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Abstract

Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm).
Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have
identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we
quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional
emphasis on sex- and prediabetes-specific heterogeneity. We used the Young Finns Study (n = 926) with sequenced mtDNA genotypes
as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n = 2317). We identified
numerous significant associations in the discovery phase (P < 10−9), but they were not replicated when accounting for multiple
testing. In total, 27 associations were nominally replicated with a P < 0.05. The replication analysis presented no evidence of sex- or
prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites
associated with mtDNA variants, while four other sites showed haplogroup associations. An expression quantitative trait methylation
analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides
evidence of a mitochondrial genetic control of nuclear DNAm with little evidence found for sex- and prediabetes-specific effects. The
lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.

Introduction

Mitochondrial DNA (mtDNA) encodes 22 transfer RNAs,
two ribosomal RNAs and 13 protein subunits of the
4 oxidative phosphorylation (OXPHOS) complexes (1).
The mutation rate of mtDNA is significantly higher
than that of nuclear DNA, and mitochondrial single-
nucleotide polymorphisms (mtSNPs) have accumulated
during evolution, dividing the human population into

mitochondrial haplogroups just as populations have
colonized different geographic areas of the world (2).

Most of the mitochondrial proteome is encoded by
nuclear DNA, and crosstalk between mitochondria and
the nucleus is essential to maintaining normal cellular
function. Retrograde signals from mitochondria to the
nucleus induce changes in, for example, nuclear DNA
methylation (DNAm) and gene expression, which, in
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turn, can regulate mitochondrial functionality and
metabolism (3,4). Previous cohort-level studies have
shown that mtSNPs and haplogroups also associate
with nuclear gene expression in peripheral blood (5,6).
If the associations arose from causal relationships, they
could have been mediated by epigenetic changes. This
hypothesis is backed up by an in vitro study carried
out on human retinal cell cybrids with identical nuclei
but different mtDNA, which demonstrated expression
differences in inflammation, angiogenesis and signaling
genes between different haplogroups (7). After treatment
with a methylation inhibitor, the expression levels of
these genes became equivalent. Also, alterations in
the global DNAm levels have been identified between
haplogroups in peripheral blood (8). However, the effect
of individual mtSNPs on DNAm is less known, and
cohort-level association studies are lacking. Genome-
wide association studies have identified numerous
DNAm quantitative trait loci (9–11), but these studies
have not examined the mitochondrial genome.

Epigenetics may play a role in the etiology of type 2
diabetes (T2D) mellitus (12,13), and there is evidence that
epigenetic changes are likely to be an early process that
may occur before the onset of T2D, i.e. during prediabetes
(14). Although mtSNPs and haplogroups do not seem to
be associated with prediabetes or T2D in the European
population (15–17), they may have smaller consequences
on a molecular level or modulate the complications of
the disease (18). For example, we have demonstrated that
the onset of prediabetes may lead to changes in the mito-
chondrial genetic control of the peripheral blood tran-
scriptome (6). However, the crosstalk between mtDNA
and the nuclear epigenome in the setting of prediabetes
is not known.

In the current study, we examined the mitochon-
drial genetic determinants of peripheral blood DNAm
obtained from 926 participants in the Young Finns
Study (YFS), with an additional focus on sex- and
prediabetes-specific effects. We sought replication in
an independent data set consisting of 2317 individuals
from the Ludwigshafen Risk and Cardiovascular Health
(LURIC) study and combined the replicated results in
a meta-analysis. Finally, we studied the associations
of the identified CpG sites with peripheral blood gene
expression to explore possible biological consequences
of the differential DNAm.

Results
Study characteristics
Table 1 provides the basic characteristics for both
cohorts. The LURIC study participants were, on average,
older than the YFS participants, with a higher percentage
of men and individuals with prediabetes. The proportion
of current smokers was similar in both cohorts, but the
percentage of never-smokers was higher in the YFS. The
fraction of ex-smokers in LURIC participants was also
higher in every subgroup, except among women.

mtSNPs associated with DNAm
A total of 88 513 545 CpG–mtSNP pairs were tested
in the discovery phase. The number of significant
associations after accounting for multiple hypothesis
testing (P < 7.8 × 10−10) was 5652, corresponding to
4618 unique CpG sites and 89 mtSNPs. The CpG
sites were scattered all around the nuclear genome.
A mitochondrial Manhattan plot representing the
significant associations for all CpG sites is shown in
Supplementary Material, Figure S1. The full list of signif-
icant associations is available as Supplementary Dataset
S1. The bacon-adjusted values from the 88 513 545 CpG–
mtSNP pairs yielded an estimated inflation factor (λ) of
1.00, which suggests minimal inflation.

In all, 685 CpG–mtSNP pairs that were significant in the
discovery phase were available for replication, resulting
in a significance level of P < 7.3 × 10−5 (0.05/685). None
of the associations in the replication sample passed this
threshold, even though we expected to see 228 associa-
tions to reach this P-value. Twenty-one associations were
replicated with nominal significance (P < 0.05) (Table 2).
At this threshold, we expected virtually all 685 associa-
tions to replicate. There was no correlation between the
discovery and replication effect sizes (Pearson’s r = 0.06,
Supplementary Material, Fig. S2), and 51% of the asso-
ciations had a consistent direction of effect. The fixed-
effect meta-analysis combining the nominally replicated
results yielded 19 associations with epigenome-wide sig-
nificance (P < 7.8 × 10−10) (Table 2 and Fig. 1).

Sexual dimorphism

In the YFS, fixed-effect meta-analysis revealed signifi-
cant differences in the effect sizes between the sexes
for 664 CpG–mtSNP pairs, corresponding to 35 unique
mtSNPs and 621 CpG sites, nine of which were located on
the X chromosome (Supplementary Material, Dataset S2).
Inflation of the results was minimal in both the male-
and female-specific analyses (λ = 1.00 for both sexes).
In the LURIC study, 135 of the 664 associations were
available for replication. In all, 46% of the associations
had a consistent direction of effect and there was no
correlation of effect sizes between the discovery and
replication cohorts (Pearson’s r = −0.08, Supplementary
Material, Fig. S3). None of the 135 associations exhibited
sex-specific heterogeneity with P < 3.7 × 10−4 (0.05/135)
or with P < 0.05.

Prediabetes-specific effects

In the discovery phase, 483 CpG–mtSNP pairs demon-
strated a significant difference in the effect sizes
between individuals with prediabetes and controls,
corresponding to 470 unique CpGs and 26 mtSNPs
(Supplementary Material, Dataset S3). No inflation was
observed (λ = 1.00 for both groups). For replication, 113
CpG–mtSNP pairs were available, none of which were
replicated with heterogeneity P < 4.4 × 10−4 (0.05/113)
or with P < 0.05. No correlation of effect sizes between
the two cohorts was observed (Pearson’s r = −0.04,
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Table 1. Basic characteristics of the YFS and LURIC cohorts; values are mean (SD) or n (%) for continuous and categorical variables,
respectively

All Men Women Prediabetes Controls

YFS
No. of participants 926 401 525 263 597
Age, years 41.9 (5.1) 42.1 (5.1) 41.8 (5.1) 43.0 (5.1) 41.4 (5.0)
Women 525 (56.7) − − 104 (39.5) 385 (64.5)
BMI, kg/m2 26.6 (5.0) 27.4 (4.6) 26.1 (5.1) 28.3 (5.4) 25.5 (4.2)
Active smoker 127 (13.7) 66 (16.5) 61 (11.6) 47 (17.9) 72 (12.1)
Smokes once a week or more often but not daily 34 (3.7) 19 (4.7) 15 (2.9) 8 (3.0) 22 (3.7)
Smokes less often than once a week 36 (3.9) 16 (4.0) 20 (3.8) 10 (3.8) 21 (3.5)
Attempts to quit smoking 12 (1.3) 7 (1.7) 5 (1.0) 4 (1.5) 7 (1.2)
Has quit smoking 234 (25.3) 111 (27.7) 123 (23.4) 71 (27.0) 150 (25.1)
Has never smoked 483 (52.2) 182 (45.4) 301 (57.3) 123 (46.8) 325 (54.5)

LURIC
No. of participants 2317 1599 718 1105 311
Age, years 62.8 (10.7) 62.0 (10.6) 64.8 (10.5) 62.0 (10.8) 57.6 (12.4)
Women 718 (31.0) − − 328 (29.7) 98 (31.5)
BMI, kg/m2 27.4 (4.1) 27.5 (3.8) 27.3 (4.7) 27.2 (3.8) 26.0 (3.8)
Heavy smokers 317 (13.7) 251 (15.7) 66 (9.2) 149 (13.5) 55 (17.7)
Light smokers 200 (8.6) 142 (8.9) 58 (8.1) 92 (8.3) 37 (11.9)
Former smokers, quit <10 years ago 319 (13.8) 254 (15.9) 65 (9.1) 154 (13.9) 43 (13.8)
Former smokers, quit ≥10 years ago 634 (27.4) 574 (35.9) 60 (8.4) 292 (26.4) 69 (22.2)
Has never smoked 847 (36.6) 378 (23.6) 469 (65.3) 418 (37.8) 107 (34.4)

Figure 1. Forest plot showing the 19 nominally replicated mtSNP effects on DNAm, which also reached epigenome-wide significance in the meta-analysis.
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Figure 2. Forest plot showing the four nominally replicated haplogroup effects on DNAm, which also reached epigenome-wide significance in the
meta-analysis. In all associations, haplogroup H was used as the reference haplogroup.

Supplementary Material, Fig. S4), and 50% of the asso-
ciations had a consistent direction of effect.

Haplogroups associated with DNAm
The haplogroup frequencies and the corresponding
phenotype characteristics of both cohorts are shown
in Supplementary Material, Table S1. In both cohorts,
the most common major haplogroup was H. In the
discovery phase, a haplogroup-based analysis identified
142 significant associations (Supplementary Material,
Dataset S4) with minimal inflation (λ = 0.99). The
differentially methylated CpG sites were associated with
six haplogroups: I (58.5% of the associations), X (22.5%),
W (9.2%), K (4.9%), T (4.2%) and J (0.7%).

Twenty-two of the CpG sites that showed differential
methylation in the YFS were not available in LURIC, leav-
ing 120 CpG–haplogroup pairs for replication and setting
the significance threshold at P < 4.2 × 10−4 (0.05/120).
None of the associations in the LURIC survived this
threshold; 15 associations were expected to reach this
level. Six associations were nominally replicated, with
the strongest association corresponding to P = 8.2 × 10−4.
At a nominal threshold of P < 0.05, we expected all
associations to replicate. There was a weak correlation
between the discovery and replication effect sizes
(Pearson’s r = 0.23, Supplementary Material, Fig. S5), with
62% of the associations showing a consistent direction
of effect. Four associations were significant in the meta-
analysis (P < 1.0 × 10−8) (Table 3 and Fig. 2).

Expression quantitative trait methylation
analysis
Overall, the replication phase identified 27 CpGs that
showed differential methylation between mtSNPs or
haplogroups. We considered genes ±1 Mb from each CpG

site and tested 890 gene–CpG combinations for differen-
tial expression. Two associations were significant after
correction for multiple testing: inverse associations were
observed for cg25020969 (which showed lower methyla-
tion levels in haplogroup I) and probes ILMN_1681674
and ILMN_2358069, both at the MAD1L1 gene (effect
estimate: −4.63 and − 3.68, standard error: 1.05 and 0.91,
P-value: 1.2 × 10−5 and 5.9 × 10−5, respectively).

Discussion
The aim of the current study was to examine whether
mtDNA variants and haplogroups associate with periph-
eral blood DNAm. Although previous studies have inves-
tigated the effect of haplogroups in cybrid cell lines or by
using smaller sample sizes, the present study is, to the
best of our knowledge, the first to examine the associa-
tions of mtSNPs on a cohort level and the largest to inves-
tigate the haplogroups’ effects. In the discovery analy-
sis of a Finnish population-based cohort, we identified
numerous significant associations suggesting mitochon-
drial genetic control of DNAm and even pinpointed asso-
ciations showing sex- and prediabetes-specific hetero-
geneity. Twenty-seven associations were nominally repli-
cated in a German hospital-based cohort. The nominally
replicated results were included in a joint meta-analysis
of the two cohorts after which 23 associations remained
significant. We were able to attempt replication only for
approximately 15 – 30% of the mtSNP-based associa-
tions from the discovery phase, mainly owing to different
mtDNA genotyping methods. We observed significantly
lower replication rates than predicted even when we used
a relatively liberal replication threshold (P < 0.05). The
lack of replication was not explained by the winner’s
curse. Study-specific heterogeneity owing to different
cohort characteristics may have had a major impact on
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replication. In addition, most of the effects identified in
the YFS population may simply not be present among the
LURIC study participants.

The most promising association was the one between
haplogroup W and CpG site cg25821304, mapping to the
gene RNF135 (Table 3). It was significant in the discovery
phase, reached borderline significance in replication and
was significant in the meta-analysis. This CpG site did
not show significant mRNA transcript associations, com-
plicating the interpretation of the functional relevance. It
has been documented that mitochondria are important
participants in innate immune responses to pathogens
and cellular damage and that also mtDNA variation
could influence those immune response pathways (19).
Our finding provides suggestive evidence for this since
the protein encoded by the RNF135 gene is involved in the
evoking of innate immunity against RNA virus infections
(20).

Of all the 27 identified CpG sites, 2 were significant in
the expression quantitative trait methylation analysis.
These associations, both corresponding to cg25020969,
were not surprising, as the target gene of this CpG
site and the two associated transcripts were the same,
MAD1L1. It should be noted, however, that rather than
being a strict dynamic mechanism for regulating gene
expression, DNAm changes can also serve as a long-term
memory of previous gene expression decisions that were
mediated by transcriptional factors that might no longer
be present in the cell (21).

The retrograde signals through which mitochon-
dria affect nuclear DNAm appear to be mediated by
tricarboxylic acid (TCA) cycle metabolites (22,23). α-
Ketoglutarate (α-KG) serves as a cofactor for ten-eleven
translocation hydroxylases (TET1-3) involved in DNA
demethylation, whereas fumarate and succinate inhibit
the TET enzymes. Even though the enzymes involved in
the TCA cycle are not encoded by mtDNA, the TCA cycle
is in constant feedback with the OXPHOS complexes,
providing a plausible link between mtDNA variation, TCA
metabolites and DNAm (22). In addition, experimental
findings have directly coupled mtDNA variation with
TCA metabolites and histone methylation (24). The
three DNA methyltransferases (DNMT1, DNMT3A and
DNMT3B) use S-adenosyl methionine (SAM) as a methyl
donor. Although SAM is generated by coupling the
methionine and folate cycles in the cytosol, these
cycles are dependent on intermediate mitochondrial
metabolism and ATP, and therefore, mtDNA variation
may affect the function of DNMTs (3). To support
these hypotheses, experimental findings on mouse
embryonic stem cells have shown that mitochondrial
haplogroups modulate the key regulators of both
DNAm and demethylation, DNMT1 and TET1, leading to
haplogroup-specific DNAm and gene expression patterns
(25).

The association between haplogroup I and cg20934571
(Table 3) may represent the retrograde response aiming
to regulate mitochondrial function. The CpG annotates to
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NADPHX dehydratase (NAXD, also known as CARKD), and
the protein product may be targeted to the mitochondria.
The protein catalyzes the repair of NADPHX, a damaged
form of reduced nicotinamide adenine dinucleotide
phosphate (NADPH) (26), and mitochondrial NADPH
plays a critical role in protecting the cells against
mitochondrial oxidative stress (27). Based on this, it
could be suggested that mutations defining haplogroup
I result in disturbances in NADPH homeostasis, which
leads to compensatory epigenetic changes. Another
interesting association is between variant m.14872C>T
(in the MT-CYB gene, a subunit of OXPHOS complex
III) and cg01965533 (Table 2), which annotates to dihy-
drolipoamide succinyltransferase (DLST). The protein
product of DLST is a subunit of the α-KG dehydrogenase
complex, which is a key control point in the TCA cycle
(28). Even though complex III is not directly coupled to
the TCA cycle, the identified association could result
from mitochondrial–nuclear communication, such as
alterations in the electron transport chain that are
compensated by epigenetic changes. However, these
speculations are purely hypothetical and these two CpGs
sites did not associate with mRNA transcripts.

We did not observe differential methylation at CpG
sites mapping to the genes that showed mtSNP- or
haplogroup-specific transcriptome profiles in Kassam
et al. (5) or in our previous study (6). In addition,
variant m.3480A>G was strongly associated with nuclear
DNA transcripts in both of these previous studies but
was not significantly associated with DNAm at any
stage in the present study. This suggests that, if there
is a causal relationship between mtSNP m.3480A>G
(and the mtSNPs tagged by it) and peripheral blood
transcriptomics, the expression regulatory mechanisms
are not mediated by changes in DNAm.

In a study using articular cartilage cells (29), hap-
logroup J was associated with differentially methylated
CpG sites when compared with haplogroup H. We could
not validate these results, as only one CpG site was dif-
ferentially associated with haplogroup J in the discovery
phase and none during replication. The present and the
aforementioned study had different sample sizes and
utilized different DNAm arrays; we examined approxi-
mately 30 times more CpG sites and haplogroup H or J
carriers. However, the DNAm profiles in peripheral blood
do not necessarily reflect similar methylation changes in
other tissues (30).

The meta-analysis showed no evidence of prediabetes-
specific heterogeneity. Further studies using more homo-
geneous cohorts or larger sample sizes should be con-
ducted to gain more insight into the interplay between
mtDNA variation and DNAm in the setting of predia-
betes.

The maternal inheritance of mtDNA could create
male–female asymmetry in the consequences of mtDNA
mutations since mtSNPs that only affect males will not
be subject to natural selection (31). This hypothesis has
been tested in Drosophila melanogaster in which a strong

effect of mtSNPs on gene expression was observed only
in males, while the mitochondrial effect in females
was negligible (32). In humans, there is no evidence of
sex-specific mitochondrial genetic control of peripheral
blood gene expression (5,6). Even though sex-specific
DNAm patterns have been demonstrated in peripheral
blood (33,34), our results imply that, similarly to gene
expression, mtDNA variation has the same genetic effect
on peripheral blood DNAm in both sexes.

Strengths and limitations
The present study has strengths and limitations that war-
rant consideration. The variants in the YFS were obtained
through next-generation sequencing, which allowed us
to study a broad range of mtDNA variants. Genotyping a
part of the LURIC participants with two different microar-
rays increased the quality of haplogroup assignment.
We were also able to verify the self-reported smoking
status with the cotinine measurements in the LURIC
study. The discovery analyses were adjusted for bias and
inflation using a state-of-the-art method that was specif-
ically developed for epigenome-wide association studies,
which maximizes power while properly controlling the
false-positive rate (35). Still, it is important to note that,
as with any (epi)genome-wide association study, it is pos-
sible that some of the identified associations represent
false positives.

The main weakness was the lack of a compara-
ble mtDNA data set for replication, as many of the
sequenced mtSNPs in the YFS were not genotyped in
the LURIC. For some mtSNPs, replication was sought
by using a tagged mtSNP, which could have resulted in
false-positive or false-negative replications. The smoking
status in the YFS was only self-reported and was not
verified by cotinine measurements. Finally, it should be
highlighted that the YFS is a population-based study,
whereas the LURIC participant pool mainly consists
of older patients referred to coronary angiography. As
DNAm variation has been associated with age numerous
times, the difference in the ages between the participants
of the two cohorts may have affected the results.
Also, other confounding factors owing to contrasting
participant characteristics may have yielded an effect
on the results since socioeconomic status (36) and lipid
composition (37), for instance, have independent effects
on DNAm.

Conclusion
This study provides evidence of a mitochondrial genetic
control of autosomal DNAm, with little evidence found
for sex- and prediabetes-specific effects. The functional
relevance of the identified associations remains unclear.
Further replication studies, preferably using sequenc-
ing data and more homogeneous study groups, should
be conducted to thoroughly establish the mitochondrial
genetic determinants of DNAm.
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Materials and Methods
Study populations
The YFS (http://youngfinnsstudy.utu.fi) is a Finnish lon-
gitudinal population study on the evolution of cardiovas-
cular risk factors from childhood to adulthood (38). We
utilized data from two follow-ups conducted in 2007 and
2011, including 2204 and 2060 participants, respectively.
Phenotypic information and DNAm data were collected
in 2011, and mtDNA data were obtained from the 2007
follow-up samples. The study was approved by the ethics
committee of the Hospital District of Southwest Finland,
and the study protocol of each study phase corresponded
with the proposal of the World Health Organization.

The LURIC study consists of 3316 patients of German
ancestry who underwent coronary angiography between
1997 and 2000 at a tertiary care center in Southwestern
Germany (39). The clinical indications for angiography
were chest pain or non-invasive tests that were consis-
tent with myocardial ischemia. Patients with any acute
illness other than acute coronary syndrome, any pre-
dominant non-cardiac disease and/or a history of malig-
nancy within the past 5 years were excluded from the
study. The study plan was approved by the ethics com-
mittee of the State Chamber of Physicians of Rhineland-
Palatinate.

All participants in both cohorts gave their written
informed consent, and the studies were conducted in
accordance with the Declaration of Helsinki.

DNAm assessment and quality control
In both cohorts, genomic DNA was extracted from
peripheral whole blood samples by standardized meth-
ods. DNAm levels were quantified using the Illumina
Infinium MethylationEPIC BeadChip according to the
manufacturer’s protocols. The array covers over 850 000
methylation sites across the nuclear DNA.

In the YFS, DNAm data were processed using the minfi
Bioconductor package in R (40). All analyzed samples
had a sum of detection P-values across all probes of
<0.05. The log2 -median of methylated and unmethy-
lated intensities among the analyzed samples clustered
within the default threshold (10.5) of the getQC function
in minfi. Samples for which the self-reported sex did not
match with the predicted sex obtained with the getSex
function in minfi were excluded. Background subtrac-
tion and dye-bias normalization were performed via the
noob method (41), and stratified quantile normalization
was performed using the preprocessQuantile function,
both implemented in minfi. Probes with a detection P-
value of >0.01 in 99% of the samples and cross-reactive
probes (42,43) were excluded from the analysis. Probes
with SNPs were removed using the dropLociwithSnps
function in minfi. After quality control, the total num-
ber of autosomal CpGs was 769 683 in 1529 samples.
In addition, the sex-specific analyses included 17 334 X-
chromosomal CpGs.

In the LURIC study, quality control was implemented
using the CPACOR pipeline (44), excluding samples with a

call rate of ≤ 0.95 and those that showed sex discordance.
CpGs located in close proximity (1–2 bp) to a genetic poly-
morphism in the European population with a frequency
of >0.01% as well as cross-reactive probes and probes
with a detection P-value of >0.05 in at least 1% of the
samples were removed using the rmSNPandCH function
in the DMRcate package (45), followed by quantile nor-
malization. A total of 795 619 autosomal and 18 138 X-
chromosomal CpGs from 2423 samples were included in
further analyses.

Beta values [ranging between 0 (no methylation) and
1 (full methylation)] were calculated according to the
equation b = M/(M + U + 100), where M and U denote the
methylated and the unmethylated signals, respectively.

mtDNA sequencing and data processing
in the YFS
In the YFS, mtSNPs were determined by next-generation
sequencing. The pipeline has been described in detail
earlier (46). In brief, mtDNA was amplified from genomic
DNA samples (n = 1807) and was sequenced with the
Illumina HiSeq system. Reads from all samples that
achieved any mean bait coverage (n = 1658) were aligned
with the revised Cambridge Reference Sequence (1) and
were analyzed using Mutserve version 1.2.1, a stand-
alone version of the web tool mtDNA-Server (47), with
the default parameters. Variants overlapping with any
mtDNA-like sequence in the nucleus (NUMTs) were
excluded. The list of NUMTs insertions was based on the
work by Dayama et al. (48). The minimum heteroplasmy
level was set at 0.05—we defined sites with a hetero-
plasmy level below this threshold as homoplasmic wild-
type alleles and those with a heteroplasmy level >0.95
as homoplasmic variants. Mutserve identified variants in
1365 different nucleotide positions from 1657 samples.
We required each sequenced sample to have an overall
mean coverage of ≥30 and 1531 samples survived this
threshold. The average coverage across all samples was
536.

Samples without complete phenotype, DNAm and
mtDNA data were excluded after which 926 samples
(525 women and 401 men) remained for further analysis,
with 241 mtSNPs having an allele frequency of ≥0.01.
Heteroplasmic variants were excluded owing to their
low number. To reduce the computational effort, we
selected a set of 37 tagging mtSNPs (Supplementary
Material, Table S2) that captured 126 other mtSNPs with a
linkage disequilibrium of r2 ≥ 0.8 by using Tagger (49) and
HaploView (50). Seventy-eight mtSNPs were not tagged
by any another variant, which resulted in 115 mtSNPs to
be included in the association analyses.

Haplogroups were determined by using HaploGrep ver-
sion 2.2.0 (51) (Phylotree build 17) (52). For association
testing, the haplogroups were assigned to major hap-
logroups. Haplogroups with a frequency of <0.01 and
samples whose haplogroup quality score was <0.90 were
excluded, leaving 863 samples with nine haplogroups for
the haplogroup–CpG analysis.
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mtDNA genotyping and data processing
in the LURIC study
Genomic DNA was extracted from peripheral blood,
and the mtSNPs were genotyped using the Illumina
HumanExome-12 version 1.2 BeadChip (n = 1981) and
the Illumina 200 k MetaboChip (n = 3150) microarrays.
Samples with a call rate of <0.95, sex mismatch
and cryptic relatedness (pi-hat > 0.2) were removed
using PLINK version 1.90b6.21. Variants with an allele
frequency of <0.005 and a call rate of <0.95 were also
excluded. Heterozygous genotypes possibly owing to
mitochondrial heteroplasmy were coded as missing.

After quality control and the exclusion of samples
with missing phenotype, DNAm or mtDNA data, 1456
and 2290 samples from the HumanExome-12 and
MetaboChip arrays, respectively, were available for
further analyses. Of the variants genotyped with these
arrays, 53 HumanExome-12 mtSNPs and 42 MetaboChip
mtSNPs had an allele frequency of ≥0.005. Most of the
genotyped individuals (n = 1429) were present in both
arrays, and the total number of individuals was 2317
(718 women and 1599 men).

Haplogroups were assigned by applying HaploGrep
separately to the two genotyping batches by applying
the ‘–chip’ parameter. We included haplogroups based
on two criteria: (1) a quality score ≥0.90 in at least one
genotyping batch, or (2) a quality score of ≥0.80 and
the same major haplogroup assigned in both arrays. This
resulted in 998 samples to be included in the haplogroup–
CpG analysis.

Definition of clinical variables
Height and weight were measured, and body mass index
(BMI) was calculated as weight in kilograms divided by
height in meters squared. Sex was self-reported. In the
YFS, the smoking history of the participants was self-
reported and was classified into six categories based on
smoking frequency (active smoker or at least once a day,
once a week or more often but not daily, less often than
once a week, attempts to quit, has quit and has never
smoked). In the LURIC study, smoking status was also
self-reported but was additionally verified by the mea-
surement of serum cotinine concentration. A commonly
used cut-off to define active smoking is 15 μg/l (53), and
we used this value to reclassify self-reported non- or ex-
smokers as active smokers. Participants were categorized
into five groups: heavy smokers (defined as smoking ≥20
cigarettes per day), light smokers, former smokers who
quit smoking <10 years ago, former smokers who quit
smoking >10 years ago and never-smokers.

The classification of prediabetes was based on the
criteria of the American Diabetes Association (54).
Venous blood samples were drawn after an overnight
fast for the determination of serum glucose and glycated
hemoglobin A1c (HbA1c). Individuals with prediabetes
were defined as having a fasting plasma glucose (FPG)
level of 5.6–6.9 mmol/l, a 2-h plasma glucose level of
7.8–11.0 mmol/l during a 75-g oral glucose tolerance

test (OGTT), or an HbA1c level of 39–47 mmol/mol
without a diagnosis of T2D. The diagnosis of T2D included
individuals with an FPG level of ≥7.0 mmol/l, a 2-h
glucose level of ≥11.1 mmol/l during an OGTT or an
HbA1c level of ≥48 mmol/mol, or those who reported
using oral glucose-lowering medication or insulin (but
had not reported having type 1 diabetes) or who reported
having been diagnosed with T2D by a physician. Those
diagnosed with type 1 diabetes were also ruled out.
OGTTs were performed only for the LURIC participants.

Discovery analysis in the YFS
Differentially methylated CpG loci for mtSNPs were
identified using a linear regression model where the
methylation beta values were modeled as a linear
function of the presence (coded as 1) or absence (coded
as 0) of the variant allele using the lm function in R. The
model involved adjustment for age, sex, BMI, smoking
status, white blood cell type proportions, methylation
batch effects and principal components (PCs) derived
from the mtDNA data. The fraction of white blood cells
(CD8T, CD4T, NK cells, B cells, monocytes and gran-
ulocytes) was estimated through the reference-based
Houseman method (55) using the estimateCellCounts
function in the minfi package (40). Methylation batch
affects were addressed by including the first five PCs
of array control probes in the regression models. PC
analysis was performed on all mtDNA genotypes that
passed quality control using the logisticPCA package
(56). The use of mitochondrial PCs as covariates has
been demonstrated to be a robust method to adjust
for population stratification in genetic association
studies. In addition, the use of mitochondrial PCs
effectively removes false-positive associations but does
not cause a loss of power in detecting true associations
(57,58). All CpG–mtSNP analyses were adjusted for the
first six mitochondrial PCs. CpG loci were considered
differentially methylated if they reached a Bonferroni-
corrected P-value of 7.8 × 10−10 (9 × 10−8/115) based on
the number of independent tests in a whole blood EPIC
array (59) and the number of mtSNPs.

Differential methylation between haplogroups

We applied a similar linear model to flag CpG sites for
those showing differential methylation between the nine
haplogroups. We selected the most common haplogroup
H to be the reference to which other haplogroups were
compared. Mitochondrial PCs were excluded from the
covariates since the haplogroups are strongly correlated
with the mitochondrial PCs. Significance was defined as
P < 1.0 × 10−8 (9 × 10−8/9).

Sex- and prediabetes-specific analyses

The sex-specific effects of mtSNPs on methylation beta
values were tested by applying the same linear model as
described above to males and females separately. Differ-
ences in effect sizes were compared by applying a fixed-
effect inverse variance-weighted meta-analysis model to
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each CpG–mtSNP pair by pooling the effect estimates
and standard errors from males and females in Genome-
Wide Association Meta-Analysis (GWAMA) software ver-
sion 2.1 (60). Heterogeneity was examined by calculating
the sex-heterogeneity P-value (61). A significant P-value
suggests that there is a significant difference in effect
sizes between the sexes. A minimum variant allele count
of 10 in both sexes was required, which resulted in 63
mtSNPs to be included and a significance threshold of
1.4 × 10−9 (9 × 10−8/63).

The effect of prediabetes on the association between
mtSNPs and DNAm was studied similarly by applying the
linear model separately to individuals with prediabetes
and normoglycemic controls and by pooling the results in
GWAMA. The number of mtSNPs was 47, and significance
was defined as P < 1.9 × 10−9 (9 × 10−8/47).

Control for bias and inflation

We corrected the effect estimates, their standard errors
and the corresponding P-values for bias and inflation
using the R package bacon (35), and all reported
results are bacon-corrected. We used the inflation
function in the same package to compute the inflation
factor λ for each association analysis from all CpG–
mtSNP/haplogroup pairs that were analyzed. The regime
of minimal inflation is λ < 1.14 (35).

Replication in the LURIC study
We sought replication in the LURIC study by applying the
same linear regression models as in the discovery phase.
We included variants with an allele frequency of >0.005,
or a minimum variant allele count of five in the sex- and
prediabetes-specific analyses. If a tagging mtSNP from
the discovery sample was not genotyped in the repli-
cation sample, an mtSNP for replication was searched
from the tagged mtSNPs. If several tagged mtSNPs were
genotyped, linear regression was performed on all tagged
variants and the sentinel mtSNP with the smallest asso-
ciation P-value was used.

Associations were considered fully replicated if the
replication P-value from the linear regression model fell
below a Bonferroni-corrected P-value of 0.05/n, with n
being the number of significant associations in the dis-
covery study covered in the replication sample. For nom-
inal replication, the P-value threshold was set at 0.05.
We also required consistent effect directions across both
cohorts and in males/females and individuals with/with-
out prediabetes. The two Illumina microarrays were ana-
lyzed separately, including the 12 overlapping mtSNPs
present in both arrays, thus providing the opportunity of
validation in the case of significant results. Associations
with P < 0.05 in one genotyping batch and with P > 0.05 in
another batch were not regarded as replications.

We benchmarked the observed replication rates for
general mtSNP and haplogroup analyses by calculat-
ing the expected degree of replication. First, we used a
false-discovery rate inverse quantile transformation to
correct the effect sizes for the winner’s curse (62) and

also took into account the lower number of mtSNPs
available in the replication cohort. Second, we calcu-
lated the expected number of associations meeting the
Bonferroni-corrected replication threshold by using the
method described in Okbay et al. (63)

Finally, we performed a fixed-effect inverse variance-
weighted meta-analysis of the replicated associations by
combining the effect estimates and standard errors from
the discovery and replication cohorts with the GWAMA
software. An association was considered to be significant
if the meta-analysis P-value fell below the significance
threshold used in the corresponding discovery analysis.
The inverse variance-based method compensates for the
varying number of samples in the cohorts by allowing
larger studies to have more weight in the analysis (64).

Expression quantitative trait methylation
analysis
To gain insight into whether our association data were
connected to biological processes, we examined the asso-
ciations between peripheral blood genome-wide tran-
scriptomics and the differentially methylated CpG sites
identified in the replication phase. Gene expression and
DNAm data were available for 1364 YFS participants.
The expression data were analyzed using the Illumina
HumanHT-12 v4 Expression BeadChip. The procedures
have been described previously (6).

CpGs were regressed against cell count proportions
and the first 30 PCs of the array control probes. Similarly,
the 19 637 transcription probes were regressed against
the first 20 PCs derived from the expression data. For
each CpG site, expression probes within a 2 Mb window
(± 1 Mb) were included. Linear regression was applied
between the residuals from the CpG regression (explana-
tory variable) and the expression probe residuals (depen-
dent variable). The model was additionally adjusted for
age, sex and BMI. The P-value for statistical significance
was defined as 0.05 divided by the number of combina-
tions between CpGs and genes.
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