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Abstract—Joint sound event localization and detection (SELD)
is an integral part of developing context awareness into com-
munication interfaces of mobile robots, smartphones, and home
assistants. For example, an automatic audio focus for video
capture on a mobile phone requires robust detection of relevant
acoustic events around the device and their direction. Existing
SELD approaches have been evaluated using material produced
in controlled indoor environments, or the audio is simulated
by mixing isolated sounds to different spatial locations. This
paper studies SELD of speech in diverse everyday environments,
where the audio corresponds to typical usage scenarios of
handheld mobile devices. In order to allow weighting the relative
importance of localization vs. detection, we will propose a two-
stage hierarchical system, where the first stage is to detect the
target events, and the second stage is to localize them.

The proposed method utilizes convolutional recurrent neural
network (CRNN) and is evaluated on a database of manually
annotated microphone array recordings from various acoustic
conditions. The array is embedded in a contemporary mobile
phone form factor. The obtained results show good speech
detection and localization accuracy of the proposed method in
contrast to a non-hierarchical flat classification model.

I. INTRODUCTION

Sound source localization (SSL) aims to determine either
the direction or position of the source in a continuous or
discrete-valued space, and automatic sound event detection
(SED) aims to recognize the classes of the source sounds
present, and estimate their temporal activities. The SSL and
SED have been extensively researched mostly as separate
problems. Deep learning methods have brought improvements
in SSL performance [1]–[10] and in SED [11]–[14] over tradi-
tional approaches. Recent approaches solving simultaneously
the SED and SSL problems, i.e., joint sound event detection
and localization (SELD) problem, include using Convolutional
Neural Networks (CNNs) [15], [16], Convolutional Recurrent
Neural Network (CRNN) [17]–[19], and the Least Absolute
Shrinkage and Selection Operator (LASSO) [20].

As the research in the field has progressed towards machine
learning approaches, the data used to train a system has a
crucial impact on its performance. Larger and more diverse
datasets enable learning more complex models that will gen-
eralize better to new conditions. Since recording of acoustic
scenes with spatiotemporal annotations is an extremely diffi-
cult task, there are no large-scale datasets of real scenes, and
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existing smaller ones are limited to evaluation of algorithms
and are unsuitable for training deep-learning methods (e.g.
LOCATA challenge [21]). That is in contrast, e.g., to automatic
speech recognition where annotation is not a problem and
recorded datasets exist with diverse range of conditions (e.g.,
the ASpIRE [22] and CHiME [23] challenges). Hence, for
deep-learning based SSL researchers have generally relied
on either simulations for training and testing on a small
recorded dataset [24], [25], or on emulated scenes with real
recorded room impulse responses (RIRs). The second option
allows integrating real acoustics with source signals of interest
with a few RIR datasets available [26]–[28]. Additionally, the
SELD datasets related to the DCASE challenge have been
generated with a large scale RIR collection from 15 rooms
and a spherical microphone array [19]. The only annotated
dataset for SELD with real recordings we are aware of is the
one in [29] for office environments.

In this study, a microphone array embedded inside a flat
mobile phone body was used to collect a dataset from di-
verse everyday environments to obtain insights for realistic
mobile phone applications of the SELD approaches. To our
knowledge, a microphone array in a mobile phone form factor
has not been dealt with in previous SELD research. The flat
microphone array shape imposes challenges to the spatial
resolution rendering the task more difficult in contrast to, e.g.,
spherical arrays. Therefore, we do localization using only two
categories, front and back, with respect to a mobile phone
screen. This is motivated by possible mobile phone multimedia
applications. We focus the evaluation on localization and
detection of speech and detection of other prominent sounds
of interest without localizing them.

State of the art SELD systems typically train a single system
for joint localization and detection. In order to allow control-
ling the relative importance of localization vs. detection, we
propose a hierarchical approach of two separate deep neural
networks, optimized for their corresponding tasks.

In this paper Section II describes the database collec-
tion. Section III describes the proposed hierarchical two-
stage SELD approach. Section IV describes the evaluation of
the SED, SSL, and the joint system and then compares the
results to a baseline classifier. Finally, Section V draws the
conclusions and future directions.



II. DATASET

Data collection and annotation: Acoustic data for train-
ing and evaluation of the methods was collected in complex
real-life environments. Actions and objects in the recordings
aim to represent typical contents of casual videos recorded by
a typical mobile phone user. The data set contains speech and
other scene-specific sounds from common scenarios such as
sports, moving vehicles and live music. In total there are 24
environment types including both indoor- and outdoor scenes,
refer to Table I. The duration of the recordings varies from 10
to 180 seconds, and the total duration is 89 min.

The audio data was collected with an eight-channel micro-
phone array mounted to a custom 3D-printed rigid phone-
shaped body. In addition, a 360◦ camera was used to make
the annotation task easier and a web camera was used to
collect video material for later research purposes. The de-
vices were fixed to a hand-held microphone stand during the
recordings that was was held from a grip below to prevent
obstructing sensors. Figure 1 illustrates the recording setup
and the microphone array. A laptop was used to collect the
eight-channel audio as wav files at 48 kHz sampling rate and
32-bit resolution.

The recorded signals were annotated with the following
labels using one-second resolution: (1) Speech back: A person
was speaking from behind the microphone array, e.g., the
person holding the device. (2) Speech front: A person in front
of the array was speaking. (3) Something else: An object was
emitting interesting non-speech sound. Multiple labels were
allowed to be used simultaneously. The direction for the class
”something else” was not used, since it was not considered
as interesting as for the speech. Besides, the direction for this
class is often ambiguous and rather hard to annotate.

A sound was considered interesting if the sound source was
the focus of the recording or the sound was otherwise special
in the context of the environment. For example, a scenario on
a beach where a diver jumped into water in front of the array
was assigned the label ”Something else” during the time of a
splash. Other swimmers talking in the background and creating
similar splashing sounds were considered as background, since
they were not in a key role from the perspective of the cam-
eraman. Therefore, the boundary between interesting sounds
and background noise is inevitably ambiguous, since the same
sound can be assigned a label or considered as background
noise depending on the situation. A general guideline used in
the annotations was that when a sound source was close to
the array and the sound was audible inside a block of data,
it was assigned with the corresponding label. Other examples
of sounds labeled ”Something else” include a guitar, a racing
car, and a table tennis ball. All speech related sounds such
as singing and whispering were assigned with labels ”Speech

TABLE I: Duration (s) of recordings for each environment.
Apartment 1094 Industrial area 920 Club room 630 Studio room 419
Street 404 Meeting room 335 Corridor/office 245 Park 226
Live club 210 Car 185 Urban area 110 Stairs 105
Lake 65 Cycle path 60 Ship’s deck 60 Subway 51
Store room 45 Grocery store 41 Marketplace 40 Beach 20
Harbour 20 Terrace 15 Cafe 15 Terminal 11

(a) Pictures of the micro-
phone array and other ac-
companying devices.

(b) An illustration of the eight micro-
phone placements and the directions
”Front” and ”Back” used to annotate
the speaker direction. The x,y,z di-
mensions of the devices are: 140, 65,
and 7 mm.

Fig. 1: Recording setup (a), and microphone layout (b).

back” and/or ”Speech front”. Multiple labels were assigned
when multiple sound sources were present inside the one-
second clip, including multiple sound sources of the same
type. Audio blocks where a speech source is in the left or right
directions were omitted due to ambiguous front/back direction.

Database for machine learning: The audio was divided
into six different folds. For the first five folds, the data was
distributed so that each fold had the same proportion of
1-s blocks captured in an inside and outside environment as
the whole data set. Each recording was used as a whole in
a single fold, and no recording was split between several
folds. The sixth fold includes most data from speech sources
simultaneously in front and back. Table II displays the amount
of 1-s blocks per each label class. It also includes counts for
the cases where speech is present either back or front, and
also back and front.

III. HIERARCHICAL CLASSIFICATION APPROACH

Given the described labeling scheme, the direct approach
is a flat classifier with three multilabel binary output values.
The outputs are the presence probabilities for labels ”speech
back”, ”speech front” and ”something else”. To solve the task,
the model’s input features should contain both spectral and
directional information. However, sound event characteristics
and direction properties are two very different types of infor-
mation and therefore challenging to model through a single
network. With the hierarchical approach, different types of
features or feature representations can be utilized by each
task. Therefore, we investigate a hierarchical classifier to first
detect the presence of ”speech” and ”something else” classes
using magnitude spectral features only. In the second level of
the classification, spatial features are extracted and segments
already detected to contain speech are further assigned with

TABLE II: Label appearance statistics for the folds. Note that
any combination of labels can be present during a single block.

Fold Total Something Speech Front No Speech Speech Speech Front
# blocks Else or Back labels Front only Back only and Back

1 871 376 376 213 187 177 12
2 748 327 310 218 61 243 6
3 768 187 383 305 98 271 14
4 892 292 407 327 173 204 30
5 719 376 201 307 24 176 1
6 1025 0 967 58 291 576 100
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Fig. 2: Joint classifier system framework for detection and
localization of sound events. First stage detects the type of
sound, second stage estimates direction of detected speech.

directional labels of ”speech front” and ”speech back”, where
the labels match the sound source direction with respect to the
mobile array. The joint system offers a solution to the problem
of differing tasks and features. On the other hand, the accuracy
of the direction estimation does not only depend on its own
performance anymore, since any missed speech samples from
the sound event classifier would diminish its performance too.
Fig. 2 depicts a high level overview of the proposed system.

A. Sound Classification (Stage 1)

In the sound classification stage, given a 1-s block of audio,
the aim is to recognize if there is speech and/or any other
interesting sound events (i.e. ”something else” class) present
at any time. The output of this stage is a probability value for
both of these labels. Sound classification is done by feeding
time-frequency acoustic features extracted from audio to a
deep neural network that estimates the class probabilities.
Feature extraction and classification are elaborated below.

1) Acoustic Feature Extraction: In a pre-processing step,
the multi-channel audio is converted to mono by taking the
average over the channels at each sample. The resulting
monophonic audio signal is amplitude normalized by dividing
with the maximum absolute value.

Log-Mel Spectrogram Estimation: The log-mel spectro-
gram features were obtained using 20 ms frames and 10
ms overlap in 40 mel frequency bands. The features are
standardized to zero mean and unity variance using statistics
from the training set.

2) Deep Neural Network Model: The DNN technique uti-
lized in the sound classification is a CRNN. Convolutional
layers use small, shifting 2D kernels to extract higher level
features that are invariant to local spectral and temporal
variations. Recurrent layers are effective in modeling the
longer term temporal context for the sound events. Combining
convolutional and recurrent layers has been found suitable
for various audio classification tasks such as sound event
classification [14], automatic speech recognition [30] and
music genre classification [31].

The details of the CRNN architecture are as follows. Each
5-by-5 convolutional layer is followed by a rectified linear unit
(ReLU) activation, and max-pooling by two in both time and
frequency dimensions. The 3D output of the final convolu-
tional layer is converted into 2D by reshaping the frequency
and channel dimensions into a single dimension. This output
is fed to one or multiple recurrent layers (long-short term
memory (LSTM) [32] layers specifically). The LSTM output
is fed to a fully connected feed-forward layer with logistic
sigmoid activation that applies the same weights over each

time step of the input. The resulting output at each time step
are the two label probabilities of the i) speech presence using
the merged ”Speech Front” and ”Speech Back” labels, and ii)
”Something Else”. Finally, max-pooling over time is applied
over the sequence, and the two label probabilities are obtained
for the one-second block of audio. The binary label predictions
are obtained by using a threshold value of 0.5 for the output
probabilities.

The network is trained to minimize the cross-entropy be-
tween the estimate output and the target output. Adam [33]
is used as the optimizer. After each epoch, the F1-score for
the merged ”speech” labels for the validation set is calculated.
If the model does not improve for 25 epochs, the training is
terminated. The best model based on the validation set score
is used for testing. In total, 197 different hyper-parameter
combinations were evaluated with different amounts and con-
figurations of the convolutional layers and the recurrent layers.
The best model had 611k learnable parameters.

B. Localization (Stage 2)

The task of the localization step is to assign the labels
of ”Speech front” and ”Speech back” to each 1-s block of
audio, detected to contain speech in the first stage. The speaker
direction is assumed to be more stable compared to changes
in the magnitude spectrum, and therefore longer 85 ms frames
with 50 % overlap are utilized. Two types of spatial features
are extracted.

1) Time Difference of Arrival (TDoA) Feature: The TDoA,
i.e. the sound propagation delay between a microphone pair,
brings information about the dominating sound direction dur-
ing each short processing frame. The case with speakers in
front and back is evident by alternating TDoA values.

Since the microphone pair separation in the front-back axis
is only 7 mm, the TDoA resolution is limited to three possible
values at 48 kHz. Therefore, TDoA is obtained as maximum
peak index of Fourier interpolated (factor of five) Generalized
Cross-Correlation (GCC) [34] between microphones.

2) Magnitude Difference Feature: Upon reaching the rigid
device, the sound wave is partly reflected and partly diffracted,
leading to frequency and angle dependent sound propagation
effects. This is observed as a direction specific level difference
between the microphones. The magnitude difference between
the microphone pairs is used as the second spatial feature to
capture this information: Di,j(b) = ln(Mi(b)) − ln(Mj(b)),
where Mi(b) is the magnitude of the bth mel band of micro-
phone i. The total number of mel-bands was 40.

Features are obtained from two microphone pairs (1,3) and
(2,4) located on the front and back surfaces on the left and
right side of the device. The pairs are maximally separated in
the dimension of interest, refer to Fig. 1b. Both features are
then averaged over the microphone pairs for robustness and to
reduce the feature dimension by half.

Deep Neural Network (DNN) Model for Localization:
As for sound event detection, the used model was a CRNN,
where now two output values are related to probabilities of
speech front, and speech back. A similar training process



TABLE III: The confusion matrix of SED (proposed).
Predicted label

[frames] Nothing Speech Else Both

Tr
ue

la
be

l Nothing 1098 156 162 12
Speech 179 1737 14 126

Else 323 105 465 58
Both 28 139 48 373

Predicted label
[%] Nothing Speech Else Both
Nothing 76.9 10.9 11.3 0.8
Speech 8.7 84.5 0.7 6.1

Else 34.0 11.0 48.9 6.1
Both 4.8 23.6 8.2 63.4

TABLE IV: The confusion matrix of SED (baseline).
Predicted label

[frames] Nothing Speech Else Both

Tr
ue

la
be

l Nothing 1037 194 173 24
Speech 266 1575 38 177

Else 210 152 511 78
Both 40 166 104 278

Predicted label
[%] Nothing Speech Else Both
Nothing 72.6 13.6 12.1 1.7
Speech 12.9 76.6 1.8 8.6

Else 22.1 16.0 53.7 8.2
Both 6.8 28.2 17.7 47.3

and validation method was used as in Section III-A2. The
Adam and Adamax [33] optimizers were experimented with.
The training was done using k-fold-cross-validation with all
one-second blocks containing speech from the folds listed in
Table II. Three of the folds were used for training, two for
validation, and one for testing to guarantee sufficient number
of directional labels in the validation set. The training was
stopped if validation set’s average F1-score over both direction
labels started to decrease. Note that the case where both
”Speech front” and ”Speech back” are active is underrepre-
sented, with only 6 % of the samples belonging to this class.
As a consequence, the speech samples are labeled as either
with ”Speech back” or ”Speech front” labels, and the cases
where both labels are active is effectively ignored. To address
this data imbalance, a random oversampling strategy [35] was
applied to balance training and validation sets during training
so that each unique combination of label values (i.e. class)
would have the same amount of (partly repeated) training
sequences. This reduced slightly the final F1-score in contrast
to not using oversampling, but raised the performance of
detecting speech in both directions. The best model had 170k
parameters.

C. Baseline

The baseline comparison method is a flat CRNN classifier
with three binary labels for each of the classes. The spatial
features described in Section III-B are only used, since i)
the magnitude spectrum features could not be concatenated
to spatial features due to the different frame lengths, and ii)
the used spatial features already contain magnitude spectrum
difference information. A similar training process as in Sec-
tion III-A2 is used, but instead of speech-only F1-score, the
weighted average F1-score over all three labels is used as the
early stopping criteria. The best model had 360k parameters.

IV. EVALUATION

Speech Detection Results: The confusion matrix for
the two-stage CRNN speech classification model is given in
Table III and the baseline results for comparison with speech
direction outputs merged into a single class are given in
Table IV. The instances where both classes are present are

TABLE V: Speech localization confusion matrix (proposed).
Predicted label

[frames] Front Back Both

Tr
ue

la
be

l

Front 676 20 138
Back 23 1558 66
Both 58 28 77

Predicted label
[%] Front Back Both

Front 81.1 2.4 16.5
Back 1.4 94.6 4.0
Both 35.6 17.2 47.2

TABLE VI: Speaker direction and else class detection perfor-
mance (A): proposed hierarchical approach, (B): baseline

Label Accuracy % Precision % Recall % F1 %

(A) Speech front 95.2 84.3 89.6 86.9
Speech back 85.2 79.3 84.4 82.8

Something else 81.9 75.0 61.3 67.5
Average (unweighted) 87.4 79.5 78.4 79.1

(B) Speech front 96.0 92.3 87.1 89.6
Speech back 82.3 75.8 74.9 75.3

Something else 80.5 70.2 63.1 66.5
Average (unweighted) 86.3 79.4 75.0 77.1

treated as a separate class for the visualization. The sample
numbers inside each box are obtained by accumulating the
binary output of the test fold values of the six folds using
k-fold cross-validation. The percentage values represent the
fraction of the predicted labels assigned for each audio block
with the corresponding true label.

The hierarchical approach has better classification perfor-
mance in almost all classes (”Silence”, ”Speech”, ”Both”)
except for the ”Else” class in contrast to the baseline.

The ”Something else” performance is quite low in both
approaches compared to the class ”Speech”. This can be
attributed to i) the labeling ambiguity problem, and ii) to
the scarcity of data, which makes it hard to capture the
characteristics of all the various types of sound events that
are included in this class.

Localization Results: Table V depicts the confusion
matrix for the different location classes during frames with
annotated speech. The results are obtained by accumulating
the binary test folds label predictions over the six folds (i.e.
k-fold cross-validation). The direction classifier is described in
Section III-B. The speech emitted from the back direction was
more accurately recognized than speech from the front. This is
expected, since all the samples of a speaker holding the device
are labeled with ”Speech back”. Since they were emitted close
to the array, they inherently had a better SNR in contrast to
the front direction, which contained more distant talkers. The
cases where both the directions were active are detected with
the least accuracy. This can be attributed to having the least
amount (only 6 %) of data from such cases.

Detection and Localization Results: The performance for
the joint sound classification and direction detection system is
presented in Table VI. In the hierarchical approach, the speaker
direction is estimated only when there is speech detected by
the sound classifier. For frames without speech detection, the
”Speech front” and ”Speech back” labels are set to zero.

The proposed hierarchical classifier has the highest perfor-
mance in terms of the F1-score for the labels ”Speech back”
and ”Something else”. In contrast, the ”Speech front” is overall
better detected with the flat model. This is most likely at-
tributed to the observed difficulty in detecting the presumably
more distant and thus weaker speech signals in front of the
array. Since the hierarchical system only passes the frames
labeled as speech, the performance is deteriorated by the errors
accumulating from the two separate classification steps. The
”Speech back” detection capability for the hierarchical model
is significantly higher (7.5 % points higher in terms of F1-
score) than that of the baseline, rendering the performance of



the hierarchical model better in terms of overall performance.
This is also evident in the unweighted average performance
values, which are all higher for the proposed model in contrast
to the baseline.

V. CONCLUSIONS

This work proposes a two-stage hierarchical sound event de-
tection and localization approach using a mobile microphone
array. The first stage of the hierarchical model recognizes the
sound event type, and the second stage is invoked for the
direction estimation only for the blocks detected to contain
speech. This structure allows the utilization of different types
of features and network structures for the two stages, and
accommodates the use of different hierarchy levels in the
annotation of different sound classes.

The proposed method obtained better results in terms of
average label score for every metric in contrast to a flat
baseline classifier. The use of a mobile phone form factor
microphone array and diverse real data pave way for future
applications of SELD on practical mobile devices.

In the future, the amount of sound events with direction
labels could be increased to study the need for a class specific
direction estimation. Similarly, a varying direction resolution
for different classes could be investigated.
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