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Abstract

Driving is a complex task that is known to cause highly
individual stress responses. Here we study heart rate vari-
ability (HRV) during automobile driving compared with
being at rest. We focus on time-dependent variations in
the scaling properties of the RR intervals by applying a
newly developed dynamical detrended fluctuation analysis
(DDFA). In particular, we study whether DDFA brings ad-
ditional insights to the HRV analysis carried out by con-
ventional measures in the time and frequency domain.

We utilize the publicly available PhysioNet database for
16 drivers, whose ECG was recorded during 35-60 min
of driving on public roads, preceded and followed by 15
min rest periods. The extracted RR intervals are then ana-
lyzed through the conventional HRV measures, followed by
DDFA analysis that yields the time- and scale-dependent
scaling exponents α(t, s). The temporal fidelity of the
method permits accurate determination of distributions of
α(t, s) in relatively short segments of data.

We find that even when the HRV measures show clear
differences between driving and being at rest, the subjects
exhibit highly individual cardiac responses to the exper-
iment. at the individual level, however, DDFA gives de-
tailed information on the dynamic changes in HRV which
are often hidden in the conventional measures.

1. Introduction

At present, wearable heart rate (HR) devices enable pre-
cise extraction of the interbeat intervals during different
activities. HR variability (HRV) analysis [1] has become
a widespread tool to monitor, e.g, physical activity, recov-
ery and sleep. Moreover, in a recent meta analysis it was
pointed out that HRV is impacted by stress, and it could be
used for assessment of psychological health [2].

Driving is a complex task that requires simultaneous use
of sensory, motor and cognitive functions [3]. This com-
plexity coupled with risks in traffic causes stress in many
individuals. Thus, detecting physiological changes during
driving such as drowsiness [4,5] could have relevant appli-

cations in improving road traffic safety.
Conventionally, HRV has been studied with time do-

main measures calculated from the RR intervals and fre-
quency domain measures calculated from the power spec-
trum of the time series. These HRV measures have also
been used to study the physiology of driving [4–6]. HRV
has also been studied with nonlinear methods quantifying
the complexity and unpredictability of the RR intervals [1].
Detrended fluctuation analysis (DFA) is a commonly used
nonlinear method describing the scaling properties of a
time-series [7]. For HRV, DFA is commonly applied to
obtain two scaling exponents for small (4-16) and large
(16-64) scales, respectively.

Here we study HRV during driving by focusing our anal-
ysis on dynamic DFA [8] (DDFA) that enables accurate
detection of continuous scaling exponents α(t, s) as func-
tions of both time and scale. The continuous scaling ex-
ponents can detect real-time changes in the HRV, which
can be utilized to better understand the physiology of driv-
ing. DDFA has been previously applied to running [8] and
sleeping [9] with promising results, thus supporting further
applications.

2. Data and preprocessing

We use the Physionet [10] database ”Stress Recognition
in Automobile Drivers” utilized also in Ref. [6]. It con-
tains multi-parameter recordings including electrocardio-
gram (ECG) from healthy volunteers measured during au-
tomobile driving on open roads. The experimental proto-
col also included 15 min rest periods before and after driv-
ing a predetermined route. During the rest periods subjects
sat relaxed in an idling car inside the garage while keeping
their eyes closed [6].

The database contains 16 measurements, but we dis-
carded two of them as they lack parts of the ECG data in
the middle of the experiment. Generally, however, the data
quality is very good for a large fraction of the samples, en-
abling accurate R peak detection. Figure 1 visualizes the
ECG and peak detection with WFDB software package for
Python using the GQRS algorithm [11]. An example of an
incorrectly marked R peak caused by an artifact is visible
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Figure 1. Example of electrocardiography recording with
detected R peaks. See the text for details.

in Fig. 1 at 121 seconds. Such artifacts were removed as
follows: (i) calculate the mean of last five correct RR in-
tervals; (ii) check if the difference between the mean value
and next RR interval exceeds a threshold (250 ms); (iii)
remove those RR intervals without modifying the original
time stamps of the RR intervals. In total, 1.8 % of the RR
intervals were removed from the time series (see Ref. [12]
for details).

3. Theory and methods

In the time-domain we consider the mean RR and
RMSSD – the root mean square of successive RR inter-
val differences. In the frequency domain we compute
the absolute power of the high-frequency (HF) and low-
frequency (LF) and their ratio (LF/HF). Transforming the
RR interval time series into frequency domain is done by
first detrending the time series with the smoothness pri-
ors method [13] and then applying Lomb-Scargle peri-
odogram [14]. These conventional HRV measures are cal-
culated in 300 RR interval segments moving with a step of
10 intervals to obtain time-dependent measures. The mean
values of these measures are computed separately for each
rest and drive section.

The DDFA method [8] extends the conventional
DFA [7] by yielding the scaling exponent as functions of
both scale and time through the following steps:
1. Divide the time series into scale-dependent segments
Ss,t with segment lengths l(s) = 5s, which yields good
balance between temporal resolution and noise [8].
2. Compute the fluctuation functions in each segment at
scales {s − 1, s, s + 1} utilizing maximally overlapping
windows (note that conventional DFA usually utilizes non-
overlapping windows [7]).
3. Calculate the scale- and time-dependent scaling expo-
nent α(s, t) with finite difference approximation from the
logarithmic fluctuation function in each segment Ss,t [8].
For details and numerical validation of the method, see
Ref. [8] and its Supplementary Information.

4. Results

In Fig. 2 we show the relative differences in (a) mean
RR, (b) RMSSD, (c) HF, and (d) LF/HF between driving
and the first and second rest period, respectively. All the
results fall approximately on the diagonal, which indicates
that both rest periods (before and after) differ from driving
in a similar manner. As expected, RR is decreased (HR
increased) during driving on the average. RMSSD is de-
creased as well, which indicates increased dominance of
the sympathetic nervous system during driving. Further,
HF power is decreased, but LF/HF ratio is increased dur-
ing driving. This could imply low vagal activation, even
though the usefulness of LF/HF as a measure of sympatho-
vagal balance has been questioned [15]. Despite the gen-
eral consistency of our results in Fig. 2 we point out that
the variance amongst different subjects is large.
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Figure 2. Relative differences in (a) mean RR, (b)
RMSSD, (c) HF and (d) LF/HF ratio between driving and
the first and second rest period, respectively. The whiskers
represent data outside the interquartile range (IQR) by less
than 1.5 times the IQR.

Figure 3 shows the DDFA scaling exponent (in color
scale) during the complete measurement of a single sub-
ject (a), together with two zoomed parts from the first
rest (b) and the drive (c) sections. The subject shows clear
anticorrelations α(t, s) < 0.5 in small scales (10–20) dur-
ing both rest sections. The anticorrelations are also visible
in the HR in Fig. 3(b) as a sawtooth structure. The behavior
is intriguing in the sense that previously anticorrelations
have been associated with physical exercise [8] or cardiac
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Figure 3. (a) DDFA results during the complete measurement (rest1-drive-rest2) for a single subject. The red vertical lines
indicate the change of rest/drive sections. The black curve shows the heart rate. (b) Zoomed part of the first rest section.
(c) Zoomed part of the drive section.

diseases [7], but in this example they are present during
a resting period. We note, however, that the frequency of
the oscillations would be compatible with relaxed breath-
ing rate and Mayer waves [16], both of which could induce
periodic modulations to the heart rate. Minute disturbances
in the periodic modulation during resting are clearly visu-
alized by DDFA, along with the greater short-scale vari-
ance during the driving. Intricate details such as these are
revealed by DDFA that would remain hidden in the con-
ventional HRV measures.

Not all subjects demonstrated as prominent differences
between the different segments as in Fig 3. Indeed, in
Fig. 4(a) we show the instantaneous heart rate for a subject
where no significant differences were visually observed in
the average RR behavior, as a function of time in the con-
ventional HRV measures, or in the DDFA picture as in
Fig. 3. However, the temporal fidelity of DDFA permits
the study of scale-dependent distributions of the scaling
exponent α, which are shown in Figs. 4(b–d). Discernible
differences are found at the larger scales where the values
are more condensed in the rest segments and α begins to
decrease as a function of the scale, whereas it remains in-
creasing during the drive segment.

Finally, in Fig. 5 we visualize the aggregate distributions
of the DDFA scaling exponents over all the subjects dur-
ing the different segments. The large individual differences
between the subjects are evident as wide distributions that
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Figure 4. Instantaneous heart rate (top panel) and distri-
butions of the DDFA scaling exponents as functions of the
scale (bottom) for one subject in each section. In (a) the
black dashed lines indicate the boundaries of the rest/drive
sections. The color scale of the density is linear for densi-
ties 0–0.1 and logarithmic above this range.

partly mask the differences between the rest and drive seg-
ments. Overall the α values are slightly lower at each scale



in the rest segments compared to the drive segment, with
the effect being more pronounced in the first rest segment.
In contrast to the rest segments, anticorrelations (α < 0.5)
are practically non-existent during the drive segments. The
distributions are also wider in the rest segments at smaller
scales (. 30), which might be associated with people re-
acting differently to these controlled rest periods: some
subjects might be calm and relaxed, while others are anx-
ious and stressed about the experiment. At larger scales the
qualitative trends that were observed in Fig. 4 for a single
subject appear to persist through the individual variability
in this overall data.
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Figure 5. Aggregate distributions of the DDFA scaling
exponents over all the subjects in rest1 (a), drive (b), and
rest2 (c) segments. The color scale of the density is linear
for densities 0–0.1 and logarithmic above this range.

5. Conclusions

Driving is a task that has highly individual effects on
the HRV. Moreover, subjective responses to controlled rest
periods complicate the establishment of reliable baselines.
The conventional HRV measures during the driving show
expected behavior compared to the rest sections, indicat-
ing that – on the average – the impact of the sympathetic
nervous system increases during driving. The newly de-
veloped dynamic detrended fluctuation analysis (DDFA)
is able to reveal details and expose differences between the
different segments overlooked by the conventional meth-
ods. Surprisingly, for some subjects the rest periods are
characterized by anticorrelated behavior, which is com-
monly associated with physical exercise or cardiac dis-
eases. However, DDFA reveals that these could be re-
lated to breathing and/or Mayer waves. It could therefore
be worthwhile to complement conventional HRV measures
with DDFA scaling exponents in forthcoming studies, par-
ticularly in cases where conventional methods do not yield
discernible results.
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