network (LAN). The achieved

transfer rate for encrypted HEVC video is 50% higher and

latency 86% lower than the respective performance values of

FFmpeg in unencrypted HEVC streaming. These top streaming

speed results with state-of-the-art video codec support,

advanced encryption mechanisms, and the permissive BSD

license make uvgRTP an attractive solution for a broad range of

commercial and academic streaming media applications.

Keywords—Real-time Transport Protocol (RTP), Versatile

Video Coding (VVC), High Efficiency Video Coding (HEVC),

Secure RTP (SRTP), Zimmermann RTP (ZRTP)

I. INTRODUCTION

Recent advances in video transport and coding
technologies have led to a proliferation of interactive and live
streaming media applications. In the existing solutions, real-
time video streaming is typically implemented with Real-time
Transport Protocol (RTP) [1] using standard video coding
formats such as Advanced Video Coding (AVC/H.264) [2] or
High-Efficiency Video Coding (HEVC/H.265) [3]. In
addition, the latest video coding standard, Versatile Video
Coding (VVC/H.266) [4], will gain ground in the future
streaming applications.

High video quality, high frame rate, low frame loss, and
low end-to-end latency are the key performance indicators of
user experience, but without any protection, the video content
is vulnerable to attackers when it involves sensitive or private
data. Media stream encryption enables keeping personal or
business information out of the hands of undesirable actors.

Secure RTP (SRTP) [5] is an extension to RTP and the
most common approach for transporting encrypted media in
Real-Time Communication (RTC) applications [6]. However,
SRTP does not specify methods for encryption key
management. Therefore, it is often used with Zimmermann
RTP (ZRTP) [7] that fulfils the requirements for media End-
to-End Encryption (E2EE) by providing key negotiation and
management capabilities for SRTP. In E2EE, only the stream
sender and receiver are able to decrypt the traffic. This reduces
the attack surface on the encryption by preventing the security
key exchange provider from decrypting the media stream.

Multiple open-source SRTP libraries [8]–[14] have been
released over the last decades, but none of them support the
state-of-the-art VVC standard. The full-fledged
GStreamer [13] and FFmpeg [14] multimedia frameworks
have built-in support for HEVC and AVC, but they are not
appropriate for lightweight applications striving for maximum
performance. Furthermore, only ccRTP library [12] comes
with ZRTP, but the GPL license makes it less attractive for
commercial applications.

Our uvgRTP library [15][16] has built-in support for VVC,
HEVC, and AVC video codecs and Opus audio codec [17]
that can be seen as key enablers of economic video and audio
transmission. It also provides an easy-to-use Application
Programming Interface (API) for introducing other user-
defined RTP payload formats.

In this work, we implemented SRTP and ZRTP extensions
into uvgRTP and made it compatible with end-to-end
encrypted media streaming. As of now, applications can
utilize uvgRTP to stream encrypted VVC, HEVC, and AVC
videos in real time. uvgRTP is available online at

https://github.com/ultravideo/uvgrtp.

It is written in C++ and distributed under the permissive
BSD 2-Clause license. This cross-platform library can be run
on both Linux and Windows operating systems.

The rest of the paper is organized as follows. Section 2
provides an overview of end-to-end encrypted video
streaming with SRTP and ZRTP protocols. Section 3
introduces the ZRTP and SRTP extensions to our uvgRTP
library. Section 4 evaluates the encryption performance in
comparison with FFmpeg and Section 5 concludes the paper.

II. END-TO-END ENCRYPTED MEDIA STREAMING

RTP, specified in RFC 3550 [1], defines the general-
purpose RTP packet format for real-time media transfer and
an associated RTP Control Protocol (RTCP) for Quality-of-
Service (QoS) monitoring and RTP session management.
Besides RFC 3550, video E2EE calls for other specifications
that define RTP payload formats for different video coding
formats, bitstream encryption, and encryption key
management.

A. VVC, HEVC, and AVC Streaming over RTP

The draft specification of the RTP packet format for
VVC [18] describes rules for VVC bitstream packetization
and de-packetization. When streaming VVC over RTP, the
VVC bitstream is divided into Network Abstraction
Layer (NAL) units. A single VVC frame may contain multiple
NAL units and each NAL unit begins with a start code. The
RTP packet format specifications for HEVC [19] and
AVC [20] follow the same principles.

The NAL units are further split into Fragmentation
Units (FUs) having a size of an ethernet frame payload. This
approach removes IP level fragmentation and thereby

https://github.com/ultravideo/uvgrtp

improves the reliability of transmission because any lost IP
fragment would result in a lost frame.

B. SRTP Media Streaming

SRTP, specified in RFC 3711 [5], defines operating
principles to cipher and authenticate RTP streams. It is also
coupled with Secure RTCP (SRTCP), which is an encrypted
and authenticated version of RTCP.

The use of SRTP requires implementing Advanced
Encryption Standard (AES) [21] with at least 128-bit key
length in Counter Mode (CM) for ciphering and Secure Hash
Algorithm 1 (SHA-1) [22] for Hash-based Message
Authentication Code (HMAC) [23]. The ciphering is
performed for the whole bitstream and is computationally
intensive, but when used together with HMAC, the 128-bit
AES key length offers sufficient level of encryption for any
practical application to the foreseeable future.

For ciphering, SRTP needs the master key and salt, which
can be generated and managed with the following protocols:
ZRTP [7], Multimedia Internet KEYing (MIKEY) [24],
Session Description Protocol Security
Descriptions (SDES) [25], and Datagram Transport Layer
Security Extension to Establish Keys for the SRTP (DTLS-
SRTP) [26]. However, only ZRTP and DTLS-SRTP can be
used to implement E2EE. DTLS-SRTP relies on public key
infrastructure which makes it more vulnerable to Man-in-the-
middle (MITM) attacks than ZRTP.

C. ZRTP Key Management

ZRTP [7] defines cryptographic key management to
securely establish a shared cryptographic context from a
cached secret or by performing a Diffie-Hellman key
exchange. The shared context is used to derive the master key
and salt, which are, in turn, applied to create the session key
and salt for the stream encryption and decryption. ZRTP
increases the possibility of detecting MITM attacks with a
feature called Short Authentication String (SAS).

D. Existing SRTP Libraries

Table 1 tabulates the existing open-source RTP libraries
that support SRTP encryption. Each library is characterized by
its compatibility with ZRTP (RFC 6189) [7] protocol as well
as its RTP payload format support for VVC (draft) [18],
HEVC (RFC 7798) [19], and AVC (RFC 6184) [20]. In
addition, the Lines of Code (LoC) in the library and the
licensing information are given.

libre [8], PJSIP [9], libsrtp [10] and JRTPLIB [11] do not
provide built-in support for VVC, HEVC, or ZRTP. libre has
been developed by Creytiv.com, PJSIP by Teluu Inc., and
libsrtp by Cisco. All these company-led projects are under
active development and libsrtp is currently one of the most
popular SRTP implementations. JRTPLIB is no longer under
active development.

ccRTP [12] is the only existing open-source library that
has a built-in support for ZRTP. However, ccRTP only
provides low-level control over its RTP functionality, which
leaves more implementation work for the application
designer. ccRTP is licensed under GPL v2 and endorsed by
Free Software Foundation, but its last update was in 2015.

GStreamer [13] and FFmpeg [14] are widely used and
actively developed multimedia frameworks with media
streaming functionality. However, their broad spectrum of
usage scenarios makes them less suitable for modest sized
projects and for applications that have no need for extensive
media processing capabilities.

III. SECURE UVGRTP LIBRARY

uvgRTP has a built-in support for VVC [18], HEVC [19],
AVC [20], and Opus [17] payload formats for which it
implements encryption via SRTP protocol and encryption key
management via ZRTP protocol.

A. Architecture

Fig. 1 depicts the operating principle of uvgRTP when
applied in two-way point-to-point VVC video communication
between different streaming media applications. uvgRTP
creates a new session module for each peer it exchanges media
with, and each session applies a different media streamer
module for every audio or video stream. The sending
application uses uvgRTP sender to transmit video to
corresponding uvgRTP receiver that passes it on to a receiving
application. A single media streamer module does not support
multithreading, but different media streamers can be used
from separate threads.

Fig. 2. describes the high-level architecture of our uvgRTP
library with dependency relations between its components.
The context is the top-level module, and it is used to allocate

Fig. 1. uvgRTP usage scenario for streaming encrypted VVC.

Fig. 2. Software architecture of uvgRTP.

TABLE I
FEATURES OF EXISTING OPEN-SOURCE SRTP LIBRARIES

Ref. Library ZRTP VVC HEVC AVC LoC License

[8] libre No No No No 58k BSD

[9] PJSIP No No No Yes 360k GPL-2.0

[10] libsrtp No No No No 23k BSD

[11] JRTPLIB No No No No 28k MIT

[12] ccRTP Yes No No No 14k GPLv2

[13] GStreamer No No Yes Yes 3062k LGPLv2.1

[14] FFmpeg No No Yes Yes 1250k LGPLv2.1

 uvgRTP Yes Yes Yes Yes 13k BSD-2

separate session modules for each IP address. The session
module creates one media streamer module per encrypted
SRTP stream for data sending, receiving, or both. The SRTCP
module manages the SRTCP traffic of the corresponding
SRTP stream.

The RTP module upholds the state of the SRTP stream
whereas SRTP module takes care of stream encryption and
decryption. The packet reception module controls the
processing of received packets. The RTP payload formats
module implements the format specific Start Code
Lookup (SCL), fragmentation, and reconstruction of the
stream. The socket module handles the transmission and
reception operations on the system socket. The Crypto++
library [27] is used by the SRTCP module, ZRTP module, and
SRTP module for encryption and decryption tasks.

B. ZRTP Implementation

Encrypted media streaming starts with the negotiation of
the cryptographic context. For the negotiation, uvgRTP uses
ZRTP that makes it possible for the application to implement
E2EE without having to pay attention to the encryption key
management.

When creating the first media streamer instance in a
uvgRTP session, the ZRTP module (see Fig. 3) performs a
handshake to establish a shared cryptographic context
between the peers. The ZRTP protocol is used in the Diffie-
Hellman mode, where the ZRTP module makes use of
Crypto++ library [23] to generate a private/public key pair
and then performs the Diffie-Hellman key exchange. All
media streamer instances within the same session are in the
Multistream mode, in which the ZRTP module uses the
already negotiated context to re-negotiate a new context for
each new media streamer instance.

C. SRTP Implementation

The media streamer module can start sending and/or
receiving encrypted media after the ZRTP module has
established the cryptographic context for it. Each media

streamer instance uses the same socket module as the
corresponding ZRTP module.

Fig. 4 illustrates the E2EE workflows of the SRTP sender
and receiver for VVC streaming. First, the application delivers
the VVC input frame to the media streamer. The SCL stage
splits the frame into NAL units, and the fragmentation stage
divides each NAL unit into FUs. When all NAL units have
been fragmented, the encryption stage uses Crypto++ to
encrypt the FUs using 128-bit AES in CM. In the receiving
end, the FUs are read from the socket module and decrypted
using Crypto++ library. Finally, the NAL units are
reconstructed from the FUs before they are sent to the user.

uvgRTP can further improve protection by calculating an
RTP authentication tag with Crypto++. The sender appends
the tag at the end of each FU, and the receiver verifies the tags
and discards all invalid FUs.

IV. PERFORMANCE ANALYSIS

In our experiments, uvgRTP was benchmarked against
FFmpeg version 4.3 that represents the state-of-the-art in RTP
streaming and media processing. However, SRTP
functionality of FFmpeg was excluded from our evaluations
because it does not include key negotiation. In addition,
GStreamer was completely omitted because there was no
straightforward way to integrate its closely-knit media
processing filters into our benchmark setup. The other
considered libraries [8]–[12] were also left out because none
of them support HEVC or VVC video streaming. The
benchmarking framework used in our performance analysis is
available online1.

A. Experimental Setup

Fig 5. illustrates the experimental setup. The sender
computer (computer A) was equipped with an Intel Core i7-
4770, Linux kernel version 4.15.0, and Asus XCG100C
network card. The receiver computer (computer B) had an
AMD Threadripper 2990WX, Linux kernel version 5.0.0, and
Intel X550 network card. Both computers were connected over
a 10 Gbps Local Area Network (LAN) with two Cisco
SG350XG network switches in between them.

1 https://github.com/ultravideo/rtp-benchmarks

Fig. 3. ZRTP encryption key negotiation in uvgRTP.

Fig. 4. The E2EE workflow for VVC video streaming in uvgRTP.

Fig. 5. Experimental setup.

https://github.com/ultravideo/rtp-benchmarks

The tests were performed with one 4K120p (3840×2160
pixels) test video sequence that was encoded into HEVC and
VVC bitstreams. The encoded bit rates were 660 and
442 Mbit/s for HEVC and VVC bitstreams, respectively. To
mitigate the additional latency caused by file I/O operations,
the sequences were memory-mapped to the address space. In
addition, the Linux network stack parameters were adjusted
according to the amount of data as in our previous work [15].

Two separate test cases were evaluated. In both test cases,
a single thread was used to send the same test video 100 times
in a row and average performance results were reported. If the
tests consisted of multiple simultaneous streams run on
separate cores, we would expect the per stream results to be
similar if the network capacity is not exceeded.

In the first test case, the maximum frame rate, frame loss,
and CPU utilization of uvgRTP and FFmpeg were measured
as a function of transfer speed by increasing the data transfer
rates (i.e., frame rates) of VVC and HEVC test videos from
100 frames per second (fps) to 1200 fps in steps of 100 fps. In
the second test case, the round-trip latency of the system was
evaluated. Altogether, uvgRTP was benchmarked with four
payload formats: 1) encrypted VVC; 2) encrypted HEVC;
3) unencrypted VVC; and 4) unencrypted HEVC. The
obtained results were compared with those of unencrypted
HEVC streaming with FFmpeg.

B. Frame Rate, Frame Loss, and CPU Utilization

Table 2 shows maximum attainable frame rates of the
uvgRTP and FFmpeg libraries for 4K HEVC and VVC test
videos. The frame rate values show that encryption of brings
around 60-70% overhead compared to streaming unencrypted
video. In addition, the respective percentages for frame loss
and sender CPU usage are reported. The frame loss of uvgRTP
stems from the UDP packet loss. With lower frame rates, the
CPU usage was proportional to the frame rate but the frame
loss stays the same at all frame rates.

The data transfer rate of uvgRTP approximately
corresponds to streaming encrypted 8K VVC at 187 fps and
HEVC at 125 fps. Since the encrypted streaming performance
of uvgRTP is greater than the unencrypted streaming speed of
FFmpeg, we can conclude that uvgRTP would also achieve
higher data transfer rate than encrypted FFmpeg since the
encryption comes with significant overhead.

One reason behind the superiority of uvgRTP is the higher
CPU utilization. In addition, uvgRTP is solely designed for

high-performance streaming, e.g., by minimizing data copies
whereas FFmpeg provides an entire framework for
multimedia processing.

C. Latency Evaluation

The second test case measured the round-trip latencies of
uvgRTP and FFmpeg. The tests were performed at a frame
rate of 120 fps by sending the HEVC and VVC test videos
from the computer A to computer B and back. Measuring the
latency of entire frames rather than individual packets better
reflects the actual latency of the video seen by the user.

Table 3 reports the round-trip latencies (in ms) of uvgRTP
and FFmpeg. They were measured for intra and inter frames
separately as well as averaged. Only test runs without any lost
packets were included in the results, because larger frames are
more likely to have dropped packets leading to their exclusion
from the result averages. The Failed runs-column stands for
percentage of excluded test runs because of lost packets.

The results show that SRTP increases the latency by
50–70% compared with unencrypted RTP, but it remains
relatively low at under 12 ms. The average latency of FFmpeg
is significantly higher even without encryption.

V. CONCLUSION

This paper presented an E2EE extension to our uvgRTP
open-source RTP library. Unlike the other open-source
approaches, the latest version of uvgRTP supports SRTP
protocol for encrypted AVC, HEVC, and VVC video
streaming and ZRTP protocol for the cryptographic key
exchange. Hence, it is the first streaming-oriented RTP library
that supports encryption along with video coding formats. The
small library size, permissive BSD license, and built-in
payload formats make uvgRTP a convenient option for any
commercial and academic projects dealing with state-of-the-
art encrypted video transmission.

According to our experiments, uvgRTP is capable of
transferring encrypted 8K VVC and HEVC videos in real time
at up to 187 fps and 120 fps, respectively. Even with
encryption, it achieves 54% higher frame rate and 86% lower
latency than FFmpeg does for unencrypted HEVC video.
These performance results indicate that uvgRTP is a potential
candidate for practically any kind of current and future secure
real-time streaming media solutions. The potential
applications include interactive video communication
platforms, remote presence services, and multimedia-oriented
Internet of Things, where high speed, low latency, and
security are of the essence.

In the future, uvgRTP will be extended with RTP header
extension encryption. In addition, Elliptic-curve Diffie-
Hellman key negotiation modes will be implemented to make
the key exchange computationally less demanding.

ACKNOWLEDGMENT

This paper is part of the PRYSTINE project that has
received funding within the ECSEL JU in collaboration with
the European Union's H2020 Framework Programme
(H2020/2014-2020) and National Authorities, under grant
agreement 783190.

TABLE II
SPEED, FRAME LOSS, AND SENDER CPU USAGE OF UVGRTP AND FFMPEG

Library SRTP Format
Frame

rate

Frame

loss

CPU

utilization

uvgRTP

Yes VVC 749 0.04% 98.4%

Yes HEVC 500 0.03% 99.3%

No VVC 1200 0.03% 98.1%

No HEVC 840 0.04% 98.8%

FFmpeg No HEVC 324 2.70% 62.7%

TABLE III
ROUND-TRIP LATENCIES OF UVGRTP AND FFMPEG

Library SRTP Format
Failed

runs

Intra Inter Average

(ms) (ms) (ms)

uvgRTP

Yes VVC 14% 23.9 6.3 7.4

Yes HEVC 20% 22.1 11.0 11.2
No VVC 11% 14.5 3.8 4.4

No HEVC 7% 15.1 7.1 7.3

FFmpeg No HEVC 52% 108.3 80.6 81.0

REFERENCES

[1] IETF. IETF RFC 3550 RTP: a Transport Protocol for Real-Time
Applications. (2003). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3550

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H. 264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[3] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec.
2012.

[4] International Telecommunication Union (ITU). New Versatile Video
Coding Standard to Enable Next-Generation Video Compression.
[Online]. Available: https://www.itu.int/en/mediacentre/Pages/pr13-
2020-New-Versatile-Video-coding-standard-video-compression.aspx

[5] IETF. IETF RFC 3711 the Secure Real-Time Transport Protocol
(SRTP). (2004). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3711.

[6] A. Nisticò, D. Markudova, M. Trevisan, M. Meo, and G. Carofiglio, “A
comparative study of RTC applications,” in Proc. IEEE Int. Symp.
Multimedia, Naples, Italy, Dec. 2020.

[7] IETF. IETF RFC 6189 ZRTP: Media Path Key Agreement for Unicast
Secure RTP. (2011). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6189.

[8] Creytiv.com. libre. [Online]. Available: https://github.com/creytiv/re.

[9] Teluu Ltd. PJSIP. [Online]. Available: https://www.pjsip.org/.

[10] Cisco Systems Inc. libsrtp. [Online]. Available:
https://github.com/cisco/libsrtp.

[11] J. Liesenborgs. JRTPLIB - End of Development. [Online]. Available:
https://research.edm.uhasselt.be/jori/page/CS/Jrtplib.html.

[12] GNU. GNU ccRTP. [Online]. Available:
https://www.gnu.org/software/ccrtp/.

[13] GStreamer. [Online]. Available: https://gstreamer.freedesktop.org/.

[14] FFmpeg. [Online]. Available: https://www.ffmpeg.org/.

[15] A. Altonen, J. Räsänen, J. Laitinen, M. Viitanen, and J. Vanne, “Open-
source RTP library for high-speed 4K HEVC video streaming,” in

Proc. IEEE Int. Workshop Multimedia Signal Process., Tampere,
Finland, Sept. 2020.

[16] A. Altonen, J. Räsänen, A. Mercat, and J. Vanne, “uvgRTP 2.0: open-
source RTP library for real-time VVC/HEVC streaming,” in Proc.
IEEE Int. Conf. Multimedia and Expo Workshops, Shenzhen, China,
Jul. 2021.

[17] IETF. IETF RFC 6716 Definition of the Opus Audio Codec. (2012).
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc6716.

[18] IETF. RTP Payload for Versatile Video Coding (VVC). [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-vvc/.

[19] IETF. IETF RFC 7798 RTP Payload Format for High Efficiency Video
Coding (HEVC). (2016). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7798.

[20] IETF. IETF RFC 6184 RTP Payload Format for H.264. (2011).
[Online]. Available: https://datatracker.ietf.org/doc/html//rfc6184.

[21] J. Daemen and V. Rijmen. AES Proposal: Rijandael. (1999). [Online].
Available:
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijn
dael_doc_V2.pdf.

[22] Defense Technical Information Center. Secure Hash Standard. (1995).
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA406543.

[23] IETF. IETF RFC 2104 HMAC: Keyed-Hashing for Message
Authentication. (1997). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc2104.

[24] IETF. IETF RFC 3830 MIKEY: Multimedia Internet KEYing. (2004).
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc3830.

[25] IETF. IETF RFC 4568 Session Description Protocol (SDP) Security
Descriptions for Media Streams. (2006). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4568.

[26] IETF. IETF RFC 5764 Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol
(SRTP). (2010). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5764.

[27] Crypto++ Library. [Online]. Available: https://www.cryptopp.com/.

https://datatracker.ietf.org/doc/html/rfc3550
https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-Video-coding-standard-video-compression.aspx
https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-Video-coding-standard-video-compression.aspx
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc6189
https://github.com/creytiv/re
https://www.pjsip.org/
https://github.com/cisco/libsrtp
https://research.edm.uhasselt.be/jori/page/CS/Jrtplib.html
https://www.gnu.org/software/ccrtp/
https://gstreamer.freedesktop.org/
https://www.ffmpeg.org/
https://datatracker.ietf.org/doc/html/rfc6716
https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-vvc/
https://datatracker.ietf.org/doc/html/rfc7798
https://datatracker.ietf.org/doc/html/rfc6184
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://apps.dtic.mil/sti/citations/ADA406543
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5764
https://www.cryptopp.com/

