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ABSTRACT 

Strong conceptual understanding contributes to mathematics learning. 
Manipulatives (i.e., hands-on learning tools that allow for mathematical concept 
exploration through different senses) can facilitate students’ understanding of 
mathematical concepts when used meaningfully. However, a body of research has 
demonstrated that although teachers have considered manipulatives pedagogically 
beneficial, when it comes to everyday classroom practice, they often prefer 
traditional teacher-centred and paper-and-pencil instruction. 

This doctoral research aims to develop a manipulative and its appropriate use to 
promote not only students’ understanding of mathematical concepts, but also 
classroom adoption. Solving one-variable linear equations in primary school 
classrooms was used as a case study. An educational design research (EDR) approach 
was used throughout three phases of a 6-year enquiry: initial research, concept 
development, and design development. Phase 1 (initial research) was undertaken to 
gain a theoretical and contextual understanding and investigate existing 
manipulatives. In Phase 2 (concept development), four manipulative concepts were 
generated based on the Phase 1 findings. Each concept was then evaluated in terms 
of its pedagogical benefits and compatibility with school and classroom practice. 
During Phase 3 (design development), informed by the Phase 2 findings, a design 
solution (i.e., a tangible manipulative allowing physical input and providing digital 
output, student worksheets, teacher guides, and class activities) was developed. The 
developed design solution was then implemented and evaluated in classrooms. 

Empirical research was conducted in Finnish comprehensive schools. Altogether, 
18 teachers, 98 primary school students, and 65 lower secondary school students 
took part in different phases of the research. The data were collected using mixed 
methods, including class interventions, paper-based tests, thinking aloud, 
questionnaires, and interviews. Qualitative and quantitative data collected from 
various methods and data sources were simultaneously analysed and then compared 
and combined to holistically understand the research results. 

Together, multiple iterations (of investigation, design, and assessment) resulted 
in practical and theoretical outcomes. The research-based design solution, which 
promotes students’ understanding of equation-solving concepts and classroom 
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practice, is the practical outcome of this research to directly improve educational 
practice. Additionally, the research contributes to three types of theories: domain 
theories, design frameworks, and design methodologies. 

The first theoretical outcome is a domain theory yielding two types of knowledge, 
that is, context and outcomes knowledge. The context knowledge describes the 
challenges and opportunities of using manipulatives in mathematics classrooms, as 
well as strengths and limitations of existing manipulatives. The outcomes knowledge 
describes outcomes of implementing the design solution: the developed tangible 
manipulative accompanied by the instructional materials enhanced students’ 
understanding of equation-solving concepts through discovery learning, social 
interaction, and multimodal expression of mathematical thinking; the manipulative 
is likely to be adopted in the classroom because of its pedagogical benefits and 
compatibility with school and classroom practice. The second theoretical outcome 
is a design framework for real-world educational technologies. Content, pedagogy, 
practice, and technology should be taken into consideration when designing real-
world educational technologies to ensure their educational benefits, utilisation, 
adoption, and feasibility. The third theoretical outcome is a design methodology built on 
firsthand experience from undertaking this EDR. The guidelines for conducting 
EDR guides how to embrace opportunities and overcome challenges that may 
emerge. 

This research contributes to a link between research and practice in mathematics 
education. It provides researchers with knowledge of how multimodal interaction 
with manipulatives enhances mathematics learning and guidelines for conducting 
EDR. It guides educational designers to take various aspects into consideration when 
designing educational technologies to improve real-world practice. Moreover, this 
research also has practical implications. First, it encourages teacher educators to 
prepare pre- and in-service teachers for successful incorporation of manipulatives in 
their mathematics classrooms. Second, it guides practitioners on how to support 
their students to benefit from manipulatives. Third, it urges schools to support the 
acquisition and utilisation of manipulatives. Finally, it calls on school curricula to 
encourage the use of manipulatives in the mathematics classroom to promote 
students’ conceptual understanding. 

Keywords: linear equation solving, conceptual understanding, manipulatives, 
educational technologies, educational design research 
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understanding can hinder students’ mathematics learning and performance (e.g., 
Andamon & Tan, 2018; Kilpatrick et al., 2001). The national mathematics curricula 
and standards of various countries, including Australia, Finland, and the United 
States, have recently paid more attention to students’ conceptual understanding, 
instead of focusing solely on procedural knowledge and skills (see Australian 
Curriculum, Assessment and Reporting Authority [ACARA], 2016; EDUFI, 2016; 
National Governors Association Center for Best Practices [NGA] & Council of 
Chief State School Officers [CCSSO], 2010). 

Mathematics textbooks have traditionally been used as the main instructional 
materials in schools around the world (see e.g., Alshwaikh & Morgan, 2013; Lepik et 
al., 2015; Neber, 2012). In Finland, it is common for each student to silently do 
exercises in the textbook during mathematics lessons (Joutsenlahti & Kulju, 2017), 
but recently, there has been a growing concern that students’ low performance in 
mathematics could be partially a result of textbook-emphasised instruction 
(Alshwaikh & Morgan, 2013; Joutsenlahti & Vainionpää, 2010). The Finnish NCC 
2014 (EDUFI, 2016) underlines the significant role of ICT and concrete hands-on 
learning tools in mathematics across all grade levels. 

A variety of technologies are being increasingly used in mathematics classrooms 
for different purposes, including conceptual understanding development, skills 
development, performance improvement, attitude change, collaboration and 
discussion support, and teacher support (Bray & Tangney, 2017). The use of 
educational technology to enhance mathematics education has been emphasised in 
the current Finnish NCC (EDUFI, 2016), as well as in other international curricula 
(e.g., ACARA, 2016; NGA & CCSSO, 2010). Education technology has played a 
significant role in distance learning during the COVID-19 pandemic. Despite the 
potential benefits of technology in mathematics education, technology is only a tool, 
not an end. The value of technology utilisation in mathematics education depends 
on how it is used by teachers and students (National Council of Teachers of 
Mathematics [NCTM], 2014; Tran et al., 2017; Warren et al., 2016). 

Mathematical manipulatives, such as beads, geoboards, and educational apps, have 
been advocated as hands-on learning tools that enable students, particularly pre- and 
primary school students, to explore abstract mathematical concepts through 
different senses. While previous studies on the pedagogical effectiveness of 
manipulatives have yielded mixed results (e.g., Manches & O’Malley, 2012; Uribe-
Flórez & Wilkins, 2017), there is evidence that proper use of manipulatives is likely 
to enhance students’ understanding of mathematical concepts (e.g., Carbonneau et 
al., 2013; Kilpatrick et al., 2001; McNeil & Jarvin, 2007). 
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Most research (e.g., Carbonneau et al., 2013; Moyer-Packenham & Westenskow, 
2013; Uribe-Flórez & Wilkins, 2017; Vessonen et al., 2020) has focused on 
examining the impact of manipulatives on students’ mathematics learning and 
achievement. Some studies (e.g., Marshall & Swan, 2008; Moyer-Packenham et al., 
2013) have investigated the use of manipulatives in the classroom, including 
commonly used manipulatives, grade level utilisation, frequency of use, advantages 
and disadvantages, and hindrances to their utilisation. Research findings reveal 
disagreement between pedagogical benefits and the classroom utilisation of 
manipulatives. Although primary and lower secondary school teachers have 
considered manipulatives to be beneficial to mathematics learning, they usually 
prefer to use traditional teacher-centred and paper-and-pencil instruction in their 
classrooms (e.g., Joutsenlahti & Vainionpää, 2010; Marshall & Swan, 2008; Toptaș 
et al., 2012). This finding signals that the classroom adoption of pedagogically sound 
manipulatives may be hindered by day-to-day practice-related factors. 

To date, a considerable number of studies have been conducted to gain a better 
understanding of manipulatives, particularly regarding their benefits to mathematics 
learning and classroom utilisation. Little attention has been paid to holistically 
integrating the research findings regarding these aspects. Moreover, most research 
has failed to directly link its findings on manipulatives and the actual utilisation of 
manipulatives in real educational settings, apart from providing implications for 
practice. 

This indicates a need for research that holistically investigates how to benefit 
from the use of manipulatives in classrooms and then utilises the derived knowledge 
to develop manipulatives that enhance students’ conceptual understanding as well as 
classroom practice. Such research would simultaneously contribute to both theory 
and practice in mathematics education. 

1.2 Objectives and research questions 

This doctoral research was conceived during my time as a primary school remedial 
teacher. I witnessed an incident in which mathematical manipulatives were buried 
under a pile of dust in the school copy room. The incident left me wondering why 
potentially useful learning tools bought with the school’s tight budget were 
abandoned. Having a background in educational design and primary school 
education, I intend to utilise my expertise to answer this question and find a better 
solution. 
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This study used an educational design research (EDR) approach to bridge the 
research on manipulatives and its direct benefits to real-world educational practice. 
Learning to solve one-variable linear equations in primary schools was used as a case 
study because this important area in algebra has typically been taught regarding rules 
and procedures instead of the concepts contributing to those rules and procedures 
(Figueira-Sampaio et al., 2009; Kilpatrick et al., 2001). Research has indicated that 
students’ inadequate understanding of equation-solving concepts hinders their 
equation-solving learning and performance (e.g., Booth & Koedinger, 2008; Knuth 
et al., 2006). 

This study aims to develop a manipulative and its appropriate use to promote not 
only students’ understanding of mathematical concepts, but also classroom 
adoption. It also intends to possibly take advantage of technologies that can 
contribute to this aim. This study was undertaken through three phases of a 6-year 
EDR enquiry: initial research, concept development, and design development 
(Figure 1). First, the challenges and opportunities of using manipulatives in primary 
school classrooms were investigated. Then, four manipulative concepts that help 
students understand linear equation-solving concepts were generated and evaluated. 
Finally, a manipulative and its accompanying instructional materials and class 
activities were developed. The manipulative was developed by taking into account 
both pedagogy and practicality to ensure its successful utilisation and adoption in the 
classroom. It was then implemented and evaluated in the classroom. 

 

 

Figure 1.  Three phases of doctoral study, illustrated by T. Lehtonen 

The research-based design solution that directly improves educational practice is the 
practical contribution of this study. Additionally, this study intends to advance three 
types of EDR theories proposed by Edelson (2002): (1) domain theories, knowledge 
about a real-world educational problem to be solved (context theory), and outcomes of 
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implementing a design solution to solve that particular problem (outcomes theory); (2) 
design frameworks, knowledge about the characteristics of a successful design solution 
to a particular educational problem in a particular setting; and (3) design methodologies, 
knowledge about successfully conducting EDR (for more details, see Chapter 3.1). 
The study strives to answer the following research questions (RQs): 

1. Domain theory is divided into two sub-questions: 

1.1 Context theory: What are the needs, challenges, and 
opportunities of using manipulatives in primary school 
classrooms? What are the strengths and limitations of existing 
manipulatives? (Publications II and IV) 

1.2 Outcomes theory: How does the developed design solution 
help students understand equation-solving concepts and 
encourage teachers to adopt it in their classrooms? 
(Publications III and IV) 

2. Design framework: What key aspects should be taken into account when 
developing a manipulative to ensure its successful classroom utilisation 
and adoption? (Publications III and IV) 

3. Design methodology: What guidelines for conducting successful EDR 
can be drawn from the lessons learnt from undertaking this study? 
(Publications I and IV) 

The RQs were addressed in four publications. The contributions of the publications 
to the RQs are presented in parentheses after each RQ. 

1.3 Summary of the publications 

Publication I aims to better understand how EDR, a research approach of this 
dissertation, has been used, and what challenges it has encountered during the last 
two decades in similar research environments. This publication systematically 
reviewed 21 Finnish EDR doctoral dissertations on mathematics, science, and 
technology education published between 2000 and 2018, particularly in terms of their 
EDR process, research methodology, contributions, and challenges. Although the 
publication did not directly answer RQ 3, its results guided the planning and 
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implementation of this study and provided fundamental methodological knowledge 
for Publication IV. 

Publication II seeks to advance the context knowledge regarding the use of 
manipulatives in classrooms to support students’ understanding of equation-solving 
concepts (partially RQ 1.1). It investigated pedagogical challenges and opportunities 
when learning to solve equations with two existing manipulatives in real classrooms 
compared to traditional paper-and-pencil instruction. The publication reports on the 
pedagogical benefits and limitations of both manipulatives. The findings provided 
initial ideas for how to design potential solutions that could better enhance students’ 
understanding of equation-solving concepts. 

Publication III reports the design principles guiding design solution 
development as well as the development, implementation, functions, and features of 
the design solution, its classroom evaluation regarding pedagogical benefits and 
usability, and its future development. This publication provides outcome knowledge 
about how the developed manipulative enhanced students’ understanding of 
equation-solving concepts and how usable it was in real educational settings (partially 
RQ 1.2). Additionally, the established design principles contribute to the design 
framework (RQ 2) by providing key characteristics for a design solution to 
successfully improve educational practice in this particular context. 

Publication IV summarises the overall EDR process of this doctoral study. This 
publication highlights various practical factors as well as the strengths and limitations 
of existing manipulatives that were found to have an effect on manipulative 
utilisation and adoption in classrooms (partially RQ 1.1). It continues to describe 
how these findings informed the design development and how the incorporation of 
practical considerations into the design contributed to the positive design evaluation 
results (partially RQ 1.2). Additionally, based on the experience of the doctoral study, 
the publication proposes a design framework that underlines key aspects that should 
be taken into account when developing design solutions to a similar educational 
problem in other contexts (RQ 2). Built on the findings in Publication I, Publication 
IV highlights the lessons learnt from undertaking this EDR and then provides 
guidelines for conducting successful EDR (RQ 3). 

1.4 Structure of the dissertation 

This dissertation is divided into seven chapters. The introduction (Chapter 1) is 
followed by Chapter 2, which highlights the theoretical background of the research. 
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Chapter 3 outlines the research methodology: research approach, context, process, 
design, as well as ethics and integrity. Chapter 4 describes the research process and 
key findings of all three research phases: initial research, concept development, and 
design development. Chapter 5 reflects on my experience in developing the design 
solution and undertaking this EDR. Chapter 6 evaluates the research quality of this 
dissertation. Chapter 7 summarises the theoretical outcomes of the research, 
explores research contributions, reflects on research limitations, and finally provides 
suggestions for future research. 
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2 THEORETICAL BACKGROUND 

This doctoral research aims to develop a manipulative and its appropriate use to 
promote not only students’ understanding of equation-solving concepts, but also 
classroom adoption. In this chapter, I outline the theoretical background necessary 
for the development of such manipulatives and how to use it meaningfully. Learning 
mathematics with understanding is presented first, followed by mathematics 
manipulatives and linear equation solving. 

2.1 Learning mathematics with understanding 

2.1.1 Defining conceptual understanding 

There has long been a debate in mathematics education regarding the competence 
needed to succeed in learning mathematics, particularly procedural knowledge (e.g., 
Hiebert & Carpenter, 1992; Kilpatrick et al., 2001). Traditional school mathematics 
typically emphasises developing students’ procedural knowledge and computational 
skills (e.g., Groves, 2012; Kilpatrick et al., 2001), but a growing body of literature and 
research has acknowledged that knowledge and skills in handling computational 
procedures alone are insufficient to succeed in learning mathematics (Kilpatrick et 
al., 2001; Schoenfeld, 2007). The need for a shift from this focus to also including 
other important mathematical proficiency has increasingly gained the attention of 
mathematics education scholars since the late 1900s. 

Skemp (1976) identified two types of mathematical understanding: instrumental 
understanding and relational understanding. He described instrumental understanding as 
knowing how to perform mathematical procedures, and relational understanding as 
knowing both how to perform them and why (p. 2). He argued that learning 
instrumental mathematics teaches a learner step-by-step instructions on how to 
complete a particular task, so the learner usually needs new guidance for completing 
a new task. On the contrary, relational understanding enables learners to construct 
their own paths to execute a certain task and be able to execute novel tasks. 
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According to Hiebert and Lefevre (1986), mathematical knowledge comprises the 
primary relationship between two types of knowledge: conceptual and procedural 
knowledge. They defined conceptual knowledge as a network that links all pieces of 
information (pp. 3–4), and procedural knowledge as a familiarity with mathematical 
symbols as well as rules and procedures used to execute mathematical tasks (p. 6). 
They emphasised that both types of knowledge were important and closely related. 
They also cautioned that rote learning resulted in knowledge that was closely tied to 
a specific mathematical task and not connected with other knowledge. It is difficult 
to apply such knowledge to other tasks that are different from those for which it was 
initially intended. Therefore, to be competent in mathematics, students need to 
meaningfully learn sufficient conceptual and procedural knowledge, as well as 
connect them. 

Kilpatrick et al. (2001) proposed a model of mathematical proficiency—
knowledge, skills, abilities, and beliefs—for today’s students to learn mathematics 
successfully. Their concept of mathematical proficiency consists of five intertwined 
strands: conceptual understanding (understandings of mathematical concepts, 
operations, and relations), procedural fluency (ability to perform mathematical 
procedures flexibly, accurately, efficiently, and appropriately), strategic competence 
(capability to formulate, represent, and solve mathematical problems), adaptive 
reasoning (competence in logical thinking, reflection, explanation, and justification), 
and productive disposition (perception of mathematics as sensible, useful, and 
worthwhile, and belief in their own diligence and efficacy; p. 5). Kilpatrick et al. 
emphasised that each component of mathematical proficiency was important, and 
interwoven and interdependent. Their (2001) model of mathematical proficiency has 
been adopted by mathematics curricula and standards in various countries, including 
Australia (ACARA, 2016) and the United States (NGA & CCSSO, 2010), and 
endorsed by various mathematics education scholars (e.g., Moschkovich, 2015; 
Schoenfeld, 2007). 

Within this dissertation, conceptual understanding (used interchangeably with 
mathematical understanding and understanding of mathematical concepts) is defined 
based on Skemp’s (1976) relational understanding, Hiebert and Lefevre’s (1986) 
conceptual knowledge, and Kilpatrick et al.’s (2001) conceptual understanding. 
Although the main interest of this study is understanding mathematical concepts, an 
understanding of operations and relations (e.g., why the procedure is appropriate for 
a particular task) was also included in the study due to their interconnection. 

There has been growing recognition that students’ inadequate understanding of 
mathematical concepts can result in their low performance in mathematics 
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2 THEORETICAL BACKGROUND 

This doctoral research aims to develop a manipulative and its appropriate use to 
promote not only students’ understanding of equation-solving concepts, but also 
classroom adoption. In this chapter, I outline the theoretical background necessary 
for the development of such manipulatives and how to use it meaningfully. Learning 
mathematics with understanding is presented first, followed by mathematics 
manipulatives and linear equation solving. 

2.1 Learning mathematics with understanding 

2.1.1 Defining conceptual understanding 

There has long been a debate in mathematics education regarding the competence 
needed to succeed in learning mathematics, particularly procedural knowledge (e.g., 
Hiebert & Carpenter, 1992; Kilpatrick et al., 2001). Traditional school mathematics 
typically emphasises developing students’ procedural knowledge and computational 
skills (e.g., Groves, 2012; Kilpatrick et al., 2001), but a growing body of literature and 
research has acknowledged that knowledge and skills in handling computational 
procedures alone are insufficient to succeed in learning mathematics (Kilpatrick et 
al., 2001; Schoenfeld, 2007). The need for a shift from this focus to also including 
other important mathematical proficiency has increasingly gained the attention of 
mathematics education scholars since the late 1900s. 

Skemp (1976) identified two types of mathematical understanding: instrumental 
understanding and relational understanding. He described instrumental understanding as 
knowing how to perform mathematical procedures, and relational understanding as 
knowing both how to perform them and why (p. 2). He argued that learning 
instrumental mathematics teaches a learner step-by-step instructions on how to 
complete a particular task, so the learner usually needs new guidance for completing 
a new task. On the contrary, relational understanding enables learners to construct 
their own paths to execute a certain task and be able to execute novel tasks. 
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mathematical concepts can result in their low performance in mathematics 
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(Kilpatrick et al., 2001). Thus, mathematics education must foster students’ 
mathematical understanding, along with other components of mathematical 
proficiency (e.g., Barmby et al., 2010; Kilpatrick et al., 2001; Moschkovich, 2015). 
According to the literature and previous studies, strong conceptual understanding 
has a number of advantages to mathematics learning, including: 

• Promoting retention of what has been already learnt. Knowledge learnt 
with understanding is well connected, and therefore easier to remember 
(Hiebert & Carpenter, 1992; Kilpatrick et al., 2001; Skemp, 1976), long-
lasting (Hiebert & Carpenter, 1992), and easier to recall when forgotten 
(Kilpatrick et al., 2001). 

• Helping avoid errors. Knowledge that has been learnt with understanding 
is unlikely to be remembered incorrectly (Kilpatrick et al., 2001). 

• Promoting learning transfer. Knowledge learnt with understanding 
enables students to adapt what they have learnt to solve novel problems 
(Hiebert & Carpenter, 1992; Kilpatrick et al., 2001; Skemp, 1976). 

• Supporting the learning of new concepts. Prior knowledge learnt with 
understanding enables students to learn new related concepts more easily 
because they can see the relationship between learnt and to-be-learnt 
knowledge (Hiebert & Carpenter, 1992; Kilpatrick et al., 2001). 

• Providing intrinsic rewards. Students can naturally get satisfaction from 
learning with understanding; therefore, there is no need for external 
rewards and punishments (Skemp, 1976). 

• Enhancing self-discovery and self-directed learning. Knowledge learnt 
with understanding enables students to extend their knowledge 
independently (Kilpatrick et al., 2001), and satisfaction with learning with 
understanding motivates students to actively continue learning (Skemp, 
1976). 

• Enhancing self-confidence. The better understanding students have, the 
more confidence they have in their own competence to independently 
accomplish tasks (Kilpatrick et al., 2001; Skemp, 1976). 

• Influencing the right belief in mathematics. Conceptual understanding 
enhances students’ belief that mathematics is a network linking pieces of 
knowledge, that mathematics representation systems are consistent, and 
that correspondences between representation systems are predictable. 
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Such beliefs can promote the further development of mathematical 
knowledge (Hiebert & Carpenter, 1992). 

Conceptual understanding is one of the key mathematical proficiencies that the 
current Finnish NCC (EDUFI, 2016) intends to develop among students. 
Mathematics instruction must assist students in developing their understanding of 
mathematical concepts. 

2.1.2 Developing conceptual understanding 

Understanding is gradually built as networks of internal representations (i.e., an 
individual’s cognitive constructs, such as verbal, imagistic, and symbolic; Goldin, 
2014) of mathematical concepts or procedures become larger and more cohesive 
(Hiebert & Carpenter, 1992). A number of scholars (e.g., Barmby et al., 2010; 
Kilpatrick et al., 2001; Lesh et al., 1987) argue that external representations (i.e., visible 
or tangible productions, such as mathematical expressions, number lines, depictions 
on a computer screen, and manipulatives that stand for mathematical ideas or 
relationships; Goldin, 2014) provide students access to abstract mathematical 
concepts, and thus help them understand these concepts. Representations can be 
classified into different categories regarding their attributes. For example, Bruner 
(1966) argued that a person develops their own understanding through three modes 
of representations: enactive (e.g., combining two and three candy bars), iconic (e.g., 
seeing a picture of two and three candy bars), and symbolic (e.g., reading ‘two candy 
bars plus three candy bars’ or ‘2 + 3’). Lesh et al. (1987) identified five external 
representational systems commonly used in mathematics: real scripts, spoken 
language, written symbols, static pictures, and manipulatives. These external 
representations embody students’ internal conceptualisations and are observable. 

To develop mathematical understanding, students need to develop their 
representational fluency (also known as representational competence, representational 
flexibility, and representational thinking), which is the ability to represent 
mathematical concepts and procedures in multiple forms, interpret these multiple 
representations, and make connections between and within them (e.g., Ceuppens et 
al., 2018; Lesh et al., 1987; Zbiek et al., 2007). Studies during the last decades (e.g., 
Brenner et al., 1999; Moyer-Packenham et al., 2021; Suh & Moyer, 2007) have 
indicated that representational fluency plays an important role in mathematics 
learning. Hiebert and Carpenter (1992) agree with constructivist perspectives, 
particularly discovery learning (see Bruner, 1961), that students actively develop their 
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own networks of mathematical representations by constructing internal 
representations of their direct interactions with the environment, rather than having 
them provided by teachers or textbooks. Informed by research, the NCTM (2014) 
calls for the use of multiple representations as one of the mathematics teaching 
practices for strengthening mathematics education. 

Pape and Tchoshanov (2001) found that the theory of cognition and brain 
investigation provides support for how individuals develop their mathematical 
understanding through representations. The brain functions when constructing 
representational patterns for internalising (i.e., encoding) external representations 
and externalising (i.e., decoding) mental images; an external representation reduces a 
person’s cognitive load, thereby enabling them to devote their cognitive resources to 
learning (Pape & Tchoshanov, 2001). Representations are not inherently meaningful 
on their own; thus, they need to be manipulated with reflection to lead to 
mathematical understanding (Hiebert & Carpenter, 1992). Pape and Tchoshanov 
(2001) argued that representations must be seen as cognitive tools to assist students 
in thinking, explaining, and justifying an argument instead of the end result of a task. 
Likewise, drawing upon Sierpinska’s (1994) process of understanding, Barmby et al. 
(2010) proposed a ‘representational–reasoning’ model of understanding. The model 
provides implications for developing students’ mathematical understanding in the 
classroom, stating that students should be provided with various external 
representations of a concept, as well as opportunities for them to develop their 
reasoning between the representations. When using multiple representations, 
students examine a mathematical concept through various lenses, with each lens 
offering a different viewpoint that enriches and deepens the concept (Tripathi, 
2008). Similarities and differences between multiple representations of the same 
concept enable students to see the relationships between these representations 
(Hiebert & Carpenter, 1992). 

Individually working with representations does not guarantee that students will 
eventually develop their understanding (Hiebert & Carpenter, 1992; Pape & 
Tchoshanov, 2001). From a social constructivist perspective, learning is constructed 
during a collaborative process; learners co-construct their knowledge through social 
interaction (Vygotsky, 1978). In this light, it has been recommended that students’ 
internalisation of external representations and externalisation of their mental images 
should take place through social activity (i.e., interaction with peers and teachers) to 
support the construction of their understanding. Thus, external representations work 
not only as access to abstract mathematical concepts (Barmby et al., 2010), but also 
as vehicles for co-constructing their understanding with peers and teachers (Pape & 
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Tchoshanov, 2001). Classroom discussions (in pairs, small groups, and the whole 
class) enable students to explain, construct arguments, justify, and reason about 
possible relationships between multiple representations of a mathematical concept, 
thereby helping them develop their conceptual understanding accordingly (e.g., 
Hiebert & Carpenter, 1992; Moschkovich, 2015; Pape & Tchoshanov, 2001). In 
particular, peer discussion yields various benefits for learning. For example, 
explaining their own thoughts to classmates helps students remember that 
information and relate it to information previously kept in their memory (Slavin, 
2010); presenting their own thoughts and listening to others allows students to 
examine and reflect upon their own reasoning (Barmby et al., 2010). 

2.1.3 Assessing conceptual understanding 

There are a number of complications concerning how to assess students’ 
mathematical understanding. Hiebert and Carpenter (1992) pointed out that because 
understanding is a mental process of gaining knowledge, it is not directly observable 
and thus not easy to assess. Consequently, students’ understanding is indirectly 
measured through teachers’ or researchers’ inferences, drawn from observable 
evidence. They also noted that students can perform any individual task correctly 
without understanding, and students’ understanding normally cannot be concluded 
from their single response on a single task. Rather, a variety of tasks are required to 
create a profile of students’ understanding. Barmby et al. (2007) also emphasised that 
because understanding is a complex network, quite often, the assessment of students’ 
mathematical understanding can offer insight into only a small part of such a 
complex network. 

Hiebert and Carpenter (1992) suggested that assessment of students’ 
understanding could be thought of as a reverse process of how students construct 
their networks of internal representations through interaction with external 
representations. Thus, students’ internal networks of mathematical concepts can be 
determined by asking them to communicate their understanding through 
connections between external representations (Barmby et al., 2007; Hiebert & 
Carpenter, 1992). Nevertheless, it is difficult to determine whether students’ 
manipulations of external representations indicate their understanding, or whether 
they simply manipulate the representations mechanically (Hiebert & Carpenter, 
1992). Students’ reasoning behind their mathematical solutions—for example, why 
a certain result is the correct answer—can demonstrate their conceptual 
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understanding (Moschkovich, 2015). In light of this, to ensure that the assessment 
actually reflects students’ mathematical understanding, it should measure students’ 
ability to make links between multiple external representations and their ability to 
reason (Barmby et al., 2010). Unlike standard assessments, the assessment of 
students’ understanding should take into account both the content and the process 
that students use to arrive at their solutions (Hiebert & Carpenter, 1992). 

Students can be asked to represent a particular mathematical concept or 
procedure in multiple ways (e.g., using concrete objects, pictures, or mathematical 
expressions) and then talk about, for example, the links between the external 
representations or their approach to the solution (Barmby et al., 2007; Hiebert & 
Carpenter, 1992; Moschkovich, 2015). Opportunities to explain their own reasoning 
in several ways, including verbally and in writing, while tackling mathematical tasks, 
should be provided to students (Barmby et al., 2010). To analyse students’ 
understanding, all responses and explanations provided by students can be 
categorised based on the perceived level of their understanding; a mark can be given 
to each category of the given explanations (Barmby et al., 2007). 

There are some difficulties with this assessment method. Unless students are 
familiar with the external representations provided, they may not be able to work 
with the representations, even though they understand the mathematical concepts 
or procedures (Hiebert & Carpenter, 1992). Moreover, it may not be possible to look 
for evidence of students’ mathematical understanding from their explanations. 
Students usually construct their understanding before they can actually verbalise 
what they understand (Kilpatrick et al., 2001) and often have difficulties explaining 
what they think in a written form (Laine et al., 2018). There are other possible 
methods for assessing students’ mathematical understanding that are beyond the 
scope of this study, for example, analysis of students’ errors (Hiebert & Carpenter, 
1992) and the use of concept maps and mind maps (Barmby et al., 2007). 

2.1.4 Multimodality in mathematics 

Mathematics is by nature multimodal; that is, different semiotic resources (cf. modes 
of representations and representational systems) are used in mathematical texts and 
in the mathematics classroom to make meanings (e.g., Jewitt et al., 2016; Morgan et 
al., 2021; O’Halloran, 2015a). It should be noted that meaning making involves only 
one person’s expression and/or interpretation, while communication involves one 
person’s expression and another person’s interpretation (Jewitt et al., 2016). 
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O’Halloran (2004, 2015a) distinguishes three semiotic systems used for meaning 
making in mathematics: linguistic (i.e., natural language), symbolic (i.e., numbers and 
symbols), and visual (e.g., pictures and graphs) forms of representation. While the 
three semiotic resources are interwoven as a whole, each has its own characteristics, 
affordances, constraints, and roles in the construction of mathematical knowledge 
(e.g., Morgan et al., 2021; O’Halloran, 2015b; Schleppegrell, 2010). Natural language 
facilitates rationally thinking about mathematical processes and their results; symbols 
precisely and unambiguously describe mathematical relations and assist in arriving at 
mathematical solutions; and images visualise and concretise abstract mathematical 
concepts or process (O’Halloran, 2015a, 2015b). According to Duval (2006), a 
mathematical idea cannot be directly sensed, but can be experienced through its 
representations. However, a representation (e.g., a mathematical expression, a graph, 
or a verbal description) is never identical to the mathematical idea that it represents 
and cannot portray aspects of the mathematical idea completely due to the specific 
characteristics of each representational system. 

Because a separate semiotic resource is not sufficient for meaning making, 
multimodality plays a crucial role in the mathematics classroom. To learn 
mathematics with understanding, students need to be able to interpret and benefit 
from multisemiotic resources simultaneously (O’Halloran, 2004; Schleppegrell, 
2010). O’Halloran (2015a) uses a term multimodal literacy for this mastery of meaning 
making with natural language, mathematical symbols, and visual images. Morgan et 
al. (2021) noted that recent technological advancements have offered novel semiotic 
resources, such as dynamic, manipulable, and linked images, that enable new 
methods of interaction in mathematics education. They also highlighted the growing 
interest in the roles of embodied forms of interaction (e.g., gesture and gaze) in the 
mathematics classroom. Similarly, drawing on an embodied cognition perspective, 
Alibali and Nathan (2012) argue that mathematical knowledge is embodied (i.e., 
based in perception and action, and grounded in the physical environment; p. 247). 
They also presented evidence for their claim using gestures that teachers and 
students produced when explaining mathematical concepts or ideas. 

In this study, I employed a languaging model (also known as languaging 
mathematics and multimodal languaging) to guide design solution development, for 
example, what modes of representations the solution should provide and how it 
should be used in the classroom to foster students’ mathematical understanding. The 
languaging concept was previously used in mathematics education (see Bauersfeld, 
1995) and second language education (see Swain, 2006) in relation to verbal 
communication in classrooms. Joutsenlahti and Rättyä (2015) extended the concept 
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O’Halloran (2004, 2015a) distinguishes three semiotic systems used for meaning 
making in mathematics: linguistic (i.e., natural language), symbolic (i.e., numbers and 
symbols), and visual (e.g., pictures and graphs) forms of representation. While the 
three semiotic resources are interwoven as a whole, each has its own characteristics, 
affordances, constraints, and roles in the construction of mathematical knowledge 
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al. (2021) noted that recent technological advancements have offered novel semiotic 
resources, such as dynamic, manipulable, and linked images, that enable new 
methods of interaction in mathematics education. They also highlighted the growing 
interest in the roles of embodied forms of interaction (e.g., gesture and gaze) in the 
mathematics classroom. Similarly, drawing on an embodied cognition perspective, 
Alibali and Nathan (2012) argue that mathematical knowledge is embodied (i.e., 
based in perception and action, and grounded in the physical environment; p. 247). 
They also presented evidence for their claim using gestures that teachers and 
students produced when explaining mathematical concepts or ideas. 

In this study, I employed a languaging model (also known as languaging 
mathematics and multimodal languaging) to guide design solution development, for 
example, what modes of representations the solution should provide and how it 
should be used in the classroom to foster students’ mathematical understanding. The 
languaging concept was previously used in mathematics education (see Bauersfeld, 
1995) and second language education (see Swain, 2006) in relation to verbal 
communication in classrooms. Joutsenlahti and Rättyä (2015) extended the concept 
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of language in mathematics as a process in which students express their own 
mathematical thinking using four different languages (i.e., semiotic systems): natural, 
mathematical symbolic, pictorial, and tactile. While the first three languages are 
commonly used in mathematics texts to make meanings of mathematical concepts 
and procedures (see e.g., O’Halloran, 2004), tactile language (e.g., manipulating 
concrete objects) is used, particularly in primary school mathematics classrooms. The 
four languages used in this model align with Bruner’s (1966) three modes of 
representation (tactile language/enactive representation, pictorial language/iconic 
representation, and natural and mathematical symbolic language/symbolic 
representation). It is noteworthy that Bruner’s (1966) representation modes are 
typically applied as sequence-based learning from the enactive to iconic to symbolic 
(i.e., from concrete to abstract representations); for example, in Fyfe et al.’s (2015) 
and Warren and Cooper’s (2009) interventions. However, in the languaging model, 
the use of different languages happens simultaneously. 

According to Joutsenlahti and Kulju (2017) and Joutsenlahti and Rättyä (2015), 
languaging plays an important role in the mathematics classroom. When using 
different languages to solve mathematical tasks or presenting their own solutions to 
others, students organise their own thinking, and thus gradually construct their 
understanding of mathematical concepts and procedures. When listening to or 
looking at peers’ solutions, students reflect on their own thinking or solutions, and 
therefore develop better understanding. Moschkovich’s (2015) academic literacy in 
mathematics provides support for the languaging model. Using multiple 
representational systems to think and communicate (e.g., to talk, listen, write, or 
draw) helps students make connections between different ways of representing 
mathematical concepts, and enhances their conceptual understanding 
(Moschkovich, 2015). Besides supporting the development of students’ 
understanding, languaging makes students’ thinking observable, and can be used as 
a tool for assessing how students understand mathematics concepts or procedures 
(Joutsenlahti & Kulju, 2017; Joutsenlahti & Rättyä, 2015). Findings from research on 
languaging-based mathematics instruction at different educational levels (e.g., Alfaro 
& Joutsenlahti, 2020; Joutsenlahti & Kulju, 2017) suggest that the use of different 
languages for expressing mathematical thinking can promote students’ conceptual 
understanding and support the assessment of their understanding. 

Multimodality and languaging have been emphasised in the Finnish NCC 2014 
(EDUFI, 2016) as important teaching and learning methods in the mathematics 
classroom. Students are guided to make use of concrete tools, mathematical symbols, 
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natural language, visuals, and ICT in developing their mathematical thinking and 
presenting it to their teachers and classmates. 

2.2 Mathematics manipulatives 

2.2.1 Manipulatives in mathematics education 

Manipulatives are hands-on learning tools that are used to concretely represent an 
abstract mathematical concept, and can be manipulated by students through various 
senses to construct their understanding of the concept to be learnt (e.g., McNeil & 
Jarvin, 2007; Moyer, 2001). Manipulatives can be categorised into three types based 
on forms of interaction between students and manipulatives: physical, virtual, and 
tangible. 

Physical manipulatives (PMs) are physical objects, such as beads, geoboards, and 
base-10 blocks, which have long been used as hands-on learning tools in the 
mathematics classroom. PMs provide unique benefits, including concretising 
abstract concepts (Bruner, 1966), encouraging physical action to promote learning 
(Martin & Schwartz, 2005), offloading cognition (Manches & O’Malley, 2012), 
improving memory through physical action (McNeil & Jarvin, 2007), assisting 
embodied cognition (Pouw et al., 2014), serving as tools for reflection and 
communication (Kilpatrick et al., 2001), and making students’ thinking visible to 
teachers (Marshall & Swan, 2008). 

Despite their contributions to learning, PMs have possible limitations. Students 
may not be able to manipulate manipulatives as intended and might need guidance 
on how to work with them meaningfully (Carbonneau et al., 2013). Even if students 
manipulate manipulatives in an appropriate manner, they may have difficulty 
extracting an underlying mathematical concept from its external representation, such 
as a physical object (e.g., Clements, 1999; Kilpatrick et al., 2001; Pape & Tchoshanov, 
2001). Therefore, they need support in interpreting certain physical representations, 
that is, how to induce mathematical meanings from their interactions with PMs (e.g., 
Clements, 1999; Kilpatrick et al., 2001; Manches & O’Malley, 2012). Moreover, 
students may not see the connection between the manipulatives-based and symbolic 
representations of the concept (e.g., Kilpatrick et al., 2001; Pape & Tchoshanov, 
2001; Uttal et al., 2013). In this case, they may also need support in connecting the 
concrete representation with the symbolic representation (e.g., Kilpatrick et al., 2001; 
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Manches & O’Malley, 2012; Uttal et al., 2013). With typically only one teacher in the 
classroom, it is challenging to help individual students interpret a physical 
representation as intended and connect it with the symbolic counterpart. PMs are 
also typically expensive to purchase, which limits their availability (Magruder, 2012). 

During the last few decades, the use of virtual manipulatives (VMs, also called 
computer manipulatives by Clements, 1999) has become established in mathematics 
classrooms due to the development of digital technologies. VMs are interactive and 
dynamic technology-enabled visual representations in the form of computer applets 
or mobile apps (e.g., Manches & O’Malley, 2012; Moyer-Packenham & Bolyard, 
2016). Research has reported various advantages of VMs that address the limitations 
of PMs. VMs benefit learning by providing step-by-step guidance, immediate 
feedback, and scaffolding (e.g., Magruder, 2012; Suh & Moyer, 2007); drawing 
students’ attention to what is relevant; promoting students’ creativity and increasing 
the diversity of their solutions; providing precise representations; simultaneously 
linking pictorial and symbolic representations with students’ interactions; recording 
and tracking students’ actions for reflection (Martin, 2008) and assessment 
(Clements, 1999; Marichal et al., 2017); and motivating students (Moyer-Packenham 
& Westenskow, 2013), particularly older students (Vessonen et al., 2020). Practical 
benefits of VMs include flexibility, manageability, and ease of sharing (Clements, 
1999; Manches & O’Malley, 2012), ease of cleaning up (Magruder & Mohr-
Schroeder, 2013), ease of storing and retrieving configurations (Clements, 1999), 
accessibility (Magruder, 2012), availability (Marichal et al., 2017; Vessonen et al., 
2020), and affordability (Manches & O’Malley, 2012). 

Nevertheless, interaction with VMs has caused concern about replacing rich 
physical interaction (with PMs) with mouse-keyboard clicking or touch screen 
tapping and scrolling (Manches et al., 2010; Pires et al., 2019). Other possible 
disadvantages of VMs include rote learning, distraction (Magruder, 2012), losing 
mathematics learning time to learning how to operate VMs or solving technical 
issues, and inaccessibility and unavailability of necessary technology (Magruder, 
2012; Magruder & Mohr-Schroeder, 2013). 

Previous studies (e.g., Magruder, 2012; Manches et al., 2010; Suh & Moyer, 2007) 
indicate that combining advantageous properties of PMs and VMs may better 
enhance learning and classroom practice than using PMs or VMs alone. More 
recently, tangible manipulatives (TMs), also called digital manipulatives by Resnick et al. 
(1998), have begun to emerge as a result of the advancement of tangible 
technologies. Tangible technologies embed digital technology into physical objects, 
which serve as both external representations and controls (e.g., Ishii & Ullmer, 2012). 
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TMs enable a novel form of interaction in which students directly operate digital 
information via the natural manipulation of physical objects, rather than through the 
cumbersome manipulation of typical input devices (e.g., mouse or keyboard). Since 
the pioneering work (i.e., blocks, beads, balls, and badges) of Resnick et al. (1998), a 
growing number of TMs have been developed (e.g., Ceibal Tangible; Marichal et al., 
2017, and Owlet manipulatives; Zito et al., 2021) or fully commercialised (e.g., 
OSMO’s math games; https://www.playosmo.com). 

By combining the best of PMs and VMs (i.e., physical and digital worlds), TMs 
provide various advantages for learning. One benefit of physical representations is 
that the manipulation of physical objects enables natural bodily interaction and 
creates a sense of physicality and embodiment (Ishii & Ullmer, 2012). Moreover, 
according to Manches and O’Malley (2012), physical manipulation can free up 
students’ cognitive resources for learning mathematical concepts. Instead of learning 
how to manipulate manipulatives, as in the case of VMs, students are able to 
intuitively manipulate physical objects and can concentrate on the results of their 
actions. In contrast to VMs, TMs provide tactile information, which enables students 
to offload their cognitive demands. For example, students are able to identify some 
information by touching an object, and can thus use their visual attention for other 
information. Tactile information also enables accessibility for students with visual 
impairments. 

Digital representations provide various benefits for TMs. Manches and O’Malley 
(2012) argue that digital effects can be used to change different perceptual properties 
of TMs, such as colour, size, and sound, which are not easy to change in the case of 
PMs. This provides the opportunity to create a more dynamic manipulative material 
that changes its perceptual properties, representing certain mathematical concepts as 
students interact with it. Digital representations can also provide immediate feedback 
and scaffolding, which promotes autonomous learning (Price, 2013). Additionally, 
digital representations enable the recording of students’ activities and therefore allow 
students’ work to be traced later (Manches & O’Malley, 2012) for reflection and 
assessment. 

The integration of physical and digital representations of TMs also benefits 
learning. Physical actions with objects and corresponding digital effects together can 
provide a conceptual metaphor for concepts to be learnt, thereby fostering students’ 
knowledge structures (Manches & O’Malley, 2012). TMs facilitate linking between 
physical representations (e.g., touch and gestures) and digital representations (e.g., 
pictorial, symbolic, and other representations; Manches & O’Malley, 2012) and thus 
contribute to students’ conceptual understanding. Moreover, TMs attract students’ 
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multiple senses (Zhou & Wang, 2015). TMs also enable parallel multi-user 
interaction, which promotes co-located and distanced collaborations (Ishii & Ullmer, 
2012; Price, 2013); encourage facial, gestural, and verbal communication (Price, 
2013); enable accessibility to different learners; and motivate learning (Zhou & 
Wang, 2015). 

Previous research has provided empirical evidence of TM benefits for 
mathematics education in various content domains and educational levels. For 
example, primary school number composition (Pires et al., 2019), primary school 
fractions (Pontual Falcão et al., 2007), pre-primary and primary school geometry 
(Salvador et al., 2012; Starcic et al., 2013), undergraduate school trigonometry 
(Zamorano Urrutia et al., 2019), and upper and lower secondary school algebra 
(Reinschlüssel, Döring, et al., 2018). 

2.2.2 Theoretical underpinnings for the use of manipulatives 

The use of manipulatives in mathematics classrooms has long been endorsed based 
on Piaget’s, Bruner’s, and Montessori’s work that physical interactions with concrete 
materials, such as (physical) manipulatives, help children construct their 
understanding of abstract mathematical concepts (e.g., Carbonneau et al., 2013; 
McNeil & Jarvin, 2007; Uttal et al., 2013). To date, there have been various 
theoretical explanations that manipulatives support learning by providing 
opportunities for students to learn mathematical concepts through exploration, 
supporting their real-world knowledge, and enhancing their cognition. 

Bruner’s (1961) discovery learning provides a theoretical underpinning for using 
manipulatives to facilitate mathematics learning through hands-on experience and 
reflection. As opposed to rote learning, active interaction with the environment (e.g., 
manipulatives) and inductive reasoning help students construct their own 
meaningful knowledge of mathematical concepts (Bruner, 1961). During discovery 
learning, students should be appropriately supported with guidance and scaffolding 
rather than left unaided (Carbonneau et al., 2013; Neber, 2012). Research (e.g., Suh 
& Moyer, 2007; Zamorano Urrutia et al., 2019) reveals that VMs and TMs can 
provide students not only with hands-on experience, but also with guidance and/or 
scaffolding during their discovery learning. 

Cognitive perspectives, particularly embedded embodied cognition, also account 
for the potential advantages of using manipulatives in classrooms. From the 
embedded cognition perspective, manipulatives can benefit mathematics learning by 
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providing students with an additional representation of mathematical concepts (e.g., 
McNeil & Jarvin, 2007; Tran et al., 2017) and reducing students’ cognitive load, and 
thus allow students to devote their cognitive resources to learning (e.g., Pouw et al., 
2014; Tran et al., 2017). Martin and Schwartz’s (2005) theory of physically distributed 
learning proposes that physical action, such as interaction with manipulatives, 
enables students to rearrange their environment and gradually develop their thinking, 
thereby benefiting their learning of abstract ideas. From the embodied cognition 
perspective, humans have a natural desire to connect the body and mind (e.g., the 
use of fingers to count; Tran et al., 2017), and cognitive processes are often 
composed of mental simulations that are founded on modalities (Marley & 
Carbonneau, 2014). Interactions with manipulatives allow physical enactment of 
mathematical concepts, and thus increase forms of representations (e.g., audiovisual, 
tactile-kinesthetic, and symbolic in the case of TMs) for encoding the concepts 
(Carbonneau et al., 2013; Tran et al., 2017). Having access to multiple representations 
enhances students’ understanding (by allowing them to connect different 
representations) and their memory (by helping them easily retrieve knowledge stored 
in their minds later; Carbonneau et al., 2013; Tran et al., 2017). Students’ memories 
of interacting with manipulatives can promote their learning transfer to other 
situations (Alibali & Nathan, 2012; Pouw et al., 2014). Usually when students’ 
internal cognition increases, their dependence on manipulatives decreases (Pouw et 
al., 2014). Eventually, the interaction with manipulatives is no longer needed (Tran 
et al., 2017). 

2.2.3 Impacts of manipulatives on mathematics learning 

Despite the theoretical support for using manipulatives in classrooms, empirical 
findings on the effectiveness of manipulative use on students’ mathematics learning 
and achievement are mixed (e.g., Manches & O’Malley, 2012; McNeil & Jarvin, 2007; 
Uribe-Flórez & Wilkins, 2017). The use of manipulatives has been found to benefit, 
not benefit, and even hinder mathematics learning. 

Recent meta-analyses by Domino (2010), Carbonneau et al. (2013), and Moyer-
Packenham and Westenskow (2013) and a longitudinal analysis by Uribe-Flórez and 
Wilkins (2017) provide evidence of positive impacts of manipulatives on 
mathematics learning. Domino’s (2010) meta-analysis examined results from 31 
empirical studies with 35 effect sizes that compared mathematics instruction, in 
which 5,288 students from kindergarten to Grade 6 learnt either with or without 
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providing students with an additional representation of mathematical concepts (e.g., 
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Uribe-Flórez & Wilkins, 2017). The use of manipulatives has been found to benefit, 
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Recent meta-analyses by Domino (2010), Carbonneau et al. (2013), and Moyer-
Packenham and Westenskow (2013) and a longitudinal analysis by Uribe-Flórez and 
Wilkins (2017) provide evidence of positive impacts of manipulatives on 
mathematics learning. Domino’s (2010) meta-analysis examined results from 31 
empirical studies with 35 effect sizes that compared mathematics instruction, in 
which 5,288 students from kindergarten to Grade 6 learnt either with or without 
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PMs. Their statistically significant results indicated that using PMs for mathematics 
instruction had a moderate-to-large effect on students’ mathematics achievement 
compared to traditional teaching methods without manipulatives. Findings also 
revealed that other instructional variables, including grade levels, instructional 
duration, and learning ability, increased the efficacy of manipulatives. The effect sizes 
increased from kindergarten to Grade 4, and then started to decrease slightly. PMs 
were beneficial to students at all attainment levels, particularly students with learning 
disabilities and with high attainments. Domino used previous studies to explain her 
findings that repetitive hands-on experiences with manipulatives helped students 
with learning disabilities learn mathematics; manipulatives assisted students with 
high attainments in quickly understanding mathematical concepts and then 
transferring their understanding to other problems. 

Carbonneau et al.’s (2013) meta-analysis examined results from 55 studies that 
compared instruction, in which 7,237 students from kindergarten to college level 
either interacted with PMs or only learnt with mathematical symbols. Similar to 
Domino (2010), Carbonneau et al. (2013) found statistically significant results 
identifying small to moderate effect sizes in favour of instruction with manipulatives 
compared to instruction with mathematical symbols. Additionally, they found that 
the degree of this effect depended on other instructional variables, such as the 
cognitive development status of the learner and the level of instructional guidance. 

According to a cognitive developmental perspective (see e.g., Piaget, 1965, 1970), 
using manipulatives to concretely represent abstract mathematical concepts should 
provide students at the preoperational stage (ages 2–7) and concrete operational 
stage (ages 7–11) with cognitive benefits, whereas it may not provide students at the 
formal operational stage (adolescence to adulthood) with compatible benefits. 
Carbonneau et al.’s (2013) findings partially support these predictions about 
cognitive development. At the aggregated level, studies with students aged 7–11 
years old showed larger effect sizes than studies with students aged 12 and older. 
Nevertheless, when investigating retention of learning outcomes, studies conducted 
with preoperational-aged students showed a statistically lower and negative mean 
effect size compared to studies with concrete or formal operational students. A 
possible explanation for the lower effectiveness of manipulative use with younger 
students could be that younger students may have difficulties with manipulative dual 
representation (i.e., as an object itself and simultaneously as a representation of a 
mathematical concept; see e.g., Uttal et al., 2009). The meta-analysis results also 
provide support for conflicting recommendations for the level of guidance provided 
to students during their learning with manipulatives. On the one hand, the findings 
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from the aggregated, retention, and problem-solving data affirm the perspective that 
high instructional guidance on how to use manipulatives promotes students’ 
learning. On the other hand, the results from the transfer of learning outcome data 
support the perspective that low instructional guidance allows greater conceptual 
understanding, flexibility, and transfer of learning to novel circumstances. 

Moyer-Packenham and Westenskow’s (2013) meta-analysis examined results 
from 32 empirical studies with 82 effect cases that compared the effects of various 
instructional treatments on student achievement from the preschool to university 
level. Consistent with two other meta-analyses, they found moderate effects in 
favour of using VMs alone or in combination with PMs, compared to instruction 
from textbooks. The analysis of the effect of VMs by instructional duration provides 
support for the prolonged use of manipulatives for a positive impact on student 
performance. In general, the use of VMs for short treatment duration yielded no 
effect or small effects, while longer treatment duration yielded moderate effects. The 
analysis by grade level revealed mixed effects. When compared to other instructional 
treatments, VMs yielded small to moderate effects for preschool–Grade 6, negative 
effects for Grades 7–8, and large effects for Grades 9–12 and upwards. McNeil and 
Uttal’s (2009) perspective provides a possible explanation for the mixed effects. 
Based on Bruner’s (1966) view and previous studies, they argued that the benefits of 
learning through concrete objects were not limited to learners of a particular age, but 
in fact, applicable to any age. Unlike Piaget’s (1970) view, this suggests that 
manipulatives can be used to introduce novel concepts to students of all ages. 

Uribe-Flórez and Wilkins (2017) examined the relationship between mathematics 
learning of 10,673 students from kindergarten to Grade 5 and their manipulative use. 
When conducting a cross-sectional correlational analysis, they found no relationship 
between students’ mathematics achievement at each specific year and their 
manipulative use. Moreover, no considerable relationship between students’ 
achievement and their use of manipulatives was found at any grade level. 
Nevertheless, when conducting a longitudinal analysis over an extended period of 
kindergarten–Grade 5, they found a positive relationship between students’ 
mathematics learning (i.e., growth and change in mathematics achievement) and their 
manipulative use across grade levels. Their findings affirmed Sowell’s (1989) meta-
analysis results, which provided evidence for a positive effect of long-term 
manipulative use on students’ mathematics learning. Research results showing no 
relationship between manipulative use and students’ learning may be due to too short 
a period of interaction time with the manipulatives. 
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Several studies have suggested that manipulative use may not assist or may even 
harm mathematics learning and performance (e.g., McNeil & Jarvin, 2007; Uribe-
Flórez & Wilkins, 2017). For example, manipulatives tend to benefit only young 
students, and students may have difficulties transferring their knowledge (gained 
from manipulative use) to contexts without the presence of manipulatives (McNeil 
& Jarvin, 2007) or applying their knowledge to other contexts (Fyfe et al., 2015). 
McNeil and Jarvin (2007) provided two possible reasons for the inefficacy of 
manipulative use: manipulatives are beneficial but may not be used properly, or 
manipulatives themselves could cause the problem regarding dual representation. 

For the first case, teachers may use manipulatives only for enjoyment or diversion 
in their classrooms rather than for facilitating students’ construction of mathematical 
understanding. For the second case, there are several interferences in the dual 
representation of manipulatives; for example, students cannot possibly understand 
the mathematical concepts represented only by interacting with manipulatives, their 
restricted cognitive resources may be overloaded by the dual representation, and it 
may be difficult for students to perceive familiar objects differently. Goldin (2002) 
argued that manipulatives may be useful tools for supporting the development of 
students’ conceptual understanding, but the contextualised understanding built 
concretely though manipulatives tends to pose a cognitive obstacle to the later 
abstraction of mathematical understanding, which is necessary for mathematics 
learning. Likewise, findings from Kaminski et al.’s (2009) experiments with 11-year-
old (concrete operational) and undergraduate (formal operational) students 
demonstrated that whereas relevant concrete instantiations can potentially enhance 
learning, this contextual bound concreteness tends to hinder knowledge transfer. 

Manipulatives have received approval as well as criticism. Clearly, merely using 
manipulatives does not necessarily lead to meaningful mathematics learning (e.g., 
Baroody, 1989; Kilpatrick et al., 2001; Manches et al., 2010; McNeil & Jarvin, 2007). 
Manipulatives as learning materials are only one of many factors that influence 
students’ learning (Carbonneau et al., 2013; Manches & O’Malley, 2012). The 
benefits of manipulatives for learning depend on the learning context in which they 
are used, for example, how students work with manipulatives and for what purposes 
(Ball, 1992; Clements, 1999; Manches et al., 2010). Thus, contextual variables that 
may have an impact on the efficacy of manipulatives must be considered when 
planning mathematics instruction (Carbonneau et al., 2013). 

Classroom activities and the teacher’s role in promoting the meaningful use of 
manipulatives in mathematics learning have been recommended. Instead of using 
manipulatives mechanically just to get the correct answers, students should use them 
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to meaningfully learn mathematics by thinking and reflecting on what they have 
experienced (Baroody, 1989; Clements, 1999) and by discussing with others what 
they have discovered (Ball, 1992; Marshall & Swan, 2008; Pape & Tchoshanov, 
2001). The teacher’s pedagogical approach and attitude to the use of manipulatives 
play a crucial role in what and how manipulatives are used in the classroom, thereby 
affecting the success of manipulative utilisation (Manches & O’Malley, 2012; Uribe-
Flórez & Wilkins, 2010). Teachers should help students make a connection between 
various representations, which students construct when using manipulatives, and 
symbolic representations of the underlying concepts (e.g., Clements, 1999; McNeil 
& Jarvin, 2007) and map between the external and internal representations (Pape & 
Tchoshanov, 2001). However, according to the literature and empirical research, 
teachers should not direct students’ actions with manipulatives, but rather allow 
students to direct and regulate their own activities (Hatfield, 1994; McNeil & Uttal, 
2009). 

2.2.4 Challenges to the use of manipulatives in the classroom 

Although the benefits of meaningfully using manipulatives have been proposed in 
the literature, supported by research, and recommended by mathematics curricula, 
including the current Finnish NCC (EDUFI, 2016), much research indicates the 
limited use of manipulatives in the classroom. There is evidence that manipulatives 
are most often used in kindergarten, and the use of manipulatives usually declines as 
grade level increases (e.g., Carbonneau et al., 2013; Hatfield, 1994; Marshall & Swan, 
2008; Uribe-Flórez & Wilkins, 2010). Teachers play a significant role in deciding 
whether and when to use manipulatives in their class. Their beliefs about 
manipulatives have been found to be an important predictor of their use (Uribe-
Flórez & Wilkins, 2010), and may explain possible reasons for the discouragement 
to manipulative use. Teachers who believe in the efficacy of manipulative use are 
likely to use them more often in their class (Uribe-Flórez & Wilkins, 2010), whereas 
teachers who doubt their benefits are less likely to incorporate them in their 
mathematics instruction (Marshall & Swan, 2008). The decline in manipulative use 
in upper grades may be because teachers believe that manipulatives do not benefit 
older students (Uribe-Flórez & Wilkins, 2010; Marshall & Swan, 2008) or that using 
manipulatives is childish (Marshall & Swan, 2008). 

Previous studies demonstrate disagreement between teachers’ positive attitudes 
towards manipulative use and their classroom practice. Although teachers consider 



 

38 

Several studies have suggested that manipulative use may not assist or may even 
harm mathematics learning and performance (e.g., McNeil & Jarvin, 2007; Uribe-
Flórez & Wilkins, 2017). For example, manipulatives tend to benefit only young 
students, and students may have difficulties transferring their knowledge (gained 
from manipulative use) to contexts without the presence of manipulatives (McNeil 
& Jarvin, 2007) or applying their knowledge to other contexts (Fyfe et al., 2015). 
McNeil and Jarvin (2007) provided two possible reasons for the inefficacy of 
manipulative use: manipulatives are beneficial but may not be used properly, or 
manipulatives themselves could cause the problem regarding dual representation. 

For the first case, teachers may use manipulatives only for enjoyment or diversion 
in their classrooms rather than for facilitating students’ construction of mathematical 
understanding. For the second case, there are several interferences in the dual 
representation of manipulatives; for example, students cannot possibly understand 
the mathematical concepts represented only by interacting with manipulatives, their 
restricted cognitive resources may be overloaded by the dual representation, and it 
may be difficult for students to perceive familiar objects differently. Goldin (2002) 
argued that manipulatives may be useful tools for supporting the development of 
students’ conceptual understanding, but the contextualised understanding built 
concretely though manipulatives tends to pose a cognitive obstacle to the later 
abstraction of mathematical understanding, which is necessary for mathematics 
learning. Likewise, findings from Kaminski et al.’s (2009) experiments with 11-year-
old (concrete operational) and undergraduate (formal operational) students 
demonstrated that whereas relevant concrete instantiations can potentially enhance 
learning, this contextual bound concreteness tends to hinder knowledge transfer. 

Manipulatives have received approval as well as criticism. Clearly, merely using 
manipulatives does not necessarily lead to meaningful mathematics learning (e.g., 
Baroody, 1989; Kilpatrick et al., 2001; Manches et al., 2010; McNeil & Jarvin, 2007). 
Manipulatives as learning materials are only one of many factors that influence 
students’ learning (Carbonneau et al., 2013; Manches & O’Malley, 2012). The 
benefits of manipulatives for learning depend on the learning context in which they 
are used, for example, how students work with manipulatives and for what purposes 
(Ball, 1992; Clements, 1999; Manches et al., 2010). Thus, contextual variables that 
may have an impact on the efficacy of manipulatives must be considered when 
planning mathematics instruction (Carbonneau et al., 2013). 

Classroom activities and the teacher’s role in promoting the meaningful use of 
manipulatives in mathematics learning have been recommended. Instead of using 
manipulatives mechanically just to get the correct answers, students should use them 

 

39 

to meaningfully learn mathematics by thinking and reflecting on what they have 
experienced (Baroody, 1989; Clements, 1999) and by discussing with others what 
they have discovered (Ball, 1992; Marshall & Swan, 2008; Pape & Tchoshanov, 
2001). The teacher’s pedagogical approach and attitude to the use of manipulatives 
play a crucial role in what and how manipulatives are used in the classroom, thereby 
affecting the success of manipulative utilisation (Manches & O’Malley, 2012; Uribe-
Flórez & Wilkins, 2010). Teachers should help students make a connection between 
various representations, which students construct when using manipulatives, and 
symbolic representations of the underlying concepts (e.g., Clements, 1999; McNeil 
& Jarvin, 2007) and map between the external and internal representations (Pape & 
Tchoshanov, 2001). However, according to the literature and empirical research, 
teachers should not direct students’ actions with manipulatives, but rather allow 
students to direct and regulate their own activities (Hatfield, 1994; McNeil & Uttal, 
2009). 

2.2.4 Challenges to the use of manipulatives in the classroom 

Although the benefits of meaningfully using manipulatives have been proposed in 
the literature, supported by research, and recommended by mathematics curricula, 
including the current Finnish NCC (EDUFI, 2016), much research indicates the 
limited use of manipulatives in the classroom. There is evidence that manipulatives 
are most often used in kindergarten, and the use of manipulatives usually declines as 
grade level increases (e.g., Carbonneau et al., 2013; Hatfield, 1994; Marshall & Swan, 
2008; Uribe-Flórez & Wilkins, 2010). Teachers play a significant role in deciding 
whether and when to use manipulatives in their class. Their beliefs about 
manipulatives have been found to be an important predictor of their use (Uribe-
Flórez & Wilkins, 2010), and may explain possible reasons for the discouragement 
to manipulative use. Teachers who believe in the efficacy of manipulative use are 
likely to use them more often in their class (Uribe-Flórez & Wilkins, 2010), whereas 
teachers who doubt their benefits are less likely to incorporate them in their 
mathematics instruction (Marshall & Swan, 2008). The decline in manipulative use 
in upper grades may be because teachers believe that manipulatives do not benefit 
older students (Uribe-Flórez & Wilkins, 2010; Marshall & Swan, 2008) or that using 
manipulatives is childish (Marshall & Swan, 2008). 

Previous studies demonstrate disagreement between teachers’ positive attitudes 
towards manipulative use and their classroom practice. Although teachers consider 



 

40 

manipulatives to be pedagogically beneficial, they typically prefer traditional teacher-
centred and paper-and-pencil instruction to manipulatives (e.g., Joutsenlahti & 
Vainionpää, 2010; Marshall & Swan, 2008; Toptaș et al., 2012). This finding suggests 
that the classroom adoption of pedagogically sound manipulatives may be hindered 
by their incompatibility with classroom practice. 

A body of research reveals various possible hindrances to teachers’ utilisation of 
manipulatives in their classrooms. Common hindrances related to day-to-day 
practice include manipulative availability, manipulative organisation, classroom 
management, and time factors (e.g., Bedir & Özbek, 2016; Hatfield, 1994; Marshall 
& Swan, 2008). Regarding availability, there is often a lack of money to acquire 
manipulatives, or there are limited numbers of manipulatives to go around. Typical 
problems with manipulative organisation include difficulty in borrowing and 
returning, setting up and packing away, sorting and storing, and damaging and losing 
manipulatives. The classroom management issues include crowded classes, students 
not listening to instructions, misuse of manipulatives, noisiness, and messiness. A 
lack of time is also an issue in terms of not having enough time to use manipulatives 
as well as to organise, set up, and pack them away. 

2.3 Linear equation solving 

Algebra plays a significant role in advanced mathematics learning (e.g., Kilpatrick et 
al., 2001; Knuth et al., 2006; Warren et al., 2016). The transition from arithmetic to 
algebra is usually challenging for students (Kilpatrick et al., 2001) due to a shift from 
concrete to more abstract concepts (Poon & Leung, 2010; A. Watson, 2009). To 
learn algebra, students need to shift from thinking about computing to arrive at 
concise answers to thinking about mathematical relations and their representations 
using letters and symbols (Kilpatrick et al., 2001; A. Watson, 2009). School algebra 
has traditionally focused on rules and procedures, so students mostly try to memorise 
rules and manipulate symbolic expressions and equations according to the rules 
without constructing their understanding (e.g., Bogomolny, 2007; Kilpatrick et al., 
2001). Research has indicated that students who rely on rote learning often get 
confused, forget rules, and misapply them (Kilpatrick et al., 2001; A. Watson, 2009). 
Linear equation solving is one of the foundational domains within algebra 
curriculum, but it is often challenging for students to master equation solving (e.g., 
Kilpatrick et al., 2001; McNeil et al., 2019; Poon & Leung, 2010), particularly due to 
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their inadequate understanding of concepts essential for equation solving (e.g., 
Booth & Koedinger, 2008; Knuth et al., 2006). 

2.3.1 Key concepts in equation solving 

Students with inadequate or incorrect conceptual understanding usually apply taught 
strategies to solve equations superficially (e.g., Booth & Koedinger, 2008). A good 
example is solving equations by performing the same operation on both sides of the 
equation. When applying this strategy, students usually solve equation x + 2 = 6 
correctly by removing (i.e., subtracting) 2 from both sides of the equation: x + 2 – 2 
= 6 – 2. Nevertheless, when solving equations such as x – 2 = 6, students who fail 
to recognise the meaning of the minus sign in front of number 2 are likely to remove 
(i.e., subtracting) 2 from both sides of the equation, resulting in x = 6 – 2. Previous 
studies have provided evidence that students’ inadequate mathematical 
understanding and misconceptions hinder their learning and performance in 
equation solving (e.g., Booth & Koedinger, 2008; Knuth et al., 2006). To master 
linear equation solving, students need to understand various mathematical concepts, 
including equations, equivalence, different terms in an equation, and equation 
solving. 

An equation is a mathematical statement in which two expressions are equal to 
each other. An equation has two sides (i.e., left and right) connected by an equal sign, 
which expresses an equivalence relation between its two sides. Although 
mathematical equivalence is an important concept for equation solving, it is difficult 
for students to understand (e.g., Knuth et al., 2006; A. Watson, 2009). Equivalence 
relations are usually represented in traditional school contexts as an arithmetic 
expression followed by an equal sign and then the answer to the arithmetic operation, 
for example, 5 + 1 = 6 (e.g., Kilpatrick et al., 2001; McNeil et al., 2019). Students 
who emerge from school arithmetic usually view the equal sign as a signal to calculate 
rather than as a symbol of an equivalence relation between two sides of an equation, 
and thus write an answer to the calculation after the equal sign (e.g., Kilpatrick et al., 
2001; Knuth et al., 2006; Sherman & Bisanz, 2009). Such misconceptions impede 
students’ equation-solving competence (e.g., Kilpatrick et al., 2001; Warren et al., 
2016; A. Watson, 2009) and usually persist as students advance in school (e.g., Knuth 
et al., 2006; Warren & Cooper, 2009). Students who interpret the equal sign as 
operational instead of relational tend to solve equivalence problems (also known as 
nonstandard equations), such as 5 + 1 = _ + 2 incorrectly by adding all the numbers 
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their inadequate understanding of concepts essential for equation solving (e.g., 
Booth & Koedinger, 2008; Knuth et al., 2006). 

2.3.1 Key concepts in equation solving 

Students with inadequate or incorrect conceptual understanding usually apply taught 
strategies to solve equations superficially (e.g., Booth & Koedinger, 2008). A good 
example is solving equations by performing the same operation on both sides of the 
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each other. An equation has two sides (i.e., left and right) connected by an equal sign, 
which expresses an equivalence relation between its two sides. Although 
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for students to understand (e.g., Knuth et al., 2006; A. Watson, 2009). Equivalence 
relations are usually represented in traditional school contexts as an arithmetic 
expression followed by an equal sign and then the answer to the arithmetic operation, 
for example, 5 + 1 = 6 (e.g., Kilpatrick et al., 2001; McNeil et al., 2019). Students 
who emerge from school arithmetic usually view the equal sign as a signal to calculate 
rather than as a symbol of an equivalence relation between two sides of an equation, 
and thus write an answer to the calculation after the equal sign (e.g., Kilpatrick et al., 
2001; Knuth et al., 2006; Sherman & Bisanz, 2009). Such misconceptions impede 
students’ equation-solving competence (e.g., Kilpatrick et al., 2001; Warren et al., 
2016; A. Watson, 2009) and usually persist as students advance in school (e.g., Knuth 
et al., 2006; Warren & Cooper, 2009). Students who interpret the equal sign as 
operational instead of relational tend to solve equivalence problems (also known as 
nonstandard equations), such as 5 + 1 = _ + 2 incorrectly by adding all the numbers 
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before the equal sign (5 + 1 = 6 + 2) or adding all the numbers (5 + 1 = 8 + 2; 
McNeil et al., 2019). Research indicates that an understanding of equivalence not 
only promotes students’ performance in algebra, including equation solving (Driver 
& Powell, 2015; A. Watson, 2009), it also assists them in learning new mathematical 
concepts (McNeil et al., 2019). 

Understanding mathematical equivalence means that students not only have a 
relational understanding of the equal sign, but are also able to encode equations, 
identify both sides of the equation, view them as manipulatable entities, and 
understand that numbers and mathematical expressions can be represented in 
different comparable ways (e.g., McNeil et al., 2019; Rittle-Johnson et al., 2011). For 
example, the equation 5 + 1 = 6 can also be represented as 6 = 6, 5 + 1 = 4 + 2, or 
5 + 1 = x + 2. Because equations usually include various terms (i.e., constants, 
unknowns, and coefficients), it is important to recognise the meanings of the 
mathematical symbols and letters that represent those terms (Poon & Leung, 2010; 
A. Watson, 2009). Particularly, the presence of the negative sign (e.g., 10 – 2x – 4 = 
4) and the presence of the unknown on both sides of the equation (e.g., 3x + 4 = 
5x) require a good understanding of equivalence and different terms in an equation 
(A. Watson, 2009). It is also essential to understand that the goal of solving an 
equation is to find the solution(s)—the value(s) of the unknown(s) that yields 
equivalence between two sides of an equation (Otten et al., 2019)—or to 
demonstrate that there is no real number-value solution to the equation. 

2.3.2 Equation-solving approaches 

Linear equations can be solved using nonalgebraic or informal approaches with no 
emphasis on the equivalence relation of both sides of the equation or using algebraic 
or formal approaches with their emphasis on mathematical equivalence (Knuth et al., 
2006). Nonalgebraic approaches, such as trial-and-error substitution, the cover-up 
method, and the undoing method, are typically used to start equation solving 
(Kilpatrick et al., 2001). Trial and error or guess and check is an approach in which 
students try to substitute different values for the unknown in the equation until 
arriving at the value(s) that makes the equation true. In using the cover-up method to 
solve an equation, for example, 3x + 4 = 5x, students start by covering up 4 and 
then thinking that 3x plus the cover up (i.e., 4) equals 5x; therefore, 4 equals 2x. 
After that they cover up x and then think that 2 times the cover up (i.e., x) equals 4; 
thus, x equals 2. In solving an equation using the undoing or unwinding method, 
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students work backward by inversing mathematical operations and performing 
arithmetic calculations. For example, to determine the value of x in the equation 3x 
+ 4 = 10, students subtract 4 from 10 to get 3x = 6 and then divide 6 by 3; so, x 
equals 2. Students who emerge from arithmetic often undo operations in reverse 
order to solve word problems, such as ‘When 3 is added to 5 times a certain number, 
the sum is 38; find the number’; however, in algebra classes, they will be guided to 
first represent the relationships stated in the word problem as the equation 5x + 3 
= 38 (Kilpatrick et al., 2001, p. 262). Research has also found that students tend to 
use inverse operations to solve equations without understanding, and are thus likely 
to make errors (A. Watson, 2009). 

Performing the same operation on both sides of the equation is an important algebraic 
equation-solving method that emphasises the equivalence of equations. In using this 
method to solve an equation, students make the same change (i.e., mathematical 
operation) to both sides of the equation to maintain equivalence between the two 
sides. For example, to solve the equation 5x + 3 = 38, students first subtract 3 from 
both sides. This makes 5x + 3 – 3 = 38 – 3, which after simplifying results in 5x = 
35. Then, students divided both sides by 5, that is, 5x/5 = 35/5. After simplifying, 
it results in x = 7. Despite its contribution to equation solving, performing the same 
operation on both sides is usually not the first method taught to students (Kilpatrick 
et al., 2001). 

The canonical method (i.e., a set of algebraic transformational rules to be carried 
out in a particular order) for solving equations has dominated algebra textbooks and 
gained special status in school algebra (Buchbinder et al., 2015). Buchbinder et al.’s 
(2015) online survey of teachers’ perspectives on equation solving indicated that 
most teachers preferred canonical equation-solving solutions over noncanonical 
ones and perceived them as evidence of students’ knowledge and mastery of 
equation solving. Change side change sign is one of the transformational rules used for 
solving equations. Students typically learn this rule by heart, that when a term is 
moved to the other side of the equal sign, its operation changes to the opposite. For 
example, in solving the equation x + 2 = 6, students move ‘add 2’ to the right side 
of the equation, in which it becomes ‘subtract 2’, resulting in x = 6 – 2. Students may 
be able to solve equations correctly by solely memorising and applying this ‘magic’ 
rule without necessarily understanding the inverse operation concept on which the 
rule is built (de Lima & Tall, 2008). However, without understanding why the inverse 
operation is valid (i.e., why the sign changes when the term moves to the other side), 
they usually encounter difficulties in solving more challenging equations (Capraro & 
Joffrion, 2006) and tend to misapply the rule (e.g., de Lima & Tall, 2008; Figueira-
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Sampaio et al., 2009; A. Watson, 2009). For example, when solving equation 2x = 6, 
students make variations of common errors: moving ‘2’ to the right side of the 
equation, where it becomes ‘subtract 2’ resulting in x = 6 – 2 or correctly moving 
‘multiply by 2’ to the right side, where it becomes ‘divided by 2’, but also changing a 
plus sign of the term to a minus sign resulting in x = 6/(–2). 

Otten et al. (2019) made the observation that although the change side change 
sign rule may appear to differ from performing the same operation on both sides, 
both methods rather resemble each other. For example, solving the equation x – 4 
= 6 with the change side change sign rule means moving ‘subtract 4’ to the right side, 
in which it becomes ‘add 4,’ resulting in x = 6 + 4. When solving the equation by 
performing the same operation on both sides, 4 is added to the left and right sides 
of the equation, so that the equation becomes x – 4 + 4 = 6 + 4 and then x = 6 + 
4. Thus, the key difference between these two methods is that the change side change 
sign rule takes a shortcut by employing the inverse operation of ‘subtract 4’ instead 
of adding 4 to both sides. 

It has been argued that if students are taught to focus on the equivalence relation 
of both sides of the equation, they will learn to intuitively apply different methods 
to solve equations more effectively (A. Watson, 2009). Despite the pedagogical 
advantages of performing the same operation on both sides, empirical evidence 
shows that students typically use other equation-solving methods, including trial-
and-error substitution, undoing, and change side change sign (e.g., Kilpatrick et al., 
2001; A. Watson, 2009). Possible explanation for this could be that the equations 
they encounter can be easily or conveniently solved by other methods (Kilpatrick et 
al., 2001; A. Watson, 2009), or their previous knowledge of equation solving has an 
impact on how they learn and understand new methods (Kilpatrick et al., 2001). 
Kilpatrick et al.’s (2001) observation indicates that students who prefer the undoing 
method tend to experience difficulties in understanding the concept of performing 
the same operation on both sides, while students who prefer trial-and-error 
substitution and view equations as entities with a balance between both sides are 
likely to learn to solve equations easily by performing the same operation on both 
sides. Thus, trial-and-error substitution can be used to assist students in 
understanding the meaning of mathematical expressions and equations (A. Watson, 
2009). 

Equation solving is one of the key content areas of third-to-ninth-grade 
mathematics in the current Finnish NCC (EDUFI, 2016). Third-to-sixth graders 
should get to know the concept of the unknown and learn to solve equations by 
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trial-and-error substituting values and reasoning for the unknown. Seventh-to-ninth 
graders should develop the competence to form and solve equations algebraically. 

2.3.3 Learning equation solving 

Research has demonstrated that students’ misconceptions, particularly about the 
equal sign, can be altered, and as a result, their performance in equation solving is 
improved (Booth & Koedinger, 2008). To support equation-solving learning that 
enhances students’ understanding and performance, mathematics education scholars 
have recommended various pedagogies, including learning through multiple 
representations (e.g., manipulatives), mathematical models, reasoning, reflection, and 
social interaction. 

There has been empirical evidence that the use of multiple representations 
enhances students’ understanding of algebraic concepts, such as equation solving 
(e.g., Warren et al., 2016; A. Watson, 2009). Warren et al. (2016) conducted a review 
of proceedings of the Conference of the International Group for the Psychology of 
Mathematics Education during 2005–2015, particularly studies regarding equality 
and inequality. They found that the types of representations that students experience 
can influence how they model equations and recognise equivalence relations. 
Algebraic relationships represented in nonsymbolic forms (e.g., with manipulatives, 
graphs, or diagrams) are usually easier for students to understand compared to the 
same relationships represented in symbolic forms (A. Watson, 2009). Sherman and 
Bisanz (2009) reported positive results from using nonsymbolic representations for 
solving a variety of equations. Second-grade students who solved equations 
represented with manipulatives (i.e., blocks and bins) had higher performance and 
were more likely to give relational justifications for their solutions than their peers 
who solved the same equations represented with mathematical symbols. Similarly, 
Driver and Powell’s (2015) research results showed that second-grade students with 
and without mathematics difficulty performed much better in solving nonstandard 
equations presented with pictures and stories compared to the same equations 
presented with mathematical symbols. Sherman and Bisanz (2009) also discovered 
that second-grade students’ experience of equations represented with manipulatives 
facilitated their understanding, and thus enhanced their performance on solving 
subsequent symbolic equations. Their findings support mathematics educators’ (e.g., 
Goldin, 2002; A. Watson, 2009) view that learning through multiple representations 
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helps students to overcome difficulties in understanding the symbolic expressions of 
abstract algebraic notions. 

Goldin (2002) gives an example that familiar concrete objects, such as a bag of 
not-yet-counted objects, can be used to introduce students to the concept of using 
the letter x to stand for a specific unknown number. Therefore, x + 5 refers to the 
results of counting the objects inside the bag and adding five more, while 5x refers 
to the number of objects in five uniform bags, and so on. When using a 
representation, the meaning of the mathematical ideas under investigation needs to 
be emphasised to students (Foster, 2007). Students should be encouraged to 
compare and connect different representations of algebraic structures (A. Watson, 
2009), and later, to generalise and move away from nonsymbolic representations 
(Goldin, 2002). The goal is that eventually, students can work with symbolic 
representation of algebraic structures (e.g., x + 5 vs. 5x) flexibly and spontaneously 
(Goldin, 2002). 

New technologies can play a significant role in the learning of algebra (Warren et 
al., 2016; A. Watson, 2009). Technologies make multiple representations available to 
students and provide bridges between the representations and the underlying 
algebraic concepts (A. Watson, 2009). Technologies help students not only to 
investigate, test, reason, and understand the meaning of algebraic expressions, but 
also to solve equations and work in different interesting and motivating settings 
(Warren et al., 2016). Substantial evidence demonstrates that students who have used 
technological tools for their algebra learning develop a stronger understanding of 
algebraic expressions, equations, and equation solutions compared to their peers 
who have used only paper and pencil (A. Watson, 2009). Thus, technologies should 
be used in an active and participative way as learning tools to support students in 
learning algebra with understanding (Warren et al., 2016; A. Watson, 2009). 

Manipulatives can be used as hands-on learning tools to make algebra more 
concrete (Foster, 2007). Research indicates that students do not automatically 
develop algebraic understanding by merely using manipulatives; rather, they need to 
use manipulatives as support for constructing their understanding through 
experiences with algebraic concepts (Foster, 2007). Working with manipulatives over 
time can enable students to confront their misconceptions (Foster, 2007) and build 
knowledge of algebraic relationships and structures (A. Watson, 2009). 

A body of research reports positive results of using manipulatives for learning 
linear equations, particularly by students without prior knowledge of equation 
solving. High performance and relational justifications of second-grade students 
who solved equations represented with PMs in Sherman and Bisanz’s (2009) study 
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(mentioned earlier) support the use of manipulatives in learning algebra. The findings 
suggest that due to not being associated with misconceptions (e.g., the equal sign) as 
mathematical symbols are, the manipulatives may allow students to concentrate on 
the relationships between quantities on both sides of the equations, thereby helping 
them develop their equivalence understanding. In Suh and Moyer’s (2007) study, 
third-grade students worked with either PM (i.e., Hands-On Equations®; Borenson 
& Associates, n.d.) or VM (i.e., Algebra Balance Scales applet; National Library of 
Virtual Manipulatives [NLVM], n.d.) to solve simple equations using nonalgebraic 
strategies for one week. Their research results revealed that students in both 
instructional groups gained significant achievement between pretest and posttest, 
and showed representational fluency, which indicated their algebraic, particularly 
equivalence, understanding. 

Figueira-Sampaio et al. (2009) developed a virtual balance to replace traditional 
physical balances, which usually pose practical challenges in Brazilian classrooms. 
Physical balances often require much preparation for their balance mechanism and 
also prohibit students’ exploration and interaction due to difficulty in maintaining 
equilibrium, and a lack of physical balances in schools. After theoretical classes 
related to linear equations, sixth-grade students learnt to solve five equations by 
either using the developed virtual balance by themselves or observing the physical 
balance manipulated by their teacher. Their research findings indicate that virtual 
balance successfully resolves practical classroom challenges because it does not 
require any mechanical preparation, enables students’ direct interaction, and 
promotes their social interaction in small groups. 

Magruder and Mohr-Schroeder (2013) studied seventh-grade students using 
NLVM Algebra Balance Scales applet (also used in Suh and Moyer’s [2007] study) 
to solve 40 equations within a week at their own pace. Their research findings 
indicate that the VM not only enhances students’ understanding of equal signs and 
algebraic symbols, but also promotes their procedural knowledge. In another study, 
Magruder (2012) studied three groups of sixth-grade students learning to solve 
equations either without manipulatives, with PM (i.e., algebra tiles), or with VM (i.e., 
NLVM Algebra Balance Scales applet, also used in her and Mohr-Schroeder’s study) 
over 10 instructional days. She found that PM and VM appeared to be effective tools 
for solving equations. Nevertheless, on the posttest, students learning equation 
solving without manipulatives outperformed those learning with manipulatives. 
According to Magruder, the cognitive overload that PM and VM students possibly 
experienced when learning with manipulatives may explain their underperformance 



 

46 

helps students to overcome difficulties in understanding the symbolic expressions of 
abstract algebraic notions. 

Goldin (2002) gives an example that familiar concrete objects, such as a bag of 
not-yet-counted objects, can be used to introduce students to the concept of using 
the letter x to stand for a specific unknown number. Therefore, x + 5 refers to the 
results of counting the objects inside the bag and adding five more, while 5x refers 
to the number of objects in five uniform bags, and so on. When using a 
representation, the meaning of the mathematical ideas under investigation needs to 
be emphasised to students (Foster, 2007). Students should be encouraged to 
compare and connect different representations of algebraic structures (A. Watson, 
2009), and later, to generalise and move away from nonsymbolic representations 
(Goldin, 2002). The goal is that eventually, students can work with symbolic 
representation of algebraic structures (e.g., x + 5 vs. 5x) flexibly and spontaneously 
(Goldin, 2002). 

New technologies can play a significant role in the learning of algebra (Warren et 
al., 2016; A. Watson, 2009). Technologies make multiple representations available to 
students and provide bridges between the representations and the underlying 
algebraic concepts (A. Watson, 2009). Technologies help students not only to 
investigate, test, reason, and understand the meaning of algebraic expressions, but 
also to solve equations and work in different interesting and motivating settings 
(Warren et al., 2016). Substantial evidence demonstrates that students who have used 
technological tools for their algebra learning develop a stronger understanding of 
algebraic expressions, equations, and equation solutions compared to their peers 
who have used only paper and pencil (A. Watson, 2009). Thus, technologies should 
be used in an active and participative way as learning tools to support students in 
learning algebra with understanding (Warren et al., 2016; A. Watson, 2009). 

Manipulatives can be used as hands-on learning tools to make algebra more 
concrete (Foster, 2007). Research indicates that students do not automatically 
develop algebraic understanding by merely using manipulatives; rather, they need to 
use manipulatives as support for constructing their understanding through 
experiences with algebraic concepts (Foster, 2007). Working with manipulatives over 
time can enable students to confront their misconceptions (Foster, 2007) and build 
knowledge of algebraic relationships and structures (A. Watson, 2009). 

A body of research reports positive results of using manipulatives for learning 
linear equations, particularly by students without prior knowledge of equation 
solving. High performance and relational justifications of second-grade students 
who solved equations represented with PMs in Sherman and Bisanz’s (2009) study 

 

47 

(mentioned earlier) support the use of manipulatives in learning algebra. The findings 
suggest that due to not being associated with misconceptions (e.g., the equal sign) as 
mathematical symbols are, the manipulatives may allow students to concentrate on 
the relationships between quantities on both sides of the equations, thereby helping 
them develop their equivalence understanding. In Suh and Moyer’s (2007) study, 
third-grade students worked with either PM (i.e., Hands-On Equations®; Borenson 
& Associates, n.d.) or VM (i.e., Algebra Balance Scales applet; National Library of 
Virtual Manipulatives [NLVM], n.d.) to solve simple equations using nonalgebraic 
strategies for one week. Their research results revealed that students in both 
instructional groups gained significant achievement between pretest and posttest, 
and showed representational fluency, which indicated their algebraic, particularly 
equivalence, understanding. 

Figueira-Sampaio et al. (2009) developed a virtual balance to replace traditional 
physical balances, which usually pose practical challenges in Brazilian classrooms. 
Physical balances often require much preparation for their balance mechanism and 
also prohibit students’ exploration and interaction due to difficulty in maintaining 
equilibrium, and a lack of physical balances in schools. After theoretical classes 
related to linear equations, sixth-grade students learnt to solve five equations by 
either using the developed virtual balance by themselves or observing the physical 
balance manipulated by their teacher. Their research findings indicate that virtual 
balance successfully resolves practical classroom challenges because it does not 
require any mechanical preparation, enables students’ direct interaction, and 
promotes their social interaction in small groups. 

Magruder and Mohr-Schroeder (2013) studied seventh-grade students using 
NLVM Algebra Balance Scales applet (also used in Suh and Moyer’s [2007] study) 
to solve 40 equations within a week at their own pace. Their research findings 
indicate that the VM not only enhances students’ understanding of equal signs and 
algebraic symbols, but also promotes their procedural knowledge. In another study, 
Magruder (2012) studied three groups of sixth-grade students learning to solve 
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on the posttest. She suggested that enough time should be reserved for students to 
develop their conceptual understanding through manipulatives. 

Based on her research literature review on how children learn algebra, A. Watson 
(2009) argued that the use of concrete materials (e.g., lengths of rods or areas of tiles 
to represent unknown values) can bridge students’ prior experience and abstract 
relationships, and thus enable them to focus on relations instead of numbers. 
Nevertheless, most manipulatives have limitations, particularly with negative 
numbers, fractional values, and division operations that are difficult to represent 
concretely. When values and operations cannot be represented with manipulatives, 
students have to detach themselves from manipulatives and move towards 
abstraction. Their realisation of the limitations of manipulatives actually encourages 
their development of algebraic thinking. 

Mathematical models can be used to help students gain access to abstract 
concepts, such as algebra. A balance model has commonly been used for teaching 
and learning linear equations (e.g., Figueira-Sampaio et al., 2009; Otten et al., 2019; 
Warren & Cooper, 2009). An in-balance stage of a scale represents the rational view 
of the equal sign; weights on both sides represent mathematical expressions on both 
sides of the equation (e.g., Otten et al., 2019; Warren & Cooper, 2009). To benefit 
from the model, students must understand the shared principle of an equation and 
a balance scale (i.e., both sides are equal) and the similarity between mathematical 
operations (i.e., addition, subtraction, and division) and physical actions (i.e., adding, 
removing, and partitioning objects on both sides of the scale; Foster, 2007). 
Experiences with the balance model help students understand the equal sign as 
indicating equivalence (Foster, 2007), view both sides of the equation as two equal 
entities (rather than an instruction to find an answer; Warren & Cooper, 2005), and 
develop strategies for solving equations by doing operations to the equation while 
preserving its equality (Foster, 2007). 

Otten et al. (2019) conducted a systematic literature review of 34 peer-reviewed 
journal articles in which the balance model was utilised for linear equation lessons. 
They found that the most common rationale for using the balance model was to 
support students’ understanding of the equality concept, followed by enabling 
students’ learning through physical experiences and the use of models and 
representations. The model was used for students ranging from kindergarten to 
Grade 9 to learn to solve equations. More positive effects on learning outcomes were 
reported for using physical or virtual balances for young students (from kindergarten 
to Grade 6) with no previous algebra experiences to explore the equality concept 
through balances and solve simple equations with mostly positive values and 
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additions. In contrast, more mixed and negative effects on learning outcomes were 
reported on using drawn balances for students with previous algebra experiences 
(generally from Grade 7 upwards) to model, transform, and solve equations with 
negative values and subtraction—in other words, to revitalise their foundation of 
equation solving. 

While the balance model appears to be beneficial for learning equation solving, 
the model is limited by its inability to represent equations with negative integers, 
such as x = –1 (simplified from x + 3 = 2), and with subtraction, such as x – 3 = 2 
(e.g., Otten et al., 2019; Warren & Cooper, 2009). It is difficult to construct a 
meaningful representation of such equations due to the balance embodiment 
involving physical weights (de Lima & Tall, 2008; Otten et al., 2019). Some solutions 
to the limitations of the balance model have been proposed. For example, taking off 
3 on the left side of the equation x – 3 = 2 can be represented by adding 3 to the 
right side of the balance scale, or by using helium balloons to lift up the left side of 
the scale, thereby acting as a subtraction of 3 (de Lima & Tall, 2008). Another 
solution is that a diagram representing a balance scale can include all mathematical 
operations and numbers (Warren & Cooper, 2009). Rather than finding ways to 
represent the negative sign, as concrete models no longer work for this, it may be 
time to shift to abstract meanings of operations and relations (A. Watson, 2009). 
Therefore, the models should be viewed as analogues for students to generalise their 
understanding to more abstract situations, for example, solving equations containing 
negative quantities and subtraction (Warren & Cooper, 2005). 

Overall, multiple representations and models can be used to assist students’ 
learning of equation solving. However, what is meant to be learnt through 
representations and models may not be self-evident to students. Moreover, relying 
heavily on concrete representations and models may hinder students from 
generalising (i.e., transferring knowledge to other contexts). It has been 
recommended that self-explanation and reasoning (Sherman & Bisanz, 2009), social 
interaction (Foster, 2007; Warren & Cooper, 2009), and reflection (McNeil et al., 
2019; Warren & Cooper, 2009) can encourage students to develop their algebraic 
understanding, detach from the representations and models, and generalise what 
they have learnt. 
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3 METHODOLOGY 

This doctoral study employed an EDR approach to bridge research on manipulatives 
and its direct benefits to real-world educational practice. This study was conducted 
in Finnish comprehensive schools through a 6-year iterative enquiry. The empirical 
data were collected and analysed using mixed methods research. After presenting the 
research methodology of this study, I discuss how research ethics and integrity were 
considered throughout the study. 

3.1 Educational design research approach 

Since being introduced to educational research in the 1990s (see Brown, 1992; 
Collins, 1992), EDR has become recognised as a research approach seeking to bridge 
the separation between theoretical research and practice in education (e.g., Anderson 
& Shattuck, 2012; Collins et al., 2004; McKenney & Reeves, 2019). It is placed in 
Stokes’ (1997) Pasteur3s quadrant for use-inspired basic research aiming to advance 
both theoretical understanding and practical application (e.g., Barab, 2006; Phillips, 
2006). Starting out with complex educational problems in practice, EDR attempts 
not only to develop design solutions to improve educational practices, but also to 
better understand teaching and learning through iterative processes in actual 
educational settings (e.g., McKenney & Reeves, 2019; Plomp, 2013). Therefore, 
EDR appeared to be the right research approach for this doctoral study to resolve 
shortcomings regarding the current research on manipulatives and its benefits for 
real-world practice. 

McKenney and Reeves (2019) used the term EDR for a family of approaches that 
has the dual goal of contributing to both educational theory and practice. In addition 
to EDR, other commonly used terms, including design-based research, design research, 
design experiments, and development(al) research, also belong to this family. They are, 
however, not entirely synonymous and have somewhat dissimilar characteristics (for 
examples of how different scholars have characterised EDR, see Publication I). 
According to the observation in Publication I, key characteristics of EDR commonly 
defined among EDR scholars include (1) development of practical solutions to 
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educational problems, (2) development of theories, (3) evolution through multiple 
iterations, (4) undertaken in real-world educational settings, and (5) utilising various 
research methods, often mixed methods.  

Practical solution development. EDR intends to improve educational practice 
directly by developing research-based practical solutions (also known as interventions) 
to educational problems in the real world. In this dissertation, I use the term (design) 
solution when referring to the practical outcome of EDR to avoid ambiguity with class 
interventions (i.e., experimental designs) used in this study for collecting empirical data 
in classrooms. Common types of solutions include educational products and 
environments (e.g., textbooks and educational games), processes (e.g., class activities 
and teaching approaches), programmes (e.g., courses and learning units), and policies 
(e.g., curricula and assessment protocols; see e.g., Anderson & Shattuck, 2012; 
McKenney & Reeves, 2019; Plomp, 2013). The solution development is informed 
by theoretical understanding, problem analysis, and solution testing in real-world 
educational settings (McKenney & Reeves, 2019). In this present study, a TM, 
student worksheets, teacher guides, and class activities were developed as a solution 
for promoting students’ understanding of equation-solving concepts and classroom 
practice. Its design and development are described in Chapters 4.2–4.3 (for more 
details, see Publications III and IV). 

Theory development. EDR also contributes to the research community by 
advancing usable and generalisable knowledge constructed during iterative empirical 
investigation (e.g., Edelson, 2006; Kelly, 2006). According to Edelson (2002), EDR 
can assist in developing three types of theories: domain theories, design frameworks, 
and design methodologies. A domain theory yields two types of knowledge: a context 
theory describing the education problem to be solved and the real-world educational 
setting of interest, and an outcomes theory describing outcomes of implementing the 
developed solution. Informed by the outcomes theory, a design framework describes 
the characteristics of a successful solution in a particular educational setting. A design 
methodology provides guidelines for undertaking EDR to achieve the research 
objectives. In short, design frameworks inform others on how to develop a solution 
to a similar educational problem in other contexts, while design methodologies 
advise others on how to successfully conduct EDR. 

Although Edelson’s (2002) three types of theories were proposed almost two 
decades ago, they still inform recent EDR (e.g., Alshabeb, 2020; Fox, 2018; Kerslake, 
2019). McKenney and Reeves (2019) argued that the theoretical contributions of 
EDR are used for various purposes: descriptive, explanatory, predictive, and 
prescriptive/normative understanding. Descriptive understanding is often developed 
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at the beginning of EDR to describe real-world phenomena (i.e., the educational 
problem and its situated context), while explanatory understanding explains why or 
how particular phenomena occur (cf. context theory; Edelson, 2002). Predictive 
understanding can be pursued by testing whether, how, and to what extent the 
developed solution produces desirable outcomes (cf. outcomes theory; Edelson, 
2002). Prescriptive understanding combines descriptive, explanatory, and predictive 
understanding to direct the design of successful solutions in similar contexts (cf. 
design framework; Edelson, 2002). Not all EDR intends to contribute to all 
purposes. This study seeks to develop, particularly descriptive, explanatory, and 
prescriptive understandings that result in theoretical outcomes. The theoretical 
outcomes of this study are presented according to Edelson’s (2002) three types of 
theories in Chapter 7.1. The theoretical outcomes were also published as follows: 
context theory in Publications II and IV, outcomes theory in Publications II–IV, and 
design framework and design methodology in Publication IV. 

Multiple iterations. The EDR process is naturally iterative (e.g., Anderson & 
Shattuck, 2012; McKenney & Reeves, 2019; Plomp, 2013). Similarly to design 
practice, during EDR, a design solution gradually evolves through iterative cycles of 
investigation, design, and evaluation until the research goals are achieved. 
Concurrently, usable and generalisable knowledge is gradually constructed through 
cyclical investigation and reflection. Phases addressed in different EDR models, such 
as those of Easterday et al. (2017) and Reeves (2006), may vary in details. However, 
according to McKenney and Reeves (2019), three main phases can be drawn from 
most models: (1) initial phase (i.e., analysing and investigating the current situation, 
cf. preliminary research; Plomp, 2013), (2) design phase (i.e., designing and 
prototyping the solution, cf. development or prototyping phase; Plomp, 2013), and 
(3) evaluation (i.e., assessing the solution and reflecting on refinement of the 
solution, cf. assessment phase; Plomp, 2013). McKenney and Reeves (2019) 
described EDR as an overall study consisting of at least one subcycle from each of 
the following: analysis and exploration, design and construction, and evaluation and 
reflection. Most EDR, including the majority of the dissertations reviewed in 
Publication I, involves multiple subcycles of design and construction, and evaluation 
and reflection. The iterations of this dissertation are described in Chapters 3.3 and 4 
(for more details, see Publication IV). 

Undertaken in real-world educational settings. An empirical enquiry in 
naturalistic real-world (as opposed to controlled laboratory) settings is an essential 
part of EDR (e.g., McKenney & Reeves, 2019; Sandoval & Bell, 2004). Findings 
from a lab-like setting inadequately contribute to a holistic understanding of 
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classroom reality, in which learning actually takes place in a dynamic and rich social 
context (e.g., Brown, 1992; Collins, 1992; Juuti & Lavonen, 2006; McKenney & 
Reeves, 2019). Thus, being conducted in an authentic environment ensures that the 
solution developed during EDR takes into account the complexity and messiness of 
the educational practice it is intended to improve (e.g., Barab, 2006; Plomp 2013). 
As a result, solution utility in the real world is promoted (Anderson & Shattuck, 
2012). Moreover, different stakeholders should be involved in EDR to inform the 
development of the design solution towards the desirable outcomes (e.g., Anderson 
& Shattuck, 2012; Barab, 2006; Ørngreen, 2015). In this study, an empirical 
investigation and evaluation was conducted in Finnish comprehensive schools (see 
Chapters 3.2, 4.1.3, 4.2.2, and 4.3.2). The data were collected from both the teachers 
and their students, who were the target users of the design solution. In particular, 
class interventions were implemented in classroom situations in which teaching and 
learning took place through social interactions between teachers and students, as well 
as among peers. In addition to the direct involvement of teachers and students, the 
perspectives of policymakers, that is, the current Finnish NCC (EDUFI, 2016), also 
informed the solution development. 

Utilising various research methods. EDR should involve the triangulation of 
data sources (e.g., students, teachers, and policymakers), data collection methods, 
data types (i.e., qualitative and quantitative), theories, and researchers/investigators 
(e.g., Design-Based Research Collective [DBRC], 2003; McKenney & Reeves, 2019; 
Plomp 2013). The triangulation not only helps to better understand open real-world 
problems (Kelly, 2013), it also enhances the validity and reliability of EDR (e.g., 
McKenney & Reeves, 2019; Plomp, 2013). EDR is not methodologically bound. The 
choice of research methods is based on which method is accurate and productive 
for addressing the research questions (McKenney & Reeves, 2019). EDR often 
requires mixed methods combining the benefits of qualitative and quantitative 
methods (e.g., Anderson & Shattuck, 2012; Cobb et al., 2003), as in the case of this 
study (see Chapters 3.4, 4.1.3, 4.2.2, and 4.3.2). 

Publication I systematically reviewed 21 Finnish EDR doctoral dissertations on 
mathematics, science, and technology education published during 2000–2018. The 
aim was twofold: (1) to investigate how other Finnish researchers who conducted 
their dissertations in a similar field as this doctoral study employed EDR and what 
challenges they encountered, and (2) to draw implications for conducting this study. 
Common EDR characteristics (e.g., research in actual educational contexts, 
evolution through multiple iterations, and yielding both practical and theoretical 
contributions) were discovered in all the dissertations. Furthermore, in line with 
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for addressing the research questions (McKenney & Reeves, 2019). EDR often 
requires mixed methods combining the benefits of qualitative and quantitative 
methods (e.g., Anderson & Shattuck, 2012; Cobb et al., 2003), as in the case of this 
study (see Chapters 3.4, 4.1.3, 4.2.2, and 4.3.2). 

Publication I systematically reviewed 21 Finnish EDR doctoral dissertations on 
mathematics, science, and technology education published during 2000–2018. The 
aim was twofold: (1) to investigate how other Finnish researchers who conducted 
their dissertations in a similar field as this doctoral study employed EDR and what 
challenges they encountered, and (2) to draw implications for conducting this study. 
Common EDR characteristics (e.g., research in actual educational contexts, 
evolution through multiple iterations, and yielding both practical and theoretical 
contributions) were discovered in all the dissertations. Furthermore, in line with 
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those previously described by others (e.g., Kelly, 2013; McKenney & Reeves, 2019), 
most researchers were faced with challenges, such as conducting EDR with limited 
resources and collaborating with multi disciplines. The implications from the review 
(e.g., use of both classic and up-to-date EDR literature, research triangulation, 
multidisciplinary collaboration, working with alternative designs, and emphasis on 
design activities and processes) were used to guide this study (for more details on 
the implications, see Publication I). 

3.2 Research context 

This study was conducted in comprehensive schools (i.e., Grades 1–9 of basic 
education) in southern Finland. Third- to sixth-grade mathematics classrooms were 
purposefully chosen as the primary research context for two reasons. First, according 
to Flyvbjerg (2011), a critical case (i.e., a most-likely or least-likely case) usually reveals 
rich and insightful information related to the phenomenon of interest, which a 
representative (i.e., an average or typical) case may not be able to provide. A critical 
case is likely to generalise that ‘if it is valid for this case, it is valid for all (or many) 
cases’ (p. 307). In this study, with limited resources, it was expected to be productive 
to focus on a critical case, the upper primary grades, where manipulative use declines 
remarkably (e.g., Marshall & Swan, 2008; Moyer-Packenham et al., 2013; Uribe-
Flórez & Wilkins, 2010). The investigation of this particular setting would contribute 
to an in-depth and thorough understanding of what causes the decline in 
manipulative use in primary school classrooms. This holistic understanding would 
then help to develop a design solution to the problem. Moreover, if the developed 
manipulative could promote students’ understanding of equation-solving concepts 
and classroom practice in this particular setting, then it is likely that the manipulative 
would succeed in the lower primary grades, where the use of manipulatives is 
typically higher. 

Second, in Finland, the equity and quality of the education system and the 
homogeneity of teacher quality made it possible to carry out research in any school. 
According to the Organisation for Economic Co-operation and Development’s 
(OECD) Programme for International Student Assessment (PISA) 2015 and 2018 
data, Finnish students’ socioeconomic background has a low impact on their 
mathematics performance (OECD, 2017, 2020). Qualified class teachers in Finnish 
primary schools, who were 93% of the teachers employed, according to principals’ 
reports in PISA 2018, are required to have a master’s degree in education (OECD, 
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2020). It could therefore be claimed that Finnish schools have a high level of uniform 
quality across the country. 

In Finland, class teachers teach all school subjects, including mathematics at the 
primary level (Grades 1–6), while mathematics teachers provide instruction for 
mathematics at the lower secondary level (Grades 7–9). According to the Teaching 
Qualifications Decree 986/1998, to work as a qualified teacher in basic education, 
both class and mathematics teachers must have completed a master’s degree, at least 
60 credits under the European Credit Transfer and Accumulation System (ECTS 
credits) of pedagogical studies, and either at least 60 ECTS credits of 
multidisciplinary studies in school subjects taught in primary schools for class 
teachers or at least 60 ECTS credits of mathematics studies for mathematics teachers 
(Finlex, 2021). 

The current Finnish NCC (EDUFI, 2016) has become less detailed and 
prescriptive, functioning as a framework instead of a roadmap. It leaves teachers 
with a considerable degree of autonomy to interpret the NCC and decide what and 
how they will teach. For example, teachers can freely select their textbooks and other 
instructional materials and plan their lessons. 

3.3 Multiple-phase research process 

This study employed EDR as a research approach to resolve the separation between 
research on manipulatives and its educational practice. EDR contributed not only to 
a better understanding of how manipulatives could be used to promote students’ 
equation-solving concepts understanding and classroom practice, but also to the 
development of such a manipulative. Figure 2 outlines how the study was undertaken 
through multiple iterations of investigation, design and construction, and evaluation 
and reflection, as recommended by McKenney and Reeves (2019). The overall EDR 
process of the study consisted of three phases (i.e., initial research, concept 
development, and design development), which were divided into six subcycles. 
Although the process flow in Figure 2 moves from left to right, the actual process 
progressed in a nonlinear manner, which, according to Plomp (2013), resulted from 
one element repeatedly fed into others (i.e., iterative), and some subcycles were 
revisited (i.e., flexible). The overall process of the study is also summarised in 
Publication IV. The process, research methods, and results of each phase are 
presented in Chapter 4. 
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Figure 2.  Overall EDR process, research time frame, and corresponding RQs and publications. 
Adapted from ‘Constructing a Design Framework and Design Methodology from Educational 
Design Research on Real-World Educational Technology Development,’ by D. Lehtonen, 
2021, Educational Design Research, 5(2), Article 38, p. 4 
(https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 

During Phase 1, initial research was conducted to theoretically and empirically 
construct a context understanding of the educational problem and the target real-
world setting. The focus was on what should be considered when developing a 
solution to the educational problem. The areas of investigation included the needs, 
challenges, and opportunities of using manipulatives for learning equation solving in 
classrooms and the strengths and limitations of existing manipulatives (RQ 1.1). The 
investigation started with a literature review to establish a theoretical background 
understanding (see Chapter 4.1.1), followed by an analysis of existing manipulatives 
and educational games for equation solving (see Chapter 4.1.2). Based on the 
findings gained from both investigations, initial fieldwork was conducted in real 
classrooms with teachers and their students (see Chapter 4.1.3). 

In Phase 2, the context knowledge derived from Phase 1 was used to identify 
design opportunities and tentative design principles, which initially addressed RQ 2. 
Based on that, various potential design solutions to the educational problem were 
explored and developed into four manipulative concepts (see Chapter 4.2.1). A 
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nonfunctional mock-up of each concept was constructed and then evaluated by 
teachers (see Chapter 4.2.2). The most promising concept was selected for further 
development based on the teachers’ responses: how each concept could promote 
students’ understanding of equation-solving concepts and encourage teachers to 
adopt it in their classrooms (an initial outcome knowledge answering RQ 1.2). 

At the beginning of Phase 3, another literature review and investigation of 
existing educational products relevant to design development were conducted. The 
knowledge derived from the literature review and the educational product 
investigation was used together with Phase 2 findings (i.e., initial outcome 
knowledge) to refine the design principles, which helped address RQ 2. The design 
principles then informed the development of the design solution: a TM, student 
worksheets, teacher guides, and class activities as a solution to the identified problem 
(see Chapter 4.3.1). The next step was prototyping the design solution. The TM, 
particularly its technological parts, was developed and prototyped in collaboration 
with a team of computer science students and their supervisor. Finally, the developed 
solution was tested by teachers and students (see Chapter 4.3.2) to answer RQ 1.2 
and inform the refinement of the design solution. 

3.4 Mixed methods research design 

Mixed methods research (also known as integrated research, combined research, hybrid research, 
and mixed research) utilises two types of data—qualitative and quantitative—and 
integrates them in meaningful ways to rigorously investigate the phenomenon of 
interest (e.g., Creamer, 2018; Creswell & Plano Clark, 2017; Teddlie & Tashakkori, 
2012). Throughout the three phases of this doctoral study, mixed methods research 
was used as a strategy of enquiry for collecting, analysing, and interpreting the 
empirical data. The combined qualitative and quantitative research is an effective 
enquiry for tackling complex real-world problems (Creamer, 2018). The mixed 
methods design used in this study was a convergent design, sometimes known as a 
concurrent, parallel, or simultaneous design. It is a type of design in which both qualitative 
and quantitative data are simultaneously collected and analysed, then compared 
and/or combined to obtain a better understanding of the findings than those 
provided by qualitative or quantitative findings separately (Creswell & Plano Clark, 
2017). The intent of convergent design is that the advantages of one approach 
complement the shortcomings of the other. 
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As mentioned in Chapter 3.1, EDR is not bound to any specific methodology. 
The choice of a mixed methods research design was underpinned by the pragmatism 
paradigm. To determine the research methods employed, pragmatism places its 
priority on the question asked, rather than the method or the philosophical 
worldview underlying the method, and what works best for addressing the RQ is 
used (Creamer, 2018; Creswell & Plano Clark, 2017; Teddlie & Tashakkori, 2012). 
Among other paradigmatic stances (e.g., postpositivism, constructivism, and 
transformism) that provide a foundation for the use of mixed methods, pragmatism 
has been endorsed by scholars as the best worldview for mixed methods research 
(Tashakkori & Teddlie, 2003), particularly in applied disciplines like educational 
sciences (Creamer, 2018). 

In this EDR, qualitative and quantitative data were used together over time to 
better understand the educational problem and context and to support the 
development and evaluation of the design solution. Each phase emphasised different 
research objectives, and the data were collected and used accordingly. The qualitative 
data, consisting of interviews, observations, and thinking aloud, were intended for 
various purposes in different research phases. During Phase 1, they were used to 
address the challenges and opportunities of using manipulatives in primary school 
classrooms and to explore the strengths and limitations of existing manipulatives. 
Later, the qualitative data were utilised to explain why and how the developed 
manipulative succeeded or failed in enhancing students’ conceptual understanding 
and classroom practice. The quantitative data, including paper-based tests, 
questionnaires, and self-evaluation, were also used for several purposes. During 
Phase 1, they were intended to justify whether it was worth adopting manipulatives 
into the mathematics classroom. Later, they were used to inform the determination 
of the generated manipulative concepts during Phase 2 and to determine the success 
of the developed manipulative in real-world settings during Phase 3. 

In short, the quantitative and qualitative strands were separately implemented 
according to their contributions to the RQs. Then, the findings from the separate 
strands were converged and compared to obtain a more complete understanding of 
the phenomena under study. Table 1 outlines the mixed methods research design 
and corresponding RQs of three empirical subcycles: initial fieldwork, concept 
evaluation, and design evaluation. 
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Table 1.  The mixed methods research design and corresponding RQs of the study’s empirical 
sub-cycles. Adapted from ‘Constructing a Design Framework and Design Methodology 
from Educational Design Research on Real-World Educational Technology 
Development,’ by D. Lehtonen, 2021, Educational Design Research, 5(2), Article 38, p. 
5 (https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 

Empirical 
sub-cycles 

RQs Data Analysis 

Phase 1: 
Initial fieldwork 

1.1 & 2 • Teacher interviews (N = 4) • Inductive content analysis 

• Class intervention observations 
(teachers N = 4, students in paper-and-pencil 
group n = 25, in PM group n = 25, in VM group 
n = 24) 

• Inductive content analysis 

• Student paper-based tests  
(paper-and-pencil group n = 25,  
PM group n = 25, VM group n = 24) 

• Descriptive statistical analysis 
• Inferential statistical analysis 

(95% confidence intervals) 

• Student self-evaluations 
(paper-and-pencil group n = 25,  
PM group n = 25, VM group n = 24) 

• Descriptive statistical analysis 

Phase 2: 
Concept 
evaluation 

1.2 & 2 • Teacher questionnaires (N = 12) • Descriptive statistical analysis 

• Teacher interviews (N = 12) • Inductive content analysis 

Phase 3: 
Design 
evaluation 

1.2 & 2 • Class intervention observations 
(teachers n = 2,  
students in paper-and-pencil group n = 12, 
in TM group n = 12) 

• Inductive content analysis 
• Deductive content analysis 
• Descriptive statistical analysis 
• Inferential statistical analysis 

(Pearson’s chi-squared test) 

• Student paper-based tests 
(paper-and-pencil group n = 12, 
TM group n = 12, comparison group without 
participating in class intervention n = 65) 

• Descriptive statistical analysis 
• Inferential statistical analysis 

(Mann–Whitney U test) 

• Thinking aloud sessions of students in TM 
group (n = 12) 

• Inductive content analysis 

• Questionnaires of students in TM group  
(n = 12) 

• Descriptive statistical analysis 

• Interviews of students in TM group  
(n = 12) 

• Inductive content analysis 

• Teacher questionnaires 
(N = 6, two participated in the class 
interventions) 

• Descriptive statistical analysis 
• Inferential statistical analysis  

(Wilcoxon matched-pairs signed-rank 
test) 

• Teacher interviews 
(N = 6, two participated in the class 
interventions) 

• Inductive content analysis 

It is noteworthy that the empirical research directly addressed RQ 1 and assisted in 
building the design framework (RQ 2). Guidelines for conducting successful EDR 
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(RQ 3) were constructed based on lessons I learnt from undertaking the entire EDR 
(see Chapter 5). 

Altogether, 18 basic education teachers (teaching experience 3–27 years), 98 
primary school students (aged 9–12), and 65 lower secondary school students (aged 
13–16) participated in different research phases. The research design of the initial 
fieldwork, concept evaluation, and design evaluation are separately described in 
Chapters 4.1.3, 4.2.2, and 4.3.2, respectively.  

Conducting mixed methods research is challenging, particularly for novice 
researchers (Creamer, 2018; Creswell & Plano Clark, 2017). Mixed methods research 
requires researchers to have sufficient skills in quantitative, qualitative, and mixed 
methods research, as well as research software for each type of research data. It is 
also resource intensive: qualitative and quantitative data collection and analysis 
require extensive time and resources. Nevertheless, there is evidence that it is feasible 
for a graduate student to undertake mixed methods research independently 
(Creamer, 2018; Teddlie & Tashakkori, 2012). This was the case with this doctoral 
study. 

As a qualitatively orientated researcher acquainted with mixed methods research, 
I was required to develop a better understanding of quantitative research and the 
necessary skills to conduct this study independently. I took various courses in 
quantitative and mixed methods research and engaged in the literature. I also 
consulted my supervisors and experienced quantitative researchers in the faculty 
about subjects, such as measurement instruments, statistical analyses, and rigour in 
quantitative research. 

I conducted this doctoral study alongside my full-time work. The study was not 
part of any research project and thus did not have any specific scope and time 
constraints. At the beginning, the scope of the study was planned to be manageable 
within a reasonable time frame and resources. As the study progressed, the scope 
was altered due to the evolutionary nature of EDR (McKenney & Reeves, 2019): the 
results from the previous phase informed how the subsequent phase was conducted. 
Consequently, the scope became rather overambitious for a solo doctoral researcher. 
The multiple-phase mixed methods design required considerable time to obtain 
approval for conducting research in classrooms, recruit participants, collect 
qualitative and quantitative data, process (e.g., transcribe and translate intervention 
videos) and analyse both data types, and integrate them. Fortunately, the study was 
still feasible because qualitative and quantitative data could be conveniently collected 
simultaneously during school visits. There were also some overlaps of participants 
in the qualitative and quantitative research, and some RQs enabled a comparison of 
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the overlapping qualitative and quantitative data analysis. Nevertheless, the study 
spanned 6 years. 

Through this doctoral study, I broadened my research skillsets of quantitative, 
qualitative, and mixed methods towards becoming a versatile researcher. Although I 
am still an early-staged quantitative and mixed methods researcher, my expertise in 
both research methods has gradually developed over the course of this study (see 
e.g., Publication II vs. Publication III). I have become confident in flexibly using 
various research methods to best address different RQs. 

3.5 Research ethics and integrity 

Research ethics and integrity were taken into account throughout the research. The 
research followed the ethical principles of research in the humanities and social and 
behavioural sciences and proposals for ethical review of the Finnish National Board 
on Research Integrity (TENK, 2009), the responsible conduct of research and 
procedures for handling allegations of misconduct in Finland (TENK, 2012), and 
the European code of conduct for research integrity of All European Academies 
(ALLEA, 2017). 

At the time the research was planned and conducted, the university was 
committed to TENK’s ethics guidelines (2009). Thus, the research was required to 
comply with three areas of ethical principles in the humanities and social and 
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According to the national guidelines and the committee’s instructions, an ethical 
review was not required because the research did not deviate from the principle of 
informed consent, it was conducted as part of normal classroom activities with 
minors’ parental consent, and it did not involve an intervention in the physical 
integrity of the research participants or expose them to mental harm beyond the risks 
encountered in daily life. 

Prior to the study, research permission was obtained from the town’s children 
and youth service director and school principals. Research participation was 
voluntary and based on informed consent of the participants or their legal guardians 
in the case of students aged under 15. An information sheet containing clear and 
sufficient information (e.g., research topic and goals, data collection methods and 
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(RQ 3) were constructed based on lessons I learnt from undertaking the entire EDR 
(see Chapter 5). 

Altogether, 18 basic education teachers (teaching experience 3–27 years), 98 
primary school students (aged 9–12), and 65 lower secondary school students (aged 
13–16) participated in different research phases. The research design of the initial 
fieldwork, concept evaluation, and design evaluation are separately described in 
Chapters 4.1.3, 4.2.2, and 4.3.2, respectively.  

Conducting mixed methods research is challenging, particularly for novice 
researchers (Creamer, 2018; Creswell & Plano Clark, 2017). Mixed methods research 
requires researchers to have sufficient skills in quantitative, qualitative, and mixed 
methods research, as well as research software for each type of research data. It is 
also resource intensive: qualitative and quantitative data collection and analysis 
require extensive time and resources. Nevertheless, there is evidence that it is feasible 
for a graduate student to undertake mixed methods research independently 
(Creamer, 2018; Teddlie & Tashakkori, 2012). This was the case with this doctoral 
study. 

As a qualitatively orientated researcher acquainted with mixed methods research, 
I was required to develop a better understanding of quantitative research and the 
necessary skills to conduct this study independently. I took various courses in 
quantitative and mixed methods research and engaged in the literature. I also 
consulted my supervisors and experienced quantitative researchers in the faculty 
about subjects, such as measurement instruments, statistical analyses, and rigour in 
quantitative research. 

I conducted this doctoral study alongside my full-time work. The study was not 
part of any research project and thus did not have any specific scope and time 
constraints. At the beginning, the scope of the study was planned to be manageable 
within a reasonable time frame and resources. As the study progressed, the scope 
was altered due to the evolutionary nature of EDR (McKenney & Reeves, 2019): the 
results from the previous phase informed how the subsequent phase was conducted. 
Consequently, the scope became rather overambitious for a solo doctoral researcher. 
The multiple-phase mixed methods design required considerable time to obtain 
approval for conducting research in classrooms, recruit participants, collect 
qualitative and quantitative data, process (e.g., transcribe and translate intervention 
videos) and analyse both data types, and integrate them. Fortunately, the study was 
still feasible because qualitative and quantitative data could be conveniently collected 
simultaneously during school visits. There were also some overlaps of participants 
in the qualitative and quantitative research, and some RQs enabled a comparison of 

 

61 

the overlapping qualitative and quantitative data analysis. Nevertheless, the study 
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procedure, estimated duration of the data collection, participants’ rights, data storage 
and utilisation, confidentiality, data protection, research dissemination, and the 
researcher’s contact information) was provided to the participants and their 
guardians. 

During the data collection, the research sites and participants were treated politely 
and with respect and care. The research data were collected responsibly by 
minimising interruptions in normal classroom activities; for example, the students 
took turns participating in the class interventions. While their teacher and classmates 
took part in the class intervention, the rest of the class studied independently 
according to their normal class plan. The content covered during the class 
interventions was also designed to align with the Finnish NCC (EDUFI, 2016). 
Classroom interventions were undertaken only in Phases 1 and 3 to avoid 
unnecessary classroom interruptions. The Phase 1 interventions were important for 
constructing an understanding of the educational problem and contexts, and in 
Phase 3, the design solution was mature enough for classroom implementation and 
evaluation. In contrast, in Phase 2, the design concepts were underdeveloped, and 
thus were evaluated only through teacher questionnaires and interviews instead of 
class interventions. 

The data collection was designed to avoid mental and social harm to the 
participants. For example, pretests were excluded from the research because 
completing a pretest in a new content area is usually unfamiliar to Finnish primary 
school students and can cause them some stress and frustration. Moreover, primary 
schoolers in Finland typically do not obtain knowledge regarding untaught content 
(in this case, equation solving) from outside the school. It could thus be assumed 
that the students in this study had no/low prior knowledge of equation solving. For 
this reason, only posttests were sufficient for evaluating students’ learning 
achievement of new knowledge after the class interventions. Another example was 
that all students were individually interviewed; however, their own teacher’s presence 
during the interviews was allowed upon request for students’ mental support. No 
unnecessary personal data from the participants, such as their racial or ethnic origin, 
was collected. The participants were also provided with the opportunity to ask 
questions concerning the research or withdraw from the research at any point. 

During data processing, analysis, and interpretation, the participants’ privacy was 
protected responsibly. Their personal data, unnecessary for the research, were 
removed from the stored data. The research materials containing their identifiers 
were carefully and confidentially stored and will be destroyed after the dissertation. 

 

63 

Additionally, the data were used only for research purposes, as stated in the informed 
consent. No one besides me had access to the data. 

During research dissemination, the research publications sought to balance the 
participants’ confidentiality with the openness of science and research. The research 
results were presented with respect for the participants and without bias. The 
participants’ privacy was ensured through the anonymity and nonidentifiability of 
participants in all research publications. For example, quotations from the data were 
published anonymously; the participants were presented in an unidentifiable way; 
their identifiers (e.g., school name and location, age or teaching experience, and grade 
levels) were reported at a general level, such as in range; and their identifiers 
irrelevant to the research results were neither used for the data analysis nor presented 
in any publications. Moreover, the quantitative data were statistically analysed, and 
the results were then reported. It is not possible for the audience to identify any 
individual participants, even if the published findings are based on research data 
containing their identifiers. 

Additionally, the research was conducted according to TENK’s (2012) and 
ALLEA’s (2017) guidelines to comply with the responsible conduct of the research 
and to avoid violations of research integrity. Good research practices are based on 
four principles of research integrity: reliability, honesty, respect, and accountability 
(ALLEA, 2017). Various good research practices are the same as those mentioned 
in the previous paragraphs regarding research ethics. Apart from that, various 
practices were undertaken throughout the research; for example, the research 
followed institutional, national, and international codes and regulations associated 
with educational sciences. Other researchers’ work and achievements relevant to the 
research were taken into account and cited appropriately. The results were 
analytically interpreted and published accurately, honestly, and transparently. My 
possible biases and conflicts of interest, such as taking a dual role as a researcher and 
designer, were clearly stated. All partners in the research collaborations, all authors 
of research publications, and the research funding foundation were properly 
acknowledged. 

I was also cautious about research misconduct and other unacceptable practices 
that might occur intentionally and unintentionally during the research, including 
fabrication, falsification, plagiarism and self-plagiarism, and misappropriation (see 
ALLEA, 2017; TENK, 2012). I endeavoured to prevent research misconduct and 
unacceptable practices, for example, by crediting the contributions of all parties 
involved accurately, citing others’ and their own works appropriately, and avoiding 
redundant publication. 
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4 THREE PHASES OF THE RESEARCH 

This EDR was conducted in three phases: initial research, concept development, and 
design development. During the multiple iterations, the design solution (i.e., a 
manipulative and its accompanying instructional materials and class activities) was 
developed, prototyped, and evaluated in classrooms. 

4.1 Phase 1: Initial research 

The goal of the initial research was to establish a context theory (RQ 1.1), which was 
later used to inform the design and development of the solution to the educational 
problem. During this phase, the needs, challenges, and opportunities of using 
manipulatives in primary school classrooms, particularly for promoting 
understanding of equation-solving concepts, were identified. Moreover, different 
manipulatives and educational games for solving equations were investigated. 

4.1.1 Literature review 

The literature review in Chapter 2 provides a foundation for contextual 
understanding. In Finland, third-to-sixth graders should learn the unknown concept 
and linear equation solving through reasoning and trial-and-error substitution of 
values for the unknown, whereas seventh-to-ninth graders should develop 
competence to form and solve equations algebraically. To become proficient in 
solving equations, students need to construct their conceptual understanding of 
equations, mathematical equivalence, different terms in an equation, and equation 
solving. Learning through multiple representations (e.g., manipulatives), 
mathematical models, reasoning, reflection, and social interaction, has been 
recommended for promoting students’ understanding of key concepts in equation 
solving. 

The balance model has commonly been used for students at different grade levels 
to learn linear equations. This model can intuitively and concretely illustrate the 
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mathematical equivalence of two equal entities between the equal sign and support 
equation solving, particularly by doing the same operation on both sides of the 
equation. Nevertheless, it is difficult to represent negative integers and subtraction 
with the model. While some solutions to this shortcoming (e.g., using helium 
balloons to lift the scale) have been proposed, the model can be regarded as a 
foundation for students to construct their understanding of equation solving before 
moving to more abstract situations. 

Manipulatives can be used to concretely represent abstract equation-solving 
concepts, thereby helping students construct an understanding of equation solving. 
To benefit from manipulatives, students should manipulate them, then think and 
reflect on their experience and discuss with others what they have discovered. 
Manipulatives can enhance learning through multiple representations, as well as 
discovery and social constructivist learning. There are three types of manipulatives 
(i.e., physical, virtual, and tangible), each of which has its own strengths and 
limitations, as outlined in Table 2. 
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Table 2.  Summary of strengths and limitations of each type of manipulatives based on the 
literature review 

Types of 
manipulatives 

Strengths Limitations 

PMs • Concretising abstract concepts 
• Encouraging physical action to promote learning 
• Offloading cognition 
• Improving memory through physical action 
• Assisting embodied cognition 
• Serving as reflection and communication tools 
• Making students’ thinking visible to others 

• Requiring considerable guidance and support to 
benefit from PMs 

• Typically, pricier than VMs 

VMs • Providing immediate guidance, feedback, and 
scaffolding 

• Providing precise representations 
• Linking pictorial and symbolic representations 

with students’ interactions 
• Drawing students’ attention to what is relevant 
• Motivating students 
• Promoting students’ creativity 
• Increasing students’ solution diversity 
• Recording and tracking students’ actions for 

reflection and assessment 
• Ease of sharing, cleaning up, and storing and 

retrieving configurations 
• Accessibility, availability, and affordability 

• Replacing rich physical interaction with mouse-
keyboard clicking or touch screen tapping and 
scrolling 

• Potential rote learning 
• Distracting students’ attention from learning 
• Losing mathematics learning time to learning how 

to operate VMs or solving technical issues 
• Requiring accessibility and availability of the 

necessary technology 

TMs Physical representations: 
• Creating a sense of physicality and embodiment 
• Enabling natural bodily interactions 
• Intuitive interaction enabling allocation of 

cognitive resources to mathematics learning 
• Offloading students’ cognitive demands 
• Suitable for students with visual impairment 

• More components and setup than PMs or VMs, 
decreasing practicality 

• Advanced technology means high prices 
compared to PMs and VMs 

Digital representations: 
• Providing immediate feedback and scaffolding 
• Recording and tracking students’ actions for 

reflection and assessment 
• Changeable perceptual properties for 

representing certain mathematical concepts 
Physical and digital representations together: 

• Providing a conceptual metaphor for to-be-learnt 
concepts 

• Connecting physical, pictorial, symbolic, and 
other representations 

• Attracting students’ multiple senses 
• Enabling accessibility for different learners 
• Allowing parallel multi-user interactions 
• Encouraging facial, gestural, and verbal 

communication 
• Motivating learning 
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Despite the benefits of meaningfully using manipulatives, their use in the classroom 
is still relatively limited. Although teachers consider manipulatives to be beneficial, 
they usually prefer traditional teacher-centred and paper-and-pencil instruction to 
manipulative use. Day-to-day challenges for the use of manipulatives in the 
classroom include manipulative availability (e.g., a lack of acquisition money or 
limited numbers of manipulatives available), manipulative organisation (e.g., 
difficulty in borrowing and returning, setting up and packing away, sorting and 
storing manipulatives, and damaging and losing them), classroom management (e.g., 
crowded classes, students not listening to instructions, manipulative misuse, 
noisiness, and messiness), and a lack of time (e.g., to use, organise, set up, and pack 
manipulatives away). 

4.1.2 Existing solution investigation 

Apart from the literature review of equation-solving learning and manipulatives in 
general, I reviewed previous studies on different manipulatives and educational 
games for solving equations, as well as trialled them by myself. The aim was to 
investigate their design in general, as well as their unique strengths and limitations. 
To date, all three types of manipulatives (i.e., PMs, VMs, and TMs) for solving 
equations are commercialised, self-made by teachers, or research-based prototypes. 

Available PMs for solving equations include physical balance scales, algebra tiles, 
and cups and chips. Most commonly used PMs are physical balance scales, which 
are concrete forms of the balance model. A scale balances or tilts (as the metaphor 
of equal or not equal) in response to the placement and removal of distinct objects 
(one standing for constants and another standing for unknowns in an equation) on 
each side. The scale’s dynamic actions, according to students’ equation-solving 
actions (i.e., addition or subtraction) concretise the mathematical equivalence 
concept and provide students with immediate feedback. Unfortunately, the benefits 
of balance scales come with a price. Similar to Figueira-Sampaio et al. (2009), I found 
that physical balance scales often pose practical challenges regarding their 
affordability and mechanical requirements. For example, the balance scale mechanics 
are typically costly (a set of a balance scale with objects/weights costs about €15–30) 
and easily broken. Size, capacity, and accuracy of scales determine the sizes and 
weights of objects that can be used to represent constants and unknowns. 
Preparation before solving each equation (e.g., scale calibration for zero adjustments 
and setup of correct weight objects to represent the unknown in different equations) 
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and technical attributes of scales (e.g., balance maintainability and sensitivity) 
typically cause inconvenience in the classroom. Another limitation is that not all 
values can be represented using physical balance scales. Physical scales can only 
represent equations containing natural numbers. Although special four-pan balance 
scales (see e.g., Learning Resources, 2020) can handle negative integers, they are 
more expensive (Learning Resources’ scale costs about €40), more complicated, and 
more easily damaged than typical scales. Additionally, it is not easy to use commonly 
available objects to represent fractions on a balance scale. Representing equations 
whose solution equals zero (x = 0) is also technically challenging, because an object 
representing the unknown has its weight. Moreover, the balance mechanics (i.e., 
when placing an object on one side of a scale, the scale beam tilts down on that side) 
support only the representation of zero and positive values. 

Apart from commercialised balance scales, teachers’ self-made balance scales 
from available materials (e.g., paper, clothes hangers, cups, and blocks) have also 
been used for solving equations. Whereas self-made scales are inexpensive compared 
to commercialised scales, they take time to make and are usually less accurate. 
Moreover, rather than tilting dynamically, some self-made scales have to be operated 
by hand and thus do not provide students with real-time feedback. 

Algebra tiles are manipulatives used to represent constants and variables in 
algebraic expressions. Algebra tiles include small squares (constant values of 1 and –
1), rectangles (variable/unknown [in equations] values of x and –x), and large squares 
(variable/unknown [in equations] values of x2 and –x2). Commonly positive unit 
tiles, x-tiles, and x2-tiles are yellow, green, and blue, respectively; all negative tiles are 
red. Algebra tiles can be used to solve equations on an equation mat, which is 
vertically divided in half (sometimes with an equal sign in the middle), representing 
both sides of the equation. Equations containing subtraction, such as x – 2 = 4, can 
be represented with one positive x-tile and two negative unit tiles on the left side of 
the equation mat and four positive unit tiles on the right. To solve this equation, two 
positive unit tiles can be placed on both sides of the equation mat, and then two zero 
pairs of unit tiles (i.e., one positive unit tile and one negative unit tile cancel each 
other out) on the left side are removed, thereby leaving one positive x-tile on the left 
and six positive unit tiles on the right, so x = 6. Negative integers can be represented 
with algebra tiles, but not easily with balance scales. However, when compared to 
balance scales, algebra tiles are more abstract, less intuitive for students, and do not 
illustrate mathematical equivalence well (Braukmüller et al., 2019), nor do they 
provide physical feedback regarding the correctness of students’ actions 
(Reinschlüssel, Alexandrovsky et al., 2018). 
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Braukmüller et al. (2019) asked mathematics teachers at different school types 
and levels, who were also textbook authors, to rate the indispensability of balance 
scales and algebra tiles to their teaching based on each manipulative type’s 
ability/inability to illustrate equivalence and negative integers. The research findings 
were in favour of balance scales. In the study of Reinschlüssel, Alexandrovsky et al. 
(2018), mathematics textbook authors, who were also experienced teachers, found 
the different colours of each tile type slightly confusing. Moreover, some teachers 
were unsatisfied with possibly drawn relationships between sizes of x-tiles and unit 
tiles (one x-tile was approximately three or four times the unit tile) because this could 
mislead students about the value of the unknown. In terms of practicality, algebra 
tiles are more affordable (a set of algebra tiles costs about €6–12) and more durable 
(the tiles have neither moving nor mechanical parts) compared to balance scales. 

Cups and chips have also been used to solve equations whose unknowns are 
represented with cups (facing up for positive and facing down for negative), and 
constants are represented with two-sided chips (one side for positive and another 
side for negative). Although cups and chips share a similar idea to algebra tiles, they 
appear to be less abstract and more intuitive for students than algebra tiles. For 
example, regarding the concept of the unknown, it is more tangible to picture that 
each cup contains the same number of chips than picturing that each rectangular x-
tile equals the particular number of square unit tiles. Additionally, I found that cups 
and chips were relatively easier to make and less expensive to acquire than algebra 
tiles. 

To summarise, physical balance scales, algebra tiles, and cups and chips concretise 
the key concepts of equations and equation solving. The balance principle of scales 
illustrates mathematical equivalence. In the case of algebra tiles, Magruder’s (2012) 
research findings indicate that the representation of constants as squares and 
unknowns as rectangles enabled students to distinguish between the two terms and 
eventually realise their differences. Nevertheless, according to my observations, the 
use of distinct objects on balance scales, as well as cups and chips to represent 
constants and unknowns of an equation, can differentiate between the two more 
explicitly than the algebra tiles. Negative integers can be represented with algebra 
tiles as well as cups and tiles, but not with typical balance scales. Compared to other 
PMs, balance scales tend to pose more practical challenges due to their mechanics. 

Available VMs are typically digital versions of physical balance scales and algebra 
tiles. Algebra Balance Scales (NLVM, n.d.) is a free web-based Java applet for sixth-
to-eighth graders to learn to solve simple linear equations. The applet consists of a 
balance scale, unit blocks representing one, and x-boxes representing positive 



 

68 

and technical attributes of scales (e.g., balance maintainability and sensitivity) 
typically cause inconvenience in the classroom. Another limitation is that not all 
values can be represented using physical balance scales. Physical scales can only 
represent equations containing natural numbers. Although special four-pan balance 
scales (see e.g., Learning Resources, 2020) can handle negative integers, they are 
more expensive (Learning Resources’ scale costs about €40), more complicated, and 
more easily damaged than typical scales. Additionally, it is not easy to use commonly 
available objects to represent fractions on a balance scale. Representing equations 
whose solution equals zero (x = 0) is also technically challenging, because an object 
representing the unknown has its weight. Moreover, the balance mechanics (i.e., 
when placing an object on one side of a scale, the scale beam tilts down on that side) 
support only the representation of zero and positive values. 

Apart from commercialised balance scales, teachers’ self-made balance scales 
from available materials (e.g., paper, clothes hangers, cups, and blocks) have also 
been used for solving equations. Whereas self-made scales are inexpensive compared 
to commercialised scales, they take time to make and are usually less accurate. 
Moreover, rather than tilting dynamically, some self-made scales have to be operated 
by hand and thus do not provide students with real-time feedback. 

Algebra tiles are manipulatives used to represent constants and variables in 
algebraic expressions. Algebra tiles include small squares (constant values of 1 and –
1), rectangles (variable/unknown [in equations] values of x and –x), and large squares 
(variable/unknown [in equations] values of x2 and –x2). Commonly positive unit 
tiles, x-tiles, and x2-tiles are yellow, green, and blue, respectively; all negative tiles are 
red. Algebra tiles can be used to solve equations on an equation mat, which is 
vertically divided in half (sometimes with an equal sign in the middle), representing 
both sides of the equation. Equations containing subtraction, such as x – 2 = 4, can 
be represented with one positive x-tile and two negative unit tiles on the left side of 
the equation mat and four positive unit tiles on the right. To solve this equation, two 
positive unit tiles can be placed on both sides of the equation mat, and then two zero 
pairs of unit tiles (i.e., one positive unit tile and one negative unit tile cancel each 
other out) on the left side are removed, thereby leaving one positive x-tile on the left 
and six positive unit tiles on the right, so x = 6. Negative integers can be represented 
with algebra tiles, but not easily with balance scales. However, when compared to 
balance scales, algebra tiles are more abstract, less intuitive for students, and do not 
illustrate mathematical equivalence well (Braukmüller et al., 2019), nor do they 
provide physical feedback regarding the correctness of students’ actions 
(Reinschlüssel, Alexandrovsky et al., 2018). 

 

69 

Braukmüller et al. (2019) asked mathematics teachers at different school types 
and levels, who were also textbook authors, to rate the indispensability of balance 
scales and algebra tiles to their teaching based on each manipulative type’s 
ability/inability to illustrate equivalence and negative integers. The research findings 
were in favour of balance scales. In the study of Reinschlüssel, Alexandrovsky et al. 
(2018), mathematics textbook authors, who were also experienced teachers, found 
the different colours of each tile type slightly confusing. Moreover, some teachers 
were unsatisfied with possibly drawn relationships between sizes of x-tiles and unit 
tiles (one x-tile was approximately three or four times the unit tile) because this could 
mislead students about the value of the unknown. In terms of practicality, algebra 
tiles are more affordable (a set of algebra tiles costs about €6–12) and more durable 
(the tiles have neither moving nor mechanical parts) compared to balance scales. 

Cups and chips have also been used to solve equations whose unknowns are 
represented with cups (facing up for positive and facing down for negative), and 
constants are represented with two-sided chips (one side for positive and another 
side for negative). Although cups and chips share a similar idea to algebra tiles, they 
appear to be less abstract and more intuitive for students than algebra tiles. For 
example, regarding the concept of the unknown, it is more tangible to picture that 
each cup contains the same number of chips than picturing that each rectangular x-
tile equals the particular number of square unit tiles. Additionally, I found that cups 
and chips were relatively easier to make and less expensive to acquire than algebra 
tiles. 

To summarise, physical balance scales, algebra tiles, and cups and chips concretise 
the key concepts of equations and equation solving. The balance principle of scales 
illustrates mathematical equivalence. In the case of algebra tiles, Magruder’s (2012) 
research findings indicate that the representation of constants as squares and 
unknowns as rectangles enabled students to distinguish between the two terms and 
eventually realise their differences. Nevertheless, according to my observations, the 
use of distinct objects on balance scales, as well as cups and chips to represent 
constants and unknowns of an equation, can differentiate between the two more 
explicitly than the algebra tiles. Negative integers can be represented with algebra 
tiles as well as cups and tiles, but not with typical balance scales. Compared to other 
PMs, balance scales tend to pose more practical challenges due to their mechanics. 

Available VMs are typically digital versions of physical balance scales and algebra 
tiles. Algebra Balance Scales (NLVM, n.d.) is a free web-based Java applet for sixth-
to-eighth graders to learn to solve simple linear equations. The applet consists of a 
balance scale, unit blocks representing one, and x-boxes representing positive 



 

70 

unknowns. Algebra Balance Scales - Negatives applet (NLVM, n.d.), which is 
recommended for the same school grade level, solves the limitation of physical 
balance scales in their inability to represent negative values using balloons to lift the 
beam of balance scales. Unit balloons represent negative ones; x-balloons represent 
the negative unknown. Objects (i.e., blocks, boxes, and balloons) are placed on the 
scale to digitally model equations randomly generated by the applet or created by 
students. To solve an equation, students select mathematical operations (i.e., 
addition, subtraction, multiplication, or division of constants and unknowns) to be 
performed on both sides of the equation. Each equation-solving step made by 
students is simultaneously represented visually on the scale (the scale beam tilts 
according to students’ manipulations) and symbolically in an equation window. 
Dynamic visuals of tilting balance scales assist students in developing their 
understanding of the equal sign and mathematical equivalence (Magruder & Mohr-
Schroeder, 2013). Moreover, NLVM balance scales explicitly link pictorial and 
symbolic representations (Suh & Moyer, 2007; Magruder & Mohr-Schroeder, 2013) 
and thus are likely to enhance students’ representational fluency. Both scales also 
provide real-time feedback, step-by-step guidance, and self-checking, thereby 
promoting students’ independent learning. 

In line with Magruder (2012), I found various practical advantages of both scales. 
For approximately €20, all NLVM applets, including the balance scales, can be 
installed on individual computers and servers for offline use without Java; additional 
features (e.g., customisation and recording completed work for students’ reflection 
and assessment) are also available. In Magruder’s (2012) study, practical requirements 
for working with the applets appeared to cause challenges regarding accessibility of 
the computer lab and losing learning time to computer logging in/off. 

The Algebra Tiles iPad app (Version 4.1.0; Brainingcamp, LLC, 2020) is algebra 
tiles in the digital environment. This €2 app is designed for children (no target age 
group mentioned) to explore various algebraic topics, including solving equations. 
Shapes and colours of virtual tiles are the same as their physical counterparts. There 
is also an option to simplify the colours of the tiles to only blue (for all positive tiles) 
and red (for all negative tiles), in case a variety of tile colours causes confusion. Tile 
labels (1, –1, x, –x, x2, and –x2), which can be toggled on/off, make each type of 
virtual tile easier to recognise compared to physical ones. Equations are solved on 
an equation mat (with an equation sign in the middle) with virtual algebra tiles, similar 
to with physical tiles. A workspace under the equation mat displays a mathematical 
sentence according to the tiles on the mat at that moment. This feature supports the 
connection between pictorial and symbolic representations of the equation. 
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However, similar to physical algebra tiles, the app does not provide any feedback 
regarding the correctness of students’ equation solving. Students need to keep track 
of their equation-solving processes by remembering or changing an equal sign to 
another sign that correctly depicts their recent action. Although the app does not 
provide any guidance on how to solve equations with virtual tiles, it offers 
scaffolding for zero pairs: when opposite pairs are dropped on each other, they 
automatically cancel each other. 

DragonBox Algebra 5+ (Version 1.3.7; Kahoot DragonBox, 2019a) is a €5 
award-winning mobile educational game for children aged 6–8 to get familiar with 
algebra and basic processes of solving equations. Players learn to solve equations 
involving addition, subtraction, division, and multiplication through a game 
environment, discovery, and experimentation. Each level of the game starts with an 
animation showing how to win that level, for example, by isolating a dragon box, 
which later changes into the unknown x, on one side of the game board (an equation 
mat). The game uses familiar concepts to introduce the mathematical concepts 
required for solving equations. For example, picture cards, day-and-night cards, and 
a black hole are gradually replaced with numbers and variables, zero pairs, and the 
additive identity of zero, respectively. The game provides step-by-step guidance at 
the beginning of each level and instant feedback throughout the game, so it is 
possible for children to play it without adults’ supervision. 

DragonBox Algebra 12+ (Version 2.3.1; Kahoot DragonBox, 2019b) is a sequel 
for DragonBox Algebra 5+. The €9 educational game is designed for 12–17-year-
olds to learn advanced topics in mathematics and algebra, such as collection of like 
terms, factorisation, and substitution. Although both games offer a playful learning 
environment for algebra and equation solving, research indicates their possible 
limitations. Some teachers felt that the design of the DragonBox [Algebra 12+] game 
was possibly too childish for ninth graders (Reinschlüssel, Alexandrovsky et al., 
2018). Many fifth graders did not perceive the mathematical attributes involved in 
playing DragonBox Algebra 12+ (Tucker & Johnson, 2017). 

In short, existing VMs for solving equations have advantages and disadvantages 
similar to VMs in general, as addressed in the literature. They provide various 
benefits to the digital environment (e.g., step-by-step guidance, real-time feedback, 
connection between pictorial and symbolic representations, and affordability), which 
their physical counterparts cannot provide. Nevertheless, they lack the benefits that 
come with real physical interaction (Reinschlüssel, Alexandrovsky et al., 2018). While 
available educational games appear to provide fun, discovery, and independent 
learning, their suitability to the mathematics classroom is somewhat uncertain. 
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Currently available manipulatives for solving equations are mainly physical and 
virtual. Recently, the Multimodal Algebra Learning (MAL) tangible system 
(Reinschlüssel, Alexandrovsky et al., 2018; Reinschlüssel, Döring et al., 2018) was 
developed. The system consists of smart algebra tiles (width × depth × height = 7 
× 7 × 5 cm) and a 2 × 2 interactive tabletop. The two areas on the left of the tabletop 
stand for the left side of the equation, while the two areas on the right stand for the 
right side of the equation. The upper areas of the tabletop are the ‘addition zones’, 
where all tiles are linked by addition. The lower areas are the ‘subtraction zones’, 
where all tiles are deducted from the upper areas. Lights illuminating each tile 
indicate tile types through shapes (squares for unit tiles and rectangular for x-tiles) 
and colours (blue for positive tiles and red for negative tiles). Four tile colours 
typically used for physical algebra tiles were reduced to two colours for clarity and 
intuitiveness. 

The MAL tangible system enhances learning in various ways that physical or 
virtual algebra tiles alone do not. The system provides multimodal input (i.e., direct 
haptic interaction with the tiles) and output, for example, the current +1 or −1 value 
of a tile on its LED display, a tile’s light [sound and vibration under testing] 
feedback/hints about equation-solving operations, and a real-time symbolic 
representation of an equation-solving step in response to students’ interaction with 
smart tiles. The smart tiles also provide dynamic constraints that are magnetic hints 
for directing the grouping of tiles (which is an important action for transforming and 
solving equations) and preventing incorrect combinations of tiles. When two tiles 
are placed next to each other, based on the current value of each tile and their 
possible combinations, the magnets inside the tiles attach them together if they are 
fit for each other (e.g., +1 and −1 can be paired as a zero pair) or repel them if they 
are unfit for each other (e.g., a unit tile and an x-tile). The system can, to some extent, 
automatically adapt feedback and hints to suit students’ levels and needs.  

MAL interactive prototypes were planned to be tested with students to evaluate 
the system’s benefits. The MAL system utilises technological solutions purposely 
designed for assisting students with different levels and needs in learning to solve 
equations through multimodal interaction, dynamic constraints, feedback, and 
adaptivity. Nevertheless, the use of advanced technologies comes with a cost. Based 
on the published information, the system’s current design appears to be impractical 
for the classroom due to the smart tile size and possible weight, as well as the overall 
cost of the system. 
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4.1.3 Initial fieldwork 

To better understand the educational problems, real-world educational settings, and 
classroom utilisation of manipulatives, initial fieldwork was conducted in third-to-
sixth-grade classrooms of a middle-size school in spring 2015. Figure 3 illustrates the 
research design of the initial fieldwork (for more details, see Publication II). 
 

 

Figure 3.  The research design of the initial fieldwork. From ‘Using manipulatives for teaching equation 
concepts in languaging-based classrooms,’ by D. Lehtonen and J. Joutsenlahti, in N. Pyyry, 
L. Tainio, K. Juuti, R. Vasquez & M. Paananen (Eds.), Changing subjects, changing 
pedagogies: Diversities in school and education, p.168, 2017, Finnish Research Association 
for Subject Didactics. Copyright 2017 by the Finnish Research Association for Subject 
Didactics. Reprinted with permission. 

Four primary school teachers and 74 students (with no/low prior knowledge of 
equation solving) participated in the study. The teachers were interviewed about their 
experiences and opinions regarding teaching equation solving and using 
manipulatives in their classrooms from pedagogical and practical perspectives. The 
interview questions were informed by the research objectives and the literature. One-
lesson class interventions were conducted after the teacher interviews. The teachers 
divided their students with different mathematics attainments equally into three 
groups: learning with paper-and-pencil (n = 25), a physical balance scale (n = 25), 
and a virtual balance scale (n = 24). Balance scales were chosen for the interventions 
because they are intuitive and illustrate mathematical equivalence, and therefore 
suitable for helping novice students (the target of this study) learn linear equation 
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solving. Hands-On Equations® balance scale (Borenson & Associates, n.d.) and its 
mobile app, Hands-On Equations 1 (Version 3.7; Borenson & Associates, 2015), 
were used for the interventions to investigate the strengths and limitations of 
physical and virtual forms of the same manipulative. 

The same teacher taught their own students in all instructional groups how to 
solve equations (by substituting values of the unknown in the third- and fourth-grade 
interventions and by performing the same operation on both sides of the equation 
in the fifth- and sixth-grade interventions). To ensure the development of students’ 
equation-solving understanding, class activities were designed to promote learning 
through multiple representations, discovery, social interaction, reasoning, and 
reflection. The students were asked to work in pairs to translate and solve equations 
through talking, drawing, and writing mathematical symbols, and in the PM and VM 
groups, also through using manipulatives. 

After the interventions, the students completed the paper-based test (which was 
informed by existing instruments, the literature, textbooks, and an input from 
mathematics education experts) with no access to the manipulatives. Informed by 
the literature, the test contained a variety of tasks. It was used to evaluate how well 
each instructional condition enhanced the students’ equation-solving performance 
and their representational fluency (i.e., ability to make links between multiple external 
representations), which indicates their conceptual understanding of equation solving. 
Then, all students evaluated their learning development after the intervention; the 
students in the PM and VM groups also evaluated their learning experiences with 
the manipulatives. The teachers were again interviewed about their experiences and 
opinions regarding each instructional condition. 

Initial research findings were presented at the Fifth Nordic Conference on 
Subject Education (Lehtonen & Joutsenlahti, 2015). The findings regarding 
pedagogical aspects are thoroughly reported in Publication II. The overall results 
indicate that the class activities (encouraging learning through multiple 
representations, discovery, social interaction, reasoning, and reflection) during the 
interventions are likely to help students across the three instructional conditions 
learn to translate equations into different representations and solve them. Among all 
instructional conditions, PM-based instruction appeared to benefit students’ 
equation-solving learning and performance most. 

Students in the PM group outperformed their classmates in the other conditions 
on the test, and most (21/25) of the PM students believed that the PM helped them 
learn equation solving. Likewise, all teachers unanimously regarded their lessons with 
the PM as the most successful instructional condition. In their opinion, concrete 
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interaction with the PM supported students’ peer interaction, multimodal expression 
of mathematical thinking (i.e., languaging), and understanding of mathematical 
equivalence, different terms in an equation, and equation solving. Some teachers 
noticed that their low-attaining students in the VM group tended to use the VM to 
solve equations by scrolling and trying different values for the unknown until they 
arrived at the correct solutions. Therefore, they felt that these students might not 
really understand the to-be-learnt content and therefore would perform worse on 
the test than other students. 

All in all, the teachers believed that among all instructional groups, the PM group 
had the best conceptual understanding of equation solving and would perform best 
on the test. Moreover, teachers also found that the PM was straightforward and 
helped their students complete the exercises faster than the students in the other 
groups. Similar to the teacher interviews, the class intervention observations provide 
evidence of PM benefits and VM hindrances to students’ peer interaction, 
languaging, and equation-solving learning. During their pair work, PM students 
usually used the PM to translate and solve equations together. While manipulating 
the PM, students tended to discuss with each other and say aloud what they were 
doing or thinking (Figure 4a). In contrast, VM students were less likely to discuss 
and express their actions or thinking in words. Instead of using the VM together to 
complete the exercise, students usually worked separately and sometimes even held 
an iPad for themselves (Figure 4b). Moreover, many students appeared to manipulate 
the VM in a rote, procedural manner to complete exercises. Regarding ease of use, 
PM students learnt how to use the PM without difficulty, whereas many VM students 
had difficulty in using the VM to solve equations and check the solutions. 
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Figure 4.  Third graders working in pairs during the class interventions: (a) PM students discussing 
and helping each other to solve an equation with the PM; (b) a VM student holding an iPad 
for herself and using it to solve an equation, while her partner silently looks at the iPad 

Although the overall findings indicate a number of disadvantages of the VM, 
potential benefits to students’ learning and performance were also found. The VM 
students performed somewhat better than their classmates in the paper-and-pencil 
condition on the test. Almost two-thirds (17/24) of them considered that the VM 
helped them learn equation solving. During the interventions, students in the PM 
and VM groups worked more independently, with less support from the teachers 
compared to the paper-and-pencil group. The VM also provided students with a link 
between pictorial and symbolic representations of equations as well as immediate 
feedback regarding the correction of equation solutions and solution checking. 
Additionally, some teachers thought that high-attaining students could 
independently use the VM to learn equation solving at their own pace. 

Unlike most balance scale manipulatives, the scale beam of the PM and VM is 
fixed (i.e., always in balance regardless of objects on both sides of the scale). 
Therefore, both manipulatives provide no information regarding the 
balance/imbalance of the scale. This potentially influenced the research findings. For 
example, the inability to illustrate equivalence could have some effect on PM and 
VM students’ learning and performance. The PM was found to be easy to use, which 
could be because the scale does not require any balance calibration and setup. 
Additionally, no balance scale mechanics makes the PM more affordable (one 
student set costs about €4) than typical physical balance scales. 
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The teacher interviews reveal several factors regarding classroom and school 
practice that potentially prevent the acquisition and adoption of manipulatives. All 
teachers considered time limitations to be a barrier to the use of manipulatives in the 
classroom. Acquisition budget was also a concern for most teachers, due to their 
school’s budget constraints. Other factors, including available class and storage 
space, classroom management, and teacher skills and knowledge, were also 
mentioned. 

4.2 Phase 2: Concept development 

Phase 2 started with design opportunity and tentative design principle identification 
to initially address RQ 2. Based on this identification, four potential design concepts 
were generated. After that, the generated concepts were evaluated with teachers to 
preliminarily address RQ 1.2 and select promising concept(s) for further 
development. 

4.2.1 Four manipulative concepts 

The contextual knowledge derived from Phase 1 indicates an opportunity for design 
solutions that embrace the strengths of existing manipulatives, and at the same time, 
address their limitations regarding successful classroom utilisation and adoption. The 
tentative design principles informed by the Phase 1 results provided guidance and 
direction on how to design a solution that helps primary school students understand 
equation-solving concepts and encourages teachers to adopt it in their classrooms. 
Publication IV presents four manipulative concepts and describes how their design 
was guided by tentative design principles. 

Regarding pedagogy, a manipulative should assist students in learning through 
their firsthand experience and provide them with appropriate guidance and 
scaffolding. It should also enable students to connect multiple representations of 
equation-solving concepts and express their mathematical thinking through different 
modes of meaning making. Moreover, a manipulative should encourage students to 
construct their knowledge together with their peers. In terms of content to be 
covered, a manipulative should use the balance model to concretise concepts of 
equation, mathematical equivalence, different terms in an equation, and equation 
solving. The strengths and limitations of existing manipulatives were also used to 
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guide the manipulative design. During the manipulative concept exploration, most 
attention was given to the pedagogy and to-be-covered content; later, when 
evaluating design concepts and further developing the design solution, practicality 
was also taken into account. After exploring different design alternatives, four 
manipulative concepts (Figure 5) were generated based on tentative design 
principles. 
 

 

Figure 5.  How to solve an equation (x + 10 = 12) using each of the four generated design concepts 
(a) Concept A; (b) Concept B; (c) Concept C; and (d) Concept D. From ‘Constructing a 
Design Framework and Design Methodology from Educational Design Research on Real-
World Educational Technology Development,’ by D. Lehtonen, 2021, Educational Design 
Research, 5(2), Article 38, p. 10 (https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 

All the concepts share similar core ideas and only differ in their utilisation of existing 
technologies to meet the design objectives. Concept A (Figure 5a) is composed of a 
tiltable physical balance scale and physical objects: black boxes representing 
unknowns and base-10 blocks representing constants. Concept B (Figure 5b) is 
composed of a tiltable physical balance scale, a digital display showing mathematical 
sentences for the current stage of equation solving, and physical objects. Concept C 
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(Figure 5c) is composed of a tablet app, a mirror placed in front of a tablet camera 
for physical object detection, physical objects, and a mat representing both sides of 
the scale. The tablet screen displays mathematical sentences for the current stage of 
equation solving and images of the objects on and off the scale. Concept D (Figure 
5d) is composed of a tablet app and physical objects. The tablet touchscreen detects 
physical objects on it and provides outputs (i.e., images and mathematical symbols) 
accordingly. 

4.2.2 Concept evaluation 

To determine how well each envisioned concept could promote students’ 
understanding of equation-solving concepts and encourage teachers to adopt it in 
the classroom (RQ 1.2), the concept evaluation was conducted through teacher 
questionnaires and interviews. Initial results of the concept evaluation were 
presented at the Sixth Nordic Conference on Subject Education (Lehtonen & 
Joutsenlahti, 2017a). The evaluation methods and results are reported in Publication 
IV. 

Nonfunctional mock-ups describing key functional features and the initial visual 
appearance of each concept were introduced to 12 primary school teachers (four 
participated in the initial fieldwork). The teachers then rated each concept regarding 
how well they potentially provide pedagogical benefits and were compatible with 
classroom and school practice, on a scale of 1 (not at all) to 4 (very well). The evaluation 
criteria were informed by the literature, Marshall and Swan’s (2008) manipulative 
survey, Collins et al.’s (2004) independent variables affecting the success of the 
design in practice, the Finnish NCC 2014 (EDUFI, 2016), and the initial fieldwork 
results. After rating the concepts, the teachers were required to explain the reasons 
behind their rating responses. 

All four concepts were rated relatively highly (M = 3–3.5) regarding their potential 
benefits for students’ understanding of equation-solving concepts, discovery 
learning, social interaction, and multimodal expression of mathematical thinking. 
Nevertheless, only Concept D was highly rated (M = 3.5, SD = 0.78) for its 
compatibility with classroom and school practices (e.g., acquisition budget, 
preparation, and class management), whereas the others were rated below 3. At the 
end, the teachers were required to make an acquisition decision by taking into 
account all pedagogical and practical factors. The majority of the teachers (9/12) 
would definitely acquire Concept D for their class, and none said they would not 
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acquire it for their class in any case. According to their explanations, there were no 
significant differences between the concepts regarding pedagogical advantages; thus, 
compatibility with classroom and school practice was the deciding factor in their 
acquisition decisions. Concept D was teachers’ favourite because it potentially 
provides high pedagogical benefits and seems to be straightforward, usable, 
compact, portable, durable, compatible with existing school tablets, attractive to 
diverse learners (regarding age and attainment levels), and multifunctional. Based on 
the teachers’ responses, Concept D was selected for further development. 

The evaluation results bring to attention that practicality is likely to play an 
important role in manipulative implementation and adoption in the classroom. The 
results from the initial fieldwork and the concept evaluation regarding this notion 
were presented at the 17th Biennial European Association for Research on Learning 
and Instruction Conference (Lehtonen & Joutsenlahti, 2017b). 

4.3 Phase 3: Design development 

Phase 3 aimed to refine design principles to address RQ 2. Moreover, it sought to 
develop the selected concept based on the refined design principles and then 
evaluate the developed solution in classrooms to address RQ 1.2. The evaluation 
results were also used to guide the refinement of the solution. 

4.3.1 Design solution 

At the beginning of Phase 3, another literature review (e.g., technology-enhanced 
learning and tangible technologies) and investigation of educational products (e.g., 
textbooks and educational technologies) that were relevant to the design 
development were conducted. The knowledge underlined by the literature and the 
investigation of existing solutions and educational products were incorporated with 
the Phase 2 findings (i.e., initial outcomes knowledge) to refine the design principles. 
Then, the selected design concept (Concept D) was developed based on the refined 
design principles: concretising key equation-solving concepts; supporting 
multimodality and languaging, discovery learning, and social interaction; in 
agreement with curriculum; suitable for diverse learners; easy to use; and feasible for 
classroom and school practice. The design principles were presented thoroughly in 
Publication III. According to Edelson (2006) and Collins et al. (2004), lessons can 
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also be learnt from unsuccessful design. Teachers’ feedback about rejected concepts 
during Phase 2 was also taken into account when developing the selected concept. 
A TM, instructional materials, and class activities were developed as a solution to the 
educational problem. 

As I have a strong background in design, I took a designer’s role in developing 
the solution and building most parts of its working prototypes myself. Mathematical 
contents of the design solution were developed under the supervision of my 
supervisors, who are experts in this subject matter and mathematics education. The 
TM, particularly its technological parts, was developed and prototyped in 
collaboration with a team of computer science students and their supervisor. During 
the TM prototyping, some trade-off decisions were made to balance its pedagogy, 
practicality, and technological feasibility. The development and prototyping 
processes of the design solution were described in Publications III–IV. 

X-is (‘X is equal to’) is a TM designed based on the selected concept to concretise 
the key concepts of equation solving. Aiming at deployment in classrooms today, 
the TM employs off-the-shelf technology to ensure its feasibility and affordability. 
During the development, it became clear that the original object-tracking idea used 
in the concept was not technologically feasible, so the current design tracks the 
objects on the table screen with image recognition via an external USB web camera 
(Figure 6a vs. Figure 5d). X-is consists of a tablet app and two kinds of physical 
objects: X-Boxes specially designed to represent unknowns and existing base-10 
blocks used to represent constants. The app has two levels for learning to solve 
equations by substituting values for the unknown at Level 1 and by doing the same 
operation on both sides of the equation at Level 2. When students model and solve 
an equation by manipulating a X-Box(es) and a base-10 block(s) on a table screen, 
the app provides pictorial (i.e., tilting digital balance scale) and symbolic (i.e., 
mathematical sentences) feedback according to their actions (Figure 6b). The app 
also gives students multimodal guidance and tips. Implemented architecture and 
description of the TM were presented in detail in Publication III. 
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Figure 6.  (a) Image recognition via an external USB web camera used for tracking objects in X-is; (b) 
multimodal inputs and outputs of X-is. From ‘The Potentials of Tangible Technologies for 
Learning Linear Equations,’ by D. Lehtonen et al., 2020, Multimodal Technologies and 
Interaction, 4(4), Article 77, pp. 8, 11 (https://doi.org/10.3390/mti4040077). CC BY 4.0. 

The instructional materials consisted of two sets of student worksheets and teacher 
guides designed to be used together with X-is. The first set, together with X-is Level 
1, is for lower-grade students to learn to solve equations by substituting values for 
the unknown. The second set, together with X-is Level 2, is for upper-grade students 
to learn to solve equations by doing the same operation on both sides. The 
worksheets encourage students to learn equation solving through multiple 
representations, while the teacher guides suggest how to implement equation-solving 
lessons meaningfully. The instructional materials were designed to have a structure 
similar to the textbooks and teacher guides typically used in Finland for user-friendly 
navigation. Publication IV provides more information regarding the instructional 
materials. 

To ensure meaningful lessons, class activities were designed to support students’ 
learning through multimodality and languaging, discovery, and social interaction. 
During the lessons, teachers should supervise students to use X-is in pairs/small 
groups to model and solve equations provided on the worksheets before writing 
down their equation-solving processes and solution(s) on their own worksheets. 

4.3.2 Design evaluation 

Design evaluation was conducted to determine whether and to what extent the 
developed design solution helped students understand equation-solving concepts 
and encouraged teachers to adopt it in their classrooms (RQ 1.2). The evaluation 
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results helped to develop the outcomes theory and inform the design refinement. 
Initial results of the design evaluation were presented at the Annual Symposium of 
the Finnish Mathematics and Science Education Research Association (Lehtonen et 
al., 2019). The evaluation methods and results regarding the pedagogical benefits of 
the design solution were thoroughly reported in Publication III; results regarding its 
compatibility with classroom and school practice were presented in Publication IV. 
Figure 7 shows the research design of the design evaluation. 

 

 

Figure 7.  The research design of the design evaluation. Icons were designed by Freepik. 

Apart from students’ learning, there are other dependent variables to be assessed to 
determine the success or failure of a design solution (Collins et al., 2004; Plomp, 
2013). In this EDR, different aspects relevant to the success of the developed 
solution, including its pedagogical benefits, usability, and compatibility with 
classroom and school practice, were assessed. A variety of qualitative and 
quantitative methods—observations, paper-based tests, questionnaires and 
interviews, and thinking aloud—were employed to address the evaluation aspects. 

One-lesson class interventions were implemented with one fourth- and one fifth-
grade teacher, and their students (12 fourth graders and 12 fifth graders), who had 
no/low prior knowledge of equations solving. Each teacher divided their students 
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Learning Linear Equations,’ by D. Lehtonen et al., 2020, Multimodal Technologies and 
Interaction, 4(4), Article 77, pp. 8, 11 (https://doi.org/10.3390/mti4040077). CC BY 4.0. 

The instructional materials consisted of two sets of student worksheets and teacher 
guides designed to be used together with X-is. The first set, together with X-is Level 
1, is for lower-grade students to learn to solve equations by substituting values for 
the unknown. The second set, together with X-is Level 2, is for upper-grade students 
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During the lessons, teachers should supervise students to use X-is in pairs/small 
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4.3.2 Design evaluation 

Design evaluation was conducted to determine whether and to what extent the 
developed design solution helped students understand equation-solving concepts 
and encouraged teachers to adopt it in their classrooms (RQ 1.2). The evaluation 
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results helped to develop the outcomes theory and inform the design refinement. 
Initial results of the design evaluation were presented at the Annual Symposium of 
the Finnish Mathematics and Science Education Research Association (Lehtonen et 
al., 2019). The evaluation methods and results regarding the pedagogical benefits of 
the design solution were thoroughly reported in Publication III; results regarding its 
compatibility with classroom and school practice were presented in Publication IV. 
Figure 7 shows the research design of the design evaluation. 

 

 

Figure 7.  The research design of the design evaluation. Icons were designed by Freepik. 

Apart from students’ learning, there are other dependent variables to be assessed to 
determine the success or failure of a design solution (Collins et al., 2004; Plomp, 
2013). In this EDR, different aspects relevant to the success of the developed 
solution, including its pedagogical benefits, usability, and compatibility with 
classroom and school practice, were assessed. A variety of qualitative and 
quantitative methods—observations, paper-based tests, questionnaires and 
interviews, and thinking aloud—were employed to address the evaluation aspects. 

One-lesson class interventions were implemented with one fourth- and one fifth-
grade teacher, and their students (12 fourth graders and 12 fifth graders), who had 
no/low prior knowledge of equations solving. Each teacher divided their students 
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with different mathematics attainments equally into two instructional conditions: 
learning with or without X-is. Aside from that, both conditions used the same 
teacher guides, worksheets, and class activities, which are parts of the design 
solution. Following the class intervention, the students took a paper-based test. The 
class intervention and the test were conducted similarly to those of Phase 1. To 
examine how well the design solution enhanced students’ equation-solving 
performance and representational fluency compared to traditional instruction, a 
comparison group of mixed-attaining seventh-to-ninth graders (n = 65), who had 
several equation-solving lessons in their normal school curricula, took the same test 
without participating in the intervention. After the posttest, all students in the X-is 
condition individually participated in a thinking aloud session in which they solved 
equations with X-is, and at the same time, talked about their actions. It should be 
noted that the thinking aloud session took place after the posttest to prevent 
potential impacts of the session on X-is students’ posttest performance. The session 
aimed to assess X-is usability and students’ mathematical understanding by taking 
into account the content and process that students use to arrive at their solution, as 
proposed in the literature. The X-is students rated and justified the extent to which 
they regarded X-is as easy to use, pleasant to use, and helpful for their equation-
solving learning, and would consider using it again. X-is was also evaluated by both 
teachers using a process similar to the Phase 2 concept evaluation. Additionally, a 
special education teacher and three lower secondary school mathematics teachers 
also evaluated X-is to examine its possible utilisation and adoption in other 
educational contexts. 

Overall, highly favourable results from the design evaluation suggest successful 
classroom utilisation and adoption of the design solution. The class intervention 
observations, as well as teacher questionnaires and interviews, reveal that learning 
with X-is better promoted students’ languaging, peer interaction, and discovery 
learning compared to learning without it. X-is enabled students to express their 
mathematical thinking physically and verbally. It also encouraged students to interact 
with each other and independently experiment and discover to-be-learnt content 
together. The comparison between the average test scores of the students in the 
interventions (learning through the proposed class activities with the designed 
worksheets with/without X-is) and the comparison group of students indicates a 
positive impact of the design solution on students’ equation-solving achievement 
and representational fluency. The test results and thinking aloud session 
observations indicate the benefits of X-is to students’ equation-solving performance 
and understanding. 
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Although the test performance of the students in both instructional conditions 
was relatively similar, X-is students were more likely to use the strategies that were 
taught during the class interventions to solve equations correctly than paper-and-
pencil students. Moreover, during the thinking aloud sessions, students used X-is to 
model and solve equations correctly and were able to justify their equation-solving 
processes (see Videos S1–2 in Publication III). The design evaluation results 
demonstrate the satisfactory usability of X-is. Based on students’ questionnaire and 
interview responses and observations from the class interventions and the thinking 
aloud sessions, X-is was easy and pleasant to use. Most students found it beneficial 
to their equation-solving learning and said they would like to use it again. Teachers’ 
questionnaire and interview responses also indicated the possibility of the adoption 
of X-is in the classroom and its use in other educational settings. Teachers 
considered X-is to be highly compatible with classroom and school practice; all of 
them indicated they intended to acquire X-is for their classrooms. They also believed 
that X-is was likely to enhance pre-primary-to-ninth-grade students’ understanding 
of equation concepts. 

Despite highly favourable evaluation results for X-is, some refinement is required 
to increase its technical stability, pedagogical value, usability, and practicality. For 
example, the formative evaluation during the working prototype development 
revealed the unreliability of object tracking using a webcam. To overcome this image 
recognition challenge, different alternatives for X-Box redesign were explored 
(Figure 8). 
 

 

Figure 8.  Alternatives for X-Box redesign to overcome image recognition challenge: (a) engraved 
squares for placing base-10 units not too close to each other; (b) added pole in the middle 
of the X-Box to increase X-Box’s visibility. Illustrated by J. Korkala. 

Results from the design evaluation with teachers and students also informed minor 
refinement of X-is. For instance, new features, such as free experiments with the 
balance scale and students’ own equation setup, can be added to future design. 
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5 EXPERIENCE FROM EDUCATIONAL DESIGN 
RESEARCH 

In the previous chapter, I provided research findings (regarding the needs, 
challenges, and opportunities of using manipulatives in primary school classrooms 
and outcomes of implementing the design solution in real classrooms), which can be 
used to construct domain theories (RQ 1). In this chapter, I reflect on the knowledge 
that I needed to develop the design solution and my experience of conducting this 
EDR, which can be used to establish design frameworks (RQ 2) and design 
methodologies (RQ 3), respectively. 

5.1 Developing a real-world tangible manipulative 

To develop a design solution that helps primary school students understand 
equation-solving concepts and encourages teachers to adopt it in their classrooms, I 
needed to iteratively acquire and synthesise various types of knowledge throughout 
this EDR. During Phase 1, I established my contextual understanding of the 
educational problem and the target real-world setting through a literature review (see 
Chapter 2), investigation of existing manipulatives and educational games (see 
Chapter 4.1.2), and fieldwork (see Chapter 4.1.3). 

The literature provided the theoretical background of learning mathematics with 
understanding (e.g., what conceptual understanding is and how to develop it), 
manipulatives (e.g., types of manipulatives, whether and how they support 
mathematics learning, and challenges to their classroom utilisation and adoption), 
linear equation solving (e.g., key concepts in equation solving, equation-solving 
approaches, and how to learn equation solving), and instructional recommendations 
and equation-solving content recommended in the Finnish NCC (EDUFI, 2016). 

The existing solution investigation reveals the strengths and limitations (i.e., what 
does or does not work) of available manipulatives and educational games, thereby 
providing insight into potential solutions to yield the desired results. The fieldwork 
was conducted in real classrooms to empirically investigate the educational 
problems, target context, target users, and their needs, as well as challenges and 
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opportunities regarding manipulative use and adoption in the classroom. At the end 
of Phase 1, it became clear that the design solution needed to address the following 
aspects: equation-solving content, support for understanding of equation-solving 
concepts, and day-to-day practice related to classroom utilisation and adoption of 
manipulatives. 

During Phase 2, the knowledge gained from Phase 1 was used to guide the design 
concepts. Teachers’ responses during the concept evaluation not only supported 
Phase 1 knowledge, but also provided insightful information that could be used 
directly to inform the design. For example, their explanations indicated that the 
number of manipulative components had an influence on its setup, portability, and 
organisation, thereby affecting its practicality. 

At the beginning of Phase 3, I conducted another literature review and 
educational product investigation to acquire new knowledge regarding possible 
technologies for developing the selected design concept, which employs tangible 
technologies. An understanding of digital, tangible, and object-tracking technologies 
were added to the knowledge gained from the two previous phases. The design 
evaluation results indicate that a design solution informed by all the knowledge is 
likely to be beneficial to students’ equation-solving learning, practical, usable, and 
feasible for production with today’s technologies. 

5.2 Conducting the educational design research 

My research journals, field notes, and communication records with the computer 
science student team and teachers assisted me in reflecting on my experience in 
conducting this EDR. The following themes regarding the benefits of EDR for my 
study and challenges that I encountered were recognised: iterations, data 
triangulation, various participants, multidisciplinary collaboration, technological 
innovations, alternative designs, and solitary researcher (for more details, see 
Publication IV). 

The iterative investigation, development, assessment, and refinement helped me 
construct knowledge of the educational problems, the target educational contexts, 
and how the design solution could promote equation-solving learning and day-to-
day practice. The design solution’s feasibility and successful implementation and 
adoption in the classroom were also ensured through this iterative process. However, 
the iterations were intensive and required considerable resources. Partly for this 
reason, the study lasted over 6 years compared to 3- to 14-year completion time of 
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the Finnish EDR doctoral dissertations on mathematics, science, and technology 
education, which were reviewed in Publication I. 

The data triangulation not only assisted me in understanding complex and 
dynamic real-world educational phenomena, but also enhanced the research 
reliability and validity. Nevertheless, the collection and analysis of a large and varied 
dataset was resource intensive. Due to limited resources, a large amount of collected 
data that was not directly related to the RQs was left unused. 

The involvement of teachers and students (i.e., target users) guided the solution 
development towards the desired outcomes. Target users’ involvement also 
contributed to the advancement of theoretical knowledge; part of the research 
findings would not have been discovered without their involvement. Teachers and 
students benefited from their participation in the research; for example, the teachers 
stated that their participation allowed them to experience the influence of different 
instructional approaches on students’ learning and to understand how to best assist 
their students. However, involving teachers and students in the research also posed 
challenges, such as participant recruitment and research permission acquisition. 

Multidisciplinary collaboration helped to ensure solution viability regarding 
subject matter, pedagogy, and technology. Good communication, mutual respect, 
and shared understanding contributed to the collaboration success. Nevertheless, 
there were some challenges in collaborating with different disciplines, such as 
difficulties in establishing the collaboration and securing collaborators’ commitment 
to the study. 

While tangible technologies played a part in the satisfactory results of the design 
evaluation, the development of such educational technology caused several 
challenges. Originally, a fully working prototype, stable and containing all the 
features, would be built for the Phase 3 class interventions. However, due to limited 
time and the demanding technology implementation, only a Wizard of Oz prototype 
(see Beaudouin-Lafon & Mackay, 2012) was built, and the originally planned research 
design had to be modified. 

Instead of working with only one design idea, I first explored different design 
concepts before evaluating them and selecting the most promising one for further 
development. This concept development phase reduced the possibility of 
discovering later that the developed solution might not be the best, thereby 
efficiently utilising available resources. Moreover, the evaluation of various concepts 
appeared to be a good way to collect in-depth information from teachers. 

As the only researcher in this EDR, I had multiple roles and was involved in all 
processes. While this provided me with a profound understanding of the whole 
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process, it was challenging at the same time. The complex nature of EDR and the 
scope of the research required substantial time, patience, and multidisciplinary 
expertise. With a background in design and educational sciences, I was able to 
conduct this EDR mostly alone, although it took many years to complete the study, 
and the study’s quality was affected by limited human resources. For example, there 
were only 12 students working with X-is during the Phase 3 interventions, because 
I could operate only one Wizard of Oz prototype at a time. Because one cycle of the 
iterations was devoted to concept development, the developed solution was 
implemented in real classrooms only during Phase 3. A single implementation of the 
solution in actual educational settings is not likely to be sufficient to collect evidence 
indicating the solution’s success. 

The research objectivity, validity, and reliability were also challenged due to the 
lack of researcher triangulation and my multiple roles (i.e., researcher, designer, and 
evaluator). Different attempts were made to prevent a possible conflict between my 
roles. As a designer, I considered design evaluation a means to collect feedback to 
improve the design rather than demonstrating its perfection. As recommended by 
Edelson (2002), I acted as an EDR researcher to develop a novel solution to improve 
educational practice and use design implementation to establish theoretical 
knowledge. 
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6 RESEARCH QUALITY EVALUATION 

The research quality of this study was evaluated at two levels, as recommended by 
Juuti and Lavonen (2006). At the first level, the quality of the whole EDR study is 
assessed. At the second level, the quality of the mixed methods research design 
employed as the strategy of enquiry is assessed. Both evaluation levels are presented 
separately for clarity. Unavoidably, this method of presentation results in repeated 
information. 

6.1 Quality in educational design research 

EDR has different objectives and characteristics from traditional empirical research; 
therefore, its quality should be evaluated differently from that of traditional research 
(e.g., Edelson, 2002; Kelly, 2004; McKenny & Reeves, 2019; Phillips, 2006). Because 
EDR aims to produce new theories and solutions that contribute to the 
improvement of educational practice, the novelty and usefulness of EDR can be used 
to assess its quality (Edelson, 2002; Juuti & Lavonen, 2006). This study provided 
novel and useful theoretical and practical outcomes; thus, it can be argued that it 
achieved the goals of EDR. Regarding novelty, a novel design solution—a TM, 
student worksheets, teacher guides, and class activities—was developed to promote 
students’ understanding of equation-solving concepts and classroom practice (see 
Chapter 4.3.1). Additionally, the study constructed three kinds of knowledge: (1) 
knowledge of the challenges and opportunities of using manipulatives in 
mathematics classrooms, the strengths and limitations of existing manipulatives, and 
how the proposed solution encouraged students’ understanding of equation-solving 
concepts and the classroom adoption; (2) a design framework for real-world 
educational technologies; and (3) guidelines for conducting EDR (see Chapter 7.1). 
Regarding usefulness, the design evaluation results indicate that the developed 
solution not only enhanced students’ equation-solving learning and achievement, but 
it also conformed to classroom practice (see Chapter 4.3.2). All teachers who 
participated in the design evaluation stated that they would acquire the manipulative 
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for their equation-solving instruction. Therefore, the developed solution has the 
potential to be useful in mathematics classrooms. 

Objectivity, validity, and reliability can be used to address rigour in EDR, as in 
traditional empirical research; however, these qualities are established rather 
differently than in traditional research (DBRC, 2003). In EDR, researchers are 
typically also designers, implementors, and evaluators of the solution, so these 
potentially conflicting roles make it challenging for researchers to maintain their 
objectivity, that is, the absence of bias (e.g., DBRC, 2003; McKenny & Reeves, 2019; 
Plomp, 2013; Publication I). The designer’s presence in the evaluation of solutions 
can also cause potential bias. When research participants are aware that the 
researcher has designed the solution, they may respond differently, and the designer 
may intentionally or unintentionally not be open to critique (McKenny & Reeves, 
2019).  

To address these threats to the objectivity of this study, triangulation of multiple 
data sources (i.e., students and teachers), data collection methods (e.g., observations, 
interviews, and questionnaires), and data types (i.e., quantitative and qualitative) was 
employed, as recommended in the literature (e.g., McKenny & Reeves, 2019; Plomp, 
2013). Teachers were the designated implementors of all class interventions, so there 
was no influence of the researcher or designer on any interventions. I also saw the 
concept and design evaluation as an opportunity to gain information for developing 
the design solution and theoretical knowledge instead of a showcase for 
demonstrating the solution’s perfection (see e.g., DBRC, 2003; McKenny & Reeves, 
2019; Ulrich & Eppinger, 2016). 

The validity of this study is assessed on three aspects: systemic, internal, and 
external validity. The study developed knowledge of how to use manipulatives to 
promote students’ understanding of equation-solving concepts and classroom 
practice and then used the developed knowledge to design a TM and accompanying 
materials to improve educational practice. Therefore, the study achieved systematic 
validity (i.e., the extent to which practice is informed by theories, which are informed 
by the study), which is particularly important for EDR (Hoadley, 2004), and 
exhibited characteristics of good EDR (DBRC, 2003). 

According to Collins et al. (2004), methodologically, EDR differs from 
experimental research; for example, regarding research location (messy real-world 
settings vs. controlled laboratories), variable quantities (multiple dependent variables 
vs. a single dependent variable), variable treatment (identifying all variables during 
the evolving study vs. selecting a few variables in advance and constantly controlling 
them), and research design (adaptable procedures as the study unfolds vs. fixed 
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assessed. At the second level, the quality of the mixed methods research design 
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achieved the goals of EDR. Regarding novelty, a novel design solution—a TM, 
student worksheets, teacher guides, and class activities—was developed to promote 
students’ understanding of equation-solving concepts and classroom practice (see 
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for their equation-solving instruction. Therefore, the developed solution has the 
potential to be useful in mathematics classrooms. 

Objectivity, validity, and reliability can be used to address rigour in EDR, as in 
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settings vs. controlled laboratories), variable quantities (multiple dependent variables 
vs. a single dependent variable), variable treatment (identifying all variables during 
the evolving study vs. selecting a few variables in advance and constantly controlling 
them), and research design (adaptable procedures as the study unfolds vs. fixed 
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procedures according to plan). Given these differences, EDR does not make simple 
causal claims in complex, real-world educational contexts (Kelly, 2006). 
Consequently, it is not an easy task to convince others about internal validity (i.e., the 
extent to which valid inferences can be drawn from the research results; e.g., Creswell 
& Creswell, 2018) of EDR (e.g., Barab, 2006; DBRC, 2003). 

In this study, internal validity was enhanced in several ways, as recommended in 
the literature. While giving up control of research settings, variables, and research 
design; the multiple iterations of investigation, design and construction, and 
evaluation and reflection established justification for the research results, theoretical 
knowledge, and design solution (DBRC, 2003; Edelson, 2002, 2006; McKenny & 
Reeves, 2019). Moreover, in line with DBRC’s (2003) and Ørngreen’s (2015) 
recommendation, the involvement of teachers and students—potential users of the 
design solution—in the empirical study largely contributed to the rigour of the 
research findings. Triangulation can enhance the internal validity of EDR (DBRC, 
2003; McKenny & Reeves, 2019; Plomp 2013). In this study, in addition to the 
triangulation of data sources, data types, and research methods, the triangulation of 
theoretical frameworks (e.g., constructivism, representational fluency, and 
multimodality) was also employed. Reporting EDR to a research community can 
also enhance the rigour of the research findings (Juuti & Lavonen, 2006; McKenny 
& Reeves, 2019). Apart from my supervisors, I discussed the study with my research 
group and other fellows in the faculty to obtain their feedback for developing the 
research design and analysing the data. I also presented the initial findings of each 
research phase at four conferences to communicate with other scholars during the 
ongoing process. Feedback received from the conferences assisted me in finalising 
data analysis and interpretation, as well as writing Publications II–IV and this 
dissertation. All four publications underwent a peer-review process in which 
reviewers (i.e., external auditors) assessed the validity of the research findings 
(Creswell & Creswell, 2018). Additionally, the publications make the study open to 
an audit by scientific community. Each publication transparently provides sufficient 
information (e.g., to-be-solved educational problem, target educational setting, and 
rationale for design choices, besides traditionally reported research methods and 
results) to allow readers to evaluate for themselves the rigour of the findings. 

External validity is the extent to which the research results can be 
transferable/generalisable beyond the study context to other populations, settings, 
and times (e.g., Creswell & Creswell, 2018). The findings of EDR, similar to those 
of case and experimental studies, cannot be statistically generalised from sample to 
population, as in traditional empirical studies, such as survey research (e.g., Juuti & 
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Lavonen, 2006; Kelly, 2006; Plomp 2013). Being contextualised in nature, EDR 
seeks to generalise knowledge gained from its context to a broader theory that is 
applicable to other educational contexts (Hoadley, 2004; Juuti & Lavonen, 2006; 
Plomp 2013). It is noteworthy that each educational setting is unique and full of 
multiple variables; therefore, generalised knowledge does not provide certainties, but 
rather, guidance and direction (Hoadley, 2004; Plomp, 2013).  

Generalisability of this study was promoted in different manners as 
recommended by EDR scholars. The empirical studies involved both teachers and 
students and were conducted in their classrooms to account for the reality of how 
teaching and learning occur in a complex social context (e.g., Brown, 1992; McKenny 
& Reeves, 2019). Various research methods have been employed to enhance the 
holistic study of educational phenomena in messy real-world settings (e.g., Anderson 
& Shattuck, 2012; McKenny & Reeves, 2019). The development of knowledge and 
the design solution was also driven by the literature, previous research, and empirical 
studies of this EDR (Edelson, 2002, 2006). Throughout the study, the design process 
was thoroughly and systematically documented to promote retrospective analysis, 
which is important to EDR (Edelson, 2002, 2006). Publication IV also provides a 
description of problem analysis, target educational context, design process, and 
solution design and construction so that others will be able to relate the knowledge 
gained from this study to similar educational contexts (McKenny & Reeves, 2019). 
As recommended by Edelson (2002, 2006) and Plomp (2013), the generalised 
knowledge (i.e., domain theory, design framework, and design methodology; see 
Chapter 7.1) was constructed and refined during the multiple iterations. For example, 
in line with Juuti and Lavonen’s (2006) and Plomp’s (2013) recommendations, the 
design principles were inductively generated and refined to inform successful design 
solutions during the iterations. Altogether, the research results of this study should 
be applicable to other educational settings, at least in the context of Finnish schools, 
which, according to OECD (2017, 2020), are relatively similar to this study context 
regarding the education system and teacher quality, as well as students’ mathematical 
performance. 

Reliability refers to the extent to which a study produces consistent findings when 
repeated (e.g., Creswell & Creswell, 2018). It is typically challenging to achieve 
reliability in EDR. Unlike controlled laboratory studies, EDR is difficult to replicate 
precisely (DBRC, 2003). This is because EDR is situated in complex real-world 
settings full of various variables, and its research design is often altered as the study 
evolves (e.g., Collins et al., 2004; Hoadley, 2004; Phillips, 2006), as was the case with 
this EDR. An example of an uncontrolled environment is that one student was upset 
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during the class intervention because of an argument with her classmate right before 
the intervention, and thus was possibly not at her best during the intervention.  

The research design was also modified during the study; for example, the 
worksheet and paper-based test used during Phase 3 differed slightly from those 
used during Phase 1. The Phase 3 worksheet and test were modified based on lessons 
learnt from Phase 1 and the emphasis of the Phase 3 investigation. Reliability of this 
study was promoted through triangulation, as recommended by EDR scholars (e.g., 
DBRC, 2003; Juuti & Lavonen, 2006; McKenny & Reeves, 2019). Based on the 
recommendations of DBRC (2003) and McKenny and Reeves (2019), reliability was 
also improved through multiple iterations of research activities. Moreover, the 
research methods and procedures, as well as the justification for the research design 
alteration, were documented so that other researchers could replicate them. 

6.2 Quality in mixed methods research 

The quality of a mixed methods study depends on the quality of its quantitative and 
qualitative parts, so the quality of its individual parts should be also evaluated 
(Fàbregues & Molina-Azorín, 2016; Ihantola & Kihn, 2011). Following this 
recommendation, the quality of the quantitative and qualitative parts of this study 
were first evaluated separately using the evaluation criteria of each. The quality of 
the quantitative part was assessed using common criteria for quantitative research: 
internal validity, external validity, and reliability (for the definition of each criterion, 
see Chapter 6.1). The quality of the qualitative part was assessed using Ryan et al.’s 
(2002) alternative criteria for case studies: contextual validity, transferability, and 
procedural reliability. Then, the quality of the overall mixed methods research was 
evaluated. 

The internal validity of the quantitative part of this study was ensured through 
various actions. Relevant literature and previous studies from different continents 
were reviewed to construct a theoretical framework and assist the research result 
interpretation. The students participating in the class interventions were equally 
distributed among the instructional groups in terms of numbers and attainment 
levels. The class interventions during Phases 1 and 3 were well controlled. For 
example, the interventions of each instructional group used identical research 
methods, procedures, and instruments; the same teacher taught all instructional 
groups of their own classrooms the same content for the same period of time. Cross 
contamination of different instructional groups was minimised by administering the 
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paper-based test for all student groups of each classroom at the same time, right after 
the last intervention. Students who failed to take part in all research activities were 
excluded from the research. 

Nevertheless, there were some threats to the internal validity of the quantitative 
part. All class interventions were conducted in real-world educational settings 
(instead of a controlled laboratory setting); thus, the differences between study 
contexts might influence the research findings. Despite the homogenous quality of 
Finnish teachers, the various backgrounds and experiences of the teachers might also 
affect the results. Additionally, it was not possible to conduct all interventions in 
each classroom at the same time or to keep the students participating in different 
instructional groups separately during the study. This resulted in the possibility that 
students in different groups communicated with each other, causing potential cross 
contamination of groups. 

Ryan et al. (2002) defined contextual validity as the credibility of evidence and the 
conclusions drawn from a case study (pp. 155–156; cf. Lincoln and Guba’s [1985] 
credibility and Creswell and Creswell’s [2018] qualitative validity). In this study, the 
contextual validity of the qualitative part was enhanced in a number of ways. 
Conducting the research in authentic educational settings provided a better 
understanding of the actual contexts. Cross-sectional field studies of classrooms at 
different grade levels (i.e., primary and lower secondary) also broadened the contexts 
under study. As previously mentioned, different data sources, research methods, and 
theories were triangulated throughout the study. Clear and standard interview 
instructions and questions were used to ensure mutual understanding of all 
participants, and being in a familiar environment (their own classrooms as opposed 
to laboratory settings) was likely to help the participants act more naturally. The 
validity of the results was evaluated by external auditors through conference and 
journal reviewing processes. 

In spite of this, threats to the contextual validity of the qualitative part were 
recognised. While conducting this study alone guaranteed conformity between all 
research activities, the lack of researcher triangulation may have risked the contextual 
validity of the study. On the one hand, the cross-sectional field studies promoted a 
better understanding of broader educational contexts. On the other hand, it required 
significant resources, thereby limiting the class intervention duration to only 45 
minutes per instructional group. The short class interventions possibly resulted in a 
limited understanding of each instructional group. Furthermore, all the research 
activities were conducted in Finnish, which is the participants’ mother tongue, to 
facilitate their communication. Finnish is not my native language, even though I am 
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fluent, so there could still be some language barriers that might threaten the accuracy 
of the communication between the participants and myself, as well as the data 
transcription and interpretation. 

The external validity of the quantitative part of this study was promoted through 
different means. The uniform quality of Finnish schools in terms of teachers’ 
qualifications and students’ mathematics performance allowed for convenience 
sampling and increased population and environmental validity. Thus, inferences 
drawn from the primary and lower secondary classroom settings under study are 
likely to be generalisable to other Finnish educational settings and populations of the 
same grade levels. Nevertheless, there are a few threats to the external validity of the 
research. The sample size of students participating in each instructional group was 
relatively small for statistically generalising the results to individuals in other 
contexts, and rapid technological development makes it difficult to generalise 
findings regarding educational technologies to future situations. 

Ryan et al. (2002) used the term transferability to refer to two types of theoretical 
generalisations: (1) refinement and generalisation of theory to a broader context and 
(2) applicability of research results to other settings (pp. 149–150; cf. Lincoln and 
Guba’s [1985] transferability and Creswell and Creswell’s [2018] qualitative generalisation). 
Transferability of the qualitative part is rather similar to the external validity of EDR 
in Chapter 6.1, and was strengthened through different actions; for example, by 
conducting research in real classroom environments, investigating both pedagogical 
and practical aspects of the classroom, collecting data from both teachers and 
students, undertaking cross-sectional field studies (i.e., several cases), triangulating 
data sources and research methods, comparing the findings to the literature and 
previous studies, constructing and refining theoretical knowledge through iterations, 
and documenting research contexts, procedures, and findings well. However, a 
potential threat to the transferability of the qualitative part was the relatively short 
duration of each class intervention. 

The reliability of the quantitative part of this study was enhanced in a number of 
ways. Research instruments, including instructional materials (i.e., student 
worksheets and teacher guides), paper-based tests, and questionnaires were informed 
by existing instruments, the literature, previous studies, school textbooks, and the 
input of mathematics education experts. Clarity and conformability of research 
activity instructions, class intervention materials, and measuring instruments were 
ensured to avoid participants’ misinterpretation and reduce errors of measurement. 
Sufficient indicators (e.g., different types of test items and questionnaire items) were 
used to measure students’ mathematical concept understanding and performance, as 

 

97 

well as teachers’ opinions and perceptions. All classroom interventions were 
controlled in terms of classroom environment, numbers and characteristics of 
participants, instructional tools, procedures, and duration.  

However, there were several threats to the quantitative research reliability. The 
empirical research did not take place in a laboratory environment, but rather in real 
classroom settings. This made it difficult to rule out the influence of confounding 
variables on the research results. The teachers were allowed to adjust their class 
intervention lessons according to classroom dynamics, as long as the adjustment did 
not conflict with the intervention instructions. While the adjustment reflected real-
world phenomena and thus increased the contextual validity of the qualitative part, 
it threatened the reliability of the quantitative part. 

The reliability of some research instruments was somewhat questionable for 
several reasons. For example, interrater reliability was not possible in this single-
researcher study. The research instruments did not undergo a pilot test due to time 
constraints and limited resources, and some parts of the measuring instruments were 
particularly designed for this study because appropriate instruments did not exist. 
Nevertheless, the developed instruments were reviewed by mathematics education 
experts and then revised accordingly.  

The Cronbach’s alpha of the paper-based test, all student questionnaire scales, 
and almost all teacher questionnaire scales (Cronbach’s alpha of one scale was 0.53, 
possibly due to a small number of scale items and participants) were above the 
generally acceptable level (see Hinton et al., 2014). This indicates the internal 
consistency of the measuring instruments. The last threat to reliability was my 
inexperience in quantitative research. This threat was minimised through consulting 
experts and the literature about quantitative research design, analysis, and 
interpretation, as well as developing my quantitative research skills. 

Ryan et al. (2002) proposed procedural reliability (i.e., the use of suitable and 
trustworthy research methods and procedures; p. 155; cf. Lincoln and Guba’s [1985] 
dependability and Creswell and Creswell’s [2018] qualitative reliability) as analogous to 
traditional notions of reliability for quantitative research. In this study, the procedural 
reliability of the qualitative part was ensured in different ways. Research design, 
methods, and procedures, as well as data transcriptions, analysis, and interpretation 
were systematically and descriptively documented and reported. The interview 
questions were informed by the RQs, the literature, and previous studies. 
Furthermore, the interview form assisted in systematic interviewing, whereas the 
face-to-face interviews allowed all interview questions to be posed to the participants 
unambiguously. All interviews and class intervention observations were audio- or 
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well as teachers’ opinions and perceptions. All classroom interventions were 
controlled in terms of classroom environment, numbers and characteristics of 
participants, instructional tools, procedures, and duration.  
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dependability and Creswell and Creswell’s [2018] qualitative reliability) as analogous to 
traditional notions of reliability for quantitative research. In this study, the procedural 
reliability of the qualitative part was ensured in different ways. Research design, 
methods, and procedures, as well as data transcriptions, analysis, and interpretation 
were systematically and descriptively documented and reported. The interview 
questions were informed by the RQs, the literature, and previous studies. 
Furthermore, the interview form assisted in systematic interviewing, whereas the 
face-to-face interviews allowed all interview questions to be posed to the participants 
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video-recorded; notes were taken to capture as much data as possible; the data 
sources and data collection methods were triangulated. However, a potential threat 
to procedural reliability was recognised in that working alone in this study did not 
allow for researcher triangulation. 

Over the past two decades, scholars have proposed various quality criteria for 
mixed methods research, ranging from lengthy and comprehensive frameworks (e.g., 
Onwuegbuzie & Johnson, 2006; Tashakkori & Teddlie, 2008) to minimal sets of core 
criteria (e.g., Bryman, 2014; Creswell & Plano Clark, 2017). The latter type of quality 
frameworks with minimum key criteria are easier to use, more flexible to 
accommodate diverse research contexts, and easier for others to understand 
(Fàbregues & Molina-Azorín, 2016). Thus, the quality of this mixed methods study 
is assessed using one of the latter type of frameworks, which was proposed by 
Creswell and Plano Clark (2017). A good mixed methods study should have the 
following four core characteristics (Creswell & Plano Clark, 2017, pp. 282–284): 

1. Rigorous quantitative and qualitative data collection and analysis in response to 
research questions/hypotheses. In this study, quantitative and qualitative 
research methods were selected and implemented based on their ability 
to answer the RQs (see Table 1). The quantitative strand addressed 
‘whether’ and ‘to what extent’ questions, whereas the qualitative strand 
addressed ‘what’ and ‘how’ questions. For example, during Phase 1, RQ 
1.1 was answered using both research strands. The teacher interviews and 
classroom intervention observations were used to address the challenges 
and opportunities of using manipulatives in the target settings, as well as 
the strengths and limitations of existing manipulatives. The paper-based 
tests and student self-evaluations were used to address how well each 
existing manipulative enhanced students’ learning and achievement 
compared to those of students learning without manipulatives. 
Throughout the study, the two research methods were implemented 
following the practices of each tradition. The quality of each strand and 
threats to its quality were addressed at the beginning of this subchapter. 

2. Intentional integration of both forms of data and their findings. In this study, the 
convergent design of mixed methods research (see Chapter 3.4) was 
employed as a strategy of enquiry for confronting the complex research 
problem. Throughout the study, both qualitative and quantitative data 
were simultaneously collected and analysed, then concurrently 
triangulated and combined to holistically address RQs 1–2. For example, 
during Phase 2, the teacher questionnaire and interview were conducted 
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at the same time. The questionnaire was used to assess teachers’ 
perceptions of how well each design concept was likely to promote 
students’ learning and comply with real-world practice. After each 
questionnaire item, the teachers were interviewed to provide an 
explanation for their questionnaire responses. Moreover, the 
interpretation of the empirical findings in Publications II–IV and Chapter 
4 explicitly brings together both forms of data. 

3. Logical research design, in which the key elements of mixed methods research fit well 
together. To address the research purpose and RQs, the research design of 
this study was planned and implemented, so that the strengths of the 
quantitative and qualitative strands compensated for the weakness of the 
other. The triangulation of quantitative and qualitative findings about the 
same phenomenon was used to enhance the confidence of the findings, 
thereby promoting research validity. For example, during Phase 3, the 
paper-based test was conducted to assess the learning achievement of the 
students participating in the class interventions compared to the 
comparison group. Nevertheless, the sample size of the students in the 
interventions was rather small, and thus, the interpretation of their test 
score analysis was somewhat questionable. To deal with this limitation, 
the quantitative findings were compared with the qualitative findings 
from the observations, interviews, and thinking aloud sessions, which not 
only confirmed but also explained the quantitative findings. 

4. Research procedures were informed by theoretical/philosophical considerations. The 
research procedures of this study were framed within an EDR paradigm. 
During Phase 1, different qualitative data were obtained to develop an 
in-depth understanding of the research problems, complex real-world 
educational contexts, and existing manipulatives (RQ 1.1). At the same 
time, quantitative data were collected mainly to investigate the impact of 
different manipulatives on students’ learning achievement. After Phase 
1, both research strands played a relatively equal role in studying the same 
variables. During Phase 2, the quantitative results assisted in selecting the 
promising concept for further development; the qualitative results helped 
to understand the reasons behind teachers’ concept evaluation, which 
provided useful information for developing the design principles and 
design solution. During Phase 3, the quantitative and qualitative data 
were used together to evaluate the developed design solution (RQ 1.2). 
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Despite meeting all four criteria for good mixed methods research, two key potential 
threats to the quality of this convergent design study were acknowledged. First, in 
most parts of Phase 1, different variables were used to collect quantitative and 
qualitative data, thereby making it difficult to merge the findings. It should be noted 
that the use of different variables on both strands was intended to connect findings 
regarding different quantitative and qualitative variables to establish an overview 
contextual understanding. Second, unequal sample sizes of the quantitative and 
qualitative data in some parts of the study (e.g., out of six teachers who took part in 
Phase 3 questionnaires and interviews, only two teachers participated in the class 
interventions) were likely to provide an unequal picture of both research parts. 
Because of limited resources, this was unavoidable. 

Apart from that, most parts of the study achieved equality in both sample sizes. 
For example, during Phase 1, the same students participated in both the qualitative 
(class intervention) and quantitative (paper-based test and self-evaluation) parts. 
Students who failed to participate in both parts were excluded from the study. The 
qualitative sample was increased in an attempt to achieve equality. However, this 
limited the amount of qualitative data collected from each individual, as well as the 
quantitative sample. 
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7 DISCUSSION 

This EDR seeks to contribute to both practice and theory in mathematics education. 
The research-based design solution—the TM, student worksheets, teacher guides, 
and class activities—is the practical outcome of this research to directly improve 
educational practice (i.e., promoting students’ understanding of equation-solving 
concepts and classroom adoption). Additionally, the research contributes to the 
three types of theories (domain theory, design framework, and design methodology) 
proposed by Edelson (2002). In this chapter, I summarise the research’s theoretical 
outcomes and then reflect on the implications, limitations, and future research. 

7.1 Theoretical outcomes 

7.1.1 Domain theory 

Domain theories are twofold descriptive knowledge about a real-world educational 
problem to be solved (context theory) and outcomes of implementing a design 
solution to solve that particular problem (outcomes theory). This chapter first 
outlines the context theory addressing RQ 1.1 and then the outcomes theory 
addressing RQ 1.2. The context theory was reported in Publications II and IV; the 
outcomes theory was presented in Publications III–IV. 

RQ 1.1: What are the needs, challenges, and opportunities of using 
manipulatives in primary school classrooms? What are the strengths and 
limitations of existing manipulatives? (context theory) 

Previous research has found mixed results regarding the effectiveness of 
manipulative use on students’ mathematics learning and achievement (e.g., Manches 
& O’Malley, 2012; Uribe-Flórez & Wilkins, 2017). In line with the literature (e.g., 
Carbonneau et al., 2013; McNeil & Jarvin, 2007), the initial research results 
demonstrate that the use of manipulatives can help students construct their 
understanding of abstract mathematical (in this case, equation-solving) concepts. 
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When learning equation solving with physical or virtual forms of the same 
manipulative or without manipulatives through multiple representations, discovery, 
peer interaction, reasoning, and reflection, the PM most benefited primary school 
students’ learning and performance. The findings on the superiority of learning with 
PM over other instructional conditions contradict previous research findings. Suh 
and Moyer’s (2007) study reported that learning with both PM and VM were 
effective equation-solving instructional conditions, whereas Magruder’s (2012) study 
reported that learning without manipulatives was the most effective. These 
contradictory findings may be because, in these two previous studies, students used 
manipulatives to learn equation solving mostly though discovery and multiple 
representations, while in this study, students were encouraged to learn through peer 
interaction, reasoning, and reflection as well. Moreover, the intervention duration 
difference may also have had an impact on the findings. 

The initial research also discovered strengths and limitations of each 
manipulative, similar to those found in Magruder’s (2012) and Suh and Moyer’s 
(2007) studies. For example, the tactile features of PMs enhanced learning and made 
manipulatives easy to use. VMs explicitly link pictorial and symbolic representations 
of equations as well as provide immediate feedback and guidance, but can lead to 
rote learning. Additionally, the initial research reveals evidence of PM benefits and 
VM hindrances to students’ peer interaction and verbalisation of their mathematical 
thinking. These two classroom activities appeared to play a significant role in how 
each manipulative benefited students’ equation-solving learning and performance. 

The initial research results regarding day-to-day practice are in agreement with 
the literature (e.g., Bedir & Özbek, 2016; Hatfield, 1994; Marshall & Swan, 2008). 
Practical issues, including time constraints, manipulative availability, and 
manipulative organisation, can potentially prevent classroom utilisation and 
adoption of manipulatives. The Phase 2 design evaluation results also confirm that 
day-to-day practice has an important role to play in teachers’ decisions to acquire 
manipulatives. 

RQ 1.2: How does the developed design solution help students understand 
equation-solving concepts and encourage teachers to adopt it in their 
classrooms? (outcomes theory) 

Highly desirable outcomes from the Phase 3 design evaluation suggest successful 
classroom utilisation and adoption of the developed design solution. All in all, X-is, 
the developed TM, is likely to be adopted in the classroom due to its pedagogical 
benefits and compatibility with school and classroom practice. 
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In terms of pedagogy, X-is better supported students’ understanding of equation-
solving concepts through discovery learning, peer interaction, and multimodal 
expression of mathematical thinking compared to learning without it. The evaluation 
results are consistent with those of Starcic et al. (2013) and Zamorano Urrutia et al. 
(2019), who found that TMs assisted students in developing their understanding of 
mathematical concepts and encouraged peer interaction during mathematics 
learning. The present study also supports evidence from previous observations by 
Zamorano Urrutia et al. (2019) that TMs stimulated students to autonomously 
experiment and discover to-be-learnt mathematics content. In accordance with the 
literature (e.g., Manches & O’Malley, 2012; Price, 2013), the present findings 
demonstrate that the combined strengths of physical and digital parts of the TM 
appear to contribute to the desirable outcomes regarding pedagogy. 

The design evaluation results also demonstrate that X-is is likely to be usable and 
compatible with school and classroom practice. Consistent with the literature 
(Manches & O’Malley, 2012), this research found that X-is was easy to use because 
students were not required to learn how to manipulate the physical objects. Similar 
to previous findings found by Salvador et al. (2012) and Sapounidis and Demetriadis 
(2013), all students considered X-is pleasant to use and intended to use it again. The 
teachers also regarded X-is as highly compatible with classroom and school practice. 
Their responses indicated the possibility of the adoption of X-is in primary school 
classrooms and its use in pre-primary and lower secondary school classrooms. 

7.1.2 Design framework 

Design frameworks describe the key characteristics of successful design solutions to 
a particular educational problem in a particular setting (Edelson, 2002). This chapter 
reports a real-world educational technology design framework that addresses RQ 2. The 
design framework was presented in Publication IV. 

RQ 2: What key aspects should be taken into account when developing a 
manipulative to ensure its successful classroom utilisation and adoption? 

Different types of knowledge are required for the successful development of 
solutions to improve real-world educational practice (Brown, 1992). As described in 
Chapter 5.1, I needed to acquire and synthesise different knowledge throughout this 
EDR to develop the solution, which appeared to promote students’ understanding 
of equation-solving concepts and its classroom adoption. Based on this experience, 
I have developed a design framework with usable and generalisable knowledge of 
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what should be considered when developing educational technologies for real-world 
educational contexts. The framework takes into account four essential aspects—
content, pedagogy, practice, and technology—that play a part in educational benefits, 
feasibility, and classroom utilisation and adoption of educational technologies 
(Figure 9). 
 

 

Figure 9.  The real-world educational technology design framework takes into account content, 
pedagogy, practice, and technology. From ‘Constructing a Design Framework and Design 
Methodology from Educational Design Research on Real-World Educational Technology 
Development,’ by D. Lehtonen, 2021, Educational Design Research, 5(2), Article 38, p. 19 
(https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 

An understanding of content to be learnt is essential for the development of any 
educational solutions. The development of X-is and the instructional materials 
required knowledge of equation solving, important concepts required for 
understanding equation solving, different models for teaching equations, and 
equation-solving content stated in the current Finnish NCC (EDUFI, 2016) and 
used in textbooks. 

Knowledge of pedagogy is needed to ensure the meaningful use of educational 
solutions. Learning through discovery and social interaction, multimodal expression 
of mathematical thinking, and teaching and learning approaches recommended by 
the NCC (EDUFI, 2016) were used to inform the design of X-is, instructional 
materials, and class activities to enhance students’ understanding of equation-solving 
concepts. 

An understanding of practice in the target educational context contributes to the 
success of educational solutions in the real world. Considering practical issues such 
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as class management when developing X-is proved to play an important part in 
teachers’ possible acquisition. 

It is essential to know about technological possibilities to design feasible 
educational technologies. To develop X-is with computer science students, I 
required knowledge of digital technologies, tangible technologies, and object-
tracking alternatives. When developing educational solutions, technology should be 
used because of its appropriateness and contribution, instead of for its own sake, to 
avoid the technology before pedagogy effect (see D. M. Watson, 2001; cf. technology-
driven products; Ulrich & Eppinger, 2016). In this study, the design concepts were 
not driven by technologies but instead by what technologies could offer to help 
students learn equation-solving concepts. 

It is noteworthy that the importance of each aspect in the framework is typically 
unequal and depends on the nature of the educational problem, target context, and 
possible technologies. Consistent with that of McKenney and Reeves (2019), design 
decision making of this EDR often involved simultaneous consideration of various 
aspects. Similarly to what Ulrich and Eppinger (2016) described, trade-off decisions were 
often made during the design development to fine-tune the design that would best 
meet the research aims, for example, the change of object tracking as described in 
Publications III–IV. The understanding of theoretical background, classroom 
practice, and technologies, derived from the literature, fieldwork, and 
multidisciplinary collaboration, assisted in making the trade-off decisions. 

7.1.3 Design methodology 

Design methodology provides guidelines for conducting EDR to achieve the 
research objectives (Edelson, 2002). Built on the literature and my reflection on my 
own experience from undertaking this EDR, this chapter addresses RQ 3. The 
guidelines were reported in Publications I and IV. 

RQ 3: What guidelines for conducting successful EDR can be drawn from 
the lessons learnt from undertaking this study? 

To date, various EDR models (e.g., Easterday et al., 2017; McKenney & Reeves, 
2019) have been adopted in different EDR projects. For example, the overall process 
of this EDR was based on McKenney and Reeves’ (2019) model (see Chapter 3.3). 
Usually, some adaptation of these models is required to meet the uniqueness of each 
EDR project. Thus, rather than proposing another model, I present general 
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content, pedagogy, practice, and technology—that play a part in educational benefits, 
feasibility, and classroom utilisation and adoption of educational technologies 
(Figure 9). 
 

 

Figure 9.  The real-world educational technology design framework takes into account content, 
pedagogy, practice, and technology. From ‘Constructing a Design Framework and Design 
Methodology from Educational Design Research on Real-World Educational Technology 
Development,’ by D. Lehtonen, 2021, Educational Design Research, 5(2), Article 38, p. 19 
(https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 
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as class management when developing X-is proved to play an important part in 
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2019) have been adopted in different EDR projects. For example, the overall process 
of this EDR was based on McKenney and Reeves’ (2019) model (see Chapter 3.3). 
Usually, some adaptation of these models is required to meet the uniqueness of each 
EDR project. Thus, rather than proposing another model, I present general 



 

106 

guidelines (Figure 10) for conducting EDR to help other researchers embrace 
opportunities and overcome the challenges that may emerge from their EDR. 

 

 

Figure 10.  General guidelines for conducting EDR. From ‘Constructing a Design Framework and 
Design Methodology from Educational Design Research on Real-world Educational 
Technology Development,’ by D. Lehtonen, 2021, Educational Design Research, 5(2), 
Article 38, p. 22 (https://doi.org/10.15460/eder.5.2.1680). CC BY 4.0. 

This doctoral study and those of others (see Publication I) have demonstrated that 
EDR is resource intensive, and thus it is important to assess the available resources 
and adjust the scope of a project correspondingly. This helps to ensure that the 
project is accomplishable and that real-world iterative enquiry is preserved. In line 
with Kennedy-Clark’s (2013) recommendation, the research team size should be 
appropriate to the intensiveness and scale of the project. Additionally, disciplines of 
project members (i.e., monodisciplinary vs. multidisciplinary) and other resources 
(e.g., time and budget) should be considered when planning EDR. A multifaceted 
and long-term project can be divided into achievable parts, for example, doctoral 
and postdoctoral research (Goff & Getenet, 2017) or small-scale studies for doctoral 
students to undertake individually (Anderson & Shattuck, 2012). Findings from a 
single iteration can be used to inform further research (Di Biase, 2020). 

As in the EDR literature (e.g., McKenney & Reeves, 2019; Plomp, 2013) and this 
study, data triangulation can promote an understanding of complex real-world 
phenomena and EDR trustworthiness. Data triangulation often requires intensive 
resources to collect substantial amounts of data (Collins et al., 2004), most of which 
are left unanalysed due to limited resources (Kelly, 2006). This is often the case with 
many doctoral students, such as Goff (2016, as cited in Goff & Getenet, 2017) and 
me. Thus, data collection and analysis should be well planned and implemented by 
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balancing resource use and data triangulation. Additionally, sharing collected data 
(i.e., open data) can progress the research community (Collins et al., 2004). 

It has been shown in my study and those of others (e.g., Cowling & Birt, 2018) 
that stakeholders’ engagement in EDR is essential for the success of EDR. My 
experience supports the literature (e.g., McKenney & Reeves, 2019; Ørngreen, 2015) 
that direct users and other relevant stakeholders should be involved in different 
phases of EDR. My experience from this study supports Herrington et al.’s (2007) 
suggestion that stakeholder participation should be intended to profit both the EDR 
and themselves. Stakeholder participation should be well planned and implemented 
by taking into account practical and ethical issues (e.g., research permission, 
interruptions to their normal activities, and suitable timing for all involved). 

It is feasible for a researcher like Di Biase (2020) and me (in most parts of my 
study) to conduct EDR alone. Nevertheless, EDR usually requires multidisciplinary 
expertise in both research and design (Collins et al., 2004; Edelson, 2006). In line 
with the literature (e.g., Kennedy-Clark, 2013; McKenney & Reeves, 2019), the 
contribution of my supervisors and the computer science students enhanced the 
feasibility and trustworthiness of this study. Fruitful collaboration can be ensured 
through good teamwork and communication (McKenney & Reeves, 2019). 

While in the design field, it is important to explore alternatives before selecting 
potential designs for further development (e.g., Ulrich & Eppinger, 2016), only a few 
EDR researchers have clearly discussed working with alternative solutions 
(Publication I; Ørngreen, 2015). As demonstrated in my study, alternative solution 
exploration is likely to ensure that the design developed with substantial resources is 
the best solution to the educational problem (McKenney & Reeves, 2019; Ørngreen, 
2015). Furthermore, my study supports Easterday et al. (2017) that to use resources 
efficiently, design construction (mock-ups vs. working prototypes) and evaluation 
methods (e.g., quick surveys vs. class interventions) should be employed according 
to the stage of design (concept exploration vs. design development) and researchers’ 
theoretical knowledge level. 

EDR is carried out in complex, real-world settings full of variables, so the 
research design of EDR usually evolves during the iterations (e.g., Herrington et al., 
2007; Plomp, 2013), as was the case with my study. Unpredictable situations (e.g., in 
my case, a teacher’s withdrawal from the study on short notice and the unreliably 
functioning prototype) can also occur. Therefore, I agree with Kennedy-Clark’s 
(2013) recommendation that EDR researchers should be prepared for adjustments 
and changes. 
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7.2 Research contributions 

This EDR contributes to theory and practice in mathematics education. Regarding 
the theoretical contribution, this research advances three types of usable knowledge. 
First, the domain theory adds knowledge about the needs, challenges, and 
opportunities of using manipulatives in primary school classrooms and how 
multimodal interaction with manipulatives, particularly TMs, in the classroom social 
context can enhance students’ understanding of mathematical concepts. Second, the 
real-world educational technology design framework informs educational designers 
about taking important aspects into consideration when developing educational 
technologies. The framework helps ensure that the development of educational 
technologies will benefit teaching and learning, be realisable, and succeed in the real 
world. Third, the guidelines for conducting EDR can assist other researchers in 
embracing opportunities and overcoming the challenges that may emerge from their 
EDR. 

Regarding practical contributions, the research-based design solution is the direct 
outcome of this research to directly assist students in understanding equation-solving 
concepts and enhance day-to-day practice. The research also has practical 
implications. First, it encourages teacher educators to prepare pre- and in-service 
teachers for the successful incorporation of manipulatives in their mathematics 
classrooms. Second, it guides practitioners in how to support their students to 
benefit from manipulatives. Third, it urges schools to support the acquisition and 
utilisation of manipulatives. Finally, it calls for school curricula to encourage the use 
of manipulatives in the mathematics classroom to support students’ conceptual 
understanding. 

7.3 Limitations and future research 

As mentioned in Publications II–IV, the limitations of the current study have been 
acknowledged, and possibilities for future research have also been recognised. The 
research quality might have been affected by limitations regarding research 
methodology: small convenience sample size, short interventions, only posttests 
employed, questionable reliability of some instruments, lack of researcher 
triangulation, and the researcher’s inexperience of quantitative research. Future 
research that has larger random samples, prolongs interventions, uses pre-post-test 
design, ensures reliability of all instruments, has more than one researcher to achieve 
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researcher triangulation, and develops/ensures sufficient research skills of 
researcher(s) would yield favourable quality. Moreover, research employing control 
(traditional classroom practice) and experimental groups (with the developed design 
solution: X-is, instructional materials, and class activities) from the same grade level 
would help to better determine the impacts of the design solution on students’ 
equation-solving achievement compared to the traditional mathematics classroom 
instruction. As reported in Publication III, it was not possible to transcribe the 
students’ dialogues during the Phase 3 pair work due to the classroom noisy 
background. To better understand the contributions of the developed TM (X-is) to 
students’ peer interaction, lavalier (clip-on) microphones could be used to record 
pairs’ communications in the future. 

The quality of this EDR suffered from limited human resources. As only one 
researcher worked in this doctoral study, only one concept evaluation and one 
classroom implementation of the design solution was conducted. A single 
implementation of the solution in a real-world educational context is unlikely to be 
enough to collect evidence that indicates the success of the proposed solution. 
Postdoctoral research, in which the solution will be refined based on the doctoral 
research results and working prototypes of the refined solution will be constructed 
and tested in the real world, would contribute to the research validity. A 
multidisciplinary team working with full commitment would enhance EDR quality. 

Regarding domain knowledge of manipulatives for understanding of 
mathematical concepts, this research concentrated only on the use of manipulatives, 
particularly TMs, for promoting mixed-attaining primary school students’ 
understanding of equation-solving concepts and their classroom adoption. Further 
research could continue to investigate these particular aspects in more depth. To 
better understand the potential of TMs in mathematics classrooms, future research 
could investigate the benefits of TMs for students with a specific degree of 
attainment, with visual impairment, or at different educational levels, as well as other 
mathematics topics and other forms of education (e.g., distance learning). Future 
research focusing on the influence of schools and policymakers on classroom 
implementation and adoption of manipulatives would contribute to manipulatives’ 
success in the real world. Regarding design framework and methodological 
knowledge of EDR in technology-enhanced mathematics learning, the proposed 
framework and guidelines were only informed by a single researcher’s experience 
from one EDR project. More similar EDR projects by other researchers would help 
validate the results of this study and advance the design framework and 
methodological knowledge of EDR. 
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Regarding technology, the results of this EDR might have been influenced by the 
limitations of the Wizard of Oz prototype used during the Phase 3 class 
interventions. A fully working reliable prototype with complete functions and 
features would overcome these limitations and expanded the assessed attributes of 
X-is. Future development of tangible technology may allow X-is to detect objects 
without external devices and connections, and thus increase its usability, practicality, 
and reliability. Added features, such as free experiments with the balance scale and 
students’ own equation setup, would enhance the user experience. 

The current design of X-is is unable to represent equations containing negative 
integers and subtraction. With new technologies, future design could overcome this 
limitation and thus broaden the potential benefits of X-is in equation-solving 
learning. On the other hand, mathematics education scholars (e.g., Goldin, 2002; A. 
Watson, 2009) recommend that concrete models should be used to help novice 
students construct their equation-solving foundations. From this perspective, future 
design should assist students in moving away from nonsymbolic representations 
(working with the manipulative) to mathematical symbolics, which can deal with all 
types of numbers and operations. Future research could explore and investigate 
these two approaches. It is noteworthy that the results of this EDR are only relevant 
to TMs employing available off-the-shelf technology. Therefore, future research on 
TMs using made-to-order technologies might discover different findings. 
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Since educational design research (EDR) was introduced to educational research at 
the beginning of the 1990s, it has gained recognition as a promising research 
approach that bridges the gap between research and practice in education. This 
paper aims to investigate how EDR has been utilised and developed and which 
challenges it has faced by systematically reviewing 21 Finnish EDR doctoral 
dissertations on mathematics, science, and technology education published 
between January 2000 and October 2018. The findings indicate that all 
dissertations yielded practical and theoretical contributions. Moreover, common 
EDR characteristics, including the use of educational problems in practice as a point 
of departure, research in real-world settings, evolution through an iterative 
process, development of practical interventions, and refinement of theoretical 
knowledge, were found in all dissertations. Most of the doctoral researchers were 
confronted with challenges, such as high demand for EDR with limited resources 
and difficulties associated with multidisciplinary teamwork. However, the 
dissertations were diverse in terms of research contexts, practical educational 
problems, research outcomes, research methodologies, scale, and collaboration. 
This systematic review not only enhances the understanding of the utilisation, 
development, and challenges of EDR but also provides implications for future EDR. 

1 Introduction 

Since educational design research (EDR) was introduced to educational research at 
the beginning of the 1990s, it has gained recognition as a promising research approach 
that bridges the gap between theoretical research and practice in education. Globally, 
EDR is still developing (Easterday, Lewis, & Gerber, 2017), as it is relatively young 
compared to other research approaches in education (Bell, 2004; Ørngreen, 2015). 
Over the past three decades, researchers have conducted EDR from a variety of 
theoretical perspectives and traditions for various purposes and contexts using 
different research methods (Bell, 2004; Prediger, Gravemeijer, & Confrey, 2015). 
While they have provided evidence supporting the usefulness of EDR, some have 
critiqued its limitations and challenges. 

To better understand how EDR has been utilised and developed and which 
challenges it has faced, we systematically reviewed EDR studies conducted in the 
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context of mathematics, science, and technology education at all levels. This lens was 
chosen for two reasons. First, it is likely that EDR is conducted differently in different 
educational fields, and therefore examining its application in specific fields may help 
refine the understanding of how to carry out EDR (McKenney & Reeves, 2012). 
Second, EDR has been adopted in a growing body of research on mathematics, 
science, and technology in education (Anderson & Shattuck, 2012; Prediger et al., 
2015; Zheng, 2015). 

2 Educational design research (EDR) 

2.1 Overview of EDR 

In this paper, we use the term educational design research to describe a research 
approach that is also known as design experiments, design research, design-based 
research, and development (al) research. EDR uses educational problems in practice 
as a point of departure and seeks to develop practical solutions to improve educational 
practices and advance usable knowledge through iterative processes in real-world 
settings (McKenney & Reeves, 2019; Plomp, 2013). 

The manifold studies on EDR differ in terms of goals, forms, processes, outcomes, 
and other aspects (e.g., Bell, 2004; Plomp, 2013; Prediger et al., 2015). In addition, 
scholars have defined EDR in a variety of ways. Table 1 provides examples of EDR 
characteristics proposed by Anderson and Shattuck (2012); Cobb, Confrey, diSessa, 
Lehrer, and Schauble (2003); Juuti and Lavonen (2006); McKenney and Reeves 
(2019); and Wang and Hannafin (2005). Nevertheless, there are some commonalities 
among the definitions: intervention in real-world settings to improve practices, 
evolution through iterative cycles, development of practical solutions (i.e., 
interventions), and refinement of theoretical knowledge. 
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 Variants of educational design research (EDR) characteristics proposed by different scholars. 
Title Characteristics of EDR Reference 

Design-based research 1. Situated in real educational contexts 
2. Focusing on the design and testing of 

interventions 
3. Utilising mixed methods 
4. Involving multiple iterations 
5. Entailing partnership between 

researchers and practitioners 
6. Providing design principles 
7. Different from action research 
8. Having a practical impact on practice 

Anderson and Shattuck, 2012, 
pp. 16–18 

Crosscutting features of 
design experiments 

1. Developing theories about the learning 
process and ways to facilitate that 
learning 

2. Interventionist: bringing about 
educational innovation 

3. Prospective and reflective 
4. Iterative cycles of intervention and 

revision 
5. Practice orientated 

Cobb, Confrey, diSessa, Lehrer, 
and Schauble, 2003, pp. 9–11 

Features of the design-
based research 

1. Iterative process 
2. Developing usable artefacts 
3. Rendering novel educational 

knowledge 

Juuti and Lavonen, 2006, pp. 
59–63 

Features of the design 
research process 

1. Theoretically oriented 
2. Interventionist: developing solutions 

informed by existing knowledge, 
testing, and participants 

3. Collaborative: working in collaboration 
with others 

4. Responsively grounded process 
5. An Iterative process of investigation, 

development, testing, and refinement 

McKenney and Reeves, 2019, 
pp. 12–16 

Characteristics of 
design-based research 

1. Pragmatic: refining theory and practice 
2. Grounded in relevant research, theory, 

and practice 
3. Interactive: working together with 

participants; an iterative cycle of 
analysis, design, implementation, and 
redesign; and flexible when necessary 

4. Integrative: using mixed research 
methods 

5. Contextual research results and 
generated design principles 

Wang and Hannafin, 2005, p. 8 
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Descriptions of phases of EDR differ between scholars (cf. Cobb et al., 2003; 
Easterday et al., 2017). According to Plomp (2013), there are three main phases: (1) 
preliminary research (i.e., literature research, needs and context analysis, and 
theoretical framework development), (2) the development phase (i.e., the iterative 
design phase), and (3) the assessment phase (i.e., the summative evaluation of the 
intervention and recommendations for improvement; cf. McKenney & Reeves, 2019, 
who described the initial phase, design phase, and evaluation). McKenney and Reeves 
(2019) divided EDR into cycles of different sizes: single subcycle, multiple subcycles, 
and overall design research project. A single subcycle is the completion of one of the 
three main phases (i.e., preliminary research, development, or assessment). Multiple 
subcycles consist of several subcycles, but not as many as the whole EDR project. An 
overall design research project can range from one multiple subcycle that consist of 
three subcycles of each phase to several multiple subcycles. 

EDR contributes to both practice and theory. In terms of its practical contribution, 
EDR uses an iterative process of design, assessment, and redesign in authentic 
contexts to develop an intervention to solve an educational problem (McKenney & 
Reeves, 2019). Additionally, according to Edelson (2002), EDR can help to develop 
three types of theory: domain theories, design frameworks, and design 
methodologies (cf. Plomp, 2013). Domain theories describe real-world phenomena 
and the outcomes of design implementation; design frameworks describe the 
characteristics of successful solutions to the problem in the studied context; design 
methodologies provide guidelines for successfully achieving the research aims. 

2.2 EDR challenges and recommendations 

Scholars have addressed several challenges of EDR and provided recommendations 
for how to overcome them. First, the triangulation of data sources, data collection 
methods, data types, theories, and evaluators is recommended to better understand 
complex real-world phenomena and enhance the reliability and validity of EDR (e.g., 
Design-Based Research Collective [DBRC], 2003; McKenney & Reeves, 2019). 
Nevertheless, triangulation and the iterative nature of EDR usually lead to over 
methodologisation—that is, the collection and analysis of excessive amounts of data—
which sometimes many not lead to adequate results (e.g., Brown, 1992; Dede, 2004). 
Second, EDR researchers often take on multiple roles (e.g., researcher, designer, 
implementor, and evaluator of the intervention), which may lead to conflicts of 
interest (e.g., Plomp, 2013). Triangulation of researchers can enhance the objectivity 
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of EDR (Plomp, 2013). Third, several EDR studies tend to be under conceptualised, 
as they lack a profound theoretical foundation and do not seek to provide theoretical 
contributions (e.g., Dede, 2004). Therefore, EDR should not only provide solutions to 
problems but also yield a variety of theories, particularly theories related to the design 
process (McKenney & Reeves, 2019). Fourth, a multidisciplinary collaboration among 
various experts from relevant fields is recommended for ensuring the feasible and 
successful development of solutions to complex educational problems (e.g., Wang & 
Hannafin, 2005). However, multidisciplinary teamwork requires, for example, a 
shared understanding among team members, strong group cohesion, and respect for 
others, and thus teamwork can be tiresome and contentious (McKenney & Reeves 
2019). Fifth, the involvement of various participant groups that are relevant to the 
implementation of the intervention (e.g., teachers, students, and organisations) is 
advised to better understand complex authentic contexts and enhance respondent 
triangulation (McKenney & Reeves, 2019; Ørngreen, 2015). Sixth, rather than refining 
only one design idea, working with alternative designs and exploring solutions is 
recommended to ensure that the proposed intervention is the best solution to the 
problem (McKenney & Reeves, 2019; Ørngreen, 2015). Finally, Kelly (2013) proposed 
that, as EDR requires the investment of considerable resources, EDR should be 
employed only when truly needed, such as when facing a challenging educational 
problem with no satisfactory solution. 

2.3 Previous reviews of EDR 

Previous studies have investigated the utilisation and progress of EDR and other 
relevant issues with various focuses and review processes. 

Anderson and Shattuck (2012) reviewed and defined the characteristics of EDR, 
including interventions in real educational contexts, a focus on the design and testing 
of a significant intervention, the use of mixed methods, multiple iterations, a 
collaborative partnership between the researcher and practitioners, the provision of 
design principles, differences from action research, and practical impact. The authors 
also conducted a review of the 47 most cited EDR articles from 2002 to 2011. 
Quantitative and qualitative content analyses were conducted to investigate 
geographic, disciplinary, and curricular focuses and the interventions, iterations, and 
outcomes of the articles. They found that design research was increasingly employed 
in educational contexts and that the majority of studies were conducted in North 
America. The most commonly studied subject was science; the main context was K–
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12; and most interventions involved technology. Thirty-one articles were empirical 
studies that were part of a multi-iterative research project. All of the empirical studies 
involved were either technological and instructional design interventions or 
instructional methods, models, and strategies. Typically, mixed methods were 
employed. Most focused on furthering theoretical knowledge and developing 
applications to improve learners’ learning outcomes or attitudes. Although the results 
of their review affirmed the great promise of EDR due to its integration of educational 
theory and practice, Anderson and Shattuck (2012) argued that work still needs to be 
done regarding educational innovations. Moreover, they recommended that future 
reviews perform a more detailed investigation of the full text of articles and investigate 
a broader set of articles. Their characterisation of EDR has been cited numerous 
times. 

According to McKenney and Reeves (2013), most of the EDR characteristics 
defined by Anderson and Shattuck (2012) are similar to those reported by other 
authors. However, McKenney and Reeves identified that departure from a problem is 
an important characteristic of EDR that is missing from Anderson and Shattuck’s 
(2012) list. Moreover, they criticized Anderson and Shattuck’s (2012) systematic 
review for its limited search terms (design-based research and education), narrow 
dataset (i.e., only the most cited articles), and the use of only abstracts for a number 
of analyses (McKenney & Reeves, 2013). They called for the use of diverse search 
terms, an adequate dataset, and in-depth analyses of full texts to assess EDR progress 
in future studies (McKenney & Reeves, 2013). 

Kennedy-Clark (2013) provided an overview of EDR as well as emphasised 
Plomp’s (2007) three phases of EDR (i.e., initial, prototyping, and assessment phases) 
and the contribution of iterative cycles to the development of design principles and 
the refinement of theories. Furthermore, she investigated how EDR characteristics 
were used in doctoral dissertations by critically reviewing six education dissertations 
utilising EDR that were published by different institutions in Australia, Europe, 
Africa, and North America from January 2000 to January 2013. Her search terms 
included design research, design-based research, education, phases, cycles, and 
iteration. The research contexts (i.e., teaching subjects and education levels), focuses, 
and duration of data collection cycles varied among the dissertations, but they all 
utilised mixed methods for data collection. Conducting iterative data collection 
phases, engaging with several expert groups, testing designs with different 
participation groups, and being flexible and adaptive appeared to assist the 
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researchers in reflecting on their research, understanding the educational problem, 
and avoiding overstated claims and conclusions. Finally, Kennedy-Clark’s review 
demonstrated that the use of iterative design and development cycles or micro phases 
could increase the reliability and trustworthiness of research. 

As researchers interested in EDR, we appreciate Kennedy-Clark's in-depth review 
of the potential benefits of EDR for education dissertations. However, the method was 
not sufficiently elaborated, and no overview of the information in the dissertations 
was provided. Revisiting the original article (Kennedy-Clark, 2013), Kennedy-Clark 
(2015) highlighted that researchers tend to concentrate on publishing their research 
findings and neglect to report their research methodologies. Therefore, there is a need 
for further investigation of how researchers employ EDR in their studies (Kennedy-
Clark, 2015). 

Zheng (2015) noted that applications of EDR do not appear to live up to 
expectations. She investigated empirical studies that adopted EDR through a 
systematic review of 162 journal articles published between 2004 and 2013 and 
quantitative content analysis of the selected EDR studies in terms of demographics, 
research methods, intervention characteristics, and research outcomes. The findings 
show that higher education was the most common sample group, and natural science 
was the most commonly studied learning domain. Qualitative methods were most 
often adopted, mixed methods were the second most popular, and solely quantitative 
methods were not used in any studies. Nearly all studies collected miscellaneous data, 
including interviews, questionnaires, and notes; and most performed technological 
interventions. More than half of the studies designed, developed, and redesigned 
educational interventions in only one iteration cycle. Although the majority revised 
their interventions, only approximately half of the studies reported how they did so. 
Moreover, most studies relied heavily on measurements of learners’ cognitive 
outcomes. Based on her findings, Zheng (2015) proposed that there is a need for EDR 
studies to apply multiple iterations and new approaches that pay more attention to 
the design process. 

We value her work for its thorough review of a large number of EDR studies and 
because it improves the understanding of the EDR landscape over the past decade. 
Nevertheless, a more detailed qualitative analysis would have complimented her 
quantitative analysis and contributed to an even deeper understanding of the selected 
studies. Zheng (2015) recognised the shortcomings of her research and recommended 
more deliberate investigation and analysis of design activities and their functions. 
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and avoiding overstated claims and conclusions. Finally, Kennedy-Clark’s review 
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3 Methodology 

3.1 Dissertation search and selection 

To investigate how EDR has been employed in research on mathematics, science, and 
technology education and which challenges have confronted EDR researchers, we 
conducted a systematic review based on the recommendations of Anderson and 
Shattuck (2012), Kennedy-Clark (2015), McKenney and Reeves (2013), and Zheng 
(2015; see Section 2.3). Our data was collected from Finnish doctoral dissertations on 
mathematics, science, and technology education published between January 2000 
and October 2018. We chose dissertations as our dataset because they report all 
iterative phases of the completed research, unlike articles, which often report only 
specific phases of research. We focused on Finnish dissertations because, as 
researchers in Finland, we expected our familiarity with the Finnish education system 
and practices to assist our review. It was not feasible to review all related dissertations 
completed at all Finnish universities because each university’s repository uses a 
different database system, and there is no shared database containing all Finnish 
dissertations. Therefore, we decided to retrieve our data from the institutional 
repositories of the five Finnish universities that awarded the most qualifications and 
degrees in 2014: the University of Helsinki, University of Jyväskylä, University of 
Oulu, University of Tampere, and University of Turku (Official Statistics of Finland, 
2015). The repository of the University of Eastern Finland, which provided the fourth 
most qualifications and degrees in 2014 and where a number of EDR dissertations 
have been completed, did not support the use of search terms for data retrieval. We 
also tried to retrieve dissertations of the University of Eastern Finland from Finna, a 
collection of search services providing access to material from Finnish university 
libraries. However, the Finna portal did not support a full-text search, which we used 
in our systematic review. Thus, we excluded the University of Eastern Finland and 
included the University of Tampere instead. Although our list of dissertations is not 
comprehensive, we believe that it provides an overview of the various dissertations 
published in Finland. 

Our search terms included different terminologies that have been used to describe 
EDR in both English (design research, design-based research/design based 
research, development research/developmental research, and design experiments) 
and Finnish (design-tutkimu*/suunnittelututkimu*, design-perustai*/design-
perustei*/suunnitteluperustai*/suunnitteluperustei*, kehittämistutkimu*, and 
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design-eksperiment*). The initial search resulted in 625 dissertations. One of the 
authors and a research assistant screened these results using the following inclusion 
criteria: (1) at least one of the search terms is visible in the English or Finnish title, 
abstract, or keywords and (2) the full text is openly available digitally. After applying 
these criteria, 55 dissertations remained. Each of the authors independently read one-
third of this list according to our own interests and expertise. Thereafter, we jointly 
decided to exclude dissertations that did not utilise EDR as a strategy of inquiry, 
leaving 49 dissertations. At the beginning of this research, we decided not to use 
search terms similar to mathematics OR science OR technology AND teach* OR 
learn* OR class* to locate all dissertations on mathematics, science, or technology 
education because doing so would not be possible. Instead, we carefully read the 
remaining EDR dissertations, identified which dissertations concerned mathematics, 
science, and technology education, and jointly excluded dissertations in fields other 
than mathematics, science, and technology education, such as other taught subjects 
(e.g., language, design, and nursing), skill and competence development, teaching and 
learning support, and learning environments in general. 

3.2 Dataset 

After the final screening process, the full texts of 21 EDR dissertations (10 in English 
and 11 in Finnish; 18 monographs and 3 article-based dissertations) on mathematics, 
science, and technology education from three universities (the University of Helsinki, 
University of Jyväskylä, and University of Oulu; n = 14, 6, and 1, respectively) 
remained for statistical and content analysis. Table 2 presents the number of EDR 
dissertations on mathematics, science, and technology education and on other 
educational domains by the university during the periods of 2000–2009 and 2010–
2018. 
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 Frequency of EDR dissertations by the university and educational domain. 
Educational 
Domains 

University 
of Helsinki 

University 
of Jyväskylä 

University 
of Oulu 

University 
of Tampere 

University 
of Turku 

                Year 

2000
–
2009 

2010
–
2018 

2000
–
2009 

2010
–
2018 

2000
–
2009 

2010
–
2018 

2000
–
2009 

2010
–
2018 

2000
–
2009 

2010
–
2018 

Mathematics, 
science, and 
technology 

4 10 3 3 0 1 0 0 0 0  

Other 2   8 2 5 2 3 2 3 0 1 

Total 6 18 5 8 2 4 2 3 0 1 

 

Among the EDR dissertations on mathematics, science, and technology education, 
those of Aksela (2005) and Juuti (2005) were the first two published at the University 
of Helsinki, that of Leppäaho (2007) was the first at the University of Jyväskylä, and 
that of Oikarinen (2016) was the only one published at the University of Oulu. 
Altogether, there were 19 supervisors for the 21 dissertations. Aksela, who completed 
her EDR dissertation in 2005, supervised nine dissertations (43%), while Lavonen 
supervised six dissertations (29%). 

3.3 Data analysis 

After the final screening, each author coded one-third of the dissertations using a 
jointly constructed coding table. The coding categories were initially based on the 
previous literature, but we regularly discussed and modified existing categories and 
added relevant categories during the coding to best answer our research questions. 

We coded the dissertations according to the following categories: (1) use of EDR 
terms and theoretical frameworks, (2) research contexts (i.e., educational sectors, 
settings, and domains), (3) educational problems in practice and research outcomes, 
(4) research methodology (i.e., research methods, data collection methods, and data 
sources), (5) scale, collaboration, and researcher’s roles, (6) EDR process (i.e., phases 
of EDR, iterations, alternative design interventions, and issues during development 
of the intervention), and (7) EDR challenges. After the coding, we analysed the coded 
data quantitatively and qualitatively. Our findings are presented according to these 
seven categories in tables, figures, and descriptive analyses in the following section. 

During the study, we strived to enhance the validity and reliability of our study by 
performing a precise research process, making joint decisions, crosschecking our data 
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and analysis, consulting the literature for interpretations of the data, and comparing 
our research results to previous studies. 

4 Results 

4.1 Use of EDR terms and theoretical frameworks 

EDR is referred to by a variety of names, and different scholars define it as having 
different goals, characteristics, and processes. Thus, investigating how EDR terms 
and theoretical frameworks have been used in dissertations published during the last 
two decades improves the understanding of how EDR is utilised and developed. 

Of the four terms in each language used for our dissertation search, only three —
design research, design-based/design based research, and 
development/developmental research in English and design-
tutkimu*/suunnittelututkimu*, design-perustai*/design-
perustei*/suunnitteluperustai*/suunnitteluperustei*, and kehittämistutkimu* in 
Finnish — appeared in the titles, abstracts, or keywords of the 21 dissertations. The 
dissertations did not apply a uniform format: while all of the dissertations included 
English versions of the title and abstract, only 18 included Finnish versions. We 
counted the appearance of each term only once per dissertation. Vartiainen (2016) 
used two terms in her English abstract, and Hassinen (2006) used two terms in her 
Finnish abstract. Thus, we also included them in our data (English: n = 22; Finnish: 
n = 19). 

 

Figure 1.  Frequency of search terms appearing in dissertation title, abstract, or keywords 
(English: n = 22; Finnish: n = 19).                                                                                                              

Note: Only 18 dissertations had Finnish abstracts. One researcher used two terms in the English abstract, 
and another used two terms in the Finnish abstract. 
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Figure 1 shows the frequency of each search term in the English or Finnish titles, 
abstracts, or keywords of the dissertations. The most commonly used English term 
was ‘design research’, which appeared in 13 dissertations (69%), followed by ‘design-
based/design based research’ in 7 dissertations (32%). The most commonly used 
Finnish term was ‘kehittämistutkimu*’ (development/developmental research), 
which appeared in 16 dissertations (84%). Interestingly, for 13 of the 18 dissertations 
(72%) that provided the title and abstract in both languages, the English and Finnish 
terms were not consistent. These dissertations used ‘kehittämistutkimu*’ 
(development/developmental research) in their Finnish titles or abstracts but either 
‘design research’ or ‘design-based/design based research’ in their English titles or 
abstracts. 

Our search terms appeared in the titles of 12 dissertations (57% of the 21 
dissertations). Of these, six (50%) included the search terms in their primary titles, 
such as “Design-Based Research of a Meaningful Nonformal Chemistry Learning 
Environment in Cooperation with Specialists in the Industry” (Ikävalko, 2017) and “A 
Design Research: Problem and Inquiry Based Higher Education of Chemistry” 
(Rautiainen, 2012). 

The comprehensiveness with which EDR theoretical frameworks were presented 
in the methodology sections of the dissertations varied from relatively superficial to 
exceedingly thorough. To investigate the use of these theoretical frameworks, we 
focused on the main EDR literature cited in the dissertations’ methodology sections, 
such as those regarding the principles, key characteristics, and processes of EDR. We 
found that early EDR works (e.g., Brown, 1992; Edelson, 2002; DBRC, 2003) and 
recent works (e.g., Anderson & Shattuck, 2012; McKenney & Reeves, 2019) were used 
as the main theoretical frameworks. The most cited article was that of Edelson (2002), 
which described the three types of theories (i.e., domain theories, design frameworks, 
and design methodologies) that can guide EDR. This article was cited in 18 
dissertations (86%). The next most cited article was that of the DBRC (2003), which 
identified five characteristics of good design-based research and provided 
recommendations on how to increase the reliability and validity of EDR. This article 
was cited in 10 dissertations (48%). Of the Finnish EDR literature, Juuti and 
Lavonen’s (2006) article concerning the three pragmatic features of EDR was cited by 
nine dissertations (43%). 
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4.2 Research contexts 

To obtain an overview of the authentic educational contexts in which the EDR 
dissertations were conducted, we examined their research contexts, including the 
educational sector (i.e., educational levels based on the Finnish educational system), 
setting (i.e., formal education vs. nonformal education), and domain (i.e., teaching 
and learning subjects). 

 

Figure 2.  Frequency of educational sectors examined by the dissertations (n = 28) 

Note: Five dissertations were carried out in more than one educational sector. 

All of the dissertations were conducted in real-world educational contexts, and five 
were carried out in more than one educational sector. We included all of these sectors 
in our data (n = 28). Figure 2 shows a pie chart of the various educational sectors 
examined by the dissertations. Basic education (Grades 1–9; n = 11, 39%) was the most 
studied educational sector in the dissertations, while pre-primary school (n = 2; 7%) 
was the least. 
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Figure 3.  Frequency of the educational domains on which the dissertations focused (n = 21) 

Note: The education domains were categorised based on the vocabulary used in the dissertations. 

The majority of the 21 dissertations (n = 14, 67%) were conducted in a formal 
educational setting leading to formal qualifications, while the others were conducted 
in either a nonformal setting (n = 3, 14%) or in both types of settings (n = 4, 19%). The 
research interventions were conducted in various educational domains. Some 
researchers described these domains in a general way (e.g., science, mathematics, or 
technology in education), while others referred to specific subjects (e.g., chemistry 
and physics). We categorised our data accordingly. Moreover, we included upper 
secondary school statistics for mathematics, which is in line with the Finnish national 
core curriculum. Figure 3 illustrates that the most common domain was chemistry (n 
= 9, 43%), followed by science in general (n = 4, 19%) and mathematics (n = 4, 19%). 
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In sum, the dissertations were conducted in various research contexts (i.e., 
educational sectors, settings, and domains). Table 3 illustrates the differences in the 
research contexts using three dissertations as examples. 

4.3 Educational problems in practice and research outcomes 

All dissertations took at least one of four types of practical educational problems as a 
point of departure. Two dissertations took two types of problem as a point of 
departure; thus, we also included them in our data (n = 23). Figure 4 shows that the 
most common problem (n = 11, 48%) was students’ lack of motivation and interest 
(e.g., Vartiainen, 2016), low performance (Hassinen, 2006), or deficient 
understanding (e.g., Oikarinen, 2016). The second most common problem (n = 7, 
30%) was a lack of teaching and learning materials (e.g., Hongisto, 2012) or 
challenges in adapting to a new teaching and learning environment (e.g., Nieminen, 
2008). The third type of problem (n = 3, 13%) was a teachers’ deficient understanding 
and pedagogical skills (e.g., Juntunen, 2015). The last type (n = 2, 9%) concerned 
changes in a new curriculum (e.g., Kallunki, 2009). 

 

Figure 4.  Types of practical educational problems that the dissertations took as points of departure (n = 23) 

 Note: Two dissertations took two problems as points of departure. 
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(Vartiainen, 2006) or a chemistry information and communication technology (ICT)-
based learning environment (Pernaa, 2011). Another major type concerned teaching 
and learning concepts or models (n = 9, 41%), such as new chemistry teaching 
concepts for sustainability education (Juntunen, 2015) or a teaching model for 
algebra (Hassinen, 2006). Teaching and learning materials (n = 3, 14%), such as 
textbooks and electronic learning materials for teaching ICT (Ekonoja, 2014), were 
also developed. 

We also investigated the theoretical contributions of the dissertations. Figure 5 
shows that the majority of the dissertations (n = 15, 71%) developed all three types of 
theory (i.e., domain theories, design frameworks, and design methodologies) 
described by Edelson (2002). Nonetheless, only 11 of 15 developed all these theories 
thoroughly (e.g., Vartiainen, 2016). The remainder (n = 6, 29%) only developed 
domain theories and design frameworks (e.g., Tomperi, 2015) or domain theories and 
design methodologies (Leppäaho, 2007). 

 

Figure 5.  Venn diagram illustrating the theoretical contributions of the dissertations (n = 21) 

4.4 Research methodology 

The way in which EDR projects are conducted plays an important role in the success 
and reliability of those projects. Research triangulation is highly recommended to 
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methods, data collection methods, and data sources was implemented in the 
dissertations. 
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We coded the research methods as qualitative, quantitative, and mixed methods 
(see e.g., Creswell & Creswell, 2018). Fourteen dissertations (67%) gathered and 
analysed data with mixed methods (i.e., both qualitative and quantitative methods), 
while the remainder (n = 7, 33%) used only qualitative methods. None were conducted 
with only quantitative methods. Nevertheless, some of those dissertations that 
adopted mixed methods did not utilise qualitative and quantitative methods equally. 
For example, Ratinen’s (2016) dissertation consisted of three substudies, only the first 
of which adopted mixed methods (i.e., a qualitative and quantitative questionnaire). 

The dissertations used various methods to collect empirical data. The most 
common data collection methods were observation and questionnaires (each of which 
was used by 15 dissertations), followed by written documents, such as essays, diaries, 
and reports (which were used by 14 dissertations), and then interviews and group 
interviews (used by 13 dissertations). Some dissertations used tests and exams (e.g., 
Nieminen, 2008), tasks and exercises (e.g., Juntunen, 2015), and design intervention 
analysis (e.g., Pernaa, 2011). With regard to data sources, approximately half (11 of 
21) of the dissertations collected data from both students and teachers, while the other 
half (n = 10) collected data from only students or only teachers. Additionally, several 
dissertations collected data from sources other than students and teachers; for 
example, Ikävalko (2017) collected data from company specialists, and Vartiainen 
(2016) collected data from parents. 

In addition to investigating the dissertations’ data collection methods and sources, 
we investigated how they collected data with multiple methods and from multiple 
sources to enhance their research triangulation. The number of data collection 
methods used in each dissertation ranged from one (Hongisto, 2012) to seven (Juuti, 
2005), and the majority used three (n = 7, 33%) or four (n = 5, 24%). The number of 
data sources used in each dissertation varied from one (e.g., Rukajärvi-Saarela, 2015) 
to five (Tuomisto, 2018). Most of the researchers collected their data from one (n = 7, 
33%) or two sources (n = 10, 48%). 
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Figure 6.  The positioning of dissertations in a research triangulation matrix with two dimensions: data 
collection methods (x-axis) and data sources (y-axis) 

Note: Bubble size is based on the number of dissertations with the same coordinates. Dissertations from the far corner 

of each quadrant were highlighted. 

We further analysed the research triangulation by using a matrix with two 
dimensions: the number of data collection methods used in each dissertation on the 
x-axis and the number of data sources used in each dissertation on the y-axis. As 
Figure 6 shows, the matrix is composed of four quadrants: (1) low diversity of methods 
and low diversity of sources (lower left quadrant), (2) high diversity of methods and 
low diversity of sources (lower right quadrant), (3) low diversity of methods and high 
diversity of sources (upper left quadrant), and (4) high diversity of methods and high 
diversity of sources (upper right quadrant). The majority of dissertations are located 
in the lower quadrants; nine dissertations (43%) had low diversity of methods and low 
diversity of sources, and eight (38%) had high diversity of methods and low diversity 
of sources. Only two dissertations (Loukomies, 2013; Vartiainen, 2016) had high 
diversity of methods and high diversity of sources. Table 4 provides four examples of 
dissertations from the far corner of each quadrant. 
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 Four dissertations that illustrate the variation in research methodologies in the dissertations 

 Hongisto (2012) Ratinen (2016) Tuomisto (2018) Loukomies (2013) 

Collection 
Methods 

Essay Questionnaire, 
observations, 
group 
interviews, 
drawing, 
essays, and 
lesson plans 

Questionnaire, 
observations, 
and diaries  

Questionnaire, 
observations, 
interviews, and 
meeting 
memoranda 

Data Sources Students Pre-service 
teachers 

Teacher 
educators,  
pre-service 
and in-service 
teachers, 
students, and 
peers  

Students, 
teachers, and 
experts 

4.5 Scale, collaboration, and researcher's roles 

The scale of the dissertations varied widely in terms of the size of the research team 
(from an individual researcher to a large multidisciplinary team), the number of 
research participants (from 15 to over 1000 participants), and the time taken to 
complete the dissertation (from 3 to 14 years). Eight researchers (38%) conducted 
their dissertations alone, while the remaining 13 (62%) collaborated with other 
researchers or disciplines. For example, Ratinen (2016) conducted his dissertation in 
collaboration with another researcher, and Nousiainen (2008) worked in a 
multidisciplinary team comprised of members from various fields, including 
educational sciences, natural sciences, mathematical information technology, game 
design (e.g., multimedia and graphic design), and stakeholders (e.g., industry 
representatives, biology and geography teachers, and students from several school 
levels). 

Twenty researchers had one additional role besides that of a researcher. The 
majority (n = 13, 62%) of the researchers (e.g., Leppäaho, 2007) had three roles: a 
researcher who plans the research, collects data, and analyses data; a developer who 
designs and develops a design intervention; and a teacher who teaches in the research 
intervention. Seven researchers (33%), including Ekonoja (2014), had two roles: a 
researcher and a developer. Juntunen (2015) was the only one who had a single role: 
a researcher. 
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research participants (from 15 to over 1000 participants), and the time taken to 
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researchers or disciplines. For example, Ratinen (2016) conducted his dissertation in 
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multidisciplinary team comprised of members from various fields, including 
educational sciences, natural sciences, mathematical information technology, game 
design (e.g., multimedia and graphic design), and stakeholders (e.g., industry 
representatives, biology and geography teachers, and students from several school 
levels). 

Twenty researchers had one additional role besides that of a researcher. The 
majority (n = 13, 62%) of the researchers (e.g., Leppäaho, 2007) had three roles: a 
researcher who plans the research, collects data, and analyses data; a developer who 
designs and develops a design intervention; and a teacher who teaches in the research 
intervention. Seven researchers (33%), including Ekonoja (2014), had two roles: a 
researcher and a developer. Juntunen (2015) was the only one who had a single role: 
a researcher. 
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4.6 EDR process 

To investigate the EDR processes used by the dissertations, we analysed the phases of 
EDR, iterations, alternative design interventions, and issues that were considered 
during the intervention development. 

To analyse the EDR phases of the dissertations, we coded the progress of EDR 
according to three main phases: (1) preliminary research, (2) development phase, and 
(3) assessment phase (see Plomp, 2013). Although the EDR processes of the 
dissertations were presented in various ways using various terms (e.g., cases, cycles, 
phases, stages, and substudies), we found that all dissertations progressed through 
three main phases. However, the first phase (i.e., investigation of problems, needs, 
and context) was not fully conducted in several dissertations. For example, Hassinen 
(2006) did not empirically investigate needs or context and only reviewed the 
literature on school algebra, curricula, related theories, and textbooks; and Ekonoja’s 
(2014) first phase was conducted as part of his master’s thesis. Additionally, while the 
primary research and assessment phase was reported thoroughly in all dissertations, 
the development phase was rather brief in some examples (e.g., Oikarinen, 2016) and 
comprehensive in others (e.g., Juuti, 2005). 

As an important characteristic of EDR is its iterative process of design, 
assessment, and redesign, we investigated the dissertations’ iterations by examining 
revisions of the interventions and the number of multiple subcycles implemented 
throughout each dissertation (see McKenney & Reeves, 2019). Almost all researchers 
(n = 20, 95%) revised their interventions during their dissertations. Seven also refined 
their interventions after their final field trials. With regard to the number of multiple 
subcycles, 19 researchers (90%) revised their intervention through multiple subcycles. 
Thirteen (62%) employed two multiple subcycles, four (19%) employed three, one 
(5%) employed four, and one (5%) employed seven. In addition to performing seven 
multiple subcycles, Rukajärvi-Saarela (2015) refined her pre- and in-service teacher 
course after the final field trial. In contrast, two dissertations (10%) performed only 
one multiple subcycle. After the multiple subcycle, Hassinen (2006) did not revise her 
Idea-based Algebra teaching model, while Leppäaho (2007) developed his problem-
solving materials further in a textbook. 

To ensure that their interventions contributed to real-world settings, we also 
investigated whether any dissertations worked with alternative designs or considered 
issues besides pedagogy when developing the interventions. No one worked with 
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alternative designs except Nousiainen (2008), whose first project included alternative 
user interfaces with layouts and different interaction styles and whose second project 
generated initial ideas and then integrated and developed them in greater detail. 

With regard to the issues considered during intervention development, we found 
that besides pedagogical issues, most of the dissertations considered the needs of 
policymakers, particularly the National Core Curriculum, when developing 
interventions. Only a few dissertations considered other issues, such as practicality, 
usability, administration, and organisation. For example, when developing her ICT 
learning environment, Aksela (2005) considered pedagogy, the needs of 
policymakers, practicality (e.g., time, ease of use, resource availability, and classroom 
space), usability, and technical issues. 

4.7 EDR challenges 

Finally, we investigated which EDR challenges were encountered during the 
dissertations. The challenges in the dissertations can be classified into five categories, 
which are described below. 

First, it was difficult to generalise the results due to the small number of research 
participants, the short length of interventions, the small number of iterative cycles, 
the insufficiency of relying only on qualitative data, or context-bound research results 
(e.g., Ekonoja, 2014; Kallunki, 2009). Second, the nature of EDR made it challenging 
to perform the research for the dissertations. For example, in Nousiainen’s (2008) 
dissertation, it was difficult to compare the research results from different phases, and 
it was difficult for some participants to recall what happened at the beginning of a 
long intervention. In the case of Ekonoja (2014), the EDR interventions were typically 
innovative in nature, and thus there were no previous studies related to his research. 
Moreover, his intervention relied greatly on technology. Third, the researchers had 
limited resources in relation to the complexity of EDR, which requires a huge amount 
of work due to the need to gather and analyse a large dataset (Vartiainen, 2016) and 
explicitly document the whole process (Pernaa, 2011). Fourth, EDR was often 
conducted with multidisciplinary collaboration, which required mutual 
understandings and good teamwork (e.g., Ikävalko, 2017). Fifth, when they took on 
multiple roles, it was sometimes difficult for the researchers to maintain objectivity 
(e.g., Oikarinen, 2016). 
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5 Discussion and conclusions 

Our study improves the understanding of how EDR has been utilised and developed 
and which challenges it has faced over the last two decades by systematically 
reviewing 21 Finnish doctoral dissertations on mathematics, science, and technology 
education. The findings indicate that all dissertations made practical and theoretical 
educational contributions. In line with the literature (e.g., DBRC, 2003; McKenney & 
Reeves, 2019; Plomp, 2013), all of the dissertations exhibited the characteristics of 
EDR, including the use of educational problems in practice as a point of departure, 
research in real-world settings, evolution through an iterative process (i.e., 
preliminary research, development, and assessment), development of practical 
interventions, and refining of theoretical knowledge. Moreover, the challenges faced 
by the researchers (e.g., high demand for conducting EDR with limited resources and 
the difficulties of multidisciplinary teamwork) are generally similar to those stated by 
other scholars (e.g., Brown, 1992; McKenney & Reeves, 2019). However, the 
dissertations were distinctly diverse in terms of the research context (i.e., educational 
sectors, settings, and domains), educational problems in practice, research outcomes, 
research methodology (i.e., research methods, data collection methods, and data 
sources), scale, and collaboration. Like the EDR reviews of Anderson and Shattuck 
(2012) and Zheng (2015), the findings support the plurality of EDR (see Bell, 2004). 
Our results indicate that it is feasible to conduct EDR dissertations in different 
educational sectors, in different settings and domains, at various scales, and with 
different research designs. 

Based on our observations, we agree with other researchers (e.g., Easterday et al., 
2017; Ørngreen, 2015; Zheng, 2015) that EDR still needs much more work. Thus, we 
propose several suggestions for future EDR. First, we encourage agreement between 
the terms used to describe EDR in different languages to promote consistency and 
avoid confusion. Second, as EDR is an emergent research approach (Easterday et al., 
2017), recent literature should be consulted so that researchers can stay up to date. 
Third, in agreement with the DBRC (2003) and McKenney and Reeves (2019), we 
believe that the triangulation of research methods, data collection methods, and data 
sources is needed to better understand complex authentic phenomena and ensure the 
trustworthiness of EDR. Fourth, we support Kennedy-Clark (2013) and McKenney 
and Reeves (2019) and highly encourage multidisciplinary collaboration so that EDR 
researchers benefit from the expertise of others and increase the feasibility and 
robustness of their research. Fifth, in line with McKenney and Reeves (2019) and 
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Ørngreen (2015), when developing the intervention, working with alternative designs 
and considering various issues faced by all people in real-world contexts can enhance 
the success of EDR and ensure that the intervention continues to be utilised in real-
world settings. Sixth, we agree with McKenney and Reeves (2019), Kennedy-Clark 
(2015), and Zheng (2015) that design activities and processes should be further 
emphasised so that others can benefit from them. Finally, due to the appearance of 
EDR terms in the primary titles of six dissertations, which implies that there is an 
overemphasis on EDR at the expense of the subject of the research, and the fact that 
EDR requires substantial resources (Kelly, 2013), we recommend that EDR should be 
undertaken because of its appropriateness and utility rather than for its own sake. 

Our research has several limitations. First, our systematic review included only 21 
Finnish dissertations on mathematics, science, and technology education from five 
universities. A broader dataset in terms of both the number of universities, 
dissertations, and educational fields would greatly improve the understanding of the 
utilisation and development of EDR. Second, the large dataset (a total of 4187 pages), 
the lack of a shared writing structure, and the implicit reporting of information that 
was necessary for this review made it difficult to perform data coding and analysis. 
More resources for coding and analysis would increase the precision of the research 
results and decrease the workload of researchers conducting the review. Last, to gain 
an overview of the utilisation, development, and challenges of EDR, we adopted a 
broad perspective when systematically reviewing the use of EDR terms and theoretical 
frameworks, research contexts, educational problems in practice and research 
outcomes, research methodologies, the dissertation’s scale and collaboration, the 
researcher’s roles, EDR processes, and EDR challenges. While our review indeed 
provides an overview, a review focusing on specific issues would yield profound 
insights into EDR. 
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CHAPTER NINE

USING MANIPULATIVES FOR TEACHING EQUATION 
CONCEPTS IN LANGUAGING-BASED CLASSROOMS

Daranee Lehtonen and Jorma Joutsenlahti 

Introduction

Conceptual understanding is one of the most important proficiencies in 
mathematics. It enhances students’ learning fluency and retention, facilitates their 
learning of new concepts, helps them to avoid errors, and promotes self-discovery 
(NRC 2001, 116–20). Moreover, it has been acknowledged that students’ low 
performance in mathematics can result from an inadequate understanding 
of mathematical concepts (NRC 2001, 17?18; Ojose and Sexton 2009, 4). 
Nevertheless, school mathematics has typically emphasised algorithmic skills 
(Attorps 2006, 1; NRC 2001, 4). Recently, several countries have reformed their 
mathematics curricula in favour of conceptual understanding, instead of relying 
entirely on algorithms (e.g. Australian Curriculum, Assessment and Reporting 
Authority 2015; Common Core State Standards Initiative 2010; Finnish National 
Board of Education 2015).

Based on the work of Piaget, Bruner, and Montessori, educators and re-
searchers have advocated the use of manipulative materials as hands-on learning 
tools for mathematical concepts understanding (McNeil and Jarvin 2007, 310; 
Uttal et al. 2013, 2). Previous studies have demonstrated that manipulatives as-
sist children in developing their understanding of abstract mathematical con-
cepts through multimodality and experiential learning (Puchner et al. 2010, 314; 
Uttal et al. 2013, 2). On the other hand, there is also a considerable amount of 
research that has demonstrated that manipulatives have no benefits to learners, 
and can sometimes even obstruct their learning (Martin, Svihla, and Smith 2012, 
1–2; McNeil and Jarvin 2007, 312; Uttal et al. 2013, 2). The fact that the benefits 
of manipulatives are debatable has therefore caused uncertainties when it comes 
to applying them in practice.

To establish whether it is worth utilising manipulatives in mathematics 
classrooms, we compared classes using manipulatives to classes that did not. 
One-variable linear equations in third- to sixth-grade classes were used as a case 
study for our investigation because this important concept in algebra has usually 
been taught merely in terms of rules and procedures, rather than focusing on the 
concepts contributing to those rules (Magruder 2012, 13; NRC 2001, 259). This 
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chapter attempts to use the studied context to resolve the disagreement over the 
use of manipulatives in practice. First, it reviews some of the proposed reasons 
that manipulatives may not be beneficial, and could even be damaging to chil-
dren’s learning and achievement. It also reviews current suggestions for bene-
fiting from manipulatives and relevant models. Second, it presents the context, 
methods, and results of our study. Finally, it discusses the observed benefits of 
manipulatives in the studied context, and then proposes evidence-based impli-
cations for research, practice, and policy.

Literature review
Research into the effectiveness of manipulatives has yielded varying results, 
suggesting that their use alone may not automatically facilitate learning within 
mathematics classes. While there have been many explanations as to why earlier 
research concluded that the use of manipulatives is ineffective, some of these 
explanations have actually reached the opposite conclusion. However, several 
of the proposed explanations do signal the same conclusion: that is, there are 
potential advantages of using manipulatives, but that they do have to be used 
appropriately and effectively. Two recommendations regarding how to benefit 
from manipulatives can be drawn from previous studies. First, manipulatives 
should be used for fostering children’s conceptual understanding rather than 
for acquiring procedural fluency. Second, while interacting with manipulatives, 
children need to make a connection between different representations construct-
ed through the manipulatives and mathematical symbols of the same concept. 
(e.g. McNeil and Jarvin 2007; NRC 2001; Uttal et al. 2013.)

According to the recommendations from previous studies, using manip-
ulatives to facilitate linking various representations of mathematical concepts 
together can contribute to students’ conceptual understanding. To date, various 
translation models of multiple representations in learning mathematical con-
cepts have been recommended (e.g. Goldin and Shteingold 2001; Joutsenlahti 
and Kulju 2010; Lesh, Landau, and Hamilton 1983). Besides proposing differ-
ent representations of mathematical concepts, they have emphasised that “rep-
resentational fluency”—which has been defined as (a) the ability to represent 
to-be-learnt mathematical concepts in various forms, and (b) the ability to bridge 
these representations—plays an important role in facilitating children’s under-
standing of mathematical concepts. Several other studies have supported this 
understanding (e.g. NRC 2001; Suh and Moyer 2007; Teck 2013).

Our research employed “languaging mathematics”, one of the transla-
tion models proposed by Joutsenlahti and Rättyä (2015), to enhance students’  
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representational fluency while interacting with manipulatives. In this chapter, 
we refer to languaging mathematics as “languaging”. The term languaging was 
previously introduced to didactic mathematics and second language learning in 
relation to verbal communication (see Bauersfeld 1995; Swain 2006). Howev-
er, Joutsenlahti and Rättyä’s (2015) concept of languaging goes further. They 
have defined languaging as an approach where a student expresses their own 
mathematical thinking by using one or more of the following four types of lan-
guage: natural (verbal and written), pictorial, mathematical symbolic, or tactile 
language. Tactile language has been added to the current model so as to take 
account of mathematical thinking occurring when interacting with hands-on ma-
terials (i.e. manipulatives). Languaging-based instruction has been studied at dif-
ferent educational levels (Joutsenlahti and Rättyä 2015, 51–53). Based on these 
studies, and those of other researchers (e.g. Bauersfeld 1995; Suh and Moyer 
2007; Teck 2013), it has been demonstrated that languaging plays a crucial role 
in mathematics classrooms in three aspects: the development of students’ con-
ceptual understanding, co-operative learning, and the assessment of students’ 
mathematical thinking and learning.

Recently, the new Finnish National Core Curriculum for Basic Education 
(first to ninth grades) has emphasised mathematical concepts understanding as 
one of the most important mathematical proficiencies the curriculum aims to 
develop among students. Concrete and experiential teaching and learning have 
been underlined as a key instructional method. Additionally, languaging-based 
class activities have been included in the curriculum. Students are encouraged to 
develop their mathematical thinking and present it to their classmates and teach-
ers through concrete tools, spoken and written language, and drawings (FNBE 
2015, 128, 234–35, 374).

Context and methods
To be able to decide whether the use of manipulatives should be adopted into 
practice, we used one-variable linear equations in third- to sixth-grade classes as 
the lens through which the benefits of manipulatives were investigated. We con-
ducted cross-sectional case studies utilising a concurrent triangulation approach 
of mixed methods as a strategy of inquiry. Qualitative and quantitative data were 
collected from teachers and students and then integrated for data analysis in or-
der to holistically combine the research findings.
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Participants

The study was conducted in one third-grade, one fourth-grade, one fifth-grade, 
and one sixth-grade class in a typical middle-size lower comprehensive school 
in southern Finland. This particular setting was selected as a case study for two 
reasons. First, schools and classes in Finland are homogeneous in terms of the 
students’ socioeconomic background and performance (FNBE 2012, 2, 14; 
OECD 2013, 556). Moreover, all permanently employed class teachers in Finn-
ish schools are required to have the same qualifications, including a master’s 
degree and continuing professional development (OECD 2013, 10511). Conse-
quently, the homogeneity of Finnish comprehensive schools and class teachers 
made it possible for us to conduct the research in any Finnish school. Second, 
with limited resources and time, we expected to achieve the most fruitful results 
by studying third- to sixth-grade classrooms, in which the use of manipulatives 
has usually declined (Marshall and Swan 2008, 344).

Four class teachers (teaching experience 6521 years) and 74 students (ages 9512, 
N3rd=23, N4th=16, N5th=14, N6th=21) from the school participated in the study. 
Teachers’ pre-interviews revealed that none of them had ever used the manipu-
latives intended for this study. Due to the mathematics contents included in the 
previous and new National Core Curriculum (FNBE 2015, 236, 375), all teach-
ers had limited experience in teaching equations. Moreover, the students had 
low prior experience and knowledge of the mathematical content used in this 
study. Third- and fourth-grade students had not received any formal instruction 
in equations, while fifth- and sixth-grade students had received some instruction 
in solving one-variable linear equations with trial-and-error substitution of val-
ues and reasoning for the unknown. It could therefore be claimed that the homo-
geneity of the participants helped ensure validity and credibility of conclusions 
to be drawn from the research results.

Procedures 

Four separate studies utilising identical research methods and procedures were 
conducted in the participants’ classrooms during regular school hours. The stud-
ies were grouped into two grade bands (third- to fourth-grade and fifth- to sixth-
grade) according to their similarity of instructional and post-test materials. Each 
study consisted of the following: 1) teachers’ pre- and post-interviews; 2) class 
intervention, including one control group (a languaging-based classroom with-
out manipulatives) and two treatment groups (a languaging-based classroom 
with a physical or virtual manipulative); and 3) students’ post-test and self- 
evaluation (Figure 9-1).
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Figure 9-1. Mixed-method research design

Teachers’ interviews. The teachers participated in face-to-face semi-structured 
interviews before the treatment groups’ lesson to illuminate any prior concep-
tions and experiences in teaching equations and utilising manipulatives which 
might affect the study. After all the class interventions, another interview was 
held to learn about their experiences, perceptions, and opinions about teaching 
and learning during the interventions.

Class interventions. Based on the students’ prior mathematics performance dur-
ing the academic year, each class teacher categorised them, within-class, into 
low, medium, and high attaining. They then assigned students from each cat-
egory randomly, to either a control group or one of the two treatment groups. 
This was to ensure similarities between the instructional groups; that is, an equal 
number of students from each attaining level in all groups (Ncontrol=25, Nphysi-

cal=25, Nvirtual=24). The same teacher taught the control and the treatment groups 
the same content for one 45–minute lesson. Before the study, each class teacher 
received instructional materials)a teacher guide and a student worksheet that 
were specially designed for the study to ensure conformity between the four 
studies. To avoid the influence of manipulatives on the control group’s session, 
the manipulatives intended for the treatment groups’ lesson were introduced to 
each teacher after the control group’s lesson.

The lessons in all groups were almost identical. They each: 1) learnt the 
concepts of equivalence and unknown; 2) developed representational fluen-
cy through languaging)that is, translating and making connections between  
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• Post-test
• Self-evaluation

Manipulatives Introduction
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39  3rd–4th graders
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Class Intervention
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various representations (verbal and written, pictorial, and mathematical s0m-
bolic) of equations; 3) solved equations; and 4) checked the solutions. The onl0 
difference was that the treatment groups utilised the provided manipulatives 
(tactile language) to accompan0 their lesson. According to our literature review, 
one drawback of previous research on ph0sical and virtual manipulatives for 
equations is that the manipulatives used in the research differed from each other 
in several wa0s (e.g. Magruder 2012; Suh and Mo0er 2007). Consequentl0, the 
various dissimilarities of the manipulatives make it difficult to compare the re-
search results in terms of representational difference. Thus, this stud0 utilised a 
ph0sical and a virtual manipulative that shared the same concept and a similar 
operation for the treatment groups in order to minimise the effect of their other 
differing attributes on the research results. During the lesson, one of the treat-
ment groups utilised Hands-On Equations® consisting of a balance scale, number 
cubes representing constants, and pawns representing variables, while another 
group utilised a virtual version of ph0sical Hands-On Equations® for the iPad, 
Hands-On Equations 1 applet (Figure 9-2).

Figure 9-2. Hands-On Equations® and Hands-On Equations 1 applet

The instructional materials were divided into two sets, one for the third- and 
fourth-grade studies and another one for the fifth- and sixth-grade studies. There 
were onl0 two differences between the two sets. First, the third- and fourth-grade 
lessons addressed equations with a pictorial unknown and solving equations b0 
trial-and-error substituting values and reasoning for the unknown, whereas the 
fifth- and sixth-grade lessons addressed equations with a letter as an unknown 
and equations solving b0 performing the same operation on both sides of the 
equation. Second, the number values used in the fifth- and sixth-grade lessons 
required more arithmetic skills than the ones used in the third- and fourth-grade 
lessons.
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Students’ post-tests and self-evaluations. After the class interventions, all stu-
dents completed the same 45+minute post-test with no access to the manipu-
latives. The test was administered to determine the relative difference in stu-
dents’ learning achievement across instructional conditions. Two post-tests (one 
for all third and fourth graders and another one for all fifth and sixth graders) 
were designed in a similar way to the class intervention worksheets. Each post-
test contained six open-response test items requiring students to: 1) translate 
six equations presented through different representations (written, pictorial, or 
mathematical symbolic) into two other representations; 2) solve the value of 
unknowns; and 3) algebraically check their solutions (Figure 9-3). Furthermore, 
the third and fourth graders had to explain the strategies they used to find the 
unknown’s value, while the fifth and sixth graders had to write down their steps 
of solving equations. After completing the post-test, students evaluated their 
learning experiences and achievement.

Figure 9-3. Three types of fifth- and sixth-grade post-test items
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equation. Second, the number values used in the fifth- and sixth-grade lessons 
required more arithmetic skills than the ones used in the third- and fourth-grade 
lessons.
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Students’ post-tests and self-evaluations. After the class interventions, all stu-
dents completed the same 45+minute post-test with no access to the manipu-
latives. The test was administered to determine the relative difference in stu-
dents’ learning achievement across instructional conditions. Two post-tests (one 
for all third and fourth graders and another one for all fifth and sixth graders) 
were designed in a similar way to the class intervention worksheets. Each post-
test contained six open-response test items requiring students to: 1) translate 
six equations presented through different representations (written, pictorial, or 
mathematical symbolic) into two other representations; 2) solve the value of 
unknowns; and 3) algebraically check their solutions (Figure 9-3). Furthermore, 
the third and fourth graders had to explain the strategies they used to find the 
unknown’s value, while the fifth and sixth graders had to write down their steps 
of solving equations. After completing the post-test, students evaluated their 
learning experiences and achievement.

Figure 9-3. Three types of fifth- and sixth-grade post-test items
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Results and discussion

Quantitative data from the post-tests and self-evaluations of students in both 
grade bands were used to statistically determine whether languaging-based 
learning with physical or virtual manipulatives enhanced the students’ under-
standing of equation concepts compared with the control groups. Additional-
ly, qualitative data from the teachers’ pre- and post- interviews, along with the 
classroom intervention observations, were concurrently utilised to develop em-
pirical understanding of the research results. Subsequently, all the data was inte-
grated and then interpreted to cross-validate the findings. To address the question 
of whether manipulatives should be adopted into practice, we next provide and 
discuss our findings according to our research methods (i.e. students’ post-tests 
and self-evaluations, teachers’ pre- and post-interviews, and class intervention 
observations) before finally turning to our convergent research results.

Students’ post-tests
To determine the impact of each instructional condition on students’ learning, we 
examined students’ post-tests across three instructional conditions in both grade 
bands (N3rd-4th=39, and N5th-6th=35). Overall, both manipulative groups of both 
grade bands out-performed the control groups on the post-test (Figures 944 and 
945). The third- and fourth-grade physical manipulative groups had the highest 
post-test average scores (Mean=17.7 out of 24, SD=4.0), followed by the vir-
tual manipulative (Mean=15.9, SD=5.5) and the control groups (Mean=13.6, 
SD=5.0). Similarly, the fifth- and sixth-grade physical manipulative groups 
performed better on the post-test (Mean=17.5 out of 30, SD=9.9) than the vir-
tual manipulative (Mean=16.0, SD=9.7) and the control groups (Mean=15.5, 
SD=8.5).

To test the null hypothesis for the difference of post-test scores across in-
structional conditions, we examined 95% confidence intervals for the means. 
We found overlaps of confidence intervals (Mean±1.96 SE) across instructional 
conditions of both grade bands (see error bars in Figures 944 and 945). There-
fore, we further investigated the test statistic for the difference between two 
means. We found a significant difference at the 5% level between post-test av-
erage scores only in third- and fourth-grade physical manipulative and control 
groups, that is, the 95% confidence interval for the difference between the means 
of these two groups (0.6, 7.6) did not contain zero.
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The findings from students’ post-test average total scores indicate that stu-
dents in all instructional conditions of both grade bands learned to represent 
and translate equations into different representations, solve one-variable linear 
equations, and check the solutions. Nevertheless, the third- and fourth-grade 
physical manipulative group significantly outperformed the control group on the 
post-test. When comparing post-test performance by grade band, fifth- and sixth-
grade performance was lower than third- and fourth-grade performance. A possi-
ble explanation for this might be that the fifth- and sixth-grade content was more 
challenging than the third- and fourth-grade content. In fact, according to the 
Finnish National Core Curriculum for Basic Education 2014, the content taught 
in the fifth- and sixth-grade studies is taught in seventh to ninth grades (FNBE 
2015, 236, 375). Based on fifth and sixth graders’ post-test response, there is ev-
idence of their equation concepts understanding. A fair number of them showed 
that the� used mathematical operations taught during the intervention for solv-
ing equations and were able to arrive at the correct solutions. However, the� did 
not receive full scores because of their incomplete steps of solving equations or 
arithmetic mistakes.

Figure 9-4. Third- and fourth-grade post-test average total scores (out of 24) by 
instructional condition (error bars = ± 1.96 SE)
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Figure 9-5. Fifth- and sixth-grade post-test average total scores (out of 30) by 
instructional condition (error bars = ± 1.96 SE)

In addition, we also investigated students’ post-tests in three separate sec-
tions of different representation types (mathematical symbolic, pictorial, and 
written) to identify the influence of each instructional condition on students’ 
performance within each post-test section. Figure 9-6 shows that the third- and 
fourth-grade physical manipulative groups performed best in all eight-full-score 
sections (Symbolic: Mean=7.4, SD=1.3; Pictorial: Mean=5.8, SD=2.4; Written: 
Mean=4.5, SD=2.5), relative to the virtual manipulative (Symbolic: Mean=6.5, 
SD=1.6; Pictorial: Mean=5.7, SD=2.2; Written: Mean=3.7, SD=2.8) and the 
control groups (Symbolic: Mean=5.4, SD=2.0; Pictorial: Mean=5.2, SD=2.4; 
Written: Mean=3.0, SD=2.4). As shown in Figure 9-7, even though the fifth- 
and sixth-grade physical manipulative groups did not perform best in every ten-
full-score section, they performed consistently in all test sections (Symbolic: 
Mean=5.7, SD=2.5; Pictorial: Mean=5.9, SD=3.8; Written: Mean=5.9, SD=4.3), 
and better than the virtual manipulative (Symbolic: Mean=5.9, SD=2.1; Pictorial: 
Mean=5.5, SD=3.9; Written: Mean=4.6, SD=4.4) and the control groups (Sym-
bolic: Mean=4.1, SD=3.5; Pictorial: Mean=5.9, SD=2.9; Written: Mean=5.5, 
SD=4.0).

Our findings from the students’ performance in different sections of the 
post-tests are mostly in agreement with the post-test average total scores. The 
third- and fourth-grade physical and virtual manipulative groups performed 
better than the control groups in all test sections. However, the difference in 
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the fifth- and sixth-grade post-test performance across test sections was mixed. 
Although the fifth- and sixth-grade physical manipulative groups’ performance 
in the symbolic section was lower than the virtual manipulative groups’, overall, 
their performance was consistently close to 60% correct in all test sections. 
In contrast, the virtual manipulative and control groups’ performance was 
inconsistent across test sections.

Figure 9-6. Third- and fourth-grade post-test average scores (out of 8) by 
representation type of test items across instructional conditions (error bars = ± 
1.96 SE)

To discover whether instructional conditions influenced equations-solv-
ing strategies on the post-test, we investigated the students’ post-test written 
solutions in terms of their strategies used for solving equations correctly. Their 
solutions were coded as: 1) trial-and-error substitution of values; 2) reasoning 
for the unknown; 3) mathematical operations (arithmetic and algebraic); and 4) 
other strategies. The “other strategies” code was used when students arrived at 
the correct answer without providing any explanation or steps for solving the 
equation, or when we were not able to identify their use of strategies. Our anal-
ysis did not include the situation where students did not solve the equation or 
solved the equation but did not arrive at the correct answer. Figure 9-8 shows 
that third and fourth graders solved 195 equations (Nphysical=68, Nvirtual=65, Ncon-

trol=62) correctly by using mostly reasoning for the unknown (50.0% of physical, 
55.4% of virtual, and 51.6% of control), followed by mathematical operations 
and trial-and-error substitution of values, respectively. As shown in Figure 9-9, 
fifth and sixth graders solved 139 equations (Nphysical=50, Nvirtual=44, Ncontrol=45) 
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Figure 9-5. Fifth- and sixth-grade post-test average total scores (out of 30) by 
instructional condition (error bars = ± 1.96 SE)
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the fifth- and sixth-grade post-test performance across test sections was mixed. 
Although the fifth- and sixth-grade physical manipulative groups’ performance 
in the symbolic section was lower than the virtual manipulative groups’, overall, 
their performance was consistently close to 60% correct in all test sections. 
In contrast, the virtual manipulative and control groups’ performance was 
inconsistent across test sections.
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Figure 9-7. Fifth- and sixth-grade post-test average scores (out of 10) by representa-
tion type of test items across instructional conditions (error bars = ± 1.96 SE)

correctl, b, using strategies from three categories: reasoning for the unknown, 
mathematical operations, and other strategies. The, were more likel, to use 
mathematical operations (80.0% of ph,sical, 79.6% of virtual, and 66.7% of 
control) than reasoning for the unknown or other strategies.

Our analysis of students’ use of strategies to solve equations correctly re-
veals two main findings. First, in each grade band, the use of strategies for solv-
ing equations correctl, did not differ overall between instructional conditions. 
Second, students in all conditions of both grade bands solved equations correctl, 
b, using mostl, the strategies emphasised during the interventions (reasoning 
for the unknown in the third- and fourth-grade studies and mathematical opera-
tions in the fifth- and sixth-grade studies). Although we found no differences in 
the strategies used for solving equations correctl, across the instructional con-
ditions of each grade band, there was another potentiall, meaningful difference: 
On the third- and fourth-grade post-test, mathematical operations (which were 
never formall, taught to third and fourth graders) were slightl, more likel, to 
be used for solving equations correctl, b, the ph,sical manipulative groups than 
by the two other groups (Figure 9-8). Moreover, three-fifths (8/13) of the phys-
ical manipulative groups used this strateg, to solve equations correctl, at least 
once, whereas onl, half (7/13) of the control and one-thirds (4/13) of the virtual 
manipulative groups did. Likewise, on the fifth- and sixth-grade post-test, the 
ph,sical and virtual manipulative groups were more likel, to use mathematical 
operations taught during the intervention for solving equations correctl, than the 
control groups (Figure 9-9).
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Figure 9-8. Third- and fourth-grade percentage use of different strategies to 
solve equations correctly (out of 195) by instructional condition

Figure 9-9. Fifth- and sixth-grade percentage use of different strategies to solve 
equations correctly (out of 139) by instructional condition
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Figure 9-7. Fifth- and sixth-grade post-test average scores (out of 10) by representa-
tion type of test items across instructional conditions (error bars = ± 1.96 SE)
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for the unknown in the third- and fourth-grade studies and mathematical opera-
tions in the fifth- and sixth-grade studies). Although we found no differences in 
the strategies used for solving equations correctl, across the instructional con-
ditions of each grade band, there was another potentiall, meaningful difference: 
On the third- and fourth-grade post-test, mathematical operations (which were 
never formall, taught to third and fourth graders) were slightl, more likel, to 
be used for solving equations correctl, b, the ph,sical manipulative groups than 
by the two other groups (Figure 9-8). Moreover, three-fifths (8/13) of the phys-
ical manipulative groups used this strateg, to solve equations correctl, at least 
once, whereas onl, half (7/13) of the control and one-thirds (4/13) of the virtual 
manipulative groups did. Likewise, on the fifth- and sixth-grade post-test, the 
ph,sical and virtual manipulative groups were more likel, to use mathematical 
operations taught during the intervention for solving equations correctl, than the 
control groups (Figure 9-9).
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Figure 9-8. Third- and fourth-grade percentage use of different strategies to 
solve equations correctly (out of 195) by instructional condition

Figure 9-9. Fifth- and sixth-grade percentage use of different strategies to solve 
equations correctly (out of 139) by instructional condition

26,5 23,1 24,2

4,4 4,6 6,5

50,0 55,4 51,6

19,1 16,9 17,7

0

20

40

60

80

100

Physical 
(N=68)

Virtual 
(N=65)

Control 
(N=62)

St
rs

te
gi

es
 U

se
d 

(%
)

Instructional Conditions

Mathematical 
Operations 

Reasoning

Trial-and-Error 
Subtitution

Other Strategies

Strategies

14,0 9,1 13,3

6,0 11,4
20,0

80,0 79,6 66,7

0

20

40

60

80

100

Physical 
(N=50)

Virtual 
(N=44)

Control 
(N=45)

St
ra

te
gi

es
 U

se
d 

(%
)

Instructional Conditions

Mathematical 
Operations 

Reasoning

Other Strategies

Strategies



177

Chapter 9

Students’ self-evaluations

To crosscheck, against their post-test performance, how students assessed 
their equations learning development, we also concurrently examined their 
self-evaluation. In terms of learning development, students’ self-evaluations 
generally support their post-test results. Three-fourths (10/13) of third- and 
fourth-graders in the physical manipulative groups considered themselves better 
at solving equations after the intervention, whereas less than half of the students 
in the other two groups (4/13 of virtual and 6/13 of control) considered that 
they had improved in this regard. Interestingly, although the virtual manipulative 
groups outperformed the control groups on the post-test, only one-third of them 
believed that their learning had improved, whereas the majority of them (9/13) 
considered that their learning had not improved. On the other hand, almost an 
equal portion of fifth and sixth graders across all three instructional conditions 
considered that their equations-solving performance had developed (6/12 of con-
trol, 7/12 of physical and 6/11 of virtual).

Figure 9-10. Percentage of students’ opinions on the influence of manipulatives 
on their learning by grade band across instructional conditions

Next, we analysed the students’ evaluation of the influence of manipula-
tives on their learning across instructional conditions and grade bands. Figure 
9-10 shows that the majority of students in both treatment groups of both grade 
bands (third and fourth grades: 11/13 of physical and 11/13 of virtual; fifth and 
sixth grades: 10/12 of physical and 6/11 of virtual) thought that the manipulatives 
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assisted them in learning equations. The results of the students’ evaluation corre-
spond to our findings from the post-tests and suggest that manipulatives assisted 
students in learning equations.

Teachers’ pre- and post-interviews
We analysed teachers’ pre- and post-interviews to ascertain their viewpoint on 
how different instructional conditions affected students’ learning of equations. 
After the class interventions, all teachers regarded their physical manipulative 
group lesson as the most successful. They reasoned that the physical manipula-
tive provided students with a concrete and tactile learning experience and also 
facilitated students’ individual and group languaging. In their opinion, when 
physically handling the manipulative, students concretely constructed concep-
tual understanding of: 1) equation equivalence through the balance scale; 2) 
constants and variables through their distinct representations (number cubes and 
pawns); and 3) performing the same operation on both sides of the equation 
through actual action of removing the same elements from both sides of the 
balance scale. Thus, the physical manipulative groups had a better understand-
ing of equation concepts compared to the other groups. They also believed that 
students in these groups would perform best on the post-test. Actually, during 
the pre-interviews, the fifth- and sixth-grade teachers regarded manipulatives 
as beneficial learning tools for younger students (who are likely to construct 
their understanding of new concepts through concrete experiences). Neverthe-
less, after the interventions, the sixth-grade teacher admitted that manipulatives 
could actually also assist older students (who are likely to have the capability for 
abstract thinking) in understanding more difficult concepts, such as equations. 
Moreover, the third- and sixth-grade teachers mentioned that learning how to 
use the physical manipulative did not take as much of their instructional time as 
they had expected. Rather, the physical manipulative was straight-forward and 
generally enabled students to learn and complete the exercise more rapidly than 
students in the two other groups. This finding agrees with Martin, Svihla, and 
Smith’s findings (2012, 1), but differs from Magruder’s (2012, 96).

While the physical manipulative was unanimously regarded as the most 
successful lesson, the teachers had mixed opinions as to which lesson should 
be ranked second. The third- and fourth-grade teachers considered their virtual 
manipulative lesson as the second best and their control lesson as the third best, 
whereas the fifth- and sixth-grade teachers were not confident about the second 
and third ranks. Both teachers mentioned that although even low-attaining stu-
dents in the virtual manipulative groups were able to arrive at the correct solu-
tions to equations during the lessons, they tended to only scroll and try different 
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Students’ self-evaluations
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assisted them in learning equations. The results of the students’ evaluation corre-
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values for the unknown until arriving at a correct solution rather than developing 
their understanding. Therefore, these students might not actuall, understand the 
equation concepts and would thus perform worse than the control groups on 
the post-test. Apparently, the teachers’ opinions regarding the students’ learning 
achievement correspond to our findings from students’ post-tests and self-eval-
uations. The physical manipulative seems to have had a positive influence on 
students in both grade bands, whereas the virtual manipulative had noticeable 
positive benefits only for third- and fourth-graders and appeared to function as 
an impediment to the development of fifth- and sixth-graders’ equation concepts 
understanding.

Class intervention observations
We analysed the class intervention observations to find empirical evidence for 
convergent anal,sis. According to the observations, students in all instructional 
groups of both grade bands were able to represent the equivalence of the equa-
tions in various forms, solve equations, and check their solutions b, themselves 
or with the assistance of their classmates or teachers. Nevertheless, the manipu-
lative groups tended to work more independentl,, with minimal assistance from 
the teachers compared with the control groups.

Additionall,, we found differences between the ph,sical and virtual ma-
nipulatives. The physical manipulative groups had no difficulty in learning how 
to use the manipulative to model, solve, and check equations. The, were more 
likel, to work independentl, as well as co-operativel,. When manipulating the 
ph,sical manipulative, students usuall, said aloud (talking to themselves and 
their classmates) what the, were doing or thinking. Consequentl,, the, seemed 
to develop their understanding of equations graduall,, through tactile, visual, 
and verbal languaging. Simultaneousl,, their classmates could also see and hear 
their mathematical thinking. Furthermore, the manipulative allowed the students 
to solve and check equations without strict procedure. 

In contrast, the virtual manipulative was less likel, to encourage verbal 
languaging and co-operative learning. Similar to previous research results 
(Mo,er-Packenham et al. 2013, 36), the virtual manipulative groups tended 
to work silentl, and individuall,, especiall, when each student had their own 
iPad. The, were more likel, to hold the iPad for themselves instead of sharing. 
Consistent with Magruder’s findings (2012, 101) and our teachers’ interviews, 
a number of students seemed to manipulate the virtual manipulative b, merel, 
scrolling and trying until arriving at the correct solutions. Moreover, the applet’s 
operational procedure appeared to be relatively complicated and inflexible. 
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Although students were able to model equations using the applet, several of 
them had difficulty in learning how to use it to solve and check equations. 
Consequently, some of them became confused and frustrated. Our findings 
from the class observations shows the benefits of the physical manipulative 
and demonstrates that the virtual manipulative functioned as a hindrance to 
the students’ conceptual understanding, verbal languaging, and co-operative 
learning.

Discussion
Taken together, our convergent analyses demonstrate that students in languag-
ing-based classrooms, across three instructional conditions, in both grade bands, 
learned to: 1) represent and translate equations into various forms (verbal and 
written, pictorial, and mathematical symbolic); 2) solve one-variable linear equa-
tions; and 3) check the solutions. These findings suggest that students in each 
instructional condition had developed their representational fluency, which in-
dicated their understanding of equation concepts (NRC 2001, 119). As stated in 
the earlier literature review, the key to learning of mathematical concepts resides 
in assisting students in linking concrete and abstract symbolic representations 
of the same mathematical concepts. In this study, it was the languaging-based 
instruction that assisted students in classes, with or without manipulatives, in 
learning equation concepts.

In addition to languaging-based instruction, both manipulatives appeared to 
facilitate students’ development of representational fluency and equation concepts 
understanding. Overall, both manipulative groups performed better than the 
control group on the post-tests, where no one had any access to manipulatives. This 
finding contradicts the claim, mentioned in previous studies, that students tend 
to over-rely on manipulatives without making connections to the mathematical 
concepts represented (Magruder 2012, 101; Uttal et al. 2013, 6). Furthermore, 
we found evidence that the physical manipulative-based instruction is superior 
to the two other instructional conditions for improving students understading of 
equation concepts. Students in the physical manipulative groups outperformed 
their classmates on the post-tests. Likewise, our findings from the students’ 
self-evaluations, the teachers’ interviews, and the classroom observations also 
reveal the positive impact of the physical manipulative on students’ conceptual 
understanding, languaging, and co-operative learning. These findings—on the 
superiority of the physical manipulative over the virtual manipulative—do 
not support the previous studies that reported that virtual manipulatives are as 
beneficial as physical manipulatives to mathematics learning (Moyer-Packenham 
et al. 2013, 37; Suh and Moyer 2007, 156). This contradictory result may be 
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because, in our study, a number of students manipulated the virtual manipulative 
in a rote procedural manner to get the correct solutions. Moreover, students were 
less likely to verbalise their mathematical thinking. These two factors may have 
negatively affected students’ understanding of equation concepts.

In summary, the evidence from this study suggests that when making a 
connection between various representations constructed through manipulatives 
and mathematical symbols of the same concept, manipulative-based instruction 
is more likely to promote students’ mathematical concepts understanding. This 
is consistent with previous research results (Suh and Moyer 2007; Teck 2013). 
Additionally, our findings support those of other studies in which manipulatives 
appear to assist students of any age (at any cognitive development level) in de-
veloping their understanding of new concepts (McNeil and Uttal 2009, 138).

The presented research results need to be interpreted with caution however, 
due to some of the inherent limitations—the most obvious of which being the 
nature of this research as an empirical study conducted in the real contexts of the 
classroom rather than a laboratory environment. However, the results of research 
conducted in an authentic teaching and learning context may have provided a 
better understanding of the real world compared with the findings of research 
carried out in a laboratory environment. Second, in spite of the teachers’ similar 
qualifications, their different backgrounds and experience as well as their free-
dom to adjust their lessons may have affected the research results. However, we 
believe that this had no critical influence on our findings because in each class-
room the same teacher taught the same content under all of the instructional con-
ditions. Third, teachers and students may have acted unusually when being ob-
served and video-recorded. Nonetheless, being in a familiar environment (one’s 
own classroom) would likely help them to act more naturally. Fourth, the expla-
nation on the post-test instructions and the encouragement provided during the 
tests may have had some influence on the students’ post-test performance. Still, 
the explanation and encouragement were, in fact, necessary for students to gain 
a toehold because the test items were distinctly different from normal school 
tests and some students became nervous about taking a test after one 45–minute 
lesson. Fifth, because there was no pre-test before the class interventions, one 
could argue that the post-test results may have been skewed by the differences in 
the students’ prior mathematics performance levels. However, each class teacher 
randomly assigned an equal number of students with different prior mathematics 
performance to each instructional group and so the concern regarding skewed 
post-test results could be ruled out. Lastly, when conducting cross-sectional case 
studies, a trade-off between breadth and depth of the study is an unavoidable 
issue. Due to our limited resources and time as well as the school’s constraints 
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(e.g. the number of students per class per teacher), the sample size was rather 
small and the duration of each class intervention was relatively short. As a re-
sult, it is difficult to extend these research findings to other educational contexts.

Conclusion and implications
Our research results highlight the benefits of manipulatives in classrooms for 
mathematical concepts understanding. These research findings not only provide 
implications for practice but also for policy-making and future research.

Regarding the question of whether manipulatives should be adopted into 
practice: our findings support the recommendations, mentioned in our literature 
review, regarding how to benefit from manipulatives; We recommend that ma-
nipulatives be used for facilitating students’ understanding of new mathematical 
concepts. Additionally, manipulatives should be used to assist students in devel-
oping their representational fluency (i.e. making a connection between concrete 
representations constructed through the manipulatives and mathematical sym-
bols of the to-be-learnt concepts) through languaging.

Two implications for policy can be drawn from the presented research re-
sults. Our first recommendation resonates with the mathematics instruction ob-
jectives of the Finnish National Core Curriculum for Basic Education (FNBE 
2015, 128, 235): mathematics curricula should encourage instruction utilising 
manipulatives in collaboration with languaging to enhance students’ representa-
tional fluency, which leads to their understanding of mathematical concepts. Our 
second recommendation is that teacher training should prepare pre- and in-ser-
vice teachers to effectively benefit from manipulatives.

Despite the fact that this research provides valuable insights into the ben-
efits of manipulatives in classrooms for equation concepts understanding, the 
limitations of this research make it difficult to generalise our findings to other 
classroom settings. Therefore, future studies should: investigate larger sample 
sizes, employ a longer period of class intervention, and add pre- and delay-tests 
to the research design. During the post-interviews, three out of four teachers 
mentioned that they plan to use both physical and virtual manipulatives to teach 
equations in the future. Therefore, it would be valuable to add another treatment 
group using physical and virtual manipulatives to further research on this top-
ic. Furthermore, to better understand how the mathematics classroom can fully 
benefit from manipulatives, future research should consider investigating the 
benefits of manipulatives for diverse learners, different educational levels, and 
other mathematics content.
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Abstract: Tangible technologies provide interactive links between the physical and digital worlds,
thereby merging the benefits of physical and virtual manipulatives. To explore the potentials of
tangible technologies for learning linear equations, a tangible manipulative (TM) was designed and
developed. A prototype of the initial TM was implemented and evaluated using mixed methods
(i.e., classroom interventions, paper-based tests, thinking aloud sessions, questionnaires, and interviews)
in real classroom settings. Six teachers, 24 primary school students, and 65 lower secondary school
students participated in the exploratory study. The quantitative and qualitative analysis revealed
that the initial TM supported student learning at various levels and had a positive impact on their
learning achievement. Moreover, its overall usability was also accepted. Some minor improvements
with regard to its pedagogy and usability could be implemented. These findings indicate that the
initial TM is likely to be beneficial for linear equation learning in pre-primary to lower secondary
schools and be usable in mathematics classrooms. Theoretical and practical implications are discussed.

Keywords: manipulatives; multimodality; tangible user interface; educational technology;
mathematics learning; linear equations; basic education

1. Introduction

Algorithmic skills have typically been the main focus of school mathematics [1,2]. Unfortunately,
mathematics teaching that focuses only on procedural skills usually results in learning to memorise
without understanding [2,3]. Linear equation solving, one of the important algebraic concepts,
has commonly been taught in terms of rules and procedures rather than encouraging an understanding
of the concepts leading to those rules [2,4]. Research has indicated that rule-based rote learning leads
to misconceptions, inability to transfer procedures to other contexts, and forgetting rules [5].

Physical manipulatives (i.e., concrete objects that enable students to exploremathematical concepts
through various senses) have traditionally been used to promote students’ understanding of abstract
mathematical concepts. Physical manipulatives have various benefits, including representing an
abstract concept [6], encouraging physical action to facilitate learning [7], enhancing memory through
physical action [8], and supporting embodied cognition [9]. Nevertheless, students who learn through
physical manipulatives may not be able to connect the concrete representation with the symbolic
representation of the same concept [10]. Over the last two decades, the use of virtual manipulatives
(i.e., interactive pictorial representations of virtual objects on computers or tablets) has gained
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1. Introduction

Algorithmic skills have typically been the main focus of school mathematics [1,2]. Unfortunately,
mathematics teaching that focuses only on procedural skills usually results in learning to memorise
without understanding [2,3]. Linear equation solving, one of the important algebraic concepts,
has commonly been taught in terms of rules and procedures rather than encouraging an understanding
of the concepts leading to those rules [2,4]. Research has indicated that rule-based rote learning leads
to misconceptions, inability to transfer procedures to other contexts, and forgetting rules [5].

Physical manipulatives (i.e., concrete objects that enable students to exploremathematical concepts
through various senses) have traditionally been used to promote students’ understanding of abstract
mathematical concepts. Physical manipulatives have various benefits, including representing an
abstract concept [6], encouraging physical action to facilitate learning [7], enhancing memory through
physical action [8], and supporting embodied cognition [9]. Nevertheless, students who learn through
physical manipulatives may not be able to connect the concrete representation with the symbolic
representation of the same concept [10]. Over the last two decades, the use of virtual manipulatives
(i.e., interactive pictorial representations of virtual objects on computers or tablets) has gained
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attention in mathematics education. Different advantages of virtual manipulatives include providing
the simultaneous link between pictorial and symbolic representations, step-by-step scaffolding,
immediate feedback [11], and drawing learners’ attention to the to-be-learned mathematics [12].
However, there has been concern about the disadvantage of replacing rich physical interactions
using physical manipulatives with clicking a mouse or tapping and scrolling a touch screen when
manipulating virtual manipulatives [13,14]. A body of research signals that the combination of physical
and virtual manipulatives may facilitate students’ mathematics learning [11,12,15].

Recently, tangible manipulatives (TMs, i.e., a combination of physical and digital manipulatives)
have been introduced. TMs offer a new form of interaction by allowing learners to naturally manipulate
physical objects, which then provide output, typically through a graphical user interface (GUI). Thus,
TMs may be the possible solution to the disagreement regarding the advantages and disadvantages of
physical and virtual manipulatives.

To date, a considerable amount of research has focused on usability and engagement of TMs
from the learners’ perspective, thereby leaving the contribution of TMs to learning as well as teachers’
perspective on TMs under-researched [16]. Additionally, the available manipulatives for equation
solving are usually either physical (e.g., algebra tiles and Hands-On Equations [17]) or virtual (e.g.,
the Hands-On Equations applet [18] and virtual algebra balance scale applet on the National Library
of Virtual Manipulatives website [19]). Recently, the Multimodal Algebra Learning (MAL) project [20]
has attempted to develop virtual and tangible manipulatives for solving equations. Nevertheless,
the system primarily focuses on pedagogy.

To holistically explore the potentials of TMs in mathematics classrooms, we proposed an initial
TM for primary students to learn about linear equations. We developed the TM by taking pedagogy,
usability, and practicality into account to ensure its successful classroom adoption. Then, we conducted
a mixed-methods study in real classrooms in Finland to evaluate a prototype of the TM based on
students’ and teachers’ feedback. This paper reports the design, development, and implementation of
the initial TM as well as the classroom evaluation of its prototype. The classroom evaluation addresses
the following research questions in particular:

1. What are the impacts of the proposed manipulative on students’ learning achievement?
2. Does the proposed manipulative promote students’ learning in terms of understanding

equation-solving concepts, languaging, and learning through discovery and social interaction,
and, if so, then how?

3. How do students perceive the usability of the proposed manipulative, and how well can they
use it?

In the following section, we highlight the theoretical background of the study. Then, we discuss
the design, development, and implementation of the initial TM. Next, we describe the classroom
evaluation of the TM prototype. After that, we report and discuss our findings, reflect on the limitations
of this research, and provide suggestions for future development and research. Finally, we conclude
our study and explore its implications.

2. Theoretical Background

2.1. Equation Solving

Mastering equation solving is often challenging for students, e.g., [2,21–23]. To learn how to solve
equations, students need to understand several concepts. Understanding mathematical equivalence
includes an understanding of an equal sign as a relational symbol, of each side of the equation as an
entity, and of various interchangeable ways of representing numbers and expressions [21]. An equation
is composed of different terms (i.e., constants, variables, and coefficients). Thus, understanding the
meaning of the mathematical symbols that represent those terms is essential [22]. Moreover, it is
important to understand that the purpose of equation solving is to find the values of the variables that
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make the equation true [23] or to show that the equation has no real number-value solution. All these
concepts informed our TM design for promoting students’ understanding of equation solving.

2.2. Multimodal Mathematics

Mathematics is inherently multimodal. In mathematics, natural language (i.e., verbal and written),
mathematical symbols (i.e., numbers and symbols), and visual representations (e.g., pictures, graphs,
and diagrams) are typically used for meaningmaking. While the three resources intertwine to construct
mathematical meanings as a whole, each resource has its own unique task [24–26]. According to
O’Halloran [25,27], language assists in reasoning about the mathematical process and its results,
symbols describe mathematical relations, and visuals present images to concretise mathematical
relations. Thus, multimodality (i.e., multiple ways of communication) plays an important role in
mathematics learning. Students are required to be able to interpret and make use of all these resources
simultaneously [26]. This meaning-making process contributes to students’ mathematical thinking
and knowledge construction [26,28–30].

According to Bruner [6], a person constructs their own knowledge through physical actions,
images, and abstract symbols. He proposed three modes of representation: (1) enactive representation
(e.g., direct manipulation of objects), (2) iconic representation (e.g., pictures and graphics),
and (3) symbolic representation (e.g., language and mathematical symbols) [6]. The Multimodal
languaging model (referred to as languaging in this paper) was informed by Bruner’s three modes
of representation. Languaging can be defined as one’s expression of their own mathematical
thinking through four languages: natural, mathematical symbolic, pictorial, and tactile (e.g.,
manipulative manipulation) [30,31]. The use of manipulatives as mathematical representations is also
recommended, for example, by Lesh et al. [32]. Using different languages to solve a mathematical
problem or present the solution to a mathematical problem assists a student and their peer group in
organising their own mathematical thinking and eventually gaining a better understanding of that
mathematical concept or procedure [30,31,33].

Representational fluency—the ability to understand and construct multiple external
representations of the same mathematical content and the ability to connect different modes
of representation with each other—plays an important role in mathematics learning [32,34,35].
Research has indicated that representational fluency can contribute to mathematical knowledge
and understanding [2,11,36]. Thus, representational fluency provides support for the languaging
model. Languaging was used to guide our TM design and study (e.g., what modes of representations
the TM should provide and how it should be used in classrooms) to ensure that the TM benefits
students’ equation learning.

2.3. Tangible Technologies for Learning

Tangible user interfaces (TUIs) emerged in the 1990s from Ishii and Ullmer’s [37] pioneering
work. TUIs enhance human–computer interaction by enabling users to physically operate (i.e., input)
digital information through the manipulation of physical objects, thereby seamlessly interlinking
the physical and digital world [38]. TUIs have been utilised in various application domains to date,
including education.

The application of TUIs for learning is underlined by the integrated advantages of physical
and virtual manipulatives. TUIs enable physical interaction with concrete objects, which provides
a sense of physicality and embodiment, allows for natural bodily interaction [38], and engages
multiple senses [39]. The multimodal interaction of TUIs enables mappings between physical
and digital representations (i.e., physical touch and gestures with pictorial, symbolic, and other
representations) [40] and thereby promotes knowledge transfer. TUIs allow parallel multi-user
interaction,which encourages co-located anddistanced collaborations [16,38,40].Additionally, TUIs also
provide immediate feedback; encourage independent exploration; promote facial, gestural, and verbal
communication [16]; allow accessibility to various learners; and motivate learning [39].
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attention in mathematics education. Different advantages of virtual manipulatives include providing
the simultaneous link between pictorial and symbolic representations, step-by-step scaffolding,
immediate feedback [11], and drawing learners’ attention to the to-be-learned mathematics [12].
However, there has been concern about the disadvantage of replacing rich physical interactions
using physical manipulatives with clicking a mouse or tapping and scrolling a touch screen when
manipulating virtual manipulatives [13,14]. A body of research signals that the combination of physical
and virtual manipulatives may facilitate students’ mathematics learning [11,12,15].

Recently, tangible manipulatives (TMs, i.e., a combination of physical and digital manipulatives)
have been introduced. TMs offer a new form of interaction by allowing learners to naturally manipulate
physical objects, which then provide output, typically through a graphical user interface (GUI). Thus,
TMs may be the possible solution to the disagreement regarding the advantages and disadvantages of
physical and virtual manipulatives.

To date, a considerable amount of research has focused on usability and engagement of TMs
from the learners’ perspective, thereby leaving the contribution of TMs to learning as well as teachers’
perspective on TMs under-researched [16]. Additionally, the available manipulatives for equation
solving are usually either physical (e.g., algebra tiles and Hands-On Equations [17]) or virtual (e.g.,
the Hands-On Equations applet [18] and virtual algebra balance scale applet on the National Library
of Virtual Manipulatives website [19]). Recently, the Multimodal Algebra Learning (MAL) project [20]
has attempted to develop virtual and tangible manipulatives for solving equations. Nevertheless,
the system primarily focuses on pedagogy.

To holistically explore the potentials of TMs in mathematics classrooms, we proposed an initial
TM for primary students to learn about linear equations. We developed the TM by taking pedagogy,
usability, and practicality into account to ensure its successful classroom adoption. Then, we conducted
a mixed-methods study in real classrooms in Finland to evaluate a prototype of the TM based on
students’ and teachers’ feedback. This paper reports the design, development, and implementation of
the initial TM as well as the classroom evaluation of its prototype. The classroom evaluation addresses
the following research questions in particular:

1. What are the impacts of the proposed manipulative on students’ learning achievement?
2. Does the proposed manipulative promote students’ learning in terms of understanding

equation-solving concepts, languaging, and learning through discovery and social interaction,
and, if so, then how?

3. How do students perceive the usability of the proposed manipulative, and how well can they
use it?

In the following section, we highlight the theoretical background of the study. Then, we discuss
the design, development, and implementation of the initial TM. Next, we describe the classroom
evaluation of the TM prototype. After that, we report and discuss our findings, reflect on the limitations
of this research, and provide suggestions for future development and research. Finally, we conclude
our study and explore its implications.

2. Theoretical Background

2.1. Equation Solving

Mastering equation solving is often challenging for students, e.g., [2,21–23]. To learn how to solve
equations, students need to understand several concepts. Understanding mathematical equivalence
includes an understanding of an equal sign as a relational symbol, of each side of the equation as an
entity, and of various interchangeable ways of representing numbers and expressions [21]. An equation
is composed of different terms (i.e., constants, variables, and coefficients). Thus, understanding the
meaning of the mathematical symbols that represent those terms is essential [22]. Moreover, it is
important to understand that the purpose of equation solving is to find the values of the variables that
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make the equation true [23] or to show that the equation has no real number-value solution. All these
concepts informed our TM design for promoting students’ understanding of equation solving.

2.2. Multimodal Mathematics

Mathematics is inherently multimodal. In mathematics, natural language (i.e., verbal and written),
mathematical symbols (i.e., numbers and symbols), and visual representations (e.g., pictures, graphs,
and diagrams) are typically used for meaningmaking. While the three resources intertwine to construct
mathematical meanings as a whole, each resource has its own unique task [24–26]. According to
O’Halloran [25,27], language assists in reasoning about the mathematical process and its results,
symbols describe mathematical relations, and visuals present images to concretise mathematical
relations. Thus, multimodality (i.e., multiple ways of communication) plays an important role in
mathematics learning. Students are required to be able to interpret and make use of all these resources
simultaneously [26]. This meaning-making process contributes to students’ mathematical thinking
and knowledge construction [26,28–30].

According to Bruner [6], a person constructs their own knowledge through physical actions,
images, and abstract symbols. He proposed three modes of representation: (1) enactive representation
(e.g., direct manipulation of objects), (2) iconic representation (e.g., pictures and graphics),
and (3) symbolic representation (e.g., language and mathematical symbols) [6]. The Multimodal
languaging model (referred to as languaging in this paper) was informed by Bruner’s three modes
of representation. Languaging can be defined as one’s expression of their own mathematical
thinking through four languages: natural, mathematical symbolic, pictorial, and tactile (e.g.,
manipulative manipulation) [30,31]. The use of manipulatives as mathematical representations is also
recommended, for example, by Lesh et al. [32]. Using different languages to solve a mathematical
problem or present the solution to a mathematical problem assists a student and their peer group in
organising their own mathematical thinking and eventually gaining a better understanding of that
mathematical concept or procedure [30,31,33].

Representational fluency—the ability to understand and construct multiple external
representations of the same mathematical content and the ability to connect different modes
of representation with each other—plays an important role in mathematics learning [32,34,35].
Research has indicated that representational fluency can contribute to mathematical knowledge
and understanding [2,11,36]. Thus, representational fluency provides support for the languaging
model. Languaging was used to guide our TM design and study (e.g., what modes of representations
the TM should provide and how it should be used in classrooms) to ensure that the TM benefits
students’ equation learning.

2.3. Tangible Technologies for Learning

Tangible user interfaces (TUIs) emerged in the 1990s from Ishii and Ullmer’s [37] pioneering
work. TUIs enhance human–computer interaction by enabling users to physically operate (i.e., input)
digital information through the manipulation of physical objects, thereby seamlessly interlinking
the physical and digital world [38]. TUIs have been utilised in various application domains to date,
including education.

The application of TUIs for learning is underlined by the integrated advantages of physical
and virtual manipulatives. TUIs enable physical interaction with concrete objects, which provides
a sense of physicality and embodiment, allows for natural bodily interaction [38], and engages
multiple senses [39]. The multimodal interaction of TUIs enables mappings between physical
and digital representations (i.e., physical touch and gestures with pictorial, symbolic, and other
representations) [40] and thereby promotes knowledge transfer. TUIs allow parallel multi-user
interaction,which encourages co-located anddistanced collaborations [16,38,40].Additionally, TUIs also
provide immediate feedback; encourage independent exploration; promote facial, gestural, and verbal
communication [16]; allow accessibility to various learners; and motivate learning [39].
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The embedded embodied cognition perspectives provide support regarding the potential benefits
of learning with TMs. From the embedded cognition viewpoint, manipulatives may work as students’
external working memory, thereby allowing them to allocate their cognitive resources to learning
during their interaction with manipulatives (i.e., online cognition) [9,15]. Moreover, the theory of
Physically Distributed Learning (PDL) [7] suggests that a physical environment (e.g., manipulatives)
that enables students’ exploration can benefit their learning. From the embodied cognition viewpoint,
students’ previous sensorimotor experiences of interacting with manipulatives (i.e., offline cognition)
may support their transfer of learning [9,41]. Gradually, students’ dependence on manipulatives often
decreases, while their internal cognition increases [9].

Studies have shown how TUIs have enhanced mathematics learning in different content
domains and various educational levels. For example, number composition for primary school [14],
fractions for primary school [42], geometry for pre-primary and primary school [43,44], trigonometry for
undergraduate school [45], and algebra for lower and upper secondary school [20] have been studied.
The potential benefits of TMs were used to inform our TM design and to guide our result analysis
and discussion.

2.4. Learning through Discovery and Social Interaction

The use of manipulatives as hands-on learning tools for constructing abstract mathematical
concepts has been recommended based on the work of Piaget, Bruner, and Montessori among the
early theorists [8,10]. However, simply using manipulatives does not automatically contribute to
mathematics learning [13,46,47]. Meaningful learning using manipulatives requires students to think
and reflect on what they have experienced [47] and discuss their discoveries with others [46].

Discovery learning, proposed by Bruner [48], provides the theoretical foundations for the use
of manipulatives to support mathematics learning through first-hand experience and reflection.
Discovery learning is a process in which learners interact with the environment (e.g., manipulatives)
and actively construct their own knowledge through inductive reasoning [48]. During discovery
learning, learners are not left unaided but rather are assisted through guidance or scaffolding [49].
Previous studies [11,45] found that educational technology (e.g., virtual manipulatives and TMs) can
be used to provide learners with first-hand experiences and guide or scaffold their inductive reasoning
process during discovery learning [49].

According to Vygotsky [50], learning is a collaborative process in which learners co-construct
knowledge through social interaction within the zone of proximal development. Thus, learners should
work in small groups that have heterogeneous members [51] and should be encouraged to share and
listen to one another’s thoughts [52,53]. From the cognitive perspective, explaining the material to
peers allows learners to retain that information in their memory and relate it to prior information stored
in their memory [53]. Therefore, peer tutoring can benefit both the tutor and the tutee [54]. Hence,
learning through social interaction not only supports languaging in mathematics classrooms [30] but
also promotes meaningful learning with manipulatives (cf. discovery learning) [36,43,45]. The design
of our TM and its pedagogic utilisation in classrooms was built on social constructivism, e.g., [55],
particularly learning through discovery and social interaction, to ensure that the TM benefits students’
mathematics learning.

2.5. The Finnish National Core Curriculum for Basic Education (NCC) 2014

The current FinnishNational Core Curriculum (NCC) for Basic Education [56] has placed emphasis
on teaching and learning for understandingmathematical concepts. Equation solving has been included
in the NCC [56] as one of the key areas of mathematical content for Grades 3–9. Student of Grades 3–6
should be introduced to the concept of the unknown as well as be made to examine and solve linear
equations through reasoning and experimentation (i.e., trial-and-error substitution of values for the
unknown). Students of Grades 7–9 should be able to form and solve linear equations algebraically.
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Multimodality and languaging have been incorporated into mathematics instruction in the
NCC [56]. Students are encouraged to use concrete tools, spoken and written natural language,
and drawings to present their own conclusions and solutions to others [56]. Thus, students should
be provided with the opportunity to make mathematical meaning in different ways. For example,
instead of only doing exercises by writing mathematical symbols on a worksheet, they can also do
similar exercises by drawing, using manipulatives, and/or having discussions with peers.

The NCC [56] has emphasised learning through exploration and discovery, collaboration and
social interaction skills, and the use of information and communication technology to enhance learning.
Additionally, the differentiation of instruction based on students’ personal needs and developmental
differences has been highlighted to support their diversity (i.e., personal needs and developmental
differences) [56]. Our TM and how it was to be used in classroomswere designed to align with the NCC.
Later, its prototype was tested in real Finnish classrooms to evaluate whether the design conforms
with the NCC.

3. Design, Development, and Implementation of the X-is Tangible Manipulative (TM)

3.1. Design Objectives and Principles

X-is (‘X is equal to’) is an initial TM designed and developed as a learning tool for primary
school students to learn the concepts of linear equation solving. For this purpose, a set of design
principles (DPs) was established based on the theoretical background (Section 2) as well as the literature
review and empirical results derived from our initial research [57] and design concept evaluation [58].
Previously, we conducted research in primary schools to evaluate existing manipulatives [57] and our
manipulative design concepts [58] in terms of their practicality.

DP1. Promote understanding of equation solving: Amanipulative should assist students in learning
equation solving by concretising the concepts ofmathematical equivalence [21], different terms
in an equation [22], and equation solving [23].

DP2. Be in agreement with school curriculum: Finnish teachers of basic education plan their teaching
based on the Finnish NCC. Therefore, a manipulative should conform to the NCC [56] to
ensure its use in classrooms.

DP3. Support multimodality and languaging: Amanipulative should help students to link multiple
representations of equation concepts and to express their mathematical thinking through
various modes of meaning making [30,31].

DP4. Enable learning through discovery: Amanipulative should enable students to learn through their
first-hand experience and provide them with appropriate guidance and scaffolding [48,49].

DP5. Assist social interaction: A manipulative should encourage students to co-construct their
knowledge through peer interaction while suppressing silent and individual activities [50–53].

DP6. Be suitable for diverse learners: A manipulative should provide differentiation of instruction
based on students’ diversity [56] by assisting students who are at different achievement levels
in learning equation solving.

DP7. Be easy to use: An easy-to-use manipulative is more likely to be adopted in classrooms.
According to our empirical research [57,58], the ease of use of a TM can be optimised through
the following:

DP7.1. Single point of interaction: The input and output of a TM should occur at the same
point of interaction (i.e., a ‘co-located’ design [16]) to allow students to manipulate
physical objects and look at a GUI without moving their sight back and forth.

DP7.2. Use of base-10 blocks as physical objects: Base-10 blocks are widely used
manipulatives for learning of number sense, place value, and operation in various
countries, including Finland. All the schools that participated in our previous
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The embedded embodied cognition perspectives provide support regarding the potential benefits
of learning with TMs. From the embedded cognition viewpoint, manipulatives may work as students’
external working memory, thereby allowing them to allocate their cognitive resources to learning
during their interaction with manipulatives (i.e., online cognition) [9,15]. Moreover, the theory of
Physically Distributed Learning (PDL) [7] suggests that a physical environment (e.g., manipulatives)
that enables students’ exploration can benefit their learning. From the embodied cognition viewpoint,
students’ previous sensorimotor experiences of interacting with manipulatives (i.e., offline cognition)
may support their transfer of learning [9,41]. Gradually, students’ dependence on manipulatives often
decreases, while their internal cognition increases [9].

Studies have shown how TUIs have enhanced mathematics learning in different content
domains and various educational levels. For example, number composition for primary school [14],
fractions for primary school [42], geometry for pre-primary and primary school [43,44], trigonometry for
undergraduate school [45], and algebra for lower and upper secondary school [20] have been studied.
The potential benefits of TMs were used to inform our TM design and to guide our result analysis
and discussion.

2.4. Learning through Discovery and Social Interaction

The use of manipulatives as hands-on learning tools for constructing abstract mathematical
concepts has been recommended based on the work of Piaget, Bruner, and Montessori among the
early theorists [8,10]. However, simply using manipulatives does not automatically contribute to
mathematics learning [13,46,47]. Meaningful learning using manipulatives requires students to think
and reflect on what they have experienced [47] and discuss their discoveries with others [46].

Discovery learning, proposed by Bruner [48], provides the theoretical foundations for the use
of manipulatives to support mathematics learning through first-hand experience and reflection.
Discovery learning is a process in which learners interact with the environment (e.g., manipulatives)
and actively construct their own knowledge through inductive reasoning [48]. During discovery
learning, learners are not left unaided but rather are assisted through guidance or scaffolding [49].
Previous studies [11,45] found that educational technology (e.g., virtual manipulatives and TMs) can
be used to provide learners with first-hand experiences and guide or scaffold their inductive reasoning
process during discovery learning [49].

According to Vygotsky [50], learning is a collaborative process in which learners co-construct
knowledge through social interaction within the zone of proximal development. Thus, learners should
work in small groups that have heterogeneous members [51] and should be encouraged to share and
listen to one another’s thoughts [52,53]. From the cognitive perspective, explaining the material to
peers allows learners to retain that information in their memory and relate it to prior information stored
in their memory [53]. Therefore, peer tutoring can benefit both the tutor and the tutee [54]. Hence,
learning through social interaction not only supports languaging in mathematics classrooms [30] but
also promotes meaningful learning with manipulatives (cf. discovery learning) [36,43,45]. The design
of our TM and its pedagogic utilisation in classrooms was built on social constructivism, e.g., [55],
particularly learning through discovery and social interaction, to ensure that the TM benefits students’
mathematics learning.

2.5. The Finnish National Core Curriculum for Basic Education (NCC) 2014

The current FinnishNational Core Curriculum (NCC) for Basic Education [56] has placed emphasis
on teaching and learning for understandingmathematical concepts. Equation solving has been included
in the NCC [56] as one of the key areas of mathematical content for Grades 3–9. Student of Grades 3–6
should be introduced to the concept of the unknown as well as be made to examine and solve linear
equations through reasoning and experimentation (i.e., trial-and-error substitution of values for the
unknown). Students of Grades 7–9 should be able to form and solve linear equations algebraically.
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Multimodality and languaging have been incorporated into mathematics instruction in the
NCC [56]. Students are encouraged to use concrete tools, spoken and written natural language,
and drawings to present their own conclusions and solutions to others [56]. Thus, students should
be provided with the opportunity to make mathematical meaning in different ways. For example,
instead of only doing exercises by writing mathematical symbols on a worksheet, they can also do
similar exercises by drawing, using manipulatives, and/or having discussions with peers.

The NCC [56] has emphasised learning through exploration and discovery, collaboration and
social interaction skills, and the use of information and communication technology to enhance learning.
Additionally, the differentiation of instruction based on students’ personal needs and developmental
differences has been highlighted to support their diversity (i.e., personal needs and developmental
differences) [56]. Our TM and how it was to be used in classroomswere designed to align with the NCC.
Later, its prototype was tested in real Finnish classrooms to evaluate whether the design conforms
with the NCC.

3. Design, Development, and Implementation of the X-is Tangible Manipulative (TM)

3.1. Design Objectives and Principles

X-is (‘X is equal to’) is an initial TM designed and developed as a learning tool for primary
school students to learn the concepts of linear equation solving. For this purpose, a set of design
principles (DPs) was established based on the theoretical background (Section 2) as well as the literature
review and empirical results derived from our initial research [57] and design concept evaluation [58].
Previously, we conducted research in primary schools to evaluate existing manipulatives [57] and our
manipulative design concepts [58] in terms of their practicality.

DP1. Promote understanding of equation solving: Amanipulative should assist students in learning
equation solving by concretising the concepts ofmathematical equivalence [21], different terms
in an equation [22], and equation solving [23].

DP2. Be in agreement with school curriculum: Finnish teachers of basic education plan their teaching
based on the Finnish NCC. Therefore, a manipulative should conform to the NCC [56] to
ensure its use in classrooms.

DP3. Support multimodality and languaging: Amanipulative should help students to link multiple
representations of equation concepts and to express their mathematical thinking through
various modes of meaning making [30,31].

DP4. Enable learning through discovery: Amanipulative should enable students to learn through their
first-hand experience and provide them with appropriate guidance and scaffolding [48,49].

DP5. Assist social interaction: A manipulative should encourage students to co-construct their
knowledge through peer interaction while suppressing silent and individual activities [50–53].

DP6. Be suitable for diverse learners: A manipulative should provide differentiation of instruction
based on students’ diversity [56] by assisting students who are at different achievement levels
in learning equation solving.

DP7. Be easy to use: An easy-to-use manipulative is more likely to be adopted in classrooms.
According to our empirical research [57,58], the ease of use of a TM can be optimised through
the following:

DP7.1. Single point of interaction: The input and output of a TM should occur at the same
point of interaction (i.e., a ‘co-located’ design [16]) to allow students to manipulate
physical objects and look at a GUI without moving their sight back and forth.

DP7.2. Use of base-10 blocks as physical objects: Base-10 blocks are widely used
manipulatives for learning of number sense, place value, and operation in various
countries, including Finland. All the schools that participated in our previous
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studies [57,58] were familiar with the base-10 system. Thus, it can be conveniently
used as physical manipulative objects to reduce students’ cognitive friction [59].

DP7.3. Straightforwarduser interface (UI):A simpleUI enables teachers and students touse it
with ease. Consequently, it saves time spent on its utilisation and prevents frustration.

DP8. Be feasible for classroom and school practice: A manipulative design that takes the following
factors related to classroom and school practice into account is more likely to be adopted and
used in classrooms:

DP8.1. Affordability: Our empirical research [57,58] and previous studies [60–62] have
revealed that schools’ tight budgets have a highly negative impact on the acquisition
of manipulatives. Therefore, an affordable manipulative is more likely to be acquired
under this financial pressure.

DP8.2. Practicality and convenience: According to our research [57,58] and that of
others [60–62], time constraints, manipulative preparation and organisation issues,
and limited storage space are among the possible hindrances to manipulative
acquisition and utilisation. Based on our concept evaluation [58], the following
properties can increase the practicality and convenience of manipulatives:

• A straightforward manipulative requires less time and effort spent on
preparation, instruction, operation, and clean-up.

• A portable manipulative can be easily circulated in the classroom and around
the school.

• A proper size and sensible number of parts allows for easy storage and prevents
pieces from becoming lost or mixed up.

• A manipulative should be compatible with Android tablets or iPads due to
(1) the increasing number of these devices in Finnish schools as a result of
the digitalisation of learning environments that is encouraged by the current
NCC [56] and (2) the growing number of Finnish teachers and students who
have these devices.

DP8.3. Durability: According to our concept evaluation [58] and previous research [61],
teachers are concerned that manipulatives could get brokenwhen used in classrooms.
The durability of manipulatives increases when there are no fragile or moving parts.

DP8.4. Utility: Our concept evaluation [58] has revealed that high utility is one of the
teachers’ criteria for acquiring manipulatives. A manipulative that can be used for
different grade levels or content areas is preferable. Its compatibility with schools’
existing infrastructure and equipment is also important.

X-is was developed with the goal of meeting the above-mentioned design principles to ensure its
success in classrooms. Sections 3.2–3.4 present the X-is system and the design principles that guided
its design.

3.2. The Implemented Architecture

X-is is comprisedof twoparts: physical objects and a tablet application (DP8.2, 8.4). The application
working prototype was developed from 2018–2019 by a team of undergraduate and graduate students
and their supervisor at the Faculty of Information Technology and Communication Sciences in close
cooperation with the first author.

Our current solution is rather complicated in terms of components and set-up. The reasons for
this are clarified in this section, while the associated limitations and possibilities for improvement are
discussed in Section 5.4. The input interactions with the tablet application occur though the placement
and removal of physical objects (Figure 1i) on a tablet screen (Figure 1ii) that functions as an external
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display of a computer running the application (Figure 1iii), which was developed using the Unity
development platform. The free software Spacedesk [63] was used to enable a wireless video and
audio connection (Figure 1iv) between the computer and the tablet. An external USB web camera
that supports a 720 p resolution (Figure 1v) is connected to the computer and positioned using a
tripod (Figure 1vi) so that the physical objects can be seen on the tablet screen. Image recognition
algorithms making use of OpenCV for Unity Library [64] use the web camera image to detect the
objects’ positions and their amounts. This detection is based on distinction of the objects’ sizes and
colours. According to the information derived by the recognition algorithms, the computer provides
visual and audio outputs to the tablet.
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The original conceptualisation involved the use of only an Android tablet with a minimum display
size of 10 inches, which is large enough to enable two students to work at the same time (DP 5) and to
place physical objects on the screen, combined with a web camera. However, during development,
the running platform was changed to Windows 10 64-bit due to an issue with external devices running
on Android. For an external web camera to work directly with an Android tablet, it must comply with
a specification for external image devices. Android then recognises those devices and make them
available to apps through its internal application programming interface (API), which is different on
every version of Android and may break compatibility. However, OpenCV for the Unity Library was
not able to access external image devices with the Android API used during the development period.
Thus, a computer that runs Microsoft Windows or macOS and is able to connect the camera to the
Unity Library was needed. In that fashion, an iPad running Spacedesk Software could also be used
as a tablet because it works as an output device (i.e., secondary machine) and the actual processing
happens in the computer (i.e., primary machine).

Another alternative set-up is to run the application directly on a tablet with a Windows 10
64-bit system, which is then connected to an external web camera (Figure 2). This would be more
straightforward for teachers (DP 8.2). However, we did not have access to a tablet running Windows
during our research.
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studies [57,58] were familiar with the base-10 system. Thus, it can be conveniently
used as physical manipulative objects to reduce students’ cognitive friction [59].

DP7.3. Straightforwarduser interface (UI):A simpleUI enables teachers and students touse it
with ease. Consequently, it saves time spent on its utilisation and prevents frustration.

DP8. Be feasible for classroom and school practice: A manipulative design that takes the following
factors related to classroom and school practice into account is more likely to be adopted and
used in classrooms:

DP8.1. Affordability: Our empirical research [57,58] and previous studies [60–62] have
revealed that schools’ tight budgets have a highly negative impact on the acquisition
of manipulatives. Therefore, an affordable manipulative is more likely to be acquired
under this financial pressure.

DP8.2. Practicality and convenience: According to our research [57,58] and that of
others [60–62], time constraints, manipulative preparation and organisation issues,
and limited storage space are among the possible hindrances to manipulative
acquisition and utilisation. Based on our concept evaluation [58], the following
properties can increase the practicality and convenience of manipulatives:

• A straightforward manipulative requires less time and effort spent on
preparation, instruction, operation, and clean-up.

• A portable manipulative can be easily circulated in the classroom and around
the school.

• A proper size and sensible number of parts allows for easy storage and prevents
pieces from becoming lost or mixed up.

• A manipulative should be compatible with Android tablets or iPads due to
(1) the increasing number of these devices in Finnish schools as a result of
the digitalisation of learning environments that is encouraged by the current
NCC [56] and (2) the growing number of Finnish teachers and students who
have these devices.

DP8.3. Durability: According to our concept evaluation [58] and previous research [61],
teachers are concerned that manipulatives could get brokenwhen used in classrooms.
The durability of manipulatives increases when there are no fragile or moving parts.

DP8.4. Utility: Our concept evaluation [58] has revealed that high utility is one of the
teachers’ criteria for acquiring manipulatives. A manipulative that can be used for
different grade levels or content areas is preferable. Its compatibility with schools’
existing infrastructure and equipment is also important.

X-is was developed with the goal of meeting the above-mentioned design principles to ensure its
success in classrooms. Sections 3.2–3.4 present the X-is system and the design principles that guided
its design.

3.2. The Implemented Architecture

X-is is comprisedof twoparts: physical objects and a tablet application (DP8.2, 8.4). The application
working prototype was developed from 2018–2019 by a team of undergraduate and graduate students
and their supervisor at the Faculty of Information Technology and Communication Sciences in close
cooperation with the first author.

Our current solution is rather complicated in terms of components and set-up. The reasons for
this are clarified in this section, while the associated limitations and possibilities for improvement are
discussed in Section 5.4. The input interactions with the tablet application occur though the placement
and removal of physical objects (Figure 1i) on a tablet screen (Figure 1ii) that functions as an external
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display of a computer running the application (Figure 1iii), which was developed using the Unity
development platform. The free software Spacedesk [63] was used to enable a wireless video and
audio connection (Figure 1iv) between the computer and the tablet. An external USB web camera
that supports a 720 p resolution (Figure 1v) is connected to the computer and positioned using a
tripod (Figure 1vi) so that the physical objects can be seen on the tablet screen. Image recognition
algorithms making use of OpenCV for Unity Library [64] use the web camera image to detect the
objects’ positions and their amounts. This detection is based on distinction of the objects’ sizes and
colours. According to the information derived by the recognition algorithms, the computer provides
visual and audio outputs to the tablet.
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Figure 1. Architecture and components of X-is. (i) Placement of physical objects; (ii) Tablet screen;
(iii) Computer; (iv) Wireless connection; (v) Web camera; (vi) Tripod.

The original conceptualisation involved the use of only an Android tablet with a minimum display
size of 10 inches, which is large enough to enable two students to work at the same time (DP 5) and to
place physical objects on the screen, combined with a web camera. However, during development,
the running platform was changed to Windows 10 64-bit due to an issue with external devices running
on Android. For an external web camera to work directly with an Android tablet, it must comply with
a specification for external image devices. Android then recognises those devices and make them
available to apps through its internal application programming interface (API), which is different on
every version of Android and may break compatibility. However, OpenCV for the Unity Library was
not able to access external image devices with the Android API used during the development period.
Thus, a computer that runs Microsoft Windows or macOS and is able to connect the camera to the
Unity Library was needed. In that fashion, an iPad running Spacedesk Software could also be used
as a tablet because it works as an output device (i.e., secondary machine) and the actual processing
happens in the computer (i.e., primary machine).

Another alternative set-up is to run the application directly on a tablet with a Windows 10
64-bit system, which is then connected to an external web camera (Figure 2). This would be more
straightforward for teachers (DP 8.2). However, we did not have access to a tablet running Windows
during our research.
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3.3. Object Tracking Alternatives

During development, various possibilities for object tracking were considered to determine the
best balance between our target design principles and technological constraints. The initial design
approach was to directly detect objects (i.e., types, amounts, and positions) on the tablet touch screen
without requiring an external camera. This solution would not only enable seamless and direct
interaction but also increase the product portability and practicality as well as decrease error factors.
However, implementation proved to be unfeasible due to the limitations of the technology currently
employed in touch screens. First, the vast majority of commercial touch screens currently available
use projected capacitive sensing technology [65]. This technology can detect touch by capacitance
variations in the screen surface, which occur, for example, with human finger contact but would not
sense our plastic objects without conductive markers attached to them. Furthermore, it is not possible
for the touch screens to distinguish features such as colour or size through touch. Second, the screen
touch controller is optimised for finger contact and uses techniques such as ‘grip suppression’ and
‘palm rejection’ to filter out noise and undesired touches [66]. In our case, these would probably disable
detection of stationary objects, limit the number of detectable objects, or merge them incorrectly as an
adaptation to large fingertips.

Other tracking techniques—suchasmagnetic sensing (e.g.,GaussSense [67]), near-fieldcommunication
(e.g., Nintendo Amiibo [68]), and smart objects (e.g., MAL-Smart tiles [69])—would at least require
embedding magnets, tags, or circuit boards to detectable objects. Embedment would be challenging
in our case because a base-10 unit—our smallest object—is a 1 cm cube. These techniques would also
increase the cost and fragility of our manipulative. Moreover, they typically require custom hardware for
a specific purpose, thereby limiting utility. Neither optical tabletop systems (e.g., tanGible Augmented
INteraction for Edutainment (GAINE) [70]) nor mixed reality tabletop systems (e.g., Augmented Reality
(AR) enhanced tabletop system [44]) were possible because these typically require a large amount of
stationary installation (e.g., computer, camera, projector, and screen) beneath or over the tabletop. Thus,
tabletop systems are neither portable nor affordable. Another possibility was a vision-based tracking
mixed reality system, where a mirror is placed in front of a tablet camera and enables the system to
detect objects on a flat surface in front of the tablet (e.g., Ceibal Tangible (CETA) [14]). This system is
inexpensive, portable, and would be able to detect our objects. However, its TUI input happens in
front of a tablet, while its GUI output is displayed on a tablet screen (i.e., a ‘discrete’ design [16]). Thus,
it does not allow for a single point of interaction, which is one of our most important design principles.

All in all, our selected object tracking solution enables the application system to meet many of
our target principles (DP 7.1, 8.1–8.4). However, practicality and convenience are somewhat limited
compared to the initial design approach.
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3.4. Features and Interactions

X-is uses two types of physical objects (Figure 3a,b)—base-10 blocks representing constants
(DP 7.2) and X-Boxes, specially designed for X-is, representing unknowns—for its input to assist
students in recognising the distinction between different terms in an equation (DP 1). The application
contains exercises divided into two levels for primary students in different grades (DP 8.4) to learn the
concepts of linear equation solving using different strategies aligned with the Finnish NCC (DP 2).
The goal of Level 1 is to solve equations by substituting values for the unknown so that both sides of
an equation are equal (Video S1). The goal of Level 2 is to isolate a single unknown on one side of
an equation and the constants on the other side by subtracting the same quantity of constants and
unknowns from both sides of an equation (Video S2). This algebraic strategy was chosen because of
its emphasis on the equivalence principle (DP 1). The balance model is used as a didactic model to
assist students’ understanding of linear equation solving [23]. Either side of the scale represents either
side of the equation, while the movement of the scale (tilting or balance) represents the equality of the
mathematical expressions on either side of the equation.
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Each level starts with an introductory animation demonstrating how to model and solve an
equation using the specific strategies for that level (DP 4). After that, there are exercises with gradually
increasing difficulty. First, students have to model the given equation by placing base-10 blocks and
X-Boxes on either side of the scale on the tablet screen (Figures 4a and 5a). This task requires students to
translate the symbolic representation of the equation into a physical representation, thereby developing
their representational fluency. Then, they have to solve the equation (i.e., find the value of an X-Box)
by adding base-10 blocks to the X-Boxes to balance the scale in Level 1 (Figure 4b) or by removing
the same number of physical objects from both sides of the scale to maintain its balance in Level 2
(Figure 5b). Solving the equations by balancing the scale emphasises the equal sign as a relational
rather than operational symbol (DP 1).
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3.3. Object Tracking Alternatives

During development, various possibilities for object tracking were considered to determine the
best balance between our target design principles and technological constraints. The initial design
approach was to directly detect objects (i.e., types, amounts, and positions) on the tablet touch screen
without requiring an external camera. This solution would not only enable seamless and direct
interaction but also increase the product portability and practicality as well as decrease error factors.
However, implementation proved to be unfeasible due to the limitations of the technology currently
employed in touch screens. First, the vast majority of commercial touch screens currently available
use projected capacitive sensing technology [65]. This technology can detect touch by capacitance
variations in the screen surface, which occur, for example, with human finger contact but would not
sense our plastic objects without conductive markers attached to them. Furthermore, it is not possible
for the touch screens to distinguish features such as colour or size through touch. Second, the screen
touch controller is optimised for finger contact and uses techniques such as ‘grip suppression’ and
‘palm rejection’ to filter out noise and undesired touches [66]. In our case, these would probably disable
detection of stationary objects, limit the number of detectable objects, or merge them incorrectly as an
adaptation to large fingertips.

Other tracking techniques—suchasmagnetic sensing (e.g.,GaussSense [67]), near-fieldcommunication
(e.g., Nintendo Amiibo [68]), and smart objects (e.g., MAL-Smart tiles [69])—would at least require
embedding magnets, tags, or circuit boards to detectable objects. Embedment would be challenging
in our case because a base-10 unit—our smallest object—is a 1 cm cube. These techniques would also
increase the cost and fragility of our manipulative. Moreover, they typically require custom hardware for
a specific purpose, thereby limiting utility. Neither optical tabletop systems (e.g., tanGible Augmented
INteraction for Edutainment (GAINE) [70]) nor mixed reality tabletop systems (e.g., Augmented Reality
(AR) enhanced tabletop system [44]) were possible because these typically require a large amount of
stationary installation (e.g., computer, camera, projector, and screen) beneath or over the tabletop. Thus,
tabletop systems are neither portable nor affordable. Another possibility was a vision-based tracking
mixed reality system, where a mirror is placed in front of a tablet camera and enables the system to
detect objects on a flat surface in front of the tablet (e.g., Ceibal Tangible (CETA) [14]). This system is
inexpensive, portable, and would be able to detect our objects. However, its TUI input happens in
front of a tablet, while its GUI output is displayed on a tablet screen (i.e., a ‘discrete’ design [16]). Thus,
it does not allow for a single point of interaction, which is one of our most important design principles.

All in all, our selected object tracking solution enables the application system to meet many of
our target principles (DP 7.1, 8.1–8.4). However, practicality and convenience are somewhat limited
compared to the initial design approach.
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3.4. Features and Interactions

X-is uses two types of physical objects (Figure 3a,b)—base-10 blocks representing constants
(DP 7.2) and X-Boxes, specially designed for X-is, representing unknowns—for its input to assist
students in recognising the distinction between different terms in an equation (DP 1). The application
contains exercises divided into two levels for primary students in different grades (DP 8.4) to learn the
concepts of linear equation solving using different strategies aligned with the Finnish NCC (DP 2).
The goal of Level 1 is to solve equations by substituting values for the unknown so that both sides of
an equation are equal (Video S1). The goal of Level 2 is to isolate a single unknown on one side of
an equation and the constants on the other side by subtracting the same quantity of constants and
unknowns from both sides of an equation (Video S2). This algebraic strategy was chosen because of
its emphasis on the equivalence principle (DP 1). The balance model is used as a didactic model to
assist students’ understanding of linear equation solving [23]. Either side of the scale represents either
side of the equation, while the movement of the scale (tilting or balance) represents the equality of the
mathematical expressions on either side of the equation.
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manipulative, consisting of four different sizes and colours representing their individual place values:
units (one’s place), rods (ten’s place), flats (hundred’s place), and cubes (thousand’s place). The system
is familiar to teachers and students. Reprintedwith permission [71]; (b) X-Boxes (left) specially designed
for X-is, which can be used with base-10 units when solving Level 1 equations (right).

Each level starts with an introductory animation demonstrating how to model and solve an
equation using the specific strategies for that level (DP 4). After that, there are exercises with gradually
increasing difficulty. First, students have to model the given equation by placing base-10 blocks and
X-Boxes on either side of the scale on the tablet screen (Figures 4a and 5a). This task requires students to
translate the symbolic representation of the equation into a physical representation, thereby developing
their representational fluency. Then, they have to solve the equation (i.e., find the value of an X-Box)
by adding base-10 blocks to the X-Boxes to balance the scale in Level 1 (Figure 4b) or by removing
the same number of physical objects from both sides of the scale to maintain its balance in Level 2
(Figure 5b). Solving the equations by balancing the scale emphasises the equal sign as a relational
rather than operational symbol (DP 1).
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The X-is TUI is comprised of multimodal inputs and outputs to help students link multimodal
representations of equations and express their mathematical thinking through various modes of
meaning making (DP 3). Moreover, the application provides instant scaffolding (i.e., guidance and
feedback) in the form of pictures, text, mathematical symbols, and sounds to guide students on what
to do or to inform them of the correctness of their actions (DP 4). Instead of tapping and scrolling
a touch screen, students interact with the application by placing physical objects on or removing
them from a working zone (Figure 6ii) above a scale (Figure 6i). The working zone is separated into
the left and right sections, which are reserved for each side of the scale. When the ‘weights’ are
unequal, the scale tilts towards the heavier side; in contrast, when both sides of the scale are equal,
the scale is balanced. To emphasise that an equation is solved, in addition to being balanced, the scale
turns green, which is accompanied by a ding sound and a textual compliment (Figures 4c and 5c).
The given equation is situated at the top of a mathematical symbol zone, while the math sentence
for the current equation-solving process is presented in a math expression window below the given
equation (Figure 6iii). A text window provides textual instructions, guidance, and feedback (Figure 6iv).
For example, when solving the equation x + 2 = 6, after students have removed two base-10 units from
the left side of the scale, the text window provides the textual message: ‘Remove the same quantities
from the other side of the scale to keep the scale balanced!’ The right side of the working zone blinks,
and the scale tilts towards the right side (Figure 6).
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X-is employs a user-friendly UI to enable students’ natural interactions (DP 7.3). The overall
graphic design is clear and simple. The screen contains only the necessary elements to avoid
students’ distraction from their learning process. The navigation and operations menu uses minimal,
easy-to-understand graphical icons (Figure 6v). Concise and clear sentences appear one at a time.
Button tapping is kept to a minimum. After a delay, if the physical objects on the screen have not
been moved, the application responds according to the last manipulation (rather than requiring the
student to tap in the affirmative). Occasionally, students are required to tap buttons on the screen,
for example, to start solving the equation after modelling it or to proceed to the next exercise after
solving an equation.

3.5. Prototyping

We initially intended to present a working (fully interactive) prototype in the classroom to validate
its technical feasibility and evaluate its potential. However, due to time constraints, the development
teamwas only able to get Level 1 of the application fully functional. This made it problematic to use the
working prototype as a task-oriented prototype [72] for classroom evaluation because the evaluation
requires students to learn to solve equations at both levels. Moreover, at the moment, the performance
of the image recognition algorithm depends largely on external factors, including environmental
lighting conditions and the position setting of the external camera during system calibration. If the
current prototype were used in a real classroom setting, it is likely that the image recognition may not
function reliably. Thus, another prototype that allows students to uninterruptedly perform both levels
of equation solving was required.

Wizard of Oz [72] is a rapid prototype that was created using Microsoft PowerPoint for the
classroom evaluation. The prototype contains all the needed UIs for Levels 1 and 2. To create the
illusion of a functioningmanipulative, while the user interacted with physical objects and the tablet (i.e.,
secondary machine), the researcher (i.e., the Wizard) unnoticeably operated a PowerPoint slideshow
by hand on a computer (i.e., primary machine) to respond to the user’s actions.
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The X-is TUI is comprised of multimodal inputs and outputs to help students link multimodal
representations of equations and express their mathematical thinking through various modes of
meaning making (DP 3). Moreover, the application provides instant scaffolding (i.e., guidance and
feedback) in the form of pictures, text, mathematical symbols, and sounds to guide students on what
to do or to inform them of the correctness of their actions (DP 4). Instead of tapping and scrolling
a touch screen, students interact with the application by placing physical objects on or removing
them from a working zone (Figure 6ii) above a scale (Figure 6i). The working zone is separated into
the left and right sections, which are reserved for each side of the scale. When the ‘weights’ are
unequal, the scale tilts towards the heavier side; in contrast, when both sides of the scale are equal,
the scale is balanced. To emphasise that an equation is solved, in addition to being balanced, the scale
turns green, which is accompanied by a ding sound and a textual compliment (Figures 4c and 5c).
The given equation is situated at the top of a mathematical symbol zone, while the math sentence
for the current equation-solving process is presented in a math expression window below the given
equation (Figure 6iii). A text window provides textual instructions, guidance, and feedback (Figure 6iv).
For example, when solving the equation x + 2 = 6, after students have removed two base-10 units from
the left side of the scale, the text window provides the textual message: ‘Remove the same quantities
from the other side of the scale to keep the scale balanced!’ The right side of the working zone blinks,
and the scale tilts towards the right side (Figure 6).
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X-is employs a user-friendly UI to enable students’ natural interactions (DP 7.3). The overall
graphic design is clear and simple. The screen contains only the necessary elements to avoid
students’ distraction from their learning process. The navigation and operations menu uses minimal,
easy-to-understand graphical icons (Figure 6v). Concise and clear sentences appear one at a time.
Button tapping is kept to a minimum. After a delay, if the physical objects on the screen have not
been moved, the application responds according to the last manipulation (rather than requiring the
student to tap in the affirmative). Occasionally, students are required to tap buttons on the screen,
for example, to start solving the equation after modelling it or to proceed to the next exercise after
solving an equation.

3.5. Prototyping

We initially intended to present a working (fully interactive) prototype in the classroom to validate
its technical feasibility and evaluate its potential. However, due to time constraints, the development
teamwas only able to get Level 1 of the application fully functional. This made it problematic to use the
working prototype as a task-oriented prototype [72] for classroom evaluation because the evaluation
requires students to learn to solve equations at both levels. Moreover, at the moment, the performance
of the image recognition algorithm depends largely on external factors, including environmental
lighting conditions and the position setting of the external camera during system calibration. If the
current prototype were used in a real classroom setting, it is likely that the image recognition may not
function reliably. Thus, another prototype that allows students to uninterruptedly perform both levels
of equation solving was required.

Wizard of Oz [72] is a rapid prototype that was created using Microsoft PowerPoint for the
classroom evaluation. The prototype contains all the needed UIs for Levels 1 and 2. To create the
illusion of a functioningmanipulative, while the user interacted with physical objects and the tablet (i.e.,
secondary machine), the researcher (i.e., the Wizard) unnoticeably operated a PowerPoint slideshow
by hand on a computer (i.e., primary machine) to respond to the user’s actions.
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4. Classroom Evaluation of X-is

4.1. Participants

We recruited participants from primary schools and lower secondary schools in southern
Finland, and the equity of the Finnish education system [73] allowed for convenience sampling.
Ethical practices were assured throughout the study in accordance with the European Code of Conduct
for Research Integrity [74]. For instance, the participants participated in the study on their own
wills, informed consent was obtained from all participants or their legal guardians prior the study,
and the participants’ privacy was protected. The student participants included 12 fourth graders
(ages 10–11), 12 fifth graders (ages 11–12), 35 seventh graders (ages 13–14), and 30 eighth and ninth
graders (ages 14–16). Additionally, one fourth- and one fifth-grade class teacher (teaching experience:
10–11 years; moderate experience using physical and virtual manipulatives), three lower secondary
school mathematics teachers (teaching experience: 10–27 years), and a special education teacher
(teaching experience: 4 years in primary and lower secondary schools) participated in the study.
The students at each grade level had mixed achievement in mathematics.

4.2. Research Design and Procedures

The classroom evaluation was conducted to examine the potentials of X-is in classrooms in terms
of leaning achievement, learning support, and usability. The convergent design (previously known as
concurrent or parallel design) of the mixed methods approach [75] was used as the strategy of inquiry.
First, both qualitative and quantitative data were collected simultaneously from students and teachers
using various methods (see Table 1). The purposes and research design of the classroom evaluation are
outlined in Table 1.

Table 1. Purposes and research design of the classroom evaluation.

Purposes
Methods

Class Intervention Paper-Based Test Questionnaire
and Interview Thinking Aloud

Learning Achievement

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Seventh graders (n = 35)
• Eighth and ninth graders

(n = 30)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Learning Support

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Fourth- and
fifth-grade class
teachers (n = 2)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

• Fourth- and
fifth-grade class
teachers (n = 2)

• Lower secondary
school mathematics
teachers (n = 3)

• Special education
teacher (n = 1)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Usability

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Fourth- and
fifth-grade class
teachers (n = 2)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Note: Fourth and fifth graders were divided into two groups: the paper-based intervention and the X-is intervention.

The fourth and fifth graders, who had never received any formal instruction regarding
equation solving before this study, participated in one of the languaging-based class interventions,
either paper-and-pencil or X-is. After the intervention, both groups individually completed a

Multimodal Technol. Interact. 2020, 4, 77 13 of 34

paper-based test. Typically, Finnish students of basic education (first to ninth grades) only obtain their
academic knowledge in school. For this reason, it could be assumed that the fourth and fifth graders in
this study had no prior knowledge of equation solving. Therefore, a pre-test was unnecessary, and only
the paper-based test was conducted after the intervention to evaluate the learning achievement of
new knowledge. After the test, each X-is student was asked to think aloud as they solved equations
using X-is. At the end, a questionnaire, accompanied by an interview, was completed with individual
students from the X-is groups.

The seventh through ninth graders took the same paper-based test, but did not participate in any
class intervention. Prior to the test, they had received several equation-solving lessons (their first,
second, or third equation course respectively) as a part of their normal school curricula, thereby serving
as a comparison group (i.e., students in traditional classrooms). For the same reason mentioned in the
previous paragraph, it could be assumed that the seventh through ninth graders in this study had
only obtained their knowledge of equation solving in school. Thus, a pre-test was unessential, and the
paper-based test would evaluate their learning achievement after attending traditional classrooms.
This research design was employed, because the Finnish basic education is organised according
to the NCC [56], where algebraic linear equation solving is only taught in Grades 7–9. Therefore,
a control group from fourth and fifth grades that had received traditional classroom instruction in
algebraic equation solving could not be found. Students from lower secondary schools in the same
area were recruited as the comparison group to ensure the participants’ homogenous socioeconomic
and academic background.

A lesson plan and a worksheet developed for the class interventions were provided to the fourth-
and fifth-grade class teachers before the interventions. After the interventions, a questionnaire and an
interview were administered for both class teachers. To discover the possible utilisation of X-is in other
classroom contexts, X-is was also evaluated by three lower secondary school mathematics teachers and
a special education teacher. First, the X-is Wizard of Oz prototype was used to demonstrate to the
teachers how to solve equation exercises at both levels (see Section 3.4). Then, the teachers tried X-is.
Next, they were asked to complete the same teacher questionnaire and interview.

Finally, the collected data were concurrently analysed before being compared and combined to
cross-validate the findings and holistically understand the results with regard to the following aspects:

• To determine the impacts of the languaging-based instruction (with or without X-is) on
students’ learning achievement based on the results from paper-based test and thinking
aloud sessions.

• To discover whether and how X-is promoted students’ learning (i.e., their understanding of
equation-solving concepts, languaging, and learning through discovery and social interaction)
based on the results from class interventions, student and teacher questionnaires and interviews,
and thinking aloud sessions.

• To investigate how students perceived the usability of X-is and how well they could use it
based on the results from class interventions, student questionnaire and interview, and thinking
aloud sessions.

4.3. Data Collection and Analysis

4.3.1. Class Intervention

The class interventions were carried out to compare between the two languaging-based
instructional conditions—paper-and-pencil (n = 12) or X-is (n = 12) interventions—with regard
to their usefulness in terms of supporting students’ learning. Each fourth and fifth grader participated
in one 45-min class intervention led by their class teachers in their classrooms during regular school
hours. For each condition, the teachers divided their students into three pairs—one high- and one
medium-attaining student, two medium-attaining students, and one medium- and one low-attaining
student—based on the students’ mathematics achievement throughout the school years. The pair
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4. Classroom Evaluation of X-is

4.1. Participants

We recruited participants from primary schools and lower secondary schools in southern
Finland, and the equity of the Finnish education system [73] allowed for convenience sampling.
Ethical practices were assured throughout the study in accordance with the European Code of Conduct
for Research Integrity [74]. For instance, the participants participated in the study on their own
wills, informed consent was obtained from all participants or their legal guardians prior the study,
and the participants’ privacy was protected. The student participants included 12 fourth graders
(ages 10–11), 12 fifth graders (ages 11–12), 35 seventh graders (ages 13–14), and 30 eighth and ninth
graders (ages 14–16). Additionally, one fourth- and one fifth-grade class teacher (teaching experience:
10–11 years; moderate experience using physical and virtual manipulatives), three lower secondary
school mathematics teachers (teaching experience: 10–27 years), and a special education teacher
(teaching experience: 4 years in primary and lower secondary schools) participated in the study.
The students at each grade level had mixed achievement in mathematics.

4.2. Research Design and Procedures

The classroom evaluation was conducted to examine the potentials of X-is in classrooms in terms
of leaning achievement, learning support, and usability. The convergent design (previously known as
concurrent or parallel design) of the mixed methods approach [75] was used as the strategy of inquiry.
First, both qualitative and quantitative data were collected simultaneously from students and teachers
using various methods (see Table 1). The purposes and research design of the classroom evaluation are
outlined in Table 1.

Table 1. Purposes and research design of the classroom evaluation.

Purposes
Methods

Class Intervention Paper-Based Test Questionnaire
and Interview Thinking Aloud

Learning Achievement

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Seventh graders (n = 35)
• Eighth and ninth graders

(n = 30)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Learning Support

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Fourth- and
fifth-grade class
teachers (n = 2)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

• Fourth- and
fifth-grade class
teachers (n = 2)

• Lower secondary
school mathematics
teachers (n = 3)

• Special education
teacher (n = 1)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Usability

• Both groups of fourth
graders (n = 12)

• Both groups of fifth
graders (n = 12)

• Fourth- and
fifth-grade class
teachers (n = 2)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

• X-is group of fourth
graders (n = 6)

• X-is group of fifth
graders (n = 6)

Note: Fourth and fifth graders were divided into two groups: the paper-based intervention and the X-is intervention.

The fourth and fifth graders, who had never received any formal instruction regarding
equation solving before this study, participated in one of the languaging-based class interventions,
either paper-and-pencil or X-is. After the intervention, both groups individually completed a
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paper-based test. Typically, Finnish students of basic education (first to ninth grades) only obtain their
academic knowledge in school. For this reason, it could be assumed that the fourth and fifth graders in
this study had no prior knowledge of equation solving. Therefore, a pre-test was unnecessary, and only
the paper-based test was conducted after the intervention to evaluate the learning achievement of
new knowledge. After the test, each X-is student was asked to think aloud as they solved equations
using X-is. At the end, a questionnaire, accompanied by an interview, was completed with individual
students from the X-is groups.

The seventh through ninth graders took the same paper-based test, but did not participate in any
class intervention. Prior to the test, they had received several equation-solving lessons (their first,
second, or third equation course respectively) as a part of their normal school curricula, thereby serving
as a comparison group (i.e., students in traditional classrooms). For the same reason mentioned in the
previous paragraph, it could be assumed that the seventh through ninth graders in this study had
only obtained their knowledge of equation solving in school. Thus, a pre-test was unessential, and the
paper-based test would evaluate their learning achievement after attending traditional classrooms.
This research design was employed, because the Finnish basic education is organised according
to the NCC [56], where algebraic linear equation solving is only taught in Grades 7–9. Therefore,
a control group from fourth and fifth grades that had received traditional classroom instruction in
algebraic equation solving could not be found. Students from lower secondary schools in the same
area were recruited as the comparison group to ensure the participants’ homogenous socioeconomic
and academic background.

A lesson plan and a worksheet developed for the class interventions were provided to the fourth-
and fifth-grade class teachers before the interventions. After the interventions, a questionnaire and an
interview were administered for both class teachers. To discover the possible utilisation of X-is in other
classroom contexts, X-is was also evaluated by three lower secondary school mathematics teachers and
a special education teacher. First, the X-is Wizard of Oz prototype was used to demonstrate to the
teachers how to solve equation exercises at both levels (see Section 3.4). Then, the teachers tried X-is.
Next, they were asked to complete the same teacher questionnaire and interview.

Finally, the collected data were concurrently analysed before being compared and combined to
cross-validate the findings and holistically understand the results with regard to the following aspects:

• To determine the impacts of the languaging-based instruction (with or without X-is) on
students’ learning achievement based on the results from paper-based test and thinking
aloud sessions.

• To discover whether and how X-is promoted students’ learning (i.e., their understanding of
equation-solving concepts, languaging, and learning through discovery and social interaction)
based on the results from class interventions, student and teacher questionnaires and interviews,
and thinking aloud sessions.

• To investigate how students perceived the usability of X-is and how well they could use it
based on the results from class interventions, student questionnaire and interview, and thinking
aloud sessions.

4.3. Data Collection and Analysis

4.3.1. Class Intervention

The class interventions were carried out to compare between the two languaging-based
instructional conditions—paper-and-pencil (n = 12) or X-is (n = 12) interventions—with regard
to their usefulness in terms of supporting students’ learning. Each fourth and fifth grader participated
in one 45-min class intervention led by their class teachers in their classrooms during regular school
hours. For each condition, the teachers divided their students into three pairs—one high- and one
medium-attaining student, two medium-attaining students, and one medium- and one low-attaining
student—based on the students’ mathematics achievement throughout the school years. The pair
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assignments also took into account students’ relationships and ability to work together to ensure
collaboration within pairs. Pair work was used for the intervention instead of group work to reduce
group collaboration development time, while the combination of students in each pair was employed
to assure their learning through social interaction [51,76].

At the beginning of the intervention, the teachers taught the concepts of equations, equivalence,
the unknown, and equation solving (by substituting values of the unknown in the fourth-grade
interventions and by doing the same operation on both sides of an equation in the fifth-grade
interventions) to the entire class for 10–15 min. After that, the students worked in pairs to learn to
solve equations under their teacher’s supervision. During the pair work, the paper-and-pencil groups
used only the provided worksheet (Figure 7a), whereas the X-is groups used the X-is Wizard of Oz
prototype in addition to the worksheet (Figure 7b).
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The worksheet was designed to promote students’ understanding of equation concepts through
translation and connections between multiple representations (i.e., verbal and written, pictorial,
and mathematical symbolic) of equations. It was developed based on mathematics textbooks used in
Finland and then evaluated by the third and fourth authors, who are experienced teacher educators.
The worksheet contained eight equations presented in one of the following formats: x + A = B,
A + x = B, A = x + B, or A = B + x, where A and B are positive integers and x is the unknown.

All 12 pair work sessions were video recorded from two different angles (530 min in total) to
warrant well-captured data. The video materials were transcribed in terms of the students’ actions (i.e.,
who did what, with whom). Due to the noisy background of the classrooms, the students’ dialogues
could not be transcribed. The pair work analysis particularly focused on how each instructional
condition supported students’ on-task peer communication (i.e., multi-representation translation,
equation solving, and providing the unknown value) regarding directions and types. Communication
directions and types were used as indicators of languaging and peer interaction, which encouraged
learning through social interaction. Students’ off-task communication (e.g., chitchatting, laughing,
or cleaning up physical objects from the tablet screen before proceeding to the next exercise) and
communication with the teacher were not included in the analysis. The video transcription was
analysed using a qualitative deductive content analysis method [77]. A categorisation matrix was
developed, and all the data were coded according to the categories in the matrix. Communication
directions were categorised into one-way or two-way communication, while communication types
were categorised into verbalisation, physical actions, or verbalisation and physical actions. Table 2 lists
the coding categories with examples.
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Table 2. Categories for communication directions and types.

Category Description Examples

Communication Directions

One-way
Sending information through

speaking, writing, or gestures without
response from peer

• Speaking out loud while doing something
• Asking for help, no peer response
• Giving advice, no peer response

Two-way Sending and receiving information
through speaking, writing, or gestures

• Discussing or negotiating
• Giving and taking advice/assistance
• Manipulating X-is together

Communication Types

Verbalisation Communicating through speech Asking or discussing
Physical actions Communicating through gestures Pointing or showing
Verbalisation and
physical actions

Communicating through speech
and gestures

Manipulating X-is and explaining at
the same time

Then, the coded data were merged into communication episodes. One episode is a unit of
complete actions for a specific purpose, for example, a discussion about how to solve an equation
or the whole process of solving the equation. In total, 287 episodes of on-task peer communication
were discovered. The frequency of individual episodes was counted (i.e., quantified) and divided
into categories for descriptive statistical analysis. A Pearson’s chi-squared test was performed to
statistically investigate the relationship between instructional conditions and peer communication.

Additionally, the video data were analysed to seek evidence of support for each instructional
condition for students’ learning (i.e., understanding of equation-solving concepts, languaging,
and learning through discovery and social interaction) and the usability of X-is. The discovered
evidence was used to complement the findings from the teachers’ questionnaires and interviews.

4.3.2. Students’ Paper-Based Tests

The same 45-min paper-based test (Appendix A) was administered for all students to compare
the learning achievement of students in languaging-based intervention conditions (the fourth and fifth
graders in the paper-and-pencil and X-is groups: n = 24) to that of students in typical classrooms (the
seventh through ninth graders: n = 65). The test was almost identical to the intervention worksheet.
The only difference was that the test contained only six equations. Students could earn a maximum of
three points for each equation for the correct representation translation, equation solving, and value
of the unknown, for a total score of 18. Cronbach’s alpha of the test was 0.82. As it is appropriate
for small sample sizes, the Mann–Whitney U test was used to investigate the difference in students’
learning achievement for languaging-based intervention groups (with or without manipulatives) and
the comparison groups. The learning achievement difference between the two intervention groups
(paper-and-pencil and X-is) and between each intervention group and the comparison groups was not
statistically analysed due to the sample size being too small.

4.3.3. Students’ Thinking Aloud

Thinking aloud [78] was conducted to assess the usability of X-is and its contribution to students’
learning process and achievement. Only the students in the X-is groups (n = 12) were individually
asked to model and then solve one to two equations and at the same time verbalise their actions,
thoughts, and opinions. When students faced difficulties, they were provided with minimal hints and
guidance to assist them in proceeding with the task.

All 12 thinking aloud sessions (18 min in total) were video recorded and transcribed. The video
transcription was analysed using a qualitative inductive content analysis [77]. The data were open
coded and then grouped into sub-categories, which were further grouped into categories and the main
categories related to the research focus.



Multimodal Technol. Interact. 2020, 4, 77 14 of 34

assignments also took into account students’ relationships and ability to work together to ensure
collaboration within pairs. Pair work was used for the intervention instead of group work to reduce
group collaboration development time, while the combination of students in each pair was employed
to assure their learning through social interaction [51,76].

At the beginning of the intervention, the teachers taught the concepts of equations, equivalence,
the unknown, and equation solving (by substituting values of the unknown in the fourth-grade
interventions and by doing the same operation on both sides of an equation in the fifth-grade
interventions) to the entire class for 10–15 min. After that, the students worked in pairs to learn to
solve equations under their teacher’s supervision. During the pair work, the paper-and-pencil groups
used only the provided worksheet (Figure 7a), whereas the X-is groups used the X-is Wizard of Oz
prototype in addition to the worksheet (Figure 7b).
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The worksheet was designed to promote students’ understanding of equation concepts through
translation and connections between multiple representations (i.e., verbal and written, pictorial,
and mathematical symbolic) of equations. It was developed based on mathematics textbooks used in
Finland and then evaluated by the third and fourth authors, who are experienced teacher educators.
The worksheet contained eight equations presented in one of the following formats: x + A = B,
A + x = B, A = x + B, or A = B + x, where A and B are positive integers and x is the unknown.

All 12 pair work sessions were video recorded from two different angles (530 min in total) to
warrant well-captured data. The video materials were transcribed in terms of the students’ actions (i.e.,
who did what, with whom). Due to the noisy background of the classrooms, the students’ dialogues
could not be transcribed. The pair work analysis particularly focused on how each instructional
condition supported students’ on-task peer communication (i.e., multi-representation translation,
equation solving, and providing the unknown value) regarding directions and types. Communication
directions and types were used as indicators of languaging and peer interaction, which encouraged
learning through social interaction. Students’ off-task communication (e.g., chitchatting, laughing,
or cleaning up physical objects from the tablet screen before proceeding to the next exercise) and
communication with the teacher were not included in the analysis. The video transcription was
analysed using a qualitative deductive content analysis method [77]. A categorisation matrix was
developed, and all the data were coded according to the categories in the matrix. Communication
directions were categorised into one-way or two-way communication, while communication types
were categorised into verbalisation, physical actions, or verbalisation and physical actions. Table 2 lists
the coding categories with examples.
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Table 2. Categories for communication directions and types.

Category Description Examples

Communication Directions

One-way
Sending information through

speaking, writing, or gestures without
response from peer

• Speaking out loud while doing something
• Asking for help, no peer response
• Giving advice, no peer response

Two-way Sending and receiving information
through speaking, writing, or gestures

• Discussing or negotiating
• Giving and taking advice/assistance
• Manipulating X-is together

Communication Types

Verbalisation Communicating through speech Asking or discussing
Physical actions Communicating through gestures Pointing or showing
Verbalisation and
physical actions

Communicating through speech
and gestures

Manipulating X-is and explaining at
the same time

Then, the coded data were merged into communication episodes. One episode is a unit of
complete actions for a specific purpose, for example, a discussion about how to solve an equation
or the whole process of solving the equation. In total, 287 episodes of on-task peer communication
were discovered. The frequency of individual episodes was counted (i.e., quantified) and divided
into categories for descriptive statistical analysis. A Pearson’s chi-squared test was performed to
statistically investigate the relationship between instructional conditions and peer communication.

Additionally, the video data were analysed to seek evidence of support for each instructional
condition for students’ learning (i.e., understanding of equation-solving concepts, languaging,
and learning through discovery and social interaction) and the usability of X-is. The discovered
evidence was used to complement the findings from the teachers’ questionnaires and interviews.

4.3.2. Students’ Paper-Based Tests

The same 45-min paper-based test (Appendix A) was administered for all students to compare
the learning achievement of students in languaging-based intervention conditions (the fourth and fifth
graders in the paper-and-pencil and X-is groups: n = 24) to that of students in typical classrooms (the
seventh through ninth graders: n = 65). The test was almost identical to the intervention worksheet.
The only difference was that the test contained only six equations. Students could earn a maximum of
three points for each equation for the correct representation translation, equation solving, and value
of the unknown, for a total score of 18. Cronbach’s alpha of the test was 0.82. As it is appropriate
for small sample sizes, the Mann–Whitney U test was used to investigate the difference in students’
learning achievement for languaging-based intervention groups (with or without manipulatives) and
the comparison groups. The learning achievement difference between the two intervention groups
(paper-and-pencil and X-is) and between each intervention group and the comparison groups was not
statistically analysed due to the sample size being too small.

4.3.3. Students’ Thinking Aloud

Thinking aloud [78] was conducted to assess the usability of X-is and its contribution to students’
learning process and achievement. Only the students in the X-is groups (n = 12) were individually
asked to model and then solve one to two equations and at the same time verbalise their actions,
thoughts, and opinions. When students faced difficulties, they were provided with minimal hints and
guidance to assist them in proceeding with the task.

All 12 thinking aloud sessions (18 min in total) were video recorded and transcribed. The video
transcription was analysed using a qualitative inductive content analysis [77]. The data were open
coded and then grouped into sub-categories, which were further grouped into categories and the main
categories related to the research focus.
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4.3.4. Student Questionnaires and Interviews

All the X-is students (n = 12) individually completed a questionnaire and participated in a
face-to-face interview to evaluate the perceived usefulness and usability of X-is. A 4-point Likert-type
scale (ranging from 1 = fully disagree to 4 = fully agree) was adapted from the Usefulness, Satisfaction,
and Ease of Use (USE) questionnaire [79], as it is concise and contains the usability dimensions that
we investigated. We only used one item from each sub-scale of the USE questionnaire to build our
questionnaire, since the selected items best describe each studied dimension. When completing the
face-to-face questionnaire, we also verbally other listed items that belonged to the same usability
dimension for the participants. The scale was comprised of four items assessing four factors: ‘X-is
is easy to use’ (ease of use), ‘It is pleasant to solve equations with X-is’ (enjoyment), ‘X-is helps me
to understand how to solve equations’ (usefulness), and ‘I would like to solve equations with X-is’
(intention for future use). Cronbach’s alpha of the scale was 0.69. The interview was conducted at the
same time as the questionnaire. The students were asked to give the reason for their response to each
questionnaire item. They were also asked for suggestions regarding how X-is could be improved.

All 12 interviews (102 min in total) were video recorded and transcribed. Frequencies of the
questionnaire responses were used to determine students’ perceptions of X-is. The video transcription
was analysed using a qualitative inductive content analysis method. The qualitative findings were
used to complement the quantitative findings.

4.3.5. Teacher Questionnaires and Interviews

All teachers (n = 6) completed a questionnaire (Appendix B) and a face-to-face interview to
assess how teachers perceived the utility of X-is compared to paper-and-pencil instruction (i.e.,
using worksheets or textbooks). Three 4-point Likert-type scales (ranging from 1 = not at all to
4 = very well) were designed specifically for evaluation of how X-is compares to paper-and-pencil
instruction regarding support for:

• Students’ understanding of equation-solving concepts (three items; X-is: α= 0.90, paper-and-pencil
instruction: α = 0.90),

• Students’ languaging (five items; X-is: α = 0.71, paper-and-pencil instruction: α = 0.67), and
• Students’ learning through discovery and social interaction (three items; X-is: α = 0.53,

paper-and-pencil instruction: α = 0.81).

Although, the Cronbach’s alpha value (α = 0.53) for the responses to students’ learning through
discovery and social interaction for X-is was below the generally acceptable level [80]. It is noteworthy
that the low alpha value could be due to the small number of items (N = 3) in the scale and the
small number of the participants (N = 6) [80]. Moreover, the Cronbach’s alpha value (α = 0.81)
for the responses to the same scale for the paper-and-pencil instruction was acceptable [80]. Thus,
the responses to the scale for X-is were used and interpreted with caution.

During the session, the teachers were required to respond to the questionnaire items as well as
provide an explanation for each response. In addition, they were also asked about appropriate grade
levels and learning-attaining levels in regard to working with X-is, suggestions for improving X-is,
anddifferences betweenphysical (TUI) anddigital (GUI) blockmanipulation. All six interviews (175min
in total) were audio recorded and transcribed. Descriptive statistics (e.g., frequencies, cumulative sums,
and cumulative means) of the questionnaire responses were used to present teachers’ perceptions of
X-is. A Wilcoxon matched-pairs signed rank test was conducted to determine the difference between
X-is and paper-and-pencil instruction according to the teachers. The audio transcription was analysed
using a qualitative inductive content analysis. The qualitative findings were used to complement the
quantitative findings.
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5. Results and Discussion

We next report and discuss the findings in three sections according to our research questions
regarding how well X-is promotes learning achievement, learning support, and usability. Then,
we reflect on the limitations of the research and give recommendations for future research.

5.1. Learning Achievement

5.1.1. Students’ Paper-Based Tests

The Mann-Whitney U test was performed to determine the differences between the total test
scores for the languaging-based instructional intervention (with paper-and-pencil or with X-is) groups
and the comparison groups. Figure 8 illustrates that there was no significant difference in the test
scores for the fourth and fifth graders who received the languaging-based instructional intervention
(M = 11.09, SD = 3.69) compared to the seventh graders in the comparison group (M = 12.29, SD = 5.28;
U = 314, p = 0.10). However, there was a statistically significant difference between the total test scores
for the intervention groups compared to the eighth and ninth graders (M = 15.57, SD = 2.40; U = 95,
p < 0.001) and for the seventh graders compared to the eighth and ninth graders (U = 332.5, p = 0.01).
In addition, we examined students’ low achievement on the test. Passing the test required a student
to earn 50% of the maximum score (cut-off score = 9/18). A similar portion of the students in the
intervention groups and the seventh graders failed the test (25% and 26%, respectively), whereas none
of the eighth or ninth graders did.
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To determine the impact of each languaging-based instructional condition on students’ learning
achievement, we examined the average total test scores of the students in both intervention groups.
Overall, the paper-and-pencil group (M = 11.29, SD = 4.08) and the X-is group (M = 10.90, SD = 3.44)
presented a rather similar test performance. We also investigated the strategies that each intervention
group used on the test when solving equations correctly to discoverwhether the instructional conditions
influenced students’ use of taught strategies (i.e., reasoning for the unknown in the fourth-grade
intervention and doing the same operation on both sides in the fifth-grade intervention) vs other
strategies. The analysis did not include any situations in which students arrived at the correct answer
without providing an explanation or their steps for equation solving or in which their used strategies
could not be identified. Figure 9 shows that the X-is group (31/41) was more likely to use the strategies
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4.3.4. Student Questionnaires and Interviews

All the X-is students (n = 12) individually completed a questionnaire and participated in a
face-to-face interview to evaluate the perceived usefulness and usability of X-is. A 4-point Likert-type
scale (ranging from 1 = fully disagree to 4 = fully agree) was adapted from the Usefulness, Satisfaction,
and Ease of Use (USE) questionnaire [79], as it is concise and contains the usability dimensions that
we investigated. We only used one item from each sub-scale of the USE questionnaire to build our
questionnaire, since the selected items best describe each studied dimension. When completing the
face-to-face questionnaire, we also verbally other listed items that belonged to the same usability
dimension for the participants. The scale was comprised of four items assessing four factors: ‘X-is
is easy to use’ (ease of use), ‘It is pleasant to solve equations with X-is’ (enjoyment), ‘X-is helps me
to understand how to solve equations’ (usefulness), and ‘I would like to solve equations with X-is’
(intention for future use). Cronbach’s alpha of the scale was 0.69. The interview was conducted at the
same time as the questionnaire. The students were asked to give the reason for their response to each
questionnaire item. They were also asked for suggestions regarding how X-is could be improved.

All 12 interviews (102 min in total) were video recorded and transcribed. Frequencies of the
questionnaire responses were used to determine students’ perceptions of X-is. The video transcription
was analysed using a qualitative inductive content analysis method. The qualitative findings were
used to complement the quantitative findings.

4.3.5. Teacher Questionnaires and Interviews

All teachers (n = 6) completed a questionnaire (Appendix B) and a face-to-face interview to
assess how teachers perceived the utility of X-is compared to paper-and-pencil instruction (i.e.,
using worksheets or textbooks). Three 4-point Likert-type scales (ranging from 1 = not at all to
4 = very well) were designed specifically for evaluation of how X-is compares to paper-and-pencil
instruction regarding support for:

• Students’ understanding of equation-solving concepts (three items; X-is: α= 0.90, paper-and-pencil
instruction: α = 0.90),

• Students’ languaging (five items; X-is: α = 0.71, paper-and-pencil instruction: α = 0.67), and
• Students’ learning through discovery and social interaction (three items; X-is: α = 0.53,

paper-and-pencil instruction: α = 0.81).

Although, the Cronbach’s alpha value (α = 0.53) for the responses to students’ learning through
discovery and social interaction for X-is was below the generally acceptable level [80]. It is noteworthy
that the low alpha value could be due to the small number of items (N = 3) in the scale and the
small number of the participants (N = 6) [80]. Moreover, the Cronbach’s alpha value (α = 0.81)
for the responses to the same scale for the paper-and-pencil instruction was acceptable [80]. Thus,
the responses to the scale for X-is were used and interpreted with caution.

During the session, the teachers were required to respond to the questionnaire items as well as
provide an explanation for each response. In addition, they were also asked about appropriate grade
levels and learning-attaining levels in regard to working with X-is, suggestions for improving X-is,
anddifferences betweenphysical (TUI) anddigital (GUI) blockmanipulation. All six interviews (175min
in total) were audio recorded and transcribed. Descriptive statistics (e.g., frequencies, cumulative sums,
and cumulative means) of the questionnaire responses were used to present teachers’ perceptions of
X-is. A Wilcoxon matched-pairs signed rank test was conducted to determine the difference between
X-is and paper-and-pencil instruction according to the teachers. The audio transcription was analysed
using a qualitative inductive content analysis. The qualitative findings were used to complement the
quantitative findings.
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5. Results and Discussion

We next report and discuss the findings in three sections according to our research questions
regarding how well X-is promotes learning achievement, learning support, and usability. Then,
we reflect on the limitations of the research and give recommendations for future research.

5.1. Learning Achievement

5.1.1. Students’ Paper-Based Tests

The Mann-Whitney U test was performed to determine the differences between the total test
scores for the languaging-based instructional intervention (with paper-and-pencil or with X-is) groups
and the comparison groups. Figure 8 illustrates that there was no significant difference in the test
scores for the fourth and fifth graders who received the languaging-based instructional intervention
(M = 11.09, SD = 3.69) compared to the seventh graders in the comparison group (M = 12.29, SD = 5.28;
U = 314, p = 0.10). However, there was a statistically significant difference between the total test scores
for the intervention groups compared to the eighth and ninth graders (M = 15.57, SD = 2.40; U = 95,
p < 0.001) and for the seventh graders compared to the eighth and ninth graders (U = 332.5, p = 0.01).
In addition, we examined students’ low achievement on the test. Passing the test required a student
to earn 50% of the maximum score (cut-off score = 9/18). A similar portion of the students in the
intervention groups and the seventh graders failed the test (25% and 26%, respectively), whereas none
of the eighth or ninth graders did.
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To determine the impact of each languaging-based instructional condition on students’ learning
achievement, we examined the average total test scores of the students in both intervention groups.
Overall, the paper-and-pencil group (M = 11.29, SD = 4.08) and the X-is group (M = 10.90, SD = 3.44)
presented a rather similar test performance. We also investigated the strategies that each intervention
group used on the test when solving equations correctly to discoverwhether the instructional conditions
influenced students’ use of taught strategies (i.e., reasoning for the unknown in the fourth-grade
intervention and doing the same operation on both sides in the fifth-grade intervention) vs other
strategies. The analysis did not include any situations in which students arrived at the correct answer
without providing an explanation or their steps for equation solving or in which their used strategies
could not be identified. Figure 9 shows that the X-is group (31/41) was more likely to use the strategies
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taught during the interventions for solving equations correctly than the paper-and-pencil group (24/42).
Moreover, two-thirds (8/13) of the X-is group used the taught strategies to solve equations correctly at
least once, whereas only half (6/12) of the paper-and-pencil group did.
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5.1.2. Students’ Thinking Aloud Sessions

In addition to the test analysis, we analysed the thinking aloud transcriptions to examine learning
achievement of the X-is group. First, we investigated the students’ representational fluency (i.e.,
how well they could model the math symbolic equations with X-is physical objects), which is an
indicator of their equation concept understanding. All students were able to use physical objects
to model the given equations successfully. Ten students completed the equation modelling on their
own in under 15 s, whereas two students required more time and some guidance from X-is or us.
We further examined how well the students could solve the given equations with X-is. All of them
were able to solve the equations correctly. Four of them also provided clear argumentation to support
their equation-solving process, which indicated their understanding of the equivalent concept and
equation-solving principles. For example, after almost 2 min of equation solving, a low-attaining fourth
grader was able to explain how she solved the equation by reasoning for the unknown (Figure 10).
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Figure 10. Student solving an equation (8 = 1 + 4 + x) at Level 1 (reasoning for the unknown). (a) ‘Here
are eight’ (pointing at eight base-10 units on the left side of the scale); (b) ‘And here has to weigh the
same’ (pointing at the right side of the scale); (c) ‘You have to add [base-10 units] here, so that they [units
on the right side] are altogether eight’ (pointing at three base-10 units inside the X-Box on the right).

Figure 11 shows how a medium-attaining fifth grader verbalised how he solved the equation by
doing the same operation on both sides of an equation step by step. The student provided reasons
supporting his actions.
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Figure 11. Student solving an equation (1 + 1 + x = 15) at Level 2 (doing the same operation on both
sides of an equation). (a) Correct modelling of the equation; (b) ‘You have to take two away from here,
so that x will stay alone’ (taking two base-10 units from the left side of the scale); (c) ‘Then you have to
take also two from here’ (taking two base-10 units from the right side of the scale). ‘Because if you
take [blocks] from one side, then you have to take [blocks] also from the other side’; (d) ‘So, here is 13,
which is equal to x’ (pointing at the rest of the blocks on the right).

Hight-attaining fourth and fifth graders used X-is to model and solve an equation correctly within
30 s. It is worth mentioning that the fourth grader demonstrated that he could reason for the unknown
by himself without X-is. During the thinking aloud, he calculated the value of the unknown mentally
before manipulating X-is.

5.1.3. Discussion of Learning Achievement

In summary, the paper-test result analysis demonstrate that languaging-based instruction (with
paper and pencil or with X-is) had a significantly positive impact on equation learning achievement
of the fourth and the fifth graders, who had received one intervention lesson, compared to the
seven-grade comparison group, who had received approximately 10 normal equation-solving lessons.
These quantitative findings suggest that the experimental groups benefited from the intervention
instruction, thereby encouraging further development of languaging-based instruction and X-is to
support learning equation solving.

The test performance of the X-is students illustrates students’ embodied cognition in the absence of
X-is, thereby indicating their independence from the manipulative [9]. A favourable impact of X-is on
students’ learning performance and understanding of equation solving was evidenced by (1) students’
likelihood to use the strategies taught during the interventions to solve the equations correctly, (2) their
ability to model and solve equations correctly during the thinking aloud sessions, and (3) their clear
argumentation to support their equation-solving process. Particularly, their argumentation indicated
that they had a good understanding of mathematical equivalence (e.g., the equal sign as a relational
symbol) and the equation-solving process. The evidence that X-is is advantageous for students’ learning
achievement corroborates the findings of earlier work [14,45,81] in tangible technology-enhanced
mathematics learning. Moreover, the findings from the thinking aloud data suggest that X-is facilitated
the achievement of equation learning (i.e., modelling and solving equations successfully) among
diverse students, particularly low and medium achievers. These findings are consistent with those of
Pires et al. [14], who found that children with no proficiency in number combinations benefited more
from their TM compared to their virtual manipulative.

5.2. Learning Support

5.2.1. Class Intervention

The video data reveal that, during the pair work sessions, the students mostly concentrated on
completing their tasks. Off-task activities were rarely observed. Generally, fourth graders in both
conditions could work out the problems on their own. The teacher’s assistance was needed mainly
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taught during the interventions for solving equations correctly than the paper-and-pencil group (24/42).
Moreover, two-thirds (8/13) of the X-is group used the taught strategies to solve equations correctly at
least once, whereas only half (6/12) of the paper-and-pencil group did.
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Figure 9. Percentage (number of cases in parentheses) of different strategies used to solve equations
correctly on the test by instructional condition.

5.1.2. Students’ Thinking Aloud Sessions

In addition to the test analysis, we analysed the thinking aloud transcriptions to examine learning
achievement of the X-is group. First, we investigated the students’ representational fluency (i.e.,
how well they could model the math symbolic equations with X-is physical objects), which is an
indicator of their equation concept understanding. All students were able to use physical objects
to model the given equations successfully. Ten students completed the equation modelling on their
own in under 15 s, whereas two students required more time and some guidance from X-is or us.
We further examined how well the students could solve the given equations with X-is. All of them
were able to solve the equations correctly. Four of them also provided clear argumentation to support
their equation-solving process, which indicated their understanding of the equivalent concept and
equation-solving principles. For example, after almost 2 min of equation solving, a low-attaining fourth
grader was able to explain how she solved the equation by reasoning for the unknown (Figure 10).
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paper and pencil or with X-is) had a significantly positive impact on equation learning achievement 
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Figure 10. Student solving an equation (8 = 1 + 4 + x) at Level 1 (reasoning for the unknown). (a) ‘Here
are eight’ (pointing at eight base-10 units on the left side of the scale); (b) ‘And here has to weigh the
same’ (pointing at the right side of the scale); (c) ‘You have to add [base-10 units] here, so that they [units
on the right side] are altogether eight’ (pointing at three base-10 units inside the X-Box on the right).

Figure 11 shows how a medium-attaining fifth grader verbalised how he solved the equation by
doing the same operation on both sides of an equation step by step. The student provided reasons
supporting his actions.
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Figure 11. Student solving an equation (1 + 1 + x = 15) at Level 2 (doing the same operation on both
sides of an equation). (a) Correct modelling of the equation; (b) ‘You have to take two away from here,
so that x will stay alone’ (taking two base-10 units from the left side of the scale); (c) ‘Then you have to
take also two from here’ (taking two base-10 units from the right side of the scale). ‘Because if you
take [blocks] from one side, then you have to take [blocks] also from the other side’; (d) ‘So, here is 13,
which is equal to x’ (pointing at the rest of the blocks on the right).

Hight-attaining fourth and fifth graders used X-is to model and solve an equation correctly within
30 s. It is worth mentioning that the fourth grader demonstrated that he could reason for the unknown
by himself without X-is. During the thinking aloud, he calculated the value of the unknown mentally
before manipulating X-is.

5.1.3. Discussion of Learning Achievement

In summary, the paper-test result analysis demonstrate that languaging-based instruction (with
paper and pencil or with X-is) had a significantly positive impact on equation learning achievement
of the fourth and the fifth graders, who had received one intervention lesson, compared to the
seven-grade comparison group, who had received approximately 10 normal equation-solving lessons.
These quantitative findings suggest that the experimental groups benefited from the intervention
instruction, thereby encouraging further development of languaging-based instruction and X-is to
support learning equation solving.

The test performance of the X-is students illustrates students’ embodied cognition in the absence of
X-is, thereby indicating their independence from the manipulative [9]. A favourable impact of X-is on
students’ learning performance and understanding of equation solving was evidenced by (1) students’
likelihood to use the strategies taught during the interventions to solve the equations correctly, (2) their
ability to model and solve equations correctly during the thinking aloud sessions, and (3) their clear
argumentation to support their equation-solving process. Particularly, their argumentation indicated
that they had a good understanding of mathematical equivalence (e.g., the equal sign as a relational
symbol) and the equation-solving process. The evidence that X-is is advantageous for students’ learning
achievement corroborates the findings of earlier work [14,45,81] in tangible technology-enhanced
mathematics learning. Moreover, the findings from the thinking aloud data suggest that X-is facilitated
the achievement of equation learning (i.e., modelling and solving equations successfully) among
diverse students, particularly low and medium achievers. These findings are consistent with those of
Pires et al. [14], who found that children with no proficiency in number combinations benefited more
from their TM compared to their virtual manipulative.

5.2. Learning Support

5.2.1. Class Intervention

The video data reveal that, during the pair work sessions, the students mostly concentrated on
completing their tasks. Off-task activities were rarely observed. Generally, fourth graders in both
conditions could work out the problems on their own. The teacher’s assistance was needed mainly
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for translation of the equations in word problems into pictures and mathematical symbols. For the
fifth-grade interventions, paper-and-pencil students required more help from the teacher than their
X-is peers. The teacher assisted paper-and-pencil students in solving equations by doing the same
operation on both sides and translating the equations presented as word problems. X-is studentsmainly
needed the teacher’s support for the translation of the equations presented as word problems. Overall,
paper-and-pencil students worked silently and separately on their own worksheets at different paces.
Thinking aloud while writing, discussing, giving or asking advice, and looking at what the groupmate
doing were occasionally observed. In contrast, the X-is group usually manipulated X-is together or
took turns (i.e., alternately manipulated X-is and watched when their groupmate manipulated the
manipulative). Thinking aloud, discussion, and giving and taking advice were usually observed.
After manipulating X-is, each student silently recorded their equation-solving processes on their own
worksheet. Most of them also looked at the math sentences on the tablet while recording their work.

Table 3 presents the frequencies and percentages of peer communication episodes regarding
directions and types of communication observed during the pair work. It should be noted that all of
the students participating in the interventions were unfamiliar with languaging, particularly verbal
and written. From the total of 287 observed episodes, most of the peer communication happened
during the X-is group’s pair work (70%). The average numbers of peer communication episodes were
14 episodes/pair (SD = 7.7) for the paper-and-pencil group and 34 episodes/pair (SD = 13.9) for the X-is
group. Regarding communication directions, most of the paper-and-pencil group communication (60%)
was one-way, while most of the X-is group communication (70%) was two-way, indicating increased
peer interaction among the latter. In terms of communication types, most of the paper-and-pencil
group communication (73%) was verbal followed by verbal and physical (19%), while the verbal
communication (48%) and verbal and physical communication (44%) occurred at similar rates for
the X-is group. We further examined the types of communication used for each communication
direction. Both instructional conditions usedmainly verbal communication, particularly, thinking aloud
during one-way communication (78% of paper-and-pencil group and 92% of X-is group). For the
paper-and-pencil group, most of the two-way communication was verbal (65%) followed by verbal and
physical (35%). In contrast, for the X-is group, most of the two-way communication was verbal and
physical (63%) followed by verbal (30%). It should be noted that two-way physical communication
(7%) was only observed in the fourth-grade X-is intervention group. This kind of communication
happened when students used X-is to model or solve equations together without talking to each
other. The Pearson’s chi-squared test revealed that there were statistically significant associations
for instructional conditions with students’ peer communication directions [X2 (1, N = 287) = 23.15,
p < 0.001] and types [X2 (2, N = 287) = 17.13, p < 0.001].

Table 3. Observed frequencies and percentages of peer communication episodes regarding directions
and types by instructional condition.

Communication
Paper-and-Pencil X-is Total

n (%) n (%) n (%)

Directions (N = 287)
One-way 51 (17.8) 60 (20.9) 111 (38.7)
Two-way 34 (11.8) 142 (49.5) 176 (61.3)

Types (N = 287)
Verbalisation 62 (21.6) 97 (33.8) 159 (55.4)
Physical actions 7 (2.4) 16 (5.6) 23 (8.0)
Verbalisation and physical actions 16 (5.6) 89 (31.0) 105 (36.6)

5.2.2. Student Questionnaires, Interviews, and Thinking Aloud Sessions

Most of the students (10/12) in the X-is intervention group felt that X-is assisted them in
understanding equation solving because of its TUI (i.e., allowing physical input and providing
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multimodal output), scaffolding (e.g., the tilting scale and changing background colours of the
math expression window), and the balance model used. Pointing at the math expression window,
one medium-attaining fifth grader stated, ‘From here, you can see what has been done. You can see
also from the scale’, (pointing at the unbalanced scale), ‘whether there is too much or too little. So it
helps’. According to a low-attaining fifth grader, ‘Being able to put and move these blocks with my
hands is better for me and somehow I understand better’.

It is noteworthy that only one high-attaining and one medium-attaining fourth grader disagreed
on the supportiveness of X-is because they were able to solve equations without X-is. Moreover,
the fifth graders had a higher level of agreement (five strongly agreed, one agreed, and none disagreed
or strongly disagreed) than the fourth graders (one strongly agreed, three agreed, and two disagreed
or strongly disagreed) regarding the learning support provided by X-is. A possible reason for this
might be that the reasoning for the unknown strategy (Level 1) was rather easy for fourth graders,
while the strategy for doing the same operation on both sides (Level 2) was appropriately challenging
for fifth graders.

Some students found new ways to use X-is in addition to the original intention. Students who
were able solve equations by themselves pointed out that they first solved an equation and recorded
their solution on the worksheet, and after that, they checked their answer using math sentences in the
math expression window on the tablet screen. Thus, the math sentences worked as their answer key
instead of as step-by-step scaffolding. During the thinking aloud session, a medium-attaining fourth
grader presented her own strategy for how to use X-is by first separating base-10 blocks into spatial
groups to find the value of the unknown (Figure 12).
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understanding of equation-solving concepts better than paper-and-pencil instruction. They pointed 
out that X-is concretises the equation concepts by allowing students to learn by doing and by 
providing scaffolding through the dynamic tilting scale and math expression window. For example, 
one lower secondary school mathematics teacher said, ‘I think the manipulative supports students’ 
understanding of equation concepts very well. It is very concrete. Students can try it with their own 
hands and see it with their own eyes. It is active learning’. The fifth grade class teacher also observed 
that during the interventions, students working with X-is concentrated more on the process of 
isolating x by doing the same operation on both sides of the scale instead of just calculating the value 
of the unknown in their heads. 

All the teachers believed that X-is better encouraged students to express their mathematical 
thinking compared to paper-and-pencil instruction, particularly through physical and mathematic 
symbolic representations. They highlighted that physical block manipulation and math sentences in 
the math expression window contributed to these physical and symbol representations, respectively. 

“The manipulative is very action based and visual. I would say that these help students to explain 
[the concept] to peers. When students have solved it with their hands, it is easier for them to talk 
about [the process]. Textbooks and e-textbooks are also very visual, full of pictures and videos. 

Figure 12. How one student solved an equation (8 = 1 + 4 + x) using her own invented strategy.
(a) ‘First, I move them here’ (moving five base-10 units on the left side of the scale further away from
three base-10 units on the same side); (b) ‘So that they’ (pointing at the five separate base-10 units on
the left) ‘are equal to what is here’ (pointing at five base-10 units on the right); (c) ‘Then I look at here’
(pointing at three base-10 units on the bottom of the left).); (d) ‘They are the same [number of units]
that I have to put here’ (pointing at the empty X-Box on the right); (e) The student then added three
base-10 units to the X-Box.

5.2.3. Teacher Questionnaires and Interviews

Based on the questionnaire, the teachers clearly rated X-is as being better at supporting students’
equation concept understanding, languaging, and learning through discovery and social interaction
than paper-and-pencil instruction (Table 4). A Wilcoxon matched-pairs signed rank test also indicated
that these differences were statistically significant (Z = 2.10, p = 0.04).

Similar to the students, all six teachers agreed that X-is promoted students’ overall understanding
of equation-solving concepts better than paper-and-pencil instruction. They pointed out that X-is
concretises the equation concepts by allowing students to learn by doing and by providing scaffolding
through the dynamic tilting scale and math expression window. For example, one lower secondary
school mathematics teacher said, ‘I think the manipulative supports students’ understanding of
equation concepts very well. It is very concrete. Students can try it with their own hands and see it
with their own eyes. It is active learning’. The fifth grade class teacher also observed that during the
interventions, students working with X-is concentrated more on the process of isolating x by doing
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for translation of the equations in word problems into pictures and mathematical symbols. For the
fifth-grade interventions, paper-and-pencil students required more help from the teacher than their
X-is peers. The teacher assisted paper-and-pencil students in solving equations by doing the same
operation on both sides and translating the equations presented as word problems. X-is studentsmainly
needed the teacher’s support for the translation of the equations presented as word problems. Overall,
paper-and-pencil students worked silently and separately on their own worksheets at different paces.
Thinking aloud while writing, discussing, giving or asking advice, and looking at what the groupmate
doing were occasionally observed. In contrast, the X-is group usually manipulated X-is together or
took turns (i.e., alternately manipulated X-is and watched when their groupmate manipulated the
manipulative). Thinking aloud, discussion, and giving and taking advice were usually observed.
After manipulating X-is, each student silently recorded their equation-solving processes on their own
worksheet. Most of them also looked at the math sentences on the tablet while recording their work.

Table 3 presents the frequencies and percentages of peer communication episodes regarding
directions and types of communication observed during the pair work. It should be noted that all of
the students participating in the interventions were unfamiliar with languaging, particularly verbal
and written. From the total of 287 observed episodes, most of the peer communication happened
during the X-is group’s pair work (70%). The average numbers of peer communication episodes were
14 episodes/pair (SD = 7.7) for the paper-and-pencil group and 34 episodes/pair (SD = 13.9) for the X-is
group. Regarding communication directions, most of the paper-and-pencil group communication (60%)
was one-way, while most of the X-is group communication (70%) was two-way, indicating increased
peer interaction among the latter. In terms of communication types, most of the paper-and-pencil
group communication (73%) was verbal followed by verbal and physical (19%), while the verbal
communication (48%) and verbal and physical communication (44%) occurred at similar rates for
the X-is group. We further examined the types of communication used for each communication
direction. Both instructional conditions usedmainly verbal communication, particularly, thinking aloud
during one-way communication (78% of paper-and-pencil group and 92% of X-is group). For the
paper-and-pencil group, most of the two-way communication was verbal (65%) followed by verbal and
physical (35%). In contrast, for the X-is group, most of the two-way communication was verbal and
physical (63%) followed by verbal (30%). It should be noted that two-way physical communication
(7%) was only observed in the fourth-grade X-is intervention group. This kind of communication
happened when students used X-is to model or solve equations together without talking to each
other. The Pearson’s chi-squared test revealed that there were statistically significant associations
for instructional conditions with students’ peer communication directions [X2 (1, N = 287) = 23.15,
p < 0.001] and types [X2 (2, N = 287) = 17.13, p < 0.001].

Table 3. Observed frequencies and percentages of peer communication episodes regarding directions
and types by instructional condition.

Communication
Paper-and-Pencil X-is Total

n (%) n (%) n (%)

Directions (N = 287)
One-way 51 (17.8) 60 (20.9) 111 (38.7)
Two-way 34 (11.8) 142 (49.5) 176 (61.3)

Types (N = 287)
Verbalisation 62 (21.6) 97 (33.8) 159 (55.4)
Physical actions 7 (2.4) 16 (5.6) 23 (8.0)
Verbalisation and physical actions 16 (5.6) 89 (31.0) 105 (36.6)

5.2.2. Student Questionnaires, Interviews, and Thinking Aloud Sessions

Most of the students (10/12) in the X-is intervention group felt that X-is assisted them in
understanding equation solving because of its TUI (i.e., allowing physical input and providing
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multimodal output), scaffolding (e.g., the tilting scale and changing background colours of the
math expression window), and the balance model used. Pointing at the math expression window,
one medium-attaining fifth grader stated, ‘From here, you can see what has been done. You can see
also from the scale’, (pointing at the unbalanced scale), ‘whether there is too much or too little. So it
helps’. According to a low-attaining fifth grader, ‘Being able to put and move these blocks with my
hands is better for me and somehow I understand better’.

It is noteworthy that only one high-attaining and one medium-attaining fourth grader disagreed
on the supportiveness of X-is because they were able to solve equations without X-is. Moreover,
the fifth graders had a higher level of agreement (five strongly agreed, one agreed, and none disagreed
or strongly disagreed) than the fourth graders (one strongly agreed, three agreed, and two disagreed
or strongly disagreed) regarding the learning support provided by X-is. A possible reason for this
might be that the reasoning for the unknown strategy (Level 1) was rather easy for fourth graders,
while the strategy for doing the same operation on both sides (Level 2) was appropriately challenging
for fifth graders.

Some students found new ways to use X-is in addition to the original intention. Students who
were able solve equations by themselves pointed out that they first solved an equation and recorded
their solution on the worksheet, and after that, they checked their answer using math sentences in the
math expression window on the tablet screen. Thus, the math sentences worked as their answer key
instead of as step-by-step scaffolding. During the thinking aloud session, a medium-attaining fourth
grader presented her own strategy for how to use X-is by first separating base-10 blocks into spatial
groups to find the value of the unknown (Figure 12).
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Figure 12. How one student solved an equation (8 = 1 + 4 + x) using her own invented strategy.
(a) ‘First, I move them here’ (moving five base-10 units on the left side of the scale further away from
three base-10 units on the same side); (b) ‘So that they’ (pointing at the five separate base-10 units on
the left) ‘are equal to what is here’ (pointing at five base-10 units on the right); (c) ‘Then I look at here’
(pointing at three base-10 units on the bottom of the left).); (d) ‘They are the same [number of units]
that I have to put here’ (pointing at the empty X-Box on the right); (e) The student then added three
base-10 units to the X-Box.

5.2.3. Teacher Questionnaires and Interviews

Based on the questionnaire, the teachers clearly rated X-is as being better at supporting students’
equation concept understanding, languaging, and learning through discovery and social interaction
than paper-and-pencil instruction (Table 4). A Wilcoxon matched-pairs signed rank test also indicated
that these differences were statistically significant (Z = 2.10, p = 0.04).

Similar to the students, all six teachers agreed that X-is promoted students’ overall understanding
of equation-solving concepts better than paper-and-pencil instruction. They pointed out that X-is
concretises the equation concepts by allowing students to learn by doing and by providing scaffolding
through the dynamic tilting scale and math expression window. For example, one lower secondary
school mathematics teacher said, ‘I think the manipulative supports students’ understanding of
equation concepts very well. It is very concrete. Students can try it with their own hands and see it
with their own eyes. It is active learning’. The fifth grade class teacher also observed that during the
interventions, students working with X-is concentrated more on the process of isolating x by doing
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the same operation on both sides of the scale instead of just calculating the value of the unknown in
their heads.

Table 4. Teachers’ ratings of the learning support of X-is compared to paper-and-pencil instruction.

Scales

Cumulative SumMean

Z
Scale [min, max] X-is Paper-and-Pencil

Instruction

Supports students’ understanding
of equation-solving concepts [3, 12] 11.0 7.7 2.10 *

Supports students’ languaging [5, 20] 17.3 12.8 2.10 *

Supports students’ learning through
discovery and social interaction [3, 12] 10.5 6.5 2.10 *

Note: * p < 0.05.

All the teachers believed that X-is better encouraged students to express their mathematical
thinking compared to paper-and-pencil instruction, particularly through physical and mathematic
symbolic representations. They highlighted that physical block manipulation and math sentences in
the math expression window contributed to these physical and symbol representations, respectively.

“The manipulative is very action based and visual. I would say that these help students to explain [the
concept] to peers. When students have solved it with their hands, it is easier for them to talk about
[the process]. Textbooks and e-textbooks are also very visual, full of pictures and videos. However,
textbook exercises usually urge students to move forward too fast instead of talking about the current
exercise.”(Lower secondary school mathematics teacher).

The fifth-grade class teacher also noticed that during the class interventions, paper-and-pencil
students were particularly silent and worked separately, even though he had encouraged them to
work together and discuss (Figure 13a). In contrast, the X-is students were more active to discuss and
required less encouragement for verbalisation (Figure 13b). The teacher felt that this was because
the X-is students had to think about how to manipulate the physical blocks, thereby encouraging
thinking aloud and discussion. He also observed that the X-is students learned mathematical symbolic
representation from the math expression window. Therefore, they were able to write math sentences
explaining their step-by-step solutions more clearly than the paper-and-pencil students.

Multimodal Technol. Interact. 2020, 4, x FOR PEER REVIEW 22 of 33 

However, textbook exercises usually urge students to move forward too fast instead of talking about 
the current exercise.” (Lower secondary school mathematics teacher). 

The fifth-grade class teacher also noticed that during the class interventions, paper-and-pencil 
students were particularly silent and worked separately, even though he had encouraged them to 
work together and discuss (Figure 13a). In contrast, the X-is students were more active to discuss and 
required less encouragement for verbalisation (Figure 13b). The teacher felt that this was because the 
X-is students had to think about how to manipulate the physical blocks, thereby encouraging
thinking aloud and discussion. He also observed that the X-is students learned mathematical
symbolic representation from the math expression window. Therefore, they were able to write math
sentences explaining their step-by-step solutions more clearly than the paper-and-pencil students.

All the teachers agreed that X-is provided better encouragement for students’ learning through 
discovery than paper-and-pencil instruction. In their opinion, because X-is works automatically and 
provides real-time feedback, it allowed students to experiment by themselves and learn 
independently at their own pace. The fifth-grade teacher noted that X-is students needed less 
assistance from him during the interventions compared to the paper-and-pencil students. The fourth-
grade teacher had a similar finding: 

“When students got stuck, they could not get through on their own with the worksheet. Whatever 
weights students added on the scale [image on the worksheet], the scale wouldn’t move. So students 
might proceed with the wrong solution. But with the manipulative, students could add and remove 
blocks and got feedback from the manipulative.” 

The teachers had mixed perceptions of how X-is supports students’ learning through social 
interaction compared to paper-and-pencil instruction. Most of the teachers thought that X-is better 
encouraged students’ social interaction by allowing them to share the same tablet, thus enhancing 
peer interaction naturally: 

“When working with manipulatives, there are steps that the students can easily talk about. One 
student can tell another one, for example, ‘First, put it there. Do you notice how the scale moves?’ 
But when working with a textbook where there is, for example, x + 2 = 6, there is not much to discuss, 
only x = 6 – 2. It is difficult for students to invent what to talk about.” (Special education teacher) 

However, two mathematics teachers had different views from the majority. They rated both X-
is and paper-and-pencil instruction equally. They thought that the teacher and group dynamic played 
a more important role in peer interaction than the learning materials. Moreover, they felt that some 
students might try to take control of the manipulative without sharing it with others. Nevertheless, a 
few incidents of unbalanced participation occurred in the X-is interventions. 
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an equation silently and separately; (b) X-is students discussing while solving an equation.

All the teachers agreed that X-is provided better encouragement for students’ learning through
discovery than paper-and-pencil instruction. In their opinion, because X-is works automatically and
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provides real-time feedback, it allowed students to experiment by themselves and learn independently
at their own pace. The fifth-grade teacher noted that X-is students needed less assistance from him
during the interventions compared to the paper-and-pencil students. The fourth-grade teacher had a
similar finding:

“When students got stuck, they could not get through on their own with the worksheet.
Whatever weights students added on the scale [image on the worksheet], the scale wouldn’t move.
So students might proceed with the wrong solution. But with the manipulative, students could add
and remove blocks and got feedback from the manipulative.”

The teachers had mixed perceptions of how X-is supports students’ learning through social
interaction compared to paper-and-pencil instruction. Most of the teachers thought that X-is better
encouraged students’ social interaction by allowing them to share the same tablet, thus enhancing peer
interaction naturally:

“Whenworking with manipulatives, there are steps that the students can easily talk about. One student
can tell another one, for example, ‘First, put it there. Do you notice how the scale moves?’ But when
working with a textbook where there is, for example, x + 2 = 6, there is not much to discuss,
only x = 6 − 2. It is difficult for students to invent what to talk about.”(Special education teacher).

However, two mathematics teachers had different views from the majority. They rated both X-is
and paper-and-pencil instruction equally. They thought that the teacher and group dynamic played
a more important role in peer interaction than the learning materials. Moreover, they felt that some
students might try to take control of the manipulative without sharing it with others. Nevertheless,
a few incidents of unbalanced participation occurred in the X-is interventions.

According to the teachers, X-is could be used to promote equation concept understanding
among pre-primary through ninth-grade students. They believed that Level 1 would be suitable
for pre-primary through fourth-grade students, while Level 2 would be suitable for fifth graders
onwards. All teachers indicated that they would use X-is with students of all attainment levels in a
small group to introduce equation concepts at the beginning of their class. Later on, X-is could be
used for differentiation. High achievers could do more challenging exercises with X-is on their own,
whereas students who had difficulty with equation solving could use X-is as a recap of what had
been taught.

Four teachers were satisfied with X-is as it was. Two teachers provided suggestions for improving
the pedagogical benefits of X-is. Instead of the letter x, the unknown could be represented with
symbols, pictures, or various letters to emphasise that anything could be used to represent the unknown.
Furthermore, after students have learnt how to write math sentences from the math expression window,
there could be exercises in which they write math sentences on their own.

When asked about the difference between TUI and GUI—manipulation of physical and
digital blocks, respectively—all teachers preferred physical block manipulation. They argued that
manipulating physical blocks supports students’ learning by linking their actions with their thinking:

“When everything is digital, students may perceive it as a game. So, they will act like [they do
when] playing games [and] just rush to do everything. A good example is when I asked students
to learn how to draw points in GeoGebra [an interactive mathematics application]. Some students
just kept on clicking [their mouse], so that their screen was full of points. Their minds were in a
racing track. I think physical blocks could slow them down to think.”(Lower secondary school
mathematics teacher).

Moreover, physical block manipulation is likely to interest students more because the digital
world is too familiar for them:

“I think physical blocks are definitely better than digital blocks. They are more interesting for students
because nowadays, they have been doing things all the time with the digital world. I noticed that
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the same operation on both sides of the scale instead of just calculating the value of the unknown in
their heads.

Table 4. Teachers’ ratings of the learning support of X-is compared to paper-and-pencil instruction.

Scales

Cumulative SumMean

Z
Scale [min, max] X-is Paper-and-Pencil

Instruction

Supports students’ understanding
of equation-solving concepts [3, 12] 11.0 7.7 2.10 *

Supports students’ languaging [5, 20] 17.3 12.8 2.10 *

Supports students’ learning through
discovery and social interaction [3, 12] 10.5 6.5 2.10 *

Note: * p < 0.05.

All the teachers believed that X-is better encouraged students to express their mathematical
thinking compared to paper-and-pencil instruction, particularly through physical and mathematic
symbolic representations. They highlighted that physical block manipulation and math sentences in
the math expression window contributed to these physical and symbol representations, respectively.

“The manipulative is very action based and visual. I would say that these help students to explain [the
concept] to peers. When students have solved it with their hands, it is easier for them to talk about
[the process]. Textbooks and e-textbooks are also very visual, full of pictures and videos. However,
textbook exercises usually urge students to move forward too fast instead of talking about the current
exercise.”(Lower secondary school mathematics teacher).

The fifth-grade class teacher also noticed that during the class interventions, paper-and-pencil
students were particularly silent and worked separately, even though he had encouraged them to
work together and discuss (Figure 13a). In contrast, the X-is students were more active to discuss and
required less encouragement for verbalisation (Figure 13b). The teacher felt that this was because
the X-is students had to think about how to manipulate the physical blocks, thereby encouraging
thinking aloud and discussion. He also observed that the X-is students learned mathematical symbolic
representation from the math expression window. Therefore, they were able to write math sentences
explaining their step-by-step solutions more clearly than the paper-and-pencil students.
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Figure 13. Fifth-graders’ communication during the intervention. (a) Paper-and-pencil students solving
an equation silently and separately; (b) X-is students discussing while solving an equation.

All the teachers agreed that X-is provided better encouragement for students’ learning through
discovery than paper-and-pencil instruction. In their opinion, because X-is works automatically and
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provides real-time feedback, it allowed students to experiment by themselves and learn independently
at their own pace. The fifth-grade teacher noted that X-is students needed less assistance from him
during the interventions compared to the paper-and-pencil students. The fourth-grade teacher had a
similar finding:

“When students got stuck, they could not get through on their own with the worksheet.
Whatever weights students added on the scale [image on the worksheet], the scale wouldn’t move.
So students might proceed with the wrong solution. But with the manipulative, students could add
and remove blocks and got feedback from the manipulative.”

The teachers had mixed perceptions of how X-is supports students’ learning through social
interaction compared to paper-and-pencil instruction. Most of the teachers thought that X-is better
encouraged students’ social interaction by allowing them to share the same tablet, thus enhancing peer
interaction naturally:

“Whenworking with manipulatives, there are steps that the students can easily talk about. One student
can tell another one, for example, ‘First, put it there. Do you notice how the scale moves?’ But when
working with a textbook where there is, for example, x + 2 = 6, there is not much to discuss,
only x = 6 − 2. It is difficult for students to invent what to talk about.”(Special education teacher).

However, two mathematics teachers had different views from the majority. They rated both X-is
and paper-and-pencil instruction equally. They thought that the teacher and group dynamic played
a more important role in peer interaction than the learning materials. Moreover, they felt that some
students might try to take control of the manipulative without sharing it with others. Nevertheless,
a few incidents of unbalanced participation occurred in the X-is interventions.

According to the teachers, X-is could be used to promote equation concept understanding
among pre-primary through ninth-grade students. They believed that Level 1 would be suitable
for pre-primary through fourth-grade students, while Level 2 would be suitable for fifth graders
onwards. All teachers indicated that they would use X-is with students of all attainment levels in a
small group to introduce equation concepts at the beginning of their class. Later on, X-is could be
used for differentiation. High achievers could do more challenging exercises with X-is on their own,
whereas students who had difficulty with equation solving could use X-is as a recap of what had
been taught.

Four teachers were satisfied with X-is as it was. Two teachers provided suggestions for improving
the pedagogical benefits of X-is. Instead of the letter x, the unknown could be represented with
symbols, pictures, or various letters to emphasise that anything could be used to represent the unknown.
Furthermore, after students have learnt how to write math sentences from the math expression window,
there could be exercises in which they write math sentences on their own.

When asked about the difference between TUI and GUI—manipulation of physical and
digital blocks, respectively—all teachers preferred physical block manipulation. They argued that
manipulating physical blocks supports students’ learning by linking their actions with their thinking:

“When everything is digital, students may perceive it as a game. So, they will act like [they do
when] playing games [and] just rush to do everything. A good example is when I asked students
to learn how to draw points in GeoGebra [an interactive mathematics application]. Some students
just kept on clicking [their mouse], so that their screen was full of points. Their minds were in a
racing track. I think physical blocks could slow them down to think.”(Lower secondary school
mathematics teacher).

Moreover, physical block manipulation is likely to interest students more because the digital
world is too familiar for them:

“I think physical blocks are definitely better than digital blocks. They are more interesting for students
because nowadays, they have been doing things all the time with the digital world. I noticed that



Multimodal Technol. Interact. 2020, 4, 77 24 of 34

last semester, [lower secondary school] students were very enthusiastic about playing board games
during a math class. I don’t see working with physical objects as too childish for lower secondary
school students.”(Lower secondary school mathematics teacher).

5.2.4. Discussion of Learning Support

With respect tounderstanding equation-solving concepts, ourfindings are in linewith those of other
studies [14,43,45] that found that TUIs are likely to assist students in developing their understanding
of mathematical concepts. We found that X-is could benefit diverse-attaining pre-primary through
ninth-grade students in understanding equation concepts. Our observations suggest that the unique
attributes of X-is, which combines the benefits of physical and virtual manipulatives, might contribute
to students’ conceptual understanding. First, similar to our initial research [36], physical interactions
of grasping and moving base-10 blocks and X-Boxes helped students to concretely develop their
understanding of the different terms in an equation and equation-solving concepts. Second, according to
Moyer-Packenham and Westenskow [12], the focused constraint of virtual environments promotes
students’ learning in mathematics by constraining and focusing their attention on certain mathematical
objects and processes. In the current study, the scale’s tilt and the math expression window’s changing
colours drew students’ attention to the mathematical equivalence concept. Moreover, the GUI provided
simultaneous linking [12], that is, linking the visual and mathematical symbolic representations of an
equation. Third, tangible technologies concurrently connect multimodal representations (i.e., physical,
visual, and symbolic representations) of the same concept. The TUI explicitly bridged students’
actions and the effects of their actions in different forms, which not only helped students to perceive
the relationship between concrete and abstract representations of equation equivalence but also to
present their equation-solving processes with mathematical symbols. One anticipated finding was that
some students discovered their own way to utilise X-is. This finding corresponds to Clements’ [82]
definition of a good manipulative, which is one that allows the learner to control and use it flexibly.
Our observation of creating spatial groups of base-10 blocks to find the value of the unknown supports
the findings from our initial research [36] and that of others [13,14,83] that physical objects enable
students to flexibly move them, thereby exploring more various solutions compared to static pictorial
representations on a paper. These findings can possibly be explained using the theory of DPL [7].

Regarding languaging, during the interventions, X-is students not only communicated with their
pairs more frequently but also in more varied ways—mainly through speech or gesture and partly
through a combination of both—compared to the paper-and-pencil group. The association between
instructional conditions and students’ peer communication types was also statistically significant.
Moreover, all the teachers stated that X-is promoted students’ expression of their mathematical
thinking through physical and mathematical symbolic representations better than paper-and-pencil
instruction. The integration of the physical and digital worlds of X-is contributed to students’ various
modes of meaning making. Similar to what we found in our initial research [36], we discovered
that the manipulation of physical objects promoted physical and verbal representations, whereas the
math sentences provided on the screen facilitated students’ mathematical symbolic representation.
Taken together, these observations suggest that X-is is likely to encourage students tomultimodallymake
meaning from equation-solving concepts and procedures, thereby encouraging their languaging [30],
which leads to better conceptual understanding. Additionally, students’ languaging made it easier for
not only the teachers but also the researchers to evaluate their thinking.

In terms of learning through social interaction, the findings indicate that X-is evidently
encouraged peer interactions more than paper-and-pencil instruction. During the intervention,
the paper-and-pencil students mainly worked silently and separately. In contrast, the X-is students
consistently manipulated X-is together while simultaneously discussing or giving and taking advice
from each other, thereby indicating social interaction in learning [31]. This study confirms prior
research [43,45] that tangible technologies enhance peer interaction in mathematics classrooms. Most of
the teachers believed that X-is would promote social interaction because it allowed students to share and
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manipulate simultaneously. The teachers’ views support evidence from previous observations [84,85]
that shared interfaces (i.e., in our case, physical objects and a tablet) encourage equal participation,
which indicates that TUI may promote active collaboration. According to Pontual Falcão and Price [85],
the active collaboration observed in our study was probably influenced by three main factors. First,
multiple physical objects provided both students in the pair with the opportunity to gain access to
them. Second, X-is allowed multiple inputs concurrently, thereby enabling both students to manipulate
X-is parallelly. Third, as proposed by Price [16], the co-located design of X-is could resolve the concern
of the two mathematics teachers about single-user constraints—one student taking control of the
manipulative—which occurred during some of the X-is interventions. Because the input and output
occurred at the same point of interaction, the students’ attention was drawn to the tablet. Therefore,
students could easily see each other’s actions through the GUI on the shared screen, which contributes
to their learning through social interaction.

Regarding learning through discovery, our results are in line with earlier research [45] that found
that TUIs encouraged students to independently experiment and discover to-be-learnt mathematics
content. According to the findings from our initial research [36] and those of others [11], both physical
and digital properties of X-is could contribute to students’ self-discovery. When manipulating physical
objects, students tended to speak aloud what they were doing or thinking. Therefore, their languaging
might not only help them to organise their own mathematical thinking but also allow their peers to
listen to and reflect on their thinking [31], thereby building knowledge together. Further, GUIs provide
students with guidance and real-time feedback. This scaffolding allows them to explore equation
modelling and solving independently.

5.3. Usability

5.3.1. Class Intervention

Bothgroupsof students completed all eight equationswithin a similar time frame (paper-and-pencil
group: M = 21.1 min/pair, SD = 4.8; X-is group: M = 23.1 min/pair, SD = 2.8). Originally, the class
teachers were supposed to guide the students on how to use X-is at the beginning of the intervention
in the same way that they would in normal classes when working with new manipulatives. However,
while the teachers were occupied with the paper-and-pencil students, the X-is students started to
learn how to use X-is by themselves. After watching a 1 min introductory animation on the tablet,
two pairs out of six were able to use X-is to solve all equations on their own. Four other pairs needed
our minimal guidance for the first equation and after that were able to solve the rest by themselves.
Excluding the time needed to model and solve the first equation, in which students had to learn how
to use X-is, the task completion time of both conditions was almost the same (paper-and-pencil group:
M = 2.6 min/equation, SD = 0.6; X-is group: M = 2.7 min/equation, SD = 0.3). For the X-is group,
their task completion time included X-is manipulation and recording the solution on the worksheet.

5.3.2. Student Questionnaires, Interviews, and Thinking Aloud Sessions

All 12 students in the X-is group responded positively regarding the usability of X-is.
They perceived X-is as easy and enjoyable to use. Moreover, all of them expressed their intention to use
X-is for solving equations in the future. According to the students, the straightforward UI and guidance
as well as their familiarity with tablets contributed to its ease of use. For example, one high-attaining
fourth grader stated that ‘It is not that difficult to use. You just have to put blocks and press an arrow’.
Another student stated, ‘It is easy to use because I have used a lot of computers and things like. I think
this [X-is] is nicer than [solving equations on] paper’. (Medium-attaining fifth grader).

All students (eight who strongly agreed and four who agreed) expressed their enjoyment using
X-is for various reasons. Some enjoyed its ease of use, while others appreciated its pedagogical benefits.
Some mentioned that it was pleasant that X-is allowed them to work in pairs. A low-attaining fifth
grader stated ‘I am able more or less to solve equations [using X-is] and start to be interested in solving
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last semester, [lower secondary school] students were very enthusiastic about playing board games
during a math class. I don’t see working with physical objects as too childish for lower secondary
school students.”(Lower secondary school mathematics teacher).

5.2.4. Discussion of Learning Support

With respect tounderstanding equation-solving concepts, ourfindings are in linewith those of other
studies [14,43,45] that found that TUIs are likely to assist students in developing their understanding
of mathematical concepts. We found that X-is could benefit diverse-attaining pre-primary through
ninth-grade students in understanding equation concepts. Our observations suggest that the unique
attributes of X-is, which combines the benefits of physical and virtual manipulatives, might contribute
to students’ conceptual understanding. First, similar to our initial research [36], physical interactions
of grasping and moving base-10 blocks and X-Boxes helped students to concretely develop their
understanding of the different terms in an equation and equation-solving concepts. Second, according to
Moyer-Packenham and Westenskow [12], the focused constraint of virtual environments promotes
students’ learning in mathematics by constraining and focusing their attention on certain mathematical
objects and processes. In the current study, the scale’s tilt and the math expression window’s changing
colours drew students’ attention to the mathematical equivalence concept. Moreover, the GUI provided
simultaneous linking [12], that is, linking the visual and mathematical symbolic representations of an
equation. Third, tangible technologies concurrently connect multimodal representations (i.e., physical,
visual, and symbolic representations) of the same concept. The TUI explicitly bridged students’
actions and the effects of their actions in different forms, which not only helped students to perceive
the relationship between concrete and abstract representations of equation equivalence but also to
present their equation-solving processes with mathematical symbols. One anticipated finding was that
some students discovered their own way to utilise X-is. This finding corresponds to Clements’ [82]
definition of a good manipulative, which is one that allows the learner to control and use it flexibly.
Our observation of creating spatial groups of base-10 blocks to find the value of the unknown supports
the findings from our initial research [36] and that of others [13,14,83] that physical objects enable
students to flexibly move them, thereby exploring more various solutions compared to static pictorial
representations on a paper. These findings can possibly be explained using the theory of DPL [7].

Regarding languaging, during the interventions, X-is students not only communicated with their
pairs more frequently but also in more varied ways—mainly through speech or gesture and partly
through a combination of both—compared to the paper-and-pencil group. The association between
instructional conditions and students’ peer communication types was also statistically significant.
Moreover, all the teachers stated that X-is promoted students’ expression of their mathematical
thinking through physical and mathematical symbolic representations better than paper-and-pencil
instruction. The integration of the physical and digital worlds of X-is contributed to students’ various
modes of meaning making. Similar to what we found in our initial research [36], we discovered
that the manipulation of physical objects promoted physical and verbal representations, whereas the
math sentences provided on the screen facilitated students’ mathematical symbolic representation.
Taken together, these observations suggest that X-is is likely to encourage students tomultimodallymake
meaning from equation-solving concepts and procedures, thereby encouraging their languaging [30],
which leads to better conceptual understanding. Additionally, students’ languaging made it easier for
not only the teachers but also the researchers to evaluate their thinking.

In terms of learning through social interaction, the findings indicate that X-is evidently
encouraged peer interactions more than paper-and-pencil instruction. During the intervention,
the paper-and-pencil students mainly worked silently and separately. In contrast, the X-is students
consistently manipulated X-is together while simultaneously discussing or giving and taking advice
from each other, thereby indicating social interaction in learning [31]. This study confirms prior
research [43,45] that tangible technologies enhance peer interaction in mathematics classrooms. Most of
the teachers believed that X-is would promote social interaction because it allowed students to share and
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manipulate simultaneously. The teachers’ views support evidence from previous observations [84,85]
that shared interfaces (i.e., in our case, physical objects and a tablet) encourage equal participation,
which indicates that TUI may promote active collaboration. According to Pontual Falcão and Price [85],
the active collaboration observed in our study was probably influenced by three main factors. First,
multiple physical objects provided both students in the pair with the opportunity to gain access to
them. Second, X-is allowed multiple inputs concurrently, thereby enabling both students to manipulate
X-is parallelly. Third, as proposed by Price [16], the co-located design of X-is could resolve the concern
of the two mathematics teachers about single-user constraints—one student taking control of the
manipulative—which occurred during some of the X-is interventions. Because the input and output
occurred at the same point of interaction, the students’ attention was drawn to the tablet. Therefore,
students could easily see each other’s actions through the GUI on the shared screen, which contributes
to their learning through social interaction.

Regarding learning through discovery, our results are in line with earlier research [45] that found
that TUIs encouraged students to independently experiment and discover to-be-learnt mathematics
content. According to the findings from our initial research [36] and those of others [11], both physical
and digital properties of X-is could contribute to students’ self-discovery. When manipulating physical
objects, students tended to speak aloud what they were doing or thinking. Therefore, their languaging
might not only help them to organise their own mathematical thinking but also allow their peers to
listen to and reflect on their thinking [31], thereby building knowledge together. Further, GUIs provide
students with guidance and real-time feedback. This scaffolding allows them to explore equation
modelling and solving independently.

5.3. Usability

5.3.1. Class Intervention

Bothgroupsof students completed all eight equationswithin a similar time frame (paper-and-pencil
group: M = 21.1 min/pair, SD = 4.8; X-is group: M = 23.1 min/pair, SD = 2.8). Originally, the class
teachers were supposed to guide the students on how to use X-is at the beginning of the intervention
in the same way that they would in normal classes when working with new manipulatives. However,
while the teachers were occupied with the paper-and-pencil students, the X-is students started to
learn how to use X-is by themselves. After watching a 1 min introductory animation on the tablet,
two pairs out of six were able to use X-is to solve all equations on their own. Four other pairs needed
our minimal guidance for the first equation and after that were able to solve the rest by themselves.
Excluding the time needed to model and solve the first equation, in which students had to learn how
to use X-is, the task completion time of both conditions was almost the same (paper-and-pencil group:
M = 2.6 min/equation, SD = 0.6; X-is group: M = 2.7 min/equation, SD = 0.3). For the X-is group,
their task completion time included X-is manipulation and recording the solution on the worksheet.

5.3.2. Student Questionnaires, Interviews, and Thinking Aloud Sessions

All 12 students in the X-is group responded positively regarding the usability of X-is.
They perceived X-is as easy and enjoyable to use. Moreover, all of them expressed their intention to use
X-is for solving equations in the future. According to the students, the straightforward UI and guidance
as well as their familiarity with tablets contributed to its ease of use. For example, one high-attaining
fourth grader stated that ‘It is not that difficult to use. You just have to put blocks and press an arrow’.
Another student stated, ‘It is easy to use because I have used a lot of computers and things like. I think
this [X-is] is nicer than [solving equations on] paper’. (Medium-attaining fifth grader).

All students (eight who strongly agreed and four who agreed) expressed their enjoyment using
X-is for various reasons. Some enjoyed its ease of use, while others appreciated its pedagogical benefits.
Some mentioned that it was pleasant that X-is allowed them to work in pairs. A low-attaining fifth
grader stated ‘I am able more or less to solve equations [using X-is] and start to be interested in solving
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equations. That’s why it is nice . . . But if it isn’t nice, and I can’t do it, then I usually give up’. Likewise,
a medium-attaining fourth graders stated, ‘It was quite fun, because you could do it with your friend’.

Moreover, some students emphasised that the differences between X-is and typical learning
materials (e.g., paper and pencil) and its technological aspects made X-is enjoyable. For example,
‘It is quite fun using this because you can move these blocks. Writing on the paper is quite boring’
(Low-attaining fourth grader). According to a medium-attaining fourth grader, ‘Nowadays, it is a
must for [those of] us who are at my age to spend time using digital devices. It is nice to have a chance
to work with digital devices. I enjoy using computers also at home’.

When asked whether they would like to use X-is again when solving equations, all the
students—including the two fourth graders who disagreed with the statement about its effectiveness
in terms of learning support—affirmed their intention for future use of X-is. Different pedagogical
benefits (e.g., support for understanding and learning through discovery, scaffolding, and guidance) of
X-is were the main reasons for the students’ positive responses. Other reasons—such as enjoyability,
ease of use, and technological aspects—were also mentioned:

“It would be nice if you could have this kind of app for other maths, even from the first grade when
learning, for example, addition, subtraction, and multiplication. It’s good to have these blocks compared
to just digital [elements].”(Medium-attaining fifth grader).

During the thinking aloud sessions, most of the students (9/12) were able to use X-is to model the
given equation with physical objects and then solve it within 35–40 s without any difficulty. Only two
fourth graders and one fifth grader struggled with how to use X-is. It took them about 2–5 min to
finish the same task. This result may be explained by the fact that during the class interventions,
these students were somewhat dominated by their pairs, thereby not having a chance to properly learn
how X-is functioned. However, after receiving guidance from us or looking at instructions and prompts
provided by X-is, they were eventually able to finish the task. Moreover, they could complete another
similar task within one minute. During the thinking aloud sessions, some students also benefited from
the guidance and scaffolding provided by X-is. For example, textual instruction guided students on
how to proceed, while the status of the scale and the blinking working zone prompted students to take
correct actions.

Nevertheless, problematic usability issues were identified. The thinking aloud sessions revealed a
minor hurdle with the X-is navigation and operation menu. After modelling an equation, about half
of the students (5/12) attempted to proceed to the equation solving part without pressing the play
button. However, most of the students (8/12) expressed their satisfaction with the current usability
of X-is and did not provide any suggestion for improvement. Some students made suggestions for
how the usability could be developed, for example, by providing clearer, step-by-step instructions;
adding an info button for detailed instructions; and offering an on–off math expression display for
hiding or displaying the math expression when needed.

5.3.3. Discussion of Usability

To sum up, the findings demonstrate that the usability of X-is was clearly acceptable. Because the
X-is students did not require much time or effort to learn to work with X-is during the interventions,
learnability [86] (i.e., ease of learning [79]) of X-is was satisfactory. The efficiency [86] of X-is usability
was rather high as students could quickly model and solve equations during the interventions and
thinking aloud sessions. There was no evidence that they required substantial additional time to
complete the intervention tasks (i.e., manipulating X-is and recording their work on the worksheet)
compared to the paper-and-pencil condition. This observation supports thework ofMartin et al. [83] but
contrasts that of Uttal et al. [10]. The students also rated X-is as easy to use. Manches and O’Malley [15]
proposed that one benefit of TMs appears to be that children do not need to learn how to manipulate
physical objects. In our case, base-10 blocks were likely already familiar to the students, which may
have also contributed to the ease of use of X-is. This finding partly supports the work of Sapounidis
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and Demetriadis [84], who reported that children ages 5–8 found interaction with TUI to be easier than
with GUI, while children ages 11–12 felt the opposite.

Despite its high learnability, efficiency, and ease of use, someminor usability problems were found.
The improvement of these problems would increase the usability of X-is. Regarding satisfaction [86],
all students perceived X-is as enjoyable because of its pedagogical and social benefits as well as
integration of digital technology. Additionally, all students stated that they intended to use X-is again.
Similar findings were also reported in previous studies [44,84] on tangible technologies for learning.

5.4. Limitations and Future Research and Development

The limitations of the current study should be highlighted. First, only the post-test was conducted
after the class intervention, and the comparison group was from the higher grade levels. Research
employing pre-post test design and using the comparison and experimental groups from the same
grade level would increase the precision of the students’ learning achievement analysis and decrease
the ambiguity of the result interpretation.

Second, the quantitative results must be interpreted with caution due to the small convenience
sample size. Future research using larger random samples would contribute to external validity.
Moreover, the interventions were conducted in a short period of time, which might not have been long
enough to influence students’ learning achievement but was still short enough to create a novelty effect.
This shortcoming calls for longitudinal studies, which would demonstrate the long-term benefits of
the manipulative for students and ensure that positive findings towards the manipulative are not a
result of its novelty.

Third, there were some issues regarding research reliability. The internal consistency (i.e.,
Cronbach’s alpha) of some of the questionnaire scales was relatively low. More items within the scales
would increase the instrument reliability. Additionally, the qualitative analyses were conducted mainly
by the first author. Future research should employ a triangulation of researchers. Despite the lack
of researcher triangulation, the quality of the current mixed-methods research was promoted by the
triangulation and concurrence of the research methods, data source, and data analysis as well as the
integration of quantitative and qualitative findings.

Fourth, our study focused only on an overview of the potentials of tangible technologies for
learning linear equations. Future research could investigate specific aspects examined in the current
study in greater depth. Research focusing on students with a specific degree of achievement,
other educational levels, different mathematics contents, and distance learning could contribute to our
better understanding of how tangible technologies facilitate learning.

Fifth, it should be noted that off-shelf technology was employed for the proposed manipulative
because our research was aimed at deployment in present classroom contexts. Thus, future studies on
TMs employing purposely designed technologiesmight yield different results. Moreover, the limitations
of the Wizard of Oz prototype, such as its delayed output, might have influenced the research results.
A reliably working, fully interactive prototype with all functions and features would not only
prevent this possibility but also expand the to-be-evaluated attributes of the manipulative. Evidently,
our prototypewas limited by the available off-shelf technology. Themain challenge is of the unreliability
of the object tracking using a webcam, especially when the colour contrast or brightness is too low
or physical objects are too close to each other. Further software and hardware development and
testing in a real classroom environment could enhance the system’s reliability. It is possible that future
advancements in tangible technologymay enable the system to directly detect objects without requiring
external devices and connections, thereby increasing product usability, practicality, and reliability.
Additional features (e.g., free experiments with the balance scale, students’ own equation set-up,
equations generated based on students’ performance, scoreboard, and analytics data) could enhance
the user experience for X-is.
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equations. That’s why it is nice . . . But if it isn’t nice, and I can’t do it, then I usually give up’. Likewise,
a medium-attaining fourth graders stated, ‘It was quite fun, because you could do it with your friend’.

Moreover, some students emphasised that the differences between X-is and typical learning
materials (e.g., paper and pencil) and its technological aspects made X-is enjoyable. For example,
‘It is quite fun using this because you can move these blocks. Writing on the paper is quite boring’
(Low-attaining fourth grader). According to a medium-attaining fourth grader, ‘Nowadays, it is a
must for [those of] us who are at my age to spend time using digital devices. It is nice to have a chance
to work with digital devices. I enjoy using computers also at home’.

When asked whether they would like to use X-is again when solving equations, all the
students—including the two fourth graders who disagreed with the statement about its effectiveness
in terms of learning support—affirmed their intention for future use of X-is. Different pedagogical
benefits (e.g., support for understanding and learning through discovery, scaffolding, and guidance) of
X-is were the main reasons for the students’ positive responses. Other reasons—such as enjoyability,
ease of use, and technological aspects—were also mentioned:

“It would be nice if you could have this kind of app for other maths, even from the first grade when
learning, for example, addition, subtraction, and multiplication. It’s good to have these blocks compared
to just digital [elements].”(Medium-attaining fifth grader).

During the thinking aloud sessions, most of the students (9/12) were able to use X-is to model the
given equation with physical objects and then solve it within 35–40 s without any difficulty. Only two
fourth graders and one fifth grader struggled with how to use X-is. It took them about 2–5 min to
finish the same task. This result may be explained by the fact that during the class interventions,
these students were somewhat dominated by their pairs, thereby not having a chance to properly learn
how X-is functioned. However, after receiving guidance from us or looking at instructions and prompts
provided by X-is, they were eventually able to finish the task. Moreover, they could complete another
similar task within one minute. During the thinking aloud sessions, some students also benefited from
the guidance and scaffolding provided by X-is. For example, textual instruction guided students on
how to proceed, while the status of the scale and the blinking working zone prompted students to take
correct actions.

Nevertheless, problematic usability issues were identified. The thinking aloud sessions revealed a
minor hurdle with the X-is navigation and operation menu. After modelling an equation, about half
of the students (5/12) attempted to proceed to the equation solving part without pressing the play
button. However, most of the students (8/12) expressed their satisfaction with the current usability
of X-is and did not provide any suggestion for improvement. Some students made suggestions for
how the usability could be developed, for example, by providing clearer, step-by-step instructions;
adding an info button for detailed instructions; and offering an on–off math expression display for
hiding or displaying the math expression when needed.

5.3.3. Discussion of Usability

To sum up, the findings demonstrate that the usability of X-is was clearly acceptable. Because the
X-is students did not require much time or effort to learn to work with X-is during the interventions,
learnability [86] (i.e., ease of learning [79]) of X-is was satisfactory. The efficiency [86] of X-is usability
was rather high as students could quickly model and solve equations during the interventions and
thinking aloud sessions. There was no evidence that they required substantial additional time to
complete the intervention tasks (i.e., manipulating X-is and recording their work on the worksheet)
compared to the paper-and-pencil condition. This observation supports thework ofMartin et al. [83] but
contrasts that of Uttal et al. [10]. The students also rated X-is as easy to use. Manches and O’Malley [15]
proposed that one benefit of TMs appears to be that children do not need to learn how to manipulate
physical objects. In our case, base-10 blocks were likely already familiar to the students, which may
have also contributed to the ease of use of X-is. This finding partly supports the work of Sapounidis
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and Demetriadis [84], who reported that children ages 5–8 found interaction with TUI to be easier than
with GUI, while children ages 11–12 felt the opposite.

Despite its high learnability, efficiency, and ease of use, someminor usability problems were found.
The improvement of these problems would increase the usability of X-is. Regarding satisfaction [86],
all students perceived X-is as enjoyable because of its pedagogical and social benefits as well as
integration of digital technology. Additionally, all students stated that they intended to use X-is again.
Similar findings were also reported in previous studies [44,84] on tangible technologies for learning.

5.4. Limitations and Future Research and Development

The limitations of the current study should be highlighted. First, only the post-test was conducted
after the class intervention, and the comparison group was from the higher grade levels. Research
employing pre-post test design and using the comparison and experimental groups from the same
grade level would increase the precision of the students’ learning achievement analysis and decrease
the ambiguity of the result interpretation.

Second, the quantitative results must be interpreted with caution due to the small convenience
sample size. Future research using larger random samples would contribute to external validity.
Moreover, the interventions were conducted in a short period of time, which might not have been long
enough to influence students’ learning achievement but was still short enough to create a novelty effect.
This shortcoming calls for longitudinal studies, which would demonstrate the long-term benefits of
the manipulative for students and ensure that positive findings towards the manipulative are not a
result of its novelty.

Third, there were some issues regarding research reliability. The internal consistency (i.e.,
Cronbach’s alpha) of some of the questionnaire scales was relatively low. More items within the scales
would increase the instrument reliability. Additionally, the qualitative analyses were conducted mainly
by the first author. Future research should employ a triangulation of researchers. Despite the lack
of researcher triangulation, the quality of the current mixed-methods research was promoted by the
triangulation and concurrence of the research methods, data source, and data analysis as well as the
integration of quantitative and qualitative findings.

Fourth, our study focused only on an overview of the potentials of tangible technologies for
learning linear equations. Future research could investigate specific aspects examined in the current
study in greater depth. Research focusing on students with a specific degree of achievement,
other educational levels, different mathematics contents, and distance learning could contribute to our
better understanding of how tangible technologies facilitate learning.

Fifth, it should be noted that off-shelf technology was employed for the proposed manipulative
because our research was aimed at deployment in present classroom contexts. Thus, future studies on
TMs employing purposely designed technologiesmight yield different results. Moreover, the limitations
of the Wizard of Oz prototype, such as its delayed output, might have influenced the research results.
A reliably working, fully interactive prototype with all functions and features would not only
prevent this possibility but also expand the to-be-evaluated attributes of the manipulative. Evidently,
our prototypewas limited by the available off-shelf technology. Themain challenge is of the unreliability
of the object tracking using a webcam, especially when the colour contrast or brightness is too low
or physical objects are too close to each other. Further software and hardware development and
testing in a real classroom environment could enhance the system’s reliability. It is possible that future
advancements in tangible technologymay enable the system to directly detect objects without requiring
external devices and connections, thereby increasing product usability, practicality, and reliability.
Additional features (e.g., free experiments with the balance scale, students’ own equation set-up,
equations generated based on students’ performance, scoreboard, and analytics data) could enhance
the user experience for X-is.
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6. Conclusions

This study explored the potentials of tangible technologies for learning linear equations in real
classrooms. Taken together, the findings add to the growing body of research indicating that there are
advantages to utilising tangible technologies in mathematics classrooms. The initial TM is likely to
benefit pre-primary through ninth-grade students of different attainment levels. It not only supported
their conceptual understanding, languaging, and learning through discovery and social interaction but
also enhanced their learning achievement. Moreover, the usability evaluation results demonstrated that
the manipulative was learnable, easy to use, useful, and engaging, which would ensure its successful
adoption in real educational contexts. The empirical evidences suggest that the integration of physical
and virtual attributes of manipulatives is likely to contribute to these positive findings.

Our research results have important implications for mathematical classroom pedagogy and
the development of TMs. Regarding classroom pedagogy, the study demonstrated that TMs
should be adopted into mathematics classrooms—which are usually dominated by paper-and-pencil
instruction [87,88]—to better assist diverse learners. However, it is worth noting here that TMs
alone cannot contribute to mathematics learning [13,46,47]. To be beneficial, they should be used in
cooperation with appropriate pedagogy, in our case, languaging. Moreover, the tangible attributes
(i.e., physical–digital interactions) of the proposed manipulative, which were perceived as useful and
engaging, may encourage the use of manipulatives in the upper-grade classrooms, in which use of
manipulatives normally declines [61,89,90]. TM design and development could also benefit from the
current work by taking advantage of the unique features of TUIs to facilitate mathematics learning.
Additionally, continued efforts are needed to make tangible technologies accessible for all classrooms.
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solving during one fifth-grade thinking aloud session.
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Appendix A

The paper-based test contains six open-response items. The students were required to (1) translate
the six equations presented through natural, pictorial, or mathematical symbolic language into two
other representations, (2) verbally explain or show the mathematical steps they used to solve the
equations, and (3) provide the value of unknowns. Figure A1 demonstrates the three types of the
test items.
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The teacher questionnaire contains the following scales:

1. In your opinion, how well did/would the X-is compared to the paper-and-pencil working method
help students with understanding the following equation-solving concepts?

1.1 Both sides of an equation are equal
1.2 An unknown and solving for its value
1.3 An equation stays equivalent when the same operation is performed on both sides

2. In your opinion, how well did/would X-is compared to the paper-and-pencil working method
help students with expressing their mathematical thinking by using the following mediums?

2.1 Tactile language
2.2 Pictorial language
2.3 Verbal natural language
2.4 Written natural language
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6. Conclusions

This study explored the potentials of tangible technologies for learning linear equations in real
classrooms. Taken together, the findings add to the growing body of research indicating that there are
advantages to utilising tangible technologies in mathematics classrooms. The initial TM is likely to
benefit pre-primary through ninth-grade students of different attainment levels. It not only supported
their conceptual understanding, languaging, and learning through discovery and social interaction but
also enhanced their learning achievement. Moreover, the usability evaluation results demonstrated that
the manipulative was learnable, easy to use, useful, and engaging, which would ensure its successful
adoption in real educational contexts. The empirical evidences suggest that the integration of physical
and virtual attributes of manipulatives is likely to contribute to these positive findings.

Our research results have important implications for mathematical classroom pedagogy and
the development of TMs. Regarding classroom pedagogy, the study demonstrated that TMs
should be adopted into mathematics classrooms—which are usually dominated by paper-and-pencil
instruction [87,88]—to better assist diverse learners. However, it is worth noting here that TMs
alone cannot contribute to mathematics learning [13,46,47]. To be beneficial, they should be used in
cooperation with appropriate pedagogy, in our case, languaging. Moreover, the tangible attributes
(i.e., physical–digital interactions) of the proposed manipulative, which were perceived as useful and
engaging, may encourage the use of manipulatives in the upper-grade classrooms, in which use of
manipulatives normally declines [61,89,90]. TM design and development could also benefit from the
current work by taking advantage of the unique features of TUIs to facilitate mathematics learning.
Additionally, continued efforts are needed to make tangible technologies accessible for all classrooms.
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equations, and (3) provide the value of unknowns. Figure A1 demonstrates the three types of the
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Appendix B

The teacher questionnaire contains the following scales:

1. In your opinion, how well did/would the X-is compared to the paper-and-pencil working method
help students with understanding the following equation-solving concepts?

1.1 Both sides of an equation are equal
1.2 An unknown and solving for its value
1.3 An equation stays equivalent when the same operation is performed on both sides

2. In your opinion, how well did/would X-is compared to the paper-and-pencil working method
help students with expressing their mathematical thinking by using the following mediums?

2.1 Tactile language
2.2 Pictorial language
2.3 Verbal natural language
2.4 Written natural language
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2.5 Mathematical symbolic language

3. In your opinion, how well did/would X-is compared to the paper-and-pencil working method
support the following aspects for the students?

3.1 Learning through first-hand experience and exploration
3.2 Learning through collaboration with peers
3.3 Active learning

References

1. Groves, S. Developing mathematical proficiency. J. Sci. Math. Educ. Southeast Asia 2012, 35, 119–145.
2. Kilpatrick, J.; Swafford, J.; Findell, B. Adding It Up: Helping Children Learn Mathematics; National Academy

Press: Washington, DC, USA, 2001; ISBN 0-309-50524-0.
3. Brownell, W.A. The progressive nature of learning in mathematics. Math. Teach. 2007, 100, 26–34.
4. Figueira-Sampaio, A.; dos Santos, E.E.F.; Carrijo, G.A. A constructivist computational tool to assist in learning

primary school mathematical equations. Comput. Educ. 2009, 53, 484–492. [CrossRef]
5. Fyfe, E.R.; McNeil,N.M.; Borjas, S. Benefits of “concreteness fading” for children’smathematics understanding.

Learn. Instr. 2015, 35, 104–120. [CrossRef]
6. Bruner, J.S. Toward a Theory of Instruction; Harvard University Press: Cambridge, MA, USA, 1966;

ISBN 9780674897014.
7. Martin, T.; Schwartz, D.L. Physically distributed learning: Adapting and reinterpreting physical environments

in the development of fraction concepts. Cogn. Sci. 2005, 29, 587–625. [CrossRef]
8. McNeil, N.; Jarvin, L. When theories don’t add up: Disentangling the manipulatives debate. Theory Pract.

2007, 46, 309–316. [CrossRef]
9. Pouw,W.T.; vanGog, T.; Paas, F. An embedded and embodied cognition review of instructionalmanipulatives.

Educ. Psychol. Rev. 2014, 26, 51–72. [CrossRef]
10. Uttal, D.H.; Amaya,M.; del RosarioMaita, M.; Hand, L.L.; Cohen, C.A.; O’Doherty, K.; DeLoache, J.S. It works

both ways: Transfer difficulties between manipulatives and written subtraction solutions. Child Dev. Res.
2013, 2013, 216367:1–216367:13. [CrossRef]

11. Suh, J.; Moyer, P.S. Developing students’ representational fluency using virtual and physical algebra balances.
J. Comput. Math. Sci. Teach. 2007, 26, 155–173.

12. Moyer-Packenham, P.; Westenskow, A. Effects of virtual manipulatives on student achievement and
mathematics learning. Int. J. Virtual Pers. Learn. Environ. 2013, 4, 35–50. [CrossRef]

13. Manches, A.; O’Malley, C.; Benford, S. The role of physical representations in solving number problems:
A comparison of young children’s use of physical and virtual materials. Comput. Educ. 2010, 54, 622–640.
[CrossRef]

14. Pires, A.C.; González Perilli, F.; Bakała, E.; Fleisher, B.; Sansone, G.; Marichal, S. Building blocks of
mathematical learning: Virtual and tangible manipulatives lead to different strategies in number composition.
Front. Educ. 2019, 4, 81:1–81:11. [CrossRef]

15. Manches, A.; O’Malley, C. Tangibles for learning: A representational analysis of physical manipulation.
Pers. Ubiquitous Comput. 2012, 16, 405–419. [CrossRef]

16. Price, S. Tangibles: Technologies and interaction for learning. In The SAGE Handbook of Digital Technology
Research; Price, S., Jewitt, C., Brown, B., Eds.; SAGE: Los Angeles, CA, USA, 2013; pp. 307–325.
ISBN 9781446200476.

17. Borenson and Associates, Inc. Hands-on Equations and Developing Fractions Sense Products. Available
online: http://www.borenson.com/Products (accessed on 2 August 2020).

18. Borenson and Associates, Inc. Hands-on Equations Program on IOS, Androids, Kindle, & Windows Apps.
Available online: https://www.borenson.com/Products/Mobile-Apps (accessed on 2 August 2020).

19. NLVM. Algebra Balance Scale. Available online: http://nlvm.usu.edu/en/nav/frames_asid_201_g_3_t_2.html?
open=instructions&from=topic_t_2.html (accessed on 2 August 2020).

20. Reinschlüssel, A.; Alexandrovsky, D.; Döring, T.; Kraft, A.; Braukmüller, M.; Janßen, T.; Reid, D.; Vallejo, E.;
Bikner-Ahsbahs, A.; Malaka, R. Multimodal algebra learning: From math manipulatives to tangible user
interfaces. i-com 2018, 17, 201–209. [CrossRef]

Multimodal Technol. Interact. 2020, 4, 77 31 of 34

21. McNeil, N.M.; Hornburg, C.B.; Devlin, B.L.; Carrazza, C.; McKeever, M.O. Consequences of individual
differences in children’s formal understanding of mathematical equivalence. Child Dev. 2019, 90, 940–956.
[CrossRef]

22. Poon, K.; Leung, C. Pilot study on algebra learning among junior secondary students. Int. J. Math. Educ.
Sci. Technol. 2010, 41, 49–62. [CrossRef]

23. Otten, M.; van den Heuvel-Panhuizen, M.; Veldhuis, M. The balance model for teaching linear equations:
A systematic literature review. Int. J. STEM Educ. 2019, 6, 1–21. [CrossRef]

24. Lemke, J.L. Mathematics in the middle: Measure, picture, gesture, sign, and word. In Educational Perspectives
on Mathematics as Semiosis: From Thinking to Interpreting to Knowing; Anderson, M., Sáenz-Ludlow, A.,
Zellweger, S., Cifarelli, V.V., Eds.; Legas: Brooklyn, NY, USA, 2003; pp. 215–234. ISBN 1894508394.

25. O’Halloran, K.L. The language of learning mathematics: A multimodal perspective. J. Math. Behav. 2015, 40,
63–74. [CrossRef]

26. Schleppegrell, M.J. Language in mathematics teaching and learning: A research review. In Language and
Mathematics Education: Multiple Perspectives andDirections for Research; Moschkovich, J.N., Ed.; InformationAge
Pub: Charlotte, NC, USA, 2010; pp. 73–112. ISBN 1617351598.

27. O’Halloran, K.L. Mathematics as multimodal semiosis. InMathematics, Substance and Surmise: Views on the
Meaning and Ontology of Mathematics, 1st ed.; Davis, E., Davis, P.J., Eds.; Springer: Cham, Switzerland, 2015;
pp. 287–303. ISBN 978-3-319-21473-3.

28. Morgan, C. The place of pupil writing in learning, teaching and assessing mathematics. In Issues in
Mathematics Teaching; Gates, P., Ed.; Routledge Falmer: London, UK, 2001; pp. 232–244. ISBN 0415238641.

29. O’Halloran, K.L.Mathematical Discourse: Language, Symbolism and Visual Images; Continuum: London, UK,
2004; ISBN 9780826468574.

30. Joutsenlahti, J.; Kulju, P. Multimodal languaging as a pedagogical model: A case study of the concept of
division in school mathematics. Educ. Sci. 2017, 7, 9. [CrossRef]

31. Joutsenlahti, J.; Rättyä, K. Kielentämisen käsite ainedidaktisissa tutkimuksissa [The concept of languaging
in subject-didactic studies]. In Rajaton Tulevaisuus. Kohti Kokonaisvaltaista Oppimista [Unlimited Future.
Towards Holistic Learning]; Kauppinen, M., Rautiainen, M., Tarnanen, M., Eds.; Finnish Research Association
for Subject Didactics: Jyväskylä, Finland, 2015; pp. 45–61. ISBN 1799-960X.

32. Lesh, R.A.; Landau, M.; Hamilton, E. Conceptual models in applied mathematical problem solving research.
In Acquisition of Mathematics Concepts and Processes; Lesh, R.A., Landau, M., Eds.; Academic Press: New York,
NY, USA, 1983; pp. 263–343. ISBN 012444220X.

33. Bauersfeld, H. Language Games in the Mathematics Classroom: Their Function and Their Effects. In The
Emergence of Mathematical Meaning: Interaction in Classroom Cultures; Cobb, P., Bauersfeld, H., Eds.;
Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1995; pp. 271–294.

34. Goldin, G.; Shteingold, N. Systems of representations and the development of mathematical concepts. In The
Roles of Representation in School Mathematics; Cuoco, A., Curcio, F.R., Eds.; National Council of Teachers of
Mathematics: Reston, VA, USA, 2001; pp. 1–23. ISBN 0873534956.

35. Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M. Design and validation of a test for representational
fluency of 9th grade students in physics and mathematics: The case of linear functions. Phys. Rev. Phys.
Educ. Res. 2018, 14, 020105:1–020105:19. [CrossRef]

36. Lehtonen, D.; Joutsenlahti, J. The benefits of using manipulatives in classrooms for equation concepts
understanding. In Changing Subjects, Changing Pedagogies: Diversities in School and Education; Pyyry, N.,
Tainio, L., Juuti, K., Vasquez, R., Paananen, M., Eds.; Finnish Research Association for Subject Didactics:
Helsinki, Finland, 2017; pp. 164–185. ISBN 978-952-5993-23-3.

37. Ishii, H.; Ullmer, B. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 22–27 March
1997; pp. 234–241.

38. Ishii, H.; Ullmer, B. Tangible user interfaces. In The Human-Computer Interaction Handbook Fundamentals,
Evolving Technologies, and Emerging Applications, 3rd ed.; Jacko, J.A., Ed.; Taylor & Francis: Boca Raton, FL,
USA, 2012; pp. 465–490. ISBN 9781439829431.

39. Zhou, Y.; Wang, M. Tangible user interfaces in learning and education. In International Encyclopedia of the Social
& Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 20–25. ISBN 978-0-08-097087-5.



Multimodal Technol. Interact. 2020, 4, 77 30 of 34

2.5 Mathematical symbolic language

3. In your opinion, how well did/would X-is compared to the paper-and-pencil working method
support the following aspects for the students?

3.1 Learning through first-hand experience and exploration
3.2 Learning through collaboration with peers
3.3 Active learning
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Introduction  

Educational design research (EDR) strives to bridge the gap between 
theory and practice in educational research by contributing to both 
practice and theory (e.g., McKenney & Reeves, 2019; Plomp, 2013). As 
a contribution to educational practice, EDR aims to craft research-in-
formed solutions, such as educational products, processes, pro-
grammes, and policies, through iterative development in real-world 
educational settings, where teaching and learning actually take place. 
At the same time, EDR seeks to contribute to the research community 
by advancing usable and generalisable knowledge constructed during 
the iteration of empirical investigation. 

According to Edelson (2002), EDR can assist in developing three types 
of theories: domain theories, design frameworks, and design method-
ologies that can inform the work of others. Domain theories describe 
the teaching and learning challenges and opportunities in a real edu-
cational context (i.e., context theories) and explain how the design so-
lution works in that educational setting (i.e., outcomes theories). A de-
sign framework (i.e., a generalised design solution) describes the im-
portant characteristics of a design solution to a particular educational 
problem. A design methodology provides guidelines (e.g., processes, 
required expertise, and roles of the individual participants) for con-
ducting EDR to achieve the research aims. To date, Edelson’s (2002) 
three types of theories are still used to inform EDR, such as that of 
Kerslake (2019). 

Despite manifold possible contributions of EDR, our systematic review 
(Lehtonen et al., 2019) and the work of others (Anderson & Shattuck, 
2012; McKenny & Reeves, 2019; Zheng, 2015) have indicated that 
most EDR researchers tend to focus on reporting their research contri-
butions to educational practice and domain theories. A few research-
ers have reported how their EDR contributes to knowledge of design 
frameworks (e.g., Bergdahl et al., 2018; Lambert & Jacobsen, 2019) 
and design methodologies (e.g., Cowling & Birt, 2018; Di Biase, 2020). 
Therefore, there is a need for the dissemination of research that pays 
more attention to design frameworks and design methodologies so 
that those outside a particular EDR project can benefit. Design frame-
works can inform other educational researchers and designers on how 
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to develop a solution to a similar educational challenge in another con-
text, while design methodologies can help other researchers over-
come challenges in conducting their EDR. 

A growing body of EDR has responded to the increasing utilisation of 
technologies in educational environments. Recently, various techno-
logical solutions – for example, a digital video game (Lambert & Jacob-
sen, 2019), a mixed reality simulation (Cowling & Birt, 2018), and a vir-
tual learning environment (Bergdahl et al., 2018) – have been devel-
oped and implemented in different educational contexts. Hence, it is 
beneficial to share usable and generalisable knowledge gained from 
previous EDR on technology-enhanced learning with others so that 
they can accomplish their future work in the area by building on what 
has already been learnt. As such, this paper reports the theoretical 
contributions of a 6-year EDR enquiry that aimed to develop educa-
tional technologies that promote primary school mathematics learning 
and classroom practice. Informed by the literature and my direct ex-
periences of working in collaboration with teachers and various disci-
plines during this EDR on technology-enhanced learning, this paper 
seeks to further knowledge of: 

 

1. Design frameworks: key aspects to be taken into account 
when developing educational technologies to ensure their ed-
ucational benefits, feasibility, and successful real-world utili-
sation and adoption. 

2. Design methodologies: guidelines for successfully conducting 
EDR. 

 

EDR on educational technologies for learning linear equations  

Educational problem 

Linear equation solving, an important area in algebra, is often challeng-
ing for students at different educational levels to master (e.g., McNeil 
et al., 2019; Poon & Leung, 2010), particularly when they lack sufficient 
understanding of key concepts for solving equations, such as equa-
tions and equivalence (e.g., Knuth et al., 2006; McNeil et al., 2019). 
Conceptual understanding (i.e., understandings of mathematical con-
cepts, operations, and relations) is one of the most important mathe-
matical proficiencies (Kilpatrick et al., 2001). While strong conceptual 
understanding has several benefits for mathematics learning, insuffi-
cient conceptual understanding can hinder students’ learning and per-
formance in mathematics (e.g., Andamon & Tan, 2018; Kilpatrick et al., 
2001). 

Manipulative materials, such as beads and base-10 blocks, have long 
been used, particularly in preschools and primary schools, as hands-on 
learning tools that allow students to concretely explore abstract math-
ematical concepts through different senses. There is evidence that 
when manipulatives are used meaningfully, they can promote stu-
dents’ understanding of mathematical concepts. For example, when 
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they are used for developing conceptual understanding (instead of at-
taining procedural fluency) and making links between various repre-
sentations constructed through the manipulatives and mathematical 
symbols of the concept to be learnt (e.g., Kilpatrick et al., 2001; McNeil 
& Jarvin, 2007; Uttal et al., 2013). Nevertheless, disagreement exists 
between manipulatives’ pedagogical benefits and classroom practice. 
Despite primary and lower secondary school teachers regarding ma-
nipulatives as useful learning tools, for instructional activities in their 
classrooms, they usually favour traditional teacher-centred and paper-
and-pencil instruction over manipulatives (e.g., Marshall & Swan, 
2008; Toptaș et al., 2012). This finding implies that pedagogically 
sound manipulatives may not be adopted in the classroom, possibly 
because of classroom-practice-related reasons. Thus, there is a call for 
a study on the application of the theoretical knowledge of manipula-
tives for the promotion of manipulative use in the classroom to en-
hance students’ mathematical concept understanding. 

 

Study overview  

This study employed an EDR approach to bridge the gap between re-
search on manipulatives and its direct practical contributions to real-
world educational challenges (i.e., the disagreement between manip-
ulatives’ pedagogical benefits and classroom practice). It aimed to in-
vestigate the use of manipulatives in real educational contexts and 
then to develop a research-informed manipulative that not only en-
hances primary school students’ understanding of equation-solving 
concepts, but also promotes its utilisation and adoption in the class-
room. This study was conducted from 2015–2020 and was my doctoral 
research. It was self-initiated and not part of any research project; 
thus, I conducted this 6-year EDR enquiry independently. 

Drawing on the widely used EDR process proposed by McKenney and 
Reeves (2019, pp. 83–84), Figure 1 shows the overall process of this 
study. The study involved multiple iterations of investigation, design 
and construction, and evaluation and reflection. The research com-
prised three main phases (i.e., initial research, concept development, 
and design development), which were divided into six iterative sub-
cycles. Although the process flow depicted in Figure 1 moves from left 
to right, the actual process was not linear, but rather iterative (i.e., re-
sults from one element repeatedly fed into others) and flexible (i.e., 
some sub-cycles were revisited). 
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Figure 1: Overall EDR process of the study 

The empirical study took place in primary and lower secondary schools 
in Finland. The uniform quality of the Finnish education system and its 
teachers, coupled with the students’ homogeneous mathematics per-
formance regardless of their socioeconomic background (Organisation 
for Economic Cooperation and Development, 2017, 2020), enabled the 
study to be conducted in any school. Mixed methods research, which 
combines qualitative and quantitative research (see e.g., Creswell & 
Plano Clark, 2017), was employed for data collection, analysis, and in-
terpretation to better understand the real-world complexity (e.g., An-
derson & Shuttuck, 2012; McKenney & Reeves, 2019). Research ethics 
and integrity were assured; the study was conducted according to the 
guidelines of the Finnish National Board on Research Integrity (2009, 
2012) and All European Academies (2017). Altogether, 18 teachers 
(teaching experience 3–27 years), 98 primary school students (aged 9–
12), and 65 lower secondary school students (aged 13–16) participated 
in different phases of the study. Table 1 summarises the mixed meth-
ods research design of the empirical sub-cycles (i.e., initial fieldwork, 
concept evaluation, and design evaluation). 
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Table 1: The mixed methods research design of the study’s empirical 
sub-cycles 

 

The research design and results of the initial fieldwork have been re-
ported in detail in Lehtonen and Joutsenlahti (2017). The concept eval-
uation has not been published elsewhere; its research design is elabo-
rated in Section 2.3.2 and results in Section 3.3. The design and devel-
opment of the design solution (i.e., design principles refinement, tech-
nological development and implementation, features and interac-
tions, prototyping, and future development) and its evaluation (i.e., 
research design and results) have been thoroughly reported in Lehto-
nen et al. (2020). 

 

Research phases  

Phase 1: Initial research  

Initial research was undertaken to gain knowledge of the following two 
key areas to construct a context theory: (1) the to-be-solved educa-
tional problem and the target educational context (i.e., challenges, op-
portunities, and needs regarding teaching and learning equation solv-
ing in primary school classrooms) and (2) existing solutions (see 
McKenney & Reeves, 2019). First, I conducted a literature review to 
investigate the state-of-the-art relevant to the research, including 
learning theories/models, equation solving, and manipulative use. 
Then, I analysed various existing physical and virtual manipulatives and 
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educational games for equation solving in terms of their key benefits 
and limitations to mathematics classrooms. Based on the literature re-
view and existing manipulative analysis findings, fieldwork was con-
ducted in real classrooms to define the problem in practice, under-
stand the real context, and investigate how existing manipulatives sup-
port or hinder classroom activities (see Lehtonen & Joutsenlahti, 
2017). 

Class interventions were implemented with four primary school teach-
ers and their students (n = 74) with no/low prior knowledge of equa-
tion solving. Students with different attainment levels were equally di-
vided into either learning with paper-and-pencil (n = 25) or learning 
with manipulatives (physical manipulative: n = 25, virtual manipula-
tive: n = 24). The teachers were interviewed before the class interven-
tions about their prior experiences and needs in using manipulatives, 
and after the interventions about their experiences and opinions of 
the interventions. All the interventions were observed and video rec-
orded. Afterwards, all the students completed the same paper-based 
test with no access to the manipulatives and evaluated their learning 
experiences and achievements. 

 

Phase 2: Concept development 

This phase aimed to generate alternative design concepts informed by 
Phase 1 results, evaluate the generated concepts, and select promising 
one(s) for further development (see Ulrich & Eppinger, 2016). I used 
the Phase 1 findings to identify design opportunities and tentative de-
sign principles that provided initial ideas about how a manipulative can 
promote students’ equation-solving concept understanding and its 
use in the classroom. Based on that, I explored different potential so-
lutions by first generating ideas and then reviewing each from not only 
rational and analytical viewpoints, but also instinctive and intuitive 
viewpoints, as recommended by McKenney and Reeves (2019) and Ul-
rich and Eppinger (2016). Four generated ideas were selected for de-
velopment as potential design concepts. Then, I built a nonfunctional 
mock-up to describe each concept in terms of its key functional fea-
tures and initial visual appearance. 

I conducted a concept evaluation with 12 primary school teachers 
(four participated in the initial fieldwork) via questionnaire and inter-
view to determine the potential viability of each envisioned concept in 
the target setting and to collect teachers’ feedback for further design 
decisions. First, I introduced all the concepts to the teachers and asked 
them to assess how well each concept was likely to benefit students’ 
learning and conform to classroom and school practice. A scale of 1 
(not at all) to 4 (very well) was used. They were also asked to provide 
an explanation of their rating responses. Teachers were selected to 
evaluate the concepts because they were sufficiently knowledgeable 
about educational contexts to envision concept implementation and 
adoption possibilities. Furthermore, according to McKenney and 
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Reeves (2019), it would not be socially responsible to excessively in-
terrupt normal classrooms for evaluation of underdeveloped solu-
tions. 

 

Phase 3: Design development  

This phase aimed to develop the selected concept(s) according to the 
design principles, evaluate the design, and reflect on the evaluation 
results (see McKenney & Reeves, 2019; Ulrich & Eppinger, 2016). To 
inform the development of the design solution, I conducted another 
literature review (e.g., technology-enhanced learning and tangible 
technologies) and investigated relevant educational products (e.g., 
textbooks and educational technologies). Subsequently, I incorpo-
rated key knowledge underlined by the literature, the existing solution 
investigation, and Phase 2 concept evaluation results to refine the de-
sign principles. Based on the concept evaluation, the most promising 
concept was selected for further development, guided by the refined 
design principles. When developing the selected concept, I also took 
into account the teachers’ positive feedback from Phase 2 about other 
concepts to incorporate their strengths into the developed solution. 
Consequently, physical artifacts and class activities were developed as 
the solution to the educational problem. 

The next step was prototyping. As I have a strong background in design 
(i.e., educational, graphic, user interface, and product design), I built 
most parts of the working prototypes myself and designed the 
graphics and interface of a tablet application that was part of the de-
veloped manipulative. I sought and received expert information tech-
nology and communication assistance for prototyping the applica-
tion’s technological aspects. Finally, the manipulative (i.e., the tablet 
application and related physical objects) was developed and proto-
typed in collaboration with a team of six university students and their 
supervisor at the Faculty of Information Technology and Communica-
tion Sciences as part of their coursework. 

The development team and I took part in the development and form-
ative evaluation of the manipulative prototype according to our own 
expertise and discipline. The development team was responsible for 
technology implementation and the iterative process of programming 
and use-case scenario testing, while I was responsible for educational, 
graphics, interface, and product design. Continual discussion was re-
quired for issues that required the expertise of both parties. The col-
laboration involved daily communication (e.g., email, and Slack: a real-
time communication platform for teamwork) and monthly face-to-
face official meetings. Unfortunately, at the end of the 4-month col-
laboration, only some components of the working prototype fully 
functioned as envisioned. Moreover, the technical stability of the pro-
totype was heavily dependent on external factors, particularly class-
room lighting conditions. Consequently, Microsoft PowerPoint was 
used to build a Wizard of Oz rapid prototype (see Beaudouin-Lafon & 
Mackay, 2012) of the application for class intervention evaluation. 
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I conducted a field test to evaluate the developed solution in real class-
rooms in terms of its pedagogical benefits, usability, and compatibility 
with classroom and school practice (see Lehtonen et al., 2020). The 
class interventions were implemented with two primary school teach-
ers and their students (n = 24) with no/low prior knowledge of equa-
tions solving. Students with different attainment levels were divided 
equally into two groups: learning with the developed manipulative (n 
= 12) or learning without it (n = 12). Apart from that, both groups used 
the same components of the developed solution (i.e., a teacher guide, 
a worksheet, and class activities) during the class interventions. The 
processes for the intervention and paper-based posttest were similar 
to those of the Phase 1 initial fieldwork. Additionally, the students who 
used the developed manipulative individually participated in a thinking 
aloud session, in which they were asked to solve equations with the 
manipulative and simultaneously explain about their actions. They also 
completed a questionnaire and were interviewed regarding their per-
ceptions of usefulness and usability of the manipulative. Lower sec-
ondary school students (n = 65), who had learnt equation solving as a 
part of their normal school curricula (representing traditional class-
rooms), took the same paper-based test, but without participating in 
the class intervention. To investigate the extent to which the devel-
oped solution enhanced students’ learning achievement compared to 
traditional instruction, the paper-based test performance of the stu-
dents participating in the class interventions was compared to that of 
the students who did not take part. After the interventions, both 
teachers evaluated the developed manipulative using a similar process 
to those of the Phase 2 concept evaluation. The manipulative was also 
evaluated by one special education teacher and three lower secondary 
school teachers to examine the possibility of its implementation and 
adoption in educational settings outside the studied context. 

Based on the results of the formative evaluation during the working 
prototype development, some physical components that interacted 
with the application were revised to improve the technical stability of 
the manipulative. The field test results and reflection informed minor 
refinement of the manipulative to enhance its pedagogical value, usa-
bility, and practicality. 

 

Developing a design solution  

This section describes how the design solution was developed to meet 
the research objectives (i.e., to enhance students’ equation-solving 
concept understanding and conform to classroom and school prac-
tice), what informed its development, and whether it accomplished 
the desired objectives. 
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Design principle construction  

The initial research results from Phase 1 revealed important pedagog-
ical factors that tend to influence the successful manipulative utilisa-
tion and adoption in the classroom (Lehtonen & Joutsenlahti, 2017). 
Based on this, tentative design principles were identified and used to 
guide potential design concept exploration. It should be noted that dif-
ferent practical factors that could pose challenges to manipulative uti-
lisation and adoption were also discovered. They were not the main 
consideration when generating design concepts, but were used later 
to evaluate the generated concepts and to further develop the design 
solution. 

In terms of pedagogy, discovery learning was identified in the litera-
ture (e.g., Bruner, 1961; Neber, 2012) as important to students’ mean-
ingful learning with manipulatives. Thus, the manipulative was de-
signed to help students learn equation solving through firsthand expe-
rience with guidance and scaffolding. To ensure the benefits of the ma-
nipulative to students’ conceptual understanding, it was also designed 
based on the literature (e.g., Joutsenlahti & Kulju, 2017; Lesh et al., 
1987) and Phase 1 initial fieldwork to help students link various repre-
sentations of equation-solving concepts (i.e., physical actions, pic-
tures, mathematical symbols, and natural language) and to express 
their mathematical thinking through multiple modes. Additionally, in-
formed by social constructivism, the manipulative was designed to en-
courage students to work in pairs/small groups, thereby co-construct-
ing their knowledge through peer interaction (e.g., Slavin, 2010; Vygot-
sky, 1978). 

Regarding to-be-learnt content, the manipulative was designed to help 
students learn equation solving by concretising fundamental concepts 
for solving equations: mathematical equivalence (i.e., both sides of an 
equation are equal), different terms in an equation (i.e., constants and 
unknowns), and equation solving (i.e., finding the values of the un-
knowns so that the equation is true or showing that there is no real 
number-value solution to the equation). These were emphasised in 
the literature (e.g., McNeil et al., 2019; Otten et al., 2019; Poon & 
Leung, 2010). To achieve the subject-matter objective, the manipula-
tive employed the balance model (see e.g., Otten et al., 2019) to em-
phasise the relational (rather than operational) meaning of the equal 
sign and used different physical objects to represent constants (e.g., 3) 
and unknowns (e.g., 3x). 

Empirical findings from the initial research indicated that the physical 
manipulative provided more benefits (e.g., concrete representation, 
tactile-kinesthetic interaction, flexibility, and ease of use) than the vir-
tual manipulative. Nevertheless, the virtual manipulative had several 
advantages over the physical one, for example, visual and symbolic 
links, real-time guidance and scaffolding, and interactivity. The discov-
ered strengths and limitations of both manipulative types were taken 
into account when exploring different possibilities. Consequently, four 
potential design concepts were generated (Figure 2). 
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Figure 2: How to solve an equation (x + 10 = 12) using each of the four 
generated design concepts. (a) Concept A; (b) Concept B; (c) Concept 
C; (d) Concept D. 

 

Concept design  

All four concepts share similar core ideas informed by the Phase 1 find-
ings, as described in the previous section. The concepts differ in how 
they utilise existing technologies to meet the design objectives. Hence, 
the generated design concepts were not driven by technologies, but 
rather by what technologies could offer to solve the educational prob-
lem. This design approach prevented the technology before pedagogy 
effect, which occurs when a technology is chosen prior to the identifi-
cation of an educational problem (Watson, 2001; cf. technology-driven 
products; Ulrich & Eppinger, 2016). 

Concept A (Figure 2a) consists of a physical balance scale and physical 
objects: black boxes as unknowns and base-10 blocks as constants 
(e.g., yellow units representing ones and green rods representing 
tens). Each side of the scale represents each side of the equation, while 
the balance or tilting of the scale represents the relationship (i.e., 
equality or inequality, respectively) between the mathematical ex-
pressions on each side of the equation. Concept B (Figure 2b) consists 
of a physical balance scale with a digital display, which shows math 
sentences of the current equation-solving process, and physical ob-
jects. Concept C (Figure 2c) consists of a tablet application, a mirror 
placed in front of a tablet camera for physical object detection, physi-
cal objects, and a mat divided into two parts representing both sides 
of the scale. Math sentences of the current equation-solving process 
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and graphical images of the physical objects currently on and off the 
scale are displayed on a tablet screen. Concept D (Figure 2d) consists 
of a tablet application and physical objects. The tablet touchscreen di-
rectly detects physical objects on the screen and provides outputs (i.e., 
graphical images and mathematical symbols) for seamless interaction. 

 

Concept evaluation  

Each generated concept was evaluated by teachers in terms of its po-
tential pedagogical benefits (i.e., enhancing students’ understanding 
of equation-solving concepts, discovery learning, social interaction, 
and multimodal expression of mathematical thinking) and compatibil-
ity with classroom and school practice (e.g., acquisition budget, stor-
age space, organisation and preparation, and class management). The 
evaluation criteria were informed by previous studies (e.g., Bedir & 
Özbek, 2016; Marshall & Swan, 2008) and Phase 1 fieldwork. To take 
policymakers’ needs into account, the pedagogical criteria were also 
guided by the current Finnish National Core Curriculum (NCC) for Basic 
Education (Finnish National Agency for Education [EDUFI], 2016). 

The teachers (N = 12) rated each concept according to the evaluation 
criteria, and the average scores for each concept are shown in Figure 
3. All the concepts were rated relatively high (3–3.5 on the 4-point 
scale of 1 [not at all] to 4 [very well]) in terms of their potential benefits 
for students’ learning. However, only Concept D was highly rated (M = 
3.5, SD = 0.78) for its compatibility with classroom and school practice 
compared to the others, which were rated below 3 (well). At the end 
of the concept evaluation, the teachers were asked to make an acqui-
sition decision by taking both pedagogical and practical factors into ac-
count. Most teachers (n = 9) would acquire Concept D for their own 
class, followed by Concept B (n = 6), Concept A (n = 5), and Concept C 
(n = 2). No teachers mentioned that they would not acquire Concept D 
for their class, but six would not acquire Concept C, and four would not 
acquire Concept A or Concept B. According to the teachers’ explana-
tions, there were no major differences between the concepts regard-
ing their pedagogical benefits, so compatibility with classroom and 
school practice was the decisive factor in the teachers’ acquisition de-
cisions. Concept D was the most desirable because of its highly per-
ceived pedagogical benefits, as well as its simplicity, usability, com-
pactness, portability, durability, compatibility with existing school tab-
lets, attractiveness to diverse learners (in terms of age and attaining 
levels), and enduring utility. Hence, Concept D was selected for further 
development. 
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Figure 3: Average scores of each concept rated by 12 teachers regard-
ing how well they potentially meet each criterion. Scores ranged from 
1 (not at all) to 4 (very well). 

 

Solution design and development  

Based on the refined design principles (e.g., concretising key equation-
solving concepts; being in agreement with curriculum; supporting mul-
timodality, discovery learning, and social interaction; and being feasi-
ble for classroom and school practice; Lehtonen et al., 2020), physical 
artifacts (i.e., a manipulative, student worksheets, and teacher guides) 
and class activities (how the manipulative and worksheet should be 
used in the classroom) were proposed as the solution to the identified 
educational problem. The manipulative was developed from Concept 
D as a student learning tool to be used for recommended class activi-
ties to ensure meaningful learning. Relying heavily on the literature 
mentioned in Section 3.1, the class activities were designed to pro-
mote students’ understanding of equation-solving concepts through 
discovery learning, social interaction, and multimodal mathematical 
thinking expression. It is recommended that, under the teacher’s su-
pervision, students use the manipulative in pairs/small groups to 
model and solve an equation shown on the worksheet and then indi-
vidually write the equation-solving processes and a solution(s) on their 
own worksheet. 

The instructional materials include two student worksheets (the first 
for lower graders to learn to solve equations by substituting values for 
the unknown and the second for upper graders to learn to solve equa-
tions algebraically [Figure 4]) and two corresponding teacher guides. 
The instructional materials were developed based on the NCC (EDUFI, 
2016), mathematics textbooks currently used in Finland, and the ma-
terials used during Phase 1 class interventions. The materials were 
evaluated and critiqued by the doctoral research supervisors acting as 
experts in subject matter and mathematics education and then refined 
according to the experts’ advice. 
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Figure 4: Extracts from the student worksheets of a fourth grader 
(above) and a fifth grader (below). 

Each worksheet was designed to be used for one 45-minute lesson to 
facilitate students’ conceptual understanding by working with multiple 
representations of equations. The worksheets show a summary of the 
contents and then eight equations presented through three different 
representations: mathematical symbols, pictures, and word problems. 
On the worksheets, students are required to first translate each equa-
tion into two other representations, then symbolically, pictorially, or 
verbally demonstrate how they have solved the equation, and finally 
provide the answer. The teacher guides were designed to assist teach-
ers in planning and implementing a lesson for learning to solve equa-
tions using the manipulative and the worksheet. Each teacher guide 
consists of five parts: a story that introduces the equation solving, les-
son objectives, suggestions for the lesson procedure, advice on how to 
explain the content to students, and additional information about the 
theoretical framework behind the class activities. 

During the collaboration with the development team, the manipula-
tive was developed based on the refined design principles and techno-
logical feasibility. Figure 5a shows the developed manipulative, includ-
ing the tablet application and two types of physical objects: (1) spe-
cially designed X-Boxes representing unknowns and (2) existing and 
widely used base-10 blocks representing constants (see Lehtonen et 
al., 2020). The use of base-10 blocks was positively supported by the 
teachers during the concept evaluation, because teachers and stu-
dents are usually familiar with them and they are commonly available 
in schools. The application has two levels containing the same exer-
cises as in the worksheets for students at different grade levels to learn 
to solve equations. This expands the manipulative utility across pri-
mary grades to increase the likelihood of manipulative acquisition. Stu-
dents manipulate physical objects on a tablet screen to model and 
solve equations, while the application provides corresponding guid-
ance and scaffolding in textual, pictorial, mathematical symbolic, or 
audio form. The graphics and user interface design of the application 
was kept simple, allowing students to easily navigate the application 
and concentrate on the content. 
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Figure 5: (a) The developed manipulative consisting of a tablet appli-
cation, an X-Box(es), and base-10 blocks; (b) the object tracking via an 
external USB web camera. From ‘The Potentials of Tangible Technolo-
gies for Learning Linear Equations,’ by D. Lehtonen et al., 2020, Multi-
modal Technologies and Interaction, 4(4), Article 77 
(https://doi.org/10.3390/mti4040077). CC BY 4.0. 

While the design of the manipulative was much the same as the origi-
nal concept, some trade-off decisions were made in the prototype to 
balance pedagogical, practical, and feasible factors, all of which were 
not achievable concurrently. For instance, at the beginning of the pro-
totyping, it became clear that the original object-tracking idea (i.e., 
conductive technology) used in Concept D for the interaction between 
the physical objects and the application was not feasible due to the 
limitations of current tablet touchscreen technology. This led to a 
change from the original object tracking to image recognition via an 
external USB web camera (Figure 5b). A more complicated installation 
of the manipulative was required, which resulted in reduced practical-
ity. However, at that time, it was technologically feasible and afforda-
ble. Importantly, it allowed for a single point of interaction (i.e., for 
students to manipulate physical objects on a tablet screen and look at 
the outputs on the screen without losing concentration); this was a 
critical design principle, which was informed by Concept D that should 
not be traded off. Another decision was to simplify a graphical repre-
sentation of the balance scale on the tablet screen to overcome the 
limited screen space (see the original scale in Figure 2d vs. the simpli-
fied one in Figure 5a). Despite the fact that the simplified representa-
tion was not completely in line with physics, based on teachers’ re-
sponses during the Phase 3 design evaluation, the simplification was 
acceptable for primary and lower secondary school mathematics. 

Overall, the proposed solution gained highly favourable results from 
the design evaluation (Lehtonen et al., 2020), thereby suggesting its 
successful classroom utilisation and adoption. The paper-based test 
results, class intervention observations, and students’ and teachers’ 
responses revealed that the design solution improved students’ equa-
tion-solving learning and achievement. Moreover, based on the class 
intervention observations and the students’ responses, the developed 
manipulative was easy and enjoyable to use. Most students found it 
helpful for their learning and would like to use it in the future. Teachers 
rated the manipulative highly (M = 3.4 on the 4-point scale, SD = 0.48) 
for its compatibility with classroom and school practice. All teachers 
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would acquire the manipulative for their classrooms, and the number 
of acquired manipulatives would depend on their utilisation purpose 
(e.g., for the whole class or remedial teaching) and school budget. 
Based on the design evaluation and reflection, minor revisions (e.g., 
redesign of the X-Box to overcome image recognition challenges) were 
made; new features (e.g., free experiments with the balance scale for 
enhancing pedagogical value) were added to the forthcoming design. 

 

Conducting EDR  

This section highlights the lessons I learnt from conducting the EDR. 
Based on my research journals, field notes, and communication rec-
ords with the development team and teachers, here I reflect on the 
benefits of EDR and the challenges that emerged during my study. 
 

Iterations 

As iteration is a key characteristic of EDR (e.g., Anderson & Shattuck, 
2012), the study comprised six sub-cycles. The multiple iterations of 
investigation, development, assessment, and refinement helped me 
gradually develop my theoretical understanding of the real educa-
tional context (i.e., challenges and opportunities regarding utilisation 
of manipulatives for teaching and learning equation-solving concepts 
in primary schools) and how my proposed solution could enhance stu-
dents’ learning and classroom practice. Moreover, through this itera-
tive process, I was able to design, test, and refine the solution to en-
sure its feasibility and successful implementation and adoption in the 
classroom. Despite the benefits, the iterations were intensive and re-
quired considerable resources. As a single researcher, it took me 6 
years to complete the study. 

 

Data triangulation 

I collected empirical data from various sources (i.e., teachers and stu-
dents of different grade levels) using a range of methods (i.e., multiple 
instruments and various data formats), as recommended in the EDR 
literature (e.g., McKenney & Reeves, 2019). While the data triangula-
tion helped me better understand the complex and dynamic real-
world educational phenomena and promoted the research reliability 
and validity (e.g., McKenney & Reeves, 2019), it was unavoidably re-
source-intensive to collect and analyse such a large and varied dataset. 
With limited resources, I had to focus on the data directly related to 
the research question. As a result, a large amount of collected data 
was left unused. 

 

 

 

4.0 

4.1 
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Various participants 

In line with the EDR literature (e.g., Ørngreen, 2015), the involvement 
of teachers and students, who were potential implementors and learn-
ers of the proposed solution, largely informed the solution develop-
ment towards the desired outcomes. The concept and design evalua-
tion results indicate that the developed solution is likely to promote 
students’ conceptual understanding of equation solving and classroom 
practice. Therefore, it has the potential to be implemented and 
adopted into real classrooms. The design evaluation also revealed stu-
dents’ adaptations of the manipulative use to meet their needs in ways 
that would not have been discovered without their involvement. 

Collaborating with teachers and students not only contributed to the 
advancement of theoretical knowledge and the improvement of edu-
cational practice, but also benefitted teachers and students. Most 
teachers stated that participation helped them realise how manipula-
tives can enhance students’ conceptual understanding. One even 
changed her strong prior perception that manipulatives only benefit 
young students. Consequently, all teachers mentioned their intention 
to regularly incorporate manipulatives into their classrooms. After the 
class interventions, one class actually adopted a discussion about their 
own mathematical thinking with peers, which was implemented dur-
ing the class interventions as part of their mathematics class. Some 
teachers expressed their appreciation for the opportunity to partici-
pate, stating that participation enabled them to experience how dif-
ferent instructional methods influenced their students’ mathematics 
learning and to understand how to best support their students. 

Despite these benefits, I encountered challenges in involving teachers 
and students. Participant recruitment required careful planning and 
determined actions for practical and ethical reasons. It was difficult to 
access teachers who were willing to participate in class interventions 
that required intensive organisation and resources. Approval for the 
students’ participation had to be obtained well in advance from the 
city’s children and youth service director, school principals, and stu-
dents’ guardians. Additionally, unanticipated rearrangement or can-
cellation of participation occurred several times. 

 

Multidisciplinary collaboration 

Collaboration among different disciplines is important for successful 
EDR (e.g., McKenney & Reeves, 2019). Working with experts from the 
fields of mathematics and mathematics education (i.e., my supervi-
sors) and information technology and communication sciences (i.e., 
the development team) helped me ensure that the solution was viable 
in terms of subject matter, pedagogy, and technology. Although I have 
a multidisciplinary background, I would not have been able to accom-
plish my research objectives without this multidisciplinary collabora-
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tion. We collaborated successfully due to good communication, mu-
tual respect, and shared understanding. Regular face-to-face and 
online communication enabled us to interact and share ideas and work 
progress. In short, our complementary expertise enabled us to over-
come the research and design challenges. 

Nevertheless, I encountered some difficulties in the multidisciplinary 
collaboration. It was challenging for other collaborators to gain insight 
into the complex educational problems, and it took me almost a year 
to establish the collaboration with the development team. Another 
challenge resulted from the experience level of the development team 
members: undergraduate and graduate students. Most had no experi-
ence with the technologies used for the developed manipulative, 
thereby requiring training and additional study. Moreover, because 
the students participated in the study as part of their coursework with-
out other incentives, it was difficult to secure their full-time commit-
ment to our collaborative project. 

 

Technological innovations 

Technological possibilities play an important role in product design 
and development (e.g., Ulrich & Eppinger, 2016). While the developed 
manipulative that employs innovative technologies provided satisfac-
tory results, the development of such educational technology resulted 
in several challenges. For example, only at the beginning of the manip-
ulative prototyping did it become clear that the envisioned object-
tracking idea was not feasible with off-the-shelf technology. Conse-
quently, a considerable amount of the development team’s time was 
devoted to finding other object-tracking alternatives, leaving less time 
for actual prototyping. Moreover, there were other technical difficul-
ties in getting the prototype functioning properly. Due to limited time 
and the demanding task, the development team could not develop 
and construct a fully working prototype that was stable and contained 
all the needed features for the class interventions, despite the ex-
tended project deadline. Thus, I had to build the Wizard of Oz proto-
type for class intervention evaluation instead. 

 

Alternative designs 

Given my design experience, I acknowledge that working with alterna-
tive designs reduces the possibility of discovering later in the develop-
ment process that the developed design might not be the best solution 
(e.g., Ulrich & Eppinger, 2016). Thus, I thoroughly explored alternative 
solutions at an early stage of concept development (Phase 2). The con-
cept evaluation with teachers not only helped me better understand 
the educational context but also identify the issues to be addressed 
prior to further development and class interventions. This resulted in 
the efficient utilisation of resources. The teachers’ feedback also al-
lowed me to confidently select a concept for further development. 

 

4.5 

4.6 



                       Volume 5 | Issue 2 | 2021 | Article 38 
                        

16 

 

Various participants 

In line with the EDR literature (e.g., Ørngreen, 2015), the involvement 
of teachers and students, who were potential implementors and learn-
ers of the proposed solution, largely informed the solution develop-
ment towards the desired outcomes. The concept and design evalua-
tion results indicate that the developed solution is likely to promote 
students’ conceptual understanding of equation solving and classroom 
practice. Therefore, it has the potential to be implemented and 
adopted into real classrooms. The design evaluation also revealed stu-
dents’ adaptations of the manipulative use to meet their needs in ways 
that would not have been discovered without their involvement. 

Collaborating with teachers and students not only contributed to the 
advancement of theoretical knowledge and the improvement of edu-
cational practice, but also benefitted teachers and students. Most 
teachers stated that participation helped them realise how manipula-
tives can enhance students’ conceptual understanding. One even 
changed her strong prior perception that manipulatives only benefit 
young students. Consequently, all teachers mentioned their intention 
to regularly incorporate manipulatives into their classrooms. After the 
class interventions, one class actually adopted a discussion about their 
own mathematical thinking with peers, which was implemented dur-
ing the class interventions as part of their mathematics class. Some 
teachers expressed their appreciation for the opportunity to partici-
pate, stating that participation enabled them to experience how dif-
ferent instructional methods influenced their students’ mathematics 
learning and to understand how to best support their students. 

Despite these benefits, I encountered challenges in involving teachers 
and students. Participant recruitment required careful planning and 
determined actions for practical and ethical reasons. It was difficult to 
access teachers who were willing to participate in class interventions 
that required intensive organisation and resources. Approval for the 
students’ participation had to be obtained well in advance from the 
city’s children and youth service director, school principals, and stu-
dents’ guardians. Additionally, unanticipated rearrangement or can-
cellation of participation occurred several times. 

 

Multidisciplinary collaboration 

Collaboration among different disciplines is important for successful 
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sors) and information technology and communication sciences (i.e., 
the development team) helped me ensure that the solution was viable 
in terms of subject matter, pedagogy, and technology. Although I have 
a multidisciplinary background, I would not have been able to accom-
plish my research objectives without this multidisciplinary collabora-

4.3 

4.4 

                       Volume 5 | Issue 2 | 2021 | Article 38 
                        

17 

tion. We collaborated successfully due to good communication, mu-
tual respect, and shared understanding. Regular face-to-face and 
online communication enabled us to interact and share ideas and work 
progress. In short, our complementary expertise enabled us to over-
come the research and design challenges. 
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to establish the collaboration with the development team. Another 
challenge resulted from the experience level of the development team 
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ence with the technologies used for the developed manipulative, 
thereby requiring training and additional study. Moreover, because 
the students participated in the study as part of their coursework with-
out other incentives, it was difficult to secure their full-time commit-
ment to our collaborative project. 
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in several challenges. For example, only at the beginning of the manip-
ulative prototyping did it become clear that the envisioned object-
tracking idea was not feasible with off-the-shelf technology. Conse-
quently, a considerable amount of the development team’s time was 
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for actual prototyping. Moreover, there were other technical difficul-
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and the demanding task, the development team could not develop 
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all the needed features for the class interventions, despite the ex-
tended project deadline. Thus, I had to build the Wizard of Oz proto-
type for class intervention evaluation instead. 

 

Alternative designs 

Given my design experience, I acknowledge that working with alterna-
tive designs reduces the possibility of discovering later in the develop-
ment process that the developed design might not be the best solution 
(e.g., Ulrich & Eppinger, 2016). Thus, I thoroughly explored alternative 
solutions at an early stage of concept development (Phase 2). The con-
cept evaluation with teachers not only helped me better understand 
the educational context but also identify the issues to be addressed 
prior to further development and class interventions. This resulted in 
the efficient utilisation of resources. The teachers’ feedback also al-
lowed me to confidently select a concept for further development. 
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Additionally, the evaluation of different concepts was a good method 
for collecting in-depth information from teachers. During the initial re-
search, when teachers were asked to recall their experiences or pro-
vide their perceptions of manipulatives, their responses were rather 
superficial. However, during the concept evaluation, the concepts 
worked as concrete examples of manipulatives and enabled teachers 
to provide more detailed and relevant responses to similar questions. 

 

Solitary researcher 

Without an accompanying research team, I was involved in every pro-
cess of the EDR and had multiple roles. On a positive note, I had a deep 
understanding of the whole process. However, inevitably, this was also 
challenging due to the complex nature of EDR and the scope of the 
research, which required considerable time, patience, and multidisci-
plinary expertise from a single researcher. With a multidisciplinary 
background and without a restricted timetable, I conducted the study 
mainly independently over a 6-year period. However, the study still 
suffered from limited human resources. It required a multidisciplinary 
theoretical foundation, which I did my best to master. As the only re-
searcher, I could operate only one Wizard of Oz rapid prototype at a 
time during the class interventions, thereby resulting in a small sample 
size of students working with the developed manipulative. Moreover, 
I was only able to carry out the concept evaluation and one implemen-
tation of the developed solution in classrooms. It is unlikely that a sin-
gle implementation of the proposed solution in a real educational set-
ting is sufficient to collect evidence indicating the success of the solu-
tion. Thus, I have planned postdoctoral research that could contribute 
to the research validity by constructing a number of working proto-
types of the refined design solution that can be implemented in other 
educational contexts with larger sample sizes. 

Working alone also had a negative impact on the research reliability. 
It was not possible to achieve researcher triangulation during the data 
collection and analysis. As cautioned in the EDR literature (e.g., Plomp, 
2013), taking on multiple roles (i.e., researcher, designer, and evalua-
tor) also challenged my maintenance of objectivity. It should be noted 
that I did not take on an implementor’s role in any class interventions; 
teachers were the designated implementors. Thus, there was no re-
searcher or designer influence on any class interventions. An early de-
veloped design is rarely flawless, and there is always room for im-
provement. Therefore, I saw the design evaluation as a means of gath-
ering feedback to improve the proposed solution rather than demon-
strating its perfection. Furthermore, I wanted to ensure that the re-
search was EDR, not just a design and development project. So, I con-
sciously acted according to Edelson’s (2002) recommendation as an 
EDR researcher (instead of only a designer) to develop a novel solution 
to improve educational practice and use design implementation as a 
strategy to construct theoretical knowledge that makes EDR different 
from design practice (Easterday et al., 2017). 
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Looking back and moving forward 

Informed by the literature and my experiences of developing the de-
sign solution (Section 3) and conducting this EDR (Section 4), I have 
constructed usable and generalisable knowledge of design frame-
works and design methodologies. I am sharing this knowledge so that 
others outside this EDR project may benefit from it. 
 
Design framework for developing real-world educational tech-
nologies 

Brown (1992) argued that researchers need to acquire various types 
of knowledge to successfully develop solutions to improve real-world 
educational practice. This was the case for my study. To develop a 
promising solution that met my research goals, I needed to know 
about equation solving, meaningful ways to use manipulatives, rele-
vant classroom and school practice, and possible technologies. Conse-
quently, I propose a real-world educational technology design frame-
work (i.e., a generalisation of the study-specific design principles) to 
inform other researchers and designers about what should be consid-
ered when developing educational technologies for real-world educa-
tional contexts. Figure 6 shows that the framework takes into account 
four essential aspects – content, pedagogy, practice, and technology – 
that contribute to educational benefits, feasibility, and real-world uti-
lisation and adoption of educational technologies. 
 

 

Figure 6: The real-world educational technology design framework 
takes into consideration content, pedagogy, practice, and technology. 
Illustration created by T. Lehtonen. 
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example, to develop the manipulative and the student worksheets, 
which covered what was to be learnt, I needed knowledge of equation 
solving, important concepts required for understanding equation solv-
ing, different models for teaching equations, and equation-solving 
content stated in the NCC (EDUFI, 2016) and used in textbooks. 
 
Pedagogy 
An understanding of pedagogy (i.e., how to teach and learn the partic-
ular subject matter content in the target educational context) is re-
quired to ensure the meaningful use of the proposed design solution. 
For example, I needed to know how to use manipulatives to enhance 
students’ understanding of equation-solving concepts. Social con-
structivism (e.g., discovery learning and social interaction), multimodal 
expression of mathematical thinking, and teaching and learning ap-
proaches recommended by the NCC (EDUFI, 2016) were used to guide 
my design solution. 
 
Practice 
Knowledge of practice in the target educational context largely con-
tributes to the successful real-world implementation and adoption of 
educational solutions. In my case, the conformity of the manipulative 
to classroom and school practice (e.g., acquisition budget and class 
management) proved to be an important factor in teachers’ acquisi-
tion decisions. 
 
Technology 
To design feasible educational technologies, it is necessary to know 
about technological possibilities, including what technologies are 
available, what they can offer, and how they work. For example, to 
develop the manipulative in collaboration with the development 
team, to some extent, I needed to understand digital technologies, 
tangible technologies (see Ishii & Ullmer, 2012), and different object 
tracking alternatives that could be used to solve the target educational 
problem. 
 
It is worth noting that the importance of each aspect in the framework 
is usually not equal and largely depends on the nature of the educa-
tional problem, target setting, and possible technologies. In line with 
McKenney and Reeves (2019), during my study, design decision-mak-
ing typically involved simultaneous consideration of multiple aspects. 
Often, I had to make trade-off decisions to fine-tune the manipulative 
that would best achieve the research objectives (Ulrich & Eppinger, 
2016). For example: Concept D had the most pedagogical value but 
was not technologically feasible; Concept C was technologically feasi-
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ble but not very practical or pedagogical; and Concept B was pedagog-
ical and technologically feasible but not affordable. My theoretical, 
practical, and technological understandings gained from the literature, 
fieldwork, and multidisciplinary collaboration assisted me in making 
trade-off decisions. 
 
Unintentionally, there are some similarities between the real-world 
educational technology design framework and the Technological Ped-
agogical Content Knowledge (TPACK) framework (see Koehler & 
Mishra, 2009). The TPACK framework builds on Shulman’s (1986) con-
struct of pedagogical content knowledge and includes technological 
knowledge to address essential teacher knowledge for integrating 
technology into teaching and learning, whereas my proposed design 
framework is rooted in design and development practice to inform im-
portant aspects to be considered when designing educational technol-
ogies for the real world. 

 
Guidelines for conducting EDR 

The nature of EDR (e.g., being situated in real educational settings and 
involving multiple iterations) results in a multifaceted and intensive 
enquiry requiring substantial resources (Kelly, 2013) and long-term en-
deavour (Collins et al., 2004). Consequently, doctoral students are of-
ten hesitant about employing EDR (Goff & Getenet, 2017; Herrington 
et al., 2007). Based on my experience of conducting my doctoral EDR, 
I agree with scholars (e.g., Herrington et al., 2007; Kennedy-Clark, 
2013; McKenney & Reeves, 2019) that EDR can be undertaken even by 
a single doctoral student. I certainly encourage others to engage in 
EDR for its numerous benefits, as evidenced in my study. 
 
Various EDR models, such as those by Easterday et al. (2017) and 
McKenney and Reeves (2019), have been employed; however, due to 
the uniqueness of each piece of EDR, researchers are typically required 
to adapt these models appropriately. Therefore, instead of proposing 
another model, I provide general guidelines (Figure 7) for conducting 
EDR to assist other researchers in embracing opportunities and over-
coming the challenges that may emerge from their EDR. 
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Figure 7: General guidelines for conducting EDR. Illustration created by 
T. Lehtonen. 
 
Balance research scope and available resources 
Because EDR is resource-intensive, it is important to estimate the re-
sources available and then plan the EDR accordingly. This will ensure 
that the research is achievable and preserves the real-world iterative 
enquiry. I agree with Kennedy-Clark (2013) that a single researcher or 
a few researchers should aim for a less intensive small-scale enquiry, 
while a larger research team could strive for a more intensive large-
scale one. In addition to the research team size, the research team 
type (e.g., monodisciplinary vs. multidisciplinary) and other resources 
(e.g., time and budget) should be taken into account when planning 
EDR. For example, financial support can play a crucial role in prototyp-
ing technological solutions, as in my study. Complex and long-term re-
search can also be broken down into feasible components, for exam-
ple, doctoral and postdoctoral research as in my and Goff’s (2016, as 
cited in Goff & Getenet, 2017) cases or several small-scale studies for 
doctoral students to individually conduct, as recommended by Ander-
son and Shattuck (2012). Alternatively, results from a single iteration 
can be used to inform further research, as in Di Biase’s (2020) case. 
 
Sensibly collect and use data 
The triangulation of data, as recommended by EDR scholars (e.g., 
McKenney & Reeves, 2019) and evidenced in my study, can contribute 
to a better understanding of multifaceted real-world phenomena and 
the trustworthiness of EDR. However, an endeavour to triangulate 
data often requires intensive resources to collect a significant amount 
of data (Collins et al., 2004). Due to limited resources, researchers, par-
ticularly doctoral students like Goff (2016, as cited in Goff & Getenet, 
2017) and me, often select only the data that is clearly relevant to their 
research questions for analysis. It would be wise if the data collection 
and analysis were thoroughly planned and implemented by taking into 
account resource use and data triangulation. Moreover, aligning with 
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the recommendation of Collins et al. (2004), sharing collected data 
(i.e., open data) can undoubtedly advance the research community. 
 
Engage different research participants 
The success of the design solution in the real world depends largely on 
various people who are directly and indirectly involved in its imple-
mentation and adoption. The engagement of different stakeholders in 
EDR has proven indispensable for my study and those of others (e.g., 
Bergdahl et al., 2018; Cowling & Birt, 2018). For instance, it can be vital 
for understanding the complex problems in real-world settings, devel-
oping a solution to meet the needs of those involved, and achieving 
respondent triangulation. Thus, I agree with McKenney and Reeves 
(2019) that different types of participants, including direct users (i.e., 
teachers and students) and other relevant stakeholders (e.g., schools, 
parents, and policymakers), should be appropriately engaged in differ-
ent phases of EDR. In line with Herrington et al. (2007), stakeholder 
participation should aim to benefit both the EDR (i.e., scientific and 
practical outputs) and the participants (i.e., societal outputs). Moreo-
ver, participation often requires intensive and long-term collabora-
tion, thereby yielding possible difficulties in recruitment and execution 
for practical and ethical reasons. Thus, the collaboration should be 
carefully planned and implemented by taking into account relevant is-
sues, such as research permission, social responsibility (e.g., interrup-
tions to the participants’ normal activities), and suitable timing for all 
involved. 
 
Collaborate with other researchers and disciplines 
It is possible for a researcher to undertake EDR alone, as in Di Biase’s 
(2020) case. However, solving multifaceted problems or developing 
complex solutions, such as technological innovations, often requires a 
larger number of people from different disciplines. I support the rec-
ommendation of other scholars (e.g., Kennedy-Clark, 2013; McKenney 
& Reeves, 2019) that a multidisciplinary research team can improve 
the feasibility, rigour, robustness, and trustworthiness of EDR. For ex-
ample, my research certainly benefited from the skills and expertise of 
my supervisors (in mathematics and pedagogy) and the development 
team (in computer science). Good teamwork (e.g., a shared vision and 
understanding, strong group cohesion, and respect for others) and 
communication can promote successful collaboration (McKenney & 
Reeves, 2019). 
 
Explore alternatives, build, and test sensibly 
It is essential in the design field to explore alternative ideas before se-
lecting promising ones for further development (e.g., Ulrich & Ep-
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pinger, 2016). However, only a few EDR researchers have explicitly re-
ported working with alternative solutions (Lehtonen et al., 2019; Ørn-
green, 2015). Exploring alternative solutions in the early stages, as ev-
idenced in my study, can help to ensure that the solution developed 
with considerable resources is the best answer to the educational 
problem (McKenney & Reeves, 2019; Ørngreen, 2015). Moreover, I 
agree with Easterday et al. (2017) that researchers should employ con-
struction and evaluation methods appropriate for their theoretical 
knowledge level and design stage to use resources efficiently. For ex-
ample, early in my study, the mock-up of each concept was simply built 
and evaluated only via teacher interviews and questionnaires to iden-
tify the issues to be solved and to quickly exclude unsuccessful con-
cepts. Later on, the prototypes of the selected concept were carefully 
built and evaluated by teachers and students through various methods 
to validate the efficacy of the developed theory and solution. 
 
Be ready for changes 
EDR is flexible and adaptive in nature. It is conducted in complex real-
world contexts full of variables, unlike laboratory settings. Moreover, 
unpredictable changes consistently occur during the iterative process 
of investigation, design, testing, and refining. Thus, the research de-
sign of later cycles usually needs to be adjusted based on the results 
from previous cycles (e.g., Herrington et al., 2007; Plomp, 2013). Of-
ten, there are other situations in which adjustments or changes are 
required. In my case, for example, a teacher withdrew from the field 
research on short notice, and the working prototype developed in col-
laboration with the development team did not function reliably for 
class interventions. Thus, I agree with Kennedy-Clark (2013) that EDR 
researchers should be prepared to react promptly to adjustments and 
changes. 
 
While this paper appears to contribute to the design framework and 
methodological knowledge of EDR in technology-enhanced learning, 
the presented framework and guidelines were built on only one re-
searcher’s experience from a single EDR. Therefore, more similar stud-
ies by other researchers could help validate the results of this paper 
and advance the design framework and methodological knowledge of 
EDR. 
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