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Flat-band transport and Josephson effect through a finite-size sawtooth lattice
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We study theoretically the transport through a finite-size sawtooth lattice coupled to two fermionic reservoirs
kept in the superfluid state. We focus on the DC Josephson effect and find that the flat-band states of the sawtooth
lattice can support larger critical current and a higher temperature than the dispersive band states. However,
for this to occur the boundary states of the finite-size lattice need to be tuned at resonance with the bulk flat-
band states by means of additional boundary potentials. We show that transport in a two-terminal configuration
can reveal the salient features of the geometric contribution of flat-band superconductivity, namely the linear
dependence of key quantities, such as the critical current and critical temperature, on the interaction. Our results
are based on parameters of a realistic experimental lattice potential, and we discuss the conditions one needs to
reach to observe the predicted effects experimentally.
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I. INTRODUCTION

A flat band is a Bloch band of a lattice model which is dis-
persionless, usually as a consequence of destructive quantum
interference between alternative hopping paths. This means
that all the states in the band are degenerate and localized,
while the kinetic energy of noninteracting particles is com-
pletely quenched. The massive degeneracy of flat bands leads
to the strongly-correlated regime and new emergent phases
as soon as interparticle interactions are switched on [1]. In-
deed, at the theoretical level, flat bands have been proposed to
host ferrimagnetic [2] and ferromagnetic phases [3–7], vari-
ous topological states [8–12], Wigner crystallization [13], and
superconductivity, the main focus of this work. Lattice models
with flat bands can be realized experimentally with optical
lattices for ultracold atoms [14–16], photonic lattices [17–21],
polaritons [22], but also in van der Waals materials [23–26]
and artificial electronic systems [27–29].

Flat bands potentially enable high temperature supercon-
ductivity, up to room temperature [30–32]. It has been shown
theoretically that superconductivity occurs in flat bands in
the presence of attractive interactions only if the band has
a nontrivial quantum metric [33–35], which is an invariant
of the band structure related to the Berry curvature. More
specifically, it has been found that in the flat-band limit the
geometric contribution of superconductivity [33] dominates
and the superfluid weight is linearly proportional to both the
coupling constant of the attractive interparticle interaction and
the integral of the quantum metric over the first Brillouin
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zone. A nonzero superfluid weight is the defining property of
superfluid/superconducting states.

Predictions of flat-band superconductivity are supported
by the recent remarkable discovery of superconductivity in
magic-angle twisted bilayer graphene [23], which is believed
to be a direct consequence of the nearly flat bands that occur in
the band structure at a specific (“magic”) twist angle between
the two graphene layers. Indeed, it has been shown in three
distinct theoretical studies [36–39] that the geometric contri-
bution to the superfluid weight, that is the part of the superfluid
weight proportional to the band quantum metric, is impor-
tant in magic-angle twisted bilayer graphene. However, this
evidence is only indirect since twisted bilayer graphene is a
complex material and some important questions are still open,
such as the origin of the attractive interaction responsible for
superconductivity [40,41]. Moreover, the degree of control on
the material properties achieved on this material, for instance
by tuning the twist angle, is outstanding but still too limited to
provide direct evidence of the effects associated with the flat-
band quantum metric. An experiment taking advantage of the
degree of control available in ultracold gas experiments [42] is
a highly promising platform for investigating the role played
by quantum geometry in a flat-band superfluid, as for instance
the interaction can be tuned to verify the expected linear de-
pendence of the geometric contribution of superconductivity
on interaction.

In order to study flat-band superconductivity in the ultra-
cold gas context, we propose and simulate here an atomtronic
two-terminal transport setup in which a finite-size sawtooth
lattice is placed in contact at the two ends with two super-
fluid fermionic reservoirs. A similar sawtooth lattice model
has been studied in the case of noninteracting particles in
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Ref. [43], where the focus was on adiabatic pumping, and
in Ref. [44] in the context of nonlinear localized modes.
A sawtooth lattice has been also investigated in the context
of photonic lattices both experimentally and theoretically in
Ref. [20]. Two-terminal transport setups are commonly em-
ployed to probe solid state mesoscopic systems [45] and more
recently transport experiments of this kind have been real-
ized also using ultracold fermionic lithium atoms [46–50]. In
this way the quantization of conductance has been observed
in neutral matter for the first time [47]. The main goal of
atomtronics [51,52] is to achieve a high degree of control
on ultracold atom transport and ultimately realize complex
working devices as in electronics.

Ultracold atoms offer new possibilities with no counterpart
in electronics. Two are particularly important for the present
work: first, the control on interatomic interactions by means
of Feshbach resonances and, second, the ability to flexibly
engineer complex lattice potentials in the region between the
reservoirs (the “scattering region” in the Landauer picture
of transport) using for instance a digital micromirror device
(DMD) [49]. By tuning the interatomic interaction strength
it should be possible to show that the superfluid weight is
linearly proportional to the interaction, which is the finger-
print of the effect of the quantum metric on the superfluid
properties. This is much harder to do in the solid state context
since the interaction strength can be tuned only to a limited
extent. Concerning the lattice potentials, digital micromirror
devices or more traditional optical lattices can be used to
realize complex potentials that implement lattice models with
flat bands in the tight-binding limit. A viable optical lattice
scheme has been proposed for instance in the case of the
sawtooth ladder [53,54], which is the lattice model considered
in this work.

In a two-terminal setup, it is only possible to insert a
finite portion of an infinite lattice model in between the two
reservoirs. This creates a nontrivial problem in the case of
lattice models with flat bands, which has no counterpart for
dispersive bands. The problem is due to the localized nature
of the states which compose a flat band: When the infinite
lattice is truncated, the flat-band states away from the ends of
the finite system (the “bulk” states) are essentially unaffected
precisely because they are strongly localized on a few lattice
sites that are not directly connected to the boundary lattice
sites by hopping matrix elements [55]. On the other hand, the
few (usually two) flat-band states localized on lattice sites at
the two ends of the finite system are strongly affected by the
truncation and in general they are not anymore degenerate
with the bulk states. These “boundary” states are essential
for the current to flow from the reservoirs to the bulk of the
finite-size system, thus the loss of degeneracy has usually the
effect of dramatically suppressing transport through the flat
band, as is shown in the following in the case of the sawtooth
ladder. This is an effect specific to flat bands and it is not
observed in the case of dispersive bands whose states have
a delocalized, plane-wave-like character.

A key result of this work is that this problem can be solved
by properly tuning the energy of the boundary states. Due
to the localized character of the flat-band states, this can be
easily done by introducing additional potential terms at the
two ends, which have the purpose of restoring the degeneracy

between bulk and boundary states. We expect this problem
to be present in various forms of transport, such as in the
steady state when the system is driven out of equilibrium
by a chemical potential difference. However, in this work
we restrict ourselves to the case of transport at equilibrium
between superfluid/superconducting reservoirs that is to the
DC Josephson effect [56,57]. This is technically the simplest
case to handle because the Josephson effect occurs at equi-
librium in the presence of a phase difference between the two
reservoirs. Moreover, it is more directly connected to previous
results on the superfluid weight in infinite lattices [33–35].
Indeed, the superfluid weight is the coefficient of proportion-
ality between the superfluid current and the phase gradient in
the bulk [58,59], while the Josephson critical current is the
coefficient of proportionality between the Josephson current
and the phase bias in the limit of small bias. Thus, it is evident
that the large superfluid weight in a flat band with nonzero
quantum metric, as predicted in previous works [33,35,60],
translates into an expected large Josephson critical current in
a two-terminal setup. This expectation is fully confirmed in
this work, under the condition that the degeneracy between
boundary and bulk states is restored, as briefly explain above
and with extensive details in the following. The Josephson
effect, without any connection to flat-band physics, has been
widely studied in ultracold gas experiments [61–68] and most
recently observed in superfluid Fermi gas [69,70].

The paper is organized as follows. Section II A presents
the model and in Sec. II B the method used to compute the
Josephson current is described in detail. In Sec. III A, we first
discuss results in the case when interactions are not present
within the finite-size sawtooth lattice and then show how the
Josephson current is modified by interactions. In Sec. III B we
include the boundary potentials that allow us to restore the
degeneracy between bulk and boundary states, as discussed
above, and show that the Josephson current through the flat
band is strongly enhanced at resonance. In Sec. III C we
include the effect of a finite temperature and estimate the
superconducting critical temperatures below which a nonzero
Josephson critical current can be observed, both in the flat and
dispersive band case. In Sec. IV a possible experimental re-
alization with ultracold gases is proposed based on an optical
potential that can be used to implement the sawtooth lattice.
Finally, in Sec. V we discuss and summarize the results.

II. METHODS

A. Tight-binding model Hamiltonian

We consider a two-terminal setup comprising a finite
portion of a sawtooth ladder and two leads (the reser-
voirs) described by the following noninteracting tight-binding
Hamiltonian

Ĥ0 = Ĥsawtooth + ĤL + ĤR + Ĥcontact , (1)

where Ĥsawtooth describes the sawtooth lattice, ĤL, ĤR describe
the two leads, left and right, respectively, and Ĥcontact describes
the contact between leads and the sawtooth ladder. A sketch of
a possible experimental setup is shown in Fig. 1(a). The tight-
binding model is presented in Fig. 1(b), where the notation
employed here is also introduced.
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FIG. 1. (a) Sketch of the proposed two-terminal ultracold gas
experiment [47,50]. The cigar shaped cloud of lithium 6 is divided
into two reservoirs by a narrow constriction, where the sawtooth
lattice is imprinted. The red region marks the gate beam used to
control the chemical potential in the junction region. (b) Description
of the two-terminal setup tight-binding model as a graph where the
sites represent onsite energies and the edges the nonzero hopping
amplitudes between sites. The figure introduces the notation and
shows the structure of the sawtooth ladder and the leads. The leads
(red sites) are semi-infinite. (c) The band structure of an infinite
sawtooth ladder with parameters εA = εB = 0, tAB = √

2tAA. Figures
(d)–(f) show examples of different eigenstate types of the finite-size
sawtooth ladder. The sizes of the circles at the lattice sites indicate the
wave-function amplitude squared, that is, the relative probabilities.
(d) An edge state. (e) A flat-band state. The signs ± denotes the
respective phases of the wave function at the sites. (f) A dispersive
band state.

The sawtooth ladder is a 1D lattice with two sites per unit
cell, called A and B [53]. The A sites are connected to the
nearest neighbor A sites by the hopping amplitude tAA and
to the nearest-neighbor B sites by tAB. The B sites are not
connected to each other by direct hopping amplitudes. At each
site there is an onsite energy term εA, εB for A and B sites,
respectively. The sawtooth ladder Hamiltonian is

Ĥsawtooth =
Nc∑

i=1

∑
σ

[(εAĉ†
A,iσ ĉA,iσ + εBĉ†

B,iσ ĉB,iσ )

− (tABĉ†
B,iσ ĉA,iσ + tABĉ†

A,i+1σ ĉB,iσ

+ tAAĉ†
A,i+1σ ĉA,iσ + H.c.)]

+
∑

σ

εAĉ†
A,N+1σ ĉA,N+1σ , (2)

where Nc is the number of unit cells and ĉα,iσ , ĉ†
α,iσ annihilates

and creates, respectively, a particle at the site α = A/B of unit
cell i with spin σ = {↑,↓}.

The sawtooth ladder has two sites per unit cell so it contains
two bands, one of which is flat if the hopping amplitudes
satisfy the condition tAB = ±

√
2t2

AA + (εB − εA)tAA , and the
other is dispersive. We consider here the case εA = εB and
tAB = √

2tAA, which gives the band structure in Fig. 1(c).
The sawtooth ladder tight-binding Hamiltonian with the leads
removed possesses 2Nc + 1 eigenstates, Nc − 1 of which are
the flat-band states, 2 are edge states, also known as boundary
states, and the rest Nc are related to the dispersive band.
The localized flat-band states, where contributions outside a
V shaped region vanish due to destructive interference, are
shown in Fig. 1(e). Notice that the localized states shown in
Fig. 1(e) are not orthogonal to each other. Nevertheless, the
states span the flat-band subspace, and a proper orthonormal
basis can be constructed comprising very similar states, which
however possess exponentially decaying tails [53]. An exam-
ple of a state of the dispersive band is shown in Fig. 1(f). The
dispersive band states are spread over the whole system. An
example of edge state is shown in Fig. 1(d). It has major con-
tribution at one edge and decays exponentially as a function
of distance from the edge.

The leads are modeled as simple chains with local onsite
energy εL, εR where L, R refer to left and right leads, re-
spectively. The lead bandwidth is controlled by the hopping
amplitude between sites tL/R. The leads are connected to the
sawtooth ladder at the edge A sites by contact hopping ampli-
tudes tC . The leads are modeled by the Hamiltonians

ĤL/R =
∑
i,σ

[εL/Rĉ†
L/R,iσ ĉL/R,iσ − tL/R(ĉ†

L/R,i+1σ ĉL/R,iσ + H.c.)],

(3)

where ĉ†
L/R,iσ , ĉL/R,iσ are the creation and annihilation oper-

ators for the leads. The unit cell index i = {1, 2, . . . } in the
lead operators increases from the edge. Finally, the contact
Hamiltonian is

Ĥcontact =
∑

σ

[−tC (ĉ†
L,1σ ĉA,1σ + ĉ†

R,1σ ĉA,N+1σ + H.c.)

+VB(ĉ†
A,1σ ĉA,1σ + ĉ†

A,N+1σ ĉA,N+1σ )] , (4)

where tC is the tunneling amplitude between lead and the saw-
tooth lattice and VB is a boundary potential introduced to tune
the edge states energy and restore degeneracy as discussed in
Sec. I.

B. Interacting Hamiltonian and self-consistent
mean field method

The full many-body grand canonical Hamiltonian takes
the form

Ĥ = Ĥ0 + Ĥint − μN̂, (5)

where the interaction term Ĥint is the Hubbard interaction

Ĥint = −
∑

i

Uα ĉ†
α,i↑ĉα,i↑ĉ†

α,i↓ĉα,i↓, (6)

μ is the chemical potential, and N̂ = ∑
α,iσ ĉ†

α,iσ ĉα,iσ is the
number operator. Here the index α = {L, R, A, B} labels the
various parts of the system, Uα � 0 (attractive interaction)
is the interaction strength, and i goes over the unit cells of
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the tight-binding model. To solve the many-body problem, we
use the Bardeen-Cooper-Schrieffer (BCS) mean-field theory
in the form of the Bogoliubov-Valatin canonical transfor-
mation. In the case of flat bands, the mean-field theory is
expected to perform well for interaction strengths Uα up to
the band gap between the flat band and its nearest neighboring
band [71]. The band gap between the flat band and the dis-
persive band in the sawtooth lattice is 2tAA. In the mean field
approximation, we approximate the Hubbard term as follows,
up to a constant

Uα ĉ†
α,i↑ĉα,i↑ĉ†

α,i↓ĉα,i↓

� Uα

(〈ĉ†
α,i↑ĉα,i↑〉ĉ†

α,i↓ĉα,i↓ + 〈ĉ†
α,i↓ĉα,i↓〉ĉ†

α,i↑ĉα,i↑

+ 〈ĉ†
α,i↑ĉ†

α,i↓〉ĉα,i↓ĉα,i↑ + 〈ĉα,i↓ĉα,i↑〉ĉ†
α,i↑ĉ†

α,i↓
)
. (7)

By utilizing the canonical commutation relations, we write the
system Hamiltonian in Nambu form with the vectors

d̂α,i =
(

ĉα,i↑
ĉ†
α, j↓

)
, d̂†

α,i = (ĉ†
α,i↑ ĉα, j↓). (8)

In this basis, we have up to a constant

Ĥ �
∑
αi, jβ

d̂†
α,iHBdG,αi,β j d̂β, j, (9)

where we have defined the Bogoliubov-de Gennes (BdG)
Hamiltonian HBdG as

HBdG,αi,β j =
(

Tαi,β j + Vαi↓δαi,β j �αiδαi,β j

�∗
αiδαi,β j −Tαi,β j − Vαi↑δαi,β j

)
.

(10)

Here

Tαi,β j = (εα,i − μ)δαi,β j − tαi,β j (11)

includes all of the single-particle terms of the grand canonical
Hamiltonian (5), the superconducting order parameter �αi is
given by the gap equation

�αi = −Uα〈ĉα,i↓ĉα,i↑〉 (12)

and the Hartree potential Vαiσ is given by

Vαi↑/↓ = −Uα〈ĉ†
α,i↓/↑ĉα,i↓/↑〉. (13)

In this work, we assume time-reversal symmetry which im-
plies Vαi↑ = Vαi↓ ≡ Vαi.

The mean-field BdG Hamiltonian is diagonalized as
HBdG = SDS†, where D is a diagonal matrix containing the
eigenvalues of HBdG and S is the unitary matrix comprising
the corresponding eigenvectors as columns, in the respective
order. In the diagonalized basis, the Hamiltonian becomes

Ĥ =
∑
nσ

Enγ̂
†
nσ γ̂nσ (14)

where En are the eigenvalues contained in D and the
quasiparticle operators γnσ are defined by the following

Bogoliubov-Valatin transformations

ĉα,i↑ =
∑

n

(uαi,nγ̂n↑ + v∗
αi,nγ̂

†
n↓)

ĉ†
α,i↓ =

∑
n

(vαi,nγ̂
†
n↑ − u∗

αi,nγ̂
†
n↓), (15)

with coefficients uαi,n, vαi,n given by uαi,n = S2(αi)−1,n, vαi,n =
S2(αi),n related to positive eigenenergies En, where αi =
{1, 2, . . . } denotes the index corresponding to the site of unit
cell i in sublattice α in the indexing of the single-particle
Hamiltonian matrix (11). In the mean-field approximation,
the quasiparticles are noninteracting and thus obey the Fermi-
Dirac statistics.

Using the Bogoliubov-Valatin transformation in Eq. (12),
one obtains the gap equation

�αi = Uα

∑
n

uαi,nv
∗
αi,n tanh

(
βEn

2

)
, (16)

where En is the energy of the respective BdG Hamiltonian
eigenstate n and β = 1/T is the inverse temperature (in our
units Boltzmann’s constant kB = 1) and similarly the Hartree
potential is given by

Vαi = −
∑

n

(
Uα|uαi,n|2

exp(βEn) + 1
+ Uα|vαi,n|2

exp(−βEn) + 1

)
. (17)

In the leads, the order parameters �L/R,i are set to a constant
�L, while the Hartree potential VL/R,i are put to zero. The finite
Josephson current is the result of having the lead supercon-
ducting order parameters equal in amplitude but with different
phases.

The order parameters �A/B,i and the Hartree potentials
VA/B,i are calculated self-consistently. In practice, the values
for the self-consistent parameters are determined by the fol-
lowing iterative algorithm.

(1) Give initial guesses for the self-consistent parameters
�αi and Vαi.

(2) Diagonalize the BdG Hamiltonian HBdG.
(3) Update the self-consistent parameters �αi and Vαi by

using Eqs. (16) and (17) and the eigenvalues and eigenvectors
of the BdG Hamiltonian obtained in step 2.

(4) If the difference between the updated and the pre-
update parameters is less than the wanted accuracy (in an
appropriate norm), end the procedure. Otherwise, go back to
step 2.
Oftentimes this naive iterative procedure does not converge,
leading to an oscillating solution. This issue can be solved
by adopting a mixing algorithm, where self-consistent pa-
rameters of previous iterations are mixed at the Step 3 with
the new values to give the update. For small enough mixing
of the new iterate, the algorithm converges [72]. However,
the convergence can be arbitrarily slow in general. To boost
the convergence, we use two algorithms in combination with
the simple mixing: the Broyden’s method [73], which is
a pseudo-Newton iteration, and the Anderson-Pulay mix-
ing [74,75].

The current expectation value is obtained from the Heisen-
berg equation of motion for the particle number operator
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n̂α,i = ∑
σ ĉ†

α,iσ ĉα,iσ , which leads to

dnαi

dt
=

∑
β j

Iαi,β j + Kαi, (18)

where nαi = 〈n̂αi〉 is the particle number expectation value at
orbital α of unit cell i and

Iαi,β j = i

h̄

∑
σ

tαi,β j (〈ĉ†
α,iσ ĉβ, jσ 〉 − 〈ĉ†

β, jσ ĉα,iσ 〉) (19)

Kαi = i

h̄
(�∗

αi〈ĉα,i↓ĉα,i↑〉 − �αi〈ĉ†
α,i↑ĉ†

α,i↓〉), (20)

where Iαi,β j is the current expectation value from site β j to
site αi, and Kαi is a source term. When the superconducting
order parameter is calculated self-consistently, Kαi vanishes
and particle conservation is ensured since Eq. (18) becomes
the usual continuity equation.

The leads are truncated to finite length so that the system is
finite and closed, as in Ref. [76]. In the leads, however, the su-
perconducting order parameter is constant and not calculated
self-consistently, therefore Kαi is finite and particle number
is not conserved. This allows the system to sustain a finite
equilibrium current even if it is closed. The Josephson current
is obtained by evaluating expectation value in Eq. (19), which
can be written in terms of the Bogoliubov-Valatin transforma-
tion parameters using

〈ĉ†
α,iσ ĉβ, jσ 〉 =

∑
n

(
u∗

αi,nuβ j,n

eβEn + 1
+ vαi,nv

∗
β j,n

e−βEn + 1

)
. (21)

III. RESULTS

A. Josephson current through a sawtooth ladder

We first present results for the Josephson current when
UA/B = 0, which we refer to as the noninteracting case, and
then in the interacting case UA/B 
= 0. Note that the leads are
always assumed to be superconducting; the interactions neces-
sary to induce superconductivity in the leads are not explicitly
considered but are implicit in the constant superconducting
order parameter of the leads. Thus noninteracting/interacting
refers only to the sawtooth lattice in the transport channel. The
noninteracting case is presented here because it is a useful
reference for understanding the interacting case. Indeed, it
illustrates how the various states of the finite-size sawtooth
ladder affect the Josephson current.

We consider leads of 20 sites and a sawtooth ladder with
Nc = 3 unit cells. In order to make the results relevant for
ultracold gas systems, the parameters for the sawtooth ladder
tight-binding model are extracted from a realistic potential
that can be realized experimentally with a digital micromirror
device for instance, shown in Fig. 6. See Sec. IV for more
details on a possible experimental realization. The lead pa-
rameters tL/R = 30 kHz are set so that the lead bandwidth is
wide, that is, large in comparison to the other energy scales
in the system. In Fig. 6 we collect all the sawtooth lattice
parameters that are always fixed for the results presented here.
The energy unit is the hertz (Hz) since we set h̄ = 1. This
scale is appropriate for ultracold gas systems since 1 nK in
temperature corresponds to 20.84 Hz and the usual temper-
atures are of order 60–70 nK [49,50]. The parameters not

specified in Figure 6 are varied in different analyses and
provided separately. We always put a constant order parameter
�L and zero Hartree potential VL = 0 in the leads, moreover in
the noninteracting case the order parameter �A/B and Hartree
potential VA/B ladder vanish within the sawtooth ladder. The
chemical potential μ is tuned in order to control the filling
of the states within the sawtooth ladder. For each value of
the chemical potential, we vary the superconducting phase
difference between the leads from 0 to 2π and determine the
maximal current, known as the critical Josephson current.

The noninteracting results at zero temperature are shown in
Fig. 2(a). The critical Josephson current, that is, the maximal
Josephson current with respect to the phase variation, is shown
as a function of the chemical potential. As a comparison, the
band structure of the infinite sawtooth ladder is shown for
values of the energy corresponding to the chemical poten-
tial. It is seen that there are critical Josephson current peaks
corresponding to the eigenstates of the finite size sawtooth
ladder. Indeed, in the case of noninteracting particles at the
junction, the transport through the lattice can be understood
as being through the 2Nc + 1 eigenstates independently, each
eigenstate behaving as a quantum dot. The literature on the
transport through the quantum dots, including the Joseph-
son transport, is vast [57,77]. The single state quantum dots
present themselves in the Josephson current as peaks with
varying chemical potential, the locations of which are depen-
dent on the energy of the state/dot and the hopping amplitude
between the leads and the dot. Furthermore, the form, width,
and height of the peaks depend on the hopping amplitude and
the order parameter at the leads �L. In the case of the nonin-
teracting particles in the lattice system, the energies and the
effective hopping amplitudes vary from state to state, explain-
ing differences between the peaks. Importantly, the flat-band
states are disconnected from the leads due to the fact that
noninteracting particles are localized in the flat-band states,
thus they do not give rise to any peak in the Josephson current.
In agreement with this picture, we observe three peaks corre-
sponding to the dispersive band and a peak corresponding to
the two almost degenerate edge states. Also, as expected, there
are no peaks corresponding to the flat-band state. We see that
the positions of the peaks closely matches the band structure.

Next, we include interactions in the finite-size sawtooth
ladder as well (UA = UB 
= 0) and compute self-consistently
the superconducting order parameter �A/B,i and the Hartree
potential VA/B,i as discussed in Sec. II B. The critical Joseph-
son current as a function of the chemical potential is shown in
Fig. 2(b). A new critical Josephson current peak is observed,
which corresponds to the flat-band states. This agrees with the
theoretical expectation based on the study of infinite lattice
systems, since noninteracting particles are localized in flat
bands but a finite interaction in geometrically nontrivial flat
bands makes particles nonlocalized [33–35,78]. Furthermore,
due to interactions, the current through all the states increases
due to the increase of the pair potential by the interactions.
Also, the peaks are shifted to lower chemical potential due
to the Hartree potential. The widths and the shapes of the
dispersive and boundary state peaks are also slightly modi-
fied in comparison to the noninteracting case. However, these
changes are not qualitatively significant. The presence of a fi-
nite peak corresponding to the flat band is entirely an effect of
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FIG. 2. (a) Critical Josephson current vs chemical potential μ for a sawtooth ladder with Nc = 3 unit cells without interactions (UA/B =
�A/B,i = VA/B,i = 0). In the lower panel, the band structure of an infinite sawtooth lattice, with the edge state energy indicated as a dashed line,
is shown for comparison. The dispersive band states are responsible for the first three peaks from the left and are situated within the dispersive
energy band of the infinite sawtooth ladder. There are Nc dispersive band states in a finite-size sawtooth ladder with Nc unit cells. The fourth
peak is caused by the two almost degenerate edge states. The flat-band states (marked with blue in the dispersion relation) are not visible
since noninteracting particles are localized in these states. (b) Critical Josephson current vs chemical potential through the interacting sawtooth
ladder for various interaction strengths UA/B. We observe the peaks of the same origin as in the noninteracting case of (a) and additionally a
peak corresponding to the two bulk flat-band states [see Fig. 1(e)].

interactions, in line with the expectation that transport through
flat-band states is especially sensitive to perturbations. The
flat-band state peak critical Josephson current is found to be
linearly dependent on the interaction strength UA/B as can be
expected from the linear dependence of the superfluid weight
on the interaction strength in the case of an infinite lattice [33].
We observe that the flat-band state current peak is quite small
in comparison to the current associated to dispersive band
states even with interaction strength of the order of the band
gap between the flat band and the dispersive band.

B. Boundary potential

The observed flat-band state peak critical current in
Fig. 2(b) is small in comparison to the critical currents through
the dispersive band states. As we argued in Sec. I, the reason
for this is the loss of degeneracy between bulk and edge
states. In order to restore the degeneracy, we use the boundary
potential VB described in Sec. II A to tune the energy of the
edge states. The effect of the edge state potential on the current
is illustrated in Fig. 3. The parameters are the same as in the
previous Sec. III A if not specified otherwise. It is seen that at
a certain value of the edge potential VB, the current is increased
significantly with respect to the case VB = 0. We have checked
that at this value of the edge potential, the flat-band states
and the edge states are degenerate. Thus, the hypothesis that
the flat-band current is significantly increased when the edge
states and flat-band states are degenerate seems to be correct.
Importantly, the flat-band critical Josephson current is seen to
increase linearly with the interaction strength in Fig. 3(c). We
studied also the dependence of the flat-band state current on
the length of the lattice. The results are shown in Fig. 4(a). It

is seen that, at the boundary potential resonance condition, the
current dependence on the length (measured as the number of
unit cells Nc) follows a power law I ∝ Nα

c with α ≈ −1. This
behavior is the one expected in the long junction limit [79,80]
and is consistent with how the superconducting phase varies
within the lattice, as shown in Fig. 4(b). It is seen that at
the conditions of peak flat-band current, the critical current
is achieved when the phase difference between the leads is
close to π . Furthermore, the phase varies linearly from one
lead to another. Since the Josephson current is proportional
to the gradient of the phase, which is inversely proportional
to the length of the lattice in the presence of a constant
phase bias, the observed power law behavior of the current
is obtained. Importantly, the order parameter amplitude |�|
at the peak flat-band current condition is seen to be roughly
uniform within the junction. In contrast, at the off-peak con-
dition also shown in Fig. 4(b), where dispersive band states are
completely filled but the flat-band states are empty, the order
parameter � decays exponentially which is a signature of the
proximity effect that determines the Josephson current in this
case. Thus, at the peak condition, the local order parameter �

within the lattice is mostly due to the local interaction, with
only a small contribution from the proximity effect seen at the
edges.

C. Finite temperature

The previous results have been obtained at zero tempera-
ture T = 0. We consider in this section the finite temperature
case in order to understand the temperature regions where the
experiments are potentially performed and seek for the dif-
ferent expected temperature dependence of the critical current
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FIG. 3. (a) Critical Josephson current vs chemical potential μ for different boundary potentials VB. For clarity, the curves have been shifted
up as indicated. When VB = 260 Hz (blue curve) the flat-band current is strongly enhanced. Here, �L = 2.0 kHz and tC = 1.0 kHz. (b) The
peak critical Josephson current at the flat band versus boundary potential VB for different interaction strengths UA/B. It is seen that the current
is maximal around a UA/B-dependent value of VB and beyond that the current begins to decrease. This VB value, called the degeneracy value,
corresponds to the case in which the bulk flat-band states and the edge states become degenerate in energy. (c) The dependence of the flat-band
peak critical Josephson current on the interaction strength UA/B both when VB is tuned at the resonance value and at VB = 0. The dependence is
found to be linear in both cases but the current is an order of magnitude higher at the degeneracy value of VB.

corresponding to the flat-band states and the dispersive band
states. The critical temperatures are determined by finding
the temperatures at which the critical current vanishes. We
consider the situation with the edge potential VB tuned to
the degeneracy. Otherwise, the parameters are the same as in
Fig. 3. The results are shown in Figs. 5(a) and 5(b). It is seen
that the critical temperature of the flat-band state is higher
than for the dispersive state. Also, the functional dependency
of the critical temperature on the interaction is found to be
different for dispersive band states and the flat-band states:
For flat bands the dependence is linear but for dispersive band
states it is not. The critical temperature for dispersive band
states is found to be in the range 1–2 nK for the considered
interaction strengths, whereas for the flat band it is 2–4 nK.

IV. EXPERIMENTAL REALIZATION

Based on the theoretical results shown in Figs. 2–5, we
now discuss a possible experimental realization in a meso-
scopic cold atom transport experiment. Fermionic lithium-6
is an ideal candidate for probing transport in such structures
due to its light mass, which leads to high tunneling rates
between lattice sites and tunable interactions from weakly
interacting BCS limit to strong interactions (so-called unitar-
ity regime [42,81]). The two leads and the scattering region
connecting them can be formed out of a cloud of lithium atoms
in a dipole trap by shining two TEM01 beams of blue-detuned,
repulsive light. The resulting channel at the intersection of the
two beams’ nodal planes (Fig. 6) permits transport between
the two leads which is ballistic in the case described or, if an
additional potential like a sawtooth lattice is projected into this

region, can have a more complex energy dependence which
can be probed by an additional gate beam.

Transport properties of the scattering region such as the
conductance or critical current can be measured by preparing
a particle number imbalance between the two reservoirs and
measuring the particle number in each reservoir as a function
of time via absorption imaging. The critical current can then
be probed via coherent Josephson oscillations in the parti-
cle imbalance in addition to the normal, dissipative flow as
the frequency of these oscillations is directly proportional to
the square root of the critical current for small particle and
phase imbalances [64]. This peculiar dependence of the oscil-
lation frequency on the square root of the critical current is a
consequence of the finite size of the reservoirs, as explained in
the following. The Josephson relations are I = Ic sin φ ≈ Icφ

and ∂tφ = �μ/h̄. The current dynamically changes the par-
ticle number imbalance I = −∂t�N/2 which in turn changes
the chemical potential imbalance �N = κ�μ via the com-
pressibility of the reservoirs κ = (∂N/∂μ)T . Combining these
expressions, we obtain the equation

∂2
t �N = −(2Ic/h̄κ )�N = −ω2

J�N (22)

which gives the Josephson frequency ωJ = √
2Ic/h̄κ .

The sawtooth lattice can be projected onto the 1D region by
holographically shaping an attractive, red-detuned beam with
a digital micromirror device (DMD) acting as a spatial light
modulator and focusing the beam through a high-resolution
microscope [82]. This setup allows us to project many tightly-
focused gaussian spots, each acting as a lattice site, with
waists on the order of the diffraction limit (approximately
0.9 μm), an example of which is shown in Fig. 6. For the
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FIG. 4. (a) Dependence of peak flat-band state current on the
length of the sawtooth ladder for different interaction strengths US .
Here, it is observed that the data follows a power law: The fits
I ∝ N−α

c , where I is the current and Nc is the number of unit cells,
are also shown. The fitted exponents are α = 0.99 for US = 100 Hz,
α = 0.95 for US = 200 Hz, and α = 0.95 for US = 300 Hz. (b) The
variation of the phase angle and the absolute value of the order
parameter � within the ladder for the condition of maximal flat-band
critical current and in the off-peak condition, where the dispersive
band states are filled but the flat-band states are empty. The site index
increases from the left edge to the right edge of the lattice [check
Fig. 1(b)], unit cell by unit cell, the A sites before B sites. It is seen
that at the peak condition the phase of � increases linearly from 0
at the left lead to π at the right lead. Since the Josephson current is
proportional to the gradient of the phase, this explains the power law
behavior observed in Fig. (a). It is also demonstrated that � within
the lattice is mostly due to local interactions instead of the proximity
effect, which is instead observed in the off-peak case, where the
proximity effect effectively extends the leads into the lattice. The
parameters used in (a) and (b) are �L = 2 kHz and tC = 2 kHz.

simple case of a set of gaussian spots, the optimal amplitude
and phase holograms can be computed analytically, while
a sophisticated phase-retrieval algorithm [83] allows us to
calculate the optimal holograms for more complex target po-
tentials. Both methods are flexible enough to continuously
tune the depth of the boundary sites to bring the edge states
into resonance with the flat-band states. For this work, a model
sawtooth ladder with three unit cells was simulated to extract
experimentally realistic parameters for the tunneling ampli-
tudes provided in Fig. 6. Eventually this will also allow us to
further optimize the sawtooth lattice based on the theoretical
predictions.

The main challenge in implementing this scheme using
cold atoms is the energy scales imposed by the flat band
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FIG. 5. (a) The peak critical Josephson current dependence on
temperature for the dispersive band state with the largest current.
The current vanishes around 1–2 nK, depending on the interaction
strength UA/B. (b) The peak critical Josephson current dependence on
temperature for the flat-band states. The boundary potential VB is set
here to the degeneracy value. The current vanishes below measurable
amplitude around 2–4 nK, depending on the interaction strength
UA/B. The dependence of the critical current on the temperature
and of the critical temperature on the interaction is different for the
flat-band states and the dispersive band states.

and the detection sensitivity needed to measure the critical
currents. The minimum achievable temperature in the reser-
voirs is approximately 50 nK which leads to a temperature
broadening of the Fermi-Dirac distribution of approximately
4kBT = 4.2 kHz and therefore limits the energy resolution
of the transport spectrum to that order of magnitude. Since
the transmission peaks between the dispersive and flat-band
states are predicted to be separated by only 600 Hz, transport
through the flat band cannot be distinguished from transport
through the dispersive bands. This means that we must either
reduce the temperature or increase the tunneling rate. We
can further cool the system by changing the geometry of the

A
B

L

εA εB tAA tAB

17.8 kHz 17.8 kHz 271 Hz 383 Hz

FIG. 6. A possible optical potential for implementing the saw-
tooth ladder in a two-terminal transport experiment with ultracold
gases. The corresponding tight-binding model graph is shown on top
of the potential. The tight-binding parameters of the sawtooth lattice
shown below are extracted from the potential and have been used to
produce all of the results presented in this work.
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reservoir trap from harmonic to a uniform box trap whose
resulting deconfinement reduces the temperature [84] and
would allow us to reach temperatures on the order of 30 nK. A
possible method to increase the tunneling rates is to exploit a
three-level system present in lithium at high magnetic fields to
impose lattices with subwavelength spatial structure [85]. The
critical currents predicted in this work are likely below the
detection limit of our current experiment though it is possible
that measuring the Josephson oscillation frequency instead of
the critical currents directly circumvents this problem. How-
ever if the oscillations are indeed still too small to resolve,
one could measure the normal dissipative transport instead
of the DC Josephson effect, i.e., the response to a chemical
potential imbalance rather than a phase imbalance. In this
way, the strength of the signal—the conductance through the
flat-band states—can be increased simply by increasing the
imposed chemical potential bias.

V. DISCUSSION AND CONCLUSION

The strong effect of interactions in a flat (dispersionless)
band has been predicted to lead to high critical temperatures of
superconductivity [30,31], as well as supercurrents and super-
fluidity guaranteed by quantum geometric quantities [33,35].
According to theory, in a flat band the critical temperature
and the superfluid weight depend linearly on the strength
of the interaction that leads to Cooper pair formation; this
is a direct signature of the geometric contribution of super-
conductivity [33,35]. The linear dependence is in striking
contrast to the dispersive single band case where the critical
temperature is exponentially suppressed and the superfluid
weight is only weakly dependent on the interaction. Flat band
superconductivity has become topical since the observation of
superconductivity in twisted bilayer graphene [23] and other
moiré materials [86,87] hosting flat bands. The geometric
contribution of superconductivity has been suggested to play a
role there [36–39], however, its direct verification is challeng-
ing due to the complexity of the moiré materials and limited
possibilities of precisely tuning the interaction strength. We
proposed here a two-terminal setup to investigate how the
salient features of flat-band superconductivity manifest in a
transport experiment. Such an experiment can be realized
with ultracold gases where the interaction strength is highly
controllable and optical lattice potentials that correspond to
simple flat-band models can be realized.

We considered a finite-size sawtooth lattice in the channel
between two reservoirs and characterized the DC Josephson
current. We showed that the linear dependence on the interac-
tion, as expected from the theory for infinite flat-band lattice
systems, is visible in the critical current. The experiment we

propose would thus be able to prove the flat-band nature and
geometric origin of the superconductivity. The finite size of
the lattice manifests itself in an intriguing way: In order to
maximize the Josephson current through the bulk flat-band
states, one needs to make them degenerate with the boundary
states that appear in a finite system and connect the lattice to
the leads. Once this energy resonance condition is reached, the
critical current and the critical temperature are higher in the
flat band than in the dispersive bands, highlighting the general
promise of flat-band superconductivity.

Our calculations used parameters obtained from micro-
scopic modeling of real experimental potential landscapes,
and we discussed the feasibility of the experiments. It is
particularly important that both the interaction and the flat-
band state–boundary state energy difference can be easily
controlled in the proposed ultracold gas setup. The former is
needed for exploring the fundamental properties of flat-band
superconductivity, and the latter is useful in verifying that the
effects of the finite size of the lattice are well described by the
theory presented here. The main challenge in the experimental
realization is the temperature scale of the current experiments,
which has to be either reduced or made relatively smaller by
increasing the hopping energy in the lattice.

Our results show that two-terminal transport experiments,
in general, are a promising platform to explore fundamental
features of flat-band superconductivity and that ultracold gas
transport setups are particularly suited for this. We showed
that the finite size of the flat-band lattice system in the trans-
port channel does not prevent observing the most important
characteristics of flat-band superconductivity, in contrast, it
provides an additional turning knob for the experiments. An
interesting future direction is to study also nonequilibrium
flat-band transport. The investigation can also be extended to
other lattice models such as the railroad-trestle model, realiz-
able as a zigzag lattice [88], and the diamond lattice [89].
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