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Sex-dimorphic genetic effects and novel loci
for fasting glucose and insulin variability
Vasiliki Lagou et al.#

Differences between sexes contribute to variation in the levels of fasting glucose and insulin.

Epidemiological studies established a higher prevalence of impaired fasting glucose in men

and impaired glucose tolerance in women, however, the genetic component underlying

this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and

67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/

fasting insulin genetic effects via genome-wide association study meta-analyses in individuals

of European descent without diabetes. Here we report sex dimorphism in allelic effects on

fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole

blood in women compared to men. We also observe sex-homogeneous effects on fasting

glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations

than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is

causally related to insulin resistance in women, but not in men. These results position

dissection of metabolic and glycemic health sex dimorphism as a steppingstone for under-

standing differences in genetic effects between women and men in related phenotypes.
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There are established differences between sexes in insulin
resistance and blood glucose levels1. In general, men are
more insulin resistant and have higher levels of fasting

glucose (FG) as defined by impaired fasting glycaemia (FG con-
centration 5.6–6.9 mmol/l), whereas women are more likely than
men to have elevated 2-h glucose concentrations (impaired glu-
cose tolerance, IGT, i.e., 2-h post-challenge glucose concentration
7.8–11 mmol/l) with both measures defining categories of indi-
viduals at higher diabetes risk1–3. Diverse biological, cultural,
lifestyle, and environmental factors contribute to the relationship
between sex dimorphism of early changes in glucose homeostasis
and type 2 diabetes (T2D) pathogenesis4,5. These observations
raise hypotheses about a role for the genetic mechanisms
underlying sex differences in the maintenance of glucose home-
ostasis as measured by FG and fasting insulin (FI).

Genome-wide association studies (GWAS) have thus far been
instrumental in the identification of dozens of FG/FI loci through
large-scale meta-analyses6,7. Despite the success of GWAS efforts,
men and women have typically been analyzed together in sex-
combined analyses, with sex used as a covariate in the model
to account for marginal differences on traits between them. Sex-
combined analyses assume homogeneity of the allelic effects in
men and women, and therefore are sub-optimal in the presence of
heterogeneity in genetic effects by sex, i.e., sex-dimorphic effects.

Recently, several large-scale GWAS meta-analyses in European
descent individuals have identified genetically encoded sex
dimorphism for metabolic traits and outcomes, including female-
specific effects on central obesity8–11, T2D12, and diabetic kidney
disease13. Only one female-specific association with FG has been
reported at COL26A1 (EMID2) in a relatively small study of
European descent individuals7. The large population-based UK
Biobank (www.ukbiobank.ac.uk), a potential natural target for
exploring sex dimorphism in glycemic trait variability, did not
collect fasting state samples and, therefore, could not be con-
sidered for such an analysis. Unraveling the heterogeneity in
genetic effects on the regulation of glycemic trait variability and
T2D risk may prove useful for personalized approaches for pre-
ventative and disease treatment measures tailored specifically to
women or men. Moreover, the meta-analysis of female- and
male-specific GWAS allowing for sex-heterogeneity in allelic
effects, while requiring an additional degree of freedom (df), can
lead to a substantial gain in power over the usual sex-combined
test of association when effects are not homogeneous across men
and women14,15.

Here we evaluate sex-specific, sex-dimorphic, and sex-
homogeneous effects in FG/FI GWAS from individuals of Eur-
opean descent without diabetes within the Meta-Analyses of
Glucose and Insulin-related traits Consortium (MAGIC). Our
aims are threefold: (1) to explore sex-dimorphic effects on fasting
glycemic traits at established FG/FI loci; (2) to discover FG/FI
biology and loci based on modeling heterogeneity between sexes
and through sex-combined analyses; and (3) to evaluate, through
simulations, the power of sex-specific/-combined/-dimorphic
analyses to detect variants associated with quantitative traits over
a range of models of heterogeneity, given the current sample size
in MAGIC. We show sex-dimorphism in allelic effects on FI at
IRS1 and ZNF12 loci. In addition, we report sex-homogeneous
effects on FG at seven novel loci. Our analyses show stronger
genetic correlations in women than in men between FI and two
traits, waist-to-hip ratio (WHR) and anorexia nervosa. Further-
more, we show that WHR is causally related to insulin resistance
in women, but not in men. Finally, our simulation study high-
lights that, given the current sample size, the 2-df sex-dimorphic
test is more powerful, compared to the sex-combined approach,
when causal variants have allelic effects specific to one sex and in
the presence of heterogeneous allelic effects in men and women.

When the allelic effects of the causal variant are similar between
men and women, the sex-combined test is only slightly more
powerful than the sex-dimorphic approach, especially for causal
variant effect allele frequency (CAF) ≤ 0.1. However, under the
scenarios of effects that are larger in one sex than the other or
specific to just one sex, the heterogeneity test is generally
underpowered.

Results
Sex-dimorphic and sex-combined meta-analyses for FG/FI. We
obtained FG/FI sex-specific results for up to 73,089/50,404
women and 67,506/47,806 men from population-based studies;
sex-combined meta-analyses for these traits additionally included
13,613 individuals from four family-based studies. All studies
were of European ancestry, and were based on GWAS imputed to
the HapMap II CEU reference panel16 or Metabochip array
data17 (Supplementary Data 1). We further improved the genetic
variant genome-wide coverage by imputing the summary statis-
tics of FG/FI sex-dimorphic and sex-combined meta-analyses
to 1000 Genomes Project density using the SS-imp software
(“Methods”)18. We investigated the sex-dimorphic and homo-
geneous effects of 8.7 million autosomal single-nucleotide poly-
morphisms (SNPs) on FG/FI under an additive genetic model. In
the sex-dimorphic meta-analysis, we allowed for heterogeneity in
allelic effects between women and men (2-df test) (“Methods”).
We evaluated the evidence for heterogeneity of allelic effects
between sexes using Cochran’s Q-statistic14,15 (Supplementary
Data 2 and 3).

Sex-dimorphic effects at established FG/FI loci. To define the
extent of sex-dimorphic effects, we evaluated sex heterogeneity at
36/19 established FG/FI loci6 (Supplementary Data 2 and 3).
Although not reaching the statistical significance after Bonferroni
correction for multiple testing (Pheterogeneity ≤ 0.0014 for FG with
36 variants and Pheterogeneity ≤ 0.0026 for FI with 19 variants), we
observed suggestive evidence for heterogeneity at IRS1, where
variant rs2943645 was associated with FI in men only (βmale=
0.022, Pmale= 1.0 × 10−8, Psex-dimorphic= 1.0 × 10−8)
with differences in allelic effects by sex (Δβ(βmale–βfemale)= 0.015,
Pheterogeneity= 0.0053) (Supplementary Data 3, Supplementary
Fig. 1a, b). The male-specific effects on FI variability were con-
sistent with previously reported effects specific to men on per-
centage of body fat and lipids at the IRS1 locus10. In addition, we
observed nominal evidence for heterogeneity at COBLL1/GRB14
(rs10195252, Pheterogeneity= 0.039) with more pronounced
effects on FI in women (βfemale= 0.018, Pfemale= 1.2 × 10−6,
Psex-dimorphic= 1.5 × 10−6) than men (βmale = 0.007, Pmale =
0.073) (Supplementary Data 3). Our observations were consistent
with previous reports of effects at COBLL1/GRB14 specific to
women on WHR8,9,11 and triglycerides19. Four established FG
loci, PROX1, ADCY5, PCSK1, and SLC30A8, showed larger effects
in women with nominal evidence for sex heterogeneity (Supple-
mentary Data 2). We did not observe association at the previously
reported female-specific FG locus COL26A1 (EMID2) (rs6961305,
r2EUR= 0.89 with reported SNP rs6947345, Psex-combined= 0.199,
Psex-dimorphic= 0.035)7.

Novel loci with sex-dimorphic and -combined FG/FI effects. To
discover FG/FI loci based on modeling heterogeneity and through
sex-combined analyses, we required that the lead SNP was
genome-wide significant in the 2df sex-dimorphic or in the 1df
sex-combined test of association (P ≤ 5 × 10−8)14. We considered
SNPs to be novel if they were not in linkage disequilibrium (LD,
HapMap CEU/1000 genomes EUR: r2 < 0.01) with any variant
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already known to be associated with the trait and located more
than 500 kb away from any previously reported lead SNP (Fig. 1).

We detected a sex-dimorphic effect on higher FI levels within the
first intron of ZNF12 at rs7798471-C (Psex-dimorphic= 4.5 × 10−8),
which has not been previously associated with any glycemic or
other metabolic trait. We observed nominal evidence of sex
heterogeneity (Pheterogeneity= 0.0046) with detectable effects only in
women (βfemale= 0.026, Pfemale= 1.5 × 10−8; βmale= 0.007, Pmale=
0.18) (Table 1 and Fig. 2a, b). The sex-combined analysis at the
same variant did not reach genome-wide significance
(Psex-combined= 2.4 × 10−7) (Supplementary Data 4). This signal
was not associated with T2D (P > 0.05)20, but was previously
nominally associated in the same direction with FI21. In addition, a
proxy variant on Metabochip (rs3801033, r2EUR= 0.87 with
rs7798471) was nominally associated with FI22 in a previous sex-
combined meta-analysis. Furthermore, the FI increasing allele (C) at
rs7798471 was previously associated with higher body-mass index
(BMI) in GIANT UK Biobank GWAS with stronger effects
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Fig. 1 Miami plots of sex-specific associations. a FI sex-specific
associations, b FG sex-specific associations showing women on upper panel
(all y axis values are positive) and men on lower panel (all x axis values are
negative). Established or novel loci with sex-dimorphic effects (Psex-dimorphic≤
5.0 × 10−8) and nominal sex heterogeneity (Pheterogeneity < 0.05) are shown
in magenta (larger effect in women) or cyan (larger effect in men). Novel
genome-wide significant loci from sex-combined analyses with sex-
homogeneous effects (Psex-combined≤ 5.0 × 10−8) are shown in yellow.
Established loci reaching genome-wide significance in sex-combined analyses
and showing no sex heterogeneity (Pheterogeneity > 0.05) are colored in purple.
All remaining established loci (i.e. no significant sex-dimorphic or sex-
homogeneous effects) are marked in orange.
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observed in women than men23. For FG, SNP rs1281962 located in
the first intron of the RGS17 gene revealed larger effects on FG in
women (βfemale= 0.014, Pfemale= 2.6 × 10−7) than in men at
nominal significance (Psex-dimorphic= 2.2 × 10−7, Pheterogeneity=
0.042) (Supplementary Data 4, Supplementary Fig. 1c–e). The
FG-increasing allele at RGS17 was associated with higher
BMI in GIANT UK Biobank GWAS with larger effects in women
than men23.

In the sex-combined meta-analyses that included four additional
family-based studies compared to the sex-dimorphic meta-analyses,
we identified genome-wide significant associations for FG at six
novel loci (ZBTB38, MANBA/UBE2D3, RGS17, PDE6C, IGF1R,
and NFATC3) and one established T2D locus (HMG20A, same
variant)24 (Table 1, Fig. 1, Supplementary Fig. 2). These loci have
not been associated with FG in a previously published meta-analysis
likely due to smaller sample sizes (Supplementary Data 5)22. We
evaluated the effects of these loci on T2D in a large-scale European
ancestry GWAS meta-analysis, and only the variant at ZBTB38 was
nominally associated with T2D (P= 0.0080), further supporting

only partial overlap between genetic variation influencing glucose
levels and T2D risk6.

The variant rs2785137 at PDE6C, although nearby the two
previously reported T2D variants at the HHEX locus, is an
independent signal (rs1111875, r2EUR ≤ 0.01 and rs5015480,
r2EUR ≤ 0.01 with rs2785137)24,25. The two FG loci, at IGF1R
(rs6598541) and NFATC3 (rs8044995), have been previously
suggested to contribute to the maintenance of glucose metabolism
and/or to insulin response, with the former being also a well-
described target in breast cancer26–28. The FG-increasing G allele
of the NFATC3 locus lead variant has been also associated with
reduced risk of schizophrenia29 and lower levels of high-density
lipoprotein cholesterol30. Interestingly, the lead SNP at the
MANBA/UBE2D3 locus, rs223486, is an intergenic variant located
in a region (±500 kb) that harbors several other genes (CISD2,
NFKB1, SLC9B1/2, BDH2 and CENPE) (Supplementary Fig. 2b)
with reported inflammatory and autoimmune disease
associations31,32. Two missense variants within MANBA (man-
nosidase, beta A, lysosomal) are in LD (1000 Genomes Project,
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Fig. 2 Plots for ZNF12 locus with sex-dimorphic effects on FI. a female-specific regional plot, b male-specific regional plot, c ZNF12 whole blood RNA
expression data in n= 3,621 Netherlands Twin Register and Netherlands Study of Anxiety and Depression studies. Beta ± SD (error bars) represent the sex
effect in the linear regression analysis where the average gene expression by all probes in the gene was predicted by sex, as well as the following
covariates: age, smoking status, RNA quality, hemoglobin, study, time of blood sampling, month of blood sampling, time between blood sampling and RNA
extraction, and the time between RNA extraction and RNA amplification. A positive value represents an upregulated expression in women and a negative
value an upregulated expression in men. The P value represents the significance of sex effect from the linear models (P values are not corrected for multiple
testing). d ZNF12 tissue expression relative to three housekeeping genes (PPIA, B2M, and HPRT). For beta cell (n= 3) and islets (n= 3) data, lines are
means. Quantitative RT-PCR was carried out using cDNAs from three human donors (beta-cells and islets). The other tissues were commercial cDNAs
(one point observation).
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EUR populations) with our FG lead variant rs223486 [e.g. rs2866413
(p.Thr701Met, r2= 0.36) and rs227368 (p.Val253Leu, r2= 0.58)]
and have suggestive effects on FG (Psex-combined_rs2866413= 8.7 ×
10−5, Psex-combined_rs227368= 6.4 × 10−4) in the current dataset, but
no nominal effect on T2D risk in European ancestry populations
(Prs2866413= 8.8 × 10−4, Prs227368= 4.1 × 10−5). Approximate con-
ditional analyses using GCTA33,34 showed that the rs223486
association with FG was only partially driven by rs228614 variant
at the same locus for which previously a significant association with
multiple sclerosis has been reported (rs223486, Pconditional_rs228614=
0.00035, r2EUR= 0.46) (“Methods”)31. Conversely, the rs223486
association with FG was not explained by rs3774959 variant at
MANBA previously associated with ulcerative colitis (rs223486,
Pconditional_rs3774959= 9.6 × 10−8, r2EUR= 0.12)32 (Supplementary
Fig. 1f–h), suggesting a genetic relationship between glucose
homeostasis and neurodegeneration.

Sex dimorphism in genetic correlations with other traits. We
estimated the genetic correlations between FG/FI and 201 traits
with sex-combined and sex-specific GWAS summary statistics
using LD score regression (“Methods”, Fig. 3a, b). We detected
genetic correlations between FI and 22 other traits (P < 0.00012,
corrected for multiple testing), including obesity-related pheno-
types, leptin levels without adjustment for BMI, T2D, high-
density lipoprotein cholesterol and triglycerides. Among those,
we observed sex heterogeneity in the genetic correlations
between FI and two traits: WHR adjusted for BMI (WHRadjBMI)
(rgwomen= 0.38, rgmen= 0.20, PCochran’sQtest= 0.015, I2= 83%)
and WHRadjBMI determined in females only (rgwomen= 0.40,
rgmen= 0.19, PCochran’sQtest= 0.0099, I2= 85%) (Fig. 3a). Fur-
thermore, estimates for two of these traits were just marginally
over the significance threshold for sex heterogeneity in their
genetic correlation with FI: anorexia nervosa (rgwomen=−0.28,
rgmen=−0.09, PCochran’sQtest= 0.051, I2= 74%) and HOMA-B
levels (rgwomen= 0.67, rgmen= 0.92, PCochran’sQtest= 0.069, I2=
70%) (Supplementary Data 6, Fig. 3a). Analysis of FG yielded
statistically significant genetic correlations in both women and
men with 13 traits including a number of obesity-related phe-
notypes, years of schooling, HbA1c, and T2D (Supplementary
Data 7, Fig. 3b).

Sex dimorphism in causal relationship between obesity and FI.
Previously, the dissection of causal effects of adiposity, measured
through BMI, on FI did not detect sex dimorphism35. We applied a
bidirectional two-sample Mendelian Randomization (MR) to
investigate causality between central obesity, measured through
WHRadjBMI, and FI, using WHRadjBMI-associated genetic var-
iants as instrumental variables (“Methods”). Estimates of genetic
instruments for WHRadjBMI from the general population were
obtained from the UK Biobank (~215,000 women/~184,000 men),
while for FI from the present study. We used 222 independent (r2 <
0.001) SNPs (Supplementary Data 8) that reached genome-wide
significance in the sex-combined WHRadjBMI GWAS as instru-
ments and extracted their sex-specific effect on FI, and vice versa for
19 FI SNPs. We observed a significant (PBonferroni < 0.0125, cor-
rected for four tests) causal effect (βIV-WHRadjBMI_exposure_women=
1.86, PIV-WHRadjBMI_exposure_women= 1.9 × 10−13) of WHRadjBMI
on FI in women, but detected no causal effect in the reverse
direction (βIV-FI_exposure_women= 0.55, PIV-FI_exposure_women= 0.030)
nor in men in either direction (βIV-WHRadjBMI_exposure_men= 1.05,
PIV-WHRadjBMI_exposure_men= 0.024; βIV-FI_exposure_men=−0.01,
PIV-FI_exposure_men= 0.27) (Fig. 3c, Supplementary Data 9) under a
random-effect inverse variance weighted model. To further inves-
tigate the robustness of the WHRadjBMI-FI causal relationship in
women, we assessed the causal effect estimate from the MR-Egger

method, which is less sensitive to pleiotropy. The intercept from the
MR-Egger regression was estimated to be non-zero (Intercept=
−0.002, PIntercept= 0.004) for the WHRadjBMI-FI relationship in
women, to which a possible explanation is that pleiotropic effects
of instrumental variables are not balanced or act randomly. If the
non-zero MR-Egger intercept reflects unbalanced pleiotropy and
therefore average pleiotropy over all instrumental variants, the
slope of the MR-Egger regression provides an unbiased
causal estimate. For the WHRadjBMI-FI causal relationship
in women, we observed a significant MR-Egger causal estimate
(βIV-WHRadjBMI_exposure_women= 3.11, PIV-WHRadjBMI_exposure_women=
2.4 × 10−9) robust to the presence of overall pleiotropy (Supple-
mentary Data 9). We further observed that abdominal fat
(defined through waist circumference with adjustment for
BMI [WCadjBMI], 222 independent SNPs in women)
is the driving factor (βIV-WCadjBMI_exposure_women= 0.015,
PIV-WCadjBMI_exposure_women= 5.3 × 10−8) of the WHR causal effect
on FI in women. Gluteofemoral fat (defined as hip circumference
with adjustment for BMI [HCadjBMI], 274 independent SNPs in
women) exerted a moderate inverse causal effect on FI in women
(βIV-HCadjBMI_exposure_women=−0.01, PIV-HCadjBMI_exposure_women=
0.0035. There was no detectable causal effect of WCadjBMI or
HCadjBMI on FI in men (βIV-WCadjBMI_exposure_men= 0.001,
PIV-WCadjBMI_exposure_men= 0.81; βIV-HCadjBMI_exposure_men=−0.001,
PIV-HCadjBMI_exposure_men= 072).

Sex-dimorphic effects on gene expression. We sought to
establish whether the sex-dimorphic effects at known FG/FI loci
are related to gene expression in a range of tissues. Wherever
possible, we evaluated sex-specific/-dimorphic associations
using the expression levels in women and men separately.
For all expression analyses, we used transcripts of all genes
within associated loci with at least nominal evidence for sex
heterogeneity (“Methods”). We evaluated sex-dimorphic RNA
expression in whole blood from 3,621 individuals from the
Netherlands Twin Register (NTR) and Netherlands Study of
Anxiety and Depression (NESDA) using the Affymetrix U219
array36. We also undertook expression quantitative trait locus
(eQTL) analyses in a range of tissues, including gluteal and
abdominal fat from the MolOBB study37, lymphoblastoid cell
lines (LCL) from HapMap 2 participants38, as well as liver, heart,
aorta adventitia/intima media and mammary artery intima-media
from the Advanced Study of Aortic Pathology (ASAP) (“Meth-
ods”)39. In addition, we investigated gene expression in islets of
cadaver donors with IGT compared to those with normal glucose
tolerance40, as well as in fat, LCLs, and skin tissues from women
(MuTHER consortium) (“Methods”)41.

In whole blood, we observed nominal evidence of sex-
dimorphic effects (representing the significance of the effect of
sex in the linear regression analysis, where, after accounting for
relevant covariates, the average gene expression was predicted by
sex) on RNA expression only for COBLL1, where expression in
women was higher than in men (Psex= 0.047, “Methods”).
However, we observed no such sex effects for GRB14 (Psex=
0.93), IRS1 (Psex= 0.16), or genes within other explored loci
(Supplementary Data 10). The sex-dimorphic effects on gene
expression in other tissues were contradictory and might reflect
the relatively small sample sizes available. We observed
statistically significant higher expression of COBLL1 in gluteal
fat in women, while in liver COBLL1 had higher expression in
men (Supplementary Data 11). GRB14 was expressed in fat, LCL,
and skin tissue in women, but no expression was observed for
COBLL1 in these tissues (Supplementary Data 11). For IRS1, the
gene with suggestive evidence of heterogeneity in effects between
sexes, we observed higher expression in islets for individuals with
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IGT compared to those with normal glucose tolerance (Supple-
mentary Data 11, “Methods”).

Sex-specific functional enrichment of the associations. We
performed enrichment analysis of the sex-specific FI and FG
results using the GARFIELD software, which integrates features
extracted from ENCODE, GENCODE, and Roadmap Epige-
nomics projects (“Methods”). These analyses suggested significant
(P < 6.2 × 10−6, “Methods”) enrichment peaks for FI in fetal
membrane in men but not in women (P > 0.05). In addition, for
FI, the analyses showed multiple significant enrichment peaks in
blood in men, whereas those in women were only nominally
significant (P= 0.01) (Supplementary Fig. 3a). For FG, we
observed significant enrichment in the blood vessel footprints
(Supplementary Fig. 3b) and in blood (Supplementary Fig. 3c)
only in men.

Putative biological leads at the novel ZNF12 FI locus.
We scrutinized genes at the FI locus (ZNF12) to investigate
putative biological leads and links with glucose homeostasis. There
are scarce data on the function of ZNF12, KDELR2, and DAGLB,
the three genes within this region, which are ubiquitously expres-
sed across human tissues (GTEx consortium)42. Therefore, we
performed quantitative RT-PCR applied to transcripts from sorted
beta cells and isolated pancreatic islets from three human donors,
in addition to a commercial panel of human tissues. ZNF12 was
most highly expressed in beta cells and pancreatic islets, which are
highly relevant to glucose metabolism (Fig. 2d). KDELR2 and
DAGLB were also expressed in sorted beta cells and islets, but
showed a relatively higher expression in the placenta (Supple-
mentary Fig. 4). In addition, we explored whole blood array RNA
expression for ZNF12 in NTR and NESDA and we observed large
differentiation between sexes with stronger expression in women
than men (Psex= 2.9 × 10−7 in linear regression) (Supplementary
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Data 10), which was consistent with DNA association analyses
(Fig. 2c). No such sex effects on RNA expression were detected for
KDELR2 or DAGLB (Supplementary Data 10).

Power of tests for sex-dimorphic effects through simulations.
Our meta-analysis highlighted nominal heterogeneity of the
effects on glycemic traits between sexes at several established loci.
Therefore, we assessed the power of three types of analyses (sex-
combined, sex-specific and 2-df sex-dimorphic) to detect any
associations with evidence for sex heterogeneity. More specifi-
cally, we tested three scenarios of allelic effects on the two sexes:
(1) no heterogeneity between the two sexes; (2) effects on both
sexes with the presence of heterogeneity between them; and (3)
effect specific to one sex only, where we used women as an
example. Within each scenario, we evaluated a range of CAF
(ranging from 0.05 to 0.5) and effect sizes (ranging from 0 to 0.1
in SD units). In addition, we estimated the power (P < 5 × 10−8)
of the Cochran’s Q-test for heterogeneity (implemented in the
GWAMA software14,15) under these three different models. We
performed simulations on 70,000 men and 70,000 women,
a sample similar by size and sex ratio to our study
(“Methods”), to evaluate the power of our analysis to detect sex
dimorphism at established FG (n= 36) and FI (n= 19) loci after
Bonferroni correction for multiple testing (Pheterogeneity < 0.05/36
or Pheterogeneity < 0.05/19)6.

For the scenario of homogenous allelic effects between men
and women (i.e., no sex dimorphism), the sex-combined test was
the most powerful to detect association with the causal variant
across the whole range of allele frequencies (Fig. 4 and
Supplementary Fig. 5). The 2-df sex-dimorphic analysis showed
slightly less power due to the additional degree of freedom. The
loss of power in the female-specific analysis occurred because of a
reduction in sample size due to stratification by sex.

For the scenario of sex-dimorphic effects (effect size in men,
βmales, fixed at 0.05 SD units, and in women, βfemales, variable), the
most powerful test varied depending on the strength of the effect
in women (Fig. 4, Supplementary Fig. 5). Overall, the 2-df sex-
dimorphic test had the greatest power (>92%) across all effect
sizes (from 0 to 0.1 in SD units) and for CAF ranging between 0.2
and 0.5, whereas the sex-combined analysis was more powerful
when the effects on both sexes were similar (βfemales= 0.04–0.06,
βmales= 0.05) and for CAF ranging between 0.05 and 0.1. The
female-specific approach was considerably less powerful than the
sex-combined/-dimorphic analyses due to the smaller sample
size. Under the same settings, the heterogeneity test was generally
very underpowered (power < 34%) with our sample size, except
for the situation of the variant being very common (CAF= 0.5)
and in the presence of a large difference in effects between the two
sexes (βfemales= 0 or 0.10 and βmales= 0.05) (power > 81%).

We observed that the female-specific test was the most
powerful analysis to detect a single-sex effect (effect only in
women with the effect size in men fixed at zero) across all allele
frequencies (Fig. 4, Supplementary Fig. 5). The slight loss of
power of the 2-df sex-dimorphic test to identify such an effect was
due to the additional degree of freedom to allow for heterogeneity
in allelic effects between sexes. Furthermore, despite the increase
in sample size, the sex-combined analysis was considerably less
powerful compared to the other two approaches because of the
diluted allelic effect by the inclusion of men. For the heterogeneity
test, the power was good (>73%) only in the presence of a
relatively strong effect in women (βfemales range: 0.05–0.10), no
effect in men, and for CAF range of 0.1–0.5.

Overall, based on simulations, our study had more than 78%
power to detect heterogeneity at established loci in the presence
of large differences in allelic effects between sexes or a relatively

strong effect in a single sex and within the CAF range (i.e. β >
0.05 SD units difference for CAF= 0.1, β > 0.04 SD units for
CAF= 0.2 and β > 0.03 SD units for CAF= 0.5) (Supplemen-
tary Fig. 5). For CAF= 0.05, this approach had more than 80%
power to detect effects specific to one sex (βfemales > 0.06 SD
units and βmales= 0 SD units) but showed generally very low
power (power < 45%) for effects larger in one sex than the
other, a scenario that was most frequently observed for FG/
FI loci.

Discussion
These GWAS meta-analyses represent the largest effort, to date,
to systematically evaluate sex dimorphism in genetic effects on
fasting glycemic trait variability in up to 151,188 European
ancestry individuals without diabetes. Using specifically devel-
oped methods and software tools14,15, we performed sex-
dimorphic meta-analyses, equivalent to testing for phenotype
association with SNPs allowing for heterogeneity in allelic effects
between sexes. We demonstrated sex-dimorphic effects on FI at
IRS1 and ZNF12 loci and evaluated the power of such analyses in
a simulation study. We also detected seven novel FG loci with
homogeneous effects between sexes. We identified FI sex-
dimorphic genetic correlation genome-wide with WHRadjBMI
and demonstrated a causal effect of WHRadjBMI on FI levels in
women only.

In this large-scale study, we demonstrated a sex-dimorphic
effect of IRS1 on FI that was specific to men, in addition to those
previously reported on body fat percentage, high-density lipo-
protein cholesterol and triglycerides10. These locus-wise effects on
other phenotypes were similar to the genome-wide genetic cor-
relations between FI, two blood lipids and a number of obesity
traits. For other loci, we have highlighted the cross-trait con-
sistency compared to adiposity-related phenotypes. More speci-
fically, the COBLL1/GRB14 locus with female-specific effects on
central obesity8,11 and on T2D12 showed nominally significant
larger effects on FI in women.

The female-specific FI locus is at ubiquitously expressed
ZNF12, encoding for zinc-finger protein 12, localized in the
nucleoplasm of cells and involved in developmental control of
gene expression. We provided support for ZNF12 as a potential
candidate in this locus through its expression in human beta cells
and pancreatic islets, as well as higher RNA expression levels in
women than in men in whole blood. Furthermore, ZNF12 is a
quantitative trait locus for glucose and insulin levels in rats (Rat
Genome Database: IDs 1643535, 2303575, 135733743). In
humans, the lead SNP rs7798471 overlaps with the DNaseI
hypersensitivity site from pancreatic adenocarcinoma (PA-TU-
8988T, https://www.encodeproject.org/), which maps near the
ZNF12 alternative transcript start site. Interestingly, the
ZNF12non-coding variant rs7798471 lies within a conserved
DNA region. It is in high LD with a number of Neanderthal
methylated variants, and is present in the archaic genome of a
Denisova individual, suggesting that this genomic region might
have introgressed into modern humans through admixture with
Neanderthals and Denisovans44. This observation is similar to the
T2D-associated variants at SLC16A11/13 reported by SIGMA
consortium45, being another example of admixture between
archaic genome variants that influence physiology of complex
traits today. We did not observe association between this variant
and T2D in the sex-combined GWAS meta-analyses in European
ancestry individuals20 indicating that the effects of this variant are
on the reduced insulin sensitivity rather than T2D susceptibility.

Among the FG loci with sex-homogeneous effects, variants at
the MANBA/UBE2D3, NFATC3, and IGF1R provided insights
into pathways involved in glucose homeostasis and relationships
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with other complex phenotypes, including neurodegeneration,
schizophrenia, and cancer29,46.

Genetically underpinned differences in glycemic trait varia-
bility by sex could reflect alterations in a variety of processes
related to T2D pathophysiology. FG/FI genetic correlations with a
range of metabolic traits, detected in our study for either sex, were
in accordance with epidemiological observations4. For example,
suggestively stronger inverse genetic correlation between FI and
anorexia nervosa in women, compared to men was in line with
observed higher insulin sensitivity in individuals with this dis-
ease47. Direct genetic correlations between FI and obesity traits
are widely supported by epidemiological studies. The genetic
correlation between FI and WHR is stronger in women than in

men, and the causal relationship between WHR adjusted for BMI
and insulin resistance is detected in women only. These obser-
vations suggest that central obesity in women is the driving risk
factor for many pathologies where insulin resistance is among
the symptoms, such as polycystic ovary syndrome and fatty liver
disease.

Methods accounting for sex differences and interaction are more
powerful in the presence of heterogeneity of allelic effects between
men and women14. However, only recently, the development of
fast-performance software tools for sex-dimorphic analysis enabled
the current study15. Our simulation study highlighted that, given
the current sample size, the 2-df sex-dimorphic test was more
powerful, compared to the sex-combined approach, when causal
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variants had allelic effects specific to one sex and in the presence of
heterogeneous allelic effects in men and women. When the allelic
effects of the causal variant were similar between men and women,
the sex-combined test was only slightly more powerful than the sex-
dimorphic approach, especially for CAF ≤ 0.1. However, under the
scenarios of effects that were larger in one sex than the other or
specific to just one sex, the heterogeneity test was generally very
underpowered. Nevertheless, our statistical power to detect sex
differences in genetic effects within novel or established glycemic
loci was still limited. In fact, at CAF= 0.2 and 0.02 SD units dif-
ference in effect estimates between men and women requires
information from 125,000/125,000 men/women to achieve 80%
power to detect sex-dimorphic effects at a nominal level of
significance.

In conclusion, our study shows sex-dimorphic effects on FI at
two genetic loci. Sex dimorphism in genetic effects on FI corre-
lates genetically with such effects on WHRadjBMI, which is also
causal for FI changes in women. This result is in line with pre-
vious epidemiological observations on insulin resistance as the
process leading to pathophysiological differences between sexes48.
Our findings position dissection of sex dimorphism in glycemic
health as a steppingstone for understanding sex-heterogeneity in
related traits and disease outcomes.

Methods
Participating studies. The following collection of studies were used: (1) 38 GWAS,
including up to 80,512 individuals genotyped using either Illumina or Affymetrix
genome-wide SNP arrays; (2) 27 studies with up to 47,150 individuals genotyped
using the iSELECT Metabochip array (~197 K SNPs) designed to support efficient
large-scale follow-up of putative associations for glycemic and other metabolic and
cardiovascular traits; (3) 8 studies, including up to 21,173 individuals genotyped for
custom variant sets; and (4) 4 studies, including up to 13,613 individuals from four
family-based studies (sex-combined meta-analyses only, as detailed below).
Detailed descriptions on the participating studies are provided in Supplementary
Data 1. All participants were of European ancestry, without diabetes and mostly
adults, although data from a total of 8,222 adolescents were also included in the
meta-analyses (ALSPAC, French Young controls/obese, Leipzig-childhood and
NFBC86 studies). All studies were approved by local ethics committees and all
participants gave informed consent.

Traits. Data were collected from participating studies with FG measured in mmol/
L (Nmaxmen= 67,506, Nmaxwomen= 73,089) and FI measured in pmol/L (Nmaxmen=
47,806, Nmaxwomen= 50,404). Measures of FG made in whole blood were corrected
to plasma level using the correction factor of 1.1349. FI was measured in serum.
Similar to previous MAGIC efforts22,50,51, individuals were excluded from the
analysis if they had a physician diagnosis of diabetes, were on diabetes treatment
(oral or insulin), or had a fasting plasma glucose equal to or greater than 7 mmol/L.
Individual studies applied further sample exclusions, including pregnancy, non-
fasting individuals, and type 1 diabetes. Individuals from case-control studies were
excluded if they had hospitalization or blood transfusion in the 2–3 months before
phenotyping took place. Untransformed FG and natural logarithm transformed FI
were analyzed at a study level. Detailed descriptions of study-specific glycemic
measurements are given in Supplementary Data 1. Untransformed FG and natural
logarithm transformed FI, HOMA-B, and HOMA-IR were analyzed at a
study level.

Genotyping and quality control. Commercial genome-wide arrays, the Meta-
bochip17 or platforms with custom variant sets were used by individual studies for
genotyping. Studies with genome-wide arrays undertook imputation of missing
genotypes using the HapMap II CEU reference panel via MACH52,53,
IMPUTE54,55, or BEAGLE56 software (Supplementary Data 1). For each study,
samples reflecting duplicates, low call rate, gender mismatch, or population outliers
were excluded. Low-quality SNPs were excluded by the following criteria: call rate
<0.95, minor allele frequency (MAF) < 0.01, minor allele count < 10,
Hardy–Weinberg P value < 10−4. After imputation, SNPs were also excluded for
imputation quality score <0.5.

Imputation to the 1000G reference panel. We imputed the summary statistics
for FG and FI (combined and sex-stratified) to the 1000 Genomes reference panel57

using the summary statistics imputation method implemented in the SS-Imp
v0.5.5 software18,58. We used the all-ancestries reference panel. SNPs with impu-
tation quality score <0.7 were excluded after imputation.

Statistical analysis. Each study performed single SNP association for men and
women separately (sex-specific). The additive genetic effect of each SNP was
estimated using a linear regression model adjusting for age (if applicable), study site
(if applicable), and principal components. In case-control studies, the cases and
controls were analyzed separately. Individual study results were corrected for
residual inflation of the test statistics using genomic control (GC)59. The GC
lambda values were estimated using test statistics from all SNPs for the GWAS. In
Metabochip studies, GC values were estimated from test statistics from 5,041 SNPs
selected for follow-up of QT-interval associations, as we perceived these to have the
lowest likelihood of common architecture of associations with glycemic traits59.

SNP effect estimates and their standard errors were combined by a fixed effect
model with inverse variance weighting using the GWAMA v2.2.3 software within
the following three meta-analysis strategies: (1) sex-specific, where allelic effect
estimates were combined separately within each sex (male-specific or female-
specific), (2) sex-dimorphic, where male- and female-specific estimates were
combined by allowing for heterogeneity in allelic effects between women and men
(chi-squared distribution with two-degrees of freedom)14 and (3) sex-combined,
where allelic effect estimates from men and women were combined. Studies with
highly related individuals (Dundee, FamHS, FHS and Sardinia) were included only
in the sex-combined meta-analysis (men and women were analyzed together at a
study-level and an additional adjustment for sex was made). In addition, the
heterogeneity of allelic effects between sexes was assessed using Cochran’s Q-test.
Cochran’s statistic provides a test of heterogeneity of allelic effects at the jth SNP,
and has an approximate chi-squared distribution with Nj-1 degrees of freedom
under the null hypothesis of consistency where Nj denotes the number of studies
for which an allelic effect is reported. Both the sex-dimorphic meta-analysis
framework and Cochran’s Q test for heterogeneity have been implemented in the
GWAMA software15. The lambda values for FG and FI sex-differentiated and
Cochran’s Q test were as follows: FG (λsex-differentiated_test= 1.06, λCochransQ_test=
1.01), FI (λsex-differentiated_test= 1.06, λCochransQ_test= 1.00).

Sex-dimorphic effects at established and novel FG/FI loci. The heterogeneity in
allelic effects between sexes was assessed at 36 FG and 19 FI established loci. A
locus was considered to have heterogeneous effects between sexes if Pheterogeneity ≤
0.0014 for FG and Pheterogeneity ≤ 0.0026 for FI after using Bonferroni correction for
multiple testing within each set of trait independent loci. To identify a novel locus
with sex-dimorphic effects (i.e. effect larger in one sex than the other or specific to
just one sex), genome-wide significance in the sex-dimorphic meta-analysis (Psex-
dimorphic < 5 × 10−8, 2df) was required. Loci with homogeneous effects in women
and men were identified by considering Psex-combined < 5 × 10−8. SNPs were con-
sidered as novel if located more than 500 kb from, and not in LD (HapMap CEU/
1000 Genomes EUR: r2 < 0.01) with any variant already known to be associated
with the trait.

Approximate conditional analysis. We performed approximate conditional
analysis by using the Genome-Wide Complex Trait Analysis (GCTA) v1.24.4 tool
to assess whether the signals within the MANBA/UBE2D3 genomic region asso-
ciated with FG represented independent associations or the same shared signal
with multiple sclerosis and ulcerative colitis33,34. GCTA implements an approx-
imate conditional analysis of phenotype associations using GWAS summary sta-
tistics while incorporating LD information from a reference sample. Here, we used
individual level genotype data from the PIVUS study (European ancestry) as the
LD reference. The GCTA approach allows the estimation of an adjusted effect size
estimate with a corresponding P value for the association of a variant with a
phenotype, corrected for the effect of another adjacent SNP or a group of SNPs,
based on the extent of LD between them.

Genetic correlation analysis. We assessed the genetic correlations between 201
traits publicly available in the LDHub60 and the sex-specific FG and FI using the
bivariate LD score regression approach61. The bivariate LD score regression only
requires GWAS summary statistics of two traits to evaluate their shared genetic
components, and can account for confounding like sample overlap61. We con-
sidered the trait to have a statistically significant genetic correlation with FG/FI if
the estimate attained P < 0.00012 (after Bonferroni correction for 201 traits and two
sexes) in either women or men. Heterogeneity in the estimates between women and
men was evaluated using Cochran’s Q statistic and I2 statistic which is independent
of the number of studies. We considered evidence for heterogeneity at the nominal
level of P < 0.05 for the Cochran’s Q test.

Bidirectional two-sample MR analyses. We applied bidirectional MR to inves-
tigate the causality between WHRadjBMI and FI. MR provides estimates of the
effect of modifiable exposures on disease unaffected by classical confounding or
reverse causation, whenever randomized clinical trials are not feasible62–64. Genetic
and phenotype data were available from the UK Biobank cohort (214,924 women
and 183,739 men) for obtaining genetic instruments for WHRadjBMI from the
general population. To look at the reverse, i.e., the potential causal effect of FI on
WHRadjBMI, we used genetic instruments for FI and genome-wide summary
results from the present study (50,404 women and 47,806 men). We used inde-
pendent (r2 < 0.001) SNPs that reached genome-wide significance (P ≤ 5 × 10−8) in
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the combined (women and men) WHR GWAS as instruments for WHR. We
obtained 222 WHRadjBMI SNPs for women and 222 WHRadjBMI SNPs for
men. SNP-WHRadjBMI associations were expressed in terms of Z-scores.
For FI, we used as instruments the 19 SNPs established for FI by MAGIC (Sup-
plementary Data 3).

The random-effect inverse-variance weighted (IVW) method was used to
obtain the combined MR estimate from the causal estimates of each individual
variant in the instrument derived by the ratio method65. Standard errors were
calculated using the Delta method66. We employed MR-Egger regression to obtain
causal estimates that are more robust to the inclusion of invalid instruments67. We
tested for the presence of a causal effect of (1) WHRadjBMI on FI in women, (2) FI
on WHRadjBMI in women, (3) WHRadjBMI on FI in men, and (4) FI on
WHRadjBMI in men. Heterogeneity in the IVW estimates from each individual
variant was tested using Cochran’s Q test. The presence of directional pleiotropy
was tested with the MR-Egger intercept test where a significant non-zero intercept
term can be indicative of directional pleiotropy. We have additionally performed
analyses of four causal relationships: WC adjBMI on FI in women and men and
HCadjBMI on FI in women and men to assess, which fat depot drives the causal
relationship between central adiposity and FI. All MR analyses were performed
using the R package TwoSampleMR v0.5.4.

Simulations to assess the power of tests to detect sex-heterogeneity under
different scenarios. A range of scenarios of effects on the two sexes were con-
sidered and the power of three types of analysis (sex-combined, 2df sex-dimorphic
and female-specific) to pick any associations with evidence for sex-heterogeneity
was assessed. More specifically, three models were tested: (1) no heterogeneity
between the two sexes, (2) effects on both sexes with the presence of heterogeneity
between them and (3) an effect specific to one sex only, e.g., women. Within each
scenario, a range of causal variant effect allele frequencies (ranging from 0.05 to
0.5) and effect size estimates (ranging from 0 to 0.1) in SD units in women were
assessed. In addition, the power of the Cochran’s Q test for heterogeneity
(implemented in GWAMA) was evaluated under these three different models.

Furthermore, the power of our study to detect sex heterogeneity at established
FG (n= 36) and FI (n= 19) loci was assessed by simulations using the approach
that ignores Psex-dimorphic and considers only a Pheterogeneity < 0.05 or Pheterogeneity
adjusted for multiple testing (Pheterogeneity < 0.05/36 or Pheterogeneity < 0.05/19).

Tissue expression of genes within the ZNF12 locus. Expression profiles from fat,
LCL, and skin tissues from women for genes within the ZNF12 region have
demonstrated the expression of three genes (ZNF12, KDELR2 and DAGLB) in our
analyses. Therefore, three genes at this locus were followed-up using quantitative
RT-PCR. Commercial cDNAs from the Human MTC panel I (BD Biosciences
Clontech) were diluted fivefold. For each sample, 4 µl was used in a 20 µl quan-
titative RT-PCR reaction including 10 µl of TaqMan gene expression master mix
(Applied Biosystems®) and 1 µl of the TaqMan gene expression assay (Applied
Biosystems) (TaqMan probes: KDELR2-Hs01061971_m1, ZNF12-
Hs00212385_m1, RGS17-Hs00202720_m1, DAGLB-Hs00373700_m1). Islets of
Langerhans and flow sorted beta cells were obtained from adult brain-dead donors
in accordance with the French regulation and with the local institutional ethical
committee68. Total RNA was extracted using Nucleospin RNA II kit (Macherey
Nagel). For each sample, 1 µg of total RNA was transcribed into cDNA using the
cDNA Archive Kit (Applied Biosystems®) or random primed first strand synthesis
(Applied Biosystems®). Resulting cDNAs were diluted ten-fold and 4 µl of each
sample were used in a 20 µl quantitative RT-PCR reaction including 10 µl of
TaqMan gene expression master mix (Applied Biosystems®) and 1 µl of TaqMan
gene expression assay (Applied Biosystems). Quantitative RT-PCR analyses were
performed using the ABI 7900 HT SDS 2.4, RQ manager v1.2.1, and DataAssist
v3.0 software and each sample was run in triplicate. Expression of genes was
reported as a relationship to the respective tissue expression of three housekeeping
genes (PPIA, B2M and HPRT).

RNA expression in blood. Look-ups for novel and known genes with evidence of
sex heterogeneity were done in the whole blood RNA expression data from NTR
and NESDA. For the NTR participants, venous (7–11 a.m) blood samples were
drawn after overnight fasting. Within 20 min of sampling, heparinized whole blood
was transferred into PAXgene Blood RNA tubes (Qiagen) and stored at −20 °C.
The PAXgene tubes were shipped to the Rutgers University Cell and DNA
Repository (RUCDR), USA, where RNA was extracted using Qiagen Universal
liquid handling system (PAXgene extraction kits as per the manufacturer’s pro-
tocol). For the NESDA subjects, venous overnight fasting (8–10 a.m.) blood sam-
ples were obtained in one 7-ml heparin-coated tube (Greiner Bio-One, Monroe,
NC). Between 10 and 60 min after blood draw, 2.5 ml of blood was transferred into
a PAX-gene tube (Qiagen, Valencia, CA). This tube was left at room temperature
for a minimum of 2 h and then stored at −20 °C. Total RNA was extracted at the
VU University Medical Center (Amsterdam) according to the manufacturer’s
protocol (Qiagen).

Gene expression assays were conducted at the Rutgers University Cell and DNA
Repository (RUCDR, http://www.rucdr.org) for all samples. RNA quality and
quantity were assessed by Caliper AMS90 with HT DNA5K/RNA LabChips.

RNA samples with abnormal ribosomal subunits in the electropherograms were
removed. NTR and NESDA samples were randomly assigned to plates. For cDNA
synthesis, 50 ng of RNA was reverse-transcribed and amplified in a plate format on
a Biomek FX liquid handling robot (Beckman Coulter) using Ovation Pico WTA
reagents per the manufacturer’s protocol (NuGEN). Products purified from single
primer isothermal amplification were then fragmented and labeled with biotin
using Encore Biotin Module (NuGEN). Prior to hybridization, the labeled cDNA
was analyzed using electrophoresis to verify the appropriate size distribution
(Caliper AMS90 with a HT DNA 5 K/RNA LabChip). Samples were hybridized to
Affymetrix U219 array plates (GeneTitan). The U219 array contains 530,467
probes for 49,293 transcripts. All probes are 25 bases in length and designed to be
“perfect match” complements to a designated transcript. Array hybridization,
washing, staining, and scanning were carried out in an Affymetrix GeneTitan
System per the manufacturer’s protocol.

Gene expression data were required to pass standard Affymetrix quality control
metrics (Affymetrix expression console) before further analysis. Probes were
removed when their location was uncertain or intersected a polymorphic SNP.
Expression values were obtained using RMA normalization implemented in
Affymetrix Power Tools v 1.12.0. Finally, samples with insufficient RNA quality
(D < 5) or sex mismatch were removed.

Statistical analysis was done with linear mixed modeling for the genes of interest
(Supplementary Tables 10 and 11b) where the average gene expression by all
probes in the gene was predicted by sex, as well as the following covariates: age,
smoking status, RNA quality, hemoglobin, study, time of blood sampling, month of
blood sampling, time between blood sampling and RNA extraction, and the time
between RNA extraction and RNA amplification. Overall, sex-dimorphic effects in
this analysis represented the significance of the effect of sex in the linear regression
analysis, where, after accounting for relevant covariates, the average gene
expression was predicted by sex. Covariates not included in the model due to lack
of significance of their effects were alcohol use, education level, time between RNA
amplification and RNA fragmentation, time between RNA fragmentation and RNA
hybridization, depression status, psychotropic medication, and white blood cell
counts. The random effects included in the model were plate, well, family ID, and
zygosity (one factor for each monozygotic twin pair). The total number of samples
in the analyses was 3,621 individuals.

Gene expression in human pancreatic islets and eQTL analyses. The islets from
89 cadaver donors of European ancestry were prepared for gene expression ana-
lysis. All procedures were approved by the ethics committee at Lund University.
Purity of islets was assessed by dithizone staining, while measurement of DNA
content and estimate of the contribution of exocrine and endocrine tissue were
assessed by measuring expression of pancreatic lipase, alpha 2 amylase and chy-
motrypsin 2 (as markers of exocrine) and somatostatin and glucagon (as markers
of endocrine tissue)69. The islets were cultured in CMRL 1066 (ICN Biomedicals)
supplemented with 10 mM HEPES, 2 mM L-glutamine, 50 µg/ml gentamicin,
0.25 µg/ml Fungizone (GIBCO), 20 µg/ml ciprofloxacin (Bayer Healthcare), and
10 mM nicotinamide at 37 °C (5% CO2) for 1–9 days prior to RNA preparation.
Total RNA was isolated with the AllPrep DNA/RNA Mini Kit following the
manufacturer’s instructions (Qiagen). RNA quality and concentration were mea-
sured using an Agilent 2100 bioanalyzer (Bio-Rad) and a Nanodrop ND-1000
(NanoDrop Technologies).

RNA sequencing and analysis of gene expression. Islet preparation for RNA
sequencing was made using Illumina’s TruSeq RNA Sample Preparation Kit
according to their recommendations using 1 µg of high quality total RNA. The
target insert size was 300 bp and it was sequenced using a paired end 101 bp
protocol on the HiSeq2000 platform (Illumina). Quality assessment was made pre-
and post-sample preparation on the 2100 Bioanalyzer (Agilent). Illumina Casava
v.1.8.2 software was used for base calling. Paired-end 101 bp length output reads
were aligned to the human reference genome (hg19) with TopHat v.2.0.270 using
Bowtie v.0.12.871. The TopHat parameters explicitly used are tophat -p 30 -G
genes.gtf --library-type fr-unstranded -r 100 -F 0.05 --microexon-search. Gene
expression was measured as the normalized sum of expression of all exons. Exons
were defined as non-overlapping unique exonic units72. The dexseq_count python
script (“Data availability”) was used by counting uniquely mapped reads in each
exon. Gene and exon expression normalizations were then performed using the
TMM method73, and further normalization was applied by adjusting the expres-
sion to gene or exon length, respectively. In addition, only the genes and exons that
had reads mapped to them in at least 5% of the samples were kept. The Cufflinks
tool v.1.3.074 was used to detect novel genetic loci. Intergenic gene loci were kept if
they did not overlap any GENCODE v.12 gene75, UCSC and Ensembl gene
structures, had exon–exon junction reads mapped to them, had at least two exons
with no Ns, and were expressed (non-null read coverage) in at least 5% of the
samples. Coding potential of these novel intergenic loci was assessed with the
Coding Potential Assessment Tool v1.2.276.

Gene expression in islet donors. Samples were stratified based upon
glucose tolerance estimated from HbA1c, i.e., donors with normal glucose tol-
erance (HbA1c < 6%, n= 51), IGT (6% ≤ HbA1c < 6.5%, n= 15), and T2D
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(HbA1c ≥ 6.5%, n= 12). A linear model adjusting for age and sex as imple-
mented in the R Matrix eQTL package77 was used to determine the expression of
genes associated with T2D status.

Genotyping was performed on the Illumina HumanOmniExpress 12v1 C chips
and genotype calling was done with the Illumina Genome studio v2.0 software. All
the samples passed standard genotype quality control metrics: sample call rate
>98%, only European ancestry assessed by principal component analysis
comparisons with HapMap populations, gender matched, no relatedness, and no
genome-wide heterozygosity outliers. SNPs were removed if SNP call rate <98%
and Hardy–Weinberg equilibrium test P values <5.7 × 10−7. Individual genotypes
were imputed to 1000 Genomes data, using IMPUTE2 and the March 2012 release
of the 1000 Genomes Phase I panel. The program SHAPEIT v278 was used for the
pre-phasing. Probabilistic genotypes were used for the subsequent analyses and
after imputation, SNPs were filtered using a MAF > 5% and an IMPUTE2 info
value of >0.8.

eQTL analyses were carried out on samples from 89 individuals. Associations
were computed between gene expression levels (eQTL) and top SNPs within 250 kb
up- or downstream of each of these genes. We used a linear model adjusting for age
and sex as implemented in the R Matrix eQTL v2 package77. Results are show with
P values with age and sex as covariates, after the false discovery rate (FDR) and
obtained after doing 10,000 permutations.

Sex-specific eQTL. Sex-specific eQTL analyses were performed in the MolOBB,
MuTHER, Karolinska Institutet, HapMap 2, and NTR/NESDA. Each study per-
formed two types of analysis as described below, unless otherwise stated under the
study description. Two models were used.

(1) Model with the same slope in each gender:

yi ¼ μsðiÞ þ πpðiÞ þ β ´ gðiÞ þ εi; ð1Þ

where i indexes subject, s(i) ∈ [Male, Female] maps subject to gender, g(i) ∈
[0,1,2] maps subject to a genotype and p(i) maps subject to a plate.

(2) Model with different association in each gender:
yi ¼ μsðiÞ þ πpðiÞ þ βsðiÞ ´ gðiÞ þ εi: ð2Þ

To investigate whether genes are differentially expressed between males and
females, each study fitted a linear mixed model using the R package Maanova.
Gender and plate were fitted as fixed effects. The P values from the Fs test were
corrected for multiple testing using the FDR (Benjamini Hochberg) across the
tested genes, and probe sets were considered significant if the adjusted P value of
the Fs test was <0.01.

MolOBB cohort data collection and pre-processing. From 73 individuals
(recruited on the basis of case/control status for Metabolic Syndrome), a gluteal fat
sample and an abdominal fat sample were extracted at the Oxford Centre for
Diabetes, Endocrinology and Metabolism as part of the MolOBB study. A total of
143 samples were obtained, with 71 subjects successfully donating both tissue types,
and one individual donating only gluteal fat. Subcutaneous adipose tissue from the
abdominal wall was taken at the level of the umbilicus; gluteal tissue was taken
from the upper outer quadrant of the buttock. Total RNA was extracted with
TRIreagent (SIGMA-ALDRICH) from the fat biopsies. For six of the subjects, twice
the amount of RNA was extracted from each sample, and the RNA was split into
two aliquots before labeling (i.e. each of six gluteal, and six abdominal, samples was
run in technical replicate). Labeled RNA was hybridized onto Affymetrix Human
Genome U133 Plus 2.0 gene-expression microarrays (hgu133plus2 arrays), washed,
stained, and scanned for fluorescence intensity indicative of gene expression level.
One sample was hybridized to each array. Quality control checks were performed
on the basis of signal intensities, background intensity, expression of control genes,
and spike-ins, as well as spatial representation of the intensities on each array. After
outlying arrays had been removed, there remained data from 54 abdominal fat
samples (4 in technical duplicate), and 65 gluteal fat samples (5 in technical
duplicate); 49 subjects had both gluteal and abdominal samples remaining in the
analysis.

The majority of the probes on the hgu133plus2 arrays were collected into
17,726 non-overlapping probe sets according to ENTREZG annotations79. For each
datasets all arrays were preprocessed separately using GC robust multi-array
procedure. Gene-specific expression summaries were averaged across technical
replicates of a sample. We then filtered the data, retaining only those probe sets
that were annotated to an autosomal location, and also showed a mean intensity
above 4 arbitrary units of log2(intensity) in at least 10% of individuals. After this
filtering stage, there remained 8,941 probe sets.

MuTHER data collection and pre-processing. The MuTHER (Multiple Tissue
Human Expression Resource) collection41 includes LCLs, skin and adipose tissue
derived simultaneously from a set of well-phenotyped healthy female twins.
Whole-genome expression profiling of the samples, each with either two or three
technical replicates, were performed using the Illumina Human HT-12 V3 Bead-
Chips (Illumina Inc) according to the protocol supplied by the manufacturer. Log2-
transformed expression signals were normalized separately per tissue as follows:

quantile normalization was performed across technical replicates of each individual
followed by quantile normalization across all individuals.

Genotyping was done with a combination of Illumina arrays (HumanHap300,
HumanHap610Q, 1M‐Duo and 1.2MDuo 1M). Untyped HapMap2 SNPs were
imputed using the IMPUTE v2.0 software. The number of samples with genotypes
and expression values per tissue was 778 LCL, 667 skin, and 776 adipose,
respectively. Association between all SNPs (MAF > 5%, IMPUTE info >0.8) within
a gene or within 1MB of the gene transcription start or end site and normalized
expression values were performed with the GenABEL/ProbABEL packages using
the polygenic linear model incorporating a kinship matrix in GenABEL followed by
the ProbABEL mmscore score test with imputed genotypes. Age and experimental
batch were included as cofactors in the adipose and LCL analysis, while age,
experimental batch and concentration were included as cofactors in the skin
analysis.

Karolinska Institutet data collection and pre-processing. The genotypes of the
ASAP dataset were measured on Illumina 610wQuad arrays and the expression was
measured on Affymetrix ST 1.0 exon arrays. In this analysis, five tissue types have
been included in a total of 699 samples: 89 mammary artery intima-media
(ASAP_MMed), 212 liver (ASAP_L), 138 aorta intima-media (ASAP_AMed), 133
aorta adventitia (ASAP_AAdv), 127 heart (ASAP_H). All SNP positions are from
dbSNP 132 through biomaRt. All gene positions are from ensembl GRCh37.p3
through biomaRt. All genes within 500 kb were included.

Karolinska Institutet data statistical analysis. For the analysis of eQTLs and
gender the given formula

yi ¼ μsðiÞ þ πpðiÞ þ β ´ gðiÞ þ εi ð3Þ
was modified as follows: The p(i)-component was omitted as each sample is run on
an individual plate (on batch effects and normalizations issues of expression arrays
can be found in80). A total of 3,203 association tests were performed during these
calculations: 5 tissues, 33 SNPs, 181 genes within 500 kb, and 3 different tests for
each (all, male-only and female-only). Multiple correcting thresholds were there-
fore calculated, both using the Bonferroni method (P < 1.5 × 10−5) and the two-
stage Benjamini–Hochberg FDR-5% method (P < 1.8 × 10−5) as implemented in
the R-package multtest.

Student’s T test was used for the differential expression analysis. As there are no
plate effects to take into account, this will largely provide the same results. Of the
135 genes selected for the look-up, the following 23 were not found on the
microarray: AK055550, ATP5EP2, BTF3P7, C7orf28B, CENTD2, CR593175,
DQ485453, FBXL10, GRID21P, GRP85, LOC389436, LOC441376, MIR139, MIR32,
MIR583, MIR597, NCRNA00261, PMS2CL, RPS3P4, RSPH10B2, ZNF853,
ZNHHC4, Zep-1. In most cases, this was because the HGCN gene symbol for that
gene did not exist.

The P values and fold-change of expression changes between male and female
samples were calculated for the remaining 112 genes. A total of 560 association
tests were performed during these calculations: 5 tissues and 112 probe sets.
Multiple correcting thresholds were therefore calculated, both using the Bonferroni
method (P < 4.96e−05) and the two-stage Benjamini–Hochberg FDR-5% method
(P < 0.0015) as implemented in the R-package multtest. A FDR-1% corresponds to
P < 9.0 × 10−5.

Functional and regulatory elements enrichment analysis. We used the GAR-
FIELD v2 tool81,82 on the sex-specific meta-analysis results to assess enrichment of
the FG/FI associated variants within functional and regulatory features. GAR-
FIELD integrates data for genic annotations, chromatin states, DNaseI hypersen-
sitive sites, transcription factor binding sites, FAIRE-seq elements, and histone
modifications, among others, from a number of publicly available cell lines. We
considered enrichment to be statistically significant if the FG/FI sex-specific GWAS
P value reached P= 1 × 10−8 and the enrichment analysis P value was <6.2 × 10−6

(Bonferroni corrected for 2,040 annotations and two sexes).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GWAS summary statistics for FG/FI analyses presented in this manuscript are deposited
on https://www.magicinvestigators.org/downloads/ and will be also be available through
the NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/downloads/summary-
statistics. Raw files for RNA-seq mRNA expression in islet donors have been deposited in
NCBI GEO database with the accession code GSE50398. Summary-level GWAS results
for genetic correlation analysis with glycemic traits were downloaded from the LDHub
database (http://ldsc.broadinstitute.org/ldhub/). Islets from 89 cadaver donors were
provided by the Nordic Islet Transplantation Programme (http://www.medscinet.com/
nordicislets/). The dexseq_count python script for RNA sequencing analysis in human
pancreatic islets was downloaded from http://www-huber.embl.de/pub/DEXSeq/analysis/
scripts/. Raw files for RNA-seq mRNA expression in islet donors have been deposited in
NCBI GEO database with the accession code GSE50398.
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